WO2019207815A1 - Method for enhancing magnetic resonance sensitivity by quantum coding - Google Patents

Method for enhancing magnetic resonance sensitivity by quantum coding Download PDF

Info

Publication number
WO2019207815A1
WO2019207815A1 PCT/JP2018/037504 JP2018037504W WO2019207815A1 WO 2019207815 A1 WO2019207815 A1 WO 2019207815A1 JP 2018037504 W JP2018037504 W JP 2018037504W WO 2019207815 A1 WO2019207815 A1 WO 2019207815A1
Authority
WO
WIPO (PCT)
Prior art keywords
nuclear spins
quantum
nuclear
molecule
spin
Prior art date
Application number
PCT/JP2018/037504
Other languages
French (fr)
Japanese (ja)
Inventor
誠 根耒
北川 勝浩
晃徳 香川
直規 一条
太香典 杉山
靖 森田
剛志 村田
祐士 中村
Original Assignee
国立大学法人大阪大学
学校法人名古屋電気学園
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学, 学校法人名古屋電気学園 filed Critical 国立大学法人大阪大学
Publication of WO2019207815A1 publication Critical patent/WO2019207815A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/12Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using double resonance

Definitions

  • the present invention relates to a method for increasing the sensitivity of magnetic resonance by quantum coding that can improve the detection sensitivity of nuclear magnetic resonance signals in NMR spectroscopy, MRI, and the like.
  • NMR spectroscopy is an indispensable tool for chemical analysis, and MRI is an essential tool for medical diagnosis.
  • DNP Dynamic Nuclear Polarization
  • nuclear spins in materials are precisely controlled under a strong static magnetic field, and from electromagnetic wave signals (NMR signals) modulated by interactions between nuclear spins, etc. Read out a wealth of information at the molecular level.
  • the sensitivity of the NMR signal is proportional to the polarization rate, but the Zeeman energy of the nuclear spin is very low even under a strong magnetic field of several T (tesla) to several tens of T applied by the superconducting magnet. Since this Zeeman energy is 5 orders of magnitude smaller than the thermal energy at room temperature, the ratio of the spin direction to the direction of the static magnetic field (polarization rate) is 10 ⁇ 5 to 10 ⁇ 6 (0.001 to 0.
  • High polarization generally refers to a case where the polarization rate of a nuclear spin is about 100 times or more than the polarization rate at room temperature, but in this specification, the polarization rate of a nuclear spin. Is a state that exceeds the polarization rate at room temperature.
  • Non-Patent Document 1 Application of visualization of chemical response (especially metabolism) in real time using Dissolution DNP method in which the sample is dissolved in an aqueous solution after increasing the nuclear spin polarization rate by DNP and injected into a test tube or body imitating cells Has attracted attention (see Non-Patent Document 1).
  • the detection sensitivity (SN (signal / noise) ratio hereinafter simply referred to as “sensitivity” of the NMR signal is input by the number K of nuclear spins in one molecule in a normal method. It is proportional to the total number N of molecules and the polarization rate P of nuclear spins (sensitivity ⁇ K ⁇ N ⁇ P).
  • the polarization rate P is very small as described above, but if the DNP is increased to nearly 100%, the sensitivity can be increased by 10,000 times or more.
  • the total number N of molecules needs to be limited to a lethal dose or less, and the sensitivity of this method is limited by the molecules used, and the application range is limited.
  • Non-Patent Documents 2 to 5 report the results of sensing using large-scale entanglement in a cooled atomic gas or unsampled molecular spin system with the development of quantum control technology.
  • the number of sensors ie, the total number of molecules
  • N the number of sensors
  • the number of sensors N is limited for some reason. So, the ultimate high sensitivity is realized by entanglement sensing.
  • entanglement sensing is an important technique for in vivo metabolic imaging in which the total N of the sensor is strongly limited by the lethal dose.
  • FIG. 1 a molecule belonging to the model molecular system shown in FIG. 1 in which only one observable nuclear spin S (for example, a nucleus having a spin quantum number (hereinafter also simply referred to as a spin) 1 ⁇ 2) exists is used.
  • a nucleus having a spin quantum number hereinafter also simply referred to as a spin 1 ⁇ 2
  • FIG. 1 shows a connection relationship between atoms and does not show a three-dimensional structure.
  • the pure state with a polarization rate of 100% is assumed to be the initial state.
  • the quantum state of 1/2 nuclear spin is expressed as P.I. A. M.M. Introduced by Dirac, it is represented by a ket (
  • 0> represents a state in which the direction of nuclear spin is the same direction as the external magnetic field
  • 1> represents a state in which the direction of nuclear spin is opposite to the external magnetic field.
  • the measurement protocol is shown in FIG. In FIG. 2, the state of the nuclear spin is shown at the left end, and the operations shown in order from the left to the right are executed.
  • a nuclear spin is brought into a coherent state by a Hadamard gate H. This is realized by irradiating molecules arranged in a uniform external magnetic field with RF pulses (resonance frequency) of a predetermined pulse sequence including ⁇ / 2 pulse, ⁇ pulse, etc. in NMR measurement (non-resonance). (See Patent Documents 12 and 13).
  • 0> becomes a coherent state (overlapping state of two eigenstates) of (
  • the nuclear spin is affected by a perturbation magnetic field (change from a uniform magnetic field) due to the environment (hereinafter also referred to as sensing), and an offset is generated in the resonance frequency to be measured.
  • the nuclear spin undergoes ⁇ rotation about the Z axis (magnetic field direction), and the state of the nuclear spin changes to (
  • a detection operation 100 for detecting NMR signals is performed. COS ⁇ is obtained as the expected value of the measurement signal. From this result, ⁇ can be estimated and the frequency shift can be read.
  • thermal noise exists in the detection circuit. Therefore, even if accumulated many times using the latest detection technology, if there are no more than 10 6 molecules, the signal does not exceed thermal noise in one measurement, and ⁇ cannot be estimated.
  • a typical detection circuit requires many orders of magnitude more molecules. At the time of detection, quantum noise is added to the state of the nuclear spin, but since the number of molecules is large, the quantum noise is many orders of magnitude smaller than the signal and the thermal noise of the detector.
  • Non-Patent Documents 2 and 3 disclose techniques for improving the sensitivity of NMR signals for molecules belonging to the model molecular system shown in FIG.
  • the model molecular system shown in FIG. 3 there are a plurality (K) of nuclear spins, of which only one nuclear spin S can be observed, and the remaining nuclear spin I (for example, the spin quantum number is 0) is not observable.
  • FIG. 3 shows a connection relationship between atoms and does not show a three-dimensional structure.
  • the measurement protocol is shown in Fig. 4.
  • the meaning of the notation in FIG. 4 is the same as in FIG.
  • the initial state of K nuclear spins one nuclear spin S and the remaining nuclear spin I
  • the uppermost stage is the initial state of the observable nuclear spin S.
  • the observable nuclear spin S is made into a coherent state of (
  • ⁇ / 2 pulses or the like are irradiated to molecules arranged in a uniform external magnetic field.
  • an encoding operation 102 for applying a control NOT gate (hereinafter also referred to as a CNOT gate) from the nuclear spin S to all the nuclear spins I is performed.
  • Non-Patent Documents 4 and 5 disclose techniques for improving the sensitivity of NMR signals targeting molecules belonging to the model molecular system shown in FIG.
  • the model molecular system shown in FIG. 5 there are a plurality (K) of nuclear spins, all of which are observable nuclear spins S.
  • FIG. 5 shows the connection relationship between atoms, and does not show a three-dimensional structure.
  • the measurement protocol is shown in FIG.
  • the meaning of the notation in FIG. 6 is the same as in FIG.
  • the initial state of K nuclear spins S is shown.
  • all nuclear spins S are (
  • the signal intensity is considered to be K times that of the protocol of FIG. Sensitivity is not K times.
  • the thermal noise of the detection circuit is the same as when the number of observable nuclear spins is one, but since the number of observable nuclear spins is K, the quantum noise is K 1/2 times. Therefore, when the thermal noise is smaller than the quantum noise as in the case of detecting using light (when the quantum noise is the main), the sensitivity is K 1/2 compared to the measurement situation in the protocol of FIG. It is only doubled. That is, when quantum noise is taken into account, one observable nuclear spin out of K nuclear spins is used in comparison with the protocol of FIG. 6 which uses a molecule in which all K nuclear spins are observable nuclear spins S. The protocol of FIG. 4 using molecules with S is rather K 1/2 times more sensitive.
  • the sensitivity of the protocol of FIG. 4 is K times higher than that of FIG. 2 as in the protocol of FIG. Sensitivity. Therefore, until now, it was thought that the protocol of FIG. 4 was sufficient for NMR measurement. However, it is preferable to further improve the sensitivity in NMR measurement. In particular, as described above, regarding in vivo metabolic imaging, since the total number N of detection target molecules to be sent into the living body must be limited to a lethal dose or less, it is desired to further improve sensitivity.
  • an object of the present invention is to provide a method for increasing the sensitivity of magnetic resonance by quantum coding that can improve the detection sensitivity of nuclear magnetic resonance signals in NMR measurements such as NMR spectroscopy and MRI.
  • the magnetic resonance sensitization method is a magnetic resonance sensitization using a liquid containing a plurality of nuclear spins and a highly polarized molecule as a measurement target. It is a chemical method.
  • This magnetic resonance sensitization method is based on a quantum coding step in which a plurality of nuclear spins are entangled in an environmentally sensitive state with molecules placed in a uniform external magnetic field, and a plurality of entangled nuclear spins.
  • a sensing step for executing sensing for a predetermined time, a quantum decoding step for decoding a plurality of nuclear spins for which the sensing step has been executed by an operation corresponding to an inverse process of the quantum encoding step, and a quantum decoding step are executed.
  • the detection sensitivity of nuclear magnetic resonance signals can be improved in NMR measurements such as NMR spectroscopy and MRI.
  • the quantum coding step applies a Hadamard gate to one specific nuclear spin among a plurality of nuclear spins in a state in which the molecule is placed in an external magnetic field, thereby making the specific nuclear spin coherent.
  • the magnetic resonance sensitization method is a step executed between the quantum decoding step and the amplification step, wherein the Hadamard is applied to a specific nuclear spin of the plurality of nuclear spins on which the quantum decoding step is executed.
  • a step that is executed between a Z-axis displacement step that applies a gate to displace a specific nuclear spin in the XY plane in the Z-axis direction, and an amplification step and a measurement step, and the amplification step is executed.
  • the amplification step is performed on the plurality of nuclear spins on which the Z-axis displacement step has been performed, and the measurement step is performed on the plurality of nuclear spins on which the XY displacement step has been performed.
  • the detection sensitivity of the nuclear magnetic resonance signal can be further improved.
  • the magnetic resonance sensitization method further includes a quantum insensitive encoding step that is performed before the coherentization step, and makes the highly polarized molecule less susceptible to relaxation.
  • the molecule is a molecule highly polarized by triplet DNP, a molecule used for metabolic imaging, a molecule used for quantum computer research, a molecule to which quantum insensitive coding is applied, or a quantum sensitive code It is a molecule to which the crystallization is applied, and has a plurality of nuclei having a nuclear spin 1/2.
  • detection sensitivity of nuclear magnetic resonance signals can be improved in NMR measurements such as NMR spectroscopy and MRI.
  • NMR measurements such as NMR spectroscopy and MRI.
  • the thermal noise is equal magnification. Therefore, when one molecule contains K detectable nuclear spins, K times higher sensitivity can be realized as compared with the conventional protocol shown in FIGS.
  • the signal is doubled K, since the quantum noise becomes 1/2 K, of the conventional protocol shown in FIG. 4 In comparison, K 1/2 times higher sensitivity can be realized. In comparison with the conventional protocol shown in FIG. 6, even when the quantum noise is more dominant than the thermal noise, K times higher sensitivity can be realized.
  • PET Positron Emission Tomography
  • FIG. 2 is a model molecular system diagram different from FIG. 1 schematically showing molecules used for NMR measurement.
  • FIG. 4 is a model molecular diagram different from FIGS. 1 and 3 schematically showing molecules used for NMR measurement.
  • FIG. 6 is a model molecular system diagram different from FIG. 5, schematically showing molecules to be subjected to the magnetic resonance sensitization method according to the embodiment of the present invention.
  • the molecule to be measured includes a plurality (K) of nuclear spins (1/2 spin) detectable by NMR measurement, and belongs to the model molecular system shown in FIG. 5, for example.
  • TMP trimethyl phosphate
  • CH 3 O chemical formula
  • the stable phosphorus ( 31 P) nucleus and hydrogen ( 1 H) nucleus both have nuclear spins with a spin quantum number of 1/2, and are nuclear spins capable of NMR measurement.
  • a nuclear spin (spin is 1/2) of a molecule to be measured by NMR spectroscopy, MRI or the like is highly polarized to generate a liquid (hereinafter referred to as a highly polarized liquid).
  • known methods such as DNP using a thermal equilibrium state at a cryogenic temperature, a method using Dissolution DNP disclosed in Patent Document 4, or a method using parahydrogen disclosed in Non-Patent Document 8 are used. A method may be used.
  • the triplet DNP (see Patent Document 4) can increase the polarization rate to about 10 3 times at room temperature.
  • step 302 quantum insensitive encoding is performed on the highly polarized liquid generated in step 300. That is, when a molecule having a highly polarized nuclear spin is sent into the body, the polarization rate decreases due to molecular rotation or the like. To suppress this, encoding is performed in a decoherence-free state.
  • Quantum insensitive coding is an operation that makes nuclear spins in a coherent state and makes relaxation difficult. For example, the initial state
  • known methods disclosed in Patent Documents 2 to 4 and Non-Patent Documents 9 and 10 may be used.
  • the highly polarized liquid that has been insensitively encoded in step 302 is supplied to the target and placed in the NMR measurement apparatus.
  • a highly polarized liquid is placed in the NMR spectrometer (between the pole pieces of the magnet).
  • a highly polarized liquid is injected into a living body (animal or person) with a syringe or the like and placed in the gantry of the MRI apparatus. As a result, the highly polarized liquid is disposed in a space in which a uniform magnetic field is formed.
  • FIG. 8 shows the configuration of an NMR apparatus for NMR spectroscopy.
  • the NMR apparatus 200 generates an RF pulse for irradiating the magnetic field forming unit 202, the cavity 204 disposed between the magnetic poles of the magnetic field forming unit 202, and the sample (highly polarized liquid) 206 disposed in the cavity 204.
  • An RF wave source 208 and an amplification unit 210 that amplifies an RF pulse output from the RF wave source 208 are included.
  • the NMR apparatus 200 includes an NMR signal detection unit 212 for detecting an NMR signal, an NMR analysis unit 214 for analyzing the NMR signal detected by the NMR signal detection unit 212, and a control unit 216 for controlling each unit. Including.
  • the magnetic field forming unit 202 is, for example, an electromagnet, and is supplied with a current from a power source (not shown), and forms a static magnetic field having a uniform direction and strength in a region where the sample 206 is disposed.
  • the RF wave source 208 is controlled by the control unit 216 to generate and output an RF pulse having a predetermined frequency for a predetermined period at a predetermined timing.
  • the NMR signal detection unit 212 is a coil for detecting an NMR signal. The coil constituting the NMR signal detection unit 212 detects a magnetic field change in a direction orthogonal to the magnetic field formed by the magnetic field formation unit 202.
  • the NMR analysis unit 214 measures the NMR signal using the NMR signal detection unit 212, and performs known NMR analysis.
  • the resonance frequency of the NMR signal detection unit 212 is adjusted to be equal to the NMR frequency corresponding to the magnetic field strength by an adjustment component such as a capacitor.
  • step 306 one of the nuclear spins of a particular kind of atoms contained in each molecule of high polarized poling liquid (e.g., 31 P if TMP) by applying the Hadamard gate respect, the nuclear spin coherent Put it in a state.
  • molecules arranged in a uniform magnetic field are irradiated with an RF pulse of a predetermined pulse sequence including a ⁇ / 2 pulse, a ⁇ pulse, and the like by the RF wave source 208 and the amplification unit 210 (Non-Patent Document). 12 and 13).
  • 0> becomes a coherent state of (
  • step 308 the control NOT against the specific types of atoms became coherent state (1 H if TMP) remaining nuclear spins in the same molecule nuclear spins (31 P if TMP) in step 306 Apply gate sensitive quantum coding. This is performed by applying an RF pulse of a predetermined pulse sequence including a ⁇ / 2 pulse, a ⁇ pulse, and the like, which is a rotation operation around the X axis or the Y axis, by the RF wave source 208 and the amplifying unit 210 (non-null). (See Patent Documents 12 and 13).
  • the plurality of nuclear spins (spin 1/2) constituting each molecule of the highly polarized liquid are in an entangled state sensitive to the environment such as a spin NOON state, a GHZ state, a spin squeezed state, and the like.
  • step 310 the highly polarized liquid in the entangled state is held for a predetermined time, and each nuclear spin (spin 1/2) is caused to sense an environmental change (perturbation of magnetic field strength). As a result, all nuclear spins undergo ⁇ rotation.
  • quantum sensitive decoding is performed by applying a control NOT gate to the highly polarized liquid.
  • the quantum sensitive decoding is an operation for returning the sensitive decoding state to an original state, and is an operation corresponding to the reverse process of the quantum sensitive encoding in Step 308.
  • the quantum sensitive decoding is the same operation as the quantum sensitive coding in step 308.
  • a Hadamard gate is applied to the highly polarized liquid that has been quantum sensitively decoded in step 312. Specifically, the Hadamard gate is applied in the same manner as in Step 306 to the nuclear spin of a specific kind of atom ( 31 P if TMP) to which the Hadamard gate is applied in Step 306.
  • the nuclear spin in the XY plane is displaced in the Z-axis direction
  • the expected value of the measured value of the nuclear spin of a specific type of atom is cos (K ⁇ )
  • the remaining nuclear spin is
  • the phase of the nuclear spin of a specific type of atom is greatly changed by the influence of the environment.
  • step 316 spin amplification is performed on the highly polarized liquid to which the Hadamard gate is applied in step 314, and the amount of phase change of the specific type of nuclear spin whose phase has changed greatly in step 314 is changed to another nuclear spin. make a copy.
  • a control NOT gate is applied from the specific kind of nuclear spin whose phase has changed greatly in step 314 to the remaining nuclear spin.
  • a known method disclosed in Non-Patent Document 11 may be used.
  • a Hadamard gate is applied to each of the plurality of nuclear spins included in the molecule of the highly polarized liquid.
  • a Hadamard gate By applying a Hadamard gate, the Z component of all nuclear spins is converted to an X component.
  • step 320 NMR measurement is performed. That is, the NMR signal is measured by a signal detection probe (NMR signal detection unit 212 in FIG. 8).
  • FIG. 9 shows the above steps 306 to 320 in the same manner as FIG. 2, FIG. 4 and FIG. 9, operations corresponding to the steps in FIG. 7 are denoted by the same reference numerals as in FIG. 9 is compared with FIG. 4, the operations in steps 306 to 312 are the same as the operations in FIG. 4 (excluding the detection operation 108).
  • the signal strength is K times that of the protocol of FIG.
  • the expected value of the measured value of the nuclear spin of a specific type of atom becomes cos (K ⁇ ), and the signal for the protocol of FIG. The strength is thought to be K times.
  • the signal strength is K times that of the protocol of FIG. That is, when the thermal noise is larger than the quantum noise, the sensitivity of the protocol in FIG. 9 is K times the sensitivity of each protocol in FIG. 4 and FIG.
  • step 314 may not be performed. That is, after step 312, spin amplification in step 316 may be performed on the X component of the nuclear spin. In that case, the NMR measurement in step 320 may be performed without performing step 318 of applying a Hadamard gate to each of the nuclear spins.
  • the method of bringing a plurality of nuclear spins into an entangled state may be a method other than the combination of a Hadamard gate and a control NOT gate.
  • it may be a numerical optimization pulse that expresses a unitary evolution that generalizes a combination of a Hadamard gate and a control NOT gate.
  • a numerical optimization method for example, a method disclosed in Non-Patent Document 14 may be used.
  • the molecule to which the magnetic resonance sensitization method according to the present embodiment is applied is not limited to the model molecular system shown in FIG.
  • a cyclic model molecular system as shown in FIG. 10 or a model molecular system partially including a ring may be used.
  • it is preferably a symmetric model molecular system, it may be an asymmetric model molecular system as long as the above-described CNOT gate can be configured.
  • the magnetic resonance sensitization method according to the present embodiment is (1) a molecule highly polarized by triplet DNP and a molecule used for metabolic imaging, (2) molecules used in quantum computer research, (3) a molecule to which quantum insensitive coding is applied, and (4) numerator to which quantum sensitive coding is applied, It is applicable to.
  • the molecule (1) is, for example, a molecule in which an atom at an appropriate position in benzoic acid, p-terphenyl, naphthalene, benzophenone, or the like is substituted with an isotope having a nuclear spin of 1/2.
  • the molecule (2) is a molecule in which, for example, pyruvate, choline, glucose, or the like, an atom at an appropriate position is substituted with an isotope of nuclear spin 1/2.
  • the molecule (3) is a molecule in which, for example, in diacetylene, glutamate, or the like, an atom at an appropriate position is substituted with an isotope of nuclear spin 1/2.
  • the molecule (4) is a molecule in which, for example, trimethylphosphate (trimethyl phosphate: TMP) or tetramethylsilane or the like, an atom at an appropriate position is substituted with a nuclear spin 1/2 isotope.
  • TMP trimethyl phosphate
  • tetramethylsilane an atom at an appropriate position is substituted with a nuclear spin 1/2 isotope.
  • the magnetic resonance sensitization method according to the present embodiment is applied to the NMR measurement of TMP is specifically shown.
  • the operations of quantum sensitive coding (step 308), quantum sensitive decoding (step 312), and spin amplification (step 316) are performed in a uniform static magnetic field (for example, magnetic field strength of 11.7 T) and the resonance frequency. This is performed by pulse irradiation of radio waves (RF waves).
  • RF waves radio waves
  • the resonance frequency of 31 P of TMP is 202 MHz
  • the CNOT gate is implemented by weak pulse irradiation at a frequency that resonates with only one end spectrum split by J-bonding. To do.
  • pulse irradiation that the Z magnetization of the nuclear spin is brought down to the XY plane.
  • double resonance strong pulse irradiation in which 1 H (resonance frequency is 500 MHz at a magnetic field intensity of 11.7 T) and 31 P nuclear spins all fall down.
  • Resonance irradiation in a magnetic field is enabled by using an NMR probe.
  • the irradiation pulse is generated by an NMR spectrometer, amplified by a high-power amplifier, and irradiated to an NMR probe (the NMR probe of an NMR apparatus can be used for RF irradiation and detection of an NMR signal).
  • the detection sensitivity of nuclear magnetic resonance signals can be improved in NMR measurements such as NMR spectroscopy and MRI.

Abstract

Provided is a method for enhancing magnetic resonance sensitivity where measurement is directed toward an enhanced-polarization liquid comprising molecules that have a plurality of nuclear spins, wherein the method comprises: a step for placing the plurality of nuclear spins in an environmentally-sensitive entangled state in a state where the molecules have been arranged in a uniform external magnetic field; a step for performing sensing with the plurality of nuclear spins in the entangled state; a step for decoding the plurality of nuclear spins where sensing has been executed by an operation corresponding to the reverse process of the step for placing same in the entangled state; a step for executing spin amplification; and a step for executing NMR measurement. Due to this configuration, detection sensitivity can be enhanced in NMR measurement.

Description

量子符号化による磁気共鳴高感度化法Magnetic resonance sensitivity enhancement by quantum coding
 本発明は、NMR分光及びMRI等において、核磁気共鳴信号の検出感度を向上することができる量子符号化による磁気共鳴高感度化法に関する。 The present invention relates to a method for increasing the sensitivity of magnetic resonance by quantum coding that can improve the detection sensitivity of nuclear magnetic resonance signals in NMR spectroscopy, MRI, and the like.
 NMR分光は化学分析において、MRIは医療診断において、それぞれなくてはならないツールである。これらの感度を向上できる方法の一つである動的核偏極(以下、DNP(Dynamic Nuclear Polarization)ともいう)が近年盛んに研究されている。 NMR spectroscopy is an indispensable tool for chemical analysis, and MRI is an essential tool for medical diagnosis. In recent years, dynamic nuclear polarization (hereinafter also referred to as DNP (Dynamic Nuclear Polarization)), which is one of the methods capable of improving these sensitivities, has been actively studied.
 NMR分光及びMRIでは、強い静磁場の下で物質中の原子核スピン(以下、単に核スピンともいう)を精密に制御し、核スピン間の相互作用等により変調された電磁波信号(NMR信号)から分子レベルの豊富な情報を読出す。NMR信号の感度は偏極率に比例するが、超電導磁石によって印加される数T(テスラ)から数十Tの強磁場の下でも、核スピンのゼーマンエネルギーは非常に低い。このゼーマンエネルギーは、室温の熱エネルギーより5桁も小さいため、核スピンの向きが静磁場の方向に偏っている割合(偏極率)は10-5~10-6(0.001~0.0001%)程度と極めて低く、共鳴する核スピンのうち検出信号に寄与する核スピンの割合は極めて小さい。したがって、NMR分光及びMRIの感度を向上するには、核スピンの偏極率を高くすることが重要である。「高偏極」とは、一般的には、原子核スピンの偏極率が室温における偏極率の100倍程度かそれを超える場合を指すが、本明細書においては、原子核スピンの偏極率が室温における偏極率を超える状態を意味するとする。 In NMR spectroscopy and MRI, nuclear spins in materials (hereinafter also simply referred to as nuclear spins) are precisely controlled under a strong static magnetic field, and from electromagnetic wave signals (NMR signals) modulated by interactions between nuclear spins, etc. Read out a wealth of information at the molecular level. The sensitivity of the NMR signal is proportional to the polarization rate, but the Zeeman energy of the nuclear spin is very low even under a strong magnetic field of several T (tesla) to several tens of T applied by the superconducting magnet. Since this Zeeman energy is 5 orders of magnitude smaller than the thermal energy at room temperature, the ratio of the spin direction to the direction of the static magnetic field (polarization rate) is 10 −5 to 10 −6 (0.001 to 0. The ratio of nuclear spins contributing to the detection signal out of the resonating nuclear spins is extremely small. Therefore, in order to improve the sensitivity of NMR spectroscopy and MRI, it is important to increase the nuclear spin polarization. “High polarization” generally refers to a case where the polarization rate of a nuclear spin is about 100 times or more than the polarization rate at room temperature, but in this specification, the polarization rate of a nuclear spin. Is a state that exceeds the polarization rate at room temperature.
 DNPによって核スピン偏極率を高めた後に試料を水溶液で溶解させ、細胞を模した試験管内又は体内へと注射するDissolution DNP法を用いて、化学応答(特に代謝)をリアルタイムに可視化するという応用が注目されている(非特許文献1参照)。この応用を考えた場合、NMR信号の検出感度(SN(信号/ノイズ)比、以下、単に「感度」ともいう)は、通常の手法では、1つの分子内の核スピンの数K、投入する分子の総数N、核スピンの偏極率Pにそれぞれ比例する(感度∝K×N×P)。通常、偏極率Pは上記したように非常に小さいが、DNPで100%近くまで高めれば1万倍以上の高感度化が可能になる。一方、高感度化した分子を生体内へと送り込む場合、分子総数Nは致死量以下に制限される必要があり、この手法の感度は用いる分子によって制限を受け、応用範囲が限られてしまう。 Application of visualization of chemical response (especially metabolism) in real time using Dissolution DNP method in which the sample is dissolved in an aqueous solution after increasing the nuclear spin polarization rate by DNP and injected into a test tube or body imitating cells Has attracted attention (see Non-Patent Document 1). In consideration of this application, the detection sensitivity (SN (signal / noise) ratio, hereinafter simply referred to as “sensitivity”) of the NMR signal is input by the number K of nuclear spins in one molecule in a normal method. It is proportional to the total number N of molecules and the polarization rate P of nuclear spins (sensitivity ∝ K × N × P). Usually, the polarization rate P is very small as described above, but if the DNP is increased to nearly 100%, the sensitivity can be increased by 10,000 times or more. On the other hand, when sending highly sensitive molecules into a living body, the total number N of molecules needs to be limited to a lethal dose or less, and the sensitivity of this method is limited by the molecules used, and the application range is limited.
 特定のエンタングル状態に符号化した多体スピン系をセンサーに用いれば、古典技術では到達できない感度で、綿密なセンシングが可能になることが知られていた。下記非特許文献2~5には、量子制御技術の発展にともない、冷却原子気体又はアンサンプル分子核スピンの系で大規摸なエンタングルメントを用いたセンシングの結果が報告されている。 It has been known that if a multi-body spin system encoded in a specific entangled state is used as a sensor, precise sensing can be performed with sensitivity that cannot be achieved by classical technology. The following Non-Patent Documents 2 to 5 report the results of sensing using large-scale entanglement in a cooled atomic gas or unsampled molecular spin system with the development of quantum control technology.
 実際の応用では、エンタングル状態を用いなくてもセンサーの数(即ち、分子の総数)Nを増やして高感度化することにより対応できる場合が多いが、センサー数Nが何らかの理由で制限される状況ではエンタングルメントセンシングによって究極の高感度が実現される。例えば、上記のように、致死量によってセンサーの総Nが強く制限されるin vivo代謝イメージングに関しては、エンタングルメントセンシングが重要な技術となる。 In actual applications, the number of sensors (ie, the total number of molecules) N can be increased by increasing the sensitivity without using the entangled state. In many cases, however, the number of sensors N is limited for some reason. So, the ultimate high sensitivity is realized by entanglement sensing. For example, as described above, entanglement sensing is an important technique for in vivo metabolic imaging in which the total N of the sensor is strongly limited by the lethal dose.
 NMR分光及びMRIの分野で近年盛んに研究が進められているin vivo代謝イメージングは、非特許文献6及び7に開示されているように、Dissolution DNPという数十%程度に高偏極化された核スピンを持った分子の水溶液を生成する技術が開発されたことで確立された。この方法では、高偏極化された核スピンを持った分子を、高偏極状態がスピン格子緩和によって壊れてしまう前に、細胞を模した試験管又は生体内へと注入し、その分子の代謝の様子を、MRI及びMRSI(Magnetic Resonance Spectroscopic Imaging)によって測定された信号強度及び周波数の変化からリアルタイムにイメージングする。 In vivo metabolic imaging, which has been actively researched in the fields of NMR spectroscopy and MRI in recent years, has been highly polarized to about several tens of percent as Dissolution DNP, as disclosed in Non-Patent Documents 6 and 7. It was established by the development of a technique for producing an aqueous solution of molecules with nuclear spins. In this method, a molecule having a highly polarized nuclear spin is injected into a test tube or living body imitating a cell before the highly polarized state is broken by spin lattice relaxation. The state of metabolism is imaged in real time from changes in signal intensity and frequency measured by MRI and MRSI (Magnetic Resonance Spectroscopic Imaging).
 代謝イメージングの感度について考える。ここではまず、1個だけ観測可能な核スピンS(例えば、スピン量子数(以下、単にスピンともいう)が1/2の原子核)が存在する図1に示したモデル分子系に属する分子を用いた場合の感度について考える。図1には、核スピンSを有する原子とその他の原子との結合を線分で示し、核スピンSを有する原子と結合する他の原子自体は図示していない。なお、図1は原子間の接続関係を示しており、立体的な構造を示すものではない。 Consider the sensitivity of metabolic imaging. Here, first, a molecule belonging to the model molecular system shown in FIG. 1 in which only one observable nuclear spin S (for example, a nucleus having a spin quantum number (hereinafter also simply referred to as a spin) ½) exists is used. Think about the sensitivity when In FIG. 1, the bond between the atom having the nuclear spin S and another atom is shown by a line segment, and the other atom itself bonded to the atom having the nuclear spin S is not shown. Note that FIG. 1 shows a connection relationship between atoms and does not show a three-dimensional structure.
 便宜上、偏極率100%の純粋状態を初期状態とする。検出の際の状態のデコヒーレンスはないものとし、ゲート操作の忠実度は100%とする理想的な場合を考える。1/2の核スピンの量子状態を、P.A.M.Diracにより導入され、量子力学における量子状態を記述するための標準的な表記であるケット(| >)で表わす。|0>は核スピンの向きが外部磁場と同じ方向である状態を表し、|1>は核スピンの向きが外部磁場と逆向きである状態を表す。 For convenience, the pure state with a polarization rate of 100% is assumed to be the initial state. Consider an ideal case where there is no decoherence of the state at the time of detection and the fidelity of the gate operation is 100%. The quantum state of 1/2 nuclear spin is expressed as P.I. A. M.M. Introduced by Dirac, it is represented by a ket (| 導入>), which is a standard notation for describing quantum states in quantum mechanics. | 0> represents a state in which the direction of nuclear spin is the same direction as the external magnetic field, and | 1> represents a state in which the direction of nuclear spin is opposite to the external magnetic field.
 測定のプロトコルは、図2のように示される。図2では、左端に核スピンの状態が示されており、それに対して、左から右に向かって順に示された操作が実行される。まず、アダマール(Hadamard)ゲートHによって、核スピンをコヒーレント状態にする。これは、一様な外部磁場中に配置された分子に、NMR測定におけるπ/2パルス、πパルス等を含む所定のパルスシーケンスのRFパルス(共鳴周波数)を照射することによって実現される(非特許文献12及び13参照)。これにより、核スピン|0>は、(|0>+|1>)/21/2のコヒーレント状態(2つの固有状態の重ね合わせ状態)になる。続いて、所定時間そのまま保持すると、核スピンがその環境による摂動磁場(一様磁場からの変化)による影響を受け(以下、センシングともいう)、測定対象である共鳴周波数にオフセットを生じさせる。これによって核スピンはZ軸(磁場方向)回りのφ回転を受け、核スピンの状態は(|0>+eiφ|1>)/21/2へと変わる。続いて、NMR信号を検出する検出操作100を行なう。測定信号の期待値としてはCOSφが得られる。この結果からφを推定し、周波数のシフトを読み取ることができる。 The measurement protocol is shown in FIG. In FIG. 2, the state of the nuclear spin is shown at the left end, and the operations shown in order from the left to the right are executed. First, a nuclear spin is brought into a coherent state by a Hadamard gate H. This is realized by irradiating molecules arranged in a uniform external magnetic field with RF pulses (resonance frequency) of a predetermined pulse sequence including π / 2 pulse, π pulse, etc. in NMR measurement (non-resonance). (See Patent Documents 12 and 13). Thereby, the nuclear spin | 0> becomes a coherent state (overlapping state of two eigenstates) of (| 0> + | 1>) / 2 1/2 . Subsequently, when held for a predetermined time, the nuclear spin is affected by a perturbation magnetic field (change from a uniform magnetic field) due to the environment (hereinafter also referred to as sensing), and an offset is generated in the resonance frequency to be measured. As a result, the nuclear spin undergoes φ rotation about the Z axis (magnetic field direction), and the state of the nuclear spin changes to (| 0> + e | 1>) / 2 1/2 . Subsequently, a detection operation 100 for detecting NMR signals is performed. COSφ is obtained as the expected value of the measurement signal. From this result, φ can be estimated and the frequency shift can be read.
 測定においては、検出回路には熱雑音が存在する。したがって、最新の検出技術を駆使して何度も積算したとしても10個以上の分子がなければ、1回の測定で信号が熱雑音を超えることがなく、φを推定することができない。一般的な検出回路ではそれよりもさらに何桁も多い分子が必要である。検出の際には核スピンの状態に量子雑音も加わるが、分子の数が多いため、信号及び検出器の熱雑音に比べれば量子雑音は何桁も小さい。 In the measurement, thermal noise exists in the detection circuit. Therefore, even if accumulated many times using the latest detection technology, if there are no more than 10 6 molecules, the signal does not exceed thermal noise in one measurement, and φ cannot be estimated. A typical detection circuit requires many orders of magnitude more molecules. At the time of detection, quantum noise is added to the state of the nuclear spin, but since the number of molecules is large, the quantum noise is many orders of magnitude smaller than the signal and the thermal noise of the detector.
 非特許文献2及び3には、図3に示すモデル分子系に属する分子を対象として、NMR信号の感度を向上する技術が開示されている。図3に示したモデル分子系では、核スピンは複数個(K個)存在しているが、そのうち観測可能な核スピンSは1個しかなく、残りの核スピンI(例えば、スピン量子数が0)は観測できない。なお、図3は原子間の接続関係を示しており、立体的な構造を示すものではない。 Non-Patent Documents 2 and 3 disclose techniques for improving the sensitivity of NMR signals for molecules belonging to the model molecular system shown in FIG. In the model molecular system shown in FIG. 3, there are a plurality (K) of nuclear spins, of which only one nuclear spin S can be observed, and the remaining nuclear spin I (for example, the spin quantum number is 0) is not observable. Note that FIG. 3 shows a connection relationship between atoms and does not show a three-dimensional structure.
 測定のプロトコルは、図4のように示される。図4の表記の意味は、図2と同じである。左端に、K個の核スピン(1個の核スピンS及び残りの核スピンI)の初期状態を示す。最上段が観測可能な核スピンSの初期状態である。 The measurement protocol is shown in Fig. 4. The meaning of the notation in FIG. 4 is the same as in FIG. At the left end, the initial state of K nuclear spins (one nuclear spin S and the remaining nuclear spin I) is shown. The uppermost stage is the initial state of the observable nuclear spin S.
 先ず、観測可能な核スピンSを、アダマールゲートHにより(|0>+|1>)/21/2のコヒーレント状態にする。そのためには、上記したように、一様な外部磁場中に配置された分子に、π/2パルス等を照射する。次に、核スピンSから全ての核スピンIに対して制御NOTゲート(以下、CNOTゲートともいう)を適用する符号化操作102を行なう。これは、X軸又はY軸の周りの回転操作であるπ/2パルス、πパルス等を含む所定のパルスシーケンスのRFパルス(共鳴周波数)を印加することにより行なわれる(非特許文献12及び13参照)。これにより、K個の核スピンの状態は、(|00・・・0>+|11・・・1>)/21/2のエンタングルメントされたGHZ状態(Greenberger-Horne-Zeilinger state)になる。続いて、センシング操作104を行なう。これにより、全ての核スピンS及びIがφ回転を受け、K個の核スピンの状態は、(|00・・・0>+eiKφ|11・・・1>)/21/2へと変わる。最後に、制御NOTゲートにより復号化操作106を行なうと、K個の核スピンの状態は、(|0>+eiKφ|1>)|00・・・0>/21/2となる。したがって、観測可能核スピンSが感じる回転の位相は図2のプロトコルに対してK倍になっており、NMR信号を検出する検出操作108により信号強度はK倍になる。図4のプロトコルと図2のプロトコルとでは、検出回路の熱雑音も観測可能核の量子雑音も同じなので、推定できるφの変化に対する感度は、図4のプロトコルの方が図2のプロトコルに対して、最大でK倍高くなる。 First, the observable nuclear spin S is made into a coherent state of (| 0> + | 1>) / 2 1/2 by the Hadamard gate H. For this purpose, as described above, π / 2 pulses or the like are irradiated to molecules arranged in a uniform external magnetic field. Next, an encoding operation 102 for applying a control NOT gate (hereinafter also referred to as a CNOT gate) from the nuclear spin S to all the nuclear spins I is performed. This is performed by applying an RF pulse (resonance frequency) of a predetermined pulse sequence including a π / 2 pulse, a π pulse, etc., which is a rotation operation around the X axis or the Y axis (Non-Patent Documents 12 and 13). reference). As a result, the state of K nuclear spins is changed to (| 00... 0> + | 11... 1>) / 2 1/2 entangled GHZ state (Greenberger-Horne-Zeilinger state). Become. Subsequently, a sensing operation 104 is performed. As a result, all nuclear spins S and I are subjected to φ rotation, and the state of K nuclear spins is (| 00... 0> + e iKφ | 11... 1>) / 2 1/2 . change. Finally, when the decoding operation 106 is performed by the control NOT gate, the state of K nuclear spins becomes (| 0> + e iKφ | 1>) | 00... 0> / 2 1/2 . Accordingly, the rotation phase felt by the observable nuclear spin S is K times that of the protocol of FIG. 2, and the signal intensity is K times by the detection operation 108 for detecting the NMR signal. The protocol of FIG. 4 and the protocol of FIG. 2 have the same thermal noise of the detection circuit and the quantum noise of the observable nucleus, and therefore the sensitivity to the change in φ that can be estimated is better for the protocol of FIG. 4 than for the protocol of FIG. And up to K times higher.
 また、非特許文献4及び5には、図5に示すモデル分子系に属する分子を対象として、NMR信号の感度を向上する技術が開示されている。図5に示したモデル分子系では、複数個(K個)の核スピンが存在し、それらは全て観測可能な核スピンSである。なお、図5は原子間の接続関係を示しており、立体的な構造を示すものではない。 Also, Non-Patent Documents 4 and 5 disclose techniques for improving the sensitivity of NMR signals targeting molecules belonging to the model molecular system shown in FIG. In the model molecular system shown in FIG. 5, there are a plurality (K) of nuclear spins, all of which are observable nuclear spins S. In addition, FIG. 5 shows the connection relationship between atoms, and does not show a three-dimensional structure.
 測定のプロトコルは、図6のように示される。図6の表記の意味は、図2と同じである。左端に、K個の核スピンSの初期状態を示す。図6では、全ての核スピンSが(|0>+eiφ|1>)/21/2となり、信号は、図2のプロトコルに対してK倍強くなる。 The measurement protocol is shown in FIG. The meaning of the notation in FIG. 6 is the same as in FIG. At the left end, the initial state of K nuclear spins S is shown. In FIG. 6, all nuclear spins S are (| 0> + e | 1>) / 2 1/2 , and the signal is K times stronger than the protocol of FIG.
米国特許第7,474,095号明細書US Pat. No. 7,474,095 米国特許第8,980,225号明細書US Pat. No. 8,980,225 米国特許第9,642,924号明細書US Pat. No. 9,642,924 特開2017-15443号公報JP 2017-15443 A
 図5に示したモデル分子系に属する分子を対象として図6のプロトコルで測定した場合、図2のプロトコルに対して信号強度はK倍になると考えられるが、測定時の雑音を考慮すると、必ずしも感度はK倍にはならない。即ち、検出回路の熱雑音は観測可能核スピンが1個の場合と同じであるが、観測可能な核スピンがK個であることから、量子雑音はK1/2倍になる。したがって、光を使って検出するときのように熱雑音が量子雑音よりも小さい場合(量子雑音が主である場合)には、図2のプロトコルでの測定状況に比べて感度はK1/2倍に改善されるに過ぎない。即ち、量子雑音を考慮すると、K個の核スピン全てが観測可能な核スピンSである分子を使用する図6のプロトコルよりも、K個の核スピンのうちの1個の観測可能な核スピンSが存在する分子を使用する図4のプロトコルの方が、むしろK1/2倍高感度となる。 When measuring the molecule belonging to the model molecular system shown in FIG. 5 using the protocol of FIG. 6, the signal intensity is considered to be K times that of the protocol of FIG. Sensitivity is not K times. In other words, the thermal noise of the detection circuit is the same as when the number of observable nuclear spins is one, but since the number of observable nuclear spins is K, the quantum noise is K 1/2 times. Therefore, when the thermal noise is smaller than the quantum noise as in the case of detecting using light (when the quantum noise is the main), the sensitivity is K 1/2 compared to the measurement situation in the protocol of FIG. It is only doubled. That is, when quantum noise is taken into account, one observable nuclear spin out of K nuclear spins is used in comparison with the protocol of FIG. 6 which uses a molecule in which all K nuclear spins are observable nuclear spins S. The protocol of FIG. 4 using molecules with S is rather K 1/2 times more sensitive.
 また、NMR測定のように、熱雑音の方が量子雑音よりも支配的な場合には、図4のプロトコルの感度は、図6のプロトコルと同様に、図2のプロトコルに比べてK倍高感度である。そのため、これまで、NMR測定に関しては、図4のプロトコルで十分であると考えられていた。しかし、NMR測定における感度をさらに向上することが好ましい。特に、上記したように、in vivo代謝イメージングに関しては、生体内に送り込む検出対象の分子の総数Nは致死量以下に制限されなければならないので、さらに感度を向上することが望まれる。 Further, when thermal noise is more dominant than quantum noise as in NMR measurement, the sensitivity of the protocol of FIG. 4 is K times higher than that of FIG. 2 as in the protocol of FIG. Sensitivity. Therefore, until now, it was thought that the protocol of FIG. 4 was sufficient for NMR measurement. However, it is preferable to further improve the sensitivity in NMR measurement. In particular, as described above, regarding in vivo metabolic imaging, since the total number N of detection target molecules to be sent into the living body must be limited to a lethal dose or less, it is desired to further improve sensitivity.
 したがって、本発明は、NMR分光及びMRI等のNMR測定において、核磁気共鳴信号の検出感度を向上することができる量子符号化による磁気共鳴高感度化法を提供することを目的とする。 Therefore, an object of the present invention is to provide a method for increasing the sensitivity of magnetic resonance by quantum coding that can improve the detection sensitivity of nuclear magnetic resonance signals in NMR measurements such as NMR spectroscopy and MRI.
 本発明の第1の局面に係る磁気共鳴高感度化法は、NMR測定の対象となる複数の核スピンを有し且つ高偏極化された分子を含む液体を測定対象とする磁気共鳴高感度化法である。この磁気共鳴高感度化法は、分子を一様な外部磁場中に配置した状態で、複数の核スピンを環境に敏感なエンタングル状態にする量子符号化ステップと、エンタングル状態の複数の核スピンによるセンシングを所定時間実行するセンシングステップと、センシングステップが実行された複数の核スピンを、量子符号化ステップの逆過程に対応する操作により復号化する量子復号化ステップと、量子復号化ステップが実行された複数の核スピンにスピン増幅を実行する増幅ステップと、増幅ステップが実行された複数の核スピンに対してNMR測定を実行する測定ステップとを含む。 The magnetic resonance sensitization method according to the first aspect of the present invention is a magnetic resonance sensitization using a liquid containing a plurality of nuclear spins and a highly polarized molecule as a measurement target. It is a chemical method. This magnetic resonance sensitization method is based on a quantum coding step in which a plurality of nuclear spins are entangled in an environmentally sensitive state with molecules placed in a uniform external magnetic field, and a plurality of entangled nuclear spins. A sensing step for executing sensing for a predetermined time, a quantum decoding step for decoding a plurality of nuclear spins for which the sensing step has been executed by an operation corresponding to an inverse process of the quantum encoding step, and a quantum decoding step are executed. An amplification step for performing spin amplification on the plurality of nuclear spins, and a measurement step for performing NMR measurement on the plurality of nuclear spins on which the amplification step has been performed.
 これにより、NMR分光及びMRI等のNMR測定において、核磁気共鳴信号の検出感度を向上することができる。 Thereby, the detection sensitivity of nuclear magnetic resonance signals can be improved in NMR measurements such as NMR spectroscopy and MRI.
 好ましくは、量子符号化ステップは、分子を外部磁場中に配置した状態で、複数の核スピンのうちの1つの特定の核スピンにアダマールゲートを適用し、特定の核スピンをコヒーレント状態にするコヒーレント化ステップと、コヒーレント状態にある特定の核スピンを最初の制御に用いて複数の核スピンに制御NOTゲートを適用し、複数の核スピンをエンタングル状態にするステップとを含み、量子復号化ステップは、特定の核スピンを最初の制御に用いてセンシングステップが実行された複数の核スピンに制御NOTゲートを適用し、復号化するステップを含む。 Preferably, the quantum coding step applies a Hadamard gate to one specific nuclear spin among a plurality of nuclear spins in a state in which the molecule is placed in an external magnetic field, thereby making the specific nuclear spin coherent. And applying a control NOT gate to the plurality of nuclear spins using a specific nuclear spin in a coherent state for initial control, and bringing the plurality of nuclear spins into an entangled state, and the quantum decoding step includes: , Applying a control NOT gate to the plurality of nuclear spins for which the sensing step is performed using a specific nuclear spin for initial control, and decoding.
 より好ましくは、磁気共鳴高感度化法は、量子復号化ステップと増幅ステップとの間に実行されるステップであって、量子復号化ステップが実行された複数の核スピンの特定の核スピンにアダマールゲートを適用して、XY面内の特定の核スピンをZ軸方向に変位させるZ軸変位ステップと、増幅ステップと測定ステップとの間に実行されるステップであって、増幅ステップが実行された複数の核スピンのそれぞれにアダマールゲートを適用して、XY面内に変位させるXY変位ステップとをさらに含む。増幅ステップは、Z軸変位ステップが実行された複数の核スピンに対して実行され、測定ステップは、XY変位ステップが実行された複数の核スピンに対して実行される。 More preferably, the magnetic resonance sensitization method is a step executed between the quantum decoding step and the amplification step, wherein the Hadamard is applied to a specific nuclear spin of the plurality of nuclear spins on which the quantum decoding step is executed. A step that is executed between a Z-axis displacement step that applies a gate to displace a specific nuclear spin in the XY plane in the Z-axis direction, and an amplification step and a measurement step, and the amplification step is executed. An XY displacement step of applying a Hadamard gate to each of the plurality of nuclear spins to displace it in the XY plane. The amplification step is performed on the plurality of nuclear spins on which the Z-axis displacement step has been performed, and the measurement step is performed on the plurality of nuclear spins on which the XY displacement step has been performed.
 これにより、核磁気共鳴信号の検出感度をより向上することができる。 Thereby, the detection sensitivity of the nuclear magnetic resonance signal can be further improved.
 さらに好ましくは、磁気共鳴高感度化法は、コヒーレント化ステップの前に実行されるステップであって、高偏極化された分子を緩和が起きにくい状態にする量子鈍感符号化ステップをさらに含む。 More preferably, the magnetic resonance sensitization method further includes a quantum insensitive encoding step that is performed before the coherentization step, and makes the highly polarized molecule less susceptible to relaxation.
 これにより、高偏極化された状態が維持されるので、核磁気共鳴信号の検出感度をより向上することができる。 Thereby, since a highly polarized state is maintained, the detection sensitivity of the nuclear magnetic resonance signal can be further improved.
 好ましくは、分子は、トリプレットDNPにより高偏極化された分子、代謝イメージングに用いられた分子、量子コンピュータの研究に用いられた分子、量子鈍感符号化が適用された分子、又は、量子敏感符号化が適用された分子であって、核スピン1/2の複数の原子核を有する分子である。 Preferably, the molecule is a molecule highly polarized by triplet DNP, a molecule used for metabolic imaging, a molecule used for quantum computer research, a molecule to which quantum insensitive coding is applied, or a quantum sensitive code It is a molecule to which the crystallization is applied, and has a plurality of nuclei having a nuclear spin 1/2.
 これにより、磁気共鳴高感度化法を広く応用することができる。 This makes it possible to widely apply the magnetic resonance sensitization method.
 本発明によれば、NMR分光及びMRI等のNMR測定において、核磁気共鳴信号の検出感度を向上することができる。本発明によれば、NMR測定の場合、図2に示したプロトコルの場合に対して信号がK倍になり、熱雑音は等倍である。したがって、1つの分子が検出可能な核スピンをK個含む場合、図4及び図6に示した従来のプロトコルに比べて、K倍の高感度を実現することができる。 According to the present invention, detection sensitivity of nuclear magnetic resonance signals can be improved in NMR measurements such as NMR spectroscopy and MRI. According to the present invention, if the NMR measurement, signal is doubled K for the case of the protocol shown in FIG. 2, the thermal noise is equal magnification. Therefore, when one molecule contains K detectable nuclear spins, K times higher sensitivity can be realized as compared with the conventional protocol shown in FIGS.
 量子雑音が熱雑音よりも支配的な場合には、本発明によれば、信号はK倍になるが、量子雑音はK1/2倍になるので、図4に示した従来のプロトコルに比べて、K1/2倍の高感度を実現することができる。図6に示した従来のプロトコルとの比較では、量子雑音が熱雑音よりも支配的な場合でも、K倍の高感度を実現することができる。 If the quantum noise is more dominant than thermal noise, according to the present invention, the signal is doubled K, since the quantum noise becomes 1/2 K, of the conventional protocol shown in FIG. 4 In comparison, K 1/2 times higher sensitivity can be realized. In comparison with the conventional protocol shown in FIG. 6, even when the quantum noise is more dominant than the thermal noise, K times higher sensitivity can be realized.
 現在、がん治療の効果判定には主としてPET(Positron Emission Tomography)が使用されており、効果判定までに数週間を要している。本磁気共鳴高感度化法をMRIに適用することにより、多くの病院で即席に効果判定が可能になることが期待される。また、蛍光を用いる代謝イメージングは人体深部への応用が難しい。これに対して、本磁気共鳴高感度化法を適用することにより、MRIによる人体深部での代謝イメージングが可能になる。さらに、本磁気共鳴高感度化法をNMR分光装置に適用することにより、タンパク質のフォールディングの様子、ポリマー材料の重合の様子等のリアルタイム可視化が可能になる。 Currently, PET (Positron Emission Tomography) is mainly used to determine the effects of cancer treatment, and it takes several weeks to determine the effects. By applying this magnetic resonance sensitization method to MRI, it is expected that the effect can be immediately determined in many hospitals. Moreover, metabolic imaging using fluorescence is difficult to apply to the deep part of the human body. On the other hand, by applying this magnetic resonance sensitivity enhancement method, metabolic imaging in the deep part of the human body by MRI becomes possible. Further, by applying this magnetic resonance sensitization method to an NMR spectrometer, real-time visualization of the state of protein folding, the state of polymerization of a polymer material, and the like becomes possible.
NMR測定に使用される分子を模式的に示すモデル分子系図である。It is a model molecular system diagram which shows typically the molecule | numerator used for NMR measurement. 図1に示したモデル分子系に属する分子に対するNMR測定のプロトコルを示すブロック図である。It is a block diagram which shows the protocol of the NMR measurement with respect to the molecule | numerator which belongs to the model molecular system shown in FIG. NMR測定に使用される分子を模式的に示す、図1とは異なるモデル分子系図である。FIG. 2 is a model molecular system diagram different from FIG. 1 schematically showing molecules used for NMR measurement. 図3に示したモデル分子系に属する分子に対するNMR測定のプロトコルを示すブロック図である。It is a block diagram which shows the protocol of the NMR measurement with respect to the molecule | numerator which belongs to the model molecular system shown in FIG. NMR測定に使用される分子を模式的に示す、図1及び図3とは異なるモデル分子系図である。FIG. 4 is a model molecular diagram different from FIGS. 1 and 3 schematically showing molecules used for NMR measurement. 図5に示したモデル分子系に属する分子に対するNMR測定のプロトコルを示すブロック図である。It is a block diagram which shows the protocol of the NMR measurement with respect to the molecule | numerator which belongs to the model molecular system shown in FIG. 本発明の実施の形態に係る磁気共鳴高感度化法を示すフローチャートである。It is a flowchart which shows the magnetic resonance sensitivity enhancement method which concerns on embodiment of this invention. 本発明の実施の形態に係る磁気共鳴高感度化法を実施するためのNMR装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the NMR apparatus for enforcing the magnetic resonance sensitivity enhancement method which concerns on embodiment of this invention. 高偏極化液体を用いて行なうNMR測定のプロトコルを示すブロック図である。It is a block diagram which shows the protocol of the NMR measurement performed using a highly polarized liquid. 本発明の実施の形態に係る磁気共鳴高感度化法の対象となる分子を模式的に示す、図5とは異なるモデル分子系図である。FIG. 6 is a model molecular system diagram different from FIG. 5, schematically showing molecules to be subjected to the magnetic resonance sensitization method according to the embodiment of the present invention.
 以下の実施の形態では、同一の部品には同一の参照番号を付してある。それらの名称及び機能も同一である。したがって、それらについての詳細な説明は繰返さない。 In the following embodiments, the same reference numerals are assigned to the same parts. Their names and functions are also the same. Therefore, detailed description thereof will not be repeated.
 図7を参照して、本発明の実施の形態に係る磁気共鳴高感度化法を説明する。測定の対象とする分子は、NMR測定により検出可能な核スピン(スピンが1/2)を複数(K個)含み、例えば、図5に示したモデル分子系に属する。例えば、非特許文献2に開示されている化学式(CHO)POで表されるリン酸トリメチル(trimethylphosphate、以下、TMPともいう)である。安定なリン(31P)の原子核及び水素(H)の原子核は、何れもスピン量子数が1/2の核スピンを有しており、NMR測定可能な核スピンである。 With reference to FIG. 7, the magnetic resonance high-sensitivity method according to the embodiment of the present invention will be described. The molecule to be measured includes a plurality (K) of nuclear spins (1/2 spin) detectable by NMR measurement, and belongs to the model molecular system shown in FIG. 5, for example. For example, trimethyl phosphate (hereinafter also referred to as TMP) represented by the chemical formula (CH 3 O) 3 PO disclosed in Non-Patent Document 2. The stable phosphorus ( 31 P) nucleus and hydrogen ( 1 H) nucleus both have nuclear spins with a spin quantum number of 1/2, and are nuclear spins capable of NMR measurement.
 ステップ300において、NMR分光、MRI等で測定対象となる分子の核スピン(スピンが1/2)を高偏極化させて液体(以下、高偏極化液体という)を生成する。高偏極化には、極低温下熱平衡状態を用いたDNP、特許文献4に開示されているDissolution DNPによる方法、又は、非特許文献8に開示されているパラ水素を用いる方法等の公知の方法を用いればよい。トリプレットDNP(特許文献4参照)により、室温において偏極率を10倍程度に大きくすることができる。 In step 300, a nuclear spin (spin is 1/2) of a molecule to be measured by NMR spectroscopy, MRI or the like is highly polarized to generate a liquid (hereinafter referred to as a highly polarized liquid). For high polarization, known methods such as DNP using a thermal equilibrium state at a cryogenic temperature, a method using Dissolution DNP disclosed in Patent Document 4, or a method using parahydrogen disclosed in Non-Patent Document 8 are used. A method may be used. The triplet DNP (see Patent Document 4) can increase the polarization rate to about 10 3 times at room temperature.
 ステップ302において、ステップ300で生成された高偏極化液体に対して量子鈍感符号化を行なう。即ち、体内に高偏極核スピンを持った分子を送る際、分子回転等によって偏極率が減少するので、これを抑えるために、デコヒーレンスフリー状態に符号化する。量子鈍感符号化は、核スピンをコヒーレント状態にして、緩和が起きにくい状態にする操作である。例えば、2つの核スピンの初期状態|00>を、|01>-|10>に変換する操作である。例えば、特許文献2~4、非特許文献9、10等に開示されている公知の方法を使用すればよい。 In step 302, quantum insensitive encoding is performed on the highly polarized liquid generated in step 300. That is, when a molecule having a highly polarized nuclear spin is sent into the body, the polarization rate decreases due to molecular rotation or the like. To suppress this, encoding is performed in a decoherence-free state. Quantum insensitive coding is an operation that makes nuclear spins in a coherent state and makes relaxation difficult. For example, the initial state | 00> of two nuclear spins is converted to | 01> − | 10>. For example, known methods disclosed in Patent Documents 2 to 4 and Non-Patent Documents 9 and 10 may be used.
 ステップ304において、ステップ302で鈍感符号化された高偏極化液体を対象に供給し、NMR測定装置内に配置する。例えば、NMR分光を行なう場合、高偏極化液体をNMR分光装置内(磁石のポールピース間)に配置する。代謝イメージングを行なう場合には、高偏極化液体を注射器等で生体(動物又は人)内に注入し、MRI装置のガントリ内に配置する。これにより、高偏極化液体は、一様な磁場が形成された空間に配置される。 In step 304, the highly polarized liquid that has been insensitively encoded in step 302 is supplied to the target and placed in the NMR measurement apparatus. For example, when performing NMR spectroscopy, a highly polarized liquid is placed in the NMR spectrometer (between the pole pieces of the magnet). When performing metabolic imaging, a highly polarized liquid is injected into a living body (animal or person) with a syringe or the like and placed in the gantry of the MRI apparatus. As a result, the highly polarized liquid is disposed in a space in which a uniform magnetic field is formed.
 図8を参照して、NMR分光用のNMR装置の構成を示す。NMR装置200は、磁場形成部202と、磁場形成部202の磁極間に配置されたキャビティ204と、キャビティ204内に配置された試料(高偏極化液体)206に照射するRFパルスを生成するRF波源208と、RF波源208から出力されるRFパルスを増幅する増幅部210とを含む。さらに、NMR装置200は、NMR信号を検出するためのNMR信号検出部212と、NMR信号検出部212により検出されたNMR信号を分析するNMR分析部214と、各部を制御する制御部216とを含む。 FIG. 8 shows the configuration of an NMR apparatus for NMR spectroscopy. The NMR apparatus 200 generates an RF pulse for irradiating the magnetic field forming unit 202, the cavity 204 disposed between the magnetic poles of the magnetic field forming unit 202, and the sample (highly polarized liquid) 206 disposed in the cavity 204. An RF wave source 208 and an amplification unit 210 that amplifies an RF pulse output from the RF wave source 208 are included. Further, the NMR apparatus 200 includes an NMR signal detection unit 212 for detecting an NMR signal, an NMR analysis unit 214 for analyzing the NMR signal detected by the NMR signal detection unit 212, and a control unit 216 for controlling each unit. Including.
 磁場形成部202は、例えば電磁石であり、電源(図示せず)から電流が供給され、試料206が配置される領域において、方向及び強度が一様な静磁場を形成する。RF波源208は、制御部216により制御されて、所定のタイミングで所定の期間、所定周波数のRFパルスを生成して出力する。NMR信号検出部212は、NMR信号を検出するためのコイルである。NMR信号検出部212を構成するコイルは、磁場形成部202により形成される磁場と直交する方向の磁場変化を検出する。NMR分析部214は、制御部216による制御を受けて、NMR信号検出部212を用いてNMR信号を測定し、公知のNMR分析を行なう。NMR信号検出部212の共振周波数は、コンデンサ等の調整部品により、磁場強度に応じたNMR周波数と等しくなるように調整される。 The magnetic field forming unit 202 is, for example, an electromagnet, and is supplied with a current from a power source (not shown), and forms a static magnetic field having a uniform direction and strength in a region where the sample 206 is disposed. The RF wave source 208 is controlled by the control unit 216 to generate and output an RF pulse having a predetermined frequency for a predetermined period at a predetermined timing. The NMR signal detection unit 212 is a coil for detecting an NMR signal. The coil constituting the NMR signal detection unit 212 detects a magnetic field change in a direction orthogonal to the magnetic field formed by the magnetic field formation unit 202. Under the control of the control unit 216, the NMR analysis unit 214 measures the NMR signal using the NMR signal detection unit 212, and performs known NMR analysis. The resonance frequency of the NMR signal detection unit 212 is adjusted to be equal to the NMR frequency corresponding to the magnetic field strength by an adjustment component such as a capacitor.
 ステップ306において、高偏極化液体中の各分子に含まれる特定種類の原子の1つの核スピン(例えば、TMPであれば31P)に対してアダマールゲートを適用して、その核スピンをコヒーレント状態にする。具体的には、一様な磁場中に配置された分子に、RF波源208及び増幅部210により、π/2パルス、πパルス等を含む所定のパルスシーケンスのRFパルスを照射する(非特許文献12及び13参照)。これにより、核スピン|0>は、(|0>+|1>)/21/2のコヒーレント状態になる。 In step 306, one of the nuclear spins of a particular kind of atoms contained in each molecule of high polarized poling liquid (e.g., 31 P if TMP) by applying the Hadamard gate respect, the nuclear spin coherent Put it in a state. Specifically, molecules arranged in a uniform magnetic field are irradiated with an RF pulse of a predetermined pulse sequence including a π / 2 pulse, a π pulse, and the like by the RF wave source 208 and the amplification unit 210 (Non-Patent Document). 12 and 13). As a result, the nuclear spin | 0> becomes a coherent state of (| 0> + | 1>) / 2 1/2 .
 ステップ308において、ステップ306でコヒーレント状態になった特定種類の原子(TMPであれば31P)の核スピンと同じ分子内の残りの核スピン(TMPであればH)とに対して制御NOTゲートを適用して量子敏感符号化を行なう。これは、RF波源208及び増幅部210により、X軸又はY軸の周りの回転操作であるπ/2パルス、πパルス等を含む所定のパルスシーケンスのRFパルスを印加することにより行なわれる(非特許文献12及び13参照)。これにより、高偏極化液体の各分子を構成する複数の核スピン(スピン1/2)は、スピンNOON状態、GHZ状態、スピンスクイーズド状態等の環境に敏感なエンタングル状態になる。 In step 308, the control NOT against the specific types of atoms became coherent state (1 H if TMP) remaining nuclear spins in the same molecule nuclear spins (31 P if TMP) in step 306 Apply gate sensitive quantum coding. This is performed by applying an RF pulse of a predetermined pulse sequence including a π / 2 pulse, a π pulse, and the like, which is a rotation operation around the X axis or the Y axis, by the RF wave source 208 and the amplifying unit 210 (non-null). (See Patent Documents 12 and 13). As a result, the plurality of nuclear spins (spin 1/2) constituting each molecule of the highly polarized liquid are in an entangled state sensitive to the environment such as a spin NOON state, a GHZ state, a spin squeezed state, and the like.
 ステップ310において、エンタングル状態の高偏極化液体を所定の時間保持し、各核スピン(スピン1/2)に環境の変化(磁場強度の摂動)をセンシングさせる。これにより、全ての核スピンがφ回転を受ける。 In step 310, the highly polarized liquid in the entangled state is held for a predetermined time, and each nuclear spin (spin 1/2) is caused to sense an environmental change (perturbation of magnetic field strength). As a result, all nuclear spins undergo φ rotation.
 ステップ312において、高偏極化液体に制御NOTゲートを適用して量子敏感復号化を行なう。量子敏感復号化は、敏感復号化状態を元に戻す操作であり、ステップ308の量子敏感符号化の逆過程に対応する操作である。これにより、複数の核スピンは、エンタングル状態から元の状態に戻る。具体的には、量子敏感復号化は、ステップ308の量子敏感符号化と同じ操作である。 In step 312, quantum sensitive decoding is performed by applying a control NOT gate to the highly polarized liquid. The quantum sensitive decoding is an operation for returning the sensitive decoding state to an original state, and is an operation corresponding to the reverse process of the quantum sensitive encoding in Step 308. As a result, the plurality of nuclear spins return from the entangled state to the original state. Specifically, the quantum sensitive decoding is the same operation as the quantum sensitive coding in step 308.
 ステップ314において、ステップ312により量子敏感復号化された高偏極化液体に対して、アダマールゲートを適用する。具体的には、ステップ306でアダマールゲートが適用された特定種類の原子(TMPであれば31P)の核スピンに対して、ステップ306と同様にアダマールゲートを適用する。これにより、XY面内の核スピンがZ軸方向に変位し、特定種類の原子の核スピンの測定値の期待値がcos(Kφ)となり、残りの核スピンは|0>となる。即ち、特定種類の原子の核スピンだけ環境の影響により大きく位相が変化した状態になる。 In step 314, a Hadamard gate is applied to the highly polarized liquid that has been quantum sensitively decoded in step 312. Specifically, the Hadamard gate is applied in the same manner as in Step 306 to the nuclear spin of a specific kind of atom ( 31 P if TMP) to which the Hadamard gate is applied in Step 306. As a result, the nuclear spin in the XY plane is displaced in the Z-axis direction, the expected value of the measured value of the nuclear spin of a specific type of atom is cos (Kφ), and the remaining nuclear spin is | 0>. In other words, the phase of the nuclear spin of a specific type of atom is greatly changed by the influence of the environment.
 ステップ316において、ステップ314でアダマールゲートが適用された高偏極化液体に対してスピン増幅を行ない、ステップ314により位相が大きく変化した特定種類の核スピンの位相の変化量を他の核スピンにコピーする。具体的には、ステップ314により位相が大きく変化した特定種類の核スピンから、残りの核スピンへの制御NOTゲートを適用する。スピン増幅には、非特許文献11に開示されている公知の方法を使用すればよい。 In step 316, spin amplification is performed on the highly polarized liquid to which the Hadamard gate is applied in step 314, and the amount of phase change of the specific type of nuclear spin whose phase has changed greatly in step 314 is changed to another nuclear spin. make a copy. Specifically, a control NOT gate is applied from the specific kind of nuclear spin whose phase has changed greatly in step 314 to the remaining nuclear spin. For spin amplification, a known method disclosed in Non-Patent Document 11 may be used.
 ステップ318において、高偏極化液体の分子に含まれる複数の核スピンのそれぞれに対して、アダマールゲートを適用する。アダマールゲートを適用することにより、全ての核スピンのZ成分がX成分へと変換される。 In step 318, a Hadamard gate is applied to each of the plurality of nuclear spins included in the molecule of the highly polarized liquid. By applying a Hadamard gate, the Z component of all nuclear spins is converted to an X component.
 ステップ320において、NMR測定を行なう。即ち、信号検出用プローブ(図8のNMR信号検出部212)によりNMR信号を測定する。 In step 320, NMR measurement is performed. That is, the NMR signal is measured by a signal detection probe (NMR signal detection unit 212 in FIG. 8).
 上記のように、高偏極化液体に対して量子鈍感符号化及びスピン増幅を行なうことにより、従来よりも高感度のNMR測定(NMR分光、代謝イメージング等)が可能となる。以下に、感度の向上に関して具体的に示す。 As described above, by performing quantum insensitive encoding and spin amplification on a highly polarized liquid, NMR measurement (NMR spectroscopy, metabolic imaging, etc.) with higher sensitivity than before can be performed. Hereinafter, the improvement in sensitivity will be specifically described.
 図9は、上記のステップ306~320を、図2、図4及び図6と同様に表記したものである。図9において、図7の各ステップに対応する操作には、図7と同じ符号を付している。図9を図4と比較すると、ステップ306~312の操作は図4の操作(検出操作108を除く)と同じである。 FIG. 9 shows the above steps 306 to 320 in the same manner as FIG. 2, FIG. 4 and FIG. 9, operations corresponding to the steps in FIG. 7 are denoted by the same reference numerals as in FIG. 9 is compared with FIG. 4, the operations in steps 306 to 312 are the same as the operations in FIG. 4 (excluding the detection operation 108).
 図4のプロトコルでは、上記したように、図2のプロトコルに対して信号強度はK倍になる。これに対して、図9のプロトコルでは、ステップ314の操作が実行された段階で、特定種類の原子の核スピンの測定値の期待値がcos(Kφ)となり、図2のプロトコルに対して信号強度はK倍になると考えられる。さらに、図9のプロトコルでは、ステップ316のスピン増幅により、特定種類の核スピンの位相の変化量が(K-1)個の他の核スピンにコピーされる。したがって、ステップ318の操作に続くステップ320の操作でのNMR測定により得られる信号強度は、図2のプロトコルに対してK×K=K倍になり、図4のプロトコルに対してK倍になる。同様に、図9のプロトコルでは、図6のプロトコルに対して、信号強度はK倍になる。即ち、熱雑音が量子雑音よりも大きい場合、図9のプロトコルの感度は、図4及び図6のそれぞれのプロトコルの感度のK倍になる。 In the protocol of FIG. 4, as described above, the signal strength is K times that of the protocol of FIG. On the other hand, in the protocol of FIG. 9, at the stage where the operation of step 314 is executed, the expected value of the measured value of the nuclear spin of a specific type of atom becomes cos (Kφ), and the signal for the protocol of FIG. The strength is thought to be K times. Furthermore, in the protocol of FIG. 9, the amount of phase change of a specific kind of nuclear spin is copied to (K−1) other nuclear spins by the spin amplification in step 316. Therefore, the signal intensity obtained by the NMR measurement in the operation of step 320 following the operation of step 318 is K × K = K 2 times for the protocol of FIG. 2 and K times for the protocol of FIG. Become. Similarly, in the protocol of FIG. 9, the signal strength is K times that of the protocol of FIG. That is, when the thermal noise is larger than the quantum noise, the sensitivity of the protocol in FIG. 9 is K times the sensitivity of each protocol in FIG. 4 and FIG.
 なお、量子雑音が熱雑音よりも大きい系では、図9のプロトコルの量子雑音は、図6のプロトコルと同様にK1/2倍になるので、図9のプロトコルの感度は、図2のプロトコルの感度のK3/2(=K/K1/2)倍であり、図6のプロトコルの感度のK1/2倍である。この場合にも、図4のプロトコルの感度との比較では、図9のプロトコルの感度はK倍になる。 In the system in which the quantum noise is larger than the thermal noise, the quantum noise of the protocol of FIG. 9 is K 1/2 times the same as the protocol of FIG. 6, so the sensitivity of the protocol of FIG. Is K 3/2 (= K 2 / K 1/2 ) times, and K 1/2 times the sensitivity of the protocol of FIG. Also in this case, the sensitivity of the protocol of FIG. 9 is K times higher than the sensitivity of the protocol of FIG.
 上記では、ステップ314においてアダマールゲートを適用して、核スピンのX成分をZ成分に変換する場合を説明したが、ステップ314を行なわなくてもよい。即ち、ステップ312の後、核スピンのX成分に対して、ステップ316でのスピン増幅を行なってもよい。その場合、核スピンのそれぞれに対してアダマールゲートを適用するステップ318は行なわずに、ステップ320でのNMR測定を実行すればよい。 In the above description, the case where the Hadamard gate is applied in step 314 to convert the X component of the nuclear spin into the Z component has been described, but step 314 may not be performed. That is, after step 312, spin amplification in step 316 may be performed on the X component of the nuclear spin. In that case, the NMR measurement in step 320 may be performed without performing step 318 of applying a Hadamard gate to each of the nuclear spins.
 また、上記では、アダマールゲート及び制御NOTゲートを用いて、分子を構成する複数の核スピンをエンタングル状態にする場合を説明したが、これに限定されない。複数の核スピンをエンタングル状態にする方法は、アダマールゲートと制御NOTゲートとの組合せ以外の方法であってもよい。例えばアダマールゲート及び制御NOTゲートの組合せを一般化したユニタリー発展そのものを表現する数値最適化パルス等であってもよい。数値最適化の方法には、例えば非特許文献14に開示されている方法を使用すればよい。 In the above description, a case has been described in which a plurality of nuclear spins constituting a molecule are entangled using a Hadamard gate and a control NOT gate, but the present invention is not limited to this. The method of bringing a plurality of nuclear spins into an entangled state may be a method other than the combination of a Hadamard gate and a control NOT gate. For example, it may be a numerical optimization pulse that expresses a unitary evolution that generalizes a combination of a Hadamard gate and a control NOT gate. As a numerical optimization method, for example, a method disclosed in Non-Patent Document 14 may be used.
 本実施の形態に係る磁気共鳴高感度化法の適用対象である分子は、図5に示したモデル分子系に限定されない。例えば、図10に示すような環状のモデル分子系、又は環を一部に含むモデル分子系であってもよい。対称なモデル分子系であることが好ましいが、上記したCNOTゲートを構成できればよく、非対称なモデル分子系であってもよい。 The molecule to which the magnetic resonance sensitization method according to the present embodiment is applied is not limited to the model molecular system shown in FIG. For example, a cyclic model molecular system as shown in FIG. 10 or a model molecular system partially including a ring may be used. Although it is preferably a symmetric model molecular system, it may be an asymmetric model molecular system as long as the above-described CNOT gate can be configured.
 本実施の形態に係る磁気共鳴高感度化法は、
(1)トリプレットDNPにより高偏極化された分子、及び、代謝イメージングに用いられた分子、
(2)量子コンピュータの研究に用いられた分子、
(3)量子鈍感符号化が適用された分子、並びに、
(4)量子敏感符号化が適用された分子、
に適用可能である。
The magnetic resonance sensitization method according to the present embodiment is
(1) a molecule highly polarized by triplet DNP and a molecule used for metabolic imaging,
(2) molecules used in quantum computer research,
(3) a molecule to which quantum insensitive coding is applied, and
(4) numerator to which quantum sensitive coding is applied,
It is applicable to.
 (1)の分子は、例えば、安息香酸、p-terphenyl、ナフタレン、又は、ベンゾフェノン等において、適切な箇所の原子が核スピン1/2の同位体に置換された分子である。(2)の分子は、例えば、ピルビン酸、コリン、又は、グルコース等において、適切な箇所の原子が核スピン1/2の同位体に置換された分子である。(3)の分子は、例えば、ジアセチレン、又はglutamate等において、適切な箇所の原子が核スピン1/2の同位体に置換された分子である。(4)の分子は、例えば、trimethylphosphate(リン酸トリメチル:TMP)、又は、tetramethylsilane等において、適切な箇所の原子が核スピン1/2の同位体に置換された分子である。 The molecule (1) is, for example, a molecule in which an atom at an appropriate position in benzoic acid, p-terphenyl, naphthalene, benzophenone, or the like is substituted with an isotope having a nuclear spin of 1/2. The molecule (2) is a molecule in which, for example, pyruvate, choline, glucose, or the like, an atom at an appropriate position is substituted with an isotope of nuclear spin 1/2. The molecule (3) is a molecule in which, for example, in diacetylene, glutamate, or the like, an atom at an appropriate position is substituted with an isotope of nuclear spin 1/2. The molecule (4) is a molecule in which, for example, trimethylphosphate (trimethyl phosphate: TMP) or tetramethylsilane or the like, an atom at an appropriate position is substituted with a nuclear spin 1/2 isotope.
 本実施の形態に係る磁気共鳴高感度化法をTMPのNMR測定に適用する場合を具体的に示す。上記したように、量子敏感符号化(ステップ308)、量子敏感復号化(ステップ312)、及びスピン増幅(ステップ316)の操作は均一静磁場中(例えば、磁場強度11.7T)で、共鳴周波数のラジオ波(RF波)のパルス照射で行なわれる。磁場強度11.7Tの場合、TMPの31Pの共鳴周波数は202MHzであり、J結合によって分裂している一番端の一本のスペクトルだけに共鳴する周波数での弱いパルス照射によってCNOTゲートを実装する。核スピンのZ磁化をX-Y平面へと倒すこともパルス照射で実現する。このとき、H(磁場強度11.7Tでは共鳴周波数500MHz)及び31Pの核スピンが全て倒れるような二重共鳴強パルス照射で実現する。NMRプローブを用いることで磁場中での共鳴照射を可能にする。照射パルスはNMR分光計で発生させ、高出力増幅器で増幅してNMRプローブへと照射する(NMR装置のNMRプローブは、RFの照射とNMR信号の検出とに利用され得る)。 The case where the magnetic resonance sensitization method according to the present embodiment is applied to the NMR measurement of TMP is specifically shown. As described above, the operations of quantum sensitive coding (step 308), quantum sensitive decoding (step 312), and spin amplification (step 316) are performed in a uniform static magnetic field (for example, magnetic field strength of 11.7 T) and the resonance frequency. This is performed by pulse irradiation of radio waves (RF waves). When the magnetic field strength is 11.7 T, the resonance frequency of 31 P of TMP is 202 MHz, and the CNOT gate is implemented by weak pulse irradiation at a frequency that resonates with only one end spectrum split by J-bonding. To do. It is also realized by pulse irradiation that the Z magnetization of the nuclear spin is brought down to the XY plane. At this time, it is realized by double resonance strong pulse irradiation in which 1 H (resonance frequency is 500 MHz at a magnetic field intensity of 11.7 T) and 31 P nuclear spins all fall down. Resonance irradiation in a magnetic field is enabled by using an NMR probe. The irradiation pulse is generated by an NMR spectrometer, amplified by a high-power amplifier, and irradiated to an NMR probe (the NMR probe of an NMR apparatus can be used for RF irradiation and detection of an NMR signal).
 以上、実施の形態を説明することにより本発明を説明したが、上記した実施の形態は例示であって、本発明は上記した実施の形態のみに制限されるわけではない。本発明の範囲は、発明の詳細な説明の記載を参酌した上で、請求の範囲の各請求項によって示され、そこに記載された文言と均等の意味及び範囲内での全ての変更を含む。 As mentioned above, although this invention was demonstrated by describing embodiment, above-described embodiment is an illustration and this invention is not necessarily restricted only to above-described embodiment. The scope of the present invention is indicated by each claim in the scope of the claims, taking into account the description of the detailed description of the invention, and includes all modifications within the meaning and scope equivalent to the words described therein. .
 本発明によれば、NMR分光及びMRI等のNMR測定において、核磁気共鳴信号の検出感度を向上することができる。 According to the present invention, the detection sensitivity of nuclear magnetic resonance signals can be improved in NMR measurements such as NMR spectroscopy and MRI.
100、108  検出操作
102  符号化操作
104  センシング操作
106  復号化操作
200  NMR装置
202  磁場形成部
204  キャビティ
206  試料
208  RF波源
210  増幅部
212  NMR信号検出部
214  NMR分析部
216  制御部
100, 108 Detecting operation 102 Encoding operation 104 Sensing operation 106 Decoding operation 200 NMR device 202 Magnetic field forming unit 204 Cavity 206 Sample 208 RF wave source 210 Amplifying unit 212 NMR signal detecting unit 214 NMR analyzing unit 216 Control unit

Claims (5)

  1.  NMR測定の対象となる複数の核スピンを有し且つ高偏極化された分子を含む液体を測定対象とする磁気共鳴高感度化法であって、
     前記分子を一様な外部磁場中に配置した状態で、前記複数の核スピンを環境に敏感なエンタングル状態にする量子符号化ステップと、
     前記エンタングル状態の前記複数の核スピンによるセンシングを所定時間実行するセンシングステップと、
     前記センシングステップが実行された前記複数の核スピンを、前記量子符号化ステップの逆過程に対応する操作により復号化する量子復号化ステップと、
     前記量子復号化ステップが実行された前記複数の核スピンにスピン増幅を実行する増幅ステップと、
     前記増幅ステップが実行された前記複数の核スピンに対してNMR測定を実行する測定ステップとを含むことを特徴とする、磁気共鳴高感度化法。
    A magnetic resonance sensitization method for measuring a liquid containing a plurality of nuclear spins and a highly polarized molecule to be subjected to NMR measurement,
    A quantum encoding step of placing the plurality of nuclear spins in an entangled state sensitive to an environment with the molecules arranged in a uniform external magnetic field;
    A sensing step of performing sensing by the plurality of nuclear spins in the entangled state for a predetermined time;
    A quantum decoding step of decoding the plurality of nuclear spins on which the sensing step has been performed by an operation corresponding to an inverse process of the quantum encoding step;
    An amplification step of performing spin amplification on the plurality of nuclear spins on which the quantum decoding step has been performed;
    And a measurement step of performing NMR measurement on the plurality of nuclear spins on which the amplification step has been performed.
  2.  前記量子符号化ステップは、
      前記分子を前記外部磁場中に配置した状態で、前記複数の核スピンのうちの1つの特定の核スピンにアダマールゲートを適用し、前記特定の核スピンをコヒーレント状態にするコヒーレント化ステップと、
      前記コヒーレント状態にある前記特定の核スピンを最初の制御に用いて前記複数の核スピンに制御NOTゲートを適用し、前記複数の核スピンを前記エンタングル状態にするステップとを含み、
     前記量子復号化ステップは、前記特定の核スピンを最初の制御に用いて前記センシングステップが実行された前記複数の核スピンに制御NOTゲートを適用し、復号化するステップを含むことを特徴とする、請求項1に記載の磁気共鳴高感度化法。
    The quantum encoding step includes:
    A coherent step of applying a Hadamard gate to a specific nuclear spin of one of the plurality of nuclear spins to place the specific nuclear spin in a coherent state in a state where the molecule is arranged in the external magnetic field;
    Applying a control NOT gate to the plurality of nuclear spins using the specific nuclear spin in the coherent state for initial control, and bringing the plurality of nuclear spins into the entangled state;
    The quantum decoding step includes a step of applying a control NOT gate to the plurality of nuclear spins on which the sensing step has been performed using the specific nuclear spins for initial control, and performing decoding. The method for increasing the sensitivity of magnetic resonance according to claim 1.
  3.  前記量子復号化ステップと前記増幅ステップとの間に実行されるステップであって、前記量子復号化ステップが実行された前記複数の核スピンの前記特定の核スピンにアダマールゲートを適用して、XY面内の前記特定の核スピンをZ軸方向に変位させるZ軸変位ステップと、
     前記増幅ステップと前記測定ステップとの間に実行されるステップであって、前記増幅ステップが実行された前記複数の核スピンのそれぞれにアダマールゲートを適用して、XY面内に変位させるXY変位ステップとをさらに含み、
     前記増幅ステップは、前記Z軸変位ステップが実行された前記複数の核スピンに対して実行され、
     前記測定ステップは、前記XY変位ステップが実行された前記複数の核スピンに対して実行されることを特徴とする、請求項2に記載の磁気共鳴高感度化法。
    XY between the quantum decoding step and the amplification step, applying a Hadamard gate to the specific nuclear spins of the plurality of nuclear spins for which the quantum decoding step was performed, XY A Z-axis displacement step for displacing the specific nuclear spin in the plane in the Z-axis direction;
    An XY displacement step that is performed between the amplification step and the measurement step, and applies a Hadamard gate to each of the plurality of nuclear spins on which the amplification step has been performed to displace them in the XY plane. And further including
    The amplification step is performed on the plurality of nuclear spins on which the Z-axis displacement step is performed,
    The method according to claim 2, wherein the measuring step is performed on the plurality of nuclear spins on which the XY displacement step has been performed.
  4.  前記コヒーレント化ステップの前に実行されるステップであって、高偏極化された前記分子を緩和が起きにくい状態にする量子鈍感符号化ステップをさらに含むことを特徴とする、請求項2又は3に記載の磁気共鳴高感度化法。 4. The method according to claim 2, further comprising a quantum insensitive encoding step that is performed before the coherent step and makes the highly polarized molecule less susceptible to relaxation. The method for increasing the sensitivity of magnetic resonance described in 1.
  5.  前記分子は、トリプレットDNPにより高偏極化された分子、代謝イメージングに用いられた分子、量子コンピュータの研究に用いられた分子、量子鈍感符号化が適用された分子、又は、量子敏感符号化が適用された分子であって、核スピン1/2の複数の原子核を有する分子であることを特徴とする、請求項1~4のいずれか1項に記載の磁気共鳴高感度化法。 The molecule is a molecule highly polarized by triplet DNP, a molecule used for metabolic imaging, a molecule used for quantum computer research, a molecule to which quantum insensitive coding is applied, or a quantum sensitive coding 5. The magnetic resonance sensitization method according to claim 1, wherein the molecule is a molecule having a plurality of nuclei having a nuclear spin of 1/2.
PCT/JP2018/037504 2018-04-24 2018-10-09 Method for enhancing magnetic resonance sensitivity by quantum coding WO2019207815A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-082859 2018-04-24
JP2018082859A JP2021126132A (en) 2018-04-24 2018-04-24 Method for magnetic resonance sensitivity enhancement by quantum coding

Publications (1)

Publication Number Publication Date
WO2019207815A1 true WO2019207815A1 (en) 2019-10-31

Family

ID=68295195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037504 WO2019207815A1 (en) 2018-04-24 2018-10-09 Method for enhancing magnetic resonance sensitivity by quantum coding

Country Status (2)

Country Link
JP (1) JP2021126132A (en)
WO (1) WO2019207815A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113662528A (en) * 2021-08-24 2021-11-19 上海赫德医疗管理咨询有限公司 Quantum detection therapeutic instrument and quantum resonance analysis method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000137007A (en) * 1998-08-26 2000-05-16 Canon Inc State constituting method and device, and communicating method and device using same
WO2016188557A1 (en) * 2015-05-22 2016-12-01 Universitaet Ulm Method for the hyperpolarisation of nuclear spins

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000137007A (en) * 1998-08-26 2000-05-16 Canon Inc State constituting method and device, and communicating method and device using same
WO2016188557A1 (en) * 2015-05-22 2016-12-01 Universitaet Ulm Method for the hyperpolarisation of nuclear spins

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GERASEV S.A. ET AL.: "Quantum entanglement and quantum discord in dimers in multiple quantum NMR experiments", PROCEEDINGS OF SPIE, vol. 10224, 30 December 2016 (2016-12-30), XP060081365, DOI: 10.1117/12.2264353 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113662528A (en) * 2021-08-24 2021-11-19 上海赫德医疗管理咨询有限公司 Quantum detection therapeutic instrument and quantum resonance analysis method
CN113662528B (en) * 2021-08-24 2023-07-21 上海赫德医疗管理咨询有限公司 Quantum detection therapeutic instrument and quantum resonance analysis method

Also Published As

Publication number Publication date
JP2021126132A (en) 2021-09-02

Similar Documents

Publication Publication Date Title
Barry et al. Sensitivity optimization for NV-diamond magnetometry
Carravetta et al. Beyond the T 1 limit: singlet nuclear spin states in low magnetic fields
JP5424578B2 (en) Magnetic sensing method, atomic magnetic sensor, and magnetic resonance imaging apparatus
Jarmola et al. Temperature-and magnetic-field-dependent longitudinal spin relaxation in nitrogen-vacancy ensembles in diamond
US7573264B2 (en) Atomic magnetic gradiometer for room temperature high sensitivity magnetic field detection
US8547090B2 (en) Electronic spin based enhancement of magnetometer sensitivity
Abdumalikov Jr et al. Dynamics of coherent and incoherent emission from an artificial atom in a 1D space
Shaham et al. Strong coupling of alkali-metal spins to noble-gas spins with an hour-long coherence time
CN101939638B (en) Nuclear magnetic resonance spectroscopy using light with orbital angular momentum
Lingwood et al. Solution-state dynamic nuclear polarization
Van Slageren New directions in electron paramagnetic resonance spectroscopy on molecular nanomagnets
Zheng et al. A method for imaging and spectroscopy using γ-rays and magnetic resonance
Bornet et al. Ultra high-resolution NMR: sustained induction decays of long-lived coherences
Jiang et al. Zero-to ultralow-field nuclear magnetic resonance and its applications
Jarmola et al. Robust optical readout and characterization of nuclear spin transitions in nitrogen-vacancy ensembles in diamond
Gupta et al. Dipolar relaxation revisited: A complete derivation for the two spin case
Roy et al. Density matrix tomography of singlet states
US20210080517A1 (en) Order of magnitude improvement in t*2 via control and cancellation of spin bath induced dephasing in solid-state ensembles
Ranjbaran et al. Harmonic detection of magnetic resonance for sensitivity improvement of optical atomic magnetometers
Kollarics et al. Ultrahigh nitrogen-vacancy center concentration in diamond
Aghelnejad et al. Spin Thermometry: A Straightforward Measure of Millikelvin Deuterium Spin Temperatures Achieved by Dynamic Nuclear Polarization
Pei et al. Comprehensive analysis on the dynamic characteristic of K-Rb-21Ne co-magnetometer with transient response
WO2019207815A1 (en) Method for enhancing magnetic resonance sensitivity by quantum coding
Vitalis et al. Quantum-limited biochemical magnetometers designed using the Fisher information and quantum reaction control
Babunts et al. Features of high-frequency EPR/ESE/ODMR spectroscopy of NV-defects in diamond

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18916338

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18916338

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP