WO2019207797A1 - Power generation device, control device, and control method - Google Patents

Power generation device, control device, and control method Download PDF

Info

Publication number
WO2019207797A1
WO2019207797A1 PCT/JP2018/017318 JP2018017318W WO2019207797A1 WO 2019207797 A1 WO2019207797 A1 WO 2019207797A1 JP 2018017318 W JP2018017318 W JP 2018017318W WO 2019207797 A1 WO2019207797 A1 WO 2019207797A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
gas
power generation
closed section
supply line
Prior art date
Application number
PCT/JP2018/017318
Other languages
French (fr)
Japanese (ja)
Inventor
毅史 山根
樋口 種男
裕紀 樋口
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to PCT/JP2018/017318 priority Critical patent/WO2019207797A1/en
Publication of WO2019207797A1 publication Critical patent/WO2019207797A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present disclosure relates to a power generation device, a control device, and a control method.
  • Patent Document 1 discloses a fuel cell device including an electromagnetic valve.
  • a power generation device includes a power generation unit, a gas supply line, and a control unit.
  • the power generation unit generates power using gas.
  • the gas supply line includes a first valve capable of stopping the supply of the gas to the power generation unit, and a second valve disposed on the upstream side of the first valve.
  • the control unit forms a closed section by closing the first valve and the second valve, and opens the first valve when the closed section is in an overpressure state. When the closed section is in the negative pressure state, the second valve is opened.
  • the control device includes a power generation unit that generates power using gas, a first valve capable of stopping supply of the gas to the power generation unit, and an upstream side of the first valve. It is a control apparatus which can control a power generator provided with a gas supply line provided with the 2nd valve arranged.
  • the power generation device forms a closed section by closing the first valve and the second valve, and opens the first valve when the closed section is in an overpressure state, A control unit is provided that opens the second valve when the closed section is in a negative pressure state.
  • the control method is a method for controlling a power generation device using a computer.
  • the power generation device includes a power generation unit that generates power using gas, a first valve capable of stopping supply of the gas to the power generation unit, and a first valve disposed upstream of the first valve.
  • the computer forms a closed section by closing the first valve and the second valve, and opens the first valve when the closed section is in an overpressure state. When the closed section is in a negative pressure state, the second valve is opened.
  • FIG. 1 is a functional block diagram illustrating an outline of the power generation device according to the first embodiment.
  • FIG. 2 is a flowchart illustrating an example of processing executed by the control unit in FIG.
  • FIG. 3 is a flowchart illustrating an example of processing executed by the control unit of the power generation device according to the second embodiment.
  • FIG. 4 is a flowchart illustrating an example of processing executed by the control unit of the power generation apparatus according to the third embodiment.
  • FIG. 5 is a flowchart illustrating an example of processing executed by the control unit of the power generation device according to the fourth embodiment.
  • FIG. 6 is a functional block diagram illustrating an outline of a power generation device and a control device according to a modification.
  • FIG. 1 is a functional block diagram illustrating an outline of the power generation device 100 according to the first embodiment.
  • a solid line connecting the blocks indicates a path through which a gas such as a gas flows.
  • a broken line connecting blocks indicates a control signal or a path of information to be communicated.
  • the power generation device 100 includes a module 200, a gas supply line 300, a control device 400, a first temperature sensor 500, and a second temperature sensor 600.
  • the module 200 includes reformers 201a and 201b (hereinafter collectively referred to as “reformer 201”) and cell stacks 202a and 202b (hereinafter collectively referred to as “cell stack 202”).
  • Gas for example, raw fuel gas
  • Air is supplied to the module 200 from an air supply line (not shown).
  • the cell stack 202 included in the module 200 functions as a power generation unit that generates power using gas. That is, in the module 200, the cell stack 202 generates power using the supplied gas, air, and the like, and outputs DC power.
  • the module 200 can be composed of various fuel cells such as a polymer electrolyte fuel cell (PEFC) or a solid oxide fuel cell (SOFC).
  • PEFC polymer electrolyte fuel cell
  • SOFC solid oxide fuel cell
  • the module 200 may include a container including a reformer and a container including a stack.
  • the gas supply line 300 supplies gas to the reformer 201 in the module 200. That is, the gas supply line 300 may be a line for supplying a gas before reforming.
  • the gas supply line 300 receives a gas supply from a gas pipe and performs a process such as desulfurization.
  • the gas may be, for example, a gas containing methane such as city gas.
  • the gas piping side is referred to as “upstream side” and the module 200 side is referred to as “downstream side” along the gas flow.
  • the gas supply line 300 includes a first valve 301 and a second valve 302.
  • Each of the first valve 301 and the second valve 302 may include a plurality of valves.
  • the 1st valve 301 is comprised by two solenoid valves called the 1st gas line solenoid valve 301a and the 2nd gas line solenoid valve 301b.
  • the 2nd valve 302 is comprised by two solenoid valves called the 1st gas solenoid valve 302a and the 2nd gas solenoid valve 302b.
  • the number of valves constituting the first valve 301 and the second valve 302 is not limited to this, and may be an appropriate number depending on the design of the power generation apparatus 100 or the like.
  • the 1st valve 301 and the 2nd valve 302 do not necessarily need to be comprised by the solenoid valve.
  • the 1st valve 301 and the 2nd valve 302 may be constituted by other valves, such as an electric valve, for example.
  • the first valve 301 can stop the gas supply from the gas supply line 300 to the reformer 201 in the closed state.
  • the fuel gas is not supplied to the cell stack 202 as a result.
  • the first valve 301 is open, gas is supplied from the gas supply line 300 to the reformer 201.
  • the second valve 302 is disposed upstream of the first valve 301 in the gas supply line 300.
  • the second valve 302 can stop the supply of gas from the gas pipe to the gas supply line 300 in the closed state.
  • gas is supplied from the gas pipe to the gas supply line 300.
  • the gas supply line 300 may further include a pressure switch 303, a desulfurizer 304, and a zero governor 305.
  • the pressure switch 303, the first gas solenoid valve 302a, the second gas solenoid valve 302b, the desulfurizer 304, and the zero governor 305 are connected in series from the upstream side to the downstream side in this order. Is done.
  • the gas supply line 300 further includes a first gas flow meter 306a, a first capillary 307a, a first buffer 308a, and a first gas pump 309a.
  • the first gas flow meter 306a, the first capillary 307a, the first buffer 308a, the first gas pump 309a, and the first gas line solenoid valve 301a are arranged in this order from the upstream side to the downstream side. Connected in series.
  • first gas flow meter 306a, the first capillary 307a, the first buffer 308a, the first gas pump 309a, and the first gas line solenoid valve 301a connected in series are hereinafter referred to as “first 1 supply line 320a ".
  • the gas supply line 300 further includes a second gas flow meter 306b, a second capillary 307b, a second buffer 308b, and a second gas pump 309b.
  • the second gas flow meter 306b, the second capillary 307b, the second buffer 308b, the second gas pump 309b, and the second gas line solenoid valve 301b are arranged in this order from the upstream side to the downstream side. Connected in series.
  • the second gas flow meter 306b, the second capillary 307b, the second buffer 308b, the second gas pump 309b, and the second gas line solenoid valve 301b connected in series are hereinafter referred to as “first gas flow meter 306b”.
  • 2 supply line 320b ".
  • the first supply line 320a and the second supply line 320b are connected in parallel on the downstream side of the zero governor 305. That is, the flow path of the gas supply line 300 branches to the first supply line 320a and the second supply line 320b on the downstream side of the zero governor 305.
  • the gas supply line 300 supplies gas to the reformer 201 included in the module 200 from two branched supply lines (a first supply line 320a and a second supply line 320b).
  • the pressure switch 303 detects the pressure of the gas supplied to the gas supply line 300, and outputs a signal (contact signal) when the set pressure is reached.
  • the first gas solenoid valve 302 a and the second gas solenoid valve 302 b are valves that open and close the gas supply path to the desulfurizer 304.
  • the first gas solenoid valve 302 a and the second gas solenoid valve 302 b are opened when power generation is performed by the cell stack 202.
  • the first gas solenoid valve 302a and the second gas solenoid valve 302b are closed when power generation by the cell stack 202 is not performed.
  • two gas solenoid valves a first gas solenoid valve 302a and a second gas solenoid valve 302b, are arranged in series. Thereby, even if one gas solenoid valve fails and the gas supply cannot be stopped, the gas supply can be stopped by another gas solenoid valve.
  • the desulfurizer 304 removes sulfur components from the gas supplied to the gas supply line 300. When the sulfur component flows into the module 200, the performance of the reformer 201 and the cell stack 202 may deteriorate. Therefore, the desulfurizer 304 removes the sulfur component in advance to reduce the performance of the reformer 201 and the cell stack 202. Provided to reduce.
  • the desulfurizer 304 can perform a desulfurization process by a conventionally known method such as hydrogenation reaction desulfurization or room temperature desulfurization.
  • the zero governor 305 adjusts the pressure of the gas supplied to the downstream side. For example, the zero governor 305 adjusts the gas supplied from the upstream side to atmospheric pressure and outputs it to the downstream side.
  • the gas regulated by the zero governor 305 is supplied to the first supply line 320a and the second supply line 320b.
  • the first gas flow meter 306a and the second gas flow meter 306b measure the flow rate of the gas supplied to the first supply line 320a and the second supply line 320b, respectively.
  • the first gas flow meter 306a and the second gas flow meter 306b may measure the gas flow rate, for example, every certain sampling time.
  • the first gas flow meter 306a and the second gas flow meter 306b may transmit information on the measured gas flow rate (gas flow rate information) to the control device 400 by wired communication or wireless communication.
  • the first capillary 307a and the second capillary 307b adjust the supply amount (flow rate) of gas to the downstream side.
  • the first capillary 307a and the second capillary 307b may each be formed by spirally winding a capillary tube.
  • the first capillary 307a and the second capillary 307b make it easy to prevent sudden pressure changes in the first buffer 308a and the second buffer 308b, respectively.
  • the first buffer 308a and the second buffer 308b store gas.
  • the first buffer 308a and the second buffer 308b can suppress the pulsation of the gas supplied to the downstream side.
  • the first gas pump 309a and the second gas pump 309b adjust the flow rate of the gas supplied to the cell stack 202 via the reformer 201 by swinging a diaphragm provided inside the pump head.
  • the control device 400 adjusts the flow rate of the gas supplied to the cell stack 202 based on the gas flow rate information obtained from the first gas flow meter 306a and the second gas flow meter 306b. This is done by controlling the second gas pump 309b.
  • the first gas line electromagnetic valve 301a and the second gas line electromagnetic valve 301b are valves that open and close the gas supply path from the first supply line 320a and the second supply line 320b to the cell stack 202, respectively.
  • the first gas line solenoid valve 301 a and the second gas line solenoid valve 301 b are open when power generation is performed by the cell stack 202.
  • the first gas line solenoid valve 301a and the second gas line solenoid valve 301b are closed when power generation by the cell stack 202 is not performed.
  • the control device 400 controls the supply of gas to the cell stack 202 in the gas supply line 300 when power generation is performed by the cell stack 202.
  • the control device 400 closes the first valve 301 and the second valve 302. By closing the valve, a closed section is formed in the gas supply line 300.
  • the control device 400 controls the opening and closing of the first valve 301 and the second valve 302 according to the pressure in the closed section formed inside the gas supply line 300.
  • the control device 400 includes a control unit 410 and a storage unit 420.
  • the control unit 410 controls and manages the entire control device 400 including each functional unit of the control device 400.
  • the control unit 410 may be configured by a processor such as a CPU (Central Processing Unit) that executes a program that defines a control procedure.
  • a program is stored in, for example, the storage unit 420 included in the control device 400 or an external storage medium independent of the control device 400.
  • the controller 400 includes at least one processor as the controller 410 to provide control and processing capabilities to perform various functions, as will be described in further detail below.
  • the at least one processor may be implemented as a single integrated circuit (IC) or as a plurality of communicatively connected integrated circuits ICs and / or discrete circuits. .
  • the at least one processor can be implemented according to various known techniques.
  • the processor includes one or more circuits or units configured to perform one or more data computation procedures or processes.
  • a processor may be one or more processors, controllers, microprocessors, microcontrollers, application specific integrated circuits (ASICs), digital signal processors, programmable logic devices, field programmable gate arrays, or any of these devices or configurations
  • ASICs application specific integrated circuits
  • digital signal processors programmable logic devices, field programmable gate arrays
  • the control unit 410 controls opening and closing of the first valve 301 and the second valve 302. For example, when power generation by the cell stack 202 is not performed, the control unit 410 closes the first valve 301 and the second valve 302. The details of other opening / closing control relating to the first valve 301 and the second valve 302 by the control unit 410 will be described later.
  • the storage unit 420 can be configured by a semiconductor memory or a magnetic memory.
  • the storage unit 420 stores various information and / or a program for operating the control device 400.
  • the storage unit 420 may function as a work memory.
  • the storage unit 420 may store temperature information acquired by the first temperature sensor 500 and / or the second temperature sensor 600, for example.
  • the first temperature sensor 500 and the second temperature sensor 600 may each be constituted by a known temperature sensor such as a thermocouple, thermistor, bimetal, or the like.
  • the first temperature sensor 500 measures the temperature of the gas supply line 300.
  • the second temperature sensor 600 measures the outlet temperature of the reformer 201.
  • the outlet temperature is the temperature of the outlet in the reformer 201 for discharging the fuel gas from the reformer 201 to the cell stack 202.
  • the second temperature sensor 600 measures the outlet temperature of the reformer 201, the present disclosure is not limited to this.
  • the second temperature sensor 600 may be located in the gas supply line 300.
  • the second temperature sensor 600 may be located at a location where gas is supplied to the cell stack 202 in the gas supply line 300.
  • the first temperature sensor 500 and the second temperature sensor 600 output the measured temperature information to the control unit 410.
  • the control unit 410 controls the first valve 301 and the second valve 302 to be in the valve open state. Thereby, gas is supplied to the cell stack 202 from the gas pipe via the gas supply line 300.
  • the control unit 410 controls the first valve 301 and the second valve 302 to be closed. Thereby, the supply of gas from the gas pipe to the gas supply line 300 is stopped, and the supply of gas from the gas supply line 300 to the cell stack 202 is stopped. Moreover, the backflow of gas is prevented.
  • a closed section is formed in the gas supply line 300 by closing the first valve 301 and the second valve 302. That is, the gas is sealed between the first valve 301 and the second valve 302.
  • the gas pressure in the closed section may change due to, for example, a temperature change caused by a change in the environmental temperature (referred to as the outside air temperature).
  • the outside air temperature a temperature change caused by a change in the environmental temperature
  • the control unit 410 performs opening / closing control of the first valve 301 or the second valve 302 so as to reduce the pressure change when the pressure change in the closed section becomes equal to or greater than a predetermined value.
  • control unit 410 estimates the pressure change in the closed section of the gas supply line 300 based on the temperature change in the closed section. That is, the control unit 410 estimates the pressure change in the closed section based on the temperature information acquired from the first temperature sensor 500.
  • control unit 410 causes the storage unit 420 to store the temperature when the closed section is formed (that is, when the first valve 301 and the second valve 302 are closed).
  • the temperature when the closed section is formed is hereinafter referred to as “reference temperature”.
  • the control unit 410 After acquiring the reference temperature, acquires temperature information from the first temperature sensor 500 regularly, irregularly, or continuously. The controller 410 compares the temperature of the closed section acquired by the first temperature sensor 500 with the reference temperature. For example, the controller 410 opens the solenoid valve when the difference between the temperature of the closed section acquired by the first temperature sensor 500 and the reference temperature is equal to or higher than a predetermined threshold value ( Open the valve.
  • the predetermined threshold may be appropriately determined according to the design of the gas supply line 300, for example.
  • the predetermined threshold may be 40 ° C., for example, but is not limited thereto.
  • the control unit 410 performs control to open the first valve 301 (that is, the first gas line electromagnetic valve 301a and the second gas line electromagnetic valve 301b).
  • the first valve 301 is opened, gas flows from the gas supply line 300 whose pressure has been increased to the module 200 side. Thereby, the overpressure state (or high pressure state) in the gas supply line 300 is reduced.
  • the control unit 410 performs control to open the second valve 302 (that is, the first gas electromagnetic valve 302a and the second gas electromagnetic valve 302b).
  • the second valve 302 When the second valve 302 is opened, gas flows from the gas pipe to the gas supply line 300 side where the pressure is low. Thereby, the negative pressure state (or low pressure state) in the gas supply line 300 is reduced.
  • the control unit 410 performs control for closing the opened electromagnetic valve (valve closing) after elapse of a predetermined valve opening time after performing control for opening the electromagnetic valve as described above.
  • the predetermined valve opening time may be appropriately determined according to the design of the gas supply line 300, for example.
  • the predetermined valve opening time may be set to a length of time during which the overpressure state or the negative pressure state can be reduced.
  • the predetermined valve opening time may be different for each electromagnetic valve, for example. That is, the time from when the solenoid valve is opened to when it is closed is the first gas solenoid valve 302a, the second gas solenoid valve 302b, the first gas line solenoid valve 301a, and the second gas.
  • the line solenoid valve 301b may be different from each other.
  • the predetermined valve opening time for the first valve 301 may be 1 second.
  • the control unit 410 performs control to close the first valve 301 one second after opening the first valve 301 at the time of overpressure in the closed section.
  • the predetermined valve opening time for the second valve 302 may be 5 seconds.
  • the control unit 410 performs control to close the second valve 302 after 5 seconds after opening the second valve 302 at the negative pressure in the closed section.
  • the valve opening time at the time of negative pressure is set to be longer than the valve opening time at the time of overpressure (1 second).
  • the second valve 302 is opened, and the negative pressure state is reduced by the gas flowing into the gas supply line 300 from the gas pipe.
  • the pressure of the gas flowing in from the upstream side is adjusted by the zero governor 305 by the function of the zero governor 305 provided in the gas supply line 300. For this reason, the gas is unlikely to flow downstream from the zero governor 305.
  • the first valve 301 is opened at the time of overpressure to reduce the overpressure state
  • the second valve 302 is opened at the time of negative pressure to reduce the negative pressure state.
  • the valve opening time during negative pressure may be set to be longer than the valve opening time during overpressure.
  • the control unit 410 When determining that the closed section is in an overpressure state, the control unit 410 further acquires information on the outlet temperature of the reformer 201 and determines whether or not to open the first valve 301 based on the outlet temperature. You may decide. For example, when the controller 410 determines that the closed section is in an overpressure state and the outlet temperature acquired from the second temperature sensor 600 is equal to or lower than a predetermined temperature threshold, The valve 301 may be opened. For example, the controller 410 may determine that the first valve 301 is not opened when the outlet temperature is higher than a predetermined temperature threshold even when the closed section is determined to be in an overpressure state. .
  • the control unit 410 can prevent the cells, the catalyst, and the like in the module 200 from being damaged by not opening the first valve 301.
  • the predetermined temperature threshold may be appropriately determined according to, for example, the design of the power generation apparatus 100.
  • FIG. 2 is a flowchart showing an example of processing executed by the control unit 410.
  • the flowchart shown in FIG. 2 may be executed when, for example, power generation by the cell stack 202 is stopped and the first valve 301 and the second valve 302 are closed.
  • control unit 410 acquires a reference temperature from the first temperature sensor 500, and stores the acquired reference temperature in the storage unit 420 (step S101). .
  • control unit 410 acquires temperature information of the closed section from the first temperature sensor 500 (step S102).
  • the control unit 410 acquires temperature information regularly, irregularly, or continuously.
  • the control unit 410 compares the reference temperature with the temperature of the closed section acquired in step S102 (step S103).
  • the control unit 410 determines whether or not the temperature of the closed section acquired in step S102 is higher than the reference temperature by a predetermined threshold or more (step S104).
  • Step S104 the controller 410 acquires information on the outlet temperature of the reformer 201 from the second temperature sensor 600 ( Step S105).
  • the control unit 410 determines whether or not the outlet temperature acquired in step S105 is equal to or lower than a predetermined temperature threshold (step S106).
  • Step S107 When the controller 410 determines that the outlet temperature is equal to or lower than the predetermined temperature threshold (Yes in Step S106), the controller 410 performs control to open the first valve 301 (Step S107).
  • the control unit 410 performs control to close the first valve 301 after a predetermined valve opening time (in this embodiment, 5 seconds) has elapsed from step S107 (step S108).
  • a predetermined valve opening time in this embodiment, 5 seconds
  • the control unit 410 acquires the temperature from the first temperature sensor 500, and updates the reference temperature by setting the acquired temperature as a new reference temperature (step S109). That is, the control unit 410 acquires the temperature of the closed section when the valve is closed in step S108, and stores the temperature in the storage unit 420 as a new reference temperature. Based on the new reference temperature, the controller 410 may repeatedly execute the control after step S102 in the flow shown in FIG. In this way, when the pressure in the closed section changes after the valve is closed, the overpressure state or the negative pressure state can be reduced again.
  • step S106 When the controller 410 determines in step S106 that the outlet temperature is higher than the predetermined temperature threshold (No in step S106), the control unit 410 ends this flow without opening the solenoid valve.
  • step S104 determines in step S104 that the temperature of the closed section is not higher than the reference temperature by a predetermined threshold or more (No in step S104), that is, the temperature of the closed section is predetermined with respect to the reference temperature. If it is within the threshold, it is determined whether or not the temperature of the closed section is lower than the reference temperature by a predetermined threshold or more (step S110).
  • Step S111 When the controller 410 determines that the temperature of the closed section is lower than the reference temperature by a predetermined threshold or more (Yes in Step S110), the controller 410 performs control to open the second valve 302 (Step S111).
  • the control unit 410 performs control to close the second valve 302 after a predetermined valve opening time (1 second in the present embodiment) has elapsed from step S111 (step S112).
  • the control unit 410 acquires the temperature from the first temperature sensor 500, and updates the reference temperature by setting the acquired temperature as a new reference temperature (step S109).
  • the details of step S109 are as described above.
  • step S110 determines in step S110 that the temperature of the closed section is not lower than the reference temperature by a predetermined threshold (No in step S110), that is, the temperature of the closed section is within the predetermined threshold with respect to the reference temperature. If it is within the range, this flow is terminated without opening the solenoid valve. In this case, the control unit 410 may repeatedly execute the control after step S102 in the flow shown in FIG.
  • the control unit 410 opens the first valve 301 when the closed section is in an overpressure state, and the closed section is in a negative pressure state.
  • the second valve 302 is controlled to open.
  • the control unit 410 can reduce the overpressure state or the negative pressure state in the closed section.
  • the electric power generating apparatus 100 it can respond to the pressure change in the obstruction
  • control executed by the control unit 410 of the power generation apparatus 100 is not limited to that described in the first embodiment.
  • An example of other control executed by the control unit 410 of the power generation apparatus 100 will be described as a second embodiment.
  • 2nd Embodiment since it is the same as that of 1st Embodiment about the structure of each function part with which the electric power generating apparatus 100 is provided, detailed description is abbreviate
  • the controller 410 acquires the temperature information of the gas supply line 300 from the first temperature sensor 500 after opening the first valve 301 at the time of overpressure in the closed section.
  • the control unit 410 sets the first time before the predetermined valve opening time elapses.
  • One valve 301 may be closed.
  • the second threshold value may be the same value as the predetermined threshold value used in the determination in step S104, or may be a temperature closer to the reference temperature than the predetermined threshold value used in the determination in step S104. .
  • FIG. 3 is a flowchart showing an example of processing executed by the control unit 410 in the present embodiment.
  • the flowchart shown in FIG. 3 is executed, for example, when the control unit 410 determines that the temperature of the closed section is higher than the reference temperature by a predetermined threshold or more, that is, when it is determined Yes in step S104 of FIG. Good. That is, the control unit 410 according to the present embodiment starts the flow illustrated in FIG. 3 when determining Yes in step S104 in FIG.
  • step S104 When the controller 410 determines that the temperature of the closed section is higher than the reference temperature by a predetermined threshold (step S104), the controller 410 opens the first valve 301 (step S201).
  • the control unit 410 starts measuring the time when the first valve 301 is opened (time measurement) based on the time when the first valve 301 is opened (step S202).
  • the control unit 410 acquires temperature information of the closed section from the first temperature sensor 500 (step S203).
  • the control unit 410 determines whether or not the temperature of the closed section becomes a temperature within the second threshold with respect to the reference temperature based on the temperature information of the closed section acquired in step S203 (step S204).
  • step S204 If the controller 410 determines that the temperature of the closed section has become a temperature within the second threshold with respect to the reference temperature (Yes in step S204), the control unit 410 can determine whether the first valve opening time has elapsed. 1 valve 301 is closed (step S205).
  • the control unit 410 closes the time when the first valve 301 is closed (step S206).
  • the control unit 410 updates the reference temperature (step S207) as in step S109 of FIG.
  • the control unit 410 may repeatedly execute the control from step S101 in FIG. 2 based on the updated reference temperature.
  • control unit 410 determines a predetermined time based on the timing information started in Step S202. It is determined whether or not the valve opening time has elapsed (step S208).
  • Step S208 When it is determined that the predetermined valve opening time has elapsed (Yes in Step S208), the control unit 410 proceeds to Step S205 and closes the first valve 301.
  • control unit 410 determines that the predetermined valve opening time has not elapsed (No in step S208)
  • the control unit 410 proceeds to step S203, and acquires the temperature information of the closed section from the first temperature sensor 500.
  • the controller 410 may purge the module 200 with air from the air supply line after closing the first valve 301. Thereby, the gas supplied to the module 200 from the gas supply line 300 by the said control can be diluted with air.
  • the controller 410 determines that the temperature of the closed section is within the second threshold with respect to the reference temperature (Yes in step S204), the overpressure state of the closed section is reduced. Therefore, the first valve 301 can be closed without waiting for a predetermined valve opening time.
  • the control unit 410 opens the first valve 301 at the time of overpressure in the closed section, and then obtains gas flow rate information from the first gas flow meter 306a and the second gas flow meter 306b. get.
  • the control unit 410 controls the closing of the first valve 301 based on the acquired gas flow rate information. For example, when the gas flow rate after the valve opening indicated by either the first gas flow meter 306a or the second gas flow meter 306b is equal to or higher than a predetermined flow rate, the control unit 410 displays the first valve 301 may be closed.
  • the control unit 410 may close the first valve 301 when the total value of the gas flow rates indicated by the first gas flow meter 306a and the second gas flow meter 306b is equal to or higher than a predetermined flow rate.
  • the predetermined flow rate may be set to an appropriate value indicating that the overpressure state in the closed section is reduced and stored in the storage unit 420.
  • FIG. 4 is a flowchart illustrating an example of processing executed by the control unit 410 in the present embodiment.
  • the flowchart shown in FIG. 4 is executed, for example, when the control unit 410 determines that the temperature of the closed section is higher than the reference temperature by a predetermined threshold or more, that is, when it is determined Yes in step S104 of FIG. Good. That is, the control unit 410 according to the present embodiment starts the flow shown in FIG. 4 when determining Yes in step S104 of FIG.
  • step S104 When the controller 410 determines that the temperature of the closed section is higher than the reference temperature by a predetermined threshold (step S104), the controller 410 opens the first valve 301 (step S301).
  • the control unit 410 acquires gas flow rate information from the first gas flow meter 306a and the second gas flow meter 306b (step S302).
  • the control unit 410 determines whether the gas flow rate in the gas supply line 300 is equal to or higher than a predetermined flow rate based on the gas flow rate information acquired in Step S302 (Step S303).
  • control unit 410 determines that the gas flow rate is equal to or higher than the predetermined flow rate (Yes in step S303).
  • the control unit 410 closes the first valve 301 (step S304).
  • the control unit 410 updates the reference temperature in the same manner as in step S109 in FIG. 2 (step S305).
  • the control unit 410 may repeatedly execute the control from step S101 in FIG. 2 based on the updated reference temperature.
  • control unit 410 determines that the gas flow rate is not equal to or higher than the predetermined flow rate (No in step S303)
  • the control unit 410 proceeds to step S302 and acquires the gas flow rate information.
  • the controller 410 may purge the module 200 with air from the air supply line after closing the first valve 301. Thereby, the gas supplied to the module 200 from the gas supply line 300 by the said control can be diluted with air.
  • the control unit 410 reduces the overpressure state in the closed section by supplying the gas to the module 200. Therefore, the first valve 301 can be closed.
  • the control unit 410 opens the first valve 301 at the time of overpressure in the closed section, and then acquires information on the duty ratios of the first gas pump 309a and the second gas pump 309b.
  • the duty ratio indicates the ratio of the signal width in the on state to the pulse signal width indicating the on / off state of each gas pump.
  • the control unit 410 controls the closing of the first valve 301 based on the acquired information regarding the duty ratio. For example, the control unit 410 closes the first valve 301 when the duty ratio of one of the first gas pump 309a and the second gas pump 309b is equal to or greater than a predetermined threshold value.
  • the predetermined threshold value regarding the duty ratio may be stored in the storage unit 420 in advance, for example.
  • the predetermined threshold related to the duty ratio may be set to an appropriate value that allows determination that the overpressure state of the gas supply line 300 has been reduced. That is, when the duty ratio exceeds a predetermined threshold, it indicates that the pressure on the upstream side of the gas pump has become equal to or lower than the predetermined pressure, thereby reducing the overpressure state in the gas supply line 300. Can be estimated.
  • FIG. 5 is a flowchart showing an example of processing executed by the control unit 410 in the present embodiment.
  • the flowchart shown in FIG. 5 is executed, for example, when the control unit 410 determines that the temperature of the closed section is higher than the reference temperature by a predetermined threshold or more, that is, when it is determined Yes in step S104 of FIG. Good. That is, the control unit 410 according to the present embodiment starts the flow illustrated in FIG. 5 when determining Yes in step S104 of FIG.
  • step S104 When the controller 410 determines that the temperature of the closed section is higher than the reference temperature by a predetermined threshold (step S104), the controller 410 opens the first valve 301 (step S401).
  • the control unit 410 acquires information on the duty ratio of the gas pump from the first gas pump 309a and the second gas pump 309b (step S402).
  • the control unit 410 determines whether the duty ratio of one of the first gas pump 309a and the second gas pump 309b is equal to or greater than a predetermined threshold based on the information regarding the duty ratio acquired in step S402 (step S403). ).
  • Step S404 When it is determined that the duty ratio of either the first gas pump 309a or the second gas pump 309b is equal to or greater than a predetermined threshold (Yes in step S403), the control unit 410 closes the first valve 301 ( Step S404).
  • the control unit 410 updates the reference temperature in the same manner as Step S109 in FIG. 2 (Step S405).
  • the control unit 410 may repeatedly execute the control from step S101 in FIG. 2 based on the updated reference temperature.
  • control unit 410 determines that the duty ratio of any of the first gas pump 309a and the second gas pump 309b is not equal to or greater than a predetermined threshold (No in Step S403), the control unit 410 proceeds to Step S402 and performs the duty cycle. Get information about the ratio.
  • control unit 410 can determine that the overpressure state in the closed section of the gas supply line 300 is reduced based on the duty ratio of the gas pump, the control unit 410 can close the first valve 301.
  • control unit 410 has been described as estimating the pressure change in the closed section of the gas supply line 300 based on the temperature change in the closed section.
  • control unit 410 may control the first valve 301 and the second valve 302 based on the pressure value acquired from the pressure sensor that detects the pressure of the gas supply line 300.
  • the gas supply line 300 has been described as having two supply lines, the first supply line 320a and the second supply line 320b. However, the gas supply line 300 may have one or more than three supply lines.
  • the control device 400 included in the power generation device 100 controls the first valve 301 and the second valve 302.
  • the power generation apparatus 100 may include a module 200, a gas supply line 300, a first temperature sensor 500, and a second temperature sensor 600.
  • the first valve 301 and the second valve 302 may be controlled by the control device 400 independent of the power generation device 100.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

A power generation device 100 includes: a power generation unit 200 that generates power using gas; a gas supply line 300 that has a first valve 301 which is capable of stopping supply of gas to the power generation unit 200, and a second valve 302 which is disposed upstream of the first valve 301; and a control unit 410 that forms a closed section by closing the first valve 301 and the second valve 302, and opens the first valve 301 when the closed section is in an overpressured state, whereas opens the second valve 302 when the closed section is in a negative pressure state.

Description

発電装置、制御装置及び制御方法Power generation device, control device, and control method
 本開示は、発電装置、制御装置及び制御方法に関する。 The present disclosure relates to a power generation device, a control device, and a control method.
 従来、発電装置として燃料電池装置が知られている。例えば特許文献1には、電磁弁を備える燃料電池装置が開示されている。 Conventionally, a fuel cell device is known as a power generation device. For example, Patent Document 1 discloses a fuel cell device including an electromagnetic valve.
特開2006-153215号公報JP 2006-153215 A
 一実施形態に係る発電装置は、発電部と、ガス供給ラインと、制御部とを備える。前記発電部は、ガスを用いて発電を行う。前記ガス供給ラインは、前記発電部への前記ガスの供給を停止可能な第1の弁、及び、前記第1の弁よりも上流側に配置される第2の弁を備える。前記制御部は、前記第1の弁及び前記第2の弁を閉弁することにより閉塞区間を形成し、前記閉塞区間が過圧状態である場合に前記第1の弁を開弁し、前記閉塞区間が負圧状態である場合に前記第2の弁を開弁する。 A power generation device according to an embodiment includes a power generation unit, a gas supply line, and a control unit. The power generation unit generates power using gas. The gas supply line includes a first valve capable of stopping the supply of the gas to the power generation unit, and a second valve disposed on the upstream side of the first valve. The control unit forms a closed section by closing the first valve and the second valve, and opens the first valve when the closed section is in an overpressure state. When the closed section is in the negative pressure state, the second valve is opened.
 一実施形態に係る制御装置は、ガスを用いて発電を行う発電部と、前記発電部への前記ガスの供給を停止可能な第1の弁、及び、前記第1の弁よりも上流側に配置される第2の弁を備える、ガス供給ラインと、を備える発電装置を制御可能な制御装置である。前記発電装置は、前記第1の弁及び前記第2の弁を閉弁することにより閉塞区間を形成し、前記閉塞区間が過圧状態である場合に前記第1の弁を開弁し、前記閉塞区間が負圧状態である場合に前記第2の弁を開弁する制御部を備える。 The control device according to an embodiment includes a power generation unit that generates power using gas, a first valve capable of stopping supply of the gas to the power generation unit, and an upstream side of the first valve. It is a control apparatus which can control a power generator provided with a gas supply line provided with the 2nd valve arranged. The power generation device forms a closed section by closing the first valve and the second valve, and opens the first valve when the closed section is in an overpressure state, A control unit is provided that opens the second valve when the closed section is in a negative pressure state.
 一実施形態に係る制御方法は、コンピュータによる、発電装置の制御方法である。前記発電装置は、ガスを用いて発電を行う発電部と、前記発電部への前記ガスの供給を停止可能な第1の弁、及び、前記第1の弁よりも上流側に配置される第2の弁を備える、ガス供給ラインと、を備える。前記制御方法は、前記コンピュータが、前記第1の弁及び前記第2の弁を閉弁することにより閉塞区間を形成し、前記閉塞区間が過圧状態である場合に前記第1の弁を開弁し、前記閉塞区間が負圧状態である場合に前記第2の弁を開弁する。 The control method according to an embodiment is a method for controlling a power generation device using a computer. The power generation device includes a power generation unit that generates power using gas, a first valve capable of stopping supply of the gas to the power generation unit, and a first valve disposed upstream of the first valve. A gas supply line including two valves. In the control method, the computer forms a closed section by closing the first valve and the second valve, and opens the first valve when the closed section is in an overpressure state. When the closed section is in a negative pressure state, the second valve is opened.
図1は、第1実施形態に係る発電装置の概略を示す機能ブロック図である。FIG. 1 is a functional block diagram illustrating an outline of the power generation device according to the first embodiment. 図2は、図1の制御部が実行する処理の一例を示すフローチャートである。FIG. 2 is a flowchart illustrating an example of processing executed by the control unit in FIG. 図3は、第2実施形態に係る発電装置の制御部が実行する処理の一例を示すフローチャートである。FIG. 3 is a flowchart illustrating an example of processing executed by the control unit of the power generation device according to the second embodiment. 図4は、第3実施形態に係る発電装置の制御部が実行する処理の一例を示すフローチャートである。FIG. 4 is a flowchart illustrating an example of processing executed by the control unit of the power generation apparatus according to the third embodiment. 図5は、第4実施形態に係る発電装置の制御部が実行する処理の一例を示すフローチャートである。FIG. 5 is a flowchart illustrating an example of processing executed by the control unit of the power generation device according to the fourth embodiment. 図6は、一変形例に係る発電装置及び制御装置の概略を示す機能ブロック図である。FIG. 6 is a functional block diagram illustrating an outline of a power generation device and a control device according to a modification.
 以下、実施形態について、図面を参照して詳細に説明する。 Hereinafter, embodiments will be described in detail with reference to the drawings.
(第1実施形態)
 図1は、第1実施形態に係る発電装置100の概略を示す機能ブロック図である。図1において、ブロック間を接続する実線は、ガス等の気体が流れる経路を示す。図1において、ブロック間を接続する破線は、制御信号又は通信される情報の経路を示す。
(First embodiment)
FIG. 1 is a functional block diagram illustrating an outline of the power generation device 100 according to the first embodiment. In FIG. 1, a solid line connecting the blocks indicates a path through which a gas such as a gas flows. In FIG. 1, a broken line connecting blocks indicates a control signal or a path of information to be communicated.
 発電装置100は、図1に示すように、モジュール200と、ガス供給ライン300と、制御装置400と、第1の温度センサ500と、第2の温度センサ600とを備える。 As shown in FIG. 1, the power generation device 100 includes a module 200, a gas supply line 300, a control device 400, a first temperature sensor 500, and a second temperature sensor 600.
 モジュール200は、改質器201a及び201b(以下、これらをまとめて「改質器201」と称する)と、セルスタック202a及び202b(以下、これらをまとめて「セルスタック202」と称する)とを備える。モジュール200中の改質器201には、ガス供給ライン300からガス(例えば原燃料ガス)が供給される。モジュール200には、図示しない空気供給ラインから空気が供給される。モジュール200が備えるセルスタック202は、ガスを用いて発電を行う発電部として機能する。すなわち、モジュール200において、セルスタック202は、供給されたガス及び空気等を用いて発電を行い、直流電力を出力する。モジュール200は、例えば固体高分子形燃料電池(PEFC:Polymer Electrolyte Fuel Cell)又は固体酸化物形燃料電池(SOFC:Solid Oxide Fuel Cell)等のような各種の燃料電池等で構成することができる。なお、固体高分子形燃料電池の場合、モジュール200は、改質器を備える容器と、スタックを備える容器とを備えていてよい。 The module 200 includes reformers 201a and 201b (hereinafter collectively referred to as “reformer 201”) and cell stacks 202a and 202b (hereinafter collectively referred to as “cell stack 202”). Prepare. Gas (for example, raw fuel gas) is supplied from the gas supply line 300 to the reformer 201 in the module 200. Air is supplied to the module 200 from an air supply line (not shown). The cell stack 202 included in the module 200 functions as a power generation unit that generates power using gas. That is, in the module 200, the cell stack 202 generates power using the supplied gas, air, and the like, and outputs DC power. The module 200 can be composed of various fuel cells such as a polymer electrolyte fuel cell (PEFC) or a solid oxide fuel cell (SOFC). In the case of a polymer electrolyte fuel cell, the module 200 may include a container including a reformer and a container including a stack.
 ガス供給ライン300は、モジュール200中の改質器201にガスを供給する。つまり、ガス供給ライン300は、改質前のガスを供給するためのラインであってよい。ガス供給ライン300は、ガス配管からガスの供給を受け、脱硫等の処理を行う。ガスは、例えば、都市ガス等のメタンを含む気体であってよい。以下、発電装置100において、ガスの流れに沿って、ガス配管側を「上流側」、モジュール200側を「下流側」と称する。 The gas supply line 300 supplies gas to the reformer 201 in the module 200. That is, the gas supply line 300 may be a line for supplying a gas before reforming. The gas supply line 300 receives a gas supply from a gas pipe and performs a process such as desulfurization. The gas may be, for example, a gas containing methane such as city gas. Hereinafter, in the power generation apparatus 100, the gas piping side is referred to as “upstream side” and the module 200 side is referred to as “downstream side” along the gas flow.
 ガス供給ライン300は、第1の弁301と、第2の弁302とを備える。第1の弁301及び第2の弁302は、それぞれ複数の弁により構成されていてよい。本実施形態では、第1の弁301は、第1のガスライン電磁弁301a及び第2のガスライン電磁弁301bという2つの電磁弁により構成される。本実施形態では、第2の弁302は、第1のガス電磁弁302a及び第2のガス電磁弁302bという2つの電磁弁により構成される。ただし、第1の弁301及び第2の弁302を構成する弁の数は、これに限られず、発電装置100の設計等に応じて適宜の数であってよい。また、第1の弁301及び第2の弁302は、必ずしも電磁弁により構成されていなくてよい。第1の弁301及び第2の弁302は、例えば電動弁等の他の弁により構成されていてよい。 The gas supply line 300 includes a first valve 301 and a second valve 302. Each of the first valve 301 and the second valve 302 may include a plurality of valves. In this embodiment, the 1st valve 301 is comprised by two solenoid valves called the 1st gas line solenoid valve 301a and the 2nd gas line solenoid valve 301b. In this embodiment, the 2nd valve 302 is comprised by two solenoid valves called the 1st gas solenoid valve 302a and the 2nd gas solenoid valve 302b. However, the number of valves constituting the first valve 301 and the second valve 302 is not limited to this, and may be an appropriate number depending on the design of the power generation apparatus 100 or the like. Moreover, the 1st valve 301 and the 2nd valve 302 do not necessarily need to be comprised by the solenoid valve. The 1st valve 301 and the 2nd valve 302 may be constituted by other valves, such as an electric valve, for example.
 第1の弁301は、閉弁状態において、ガス供給ライン300から改質器201へのガスの供給を停止可能である。図1の場合、第1の弁301が閉弁状態において、改質器201にガスが供給されなくなるため、結果として燃料ガスがセルスタック202に対して供給されない。第1の弁301が開弁状態である場合、ガス供給ライン300から改質器201にガスが供給される。 The first valve 301 can stop the gas supply from the gas supply line 300 to the reformer 201 in the closed state. In the case of FIG. 1, since the gas is not supplied to the reformer 201 when the first valve 301 is closed, the fuel gas is not supplied to the cell stack 202 as a result. When the first valve 301 is open, gas is supplied from the gas supply line 300 to the reformer 201.
 第2の弁302は、ガス供給ライン300において、第1の弁301より上流側に配置される。第2の弁302は、閉弁状態において、ガス配管からガス供給ライン300へのガスの供給を停止可能である。第2の弁302が開弁状態である場合、ガス配管からガス供給ライン300にガスが供給される。 The second valve 302 is disposed upstream of the first valve 301 in the gas supply line 300. The second valve 302 can stop the supply of gas from the gas pipe to the gas supply line 300 in the closed state. When the second valve 302 is open, gas is supplied from the gas pipe to the gas supply line 300.
 ガス供給ライン300は、さらに、圧力スイッチ303と、脱硫器304と、ゼロガバナ305とを備えてよい。本実施形態において、圧力スイッチ303と、第1のガス電磁弁302aと、第2のガス電磁弁302bと、脱硫器304と、ゼロガバナ305とは、この順で上流側から下流側に直列に接続される。 The gas supply line 300 may further include a pressure switch 303, a desulfurizer 304, and a zero governor 305. In this embodiment, the pressure switch 303, the first gas solenoid valve 302a, the second gas solenoid valve 302b, the desulfurizer 304, and the zero governor 305 are connected in series from the upstream side to the downstream side in this order. Is done.
 ガス供給ライン300は、さらに、第1のガス流量計306aと、第1のキャピラリ307aと、第1のバッファ308aと、第1のガスポンプ309aとを備える。第1のガス流量計306aと、第1のキャピラリ307aと、第1のバッファ308aと、第1のガスポンプ309aと、第1のガスライン電磁弁301aとは、この順で上流側から下流側に直列に接続される。本明細書において、直列に接続された第1のガス流量計306a、第1のキャピラリ307a、第1のバッファ308a、第1のガスポンプ309a及び第1のガスライン電磁弁301aを、以下、「第1の供給ライン320a」と称する。 The gas supply line 300 further includes a first gas flow meter 306a, a first capillary 307a, a first buffer 308a, and a first gas pump 309a. The first gas flow meter 306a, the first capillary 307a, the first buffer 308a, the first gas pump 309a, and the first gas line solenoid valve 301a are arranged in this order from the upstream side to the downstream side. Connected in series. In this specification, the first gas flow meter 306a, the first capillary 307a, the first buffer 308a, the first gas pump 309a, and the first gas line solenoid valve 301a connected in series are hereinafter referred to as “first 1 supply line 320a ".
 ガス供給ライン300は、さらに、第2のガス流量計306bと、第2のキャピラリ307bと、第2のバッファ308bと、第2のガスポンプ309bとを備える。第2のガス流量計306bと、第2のキャピラリ307bと、第2のバッファ308bと、第2のガスポンプ309bと、第2のガスライン電磁弁301bとは、この順で上流側から下流側に直列に接続される。本明細書において、直列に接続された第2のガス流量計306b、第2のキャピラリ307b、第2のバッファ308b、第2のガスポンプ309b及び第2のガスライン電磁弁301bを、以下、「第2の供給ライン320b」と称する。 The gas supply line 300 further includes a second gas flow meter 306b, a second capillary 307b, a second buffer 308b, and a second gas pump 309b. The second gas flow meter 306b, the second capillary 307b, the second buffer 308b, the second gas pump 309b, and the second gas line solenoid valve 301b are arranged in this order from the upstream side to the downstream side. Connected in series. In this specification, the second gas flow meter 306b, the second capillary 307b, the second buffer 308b, the second gas pump 309b, and the second gas line solenoid valve 301b connected in series are hereinafter referred to as “first gas flow meter 306b”. 2 supply line 320b ".
 第1の供給ライン320aと第2の供給ライン320bとは、ゼロガバナ305の下流側で、並列に接続される。すなわち、ガス供給ライン300の流路は、ゼロガバナ305の下流側において、第1の供給ライン320a及び第2の供給ライン320bに分岐する。ガス供給ライン300は、分岐した2つの供給ライン(第1の供給ライン320a及び第2の供給ライン320b)から、それぞれモジュール200が備える改質器201にガスを供給する。 The first supply line 320a and the second supply line 320b are connected in parallel on the downstream side of the zero governor 305. That is, the flow path of the gas supply line 300 branches to the first supply line 320a and the second supply line 320b on the downstream side of the zero governor 305. The gas supply line 300 supplies gas to the reformer 201 included in the module 200 from two branched supply lines (a first supply line 320a and a second supply line 320b).
 圧力スイッチ303は、ガス供給ライン300に供給されるガスの圧力を検出して、設定された所定の圧力になったときに信号(接点信号)を出力する。 The pressure switch 303 detects the pressure of the gas supplied to the gas supply line 300, and outputs a signal (contact signal) when the set pressure is reached.
 第1のガス電磁弁302a及び第2のガス電磁弁302bは、脱硫器304へのガス供給路の開閉を行う弁である。第1のガス電磁弁302a及び第2のガス電磁弁302bは、セルスタック202により発電が行われている場合は、開かれている。第1のガス電磁弁302a及び第2のガス電磁弁302bは、セルスタック202による発電が行われない場合は、原則として閉じられている。 The first gas solenoid valve 302 a and the second gas solenoid valve 302 b are valves that open and close the gas supply path to the desulfurizer 304. The first gas solenoid valve 302 a and the second gas solenoid valve 302 b are opened when power generation is performed by the cell stack 202. In principle, the first gas solenoid valve 302a and the second gas solenoid valve 302b are closed when power generation by the cell stack 202 is not performed.
 ガス供給ライン300では、第1のガス電磁弁302a及び第2のガス電磁弁302bという2つのガス電磁弁が直列に配置されている。これにより、1つのガス電磁弁が故障してガス供給を止めることができなくなった場合であっても、別のガス電磁弁によりガスの供給を止めることができる。 In the gas supply line 300, two gas solenoid valves, a first gas solenoid valve 302a and a second gas solenoid valve 302b, are arranged in series. Thereby, even if one gas solenoid valve fails and the gas supply cannot be stopped, the gas supply can be stopped by another gas solenoid valve.
 脱硫器304は、ガス供給ライン300に供給されたガスから、硫黄成分を除去する。モジュール200に硫黄成分が流入すると改質器201及びセルスタック202の性能が低下し得るため、脱硫器304は、予め硫黄成分を除去することにより、改質器201及びセルスタック202の性能低下を低減するために設けられる。脱硫器304は、例えば従来知られた水素添加反応脱硫又は常温脱硫等の方式により、脱硫処理を行うことができる。 The desulfurizer 304 removes sulfur components from the gas supplied to the gas supply line 300. When the sulfur component flows into the module 200, the performance of the reformer 201 and the cell stack 202 may deteriorate. Therefore, the desulfurizer 304 removes the sulfur component in advance to reduce the performance of the reformer 201 and the cell stack 202. Provided to reduce. The desulfurizer 304 can perform a desulfurization process by a conventionally known method such as hydrogenation reaction desulfurization or room temperature desulfurization.
 ゼロガバナ305は、下流側に供給されるガスの圧力を調整する。例えば、ゼロガバナ305は、上流側から供給されたガスを、大気圧に調圧して下流側に出力する。ゼロガバナ305で調圧されたガスは、第1の供給ライン320a及び第2の供給ライン320bに供給される。 The zero governor 305 adjusts the pressure of the gas supplied to the downstream side. For example, the zero governor 305 adjusts the gas supplied from the upstream side to atmospheric pressure and outputs it to the downstream side. The gas regulated by the zero governor 305 is supplied to the first supply line 320a and the second supply line 320b.
 第1のガス流量計306a及び第2のガス流量計306bは、それぞれ第1の供給ライン320a及び第2の供給ライン320bに供給されるガスの流量を計測する。第1のガス流量計306a及び第2のガス流量計306bは、例えば一定のサンプリング時間ごとにガス流量を計測してよい。第1のガス流量計306a及び第2のガス流量計306bは、計測したガス流量に関する情報(ガス流量情報)を、有線通信又は無線通信により、制御装置400に送信してよい。 The first gas flow meter 306a and the second gas flow meter 306b measure the flow rate of the gas supplied to the first supply line 320a and the second supply line 320b, respectively. The first gas flow meter 306a and the second gas flow meter 306b may measure the gas flow rate, for example, every certain sampling time. The first gas flow meter 306a and the second gas flow meter 306b may transmit information on the measured gas flow rate (gas flow rate information) to the control device 400 by wired communication or wireless communication.
 第1のキャピラリ307a及び第2のキャピラリ307bは、ガスの下流側への供給量(流量)を調整する。第1のキャピラリ307a及び第2のキャピラリ307bは、例えばそれぞれ毛細管をらせん状に巻回したものであってよい。第1のキャピラリ307a及び第2のキャピラリ307bにより、それぞれ第1のバッファ308a及び第2のバッファ308b内の急激な圧力変化を防止しやすくなる。 The first capillary 307a and the second capillary 307b adjust the supply amount (flow rate) of gas to the downstream side. For example, the first capillary 307a and the second capillary 307b may each be formed by spirally winding a capillary tube. The first capillary 307a and the second capillary 307b make it easy to prevent sudden pressure changes in the first buffer 308a and the second buffer 308b, respectively.
 第1のバッファ308a及び第2のバッファ308bは、ガスを貯留する。第1のバッファ308a及び第2のバッファ308bにより、下流側に供給されるガスの脈動が抑制されうる。 The first buffer 308a and the second buffer 308b store gas. The first buffer 308a and the second buffer 308b can suppress the pulsation of the gas supplied to the downstream side.
 第1のガスポンプ309a及び第2のガスポンプ309bは、ポンプヘッド内部に設けたダイアフラムを搖動させることにより、改質器201を介してセルスタック202に供給されるガス流量の調整を行う。セルスタック202に供給されるガス流量の調整は、例えば制御装置400が、第1のガス流量計306a及び第2のガス流量計306bから取得したガス流量情報に基づいて第1のガスポンプ309a及び第2のガスポンプ309bを制御することにより行われる。 The first gas pump 309a and the second gas pump 309b adjust the flow rate of the gas supplied to the cell stack 202 via the reformer 201 by swinging a diaphragm provided inside the pump head. For example, the control device 400 adjusts the flow rate of the gas supplied to the cell stack 202 based on the gas flow rate information obtained from the first gas flow meter 306a and the second gas flow meter 306b. This is done by controlling the second gas pump 309b.
 第1のガスライン電磁弁301a及び第2のガスライン電磁弁301bは、それぞれ第1の供給ライン320a及び第2の供給ライン320bからセルスタック202へのガス供給路の開閉を行う弁である。第1のガスライン電磁弁301a及び第2のガスライン電磁弁301bは、セルスタック202により発電が行われている場合は、開いている。第1のガスライン電磁弁301a及び第2のガスライン電磁弁301bは、セルスタック202による発電が行われない場合は、原則として閉じている。 The first gas line electromagnetic valve 301a and the second gas line electromagnetic valve 301b are valves that open and close the gas supply path from the first supply line 320a and the second supply line 320b to the cell stack 202, respectively. The first gas line solenoid valve 301 a and the second gas line solenoid valve 301 b are open when power generation is performed by the cell stack 202. In principle, the first gas line solenoid valve 301a and the second gas line solenoid valve 301b are closed when power generation by the cell stack 202 is not performed.
 制御装置400は、セルスタック202により発電が行われている場合、ガス供給ライン300における、セルスタック202へのガスの供給を制御する。制御装置400は、セルスタック202による発電が行われない場合、第1の弁301及び第2の弁302を閉弁する。閉弁により、ガス供給ライン300に閉塞区間が形成される。制御装置400は、ガス供給ライン300内部に形成された閉塞区間の圧力に応じて、第1の弁301及び第2の弁302の開閉を制御する。制御装置400は、制御部410と、記憶部420とを備える。 The control device 400 controls the supply of gas to the cell stack 202 in the gas supply line 300 when power generation is performed by the cell stack 202. When power generation by the cell stack 202 is not performed, the control device 400 closes the first valve 301 and the second valve 302. By closing the valve, a closed section is formed in the gas supply line 300. The control device 400 controls the opening and closing of the first valve 301 and the second valve 302 according to the pressure in the closed section formed inside the gas supply line 300. The control device 400 includes a control unit 410 and a storage unit 420.
 制御部410は、制御装置400の各機能部をはじめとして制御装置400の全体を制御及び管理する。制御部410は、制御手順を規定したプログラムを実行するCPU(Central Processing Unit)等のプロセッサで構成されていてよい。このようなプログラムは、例えば、制御装置400が備える記憶部420又は制御装置400から独立した外部の記憶媒体に格納される。 The control unit 410 controls and manages the entire control device 400 including each functional unit of the control device 400. The control unit 410 may be configured by a processor such as a CPU (Central Processing Unit) that executes a program that defines a control procedure. Such a program is stored in, for example, the storage unit 420 included in the control device 400 or an external storage medium independent of the control device 400.
 制御装置400は、以下にさらに詳細に述べられるように、種々の機能を実行するための制御及び処理能力を提供するために、制御部410として少なくとも1つのプロセッサを含む。種々の実施形態によれば、少なくとも1つのプロセッサは、単一の集積回路(IC)として、又は複数の通信可能に接続された集積回路IC及び/又はディスクリート回路(discrete circuits)として実行されてよい。少なくとも1つのプロセッサは、種々の既知の技術に従って実行されることが可能である。 The controller 400 includes at least one processor as the controller 410 to provide control and processing capabilities to perform various functions, as will be described in further detail below. According to various embodiments, the at least one processor may be implemented as a single integrated circuit (IC) or as a plurality of communicatively connected integrated circuits ICs and / or discrete circuits. . The at least one processor can be implemented according to various known techniques.
 ある実施形態において、プロセッサは、1以上のデータ計算手続又は処理を実行するために構成された1以上の回路又はユニットを含む。例えば、プロセッサは、1以上のプロセッサ、コントローラ、マイクロプロセッサ、マイクロコントローラ、特定用途向け集積回路(ASIC)、デジタル信号処理装置、プログラマブルロジックデバイス、フィールドプログラマブルゲートアレイ、又はこれらのデバイス若しくは構成の任意の組み合わせ、又は他の既知のデバイス及び構成の組み合わせを含み、以下に説明される機能を実行してよい。 In some embodiments, the processor includes one or more circuits or units configured to perform one or more data computation procedures or processes. For example, a processor may be one or more processors, controllers, microprocessors, microcontrollers, application specific integrated circuits (ASICs), digital signal processors, programmable logic devices, field programmable gate arrays, or any of these devices or configurations The functions described below may be performed including combinations, or combinations of other known devices and configurations.
 制御部410は、第1の弁301及び第2の弁302の開閉を制御する。制御部410は、例えば、セルスタック202による発電が行われない場合、第1の弁301及び第2の弁302を閉弁する。制御部410による第1の弁301及び第2の弁302に関するその他の開閉制御の詳細については、後述する。 The control unit 410 controls opening and closing of the first valve 301 and the second valve 302. For example, when power generation by the cell stack 202 is not performed, the control unit 410 closes the first valve 301 and the second valve 302. The details of other opening / closing control relating to the first valve 301 and the second valve 302 by the control unit 410 will be described later.
 記憶部420は、半導体メモリ又は磁気メモリ等で構成されることができる。記憶部420は、各種情報及び/又は制御装置400を動作させるためのプログラム等を記憶する。記憶部420は、ワークメモリとして機能してよい。記憶部420は、例えば第1の温度センサ500及び/又は第2の温度センサ600により取得された温度情報を記憶してよい。 The storage unit 420 can be configured by a semiconductor memory or a magnetic memory. The storage unit 420 stores various information and / or a program for operating the control device 400. The storage unit 420 may function as a work memory. The storage unit 420 may store temperature information acquired by the first temperature sensor 500 and / or the second temperature sensor 600, for example.
 第1の温度センサ500及び第2の温度センサ600は、それぞれ例えば熱電対、サーミスタ、バイメタル等の周知の温度センサにより構成されてよい。第1の温度センサ500は、ガス供給ライン300の温度を測定する。第2の温度センサ600は、改質器201の出口温度を測定する。出口温度は、改質器201からセルスタック202へ燃料ガスを出すための改質器201における出口の温度である。なお、第2の温度センサ600が、改質器201の出口温度を測定しているが、本開示はこれに限定されない。例えば、ガス供給ライン300に第2の温度センサ600が位置していてよい。例えば、ガス供給ライン300のうちセルスタック202にガスが供給された箇所に第2の温度センサ600が位置してよい。第1の温度センサ500及び第2の温度センサ600は、測定した温度情報を制御部410に出力する。 The first temperature sensor 500 and the second temperature sensor 600 may each be constituted by a known temperature sensor such as a thermocouple, thermistor, bimetal, or the like. The first temperature sensor 500 measures the temperature of the gas supply line 300. The second temperature sensor 600 measures the outlet temperature of the reformer 201. The outlet temperature is the temperature of the outlet in the reformer 201 for discharging the fuel gas from the reformer 201 to the cell stack 202. Note that although the second temperature sensor 600 measures the outlet temperature of the reformer 201, the present disclosure is not limited to this. For example, the second temperature sensor 600 may be located in the gas supply line 300. For example, the second temperature sensor 600 may be located at a location where gas is supplied to the cell stack 202 in the gas supply line 300. The first temperature sensor 500 and the second temperature sensor 600 output the measured temperature information to the control unit 410.
 次に、制御部410による、第1の弁301及び第2の弁302の開閉制御の詳細について説明する。 Next, details of the opening / closing control of the first valve 301 and the second valve 302 by the control unit 410 will be described.
 セルスタック202により発電が行われている場合、制御部410は、第1の弁301及び第2の弁302を、開弁状態に制御する。これにより、ガスがガス配管からガス供給ライン300を経由してセルスタック202に供給される。 When power generation is performed by the cell stack 202, the control unit 410 controls the first valve 301 and the second valve 302 to be in the valve open state. Thereby, gas is supplied to the cell stack 202 from the gas pipe via the gas supply line 300.
 例えば、セルスタック202による発電を停止させなければならない又は停止させたい等の事情が発生する場合がある。この場合、セルスタック202による発電が停止される。 For example, there may be a situation where power generation by the cell stack 202 must be stopped or stopped. In this case, power generation by the cell stack 202 is stopped.
 セルスタック202による発電が停止され、発電が行われない場合、制御部410は、第1の弁301及び第2の弁302を、閉弁状態に制御する。これにより、ガス配管からガス供給ライン300へのガスの供給が停止されるとともに、ガス供給ライン300からセルスタック202へのガスの供給が停止される。また、ガスの逆流が防止される。この場合、第1の弁301及び第2の弁302が閉弁されることによって、ガス供給ライン300に閉塞区間が形成される。すなわち、第1の弁301と第2の弁302との間で、ガスが密閉される。 When power generation by the cell stack 202 is stopped and power generation is not performed, the control unit 410 controls the first valve 301 and the second valve 302 to be closed. Thereby, the supply of gas from the gas pipe to the gas supply line 300 is stopped, and the supply of gas from the gas supply line 300 to the cell stack 202 is stopped. Moreover, the backflow of gas is prevented. In this case, a closed section is formed in the gas supply line 300 by closing the first valve 301 and the second valve 302. That is, the gas is sealed between the first valve 301 and the second valve 302.
 ここで、ガス供給ライン300に閉塞区間が形成されている間に、例えば環境温度(外気温度という)の変化等に起因する温度変化等によって、閉塞区間内のガスの圧力が変化する場合がある。例えば、閉塞区間が形成された後、閉塞区間の温度が上昇すると、閉塞区間内のガスが膨張し、圧力が増加する。反対に、例えば、閉塞区間が形成された後、閉塞区間内の温度が下降すると、閉塞区間内のガスが収縮し、圧力が減少する。閉塞区間内の圧力変化が大きくなると、ガス供給ライン300の各構成機器が圧力変化の影響を受ける場合がある。制御部410は、閉塞区間内の圧力変化が所定以上となった場合に、当該圧力変化を低減するように、第1の弁301又は第2の弁302の開閉制御を行う。 Here, while the closed section is formed in the gas supply line 300, the gas pressure in the closed section may change due to, for example, a temperature change caused by a change in the environmental temperature (referred to as the outside air temperature). . For example, when the temperature of the closed section rises after the closed section is formed, the gas in the closed section expands and the pressure increases. On the other hand, for example, when the temperature in the closed section decreases after the closed section is formed, the gas in the closed section contracts and the pressure decreases. When the pressure change in the closed section increases, each component device of the gas supply line 300 may be affected by the pressure change. The control unit 410 performs opening / closing control of the first valve 301 or the second valve 302 so as to reduce the pressure change when the pressure change in the closed section becomes equal to or greater than a predetermined value.
 本実施形態において、制御部410は、ガス供給ライン300の閉塞区間の圧力変化を、当該閉塞区間の温度変化に基づいて推定する。すなわち、制御部410は、第1の温度センサ500から取得した温度情報に基づき、閉塞区間の圧力変化を推定する。 In the present embodiment, the control unit 410 estimates the pressure change in the closed section of the gas supply line 300 based on the temperature change in the closed section. That is, the control unit 410 estimates the pressure change in the closed section based on the temperature information acquired from the first temperature sensor 500.
 制御部410は、例えば、閉塞区間を形成したとき(つまり第1の弁301及び第2の弁302を閉弁したとき)の温度を、記憶部420に記憶させる。本明細書において、閉塞区間を形成したときの温度を、以下「基準温度」と称する。 For example, the control unit 410 causes the storage unit 420 to store the temperature when the closed section is formed (that is, when the first valve 301 and the second valve 302 are closed). In the present specification, the temperature when the closed section is formed is hereinafter referred to as “reference temperature”.
 制御部410は、基準温度を取得した後、定期的に若しくは不定期的に、又は継続的に、第1の温度センサ500から温度情報を取得する。制御部410は、第1の温度センサ500により取得される閉塞区間の温度と、基準温度とを比較する。制御部410は、例えば、第1の温度センサ500により取得される閉塞区間の温度と、基準温度との差が、予め定められた所定の閾値以上となったときに、電磁弁を開く制御(開弁)を行う。所定の閾値は、例えばガス供給ライン300の設計等に応じて適宜定められてよい。所定の閾値は、例えば40℃であってよいが、これに限られない。 After acquiring the reference temperature, the control unit 410 acquires temperature information from the first temperature sensor 500 regularly, irregularly, or continuously. The controller 410 compares the temperature of the closed section acquired by the first temperature sensor 500 with the reference temperature. For example, the controller 410 opens the solenoid valve when the difference between the temperature of the closed section acquired by the first temperature sensor 500 and the reference temperature is equal to or higher than a predetermined threshold value ( Open the valve. The predetermined threshold may be appropriately determined according to the design of the gas supply line 300, for example. The predetermined threshold may be 40 ° C., for example, but is not limited thereto.
 例えば、第1の温度センサ500により取得される閉塞区間の温度が、基準温度より所定の閾値以上高くなった場合、閉塞区間内の圧力が所定以上増加している。この場合、制御部410は、第1の弁301(つまり、第1のガスライン電磁弁301a及び第2のガスライン電磁弁301b)を開く制御を行う。第1の弁301が開弁されると、圧力が高くなっていたガス供給ライン300から、モジュール200側に、ガスが流れる。これにより、ガス供給ライン300における過圧状態(又は高圧状態)が低減される。 For example, when the temperature in the closed section acquired by the first temperature sensor 500 is higher than the reference temperature by a predetermined threshold value or more, the pressure in the closed section is increased by a predetermined value or more. In this case, the control unit 410 performs control to open the first valve 301 (that is, the first gas line electromagnetic valve 301a and the second gas line electromagnetic valve 301b). When the first valve 301 is opened, gas flows from the gas supply line 300 whose pressure has been increased to the module 200 side. Thereby, the overpressure state (or high pressure state) in the gas supply line 300 is reduced.
 反対に、第1の温度センサ500により取得される閉塞区間の温度が、基準温度より所定の閾値以上低くなった場合、閉塞区間内の圧力が所定以上減少している。この場合、制御部410は、第2の弁302(つまり、第1のガス電磁弁302a及び第2のガス電磁弁302b)を開く制御を行う。第2の弁302が開弁されると、ガス配管から、圧力が低くなっていたガス供給ライン300側に、ガスが流れる。これにより、ガス供給ライン300における負圧状態(又は低圧状態)が低減される。 On the contrary, when the temperature of the closed section acquired by the first temperature sensor 500 is lower than the reference temperature by a predetermined threshold value or more, the pressure in the closed section is decreased by a predetermined value or more. In this case, the control unit 410 performs control to open the second valve 302 (that is, the first gas electromagnetic valve 302a and the second gas electromagnetic valve 302b). When the second valve 302 is opened, gas flows from the gas pipe to the gas supply line 300 side where the pressure is low. Thereby, the negative pressure state (or low pressure state) in the gas supply line 300 is reduced.
 制御部410は、上述のようにして電磁弁を開ける制御を行った後、所定の開弁時間経過後に、開けた電磁弁を閉じる制御(閉弁)を行う。所定の開弁時間は、例えばガス供給ライン300の設計等に応じて適宜定められてよい。所定の開弁時間は、例えば過圧状態又は負圧状態が低減可能な長さの時間に定められていてよい。所定の開弁時間は、例えば電磁弁ごとに異なっていてよい。つまり、電磁弁が開弁されてから閉鎖されるまでの時間は、第1のガス電磁弁302aと、第2のガス電磁弁302bと、第1のガスライン電磁弁301aと、第2のガスライン電磁弁301bとで、それぞれ異なっていてよい。 The control unit 410 performs control for closing the opened electromagnetic valve (valve closing) after elapse of a predetermined valve opening time after performing control for opening the electromagnetic valve as described above. The predetermined valve opening time may be appropriately determined according to the design of the gas supply line 300, for example. For example, the predetermined valve opening time may be set to a length of time during which the overpressure state or the negative pressure state can be reduced. The predetermined valve opening time may be different for each electromagnetic valve, for example. That is, the time from when the solenoid valve is opened to when it is closed is the first gas solenoid valve 302a, the second gas solenoid valve 302b, the first gas line solenoid valve 301a, and the second gas. The line solenoid valve 301b may be different from each other.
 本実施形態においては、例えば、第1の弁301に対する所定の開弁時間は、1秒であってよい。この場合、制御部410は、閉塞区間の過圧時に、第1の弁301を開弁した後、1秒後に第1の弁301を閉弁する制御を行う。 In the present embodiment, for example, the predetermined valve opening time for the first valve 301 may be 1 second. In this case, the control unit 410 performs control to close the first valve 301 one second after opening the first valve 301 at the time of overpressure in the closed section.
 本実施形態においては、例えば、第2の弁302に対する所定の開弁時間は、5秒であってよい。この場合、制御部410は、閉塞区間の負圧時に、第2の弁302を開弁した後、5秒後に第2の弁302を閉弁する制御を行う。 In the present embodiment, for example, the predetermined valve opening time for the second valve 302 may be 5 seconds. In this case, the control unit 410 performs control to close the second valve 302 after 5 seconds after opening the second valve 302 at the negative pressure in the closed section.
 本実施形態では、上述のように、負圧時における開弁時間(5秒)の方が、過圧時における開弁時間(1秒)より長くなるように設定されている。負圧時には、第2の弁302が開弁されて、ガス配管からガス供給ライン300にガスが流入することにより負圧状態が低減される。しかしながら、ガス供給ライン300が備えるゼロガバナ305の機能により、上流側から流入したガスの圧力がゼロガバナ305で調整される。そのため、ガスはゼロガバナ305から下流側に流れにくい。これにより、過圧時に第1の弁301を開弁して過圧状態を低減する場合と比較して、負圧時に第2の弁302を開弁して負圧状態を低減する場合の方が、ガス供給ライン300内のガスの圧力が均一になるまでに時間を要する。そのため、本実施形態のように、負圧時における開弁時間の方が、過圧時における開弁時間より長くなるように設定されていてよい。 In this embodiment, as described above, the valve opening time at the time of negative pressure (5 seconds) is set to be longer than the valve opening time at the time of overpressure (1 second). At the time of negative pressure, the second valve 302 is opened, and the negative pressure state is reduced by the gas flowing into the gas supply line 300 from the gas pipe. However, the pressure of the gas flowing in from the upstream side is adjusted by the zero governor 305 by the function of the zero governor 305 provided in the gas supply line 300. For this reason, the gas is unlikely to flow downstream from the zero governor 305. As a result, when the first valve 301 is opened at the time of overpressure to reduce the overpressure state, the second valve 302 is opened at the time of negative pressure to reduce the negative pressure state. However, it takes time for the gas pressure in the gas supply line 300 to become uniform. Therefore, as in the present embodiment, the valve opening time during negative pressure may be set to be longer than the valve opening time during overpressure.
 制御部410は、閉塞区間が過圧状態であると判断した場合、さらに、改質器201の出口温度に関する情報を取得し、出口温度に基づいて、第1の弁301を開弁するか否かを決定してよい。制御部410は、例えば、閉塞区間が過圧状態であると判断した場合であって、さらに、第2の温度センサ600から取得した出口温度が所定の温度閾値以下である場合に、第1の弁301を開弁してよい。制御部410は、例えば、閉塞区間が過圧状態であると判断した場合であっても、出口温度が所定の温度閾値より高い場合に、第1の弁301を開弁しないと決定してよい。 When determining that the closed section is in an overpressure state, the control unit 410 further acquires information on the outlet temperature of the reformer 201 and determines whether or not to open the first valve 301 based on the outlet temperature. You may decide. For example, when the controller 410 determines that the closed section is in an overpressure state and the outlet temperature acquired from the second temperature sensor 600 is equal to or lower than a predetermined temperature threshold, The valve 301 may be opened. For example, the controller 410 may determine that the first valve 301 is not opened when the outlet temperature is higher than a predetermined temperature threshold even when the closed section is determined to be in an overpressure state. .
 出口温度が所定の温度閾値より高い場合にガスが改質器201に供給されると、改質器201においてガスが反応し、熱が発生する。しかしながら、発電停止中に、改質器201に水が供給されていない場合、改質器201内で水枯れが生じるおそれがある。水枯れが発生すると、改質器201内において炭素析出が発生して、改質器201内のセル及び触媒等が破損する場合がある。制御部410は、出口温度が所定の温度閾値より高い場合に、第1の弁301を開弁しないことにより、モジュール200内のセル及び触媒等の破損を防止できる。所定の温度閾値は、例えば発電装置100の設計等に応じて適宜定められてよい。 When gas is supplied to the reformer 201 when the outlet temperature is higher than a predetermined temperature threshold, the gas reacts in the reformer 201 and heat is generated. However, if water is not supplied to the reformer 201 while power generation is stopped, there is a risk that water will dry out in the reformer 201. When water withering occurs, carbon deposition may occur in the reformer 201, and the cells, catalyst, and the like in the reformer 201 may be damaged. When the outlet temperature is higher than a predetermined temperature threshold, the control unit 410 can prevent the cells, the catalyst, and the like in the module 200 from being damaged by not opening the first valve 301. The predetermined temperature threshold may be appropriately determined according to, for example, the design of the power generation apparatus 100.
 図2は、制御部410が実行する処理の一例を示すフローチャートである。図2に示すフローチャートは、例えばセルスタック202による発電が停止されて、第1の弁301及び第2の弁302が閉鎖された場合に実行されてよい。 FIG. 2 is a flowchart showing an example of processing executed by the control unit 410. The flowchart shown in FIG. 2 may be executed when, for example, power generation by the cell stack 202 is stopped and the first valve 301 and the second valve 302 are closed.
 制御部410は、第1の弁301及び第2の弁302が閉鎖されると、第1の温度センサ500から基準温度を取得し、取得した基準温度を記憶部420に記憶する(ステップS101)。 When the first valve 301 and the second valve 302 are closed, the control unit 410 acquires a reference temperature from the first temperature sensor 500, and stores the acquired reference temperature in the storage unit 420 (step S101). .
 その後、制御部410は、閉塞区間の温度情報を、第1の温度センサ500から取得する(ステップS102)。制御部410は、定期的に若しくは不定期的に、又は継続的に温度情報を取得する。 Thereafter, the control unit 410 acquires temperature information of the closed section from the first temperature sensor 500 (step S102). The control unit 410 acquires temperature information regularly, irregularly, or continuously.
 制御部410は、基準温度と、ステップS102で取得した閉塞区間の温度とを比較する(ステップS103)。 The control unit 410 compares the reference temperature with the temperature of the closed section acquired in step S102 (step S103).
 制御部410は、ステップS102で取得した閉塞区間の温度が、基準温度より、所定の閾値以上高いか否かを判断する(ステップS104)。 The control unit 410 determines whether or not the temperature of the closed section acquired in step S102 is higher than the reference temperature by a predetermined threshold or more (step S104).
 制御部410は、閉塞区間の温度が基準温度より所定の閾値以上高いと判断した場合(ステップS104のYes)、第2の温度センサ600から、改質器201の出口温度の情報を取得する(ステップS105)。 When the controller 410 determines that the temperature of the closed section is higher than the reference temperature by a predetermined threshold or more (Yes in step S104), the controller 410 acquires information on the outlet temperature of the reformer 201 from the second temperature sensor 600 ( Step S105).
 制御部410は、ステップS105で取得した出口温度が、所定の温度閾値以下であるか否かを判断する(ステップS106)。 The control unit 410 determines whether or not the outlet temperature acquired in step S105 is equal to or lower than a predetermined temperature threshold (step S106).
 制御部410は、出口温度が所定の温度閾値以下であると判断した場合(ステップS106のYes)、第1の弁301を開弁する制御を行う(ステップS107)。 When the controller 410 determines that the outlet temperature is equal to or lower than the predetermined temperature threshold (Yes in Step S106), the controller 410 performs control to open the first valve 301 (Step S107).
 制御部410は、ステップS107から所定の開弁時間(本実施形態では5秒)経過後に、第1の弁301を閉弁する制御を行う(ステップS108)。 The control unit 410 performs control to close the first valve 301 after a predetermined valve opening time (in this embodiment, 5 seconds) has elapsed from step S107 (step S108).
 制御部410は、第1の温度センサ500から温度を取得し、取得した温度を新たな基準温度として設定することにより、基準温度を更新する(ステップS109)。すなわち、制御部410は、ステップS108で閉弁した際における、閉塞区間の温度を取得することにより、当該温度を、新たな基準温度として記憶部420に記憶させる。制御部410は、この新たな基準温度に基づき、図2に示すフローのステップS102以降の制御を繰り返して実行してよい。このようにして、閉弁後に閉塞区間の圧力が変化した場合に、再び過圧状態又は負圧状態を低減することができる。 The control unit 410 acquires the temperature from the first temperature sensor 500, and updates the reference temperature by setting the acquired temperature as a new reference temperature (step S109). That is, the control unit 410 acquires the temperature of the closed section when the valve is closed in step S108, and stores the temperature in the storage unit 420 as a new reference temperature. Based on the new reference temperature, the controller 410 may repeatedly execute the control after step S102 in the flow shown in FIG. In this way, when the pressure in the closed section changes after the valve is closed, the overpressure state or the negative pressure state can be reduced again.
 制御部410は、ステップS106において、出口温度が所定の温度閾値より高いと判断した場合(ステップS106のNo)、電磁弁の開弁を行うことなく、このフローを終了する。 When the controller 410 determines in step S106 that the outlet temperature is higher than the predetermined temperature threshold (No in step S106), the control unit 410 ends this flow without opening the solenoid valve.
 制御部410は、ステップS104において、閉塞区間の温度が基準温度より所定の閾値以上高くなっていないと判断した場合(ステップS104のNo)、つまり、閉塞区間の温度が基準温度に対して所定の閾値以内に収まっている場合、閉塞区間の温度が基準温度より所定の閾値以上低いか否かを判断する(ステップS110)。 When the controller 410 determines in step S104 that the temperature of the closed section is not higher than the reference temperature by a predetermined threshold or more (No in step S104), that is, the temperature of the closed section is predetermined with respect to the reference temperature. If it is within the threshold, it is determined whether or not the temperature of the closed section is lower than the reference temperature by a predetermined threshold or more (step S110).
 制御部410は、閉塞区間の温度が基準温度より所定の閾値以上低いと判断した場合(ステップS110のYes)、第2の弁302を開弁する制御を行う(ステップS111)。 When the controller 410 determines that the temperature of the closed section is lower than the reference temperature by a predetermined threshold or more (Yes in Step S110), the controller 410 performs control to open the second valve 302 (Step S111).
 制御部410は、ステップS111から所定の開弁時間(本実施形態では1秒)経過後に、第2の弁302を閉弁する制御を行う(ステップS112)。 The control unit 410 performs control to close the second valve 302 after a predetermined valve opening time (1 second in the present embodiment) has elapsed from step S111 (step S112).
 制御部410は、第1の温度センサ500から温度を取得し、取得した温度を新たな基準温度として設定することにより、基準温度を更新する(ステップS109)。ステップS109の詳細は、上述した通りである。 The control unit 410 acquires the temperature from the first temperature sensor 500, and updates the reference temperature by setting the acquired temperature as a new reference temperature (step S109). The details of step S109 are as described above.
 制御部410は、ステップS110において、閉塞区間の温度が基準温度より所定の閾値以上低くないと判断した場合(ステップS110のNo)、つまり、閉塞区間の温度が基準温度に対して所定の閾値以内に収まっている場合、電磁弁の開弁を行うことなく、このフローを終了する。この場合、制御部410は、図2に示すフローのステップS102以降の制御を繰り返して実行してよい。 When the controller 410 determines in step S110 that the temperature of the closed section is not lower than the reference temperature by a predetermined threshold (No in step S110), that is, the temperature of the closed section is within the predetermined threshold with respect to the reference temperature. If it is within the range, this flow is terminated without opening the solenoid valve. In this case, the control unit 410 may repeatedly execute the control after step S102 in the flow shown in FIG.
 このように、本実施形態に係る発電装置100によれば、制御部410は、閉塞区間が過圧状態である場合に第1の弁301を開弁し、閉塞区間が負圧状態である場合に第2の弁302を開弁する制御を行う。このようにして、制御部410は、閉塞区間における過圧状態又は負圧状態を低減することができる。これにより、発電装置100によれば、閉塞区間の形成後における、閉塞区間内の圧力変化に対応可能である。 Thus, according to the power generation device 100 according to the present embodiment, the control unit 410 opens the first valve 301 when the closed section is in an overpressure state, and the closed section is in a negative pressure state. The second valve 302 is controlled to open. In this way, the control unit 410 can reduce the overpressure state or the negative pressure state in the closed section. Thereby, according to the electric power generating apparatus 100, it can respond to the pressure change in the obstruction | occlusion area after formation of the obstruction | occlusion area.
(第2実施形態)
 発電装置100の制御部410により実行される制御は、第1実施形態で説明したものに限られない。発電装置100の制御部410が実行する他の制御の一例について、第2実施形態として説明する。第2実施形態において、発電装置100が備える各機能部の構成については、第1実施形態と同様であるため、ここでは詳細な説明を省略する。
(Second Embodiment)
The control executed by the control unit 410 of the power generation apparatus 100 is not limited to that described in the first embodiment. An example of other control executed by the control unit 410 of the power generation apparatus 100 will be described as a second embodiment. In 2nd Embodiment, since it is the same as that of 1st Embodiment about the structure of each function part with which the electric power generating apparatus 100 is provided, detailed description is abbreviate | omitted here.
 第2実施形態において、制御部410は、閉塞区間の過圧時に、第1の弁301を開弁した後、第1の温度センサ500からガス供給ライン300の温度情報を取得する。制御部410は、閉塞区間の温度が、基準温度に対して、所定の閾値(以下、「第2閾値」という)以内の温度となった場合に、所定の開弁時間が経過する前に第1の弁301を閉弁してよい。ここで、第2閾値は、ステップS104での判断に使用される所定の閾値と同じ値であってよく、ステップS104での判断に使用される所定の閾値より基準温度に近い温度であってよい。 In the second embodiment, the controller 410 acquires the temperature information of the gas supply line 300 from the first temperature sensor 500 after opening the first valve 301 at the time of overpressure in the closed section. When the temperature of the closed section becomes a temperature within a predetermined threshold (hereinafter referred to as “second threshold”) with respect to the reference temperature, the control unit 410 sets the first time before the predetermined valve opening time elapses. One valve 301 may be closed. Here, the second threshold value may be the same value as the predetermined threshold value used in the determination in step S104, or may be a temperature closer to the reference temperature than the predetermined threshold value used in the determination in step S104. .
 図3は、本実施形態における制御部410が実行する処理の一例を示すフローチャートである。図3に示すフローチャートは、例えば、制御部410が、閉塞区間の温度が基準温度より所定の閾値以上高いと判断した場合、つまり図2のステップS104においてYesと判断された場合に、実行されてよい。すなわち、本実施形態における制御部410は、図2のステップS104においてYesと判断した場合に、図3に示すフローを開始する。 FIG. 3 is a flowchart showing an example of processing executed by the control unit 410 in the present embodiment. The flowchart shown in FIG. 3 is executed, for example, when the control unit 410 determines that the temperature of the closed section is higher than the reference temperature by a predetermined threshold or more, that is, when it is determined Yes in step S104 of FIG. Good. That is, the control unit 410 according to the present embodiment starts the flow illustrated in FIG. 3 when determining Yes in step S104 in FIG.
 制御部410は、閉塞区間の温度が基準温度より所定の閾値以上高いと判断すると(ステップS104)、第1の弁301を開弁する(ステップS201)。 When the controller 410 determines that the temperature of the closed section is higher than the reference temperature by a predetermined threshold (step S104), the controller 410 opens the first valve 301 (step S201).
 制御部410は、第1の弁301を開弁した時間を基準に、開弁した状態の時間の計測(計時)を開始する(ステップS202)。 The control unit 410 starts measuring the time when the first valve 301 is opened (time measurement) based on the time when the first valve 301 is opened (step S202).
 制御部410は、閉塞区間の温度情報を、第1の温度センサ500から取得する(ステップS203)。 The control unit 410 acquires temperature information of the closed section from the first temperature sensor 500 (step S203).
 制御部410は、ステップS203で取得した閉塞区間の温度情報に基づき、閉塞区間の温度が、基準温度に対して第2閾値以内の温度となったか否かを判断する(ステップS204)。 The control unit 410 determines whether or not the temperature of the closed section becomes a temperature within the second threshold with respect to the reference temperature based on the temperature information of the closed section acquired in step S203 (step S204).
 制御部410は、閉塞区間の温度が、基準温度に対して第2閾値以内の温度となったと判断した場合(ステップS204のYes)、所定の開弁時間が経過する前であっても、第1の弁301を閉弁する(ステップS205)。 If the controller 410 determines that the temperature of the closed section has become a temperature within the second threshold with respect to the reference temperature (Yes in step S204), the control unit 410 can determine whether the first valve opening time has elapsed. 1 valve 301 is closed (step S205).
 制御部410は、第1の弁301を閉弁すると、計時を終了する(ステップS206)。 The control unit 410 closes the time when the first valve 301 is closed (step S206).
 制御部410は、図2のステップS109と同様に、基準温度を更新する(ステップS207)。制御部410は、更新した基準温度に基づいて、図2のステップS101から制御を繰り返して実行してよい。 The control unit 410 updates the reference temperature (step S207) as in step S109 of FIG. The control unit 410 may repeatedly execute the control from step S101 in FIG. 2 based on the updated reference temperature.
 制御部410は、閉塞区間の温度が、基準温度に対して第2閾値以内の温度となっていないと判断した場合(ステップS204のNo)、ステップS202で開始した計時の情報に基づき、所定の開弁時間が経過したか否かを判断する(ステップS208)。 When it is determined that the temperature of the closed section is not within the second threshold with respect to the reference temperature (No in Step S204), the control unit 410 determines a predetermined time based on the timing information started in Step S202. It is determined whether or not the valve opening time has elapsed (step S208).
 制御部410は、所定の開弁時間が経過したと判断した場合(ステップS208のYes)、ステップS205に移行して、第1の弁301を閉弁する。 When it is determined that the predetermined valve opening time has elapsed (Yes in Step S208), the control unit 410 proceeds to Step S205 and closes the first valve 301.
 制御部410は、所定の開弁時間が経過していないと判断した場合(ステップS208のNo)、ステップS203に移行して、閉塞区間の温度情報を、第1の温度センサ500から取得する。 When the control unit 410 determines that the predetermined valve opening time has not elapsed (No in step S208), the control unit 410 proceeds to step S203, and acquires the temperature information of the closed section from the first temperature sensor 500.
 制御部410は、第1の弁301を閉弁した後、空気供給ラインから空気をモジュール200にパージしてよい。これにより、上記制御によってガス供給ライン300からモジュール200に供給されたガスを、空気で希釈することができる。 The controller 410 may purge the module 200 with air from the air supply line after closing the first valve 301. Thereby, the gas supplied to the module 200 from the gas supply line 300 by the said control can be diluted with air.
 このように、制御部410は、閉塞区間の温度が、基準温度に対して第2閾値以内の温度となったと判断した場合(ステップS204のYes)、閉塞区間の過圧状態が低減されていると判断できるため、所定の開弁時間を待たずに第1の弁301を閉弁できる。 As described above, when the controller 410 determines that the temperature of the closed section is within the second threshold with respect to the reference temperature (Yes in step S204), the overpressure state of the closed section is reduced. Therefore, the first valve 301 can be closed without waiting for a predetermined valve opening time.
(第3実施形態)
 発電装置100の制御部410が実行するさらに他の制御の一例について、第3実施形態として説明する。第3実施形態において、発電装置100が備える各機能部の構成については、第1実施形態と同様であるため、ここでは詳細な説明を省略する。
(Third embodiment)
An example of still another control executed by the control unit 410 of the power generation apparatus 100 will be described as a third embodiment. In 3rd Embodiment, since it is the same as that of 1st Embodiment about the structure of each function part with which the electric power generating apparatus 100 is provided, detailed description is abbreviate | omitted here.
 第3実施形態において、制御部410は、閉塞区間の過圧時に、第1の弁301を開弁した後、第1のガス流量計306a及び第2のガス流量計306bから、ガス流量情報を取得する。制御部410は、取得したガス流量情報に基づいて、第1の弁301の閉弁を制御する。例えば、制御部410は、第1のガス流量計306a及び第2のガス流量計306bのいずれかが示す、開弁後のガス流量が、所定の流量以上となった場合に、第1の弁301を閉弁してよい。制御部410は、第1のガス流量計306a及び第2のガス流量計306bが示すガス流量の合計値が、所定の流量以上となった場合に、第1の弁301を閉弁してよい。所定の流量は、閉塞区間の過圧状態が低減されたことを示す適宜の値に設定され、記憶部420に記憶されていてよい。 In the third embodiment, the control unit 410 opens the first valve 301 at the time of overpressure in the closed section, and then obtains gas flow rate information from the first gas flow meter 306a and the second gas flow meter 306b. get. The control unit 410 controls the closing of the first valve 301 based on the acquired gas flow rate information. For example, when the gas flow rate after the valve opening indicated by either the first gas flow meter 306a or the second gas flow meter 306b is equal to or higher than a predetermined flow rate, the control unit 410 displays the first valve 301 may be closed. The control unit 410 may close the first valve 301 when the total value of the gas flow rates indicated by the first gas flow meter 306a and the second gas flow meter 306b is equal to or higher than a predetermined flow rate. . The predetermined flow rate may be set to an appropriate value indicating that the overpressure state in the closed section is reduced and stored in the storage unit 420.
 図4は、本実施形態における制御部410が実行する処理の一例を示すフローチャートである。図4に示すフローチャートは、例えば、制御部410が、閉塞区間の温度が基準温度より所定の閾値以上高いと判断した場合、つまり図2のステップS104においてYesと判断された場合に、実行されてよい。すなわち、本実施形態における制御部410は、図2のステップS104においてYesと判断した場合に、図4に示すフローを開始する。 FIG. 4 is a flowchart illustrating an example of processing executed by the control unit 410 in the present embodiment. The flowchart shown in FIG. 4 is executed, for example, when the control unit 410 determines that the temperature of the closed section is higher than the reference temperature by a predetermined threshold or more, that is, when it is determined Yes in step S104 of FIG. Good. That is, the control unit 410 according to the present embodiment starts the flow shown in FIG. 4 when determining Yes in step S104 of FIG.
 制御部410は、閉塞区間の温度が基準温度より所定の閾値以上高いと判断すると(ステップS104)、第1の弁301を開弁する(ステップS301)。 When the controller 410 determines that the temperature of the closed section is higher than the reference temperature by a predetermined threshold (step S104), the controller 410 opens the first valve 301 (step S301).
 制御部410は、第1のガス流量計306a及び第2のガス流量計306bから、ガス流量情報を取得する(ステップS302)。 The control unit 410 acquires gas flow rate information from the first gas flow meter 306a and the second gas flow meter 306b (step S302).
 制御部410は、ステップS302で取得したガス流量情報に基づき、ガス供給ライン300におけるガス流量が、所定の流量以上となったか否かを判断する(ステップS303)。 The control unit 410 determines whether the gas flow rate in the gas supply line 300 is equal to or higher than a predetermined flow rate based on the gas flow rate information acquired in Step S302 (Step S303).
 制御部410は、ガス流量が所定の流量以上となったと判断した場合(ステップS303のYes)、第1の弁301を閉弁する(ステップS304)。 When the control unit 410 determines that the gas flow rate is equal to or higher than the predetermined flow rate (Yes in step S303), the control unit 410 closes the first valve 301 (step S304).
 制御部410は、図2のステップS109と同様に、基準温度を更新する(ステップS305)。制御部410は、更新した基準温度に基づいて、図2のステップS101から制御を繰り返して実行してよい。 The control unit 410 updates the reference temperature in the same manner as in step S109 in FIG. 2 (step S305). The control unit 410 may repeatedly execute the control from step S101 in FIG. 2 based on the updated reference temperature.
 制御部410は、ガス流量が所定の流量以上となっていないと判断した場合(ステップS303のNo)、ステップS302に移行して、ガス流量情報を取得する。 When the control unit 410 determines that the gas flow rate is not equal to or higher than the predetermined flow rate (No in step S303), the control unit 410 proceeds to step S302 and acquires the gas flow rate information.
 制御部410は、第1の弁301を閉弁した後、空気供給ラインから空気をモジュール200にパージしてよい。これにより、上記制御によってガス供給ライン300からモジュール200に供給されたガスを、空気で希釈することができる。 The controller 410 may purge the module 200 with air from the air supply line after closing the first valve 301. Thereby, the gas supplied to the module 200 from the gas supply line 300 by the said control can be diluted with air.
 このように、制御部410は、ガス供給ライン300のガス流量が所定の流量以上となった場合(ステップS303のYes)、モジュール200へのガスの供給により閉塞区間の過圧状態が低減されていると判断できるため、第1の弁301を閉弁できる。 As described above, when the gas flow rate in the gas supply line 300 becomes equal to or higher than the predetermined flow rate (Yes in Step S303), the control unit 410 reduces the overpressure state in the closed section by supplying the gas to the module 200. Therefore, the first valve 301 can be closed.
(第4実施形態)
 発電装置100の制御部410が実行するさらに他の制御の一例について、第4実施形態として説明する。第4実施形態において、発電装置100が備える各機能部の構成については、第1実施形態と同様であるため、ここでは詳細な説明を省略する。
(Fourth embodiment)
Another example of control executed by the control unit 410 of the power generation apparatus 100 will be described as a fourth embodiment. In 4th Embodiment, since it is the same as that of 1st Embodiment about the structure of each function part with which the electric power generating apparatus 100 is provided, detailed description is abbreviate | omitted here.
 第4実施形態において、制御部410は、閉塞区間の過圧時に、第1の弁301を開弁した後、第1のガスポンプ309a及び第2のガスポンプ309bのデューティ比に関する情報を取得する。ここで、デューティ比は、各ガスポンプのオン/オフ状態を示すパルス信号幅に対する、オン状態の信号幅の割合を示す。制御部410は、取得したデューティ比に関する情報に基づいて、第1の弁301の閉弁を制御する。例えば、制御部410は、第1のガスポンプ309a及び第2のガスポンプ309bのいずれかのデューティ比が所定の閾値以上となった場合に、第1の弁301を閉弁する。デューティ比に関する所定の閾値は、例えば予め記憶部420に記憶されていてよい。 In the fourth embodiment, the control unit 410 opens the first valve 301 at the time of overpressure in the closed section, and then acquires information on the duty ratios of the first gas pump 309a and the second gas pump 309b. Here, the duty ratio indicates the ratio of the signal width in the on state to the pulse signal width indicating the on / off state of each gas pump. The control unit 410 controls the closing of the first valve 301 based on the acquired information regarding the duty ratio. For example, the control unit 410 closes the first valve 301 when the duty ratio of one of the first gas pump 309a and the second gas pump 309b is equal to or greater than a predetermined threshold value. The predetermined threshold value regarding the duty ratio may be stored in the storage unit 420 in advance, for example.
 デューティ比に関する所定の閾値は、ガス供給ライン300の過圧状態が低減されたと判断可能な適宜の値に定められていてよい。すなわち、デューティ比が所定の閾値を超えた場合には、ガスポンプの上流側の圧力が所定の圧力以下となったことを示し、これにより、ガス供給ライン300内の過圧状態が低減されたことが推定できる。 The predetermined threshold related to the duty ratio may be set to an appropriate value that allows determination that the overpressure state of the gas supply line 300 has been reduced. That is, when the duty ratio exceeds a predetermined threshold, it indicates that the pressure on the upstream side of the gas pump has become equal to or lower than the predetermined pressure, thereby reducing the overpressure state in the gas supply line 300. Can be estimated.
 図5は、本実施形態における制御部410が実行する処理の一例を示すフローチャートである。図5に示すフローチャートは、例えば、制御部410が、閉塞区間の温度が基準温度より所定の閾値以上高いと判断した場合、つまり図2のステップS104においてYesと判断された場合に、実行されてよい。すなわち、本実施形態における制御部410は、図2のステップS104においてYesと判断した場合に、図5に示すフローを開始する。 FIG. 5 is a flowchart showing an example of processing executed by the control unit 410 in the present embodiment. The flowchart shown in FIG. 5 is executed, for example, when the control unit 410 determines that the temperature of the closed section is higher than the reference temperature by a predetermined threshold or more, that is, when it is determined Yes in step S104 of FIG. Good. That is, the control unit 410 according to the present embodiment starts the flow illustrated in FIG. 5 when determining Yes in step S104 of FIG.
 制御部410は、閉塞区間の温度が基準温度より所定の閾値以上高いと判断すると(ステップS104)、第1の弁301を開弁する(ステップS401)。 When the controller 410 determines that the temperature of the closed section is higher than the reference temperature by a predetermined threshold (step S104), the controller 410 opens the first valve 301 (step S401).
 制御部410は、第1のガスポンプ309a及び第2のガスポンプ309bから、ガスポンプのデューティ比に関する情報を取得する(ステップS402)。 The control unit 410 acquires information on the duty ratio of the gas pump from the first gas pump 309a and the second gas pump 309b (step S402).
 制御部410は、ステップS402で取得したデューティ比に関する情報に基づき、第1のガスポンプ309a及び第2のガスポンプ309bのいずれかのデューティ比が所定の閾値以上となったか否かを判断する(ステップS403)。 The control unit 410 determines whether the duty ratio of one of the first gas pump 309a and the second gas pump 309b is equal to or greater than a predetermined threshold based on the information regarding the duty ratio acquired in step S402 (step S403). ).
 制御部410は、第1のガスポンプ309a及び第2のガスポンプ309bのいずれかのデューティ比が所定の閾値以上となったと判断した場合(ステップS403のYes)、第1の弁301を閉弁する(ステップS404)。 When it is determined that the duty ratio of either the first gas pump 309a or the second gas pump 309b is equal to or greater than a predetermined threshold (Yes in step S403), the control unit 410 closes the first valve 301 ( Step S404).
 制御部410は、図2のステップS109と同様に、基準温度を更新する(ステップS405)。制御部410は、更新した基準温度に基づいて、図2のステップS101から制御を繰り返して実行してよい。 The control unit 410 updates the reference temperature in the same manner as Step S109 in FIG. 2 (Step S405). The control unit 410 may repeatedly execute the control from step S101 in FIG. 2 based on the updated reference temperature.
 制御部410は、第1のガスポンプ309a及び第2のガスポンプ309bのいずれかのデューティ比が所定の閾値以上となっていないと判断した場合(ステップS403のNo)、ステップS402に移行して、デューティ比に関する情報を取得する。 When the control unit 410 determines that the duty ratio of any of the first gas pump 309a and the second gas pump 309b is not equal to or greater than a predetermined threshold (No in Step S403), the control unit 410 proceeds to Step S402 and performs the duty cycle. Get information about the ratio.
 このように、制御部410は、ガスポンプのデューティ比に基づいて、ガス供給ライン300の閉塞区間の過圧状態が低減されていると判断できるため、第1の弁301を閉弁できる。 Thus, since the control unit 410 can determine that the overpressure state in the closed section of the gas supply line 300 is reduced based on the duty ratio of the gas pump, the control unit 410 can close the first valve 301.
 本開示を完全かつ明瞭に開示するために一実施形態に関し説明してきた。しかし、添付の請求項は、上記実施形態に限定されるべきものでなく、本明細書に示した基礎的事項の範囲内で当該技術分野の当業者が創作しうるすべての変形例及び代替可能な構成を具現化するように構成されるべきである。また、いくつかの実施形態に示した各要件は、自由に組み合わせが可能である。 In order to fully and clearly disclose the present disclosure, an embodiment has been described. However, the appended claims should not be limited to the above-described embodiments, but all modifications and alternatives that can be created by those skilled in the art within the scope of the basic matters shown in this specification. Should be configured to embody such a configuration. Each requirement shown in some embodiments can be freely combined.
 例えば、上記実施形態において、制御部410は、ガス供給ライン300の閉塞区間の圧力変化を、当該閉塞区間の温度変化に基づいて推定すると説明した。しかしながら、制御部410は、ガス供給ライン300の圧力を検出する圧力センサから取得される圧力の値に基づいて、第1の弁301及び第2の弁302の制御を行ってよい。 For example, in the above embodiment, the control unit 410 has been described as estimating the pressure change in the closed section of the gas supply line 300 based on the temperature change in the closed section. However, the control unit 410 may control the first valve 301 and the second valve 302 based on the pressure value acquired from the pressure sensor that detects the pressure of the gas supply line 300.
 上記実施形態では、ガス供給ライン300が、第1の供給ライン320a及び第2の供給ライン320bという2つの供給ラインを有すると説明した。しかしながら、ガス供給ライン300は、1つ又は3つ以上の供給ラインを有していてよい。 In the above embodiment, the gas supply line 300 has been described as having two supply lines, the first supply line 320a and the second supply line 320b. However, the gas supply line 300 may have one or more than three supply lines.
 上記実施形態では、発電装置100に含まれる制御装置400が第1の弁301及び第2の弁302を制御すると説明した。しかしながら、例えば図6に変形例として示すように、発電装置100は、モジュール200と、ガス供給ライン300と、第1の温度センサ500と、第2の温度センサ600とにより構成されていてよい。この場合、発電装置100とは独立した制御装置400により、第1の弁301及び第2の弁302の制御が行われてよい。 In the above embodiment, it has been described that the control device 400 included in the power generation device 100 controls the first valve 301 and the second valve 302. However, for example, as shown as a modification in FIG. 6, the power generation apparatus 100 may include a module 200, a gas supply line 300, a first temperature sensor 500, and a second temperature sensor 600. In this case, the first valve 301 and the second valve 302 may be controlled by the control device 400 independent of the power generation device 100.
 100 発電装置
 200 モジュール
 201a、201b 改質器
 202a、202b セルスタック
 300 ガス供給ライン
 301 第1の弁
 301a 第1のガスライン電磁弁
 301b 第2のガスライン電磁弁
 302 第2の弁
 302a 第1のガス電磁弁
 302b 第2のガス電磁弁
 303 圧力スイッチ
 304 脱硫器
 305 ゼロガバナ
 306a 第1のガス流量計
 306b 第2のガス流量計
 307a 第1のキャピラリ
 307b 第2のキャピラリ
 308a 第1のバッファ
 308b 第2のバッファ
 309a 第1のガスポンプ
 309b 第2のガスポンプ
 320a 第1の供給ライン
 320b 第2の供給ライン
 400 制御装置
 410 制御部
 420 記憶部
 500 第1の温度センサ
 600 第2の温度センサ
DESCRIPTION OF SYMBOLS 100 Power generator 200 Module 201a, 201b Reformer 202a, 202b Cell stack 300 Gas supply line 301 1st valve 301a 1st gas line solenoid valve 301b 2nd gas line solenoid valve 302 2nd valve 302a 1st Gas solenoid valve 302b Second gas solenoid valve 303 Pressure switch 304 Desulfurizer 305 Zero governor 306a First gas flow meter 306b Second gas flow meter 307a First capillary 307b Second capillary 308a First buffer 308b Second Buffer 309a first gas pump 309b second gas pump 320a first supply line 320b second supply line 400 controller 410 controller 420 storage unit 500 first temperature sensor 600 second temperature sensor

Claims (7)

  1.  ガスを用いて発電を行う発電部と、
     前記発電部への前記ガスの供給を停止可能な第1の弁、及び、前記第1の弁よりも上流側に配置される第2の弁を備える、ガス供給ラインと、
     前記第1の弁及び前記第2の弁を閉弁することにより閉塞区間を形成し、前記閉塞区間が過圧状態である場合に前記第1の弁を開弁し、前記閉塞区間が負圧状態である場合に前記第2の弁を開弁する、制御部と、
    を備える、発電装置。
    A power generation unit that generates power using gas;
    A gas supply line comprising: a first valve capable of stopping supply of the gas to the power generation unit; and a second valve disposed upstream of the first valve;
    A closed section is formed by closing the first valve and the second valve. When the closed section is in an overpressure state, the first valve is opened, and the closed section is a negative pressure. A controller that opens the second valve when in a state; and
    A power generation device.
  2.  前記ガス供給ラインと前記発電部との間に改質器をさらに備え、
     前記制御部は、前記閉塞区間が過圧状態であり、且つ、前記改質器の出口温度が所定の温度閾値以下である場合に、前記第1の弁を開弁する、請求項1に記載の発電装置。
    Further comprising a reformer between the gas supply line and the power generation unit,
    The said control part opens the said 1st valve, when the said obstruction | occlusion area is an overpressure state, and the exit temperature of the said reformer is below a predetermined temperature threshold value. Power generator.
  3.  前記制御部は、前記閉塞区間の温度に基づいて、前記閉塞区間の過圧状態及び負圧状態を判断する、請求項1に記載の発電装置。 The power generation device according to claim 1, wherein the control unit determines an overpressure state and a negative pressure state of the closed section based on a temperature of the closed section.
  4.  前記ガス供給ラインは、前記第1の弁と前記第2の弁との間に、脱硫器をさらに備える、請求項1乃至請求項3のいずれか一項に記載の発電装置。 The power generation apparatus according to any one of claims 1 to 3, wherein the gas supply line further includes a desulfurizer between the first valve and the second valve.
  5.  前記ガス供給ラインは、前記第1の弁と前記脱硫器との間に、ゼロガバナをさらに備え、
     前記制御部は、前記第1の弁の開弁時間が前記第2の弁の開弁時間よりも、長くなるように、開弁の制御を行う、請求項4に記載の発電装置。
    The gas supply line further includes a zero governor between the first valve and the desulfurizer.
    The power generation device according to claim 4, wherein the control unit controls the valve opening so that a valve opening time of the first valve is longer than a valve opening time of the second valve.
  6.  ガスを用いて発電を行う発電部と、前記発電部への前記ガスの供給を停止可能な第1の弁、及び、前記第1の弁よりも上流側に配置される第2の弁を備える、ガス供給ラインと、を備える発電装置を制御可能な制御装置であって、
     前記第1の弁及び前記第2の弁を閉弁することにより閉塞区間を形成し、前記閉塞区間が過圧状態である場合に前記第1の弁を開弁し、前記閉塞区間が負圧状態である場合に前記第2の弁を開弁する制御部を備える、制御装置。
    A power generation unit that generates power using gas, a first valve that can stop supply of the gas to the power generation unit, and a second valve that is disposed upstream of the first valve A control device capable of controlling a power generation device comprising a gas supply line,
    A closed section is formed by closing the first valve and the second valve. When the closed section is in an overpressure state, the first valve is opened, and the closed section is a negative pressure. A control device comprising a control unit that opens the second valve when in a state.
  7.  ガスを用いて発電を行う発電部と、前記発電部への前記ガスの供給を停止可能な第1の弁、及び、前記第1の弁よりも上流側に配置される第2の弁を備える、ガス供給ラインと、を備える発電装置の、コンピュータによる制御方法であって、
     前記コンピュータが、
      前記第1の弁及び前記第2の弁を閉弁することにより閉塞区間を形成し、
      前記閉塞区間が過圧状態である場合に前記第1の弁を開弁し、
      前記閉塞区間が負圧状態である場合に前記第2の弁を開弁する、制御方法。
    A power generation unit that generates power using gas, a first valve that can stop supply of the gas to the power generation unit, and a second valve that is disposed upstream of the first valve A computer-controlled method of a power generation device comprising a gas supply line,
    The computer is
    A closed section is formed by closing the first valve and the second valve;
    Opening the first valve when the closed section is in an overpressure state;
    A control method of opening the second valve when the closed section is in a negative pressure state.
PCT/JP2018/017318 2018-04-27 2018-04-27 Power generation device, control device, and control method WO2019207797A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/017318 WO2019207797A1 (en) 2018-04-27 2018-04-27 Power generation device, control device, and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/017318 WO2019207797A1 (en) 2018-04-27 2018-04-27 Power generation device, control device, and control method

Publications (1)

Publication Number Publication Date
WO2019207797A1 true WO2019207797A1 (en) 2019-10-31

Family

ID=68295144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017318 WO2019207797A1 (en) 2018-04-27 2018-04-27 Power generation device, control device, and control method

Country Status (1)

Country Link
WO (1) WO2019207797A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005044653A (en) * 2003-07-23 2005-02-17 Matsushita Electric Ind Co Ltd Fuel cell system and operation method of fuel cell system
JP2013114850A (en) * 2011-11-28 2013-06-10 Aisin Seiki Co Ltd Fuel cell system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005044653A (en) * 2003-07-23 2005-02-17 Matsushita Electric Ind Co Ltd Fuel cell system and operation method of fuel cell system
JP2013114850A (en) * 2011-11-28 2013-06-10 Aisin Seiki Co Ltd Fuel cell system

Similar Documents

Publication Publication Date Title
US9768631B2 (en) Power supply system and voltage control method for fuel cell
KR101646417B1 (en) Fuel cell system and control method thereof
US20080008921A1 (en) Fuel Cell System and Fuel Gas Control Method
JP2007052936A (en) Fuel cell system
JP2002313377A (en) Conductivity controlling device of fuel cell system
JP2007052937A (en) Fuel cell system and its operation method
CN103107347A (en) Method to generate H2-exhaust sensor test pulse using electrically controlled pressure regulator
US20120070753A1 (en) Fuel cell system and control system for same
JP2008004432A (en) Fuel cell system
KR20200064685A (en) Apparatus for controlling cooling system of power plant
JP2007220625A (en) Fuel cell system
JP7038301B2 (en) Fuel cell system and how to operate the fuel cell system
WO2019207797A1 (en) Power generation device, control device, and control method
JP6784628B2 (en) Power generation equipment, control equipment and control method
JP2008269910A (en) Fuel cell system, and method for exhausting impurity in fuel cell system
JP6238816B2 (en) Control method of fuel cell system and fuel cell system
KR101575519B1 (en) Control system and method for emergency operating according to the fail of intercooler for fuel cell
JP2019009050A (en) Power generation device, control device and control method
CN114388850A (en) Efficient fuel cell purging system and control method thereof
JP2006164685A (en) Fuel cell system
WO2012132260A1 (en) Fuel cell system and method for operating same
JP2007220527A (en) Fuel cell system
US10811704B2 (en) Fuel cell system with valve control for discharging anode off gas, and method of operating the same
JP2016110967A (en) Fuel cell system
EP2693552B1 (en) Fuel cell system and operation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18916779

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18916779

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP