WO2019207718A1 - State monitoring device and adjustment method for asynchronous data - Google Patents

State monitoring device and adjustment method for asynchronous data Download PDF

Info

Publication number
WO2019207718A1
WO2019207718A1 PCT/JP2018/017026 JP2018017026W WO2019207718A1 WO 2019207718 A1 WO2019207718 A1 WO 2019207718A1 JP 2018017026 W JP2018017026 W JP 2018017026W WO 2019207718 A1 WO2019207718 A1 WO 2019207718A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveform data
measurement
measurement points
waveform
data
Prior art date
Application number
PCT/JP2018/017026
Other languages
French (fr)
Japanese (ja)
Inventor
正敬 桐原
直聡 坂本
佐々木 和也
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201880092622.8A priority Critical patent/CN112005180B/en
Priority to PCT/JP2018/017026 priority patent/WO2019207718A1/en
Priority to JP2020515394A priority patent/JP6861893B2/en
Publication of WO2019207718A1 publication Critical patent/WO2019207718A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring

Definitions

  • the present invention relates to a state monitoring device that monitors the state of a device using data (asynchronous data) that does not have time information from a measuring device, and a method for adjusting asynchronous data to be applicable to state monitoring.
  • the current waveform during production equipment operation is acquired a predetermined number of times in advance, and the upper and lower thresholds are set for each measurement point that makes up the waveform using statistical methods.
  • a method for detecting an abnormality in a production facility is known (see, for example, Patent Document 1).
  • the above method requires time information for each measurement point when generating waveform data.
  • many general-purpose measuring devices do not respond to time information.
  • general-purpose measuring devices do not perform data measurement in synchronization with a data collection device that performs state monitoring, and a host device that performs data collection does not necessarily collect data at a fixed period.
  • the present invention has been made to solve the above-described problems, and is collected from a state monitoring device that can accurately detect an abnormality even with a general-purpose measurement device or a general-purpose measurement device.
  • An object of the present invention is to obtain an asynchronous data adjustment method for adjusting asynchronous data so that state monitoring is possible.
  • the state monitoring device of the present invention is a state monitoring device that monitors the state of a device that is assumed to operate with a constant operation for each cycle by threshold judgment for each measurement value constituting waveform data for one cycle. Then, from a measuring device that does not respond to time information, a measurement value collection unit that collects measurement values indicating the state of the device, and the measurement values collected by the measurement value collection unit are arranged in chronological order, and one cycle of the device
  • a reference waveform data storage unit that stores reference waveform data including the number of reference measurement points, and a raw waveform data generated by the waveform processing unit is adjusted and output for comparison with the reference waveform data
  • a waveform data adjustment unit that compares the waveform data output from the waveform data adjustment unit with the reference waveform data and determines whether or not there is
  • the adjustment unit deletes the measurement points set according to a predetermined reference among the measurement points or measurement points of the raw waveform data, or between the measurement points.
  • the raw waveform data is adjusted so as to coincide with the reference number of measurement points by adding measurement points to.
  • the asynchronous data adjustment method of the present invention is assumed to operate with a constant operation for each cycle using waveform data in which asynchronous measurement values output from a measuring device that does not respond to time information are arranged in time series.
  • a method of adjusting waveform data for use in monitoring the status of a device, a measurement value collecting step for collecting a measurement value indicating the state of the device from the measurement device, and a measurement collected in the measurement value collection step A waveform forming step for arranging values in chronological order to generate waveform data for one cycle of the apparatus, a reference waveform that is waveform data for one cycle when the apparatus is normal, and a measured value of the reference waveform
  • a reference waveform data storage step for storing reference waveform data including a threshold value of the reference waveform and a reference measurement point number determined as the number of measurement points of the reference waveform; and A waveform data adjustment step for adjusting and outputting the generated raw waveform data for comparison with the reference waveform data, and comparing the waveform data output in the waveform data adjustment step with
  • An abnormality presence / absence determination step for determining whether or not there is a measurement point and in the waveform data adjustment step, if the number of measurement points of the raw waveform data does not match the reference number of measurement points, the measurement point of the raw waveform data or The raw waveform data is adjusted so as to coincide with the reference number of measurement points by deleting measurement points set according to a predetermined reference or adding measurement points between the measurement points. .
  • the state monitoring apparatus or the asynchronous data adjustment method of the present invention even if the number of data points varies, the number of data can be adjusted appropriately, so that it is accurate using a general-purpose measuring instrument that does not respond to time information. State monitoring can be performed.
  • 4 is a flowchart for explaining operations of collecting measurement data and generating raw waveform data in the state monitoring apparatus and the asynchronous data adjustment method according to the first exemplary embodiment of the present invention
  • 5 is a flowchart for explaining an operation of processing raw waveform data and generating reference waveform data serving as a criterion for determining whether there is an abnormality in the state monitoring apparatus and the asynchronous data adjustment method according to the first exemplary embodiment of the present invention. is there.
  • the state monitoring apparatus and asynchronous data adjustment method is a waveform diagram for explaining processing of measurement points with respect to waveform data with one or more measurement points. It is a figure for demonstrating the process which adds and inserts a measurement point in the state monitoring apparatus and the adjustment method of asynchronous data concerning Embodiment 1 of this invention. It is a figure for demonstrating the process which deletes a measurement point in the state monitoring apparatus and asynchronous data adjustment method concerning Embodiment 1 of this invention.
  • FIG. 1 In the state monitoring apparatus and asynchronous data adjustment method according to the first exemplary embodiment of the present invention, it is a waveform diagram for explaining processing of measurement points with respect to waveform data having two measurement points in excess or deficiency. 4 is a flowchart for explaining an operation of processing raw waveform data to determine whether there is an abnormality in the state monitoring apparatus and the asynchronous data adjustment method according to the first exemplary embodiment of the present invention.
  • FIG. 6 is a flowchart for explaining an operation of specifying a data deletion part or an addition part for waveform data having excessive or insufficient measurement points in the state monitoring apparatus and the asynchronous data adjustment method according to the second exemplary embodiment of the present invention. is there.
  • the state monitoring apparatus and asynchronous data adjustment method according to the second exemplary embodiment of the present invention it is a waveform diagram for explaining the processing of measurement points for waveform data with excessive or insufficient measurement points.
  • FIG. FIGS. 1 to 12 are diagrams for explaining the configuration and operation of the state monitoring apparatus according to the first embodiment of the present invention, or a method for adjusting asynchronous data.
  • FIG. 1 is a functional block showing the structure of the state monitoring apparatus.
  • FIG. 2 and FIG. 2 show, as an explanation of problems to be solved in each embodiment of the present invention, the acquisition time point of data transmitted by a measuring device not having a synchronization function and the request for data to be collected by the state monitoring device
  • FIG. 3 is a timing chart for explaining the deviation from the time point, and FIG. 3 explains the deviation between the time point when the production facility outputs the facility operation information indicating its own operation state and the time point when the state monitoring device confirms the facility operation state.
  • timing chart for. 4 (a) to 4 (e) show a method for setting a reference waveform and upper and lower limit values for each measurement point from a plurality of collected waveform data as an explanation of reference waveform data for waveform band monitoring. It is a wave form diagram for demonstrating.
  • FIG. 5 is a flowchart for explaining the operation of collecting measurement data and generating raw waveform data in the state monitoring apparatus and the asynchronous data adjustment method
  • FIG. 6 is a process for determining whether there is an abnormality by processing the raw waveform data.
  • FIGS. 7A to 7C are flowcharts for explaining an operation for generating reference waveform data as a reference
  • FIGS. 7A to 7C are measurements that do not have a synchronization function for the number of measurement points of data to be collected by the state monitoring device.
  • FIGS. 8A and 8B are diagrams showing examples of waveform data acquired when there is an excess or deficiency in the number of measurement points of data transmitted from the device.
  • FIG. 9B are diagrams for explaining backward shift processing of measurement points when additional measurement points are inserted, and FIG. 9A and FIG. 9B are waveform diagrams for explaining measurement point addition and deletion processing with respect to certain waveform data; 10 (a) and 10 (b) It is a diagram for explaining a forward shift processing of the measurement point for deleting the measurement points.
  • FIGS. 11A and 11B are diagrams showing examples of waveform data acquired when there are two or more measurement points of data collected from a measurement device that does not have a synchronization function.
  • 12 (a) and 12 (b) are waveform diagrams for explaining measurement point addition and deletion processing with respect to waveform data having two excesses or shortages in the number of measurement points.
  • FIG. 13 is a flowchart for explaining the operation of processing raw waveform data to determine the presence or absence of an abnormality.
  • the state monitoring apparatus 1 is an apparatus (production facility 2) that is assumed to operate at a constant cycle / operation, such as an MC processing machine or a press machine, for example. It is for monitoring the state of Based on data from the measuring device 3 that communicates and outputs measurement values for detecting the equipment state such as current, pressure, and temperature supplied to the production equipment 2 without time information, the state of the production equipment 2 is determined. It is something to monitor. Specifically, the monitoring waveform data measured for each operation cycle of the production facility 2 is compared with the reference waveform data set in advance for each measurement point, and whether or not the upper and lower limit values are deviated for each measurement point. Thus, the state of the production facility 2 is monitored by determining the presence or absence of abnormality.
  • the reference waveform data refers to a combination of data of each measurement point forming a reference waveform (reference waveform Wa) and an upper limit value Thu and a lower limit value Thl provided for each measurement point. Further, a range in which the reference waveform Wa is given a width by the upper limit value Thu and the lower limit value Thl is referred to as a waveform band T (see FIG. 4), and whether the acquired monitoring waveform data deviates from the waveform band T. Determining whether or not there is an abnormality based on whether or not monitoring is referred to as waveform band monitoring.
  • the state monitoring apparatus 1 for waveform band monitoring includes a transmission / reception unit 16 that transmits and receives data such as measurement values for generating reference waveform data and monitoring waveform data, and a reference waveform by communication with the measurement device 3.
  • a reference waveform data generation unit 10 that generates data
  • a reference waveform data storage unit 11 that stores the generated reference waveform data
  • a waveform data (raw waveform data Wr) for each cycle by sequentially arranging the acquired data in time series.
  • the waveform processing unit 14 to be generated, the reference waveform data stored in the reference waveform data storage unit, and the waveform data for monitoring are compared to determine whether there is an abnormality in the production equipment 2 to be monitored.
  • an operation unit 17 that performs input / output operations
  • a display unit 18 that outputs the operating status of the production facility 2 and the occurrence of an abnormality
  • a signal from the production facility 2 With determining the second operational state, and a state monitoring control unit 12 for integrated control of the units described above.
  • the feature of the state monitoring apparatus 1 according to each embodiment of the present invention is that it is suitable for reference waveform data and monitoring waveform data by adjusting the number of measurement points of waveform data with excess or deficiency in measurement points described later.
  • the measurement point adjustment unit 13 for correcting the shape is provided.
  • the cause of excess or deficiency of measurement points explain.
  • the state monitoring device arranges the data acquired from the measuring device in time series, and generates waveform data that plots the measured values on the XY plane, such as measured value (Y axis) and measured point order (X axis). To do. If one cycle of waveform data is acquired from the start to the stop for a production facility that operates at a fixed period and operation, there is no change in the operating time, so ideally the waveform with the same number of measurement points can be acquired.
  • the measurement device updates the measurement value at a device-specific cycle, and the state monitoring device similarly requests data from the measurement device at the device-specific cycle.
  • a general-purpose measuring device is used, there is no means for synchronizing the measurement value update of the measuring device and the timing at which the state monitoring device requests data, and the acquired data is asynchronous data.
  • the waveform data generated by the state monitoring device acquiring the measurement values in chronological order does not coincide with the measurement sampling period. For example, as shown in FIG. As will occur, a deviation occurs between the actual measurement points and the collected measurement points. In other words, as long as general-purpose measuring equipment that cannot associate time information with measured values is used, even if a production facility operates at a fixed period and operation, the waveform data for one cycle from the start to the stop of each operation In addition, there may be a slight excess or deficiency (variation) in the number of measurement points.
  • the ON / OFF switching timing of the actual operating state in the production facility and the delay time required for the state monitoring device to detect the ON / OFF state of the production facility are also considered as factors of variation in the number of measurement points. For example, as shown in FIG. 3, the time until the state monitoring device requests a signal indicating the operating state from the production facility and detects the ON / OFF at the timing when the production facility is actually turned on / off. It is estimated that a delay time ( ⁇ Ti, ⁇ Te) occurs in In this case, there is a deviation of ⁇ Te ⁇ Ti from the one cycle operating time TcD detected (recognized) by the state monitoring device with respect to the actual one cycle operating time TcR, and the number of measurement points varies. .
  • the waveform band T used for waveform band monitoring is a plurality of waveform data W1, W2,... Wn for each cycle when the production facility is normal.
  • n 3 is shown for simplification.
  • the values (measurement values) for the measurement points of the plurality of acquired waveform data W1 to W3 usually vary as shown in FIG. Therefore, statistical processing is performed for each measurement point, and for example, an average value for each measurement point can be calculated as the reference waveform Wa.
  • the upper limit value Thu and the lower limit value Thl are calculated by adding and subtracting the standard deviation at each measurement point to the average value, the reference waveform data that can define the waveform band T described above can be generated.
  • the state monitoring apparatus 1 since the state monitoring apparatus 1 according to each embodiment of the present invention includes the measurement point adjustment unit 13 that appropriately adjusts the number of measurement points of the waveform data for each cycle, the general-purpose measurement apparatus 3 sequentially. Accurate waveform band monitoring can be performed based on the collected data. Details will be described below.
  • the reference waveform data generation unit 10 includes a reference waveform data storage unit 10a for storing a plurality of raw waveform data Wr generated by the waveform processing unit 14 for generating reference waveform data, and a waveform acquired a predetermined number of times.
  • a reference measurement point number deriving unit 10b for deriving a reference number of measurement points (reference measurement point number X) from the data, and adjusted waveform data W obtained by adjusting the number of measurement points of the raw waveform data Wr by a measurement point number adjusting unit 13 described later.
  • an example is shown in which an average value is used to generate the reference waveform Wa, an upper limit value Thu for generating the waveform band T, and a standard deviation is used to generate the lower limit value Thl.
  • the mode value or the median value may be used for the reference waveform, or the upper limit value Thu and the lower limit value Thl may be generated using other statistical values. Or you may make it add the smoothing process using the value of the nearby measurement point. Furthermore, adjustments such as excluding data with a large deviation from other data may be added.
  • the measurement point adjustment unit 13 determines whether or not the measurement point number of the raw waveform data Wr output from the state monitoring control unit 12 matches the reference measurement point number X stored in the reference waveform data storage unit 11. When there is an excess or deficiency in the number of measurement points of the shortage determination unit 13a and the raw waveform data Wr, the adjustment target of the raw waveform data Wr (position between measurement points where measurement points should be inserted or position of measurement points to be deleted) And a waveform data adjustment unit 13c that adjusts the raw waveform data Wr and generates adjusted waveform data W based on the adjustment target determined by the adjustment point determination unit 13b.
  • the measurement point adjustment unit 13 outputs the generated adjusted waveform data W to the reference waveform data generation unit 10 or the state monitoring control unit 12 under the control of the state monitoring control unit 12.
  • the state monitoring control unit 12 controls the overall operation of the state monitoring device 1 and requests a signal indicating the operating state of the production facility 2 by the method described in FIG. It has a function to determine the operating state.
  • the operation status of the production facility 2 is determined by an output signal from the operation state output unit 20 of the production facility 2 is shown, but the present invention is not limited to this.
  • the determination may be made in conjunction with a start switch or a stop switch provided in the production facility 2, or the operating status of the production facility 2 may be determined based on a signal from the measuring device 3.
  • each part of the state monitoring apparatus 1 is described as if there was individual hardware, it does not necessarily need to be comprised by the physically separated member.
  • it may be realized by operating a computer or the like by a program configured with modules corresponding to each step in the method of adjusting asynchronous data described in the following operations or each part of the state monitoring device 1. Further, it may be realized by causing a computer to read a storage medium storing the above-described program.
  • the state monitoring control unit 12 determines that the production facility 2 is in the ON state
  • the waveform processing unit 14 uses the measurement values collected via the transmission / reception unit 16 until it is determined to be in the OFF state.
  • the raw waveform data Wr for one cycle is generated.
  • the state monitoring control unit 12 acquires a signal indicating the operation state from the operation state output unit 20 (step S100), which is the ON state or the OFF state? Is determined (step S110).
  • the ON state here does not mean that the power source is ON, but means a state in which it is operating as a production facility.
  • step S110 If it is determined that the state is the ON state (“Y” in step S110), the state monitoring control unit 12 sends the measurement device 3 to the transmission / reception unit 16 from the sensor unit 30 and the measurement calculation unit 31 as described in FIG. The measurement value of the obtained production facility 2 is requested, and the measurement value Mi is acquired by the response of the measurement value from the communication unit 32 (step S120). This operation is continued until the state monitoring control unit 12 obtains an operating state signal (step S130) and determines that the signal is OFF.
  • the waveform processing unit 14 If it is determined that the signal has been switched from ON to OFF, the waveform processing unit 14 generates a raw waveform data Wr by arranging a series of measurement values Mi received by the transmission / reception unit 16 in time series, and outputs the raw waveform data Wr to the state monitoring control unit 12 ( Step S140).
  • the raw waveform data Wr generated and output by the waveform processing unit 14 is Is output to the reference waveform data generation unit 10. Then, reference waveform data is formed as shown in the flowchart of FIG.
  • the reference waveform data generation unit 10 determines whether or not a predetermined number (n) of waveform data that is the basis of the reference waveform data has been acquired (stored in the reference waveform data storage unit 10a). (Step S200). When it is determined that the predetermined number (n) has been acquired (“Y” in step S200), the reference measurement point number deriving unit 10b obtains each raw waveform data from the raw waveform data Wr stored in the reference waveform data storage unit 10a. Based on the average number of measurement points to be configured, a reference measurement number X of an integer value is derived (step S210).
  • the raw waveform data Wr is output to the measurement point adjustment unit 13, and the waveform data W after adjustment of the measurement point is stored in the adjusted waveform data storage unit 10c (steps S220 to S230: measurement point adjustment). This will be described in detail in the operation of the unit 13).
  • the statistical value calculation unit 10d calculates an average value Ma and a standard for each measurement point arranged in time series of each waveform data W. Deviation Mu is derived (steps S240 to S250).
  • the waveform band generation unit 10e When the calculation of the statistical values is completed, the waveform band generation unit 10e has a waveform having upper and lower thresholds (upper limit value Thu, lower limit value Thl) for each measurement point arranged in time series based on the calculated statistical values.
  • a band T is generated (step S260).
  • the reference measurement point number X calculated by each part of the reference waveform data generation unit 10 the average value of each measurement point representing the reference waveform Wa, the standard deviation, and the waveform band T are used as reference waveform data. It is stored in the reference waveform data storage unit 11. As a result, data serving as a reference for the subsequent state monitoring is prepared.
  • the excess / deficiency determination unit 13a counts the number of measurement points of the raw waveform data Wr output from the reference waveform data generation unit 10 or the state monitoring control unit 12, and whether or not the counted number of measurement points matches the reference measurement point number X. Determine whether. For example, as shown in FIG. 7C, when the number of measurement points N of the raw waveform data Wr 3 matches the reference number of measurement points X, the adjustment of the coefficient points of the raw waveform data Wr 3 is not performed. as already waveform data W 3, as it is returned to the output source.
  • the raw waveform data Wr is output to the adjustment point determination unit 13b to determine the adjustment point.
  • the number of measurement points N of the raw waveform data Wr is smaller than the reference number of measurement points X, a point (a portion between the most recent measurement points) obtained by equally dividing the number N of measurement points by a value obtained by adding 1 to the shortage number Decide as an additional target.
  • the number N of measurement points of the raw waveform data Wr is larger than the reference measurement point X, a point (the most recent measurement point) obtained by equally dividing the measurement point N by the value obtained by adding 1 to the excess number is the measurement point. Decide to delete.
  • the i-th measurement point in one waveform data will be described as Mi.
  • the waveform data adjustment unit 13c for the waveform data Wr1, as explained in FIG. 8 (a), the one between the measuring points, the measurement points M N A new measurement point is added to the portion between the two most recent measurement points.
  • the value of the measurement point to be added for example, the average value of the measurement points on both sides is used.
  • the order of the measurement points after the measurement point MN / 2 is lowered one by one (backward shift).
  • the measurement point closest to the measurement point MN / 2 is deleted among the measurement points. Thereby, the order of the measurement points after the measurement point MN / 2 is increased by one (forward shift).
  • the waveform data adjustment unit 13c with respect to the raw waveform data Wr1, as described with reference to FIG. 12A, among the measurement points, the measurement point M N / 3 and the measurement point M 2N / 3.
  • a new measurement point is added to the portion between the most recent measurement points.
  • the order of the measurement points after the measurement point M N / 3 is shifted backward by one, and the measurement points after the measurement point M 2N / 3 are further shifted backward by one (two in total).
  • the nearest measurement points of the measurement point MN / 3 and the measurement point M2N / 3 are deleted among the measurement points. To do.
  • one measurement point after the measurement point M N / 3 is shifted forward by one, and one measurement point after the measurement point M 2N / 3 is further shifted backward (two in total).
  • the raw waveform data Wr with excess or deficiency is returned to the output source as adjusted waveform data W after adjusting the number of measurement points by the waveform data adjustment unit 13c.
  • the excess / deficiency number is 3 or more.
  • the reference waveform data generation unit 10 can generate the reference waveform data using the waveform data having the same number of measurement points.
  • the abnormality presence / absence determination unit 15 can also perform upper / lower limit comparison for each measurement point by using waveform data in which the number N of measurement points matches the reference number X of the reference waveform Wa, thereby enabling equipment abnormality monitoring.
  • a description will be given using the flowchart of FIG.
  • the state monitoring control unit 12 obtains the raw waveform data Wr (FIG. 5: Steps S100 to S140), it checks whether or not the reference waveform data is stored in the reference waveform data storage unit 11 (Step S300). If not stored (“N” in step S300), the raw waveform data Wr is output to the reference waveform data generation unit 10 to execute the reference waveform data generation step (S200 ⁇ ). On the other hand, if it is stored (“Y” in step S300), the acquired raw waveform data Wr is output to the measurement point adjustment unit 13 in order to use it for state monitoring.
  • the excess / deficiency determination unit 13a first determines whether or not the measurement point number N matches the reference measurement point number X (step S310).
  • the number of measurement points N of the raw waveform data Wr does not match the reference number of measurement points X (“N” in step S310)
  • the number of measurement points is adjusted by the adjustment location determination unit 13b and the waveform data adjustment unit 13c to monitor the waveform.
  • Data W is generated and returned to the state monitoring control unit 12 (steps S320 to S330).
  • the state monitoring control unit 12 uses the output raw waveform data Wr as it is as the waveform data W for monitoring. Reply to
  • the state monitoring control unit 12 outputs the returned monitoring waveform data W to the abnormality presence / absence determination unit 15 to determine whether there is an abnormality.
  • the abnormality presence / absence determination unit 15 compares the output waveform data W with the reference waveform data, and determines whether there is an abnormality depending on whether each measurement point of the waveform data W is within the waveform band T. (Step S340). If it falls within the waveform band T (“Y” in step S350), it is determined that there is an abnormality. For example, the deterioration information is obtained based on the degree of deviation or the past history (continuous or sudden). Display or output.
  • the measurement point adjustment unit 13 or the process of adjusting the measurement points (for example, steps S310 to S330), it becomes possible to detect an abnormality by combining asynchronous embedded devices.
  • the addition or deletion of measurement points is equally divided according to the number of excesses and deficiencies, the positions of measurement points are not shifted locally. In other words, even if there is a misalignment between the location where the defect actually occurred or the location that was acquired excessively and the target to be added or deleted, the effect can be minimized. Addition or deletion can be appropriately performed with a simple calculation.
  • multiple abnormality detections may be performed using a plurality of state monitoring devices in which different types of measuring devices with communication functions are connected to one monitoring target.
  • FIG. 14 shows a raw waveform when determining the presence or absence of an abnormality.
  • FIGS. 15A and 15B are flowcharts including an operation for setting an addition or deletion point when adjusting the number of measurement points of data using a correlation with a reference waveform, and FIGS. 15A and 15B show that the number of measurement points is one or more. It is a wave form diagram for demonstrating the setting process of the addition location or deletion location of a measurement point with respect to waveform data.
  • the influence of misalignment can be minimized without increasing the processing load.
  • An example of adjusting the number of measurement points was shown.
  • the burden of the arithmetic processing is increased as compared with the first embodiment, but the deviation itself from the location where the actual defect has occurred or the location that has been acquired excessively is minimized, and it is accurate. This makes it possible to add or delete various measurement points.
  • the state monitoring control unit 12 acquires the raw waveform data Wr (FIG. 5: Steps S100 to S140). It is confirmed whether or not the reference waveform data is stored in the reference waveform data storage unit 11 (step S400). If not stored (“N” in step S400), the raw waveform data Wr is output to the reference waveform data generation unit 10 to execute the reference waveform data generation step (S200 ⁇ ). On the other hand, if it is stored (“Y” in step S400), the acquired raw waveform data Wr is output to the measurement point adjustment unit 13 in order to use it for state monitoring.
  • the excess / deficiency determination unit 13a first determines whether or not the measurement point number N matches the reference measurement point number X (step S410).
  • the measurement point number N of the raw waveform data Wr matches the reference measurement point number X (“Y” in step S410)
  • the output raw waveform data is directly used as the monitoring waveform data W to the state monitoring control unit 12.
  • the adjustment location determination unit 13b sets an addition / deletion target (step S420).
  • the waveform data adjustment unit 13c adjusts the number of measurement points of the raw waveform data Wr according to the set addition / deletion target, generates the waveform data W for monitoring, and returns it to the state monitoring control unit 12 (step S420). To S430).
  • the adjustment location determination unit 13b sequentially inserts measurement points between all measurement points and outside positions, and the provisional waveform obtained by the insertion. And the correlation with the reference waveform Wa is calculated and stored. Then, the insertion location where the provisional waveform having the highest correlation can be formed is set as the insertion location for the point adjustment (step S420).
  • the operation of the waveform data adjustment unit 13c after setting is the same as that in the first embodiment.
  • the average value between the measurement points may be the same as in the first embodiment, but in the case of the outer position, it may be extrapolated from the inclination of the nearby measurement point. For example, when adding a measurement point in front of Mr 1 may be the difference between the Mr 2 and Mr 1 to the value obtained by dividing the value of Mr 1. Similarly, if you add a measurement point behind Mr N may be the difference between the Mr N and Mr N-1 to a value obtained by adding the Mr N.
  • the adjustment location determination part 13b deletes all the measurement points sequentially, and correlates with the temporary waveform obtained by deleting, and the reference
  • step S440 is the same as that after step S340 in FIG. 13 described in the first embodiment.
  • the number of measurement points can be adjusted by adding or deleting measurement points at an accurate position in which a deviation from a location where an actual defect has occurred or an excessively acquired location is minimized.
  • the number of provisional waveform data created by multiplying the number of objects to be deleted or added by the number of excess / deficiency is required, but even if the number of excess / deficiency is two or more, this deletion or addition target setting method Is valid.
  • the state of the apparatus (production facility 2) that is assumed to operate with a constant operation for each cycle is changed to one cycle.
  • the state monitoring device 1 that monitors by the upper and lower limit judgment (or threshold judgment) for each measurement value constituting the minute waveform data from the measurement device 3 that does not respond to the time information, the measurement value indicating the state of the production facility 2
  • a measurement value collection unit (transmission / reception unit 16) to collect, a waveform processing unit 14 that arranges the measurement values collected by the transmission / reception unit 16 in time series, and generates waveform data for one cycle of the production facility 2, and the production facility 2
  • Reference waveform Wa which is waveform data for one cycle when is normal, upper limit value Thu and lower limit value Thl (or any threshold value) for each measurement value of reference waveform Wa, and the number of measurement points of reference waveform Wa
  • a reference waveform data storage unit 11 for storing reference waveform data including a predetermined reference measurement point X, and raw waveform data
  • the waveform data adjustment unit (measurement point adjustment unit 13) and the waveform data W output from the measurement point adjustment unit 13 are compared with the reference waveform data to determine whether or not the production facility 2 has an abnormality.
  • the measurement point adjustment unit 13 sets the measurement point Mi of the raw waveform data Wr according to a predetermined reference among the measurement points Mi or the measurement points of the raw waveform data Wr when the measurement point number N of the raw waveform data Wr does not match the reference measurement point number X.
  • the raw waveform data Wr is adjusted to coincide with the reference measurement point number X by deleting the measurement points Mi or adding measurement points between the measurement points.
  • the waveform data adjustment unit corresponds to the number of measurement points N of the raw waveform data Wr from the reference measurement point X, which is excessive or insufficient. Since the position obtained by equally dividing the number N of measurement points of the raw waveform data Wr is set as the target for deletion or addition of the measurement points, the location where the defect is actually generated or the excess is not increased without increasing the processing load. Even if there is a positional deviation between the location acquired in the previous step and the object to be added or deleted, it is possible to perform accurate state monitoring with minimal influence.
  • the waveform data adjustment unit (measurement point adjustment unit 13) is the number of excess and deficiency from the reference measurement point number X with respect to all measurement points of the raw waveform data Wr.
  • the provisional waveform data generated each time the measurement points are sequentially deleted or added are compared with the reference waveform Wa, and the provisional waveform data having the highest correlation with the reference waveform Wa is output as the adjusted waveform data W. It is possible to adjust the number of measurement points by adding or deleting measurement points at an accurate position with a minimum deviation from a location where an actual defect has occurred or an excessively acquired location.
  • a reference measurement point X is calculated from a plurality of waveform data collected when the apparatus (production facility 2) is normal, and the waveform data adjustment unit (measurement point adjustment unit 13) is based on the calculated reference measurement point X. If the waveform data W obtained by adjusting the waveform data (raw waveform data Wr) for a plurality of times is used to provide the reference waveform data generation unit 10 that generates the reference waveform data Wa, The number of measurement points can be adjusted by adding or deleting measurement points at an accurate position with a minimum deviation from the excessively acquired location.
  • It has an operation state determination unit (a part of the function of the state monitoring control unit 12) for determining whether the device (production facility 2) is in an ON state or an OFF state based on a signal received from the outside, and a measurement value collection unit ( If the transmission / reception unit 16) starts or stops collection of measurement values from the measurement device 3 based on the determination result of the operating state determination unit, the waveform data for one cycle is obtained without human intervention. Acquire and monitor the status.
  • the waveform data in which the asynchronous measurement values output from the measurement device 3 that does not respond to time information are arranged in time-series order.
  • a method for adjusting waveform data for use in monitoring the state of a device (production facility 2) that is supposed to operate with a constant operation for each cycle, from the measuring device 3 to the state of the production facility 2 A measurement value collection step (steps S120 to S130) for collecting measurement values indicative of the waveform, and a waveform generation step for generating waveform data for one cycle of the production facility 2 by arranging the measurement values collected in the measurement value collection step in time series (Step S140), a reference waveform Wa that is waveform data for one cycle when the production facility 2 is normal, and an upper limit value Thu and a lower limit value T for each measured value of the reference waveform Wa.
  • Reference waveform data storage step for storing reference waveform data including 1 (or any threshold value) and a reference measurement point number X determined as the number of measurement points of the reference waveform Wa, and raw waveform data generated in the waveform forming step
  • a waveform data adjustment step (step S330 or S430) for adjusting and outputting Wr for comparison with the reference waveform data Wa, and comparing the waveform data W output in the waveform data adjustment step with the reference waveform data for production.
  • An abnormality presence / absence determination step (steps S340 to S360 or S440 to S460) for determining whether or not the facility 2 has an abnormality.
  • the number N of measurement points of the raw waveform data is the reference number of measurement points.
  • step S310 or S410 When X does not match (step S310 or S410), measurement point Mi or measurement of raw waveform data Wr
  • the raw waveform data is adjusted so as to coincide with the number of reference measurement points by deleting measurement points set according to a predetermined reference or adding measurement points between measurement points (steps S320 to S330, or S420 to S430), the asynchronous data collected from the general-purpose measuring device can be adjusted so that the status can be easily monitored.
  • the raw waveform data Wr is changed according to the number of measurement points N of the raw waveform data Wr from the reference measurement point X.
  • the positions obtained by equally dividing the number of measurement points as deletion points or addition targets for measurement points steps S320 to S330
  • the location where an actual defect has occurred or excessively increased without increasing the burden of calculation processing. Even if there is a positional deviation between the acquired location and the addition or deletion target, the data can be adjusted with the effect minimized.
  • the measurement points for the excess and deficiency from the reference measurement points X are sequentially deleted from all the measurement points of the raw waveform data Wr.
  • the provisional waveform data generated each time it is added is compared with the reference waveform Wa, and temporary waveform data having the highest correlation with the reference waveform Wa is output as adjusted waveform data (steps S420 to S430).
  • Data can be adjusted by adding or deleting measurement points at an accurate position with minimal deviation from a location where a defect has actually occurred or a location that has been acquired excessively.
  • 1 Status monitoring device
  • 2 Production equipment (device)
  • 3 Measuring equipment
  • 10 Reference waveform data generation unit
  • 11 Reference waveform data storage unit
  • 12 State monitoring control unit
  • 13 Measurement point adjustment unit (waveform data adjustment unit)
  • 14 Waveform processing unit
  • 15 Abnormality determination unit
  • 16 Transmission / reception unit (measurement value collection unit)
  • Mi measurement value
  • N number of measurement points
  • T waveform band
  • Thl lower limit value (threshold)
  • Thu upper limit value (threshold)
  • W waveform data
  • Wa reference waveform
  • Wr raw waveform data
  • X reference Number of measurement points.

Abstract

A state monitoring device (1) which monitors, by waveband monitoring, a state of a production facility (2) expected to be operated in a certain operation in each cycle on the basis of a measurement value from a measurement apparatus (3) which does not give a response of time information. The state monitoring device (1) is configured to have a measurement point count adjustment unit (13) for adjusting raw wave data (Wr) in such a manner that, in a case where a measurement point count (N) of the raw wave data (Wr) does not coincide with a reference measurement point count (X), out of measurement points (Mi) or measurement point intervals of the raw wave data (Wr), by deleting measurement points (Mi) set by a predetermined standard or adding the measurement points into the measurement point intervals, the measurement point count (N) coincides with the reference measurement point count (X).

Description

状態監視装置および非同期データの調整方法Status monitoring apparatus and asynchronous data adjustment method
 本発明は、計測機器からの時間情報をもたないデータ(非同期データ)を用いて、機器の状態を監視する状態監視装置、および非同期データを状態監視に適用できるよう調整する方法に関する。 The present invention relates to a state monitoring device that monitors the state of a device using data (asynchronous data) that does not have time information from a measuring device, and a method for adjusting asynchronous data to be applicable to state monitoring.
 機器の異常の有無を監視する状態監視において、生産設備稼働時の電流波形を所定の回数事前に取得し、統計的手法を用いて波形を構成する計測点毎に上下限閾値を設定することで、生産設備の異常を検出する手法が知られている(例えば、特許文献1参照)。 In state monitoring to monitor the presence or absence of equipment abnormalities, the current waveform during production equipment operation is acquired a predetermined number of times in advance, and the upper and lower thresholds are set for each measurement point that makes up the waveform using statistical methods. A method for detecting an abnormality in a production facility is known (see, for example, Patent Document 1).
特開2002-341909号公報(段落0024~0031、図1、図5、図6)Japanese Patent Laid-Open No. 2002-341909 (paragraphs 0024 to 0031, FIGS. 1, 5, and 6)
 しかしながら、上記手法では、波形データを生成する際に、計測点毎の時間情報が必要であるが、汎用的な計測機器の多くは、時間情報を応答しない。また、汎用的な計測機器は、状態監視を行うデータ収集装置と同期してデータ計測を行うものではなく、データ収集を行う上位装置においても、必ずしも一定周期でデータの収集ができるわけではない。  However, the above method requires time information for each measurement point when generating waveform data. However, many general-purpose measuring devices do not respond to time information. Further, general-purpose measuring devices do not perform data measurement in synchronization with a data collection device that performs state monitoring, and a host device that performs data collection does not necessarily collect data at a fixed period. *
 そのため、例えば、MC加工機、プレス機等の一定周期・動作で稼働することが想定される装置を対象とした場合でも、稼働開始から停止までに取得できるデータ点数にばらつきが生じる可能性があった。つまり、汎用的な計測機器からデータ収集を行う場合には、上下限比較を行うための計測点にズレが生じ、正確な異常検出が困難になる可能性があった。 Therefore, for example, even when targeting devices that are expected to operate at a certain cycle and operation, such as MC processing machines and press machines, there may be variations in the number of data points that can be acquired from the start to the stop. It was. In other words, when data is collected from a general-purpose measuring device, there is a possibility that measurement points for performing upper and lower limit comparisons are misaligned, making accurate abnormality detection difficult.
 本発明は、上記のような課題を解決するためになされたもので、汎用的な計測機器を用いても、正確な異常検出が可能な状態監視装置、あるいは、汎用的な計測機器から収集した非同期データを状態監視が可能となるように調整する非同期データの調整方法を得ることを目的とする。 The present invention has been made to solve the above-described problems, and is collected from a state monitoring device that can accurately detect an abnormality even with a general-purpose measurement device or a general-purpose measurement device. An object of the present invention is to obtain an asynchronous data adjustment method for adjusting asynchronous data so that state monitoring is possible.
 本発明の状態監視装置は、サイクル毎に一定の動作で稼働することが想定される装置の状態を、1サイクル分の波形データを構成する計測値ごとの閾値判断により監視する状態監視装置であって、時間情報を応答しない計測機器から、前記装置の状態を示す計測値を収集する計測値収集部と、前記計測値収集部が収集した計測値を時系列順に並べ、前記装置の1サイクル分の波形データを生成する波形化処理部と、前記装置が正常なときの1サイクル分の波形データである基準波形と、前記基準波形の計測値ごとの閾値、および前記基準波形の計測点数として定めた基準計測点数と、を含む基準波形データを記憶する基準波形データ記憶部と、前記波形化処理部が生成した生波形データを前記基準波形データと比較するために調整して出力する波形データ調整部と、前記波形データ調整部が出力した波形データを前記基準波形データと比較し、前記装置に異常があるか否かを判定する異常有無判定部と、を備え、前記波形データ調整部は、前記生波形データの計測点数が前記基準計測点数に合致しない場合、前記生波形データの計測点あるいは計測点間のうち、所定の基準で設定した計測点の削除、あるいは計測点間への計測点の追加により、前記基準計測点数と一致するように前記生波形データを調整することを特徴とする。 The state monitoring device of the present invention is a state monitoring device that monitors the state of a device that is assumed to operate with a constant operation for each cycle by threshold judgment for each measurement value constituting waveform data for one cycle. Then, from a measuring device that does not respond to time information, a measurement value collection unit that collects measurement values indicating the state of the device, and the measurement values collected by the measurement value collection unit are arranged in chronological order, and one cycle of the device A waveform processing unit for generating the waveform data, a reference waveform that is waveform data for one cycle when the apparatus is normal, a threshold for each measurement value of the reference waveform, and the number of measurement points of the reference waveform A reference waveform data storage unit that stores reference waveform data including the number of reference measurement points, and a raw waveform data generated by the waveform processing unit is adjusted and output for comparison with the reference waveform data A waveform data adjustment unit that compares the waveform data output from the waveform data adjustment unit with the reference waveform data and determines whether or not there is an abnormality in the device. When the number of measurement points of the raw waveform data does not match the reference number of measurement points, the adjustment unit deletes the measurement points set according to a predetermined reference among the measurement points or measurement points of the raw waveform data, or between the measurement points. The raw waveform data is adjusted so as to coincide with the reference number of measurement points by adding measurement points to.
 本発明の非同期データの調整方法は、時間情報を応答しない計測機器から出力された非同期の計測値を時系列順に並べた波形データを用いて、サイクル毎に一定の動作で稼働することが想定される装置の状態監視に用いるために波形データを調整する方法であって、前記計測機器から、前記装置の状態を示す計測値を収集する計測値収集ステップと、前記計測値収集ステップで収集した計測値を時系列順に並べ、前記装置の1サイクル分の波形データを生成する波形化ステップと、前記装置が正常なときの1サイクル分の波形データである基準波形と、前記基準波形の計測値ごとの閾値、および前記基準波形の計測点数として定めた基準計測点数と、を含む基準波形データを記憶する基準波形データ記憶ステップと、前記波形化ステップで生成した生波形データを前記基準波形データと比較するために調整して出力する波形データ調整ステップと、前記波形データ調整ステップで出力された波形データを前記基準波形データと比較し、前記装置に異常があるか否かを判定する異常有無判定ステップと、を有し、前記波形データ調整ステップでは、前記生波形データの計測点数が前記基準計測点数に合致しない場合、前記生波形データの計測点あるいは計測点間のうち、所定の基準で設定した計測点の削除、あるいは計測点間への計測点の追加により、前記基準計測点数と一致するように前記生波形データを調整することを特徴とする。 The asynchronous data adjustment method of the present invention is assumed to operate with a constant operation for each cycle using waveform data in which asynchronous measurement values output from a measuring device that does not respond to time information are arranged in time series. A method of adjusting waveform data for use in monitoring the status of a device, a measurement value collecting step for collecting a measurement value indicating the state of the device from the measurement device, and a measurement collected in the measurement value collection step A waveform forming step for arranging values in chronological order to generate waveform data for one cycle of the apparatus, a reference waveform that is waveform data for one cycle when the apparatus is normal, and a measured value of the reference waveform A reference waveform data storage step for storing reference waveform data including a threshold value of the reference waveform and a reference measurement point number determined as the number of measurement points of the reference waveform; and A waveform data adjustment step for adjusting and outputting the generated raw waveform data for comparison with the reference waveform data, and comparing the waveform data output in the waveform data adjustment step with the reference waveform data, causing an error in the device. An abnormality presence / absence determination step for determining whether or not there is a measurement point, and in the waveform data adjustment step, if the number of measurement points of the raw waveform data does not match the reference number of measurement points, the measurement point of the raw waveform data or The raw waveform data is adjusted so as to coincide with the reference number of measurement points by deleting measurement points set according to a predetermined reference or adding measurement points between the measurement points. .
 本発明の状態監視装置、あるいは、非同期データの調整方法によれば、データ点数にばらつきが生じても、適切にデータ数を調整できるので、時間情報を応答しない汎用的な計測機器を用いて正確な状態監視を行うことができる。 According to the state monitoring apparatus or the asynchronous data adjustment method of the present invention, even if the number of data points varies, the number of data can be adjusted appropriately, so that it is accurate using a general-purpose measuring instrument that does not respond to time information. State monitoring can be performed.
本発明の実施の形態1にかかる状態監視装置の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the state monitoring apparatus concerning Embodiment 1 of this invention. 同期機能を有さない計測機器が送信するデータの取得時点と、状態監視装置が収集しようとするデータの要求時点とのずれを説明するためのタイミングチャートである。It is a timing chart for demonstrating the gap between the acquisition time of the data which a measuring device which does not have a synchronous function transmits, and the request time of the data which a state monitoring device will collect. 生産設備が設備稼働情報を出力する時点と、状態監視装置が設備稼働状況を確認する時点とのずれを説明するためのタイミングチャートである。It is a timing chart for explaining the gap between the time when the production facility outputs facility operation information and the time when the state monitoring device confirms the facility operation status. 収集した複数の波形データから、計測点毎の上下限値を含む基準波形データを設定する手法を説明するための波形図である。It is a waveform diagram for explaining a method of setting reference waveform data including upper and lower limit values for each measurement point from a plurality of collected waveform data. 本発明の実施の形態1にかかる状態監視装置および非同期データの調整方法において、計測データを収集し、生波形データを生成する動作を説明するためのフローチャートである。4 is a flowchart for explaining operations of collecting measurement data and generating raw waveform data in the state monitoring apparatus and the asynchronous data adjustment method according to the first exemplary embodiment of the present invention; 本発明の実施の形態1にかかる状態監視装置および非同期データの調整方法において、生波形データを処理して、異常の有無の判定基準となる基準波形データを生成する動作を説明するためのフローチャートである。5 is a flowchart for explaining an operation of processing raw waveform data and generating reference waveform data serving as a criterion for determining whether there is an abnormality in the state monitoring apparatus and the asynchronous data adjustment method according to the first exemplary embodiment of the present invention. is there. 状態監視装置が収集しようとするデータの計測点数に対して、同期機能を有さない計測機器から送信されたデータの計測点数に1点の過不足があった場合に取得される波形データの例を示す図である。Example of waveform data acquired when there is an excess or deficiency in the number of measurement points of data transmitted from a measuring device that does not have a synchronization function with respect to the number of measurement points of data to be collected by the state monitoring device FIG. 本発明の実施の形態1にかかる状態監視装置および非同期データの調整方法において、計測点数に1点の過不足のある波形データに対する計測点の処理を説明するための波形図である。In the state monitoring apparatus and asynchronous data adjustment method according to the first exemplary embodiment of the present invention, it is a waveform diagram for explaining processing of measurement points with respect to waveform data with one or more measurement points. 本発明の実施の形態1にかかる状態監視装置および非同期データの調整方法において、計測点を追加挿入する処理を説明するための図である。It is a figure for demonstrating the process which adds and inserts a measurement point in the state monitoring apparatus and the adjustment method of asynchronous data concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる状態監視装置および非同期データの調整方法において、計測点を削除する処理を説明するための図である。It is a figure for demonstrating the process which deletes a measurement point in the state monitoring apparatus and asynchronous data adjustment method concerning Embodiment 1 of this invention. 状態監視装置が収集しようとするデータの計測点数に対して、同期機能を有さない計測機器から収集できたデータの計測点数に2点の過不足があった場合に取得される波形データの例を示す図である。Example of waveform data acquired when there are two excess or deficiency in the number of measurement points of data that can be collected from a measurement device that does not have a synchronization function with respect to the number of measurement points of data that the state monitoring device is to collect. FIG. 本発明の実施の形態1にかかる状態監視装置および非同期データの調整方法において、計測点数に2点の過不足のある波形データに対する計測点の処理を説明するための波形図である。In the state monitoring apparatus and asynchronous data adjustment method according to the first exemplary embodiment of the present invention, it is a waveform diagram for explaining processing of measurement points with respect to waveform data having two measurement points in excess or deficiency. 本発明の実施の形態1にかかる状態監視装置および非同期データの調整方法において、生波形データを処理して異常の有無を判定する動作を説明するためのフローチャートである。4 is a flowchart for explaining an operation of processing raw waveform data to determine whether there is an abnormality in the state monitoring apparatus and the asynchronous data adjustment method according to the first exemplary embodiment of the present invention. 本発明の実施の形態2にかかる状態監視装置および非同期データの調整方法において、計測点数に過不足のある波形データに対してデータの削除箇所あるいは追加箇所を特定する動作を説明するためのフローチャートである。FIG. 6 is a flowchart for explaining an operation of specifying a data deletion part or an addition part for waveform data having excessive or insufficient measurement points in the state monitoring apparatus and the asynchronous data adjustment method according to the second exemplary embodiment of the present invention. is there. 本発明の実施の形態2にかかる状態監視装置および非同期データの調整方法において、計測点数に過不足のある波形データに対する計測点の処理を説明するための波形図である。In the state monitoring apparatus and asynchronous data adjustment method according to the second exemplary embodiment of the present invention, it is a waveform diagram for explaining the processing of measurement points for waveform data with excessive or insufficient measurement points.
実施の形態1.
 図1~図12は、本発明の実施の形態1にかかる状態監視装置の構成と動作、あるいは非同期データの調整方法を説明するためのもので、図1は状態監視装置の構成を示す機能ブロック図、図2は本発明の各実施の形態での解決すべき課題の説明として、同期機能を有さない計測機器が送信するデータの取得時点と、状態監視装置が収集しようとするデータの要求時点とのずれを説明するためのタイミングチャート、図3は生産設備が自身の稼働状況を示す設備稼働情報を出力する時点と、状態監視装置が設備稼働状況を確認する時点とのずれを説明するためのタイミングチャートである。また、図4(a)~(e)は波形バンド監視のための基準波形データについての説明として、収集した複数の波形データから、基準波形、および計測点毎の上下限値を設定する手法を説明するための波形図である。
Embodiment 1 FIG.
FIGS. 1 to 12 are diagrams for explaining the configuration and operation of the state monitoring apparatus according to the first embodiment of the present invention, or a method for adjusting asynchronous data. FIG. 1 is a functional block showing the structure of the state monitoring apparatus. FIG. 2 and FIG. 2 show, as an explanation of problems to be solved in each embodiment of the present invention, the acquisition time point of data transmitted by a measuring device not having a synchronization function and the request for data to be collected by the state monitoring device FIG. 3 is a timing chart for explaining the deviation from the time point, and FIG. 3 explains the deviation between the time point when the production facility outputs the facility operation information indicating its own operation state and the time point when the state monitoring device confirms the facility operation state. It is a timing chart for. 4 (a) to 4 (e) show a method for setting a reference waveform and upper and lower limit values for each measurement point from a plurality of collected waveform data as an explanation of reference waveform data for waveform band monitoring. It is a wave form diagram for demonstrating.
 図5は状態監視装置および非同期データの調整方法において、計測データを収集し、生波形データを生成する動作を説明するためのフローチャート、図6は生波形データを処理して、異常の有無の判定基準となる基準波形データを生成する動作を説明するためのフローチャート、図7(a)~(c)は状態監視装置が収集しようとするデータの計測点数に対して、同期機能を有さない計測機器から送信されたデータの計測点数に1点の過不足があった場合に取得される波形データの例を示す図、図8(a)、(b)は計測点数に1点の過不足のある波形データに対する計測点の追加と削除処理を説明するための波形図、図9(a)、(b)は計測点を追加挿入した際の計測点の後方シフト処理を説明するための図、図10(a)、(b)は計測点を削除した際の計測点の前方シフト処理を説明するための図である。 FIG. 5 is a flowchart for explaining the operation of collecting measurement data and generating raw waveform data in the state monitoring apparatus and the asynchronous data adjustment method, and FIG. 6 is a process for determining whether there is an abnormality by processing the raw waveform data. FIGS. 7A to 7C are flowcharts for explaining an operation for generating reference waveform data as a reference, and FIGS. 7A to 7C are measurements that do not have a synchronization function for the number of measurement points of data to be collected by the state monitoring device. FIGS. 8A and 8B are diagrams showing examples of waveform data acquired when there is an excess or deficiency in the number of measurement points of data transmitted from the device. FIGS. FIG. 9A and FIG. 9B are diagrams for explaining backward shift processing of measurement points when additional measurement points are inserted, and FIG. 9A and FIG. 9B are waveform diagrams for explaining measurement point addition and deletion processing with respect to certain waveform data; 10 (a) and 10 (b) It is a diagram for explaining a forward shift processing of the measurement point for deleting the measurement points.
 また、図11(a)、(b)は同期機能を有さない計測機器から収集したデータの計測点数に2点の過不足があった場合に取得される波形データの例を示す図、図12(a)、(b)は計測点数に2点の過不足のある波形データに対する計測点の追加と削除処理を説明するための波形図である。そして、図13は生波形データを処理して異常の有無を判定する動作を説明するためのフローチャートである。 FIGS. 11A and 11B are diagrams showing examples of waveform data acquired when there are two or more measurement points of data collected from a measurement device that does not have a synchronization function. 12 (a) and 12 (b) are waveform diagrams for explaining measurement point addition and deletion processing with respect to waveform data having two excesses or shortages in the number of measurement points. FIG. 13 is a flowchart for explaining the operation of processing raw waveform data to determine the presence or absence of an abnormality.
 本発明の実施の形態1にかかる状態監視装置1は、図1に示すように、例えば、MC加工機、プレス機等の一定周期・動作で稼働することが想定される装置(生産設備2)の状態を監視するためのものである。そして、生産設備2に供給される電流や、圧力、温度等の設備状態を検出するための計測値を時間情報なしで通信出力する計測機器3からのデータを基に、生産設備2の状態を監視するものである。具体的には、生産設備2の動作サイクルごとに計測した監視用の波形データを、事前に設定した基準波形データと計測点毎に比較し、計測点毎に上下限値を逸脱しているか否かによって、異常の有無を判定することで生産設備2の状態を監視するものである。 As shown in FIG. 1, the state monitoring apparatus 1 according to the first embodiment of the present invention is an apparatus (production facility 2) that is assumed to operate at a constant cycle / operation, such as an MC processing machine or a press machine, for example. It is for monitoring the state of Based on data from the measuring device 3 that communicates and outputs measurement values for detecting the equipment state such as current, pressure, and temperature supplied to the production equipment 2 without time information, the state of the production equipment 2 is determined. It is something to monitor. Specifically, the monitoring waveform data measured for each operation cycle of the production facility 2 is compared with the reference waveform data set in advance for each measurement point, and whether or not the upper and lower limit values are deviated for each measurement point. Thus, the state of the production facility 2 is monitored by determining the presence or absence of abnormality.
 なお、基準波形データとは、基準となる波形(基準波形Wa)を形成する各計測点のデータと、計測点毎に設けた上限値Thu、下限値Thlの組合せを言う。また、基準波形Waに対して上限値Thuと下限値Thlにより幅を持たせた範囲を波形バンドT(図4参照)と称し、取得した監視用の波形データが波形バンドTから逸脱しているか否かで異常の有無を判定し、監視することを、波形バンド監視と称する。 Note that the reference waveform data refers to a combination of data of each measurement point forming a reference waveform (reference waveform Wa) and an upper limit value Thu and a lower limit value Thl provided for each measurement point. Further, a range in which the reference waveform Wa is given a width by the upper limit value Thu and the lower limit value Thl is referred to as a waveform band T (see FIG. 4), and whether the acquired monitoring waveform data deviates from the waveform band T. Determining whether or not there is an abnormality based on whether or not monitoring is referred to as waveform band monitoring.
 そのため、波形バンド監視用の状態監視装置1は、計測機器3との通信により、基準波形データや監視用の波形データを生成するための計測値等のデータを送受信する送受信部16と、基準波形データを生成する基準波形データ生成部10と、生成した基準波形データを記憶する基準波形データ記憶部11と、順次取得したデータを時系列に並べて1サイクル毎の波形データ(生波形データWr)を生成する波形化処理部14と、基準波形データ記憶部に記憶された基準波形データと監視用の波形データとを比較し、監視対象である生産設備2の異常の有無を判定する異常有無判定部15と、入出力操作を行う操作部17と、生産設備2の稼働状況や異常が発生したこと等を出力する表示部18と、生産設備2からの信号を受けて、生産設備2の稼働状態を判断するとともに、上述した各部を統合制御する状態監視制御部12とを備えている。 Therefore, the state monitoring apparatus 1 for waveform band monitoring includes a transmission / reception unit 16 that transmits and receives data such as measurement values for generating reference waveform data and monitoring waveform data, and a reference waveform by communication with the measurement device 3. A reference waveform data generation unit 10 that generates data, a reference waveform data storage unit 11 that stores the generated reference waveform data, and a waveform data (raw waveform data Wr) for each cycle by sequentially arranging the acquired data in time series. The waveform processing unit 14 to be generated, the reference waveform data stored in the reference waveform data storage unit, and the waveform data for monitoring are compared to determine whether there is an abnormality in the production equipment 2 to be monitored. 15, an operation unit 17 that performs input / output operations, a display unit 18 that outputs the operating status of the production facility 2 and the occurrence of an abnormality, and a signal from the production facility 2, With determining the second operational state, and a state monitoring control unit 12 for integrated control of the units described above.
 そして、本発明の各実施の形態にかかる状態監視装置1の特徴は、後述する計測点に過不足のある波形データの計測点数を調整して、基準波形データや監視用の波形データに適した形態に修正する計測点数調整部13を備えたことにある。ここで、特徴部分である計測点数調整部13をはじめとする各部の説明の前に、定周期・動作で稼働することが想定される装置の波形データにおいて、計測点の過不足が生ずる要因について説明する。 The feature of the state monitoring apparatus 1 according to each embodiment of the present invention is that it is suitable for reference waveform data and monitoring waveform data by adjusting the number of measurement points of waveform data with excess or deficiency in measurement points described later. The measurement point adjustment unit 13 for correcting the shape is provided. Here, before the description of each part including the measurement point number adjustment unit 13 which is a characteristic part, in the waveform data of the apparatus which is assumed to operate at a fixed period / operation, the cause of excess or deficiency of measurement points explain.
 背景技術で説明したように、汎用的な計測機器は、時間情報の無い計測値のみを出力する。そのため、状態監視装置は、計測機器から取得したデータを時系列順に並べ、計測値(Y軸)、計測点順序(X軸)というように、XY平面上に計測値をプロットした波形データを生成する。一定周期・動作で稼働する生産設備に対して稼働開始から停止まで1サイクルの波形データを取得した場合、稼働時間に変動はないため、理想的には同じ計測点数の波形が取得できる。ここで、計測機器は機器固有の周期で計測値を更新し、状態監視装置も同様に、装置固有の周期で計測機器に対してデータ要求を行う。しかし、汎用的な計測機器を用いる場合、計測機器の計測値更新と状態監視装置がデータ要求を行うタイミング間で同期を取る手段は用意されておらず、取得されたデータは非同期データとなる。 As explained in the background art, general-purpose measuring devices output only measured values without time information. Therefore, the state monitoring device arranges the data acquired from the measuring device in time series, and generates waveform data that plots the measured values on the XY plane, such as measured value (Y axis) and measured point order (X axis). To do. If one cycle of waveform data is acquired from the start to the stop for a production facility that operates at a fixed period and operation, there is no change in the operating time, so ideally the waveform with the same number of measurement points can be acquired. Here, the measurement device updates the measurement value at a device-specific cycle, and the state monitoring device similarly requests data from the measurement device at the device-specific cycle. However, when a general-purpose measuring device is used, there is no means for synchronizing the measurement value update of the measuring device and the timing at which the state monitoring device requests data, and the acquired data is asynchronous data.
 そのため、状態監視装置が計測値を時系列順に取得して生成する波形データは、計測サンプリング周期と一致したものとはならず、例えば、図2に示すように、データ3やデータ5の欠損が発生するように、実際の計測点と収集した計測点間でズレが生じる。つまり、計測値に時間情報の紐付けができない汎用的な計測機器を用いる限り、一定周期・動作で稼働する生産設備であっても、その稼働開始から停止まで1サイクルの波形データでは、サイクル毎に計測点数に微小な過不足(ばらつき)が生じる可能性が有る。 Therefore, the waveform data generated by the state monitoring device acquiring the measurement values in chronological order does not coincide with the measurement sampling period. For example, as shown in FIG. As will occur, a deviation occurs between the actual measurement points and the collected measurement points. In other words, as long as general-purpose measuring equipment that cannot associate time information with measured values is used, even if a production facility operates at a fixed period and operation, the waveform data for one cycle from the start to the stop of each operation In addition, there may be a slight excess or deficiency (variation) in the number of measurement points.
 また、生産設備での実際の稼働状態のON/OFFの切替りタイミングと、状態監視装置が生産設備のONとOFFを検出するまでに要する遅延時間も、計測点数のばらつき要因として考えられる。例えば、図3に示すように、生産設備が実際にON/OFFするタイミングに対し、状態監視装置が生産設備に対して稼働状態を示す信号を要求して、ON/OFFを検出するまでの時間に遅延時間(ΔTi、ΔTe)が生じる場合が推定される。この場合、実際の1サイクルの稼働時間TcRに対し、状態監視装置がONと検出(認識)している1サイクルの稼働時間TcDとは、ΔTe-ΔTiのずれが生じ、計測点数にばらつきが生じる。 Also, the ON / OFF switching timing of the actual operating state in the production facility and the delay time required for the state monitoring device to detect the ON / OFF state of the production facility are also considered as factors of variation in the number of measurement points. For example, as shown in FIG. 3, the time until the state monitoring device requests a signal indicating the operating state from the production facility and detects the ON / OFF at the timing when the production facility is actually turned on / off. It is estimated that a delay time (ΔTi, ΔTe) occurs in In this case, there is a deviation of ΔTe−ΔTi from the one cycle operating time TcD detected (recognized) by the state monitoring device with respect to the actual one cycle operating time TcR, and the number of measurement points varies. .
 一方、波形バンド監視に用いる波形バンドTは、図4(a)~(c)に示すように、生産設備が正常な状態において、1サイクルごとの複数の波形データW1、W2、・・・Wn(図では、簡略化のためn=3で表記)を取得する。取得した複数の波形データW1~W3の計測点毎の値(計測値)は、通常、図4(d)に示すように変動がある。そこで、計測点毎に統計処理を行い、例えば、計測点毎の平均値を基準波形Waとして算出することができる。同様に、計測点毎の標準偏差を平均値に加算、減算して上限値Thu、下限値Thlを算出すれば、上述した波形バンドTを定義できる基準波形データを生成することができる。 On the other hand, as shown in FIGS. 4A to 4C, the waveform band T used for waveform band monitoring is a plurality of waveform data W1, W2,... Wn for each cycle when the production facility is normal. (In the figure, n = 3 is shown for simplification). The values (measurement values) for the measurement points of the plurality of acquired waveform data W1 to W3 usually vary as shown in FIG. Therefore, statistical processing is performed for each measurement point, and for example, an average value for each measurement point can be calculated as the reference waveform Wa. Similarly, if the upper limit value Thu and the lower limit value Thl are calculated by adding and subtracting the standard deviation at each measurement point to the average value, the reference waveform data that can define the waveform band T described above can be generated.
 しかしながら、サイクル毎に計測点数のばらつきがあると、統計処理の対象がずれて、正確な基準波形データを算出することができない。また仮に、計測点数が揃ったサイクルのデータのみで基準波形データを算出したとしても、監視用の波形データの計測点数がずれていては、正確な波形バンド監視を行うことはできない。つまり、計測点数にばらつきが生じたままでは、波形バンドの監視が実施できない。 However, if there are variations in the number of measurement points for each cycle, the target of statistical processing shifts and accurate reference waveform data cannot be calculated. Even if the reference waveform data is calculated using only the data of the cycle having the same number of measurement points, accurate waveform band monitoring cannot be performed if the number of measurement points of the monitoring waveform data is deviated. That is, the waveform band cannot be monitored if the number of measurement points remains varied.
 しかし、本発明の各実施の形態にかかる状態監視装置1では、サイクル毎の波形データの計測点数を適切に調整する計測点数調整部13を備えるようにしたので、汎用的な計測装置3から順次収集したデータを基に、正確な波形バンド監視を行うことができる。以下、詳細に説明する。 However, since the state monitoring apparatus 1 according to each embodiment of the present invention includes the measurement point adjustment unit 13 that appropriately adjusts the number of measurement points of the waveform data for each cycle, the general-purpose measurement apparatus 3 sequentially. Accurate waveform band monitoring can be performed based on the collected data. Details will be described below.
 <基準波形データ生成部>
 基準波形データ生成部10は、基準波形データを生成するための、波形化処理部14が生成した複数の生波形データWrを記憶する基準用波形データ記憶部10aと、所定の複数回取得した波形データから、基準となる計測点数(基準計測点数X)を導出する基準計測点数導出部10bと、後述する計測点数調整部13で生波形データWrの計測点数を調整した調整済みの波形データWを格納する調整済波形データ記憶部10cと、調整済波形データ記憶部10cに格納されている調整済の波形データWから計測点毎の平均値、標準偏差等の統計値を導出する統計値算出部10dと、統計値算出部10dが算出した計測点毎の平均値から基準波形Waを算出するとともに、標準偏差に基づき、基準波形Waの計測点毎に上限値Thu、下限値Thlを設定し、波形バンドTを生成する波形バンド生成部10eと、を備える。
<Reference waveform data generator>
The reference waveform data generation unit 10 includes a reference waveform data storage unit 10a for storing a plurality of raw waveform data Wr generated by the waveform processing unit 14 for generating reference waveform data, and a waveform acquired a predetermined number of times. A reference measurement point number deriving unit 10b for deriving a reference number of measurement points (reference measurement point number X) from the data, and adjusted waveform data W obtained by adjusting the number of measurement points of the raw waveform data Wr by a measurement point number adjusting unit 13 described later. An adjusted waveform data storage unit 10c to be stored, and a statistical value calculation unit for deriving statistical values such as an average value and a standard deviation for each measurement point from the adjusted waveform data W stored in the adjusted waveform data storage unit 10c 10d and the average value for each measurement point calculated by the statistical value calculation unit 10d, the reference waveform Wa is calculated, and based on the standard deviation, the upper limit value Thu and the lower limit value for each measurement point of the reference waveform Wa Set hl, comprises a waveform band generator 10e for generating a waveform band T, a.
 なお、各実施の形態においては、基準波形Waの生成には平均値、波形バンドT生成用の上限値Thu、下限値Thlの生成には標準偏差を用いた例を示すが、これに限ることはない。監視対象の特性に応じて、例えば、最頻値や中央値を基準波形に用いてもよいし、他の統計値を用いて上限値Thu、下限値Thlを生成してもよい。あるいは、近傍の計測点の値を用いた平滑化処理を加えるようにしてもよい。さらには、他のデータに対して逸脱の大きなデータを対象から外す等の調整を加えてもよい。 In each embodiment, an example is shown in which an average value is used to generate the reference waveform Wa, an upper limit value Thu for generating the waveform band T, and a standard deviation is used to generate the lower limit value Thl. There is no. Depending on the characteristics of the monitoring target, for example, the mode value or the median value may be used for the reference waveform, or the upper limit value Thu and the lower limit value Thl may be generated using other statistical values. Or you may make it add the smoothing process using the value of the nearby measurement point. Furthermore, adjustments such as excluding data with a large deviation from other data may be added.
 <計測点数調整部>
 計測点数調整部13は、状態監視制御部12から出力された生波形データWrの計測点数が、基準波形データ記憶部11に記憶された基準計測点数Xと一致しているか否かを判定する過不足判定部13aと、生波形データWrの計測点数に過不足がある場合は、生波形データWrの調整対象(計測点を挿入すべき計測点間の位置、または削除すべき計測点の位置)を決定する調整箇所決定部13bと、調整箇所決定部13bが決定した調整対象に基づき、生波形データWrを調整して、調整済の波形データWを生成する波形データ調整部13cとを備える。
<Measurement point adjustment unit>
The measurement point adjustment unit 13 determines whether or not the measurement point number of the raw waveform data Wr output from the state monitoring control unit 12 matches the reference measurement point number X stored in the reference waveform data storage unit 11. When there is an excess or deficiency in the number of measurement points of the shortage determination unit 13a and the raw waveform data Wr, the adjustment target of the raw waveform data Wr (position between measurement points where measurement points should be inserted or position of measurement points to be deleted) And a waveform data adjustment unit 13c that adjusts the raw waveform data Wr and generates adjusted waveform data W based on the adjustment target determined by the adjustment point determination unit 13b.
 計測点数調整部13は、状態監視制御部12の制御により、生成した調整済の波形データWを基準波形データ生成部10、あるいは状態監視制御部12に出力する。 The measurement point adjustment unit 13 outputs the generated adjusted waveform data W to the reference waveform data generation unit 10 or the state monitoring control unit 12 under the control of the state monitoring control unit 12.
 状態監視制御部12は、上述したように、状態監視装置1全体の動作を統括制御するとともに、図3で説明した方式で、生産設備2に対する稼働状態を示す信号を要求して生産設備2の稼働状態を判定する機能を有している。なお、各実施の形態においては、生産設備2の稼働状況を生産設備2の稼働状態出力部20からの出力信号により判定する例を示すが、これに限ることはない。例えば、生産設備2に設けられたスタートスイッチや停止スイッチに連動して判定するようにしてもよく、計測機器3からの信号により、生産設備2の稼働状況を判定するようにしてもよい。 As described above, the state monitoring control unit 12 controls the overall operation of the state monitoring device 1 and requests a signal indicating the operating state of the production facility 2 by the method described in FIG. It has a function to determine the operating state. In each embodiment, an example in which the operation status of the production facility 2 is determined by an output signal from the operation state output unit 20 of the production facility 2 is shown, but the present invention is not limited to this. For example, the determination may be made in conjunction with a start switch or a stop switch provided in the production facility 2, or the operating status of the production facility 2 may be determined based on a signal from the measuring device 3.
 なお、各実施の形態においては、状態監視装置1の各部を個別のハードウェアがあるかのように記載しているが、必ずしも物理的に分離した部材で構成する必要はない。例えば、状態監視装置1の各部あるいは、以降の動作で説明する非同期データの調整方法における各ステップに対応するモジュールで構成されたプログラムにより、コンピュータ等を動作させることで実現するようにしてもよい。さらには、上述したプログラムを収納した記憶媒体をコンピュータに読み取らせることで実現するようにしてもよい。 In addition, in each embodiment, although each part of the state monitoring apparatus 1 is described as if there was individual hardware, it does not necessarily need to be comprised by the physically separated member. For example, it may be realized by operating a computer or the like by a program configured with modules corresponding to each step in the method of adjusting asynchronous data described in the following operations or each part of the state monitoring device 1. Further, it may be realized by causing a computer to read a storage medium storing the above-described program.
 つぎに、動作について説明する。
 状態監視制御部12が、生産設備2がON状態であると判定すると、波形化処理部14は、OFF状態であると判定されるまで、送受信部16を介して収集した計測値を用いて波形化処理動作を行い、1サイクル分の生波形データWrを生成する。具体的には、図5のフローチャートに示すように、状態監視制御部12が、稼働状態出力部20から稼働の状態を示す信号を取得し(ステップS100)ON状態かOFF状態のいずれであるかを判定する(ステップS110)。なお、ここでのON状態とは、電源がONという意味ではなく、生産設備として稼働している状態を意味する。
Next, the operation will be described.
When the state monitoring control unit 12 determines that the production facility 2 is in the ON state, the waveform processing unit 14 uses the measurement values collected via the transmission / reception unit 16 until it is determined to be in the OFF state. The raw waveform data Wr for one cycle is generated. Specifically, as shown in the flowchart of FIG. 5, the state monitoring control unit 12 acquires a signal indicating the operation state from the operation state output unit 20 (step S100), which is the ON state or the OFF state? Is determined (step S110). In addition, the ON state here does not mean that the power source is ON, but means a state in which it is operating as a production facility.
 ON状態であると判定すると(ステップS110で「Y」)、状態監視制御部12は、送受信部16に対し、図2で説明したように、計測機器3がセンサ部30と計測演算部31より得られる生産設備2の計測値を要求し、通信部32からの計測値の応答により、計測値Miを取得させる(ステップS120)。この動作を、状態監視制御部12が稼働状態の信号を取得(ステップS130)し、OFFであると判定するまで継続する。 If it is determined that the state is the ON state (“Y” in step S110), the state monitoring control unit 12 sends the measurement device 3 to the transmission / reception unit 16 from the sensor unit 30 and the measurement calculation unit 31 as described in FIG. The measurement value of the obtained production facility 2 is requested, and the measurement value Mi is acquired by the response of the measurement value from the communication unit 32 (step S120). This operation is continued until the state monitoring control unit 12 obtains an operating state signal (step S130) and determines that the signal is OFF.
 ONからOFFに切り替わったと判定すれば、波形化処理部14は、送受信部16が受信した一連の計測値Miを時系列順に並べて生波形データWrを生成し、状態監視制御部12に出力する(ステップS140)。 If it is determined that the signal has been switched from ON to OFF, the waveform processing unit 14 generates a raw waveform data Wr by arranging a series of measurement values Mi received by the transmission / reception unit 16 in time series, and outputs the raw waveform data Wr to the state monitoring control unit 12 ( Step S140).
 状態監視装置1の初期状態、あるいは、生産設備2の切り替わり等の監視対象の条件が変わり、基準波形データの生成が必要な状態では、波形化処理部14が生成・出力した生波形データWrは、基準波形データ生成部10に出力される。そして、図6のフローチャートに示すようにして、基準波形データが形成される。 When the condition of the monitoring target such as the initial state of the state monitoring device 1 or the switching of the production facility 2 changes and the reference waveform data needs to be generated, the raw waveform data Wr generated and output by the waveform processing unit 14 is Is output to the reference waveform data generation unit 10. Then, reference waveform data is formed as shown in the flowchart of FIG.
 基準波形データ生成部10は、基準波形データの元となる波形データ数が、所定数(n)取得できたか(基準用波形データ記憶部10aに記憶されたか)否かを判定する。(ステップS200)。所定数(n)取得できたと判定する(ステップS200で「Y」)と、基準計測点数導出部10bは、基準用波形データ記憶部10aに格納された生波形データWrから、各生波形データを構成する計測点数の平均に基づき、整数値の基準計測点数Xを導出する(ステップS210)。なお、基準計測点数Xの導出においても、波形バンドTの生成で説明したように、平均値に限らず、他の統計値を用いてよいのは言うまでもない。ただし、波形バンド監視では、計測点毎に比較するものであり、整数に調整する必要はある。 The reference waveform data generation unit 10 determines whether or not a predetermined number (n) of waveform data that is the basis of the reference waveform data has been acquired (stored in the reference waveform data storage unit 10a). (Step S200). When it is determined that the predetermined number (n) has been acquired (“Y” in step S200), the reference measurement point number deriving unit 10b obtains each raw waveform data from the raw waveform data Wr stored in the reference waveform data storage unit 10a. Based on the average number of measurement points to be configured, a reference measurement number X of an integer value is derived (step S210). In the derivation of the reference number of measurement points X, as described in the generation of the waveform band T, it goes without saying that not only the average value but also other statistical values may be used. However, in waveform band monitoring, each measurement point is compared and it is necessary to adjust to an integer.
 基準計測点数Xが決まると、生波形データWrを計測点数調整部13に出力し、計測点数調整後の波形データWを調整済波形データ記憶部10cに格納する(ステップS220~S230:計測点数調整部13の動作で詳細説明する)。調整済波形データ記憶部10cに所定数(n)の波形データWが格納されると、統計値算出部10dは、各波形データWの時系列順に並んだ計測点毎に平均値Maと、標準偏差Muを導出する(ステップS240~S250)。 When the reference measurement point X is determined, the raw waveform data Wr is output to the measurement point adjustment unit 13, and the waveform data W after adjustment of the measurement point is stored in the adjusted waveform data storage unit 10c (steps S220 to S230: measurement point adjustment). This will be described in detail in the operation of the unit 13). When a predetermined number (n) of waveform data W is stored in the adjusted waveform data storage unit 10c, the statistical value calculation unit 10d calculates an average value Ma and a standard for each measurement point arranged in time series of each waveform data W. Deviation Mu is derived (steps S240 to S250).
 統計値の算出が終わると、波形バンド生成部10eは、算出された統計値を元に、時系列順に並べられた計測点毎に上下限の閾値(上限値Thu、下限値Thl)を有する波形バンドTを生成する(ステップS260)。波形バンドTが生成されると、基準波形データ生成部10の各部で算出した基準計測点数X、基準波形Waを表す各計測点の平均値、標準偏差、および波形バンドTを基準波形データとして、基準波形データ記憶部11に格納する。これにより、以降の状態監視の基準となるデータが揃ったことになる。 When the calculation of the statistical values is completed, the waveform band generation unit 10e has a waveform having upper and lower thresholds (upper limit value Thu, lower limit value Thl) for each measurement point arranged in time series based on the calculated statistical values. A band T is generated (step S260). When the waveform band T is generated, the reference measurement point number X calculated by each part of the reference waveform data generation unit 10, the average value of each measurement point representing the reference waveform Wa, the standard deviation, and the waveform band T are used as reference waveform data. It is stored in the reference waveform data storage unit 11. As a result, data serving as a reference for the subsequent state monitoring is prepared.
 ここで、ステップS220~S230(後述する状態監視のフロー(図13)におけるステップS320~S330も同様)を含む、計測点数調整部13の動作について説明する。過不足判定部13aは、基準波形データ生成部10あるいは状態監視制御部12から出力された生波形データWrの計測点数をカウントし、カウントした計測点数が、基準計測点数Xと一致しているか否かを判定する。例えば、図7(c)に示すように、生波形データWrの計測点数Nが、基準計測点数Xと一致している場合は、生波形データWrの係数点数の調整は行わず、調整済みの波形データWとして、そのまま出力元に返信する。 Here, the operation of the measurement point adjusting unit 13 including steps S220 to S230 (the same applies to steps S320 to S330 in the state monitoring flow (FIG. 13) described later) will be described. The excess / deficiency determination unit 13a counts the number of measurement points of the raw waveform data Wr output from the reference waveform data generation unit 10 or the state monitoring control unit 12, and whether or not the counted number of measurement points matches the reference measurement point number X. Determine whether. For example, as shown in FIG. 7C, when the number of measurement points N of the raw waveform data Wr 3 matches the reference number of measurement points X, the adjustment of the coefficient points of the raw waveform data Wr 3 is not performed. as already waveform data W 3, as it is returned to the output source.
 一方、計測点数Nが基準計測点数Xと一致しなかった場合は、生波形データWrは調整箇所決定部13bに出力され、調整箇所を決定する。生波形データWrの計測点数Nが、基準計測点数Xよりも少ない場合は、計測点数Nを不足数に1を加えた値で等分した箇所(の直近の計測点間部分)を計測点の追加対象として決定する。一方、生波形データWrの計測点数Nが、基準計測点数Xよりも多い場合は、計測点数Nを超過数に1を加えた値で等分した箇所(の直近の計測点)を計測点の削除対象として決定する。 On the other hand, when the measurement point number N does not match the reference measurement point number X, the raw waveform data Wr is output to the adjustment point determination unit 13b to determine the adjustment point. When the number of measurement points N of the raw waveform data Wr is smaller than the reference number of measurement points X, a point (a portion between the most recent measurement points) obtained by equally dividing the number N of measurement points by a value obtained by adding 1 to the shortage number Decide as an additional target. On the other hand, when the number N of measurement points of the raw waveform data Wr is larger than the reference measurement point X, a point (the most recent measurement point) obtained by equally dividing the measurement point N by the value obtained by adding 1 to the excess number is the measurement point. Decide to delete.
 具体的には、ひとつの波形データ中のi番目の計測点をMiと表記して説明する。図7(a)に示すように、生波形データWrの計測点数Nが、基準計測点数Xよりも1つ少ない場合(N=X-1)、図8(a)に示すように、計測点MN/2の直近の計測点間部分を計測点の追加対象として決定する。あるいは、図7(b)に示すように、生波形データWrの計測点数Nが、基準計測点数Xよりも1つ多い場合(N=X+1)、図8(b)に示すように、計測点MN/2の直近の計測点を削除対象として決定する。 Specifically, the i-th measurement point in one waveform data will be described as Mi. As shown in FIG. 7A, when the number N of measurement points of the raw waveform data Wr 1 is one less than the reference measurement point number X (N = X−1), measurement is performed as shown in FIG. The portion between the measurement points nearest to the point MN / 2 is determined as an addition target of the measurement points. Alternatively, as shown in FIG. 7B, when the number N of measurement points of the raw waveform data Wr 2 is one more than the reference measurement point number X (N = X + 1), measurement is performed as shown in FIG. The measurement point nearest to the point MN / 2 is determined as a deletion target.
 このように、追加対象、あるいは削除対象が決定すると、波形データ調整部13cは、波形データWr1に対しては、図8(a)で説明したように、計測点間のうち、計測点MN/2の直近の計測点間部分に新たな計測点を追加する。追加する計測点の値としては、例えば、両隣の計測点の平均値を用いる。計測点MN/2以降の計測点の順序が1つずつ繰り下がる(後方シフト)。同様に、波形データWr2に対しては、図8(b)で説明したように、計測点間のうち、計測点MN/2の直近の計測点を削除する。これにより、計測点MN/2以降の計測点の順序が1つずつ繰り上がる(前方シフト)。 Thus, the addition target or deleted, is determined, the waveform data adjustment unit 13c, for the waveform data Wr1, as explained in FIG. 8 (a), the one between the measuring points, the measurement points M N A new measurement point is added to the portion between the two most recent measurement points. As the value of the measurement point to be added, for example, the average value of the measurement points on both sides is used. The order of the measurement points after the measurement point MN / 2 is lowered one by one (backward shift). Similarly, for the waveform data Wr2, as described with reference to FIG. 8B, the measurement point closest to the measurement point MN / 2 is deleted among the measurement points. Thereby, the order of the measurement points after the measurement point MN / 2 is increased by one (forward shift).
 より具体的には、例えば、図9(a)、(b)に示すように、MrとMrの間にMが追加された場合、Mr以前の順序は変わりなく、MrがMに、MrがMにと、挿入されたM以降の計測点の順序が後方シフトする。同様に、図10(a)、(b)に示すように、Mrが削除された場合、Mr以前の順序は変わりなく、MrがMに、MrがMにと、挿入されたMr以降の計測点の順序が前方シフトする。 More specifically, for example, as shown in FIGS. 9A and 9B, when M 3 is added between Mr 2 and Mr 3 , the order before Mr 2 does not change, and Mr 3 is When M 4 is set to M 4 and Mr 4 is set to M 5 , the order of the measurement points inserted after M 3 is shifted backward. Similarly, as shown in FIGS. 10 (a) and 10 (b), when Mr 3 is deleted, the order before Mr 2 is not changed, and Mr 4 is inserted into M 3 and Mr 5 is inserted into M 4. The order of the measured points after Mr 3 is shifted forward.
 また、あるいは、図11(a)に示すように、生波形データWrの計測点数Nが、基準計測点数Xよりも2つ少ない場合(N=X-2)、図12(a)に示すように、計測点MN/3と計測点M2N/3それぞれの直近の計測点間部分を計測点の追加対象として決定する。同様に、図11(b)に示すように、生波形データWrの計測点数Nが、基準計測点数Xよりも2つ多い場合(N=X+2)、図12(b)に示すように、計測点MN/3と計測点M2N/3それぞれの直近の計測点の計測点を削除対象として決定する。 Alternatively, as shown in FIG. 11A, when the number N of measurement points of the raw waveform data Wr 1 is two smaller than the reference number of measurement points X (N = X−2), it is shown in FIG. In this way, the nearest portion between the measurement points M N / 3 and M 2N / 3 is determined as the measurement point addition target. Similarly, as shown in FIG. 11B, when the number N of measurement points of the raw waveform data Wr 2 is two more than the reference measurement number X (N = X + 2), as shown in FIG. The measurement point of the measurement point nearest to each of the measurement point M N / 3 and the measurement point M 2N / 3 is determined as a deletion target.
 その場合も、波形データ調整部13cは、生波形データWr1に対しては、図12(a)で説明したように、計測点間のうち、計測点MN/3と計測点M2N/3それぞれの直近の計測点間部分に新たな計測点を追加する。これにより、計測点MN/3以降の計測点の順序が1つ後方シフトし、計測点M2N/3以降の計測点は、さらに1つ(計2つ)後方シフトする。同様に、生波形データWr2に対しては、図12(b)で説明したように、計測点間のうち、計測点MN/3と計測点M2N/3それぞれの直近の計測点を削除する。これにより、計測点MN/3以降の計測点が1つ前方シフトし、計測点M2N/3以降の計測点は、さらに1つ(計2つ)後方シフトする。 Also in that case, the waveform data adjustment unit 13c, with respect to the raw waveform data Wr1, as described with reference to FIG. 12A, among the measurement points, the measurement point M N / 3 and the measurement point M 2N / 3. A new measurement point is added to the portion between the most recent measurement points. Thereby, the order of the measurement points after the measurement point M N / 3 is shifted backward by one, and the measurement points after the measurement point M 2N / 3 are further shifted backward by one (two in total). Similarly, for the raw waveform data Wr2, as described with reference to FIG. 12B, the nearest measurement points of the measurement point MN / 3 and the measurement point M2N / 3 are deleted among the measurement points. To do. As a result, one measurement point after the measurement point M N / 3 is shifted forward by one, and one measurement point after the measurement point M 2N / 3 is further shifted backward (two in total).
 このようにして、過不足のある生波形データWrは、波形データ調整部13cにて計測点数を調整し、調整済の波形データWとして出力元に返信される。なお、過不足数が3以上の場合も同様である。 In this way, the raw waveform data Wr with excess or deficiency is returned to the output source as adjusted waveform data W after adjusting the number of measurement points by the waveform data adjustment unit 13c. The same applies when the excess / deficiency number is 3 or more.
 これにより、基準波形データ生成部10では、計測点数が揃った波形データを用い、基準波形データを生成することができる。同様に、異常有無判定部15においても、計測点数Nが基準波形Waの基準計測点数Xと一致する波形データを用いて計測点毎の上下限比較が可能となり、設備異常監視が可能となる。以下、図13のフローチャートを用いて説明する。 Thereby, the reference waveform data generation unit 10 can generate the reference waveform data using the waveform data having the same number of measurement points. Similarly, the abnormality presence / absence determination unit 15 can also perform upper / lower limit comparison for each measurement point by using waveform data in which the number N of measurement points matches the reference number X of the reference waveform Wa, thereby enabling equipment abnormality monitoring. Hereinafter, a description will be given using the flowchart of FIG.
 状態監視制御部12は、生波形データWrを取得(図5:ステップS100~S140)すると、基準波形データ記憶部11に基準波形データが格納されているか否かを確認する(ステップS300)。格納されていない場合(ステップS300で「N」)は、基準波形データ生成部10に生波形データWrを出力し、基準波形データ生成ステップ(S200~)を実行させる。一方、格納されている場合(ステップS300で「Y」)は、取得した生波形データWrを状態監視に用いるため、計測点数調整部13に出力する。 When the state monitoring control unit 12 obtains the raw waveform data Wr (FIG. 5: Steps S100 to S140), it checks whether or not the reference waveform data is stored in the reference waveform data storage unit 11 (Step S300). If not stored (“N” in step S300), the raw waveform data Wr is output to the reference waveform data generation unit 10 to execute the reference waveform data generation step (S200˜). On the other hand, if it is stored (“Y” in step S300), the acquired raw waveform data Wr is output to the measurement point adjustment unit 13 in order to use it for state monitoring.
 計測点数調整部13では、前述したように、初めに過不足判定部13aは、計測点数Nが基準計測点数Xと一致しているか否かを判定する(ステップS310)。生波形データWrの計測点数Nが基準計測点数Xと一致していない場合(ステップS310で「N」)、調整箇所決定部13bおよび波形データ調整部13cで計測点数を調整して監視用の波形データWを生成し、状態監視制御部12に返信する(ステップS320~S330)。生波形データWrの計測点数Nが基準計測点数Xと一致している場合(ステップS310で「Y」)、出力された生波形データWrをそのまま監視用の波形データWとして、状態監視制御部12に返信する。 In the measurement point adjustment unit 13, as described above, the excess / deficiency determination unit 13a first determines whether or not the measurement point number N matches the reference measurement point number X (step S310). When the number of measurement points N of the raw waveform data Wr does not match the reference number of measurement points X (“N” in step S310), the number of measurement points is adjusted by the adjustment location determination unit 13b and the waveform data adjustment unit 13c to monitor the waveform. Data W is generated and returned to the state monitoring control unit 12 (steps S320 to S330). When the number of measurement points N of the raw waveform data Wr matches the reference number of measurement points X (“Y” in step S310), the state monitoring control unit 12 uses the output raw waveform data Wr as it is as the waveform data W for monitoring. Reply to
 状態監視制御部12は、返信された監視用の波形データWを異常有無判定部15に出力し、異常の有無を判定させる。異常有無判定部15では、出力された波形データWと基準波形データとを比較し、波形データWの各計測点が波形バンドT内に収まっているか否かにより、異常がないかあるかを判定する(ステップS340)。波形バンドT内の収まっている場合(ステップS350で「Y」)、異常ありと判定し、例えば、逸脱の程度や過去の履歴(連続しているか突発的か等)に基づいて、劣化情報を表示あるいは出力する。 The state monitoring control unit 12 outputs the returned monitoring waveform data W to the abnormality presence / absence determination unit 15 to determine whether there is an abnormality. The abnormality presence / absence determination unit 15 compares the output waveform data W with the reference waveform data, and determines whether there is an abnormality depending on whether each measurement point of the waveform data W is within the waveform band T. (Step S340). If it falls within the waveform band T (“Y” in step S350), it is determined that there is an abnormality. For example, the deterioration information is obtained based on the degree of deviation or the past history (continuous or sudden). Display or output.
 このように、計測点数調整部13、あるいは計測点数を調整する工程(例えば、ステップS310~S330)を備えることで、非同期の組込み機器を組み合わせて異常の検出が可能となる。とくに、計測点の追加あるいは削除対象を過不足数に応じて均等割りして設定したため、局所的に偏って計測点の位置をシフトさせることがない。つまり、実際に欠損が生じた箇所あるいは過剰に取得してしまった箇所と、追加あるいは削除対象との間に位置ずれがあった場合でも、その影響を最小限に抑えることができ、計測点の追加あるいは削除を簡単な演算で適切に行うことができる。 Thus, by providing the measurement point adjustment unit 13 or the process of adjusting the measurement points (for example, steps S310 to S330), it becomes possible to detect an abnormality by combining asynchronous embedded devices. In particular, since the addition or deletion of measurement points is equally divided according to the number of excesses and deficiencies, the positions of measurement points are not shifted locally. In other words, even if there is a misalignment between the location where the defect actually occurred or the location that was acquired excessively and the target to be added or deleted, the effect can be minimized. Addition or deletion can be appropriately performed with a simple calculation.
 なお、本実施の形態、および次の実施の形態においては、一つの監視対象を監視する例について説明するが、これに限ることはない。例えば、ひとつの監視対象に対し、異なる種類の通信機能付計測機器を接続した複数の状態監視装置を用いて、多角的な異常検出を実施しても良い。 In the present embodiment and the next embodiment, an example of monitoring one monitoring target will be described, but the present invention is not limited to this. For example, multiple abnormality detections may be performed using a plurality of state monitoring devices in which different types of measuring devices with communication functions are connected to one monitoring target.
 実施の形態2.
 本発明の実施の形態2にかかる状態監視装置の構成と動作、あるいは非同期データの調整方法では、実施の形態1に対して、計測点数に過不足があった場合の削除または追加箇所の設定方法が異なるものである。それ以外については、実施の形態1と同様であるため、同様部分については実施の形態1における図や説明を援用する。図14と図15は、本発明の実施の形態2にかかる状態監視装置の動作、あるいは非同期データの調整方法を説明するためのもので、図14は異常の有無を判定する際に、生波形データの計測点数を調整する際の追加または削除箇所を基準波形との相関関係を用いて設定する動作を含むフローチャート、図15(a)、(b)は計測点数に1点の過不足のある波形データに対する計測点の追加箇所あるいは削除箇所の設定処理を説明するための波形図である。
Embodiment 2. FIG.
In the configuration and operation of the state monitoring apparatus according to the second embodiment of the present invention, or the method for adjusting asynchronous data, a method for deleting or setting additional points when the number of measurement points is excessive or insufficient compared to the first embodiment. Are different. Since it is the same as that of Embodiment 1 about other than that, the figure and description in Embodiment 1 are used about the same part. FIGS. 14 and 15 are diagrams for explaining the operation of the state monitoring apparatus according to the second embodiment of the present invention or the asynchronous data adjustment method. FIG. 14 shows a raw waveform when determining the presence or absence of an abnormality. 15A and 15B are flowcharts including an operation for setting an addition or deletion point when adjusting the number of measurement points of data using a correlation with a reference waveform, and FIGS. 15A and 15B show that the number of measurement points is one or more. It is a wave form diagram for demonstrating the setting process of the addition location or deletion location of a measurement point with respect to waveform data.
 上記実施の形態1においては、過不足数に応じた単純な均等割りつけによって追加・削除箇所を設定することで、演算処理の負担を増加させずに、位置ずれによる影響を最小限に抑えて、計測点数を調整させる例を示した。本実施の形態2においては、実施の形態1よりは演算処理の負担は増大するが、実際に欠損が生じた箇所あるいは過剰に取得してしまった箇所とのずれ自体を最小限に抑え、正確な計測点の追加あるいは削除を行えるようにするものである。 In the first embodiment, by setting the addition / deletion position by simple equal allocation according to the excess / deficiency number, the influence of misalignment can be minimized without increasing the processing load. An example of adjusting the number of measurement points was shown. In the second embodiment, the burden of the arithmetic processing is increased as compared with the first embodiment, but the deviation itself from the location where the actual defect has occurred or the location that has been acquired excessively is minimized, and it is accurate. This makes it possible to add or delete various measurement points.
 本実施の形態2にかかる状態監視装置、あるいは非同期データの調整方法では、図14に示すように、状態監視制御部12は、生波形データWrを取得(図5:ステップS100~S140)すると、基準波形データ記憶部11に基準波形データが格納されているか否かを確認する(ステップS400)。格納されていない場合(ステップS400で「N」)は、基準波形データ生成部10に生波形データWrを出力し、基準波形データ生成ステップ(S200~)を実行させる。一方、格納されている場合(ステップS400で「Y」)は、取得した生波形データWrを状態監視に用いるため、計測点数調整部13に出力する。 In the state monitoring apparatus or the asynchronous data adjustment method according to the second embodiment, as shown in FIG. 14, the state monitoring control unit 12 acquires the raw waveform data Wr (FIG. 5: Steps S100 to S140). It is confirmed whether or not the reference waveform data is stored in the reference waveform data storage unit 11 (step S400). If not stored (“N” in step S400), the raw waveform data Wr is output to the reference waveform data generation unit 10 to execute the reference waveform data generation step (S200˜). On the other hand, if it is stored (“Y” in step S400), the acquired raw waveform data Wr is output to the measurement point adjustment unit 13 in order to use it for state monitoring.
 計測点数調整部13では、前述したように、初めに過不足判定部13aは、計測点数Nが基準計測点数Xと一致しているか否かを判定する(ステップS410)。生波形データWrの計測点数Nが基準計測点数Xと一致している場合(ステップS410で「Y」)、出力された生波形データをそのまま監視用の波形データWとして、状態監視制御部12に返信する。一方、生波形データWrの計測点数Nが基準計測点数Xと一致していない場合(ステップS410で「N」)、調整箇所決定部13bで追加/削除対象を設定する(ステップS420)。波形データ調整部13cは、設定された追加/削除対象に応じて、生波形データWrの計測点数を調整して監視用の波形データWを生成し、状態監視制御部12に返信する(ステップS420~S430)。 In the measurement point adjustment unit 13, as described above, the excess / deficiency determination unit 13a first determines whether or not the measurement point number N matches the reference measurement point number X (step S410). When the measurement point number N of the raw waveform data Wr matches the reference measurement point number X (“Y” in step S410), the output raw waveform data is directly used as the monitoring waveform data W to the state monitoring control unit 12. Send back. On the other hand, when the measurement point N of the raw waveform data Wr does not match the reference measurement point X (“N” in step S410), the adjustment location determination unit 13b sets an addition / deletion target (step S420). The waveform data adjustment unit 13c adjusts the number of measurement points of the raw waveform data Wr according to the set addition / deletion target, generates the waveform data W for monitoring, and returns it to the state monitoring control unit 12 (step S420). To S430).
 ここで、計測点数Nが基準計測点数Xに対し一点の過不足がある場合の調整箇所の決定方法について図15を用いて説明する。不足数が1の場合、調整箇所決定部13bは、図15(a)に示すように、全計測点の間および外側の位置に、逐次計測点を挿入し、挿入して得られた仮波形と基準波形Waとの相関を算出して記憶していく。そして、相関が最も高くなった仮波形を形成することができた挿入箇所を点数調整用の挿入箇所として設定する(ステップS420)。設定後の波形データ調整部13cの動作は実施の形態1と同様である。なお、計測点の間は実施の形態1と同様に平均値でよいが、外側の位置の場合は近傍計測点の傾きから外挿すればよい。例えば、Mrの手前に計測点を追加する場合は、MrとMrとの差をMrの値から除した値にすればよい。同様にMrの後ろに計測点を追加する場合は、MrとMrN-1との差をMrに加算した値にすればよい。 Here, a method for determining an adjustment point when the number of measurement points N is one excess or deficiency with respect to the reference measurement number X will be described with reference to FIG. When the shortage number is 1, as shown in FIG. 15A, the adjustment location determination unit 13b sequentially inserts measurement points between all measurement points and outside positions, and the provisional waveform obtained by the insertion. And the correlation with the reference waveform Wa is calculated and stored. Then, the insertion location where the provisional waveform having the highest correlation can be formed is set as the insertion location for the point adjustment (step S420). The operation of the waveform data adjustment unit 13c after setting is the same as that in the first embodiment. The average value between the measurement points may be the same as in the first embodiment, but in the case of the outer position, it may be extrapolated from the inclination of the nearby measurement point. For example, when adding a measurement point in front of Mr 1 may be the difference between the Mr 2 and Mr 1 to the value obtained by dividing the value of Mr 1. Similarly, if you add a measurement point behind Mr N may be the difference between the Mr N and Mr N-1 to a value obtained by adding the Mr N.
 あるいは、超過数が1の場合、調整箇所決定部13bは、図15(b)に示すように、全計測点を、逐次削除し、削除して得られた仮波形と基準波形Waとの相関を算出して記憶していく。そして、相関が最も高くなった仮波形を形成することができた削除箇所を点数調整用の削除箇所として設定する(ステップS420)。 Or when the excess number is 1, as shown in FIG.15 (b), the adjustment location determination part 13b deletes all the measurement points sequentially, and correlates with the temporary waveform obtained by deleting, and the reference | standard waveform Wa. Is calculated and stored. Then, the deletion location where the provisional waveform having the highest correlation can be formed is set as a deletion location for score adjustment (step S420).
 ステップS440以降の動作は、実施の形態1で説明した図13のステップS340以降と同様である。これにより、実際に欠損が生じた箇所あるいは過剰に取得してしまった箇所とのずれを最小限に抑えた正確な位置に計測点を追加あるいは削除して計測点数を調整することができる。 The operation after step S440 is the same as that after step S340 in FIG. 13 described in the first embodiment. As a result, the number of measurement points can be adjusted by adding or deleting measurement points at an accurate position in which a deviation from a location where an actual defect has occurred or an excessively acquired location is minimized.
 なお、削除あるいは追加対象数を過不足数の回数分乗じただけの仮波形データの作成数は、必要となるが、過不足数が2点以上の場合でも、この削除あるいは追加対象の設定方法は有効である。 The number of provisional waveform data created by multiplying the number of objects to be deleted or added by the number of excess / deficiency is required, but even if the number of excess / deficiency is two or more, this deletion or addition target setting method Is valid.
 以上のように、本発明の実施の形態1あるいは2にかかる状態監視装置1によれば、サイクル毎に一定の動作で稼働することが想定される装置(生産設備2)の状態を、1サイクル分の波形データを構成する計測値ごとの上下限判断(または閾値判断)により監視する状態監視装置1であって、時間情報を応答しない計測機器3から、生産設備2の状態を示す計測値を収集する計測値収集部(送受信部16)と、送受信部16が収集した計測値を時系列順に並べ、生産設備2の1サイクル分の波形データを生成する波形化処理部14と、生産設備2が正常なときの1サイクル分の波形データである基準波形Waと、基準波形Waの計測値ごとの上限値Thuと下限値Thl(または、いずれかの閾値)、および基準波形Waの計測点数として定めた基準計測点数Xと、を含む基準波形データを記憶する基準波形データ記憶部11と、波形化処理部14が生成した生波形データWrを基準波形データと比較するために調整して出力する波形データ調整部(計測点数調整部13)と、計測点数調整部13が出力した波形データWを基準波形データと比較し、生産設備2に異常があるか否かを判定する異常有無判定部15と、を備え、計測点数調整部13は、生波形データWrの計測点数Nが基準計測点数Xに合致しない場合、生波形データWrの計測点Miあるいは計測点間のうち、所定の基準で設定した計測点Miの削除、あるいは計測点間への計測点の追加により、基準計測点数Xと一致するように生波形データWrを調整するように構成した。これにより、時間情報を応答しない汎用的な計測機器を用いても、波形バンドTを用いた状態監視を正確に実行することができる。 As described above, according to the state monitoring apparatus 1 according to the first or second embodiment of the present invention, the state of the apparatus (production facility 2) that is assumed to operate with a constant operation for each cycle is changed to one cycle. The state monitoring device 1 that monitors by the upper and lower limit judgment (or threshold judgment) for each measurement value constituting the minute waveform data from the measurement device 3 that does not respond to the time information, the measurement value indicating the state of the production facility 2 A measurement value collection unit (transmission / reception unit 16) to collect, a waveform processing unit 14 that arranges the measurement values collected by the transmission / reception unit 16 in time series, and generates waveform data for one cycle of the production facility 2, and the production facility 2 Reference waveform Wa, which is waveform data for one cycle when is normal, upper limit value Thu and lower limit value Thl (or any threshold value) for each measurement value of reference waveform Wa, and the number of measurement points of reference waveform Wa A reference waveform data storage unit 11 for storing reference waveform data including a predetermined reference measurement point X, and raw waveform data Wr generated by the waveform processing unit 14 are adjusted and output for comparison with the reference waveform data. The waveform data adjustment unit (measurement point adjustment unit 13) and the waveform data W output from the measurement point adjustment unit 13 are compared with the reference waveform data to determine whether or not the production facility 2 has an abnormality. The measurement point adjustment unit 13 sets the measurement point Mi of the raw waveform data Wr according to a predetermined reference among the measurement points Mi or the measurement points of the raw waveform data Wr when the measurement point number N of the raw waveform data Wr does not match the reference measurement point number X. The raw waveform data Wr is adjusted to coincide with the reference measurement point number X by deleting the measurement points Mi or adding measurement points between the measurement points. As a result, even when a general-purpose measuring device that does not respond to time information is used, state monitoring using the waveform band T can be accurately executed.
 また、実施の形態1にかかる状態監視装置1のように、波形データ調整部(計測点数調整部13)は、生波形データWrの計測点数Nの基準計測点数Xからの過不足数に応じて、生波形データWrの計測点数Nを均等割りした位置を計測点の削除あるいは追加対象として設定するように構成したので、演算処理の負担を増大させることなく、実際に欠損が生じた箇所あるいは過剰に取得してしまった箇所と、追加あるいは削除対象との間に位置ずれがあった場合でも、その影響を最小限に抑えて、正確な状態監視を実行できる。 Further, like the state monitoring apparatus 1 according to the first embodiment, the waveform data adjustment unit (measurement point adjustment unit 13) corresponds to the number of measurement points N of the raw waveform data Wr from the reference measurement point X, which is excessive or insufficient. Since the position obtained by equally dividing the number N of measurement points of the raw waveform data Wr is set as the target for deletion or addition of the measurement points, the location where the defect is actually generated or the excess is not increased without increasing the processing load. Even if there is a positional deviation between the location acquired in the previous step and the object to be added or deleted, it is possible to perform accurate state monitoring with minimal influence.
 あるいは、実施の形態2にかかる状態監視装置1のように、波形データ調整部(計測点数調整部13)は、生波形データWrの全計測点に対し、基準計測点数Xからの過不足数分の計測点を逐次削除あるいは追加するごとに生成した仮波形データを基準波形Waと比較し、基準波形Waと最も相関の高い仮波形データを調整済みの波形データWとして出力するように構成したので、実際に欠損が生じた箇所、あるいは過剰に取得してしまった箇所とのずれを最小限に抑えた正確な位置に計測点を追加あるいは削除して計測点数を調整することができる。 Alternatively, as in the state monitoring apparatus 1 according to the second embodiment, the waveform data adjustment unit (measurement point adjustment unit 13) is the number of excess and deficiency from the reference measurement point number X with respect to all measurement points of the raw waveform data Wr. The provisional waveform data generated each time the measurement points are sequentially deleted or added are compared with the reference waveform Wa, and the provisional waveform data having the highest correlation with the reference waveform Wa is output as the adjusted waveform data W. It is possible to adjust the number of measurement points by adding or deleting measurement points at an accurate position with a minimum deviation from a location where an actual defect has occurred or an excessively acquired location.
 また、装置(生産設備2)が正常なときに収集した複数回分の波形データから基準計測点数Xを算出し、算出した基準計測点数Xに基づき、波形データ調整部(計測点数調整部13)が複数回分の波形データ(生波形データWr)を調整した波形データWを用いて、基準波形データWaを生成する基準波形データ生成部10を備えるように構成すれば、実際に欠損が生じた箇所あるいは過剰に取得してしまった箇所とのずれを最小限に抑えた正確な位置に計測点を追加あるいは削除して計測点数を調整することができる。 Further, a reference measurement point X is calculated from a plurality of waveform data collected when the apparatus (production facility 2) is normal, and the waveform data adjustment unit (measurement point adjustment unit 13) is based on the calculated reference measurement point X. If the waveform data W obtained by adjusting the waveform data (raw waveform data Wr) for a plurality of times is used to provide the reference waveform data generation unit 10 that generates the reference waveform data Wa, The number of measurement points can be adjusted by adding or deleting measurement points at an accurate position with a minimum deviation from the excessively acquired location.
 外部から受信した信号により、装置(生産設備2)がON状態かOFF状態であるかを判定する稼働状態判定部(状態監視制御部12の機能の一部)を有し、計測値収集部(送受信部16)は、稼働状態判定部の判定結果に基づいて、計測機器3からの計測値の収集の開始または停止を行うようにすれば、人手を介することなく、1サイクル分の波形データを取得し、状態監視が可能となる。 It has an operation state determination unit (a part of the function of the state monitoring control unit 12) for determining whether the device (production facility 2) is in an ON state or an OFF state based on a signal received from the outside, and a measurement value collection unit ( If the transmission / reception unit 16) starts or stops collection of measurement values from the measurement device 3 based on the determination result of the operating state determination unit, the waveform data for one cycle is obtained without human intervention. Acquire and monitor the status.
 以上のように、本発明の実施の形態1あるいは2にかかる非同期データの調整方法によれば、時間情報を応答しない計測機器3から出力された非同期の計測値を時系列順に並べた波形データを用いて、サイクル毎に一定の動作で稼働することが想定される装置(生産設備2)の状態監視に用いるために波形データを調整する方法であって、計測機器3から、生産設備2の状態を示す計測値を収集する計測値収集ステップ(ステップS120~S130)と、計測値収集ステップで収集した計測値を時系列順に並べ、生産設備2の1サイクル分の波形データを生成する波形化ステップ(ステップS140)と、生産設備2が正常なときの1サイクル分の波形データである基準波形Waと、基準波形Waの計測値ごとの上限値Thuと下限値Thl(または、いずれかの閾値)、および基準波形Waの計測点数として定めた基準計測点数Xと、を含む基準波形データを記憶する基準波形データ記憶ステップと、波形化ステップで生成した生波形データWrを基準波形データWaと比較するために調整して出力する波形データ調整ステップ(ステップS330、またはS430))と、波形データ調整ステップで出力された波形データWを基準波形データと比較し、生産設備2に異常があるか否かを判定する異常有無判定ステップ(ステップS340~S360、またはS440~S460)と、を有し、波形データ調整ステップでは、生波形データの計測点数Nが基準計測点数Xに合致しない場合(ステップS310、またはS410)、生波形データWrの計測点Miあるいは計測点間のうち、所定の基準で設定した計測点の削除、あるいは計測点間への計測点の追加により、前記基準計測点数と一致するように前記生波形データを調整する(ステップS320~S330、またはS420~S430)ように構成したので、汎用的な計測機器から収集した非同期データを容易に状態監視が可能となるように調整することができる。 As described above, according to the asynchronous data adjustment method according to the first or second embodiment of the present invention, the waveform data in which the asynchronous measurement values output from the measurement device 3 that does not respond to time information are arranged in time-series order. A method for adjusting waveform data for use in monitoring the state of a device (production facility 2) that is supposed to operate with a constant operation for each cycle, from the measuring device 3 to the state of the production facility 2 A measurement value collection step (steps S120 to S130) for collecting measurement values indicative of the waveform, and a waveform generation step for generating waveform data for one cycle of the production facility 2 by arranging the measurement values collected in the measurement value collection step in time series (Step S140), a reference waveform Wa that is waveform data for one cycle when the production facility 2 is normal, and an upper limit value Thu and a lower limit value T for each measured value of the reference waveform Wa. Reference waveform data storage step for storing reference waveform data including 1 (or any threshold value) and a reference measurement point number X determined as the number of measurement points of the reference waveform Wa, and raw waveform data generated in the waveform forming step A waveform data adjustment step (step S330 or S430) for adjusting and outputting Wr for comparison with the reference waveform data Wa, and comparing the waveform data W output in the waveform data adjustment step with the reference waveform data for production. An abnormality presence / absence determination step (steps S340 to S360 or S440 to S460) for determining whether or not the facility 2 has an abnormality. In the waveform data adjustment step, the number N of measurement points of the raw waveform data is the reference number of measurement points. When X does not match (step S310 or S410), measurement point Mi or measurement of raw waveform data Wr The raw waveform data is adjusted so as to coincide with the number of reference measurement points by deleting measurement points set according to a predetermined reference or adding measurement points between measurement points (steps S320 to S330, or S420 to S430), the asynchronous data collected from the general-purpose measuring device can be adjusted so that the status can be easily monitored.
 また、実施の形態1にかかる非同期データの調整方法のように、波形データ調整ステップでは、生波形データWrの計測点数Nの基準計測点数Xからの過不足数に応じて、生波形データWrの計測点数を均等割りした位置を計測点の削除あるいは追加対象として設定する(ステップS320~S330)ように構成すれば、演算処理の負担を増大させることなく、実際に欠損が生じた箇所あるいは過剰に取得してしまった箇所と、追加あるいは削除対象との間に位置ずれがあった場合でも、その影響を最小限に抑えたデータの調整が行える。 In addition, as in the asynchronous data adjustment method according to the first embodiment, in the waveform data adjustment step, the raw waveform data Wr is changed according to the number of measurement points N of the raw waveform data Wr from the reference measurement point X. By configuring the positions obtained by equally dividing the number of measurement points as deletion points or addition targets for measurement points (steps S320 to S330), the location where an actual defect has occurred or excessively increased without increasing the burden of calculation processing. Even if there is a positional deviation between the acquired location and the addition or deletion target, the data can be adjusted with the effect minimized.
 あるいは、実施の形態2にかかる非同期データの調整方法のように、波形データ調整ステップでは、生波形データWrの全計測点に対し、基準計測点数Xからの過不足数分の計測点を逐次削除あるいは追加するごとに生成した仮波形データを基準波形Waと比較し、基準波形Waと最も相関の高い仮波形データを調整済みの波形データとして出力する(ステップS420~S430)ように構成したので、実際に欠損が生じた箇所あるいは過剰に取得してしまった箇所とのずれを最小限に抑えた正確な位置に計測点を追加あるいは削除してデータの調整ができる。 Alternatively, as in the asynchronous data adjustment method according to the second embodiment, in the waveform data adjustment step, the measurement points for the excess and deficiency from the reference measurement points X are sequentially deleted from all the measurement points of the raw waveform data Wr. Alternatively, the provisional waveform data generated each time it is added is compared with the reference waveform Wa, and temporary waveform data having the highest correlation with the reference waveform Wa is output as adjusted waveform data (steps S420 to S430). Data can be adjusted by adding or deleting measurement points at an accurate position with minimal deviation from a location where a defect has actually occurred or a location that has been acquired excessively.
 なお、上記各実施の形態において、異常有無を上限値Thuと下限値Thlの両方で判断する上下限判断の例を示したが、これに限ることはない。少なくとも一方の閾値で判断する閾値判断でも同様の効果を奏することができる。 In each of the above-described embodiments, an example of upper / lower limit determination in which the presence / absence of abnormality is determined by both the upper limit value Thu and the lower limit value Thl has been described, but the present invention is not limited to this. The same effect can be obtained even by threshold determination based on at least one threshold.
 1:状態監視装置、 2:生産設備(装置)、 3:計測機器、
 10:基準波形データ生成部、 11:基準波形データ記憶部、 12:状態監視制御部、 13:計測点数調整部(波形データ調整部)、 14:波形化処理部、 15:異常有無判定部、 16:送受信部(計測値収集部)、
 Mi:計測値、 N:計測点数、 T:波形バンド、 Thl:下限値(閾値)、 Thu:上限値(閾値)、 W:波形データ、 Wa:基準波形、 Wr:生波形データ、 X:基準計測点数。
1: Status monitoring device, 2: Production equipment (device), 3: Measuring equipment,
10: Reference waveform data generation unit, 11: Reference waveform data storage unit, 12: State monitoring control unit, 13: Measurement point adjustment unit (waveform data adjustment unit), 14: Waveform processing unit, 15: Abnormality determination unit, 16: Transmission / reception unit (measurement value collection unit),
Mi: measurement value, N: number of measurement points, T: waveform band, Thl: lower limit value (threshold), Thu: upper limit value (threshold), W: waveform data, Wa: reference waveform, Wr: raw waveform data, X: reference Number of measurement points.

Claims (8)

  1.  サイクル毎に一定の動作で稼働することが想定される装置の状態を、1サイクル分の波形データを構成する計測値ごとの閾値判断により監視する状態監視装置であって、
     時間情報を応答しない計測機器から、前記装置の状態を示す計測値を収集する計測値収集部と、
     前記計測値収集部が収集した計測値を時系列順に並べ、前記装置の1サイクル分の波形データを生成する波形化処理部と、
     前記装置が正常なときの1サイクル分の波形データである基準波形と、前記基準波形の計測値ごとの閾値、および前記基準波形の計測点数として定めた基準計測点数と、を含む基準波形データを記憶する基準波形データ記憶部と、
     前記波形化処理部が生成した生波形データを前記基準波形データと比較するために調整して出力する波形データ調整部と、
     前記波形データ調整部が出力した波形データを前記基準波形データと比較し、前記装置に異常があるか否かを判定する異常有無判定部と、を備え、
     前記波形データ調整部は、前記生波形データの計測点数が前記基準計測点数に合致しない場合、前記生波形データの計測点あるいは計測点間のうち、所定の基準で設定した計測点の削除、あるいは計測点間への計測点の追加により、前記基準計測点数と一致するように前記生波形データを調整することを特徴とする状態監視装置。
    A state monitoring device that monitors a state of a device that is assumed to operate with a constant operation for each cycle by threshold determination for each measurement value that constitutes waveform data for one cycle,
    A measurement value collection unit that collects measurement values indicating the state of the device from a measurement device that does not respond to time information;
    Arranging the measurement values collected by the measurement value collection unit in chronological order, and generating a waveform data for one cycle of the apparatus;
    Reference waveform data including a reference waveform that is waveform data for one cycle when the apparatus is normal, a threshold for each measurement value of the reference waveform, and a reference measurement point number determined as the number of measurement points of the reference waveform A reference waveform data storage unit for storing;
    A waveform data adjusting unit for adjusting and outputting the raw waveform data generated by the waveform processing unit for comparison with the reference waveform data;
    Comparing the waveform data output by the waveform data adjustment unit with the reference waveform data, and including an abnormality presence / absence determination unit that determines whether or not there is an abnormality in the device,
    The waveform data adjustment unit, when the number of measurement points of the raw waveform data does not match the number of reference measurement points, deletes the measurement points set by a predetermined reference among the measurement points of the raw waveform data or between measurement points, or A state monitoring apparatus that adjusts the raw waveform data so as to coincide with the reference number of measurement points by adding measurement points between measurement points.
  2.  前記波形データ調整部は、前記生波形データの計測点数の前記基準計測点数からの過不足数に応じて、前記生波形データの計測点数を均等割りした位置を前記計測点の削除あるいは追加対象として設定することを特徴とする請求項1に記載の状態監視装置。 The waveform data adjusting unit is configured to delete or add the measurement points to the positions obtained by equally dividing the measurement points of the raw waveform data according to the excess or deficiency of the measurement points of the raw waveform data from the reference measurement points. The state monitoring device according to claim 1, wherein the state monitoring device is set.
  3.  前記波形データ調整部は、前記生波形データの全計測点に対し、前記基準計測点数からの過不足数分の計測点を逐次削除あるいは追加するごとに生成した仮波形データを前記基準波形と比較し、前記基準波形と最も相関の高い仮波形データを調整済みの波形データとして出力することを特徴とする請求項1に記載の状態監視装置。 The waveform data adjustment unit compares the temporary waveform data generated each time the measurement points corresponding to the excess or deficiency from the reference measurement points are sequentially deleted or added to all the measurement points of the raw waveform data with the reference waveform. The condition monitoring apparatus according to claim 1, wherein provisional waveform data having the highest correlation with the reference waveform is output as adjusted waveform data.
  4.  前記装置が正常なときに収集した複数回分の波形データから前記基準計測点数を算出し、算出した基準計測点数に基づき、前記波形データ調整部が前記複数回分の波形データを調整した波形データを用いて、前記基準波形データを生成する基準波形データ生成部を備えたことを特徴とする請求項1~3のいずれか1項に記載の状態監視装置。 The reference measurement points are calculated from a plurality of waveform data collected when the apparatus is normal, and the waveform data adjustment unit uses the waveform data obtained by adjusting the waveform data for the plurality of times based on the calculated reference measurement points. The state monitoring device according to any one of claims 1 to 3, further comprising a reference waveform data generation unit that generates the reference waveform data.
  5.  外部から受信した信号により、前記装置がON状態かOFF状態であるかを判定する稼働状態判定部を有し、
     前記計測値収集部は、前記稼働状態判定部の判定結果に基づいて、前記計測機器からの計測値の収集の開始または停止を行うことを特徴とする請求項1~4のいずれか1項に記載の状態監視装置。
    An operating state determination unit that determines whether the device is in an ON state or an OFF state based on a signal received from the outside;
    5. The measurement value collection unit according to claim 1, wherein the measurement value collection unit starts or stops collecting measurement values from the measurement device based on a determination result of the operating state determination unit. The state monitoring device described.
  6.  時間情報を応答しない計測機器から出力された非同期の計測値を時系列順に並べた波形データを用いて、サイクル毎に一定の動作で稼働することが想定される装置の状態監視に用いるために波形データを調整する方法であって、
     前記計測機器から、前記装置の状態を示す計測値を収集する計測値収集ステップと、
     前記計測値収集ステップで収集した計測値を時系列順に並べ、前記装置の1サイクル分の波形データを生成する波形化ステップと、
     前記装置が正常なときの1サイクル分の波形データである基準波形と、前記基準波形の計測値ごとの閾値、および前記基準波形の計測点数として定めた基準計測点数と、を含む基準波形データを記憶する基準波形データ記憶ステップと、
     前記波形化ステップで生成した生波形データを前記基準波形データと比較するために調整して出力する波形データ調整ステップと、
     前記波形データ調整ステップで出力された波形データを前記基準波形データと比較し、前記装置に異常があるか否かを判定する異常有無判定ステップと、を有し、
     前記波形データ調整ステップでは、前記生波形データの計測点数が前記基準計測点数に合致しない場合、前記生波形データの計測点あるいは計測点間のうち、所定の基準で設定した計測点の削除、あるいは計測点間への計測点の追加により、前記基準計測点数と一致するように前記生波形データを調整することを特徴とする非同期データの調整方法。
    Waveforms for use in monitoring the status of devices that are expected to operate with a constant operation for each cycle, using waveform data in which asynchronous measurement values output from measuring equipment that does not respond to time information are arranged in time series A method of adjusting data,
    A measurement value collection step for collecting measurement values indicating the state of the device from the measurement device;
    Arranging the measurement values collected in the measurement value collection step in chronological order, and generating waveform data for one cycle of the apparatus;
    Reference waveform data including a reference waveform that is waveform data for one cycle when the apparatus is normal, a threshold for each measurement value of the reference waveform, and a reference measurement point number determined as the number of measurement points of the reference waveform A reference waveform data storage step for storing;
    A waveform data adjustment step for adjusting and outputting the raw waveform data generated in the waveform forming step for comparison with the reference waveform data;
    Comparing the waveform data output in the waveform data adjustment step with the reference waveform data, and determining whether or not there is an abnormality in the apparatus,
    In the waveform data adjustment step, when the number of measurement points of the raw waveform data does not match the reference measurement point number, the measurement points set according to a predetermined reference among the measurement points of the raw waveform data or between measurement points, or A method of adjusting asynchronous data, wherein the raw waveform data is adjusted so as to coincide with the reference number of measurement points by adding measurement points between measurement points.
  7.  前記波形データ調整ステップでは、前記生波形データの計測点数の前記基準計測点数からの過不足数に応じて、前記生波形データの計測点数を均等割りした位置を前記計測点の削除あるいは追加対象として設定することを特徴とする請求項6に記載の非同期データの調整方法。 In the waveform data adjustment step, a position obtained by equally dividing the number of measurement points of the raw waveform data according to the excess or deficiency of the number of measurement points of the raw waveform data from the reference measurement number is set as a target for deletion or addition of the measurement points. The method for adjusting asynchronous data according to claim 6, wherein the setting is performed.
  8.  前記波形データ調整ステップでは、前記生波形データの全計測点に対し、前記基準計測点数からの過不足数分の計測点を逐次削除あるいは追加するごとに生成した仮波形データを前記基準波形と比較し、前記基準波形と最も相関の高い仮波形データを調整済みの波形データとして出力することを特徴とする請求項6に記載の非同期データの調整方法。 In the waveform data adjustment step, the temporary waveform data generated every time the measurement points corresponding to the excess or deficiency from the reference measurement points are sequentially deleted or added to all the measurement points of the raw waveform data are compared with the reference waveform. 7. The method of adjusting asynchronous data according to claim 6, wherein provisional waveform data having the highest correlation with the reference waveform is output as adjusted waveform data.
PCT/JP2018/017026 2018-04-26 2018-04-26 State monitoring device and adjustment method for asynchronous data WO2019207718A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880092622.8A CN112005180B (en) 2018-04-26 2018-04-26 State monitoring device and asynchronous data adjusting method
PCT/JP2018/017026 WO2019207718A1 (en) 2018-04-26 2018-04-26 State monitoring device and adjustment method for asynchronous data
JP2020515394A JP6861893B2 (en) 2018-04-26 2018-04-26 Condition monitoring device and asynchronous data adjustment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/017026 WO2019207718A1 (en) 2018-04-26 2018-04-26 State monitoring device and adjustment method for asynchronous data

Publications (1)

Publication Number Publication Date
WO2019207718A1 true WO2019207718A1 (en) 2019-10-31

Family

ID=68295103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017026 WO2019207718A1 (en) 2018-04-26 2018-04-26 State monitoring device and adjustment method for asynchronous data

Country Status (3)

Country Link
JP (1) JP6861893B2 (en)
CN (1) CN112005180B (en)
WO (1) WO2019207718A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021187334A1 (en) * 2020-03-17 2021-09-23
US11698619B2 (en) 2021-05-27 2023-07-11 Panasonic Intellectual Property Management Co., Ltd. Machining step monitoring apparatus and machining step monitoring method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115990629A (en) * 2021-10-18 2023-04-21 深圳富桂精密工业有限公司 Abnormality detection method, device, equipment and medium for stamping equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07160323A (en) * 1993-12-02 1995-06-23 Nissan Motor Co Ltd Operation waveform diagnostic device for industrial robot

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05116056A (en) * 1991-10-28 1993-05-14 Ritsukusu Kk Fault detecting device for machine tool
JP2001287254A (en) * 2000-04-10 2001-10-16 Sumitomo Heavy Ind Ltd Injection molding machine having abnormality monitoring function
JP4103029B2 (en) * 2001-05-18 2008-06-18 有限会社 ソフトロックス Process monitoring method
CN103134679B (en) * 2011-11-28 2016-06-29 杰富意先进技术株式会社 Bearing state monitors method and bearing state monitoring arrangement
JP5805554B2 (en) * 2012-02-20 2015-11-04 株式会社パスコ Measurement point extraction program, measurement point extraction method, and measurement point extraction device
JP5910428B2 (en) * 2012-09-13 2016-04-27 オムロン株式会社 Monitoring device, monitoring method, program, and recording medium
WO2017022312A1 (en) * 2015-08-06 2017-02-09 新日鉄住金ソリューションズ株式会社 Information processing device, information processing system, information processing method, and program

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07160323A (en) * 1993-12-02 1995-06-23 Nissan Motor Co Ltd Operation waveform diagnostic device for industrial robot

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021187334A1 (en) * 2020-03-17 2021-09-23
WO2021187334A1 (en) * 2020-03-17 2021-09-23 ファナック株式会社 Abnormality determination device
JP7392107B2 (en) 2020-03-17 2023-12-05 ファナック株式会社 Abnormality determination device
US11698619B2 (en) 2021-05-27 2023-07-11 Panasonic Intellectual Property Management Co., Ltd. Machining step monitoring apparatus and machining step monitoring method

Also Published As

Publication number Publication date
CN112005180A (en) 2020-11-27
JP6861893B2 (en) 2021-04-21
CN112005180B (en) 2023-09-22
JPWO2019207718A1 (en) 2020-10-22

Similar Documents

Publication Publication Date Title
WO2019207718A1 (en) State monitoring device and adjustment method for asynchronous data
EP2827155B1 (en) Analytical gateway device for measurement devices
JP5358814B2 (en) Sensor information supplement system and sensor information supplement method
US10983510B2 (en) Operation state monitoring apparatus, learning data generation apparatus, method and program
CN104360144A (en) Method for determining zero crossing point of alternating current signal and system for determining zero crossing point of alternating current signal
US8559462B2 (en) Synchronization signal detection apparatus
JP5630940B2 (en) Weighing unit for weighing units, especially for connecting scales
CN111711224A (en) Synchronous processing method for output voltage and carrier signal when alternating current power supplies are connected in parallel
WO2023165135A1 (en) Annular power network fault location method and related equipment
KR20170016777A (en) System for monitoring electronic circuit and method for monitoring electronic circuit
CN110096029A (en) Thermal displacement correction device
JP5662119B2 (en) Node system and monitoring node
CN113382348A (en) Earphone detection method, device and system and computer readable storage medium
JP2021096801A (en) Monitoring apparatus and monitoring program
TWI738139B (en) Device, system, and method for data acquisition
CN114900263B (en) Device, calibration method and device thereof, readable storage medium and air conditioning system
CN105812209B (en) The condition detection method and system of clock synchronization system
CN114448850B (en) Dialing control method, electronic equipment and dialing control system
JP3789433B2 (en) Automatic phase difference adjustment system
CN112505606B (en) Calibration device and calibration method for setting values of multiple voltage monitors
CN117640463B (en) Satellite broadband short message communication and vital sign health monitoring method and system
JP5857228B2 (en) Frequency control method and frequency control system
CN102981439B (en) The monitoring method and its supervising device and electronic installation of electronic component working frequency
JP6089161B1 (en) Power measurement system and current measurement station
CN115827656A (en) Abnormal timestamp adjustment method and device for unstable time series data

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915819

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020515394

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18915819

Country of ref document: EP

Kind code of ref document: A1