WO2019207370A1 - System for microinjection and metering of oxygen for discharge waters of a hydroelectric plant - Google Patents

System for microinjection and metering of oxygen for discharge waters of a hydroelectric plant Download PDF

Info

Publication number
WO2019207370A1
WO2019207370A1 PCT/IB2019/052237 IB2019052237W WO2019207370A1 WO 2019207370 A1 WO2019207370 A1 WO 2019207370A1 IB 2019052237 W IB2019052237 W IB 2019052237W WO 2019207370 A1 WO2019207370 A1 WO 2019207370A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
type
steel
panel
discharge
Prior art date
Application number
PCT/IB2019/052237
Other languages
Spanish (es)
French (fr)
Inventor
Paola Andrea SANCHEZ CASTELLANOS.
Nelson William QUINTERO BURGOS.
Juan Diego ACERO ZULUAGA.
Hector Enrique LIZCANO
Original Assignee
Emgesa S.A., Esp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Emgesa S.A., Esp. filed Critical Emgesa S.A., Esp.
Priority to PE2020001438A priority Critical patent/PE20201333A1/en
Publication of WO2019207370A1 publication Critical patent/WO2019207370A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/20Activated sludge processes using diffusers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/26Activated sludge processes using pure oxygen or oxygen-rich gas
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F7/00Aeration of stretches of water
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B7/00Barrages or weirs; Layout, construction, methods of, or devices for, making same
    • E02B7/02Fixed barrages
    • E02B7/04Dams across valleys
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B9/00Water-power plants; Layout, construction or equipment, methods of, or apparatus for, making same
    • E02B9/02Water-ways
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • Hydroelectric power plants use gravitational potential energy that has a body of water due to the presence of a drop in a natural or artificial channel, to produce mechanical energy through the passage of water in its fall between two levels, through a hydraulic turbine , which transmits energy from said flow to an electric generator thus transforming the mechanical energy of the flow into electrical energy.
  • a hydroelectric power station consists of a dam that raises the water level of a natural source to create a water fall and control its flow. Additionally, the hydroelectric power station comprises a turbine that is driven by the force of the falling water pushing against the vanes of the same by turning it; and a generator that is connected to the turbine, which converts the mechanical energy of the turbine into electrical energy.
  • the dam forms a reservoir of water, which is often devoid of oxygen due to stagnation, said decrease in oxygen represents an ecological risk since dissolved oxygen (OD) is indispensable in the ecosystems for oxidation processes. reduction, aerobic respiration of microorganisms and animals, solubility of minerals and the decomposition of organic matter, among others. Therefore, once this body of water with low concentrations of OD introduced into a discharge channel, it is transported downstream generating potentially dangerous environmental effects, especially for wildlife.
  • OD dissolved oxygen
  • this system has the disadvantage that aerators require an optimum level of water pressure between approximately twenty and twenty-five pounds per square inch as water enters each aerator so that each aerator can efficiently discharge eight to ten milligrams per liter of dissolved oxygen.
  • the present invention relates to a micro injection and oxygen dosing system to increase the OD in discharge waters of a hydroelectric.
  • Figure 1 shows that a hydroelectric plant is characterized by comprising, for example: a dike (A), a landfill (B), a bypass tunnel (C), a dam (D), a machine house (F), a loading tunnel (G) and a discharge channel (E).
  • A a dike
  • B a landfill
  • C bypass tunnel
  • D a dam
  • F machine house
  • G loading tunnel
  • E discharge channel
  • Figure 2 illustrates a machine house (F) together with the discharge channel (E).
  • the micro injection and oxygen dosing system of the invention has been designed to be installed in the position (1) of the discharge channel (E) of a hydroelectric plant or in the riverbed.
  • the micro injection and oxygen dosing system of the invention comprises panels constructed with steel pipes for transporting oxygen or air, connected perpendicularly with microperforated hoses that release oxygen bubbles or air fed through said microperforations.
  • the aforementioned system allows oxygen to be added to bodies of water with high flow rates and high discharge speed, that is to say around 7 m / s or greater.
  • Figure 1 shows the general structure of a hydroelectric from a panoramic view.
  • Figure 2 illustrates a machine house of a hydroelectric plant.
  • Figure 3 illustrates the Type II Panel of the invention.
  • Figure 4 illustrates the possible connection between two Type II panels of the invention.
  • Figure 5 illustrates the Type I Panel of the invention.
  • Figure 6 illustrates the process for oxygenation of discharge water from a hydroelectric plant of the invention.
  • Figure 7 illustrates particular embodiments of the oxygenation system of the invention by the combination of Type I and Type II panels.
  • FIG. 8 illustrates the feeding system for the micro injection and oxygen dosing system of the invention.
  • the pipes 12a and 12b can have a diameter of 3 ”(80 mm) to 10” (250 mm), where the diameter selection will depend on the amount of oxygen to be injected, which in turn is dependent on the quality of water and the discharge of discharged water.
  • Microperforated hoses that can be made of rubber or latex.
  • the characteristic microperforations of the hoses of the invention have a diameter of 0.03 to 0.09 mm.
  • the microperforation has a diameter of 0.07 mm.
  • Figure 3 illustrates a preferred non-limiting embodiment of a Type II Panel (1 1) of the micro injection and oxygen dosing system of the invention, characterized by comprising a steel pipe (12a) and a steel pipe (12b ).
  • a steel pipe (12a) To the steel pipe (12a) microperforated hoses (13) are connected perpendicularly by means of triclamp steel hose connectors (14).
  • Figure 4 shows the joining of the microperforated hoses (13) to the steel pipes (12a) further comprising nipples (21) and splints (22) to ensure the flow of oxygen or air gas from the steel pipes (12a) to the microperforated hoses (13).
  • the steel pipes (12a) are connected to steel pipes type (12b) by elbows (18) welded and secured with triclamp couplings (16).
  • two steel pipes (12b) join a T (19), which in turn joins at the free end to a reduction pipe (24) that is connected to the oxygen or air gas supply and distribution pipe (25) shown in Figure 8.
  • the panel (1 1) can also optionally comprise an outlet pipe (20) attached to a T (19) located between two of the steel pipes (12b) as shown in Figure 4, where the outlet pipe (20 ) is attached to a second panel (1 1).
  • said pipe (20) may be absent, so that the panel (1 1) does not join another.
  • two steel pipes (12b) are connected to a T (19) whose third end is connected to a pipe (12a), to form a Type I Panel (26). Similar to the type II panel, the pipes (12a) further comprise nipples (21) and splints (22) to ensure the flow of oxygen gas or air from the steel pipes (12a) to the microperforated hoses (13).
  • the micro injection and oxygen dosing system of the invention is anchored to the discharge channel (E) in position (1) according to Figure 2, by installing stainless steel beams that support the system and are anchored. to the concrete of the discharge channel (E) by stainless steel bolts.
  • the exact location of each beam and bolt will depend on the particular conditions of the discharge channel (E) of the hydroelectric plant in which the micro injection and oxygen dosing system of the invention is installed, and which are obvious to the average expert in the matter.
  • oxygen storage tanks (2), evaporators (3), control units (4) and protection are installed of oxygen transport with its protection valves (5), and distribution pipes to the Type I and / or Type II panels.
  • micro injection and oxygen dosing system of the invention will comprise multiple Type II panels ( Figure 7A), multiple Type I panels ( Figure 7B) or a combination of Type I and Type II panels ( Figure 7C). Additionally, micro injection and oxygen dosing of the invention has the possibility of operating partially or totally with air, when coupled with the system by means of a mainfold (27), which makes the operation more flexible as shown in Figure 8.
  • the present invention relates to a process for the oxygenation of discharge water from a hydroelectric plant comprising the entry of discharge water (7) to the oxygenation zone, which comprises type I panels, Type II panels or a combination thereof as shown in position (8), through which oxygen gas is released from gas storage tanks (2).
  • the oxygenation method of the invention is efficient in increasing the levels of OD in the discharge water of a hydroelectric plant as evidenced in the following table:

Abstract

The present invention relates to a system for microinjection and metering of oxygen in order to increase the available oxygen in discharge waters of a hydroelectric plant, which comprises panels built using steel pipes for transporting the oxygen or air, connected perpendicularly with microperforated hoses that release oxygen or air bubbles supplied via the aforementioned microperforations. The aforementioned system allows the addition of oxygen to masses of water from hydroelectric plants which have high flow rates and high discharge speed.

Description

SISTEMA DE MICRO INYECCIÓN Y DOSIFICACIÓN DE OXÍGENO PARA AGUAS DE DESCARGA DE UNA HIDROELÉCTRICA  SYSTEM OF MICRO INJECTION AND DOSAGE OF OXYGEN FOR WATER DISCHARGE OF A HYDROELECTRIC
ANTECEDENTES TÉCNICOS DE LA INVENCIÓN TECHNICAL BACKGROUND OF THE INVENTION
Las centrales hidroeléctricas utilizan la energía potencial gravitatoria que posee una masa de agua debido a la presencia de un desnivel en un cauce natural o artificial, para producir energía mecánica mediante el paso de agua en su caída entre dos niveles, a través de una turbina hidráulica, la cual transmite energía de dicho caudal a un generador eléctrico transformando así la energía mecánica del caudal en energía eléctrica. Hydroelectric power plants use gravitational potential energy that has a body of water due to the presence of a drop in a natural or artificial channel, to produce mechanical energy through the passage of water in its fall between two levels, through a hydraulic turbine , which transmits energy from said flow to an electric generator thus transforming the mechanical energy of the flow into electrical energy.
Típicamente, una central hidroeléctrica consta de una presa que eleva el nivel del agua de una fuente natural para crear una caída de agua y controlar el flujo de la misma. Adicionalmente, la central hidroeléctrica comprende una turbina que es accionada por la fuerza del agua que cae empujando contra las paletas de la misma haciéndola girar; y un generador que se encuentra conectado a la turbina, que convierte la energía mecánica de la turbina en energía eléctrica. Typically, a hydroelectric power station consists of a dam that raises the water level of a natural source to create a water fall and control its flow. Additionally, the hydroelectric power station comprises a turbine that is driven by the force of the falling water pushing against the vanes of the same by turning it; and a generator that is connected to the turbine, which converts the mechanical energy of the turbine into electrical energy.
Ahora bien, la presa forma un depósito de agua, el cual a menudo se encuentra desprovisto de oxígeno debido al estancamiento, dicha disminución de oxígeno representa un riesgo ecológico dado que el oxígeno disuelto (OD) es indispensable en los ecosistemas para procesos de oxidación-reducción, respiración aeróbica de microorganismos y animales, solubilidad de minerales y la descomposición de materia orgánica, entre otros. Por tanto, una vez esta masa de agua con bajas concentraciones de OD introducida en un canal de descarga , es transportada río abajo generando efectos ambientales potencialmente peligrosos, especialmente para la vida silvestre. However, the dam forms a reservoir of water, which is often devoid of oxygen due to stagnation, said decrease in oxygen represents an ecological risk since dissolved oxygen (OD) is indispensable in the ecosystems for oxidation processes. reduction, aerobic respiration of microorganisms and animals, solubility of minerals and the decomposition of organic matter, among others. Therefore, once this body of water with low concentrations of OD introduced into a discharge channel, it is transported downstream generating potentially dangerous environmental effects, especially for wildlife.
De esta manera, resulta evidente que el OD es uno de los parámetros más importantes que se deben controlar para disminuir el impacto ambiental causado por las hidroeléctricas en los ecosistemas directamente relacionados. Es por esto que actualmente, con el fin de regular el OD en las aguas de descarga de hidroeléctricas, se han generado regulaciones a nivel mundial que requieren que se agregue oxígeno al agua descargada por las centrales hidroeléctricas en una cantidad suficiente para evitar el impacto ecológico relacionado a dicha ausencia de OD. In this way, it is clear that the OD is one of the most important parameters that must be controlled to reduce the environmental impact caused by hydroelectric plants in directly related ecosystems. That is why currently, in order to regulate the OD in hydroelectric discharge waters, worldwide regulations have been generated that require oxygen to be added to the water discharged by hydroelectric plants in an amount sufficient to avoid ecological impact. related to said absence of OD.
En el estado del arte son conocidos mecanismos que permiten que el oxígeno se disuelva en el agua descargada desde una presa sin requerir energía suplementaria o piezas móviles para la operación, como en el caso del documento US 6106729, que describe un aparato para airear el agua contenida en el depósito de agua de una presa cuando atraviesa un canal de descarga. Dicho aparato comprende un tubo principal que recibe el agua proveniente del depósito y un conjunto de aireación. El conjunto de aireación consiste en una serie de aireadores en comunicación con el tubo principal, de manera que el agua pasa desde el tubo principal a los aireadores que inyectan el oxígeno y posteriormente el agua rica en oxígeno es llevada al canal de descarga. Ahora bien, este sistema presenta la desventaja que los aireadores requieren un nivel óptimo de presión de agua de entre aproximadamente veinte y veinticinco libras por pulgada cuadrada a medida que entra agua en cada aireador para que cada aireador pueda descargar eficientemente de ocho a diez miligramos por litro de oxígeno disuelto. In the state of the art mechanisms are known that allow oxygen to dissolve in the water discharged from a dam without requiring additional energy or moving parts for operation, as in the case of US 6106729, which describes an apparatus for aerating the water contained in the water reservoir of a dam when it crosses a discharge channel. Said apparatus comprises a main tube that receives water from the reservoir and an aeration assembly. The aeration assembly consists of a series of aerators in communication with the main tube, so that the water passes from the main tube to the aerators that inject the oxygen and subsequently the oxygen-rich water is taken to the discharge channel. However, this system has the disadvantage that aerators require an optimum level of water pressure between approximately twenty and twenty-five pounds per square inch as water enters each aerator so that each aerator can efficiently discharge eight to ten milligrams per liter of dissolved oxygen.
De manera alternativa, el documento“A Reservoir Oxygenation System to Meet Re-licensing Water Quality Goals at Shepaug Dam” (Goals at Shepaug Dam Mark Mobley, Rich Szatkowski. Presented at Waterpower XV Chattanooga Convention Center. July 23-26, 2007. Paper No. 037 HCI Publications Chattanooga, Tennessee.
Figure imgf000004_0001
Alternatively, the document “A Reservoir Oxygenation System to Meet Re-licensing Water Quality Goals at Shepaug Dam” (Goals at Shepaug Dam Mark Mobley, Rich Szatkowski. Presented at Waterpower XV Chattanooga Convention Center. July 23-26, 2007. Paper No. 037 HCI Publications Chattanooga, Tennessee.
Figure imgf000004_0001
Figure imgf000004_0002
enseña un sistema para la oxigenación de aguas de descarga de una hidroeléctrica, que consiste de tuberías que comprenden difusores de oxígeno y que tienen hasta 4000 pies de longitud, que se ubican a lo largo del lecho del rio en el cual el agua es descargada.
Figure imgf000004_0002
teaches a system for the oxygenation of discharge waters of a hydroelectric power plant, which consists of pipes that comprise oxygen diffusers and are up to 4000 feet long, which are located along the river bed in which the water is discharged.
De esta manera, resulta claro que las soluciones propuestas en el arte anterior son aproximaciones particulares para cada hidroeléctrica, y por tanto existe una necesidad inmediata y creciente de proporcionar un método universal para oxigenar el agua descargada de hidroeléctricas que resulte efectivo y versátil. In this way, it is clear that the solutions proposed in the prior art are particular approaches for each hydroelectric, and therefore there is a immediate and growing need to provide a universal method to oxygenate water discharged from hydroelectric plants that is effective and versatile.
DESCRIPCIÓN GENERAL DE LA INVENCIÓN GENERAL DESCRIPTION OF THE INVENTION
La presente invención se refiere a un sistema de micro inyección y dosificación de oxígeno para aumentar el OD en aguas de descarga de una hidroeléctrica. The present invention relates to a micro injection and oxygen dosing system to increase the OD in discharge waters of a hydroelectric.
La Figura 1 , muestra que una hidroeléctrica se caracteriza por comprender por ejemplo: un dique (A), un vertedero (B), un túnel de desvió (C), una presa (D), una casa de máquinas (F), un túnel de carga (G) y un canal de descarga (E). Figure 1 shows that a hydroelectric plant is characterized by comprising, for example: a dike (A), a landfill (B), a bypass tunnel (C), a dam (D), a machine house (F), a loading tunnel (G) and a discharge channel (E).
La Figura 2 ilustra una casa de máquinas (F) junto con el canal de descarga (E). El sistema de micro inyección y dosificación de oxígeno de la invención ha sido diseñado para instalarse en la posición (1 ) del canal de descarga (E) de una hidroeléctrica o en el lecho del río. Figure 2 illustrates a machine house (F) together with the discharge channel (E). The micro injection and oxygen dosing system of the invention has been designed to be installed in the position (1) of the discharge channel (E) of a hydroelectric plant or in the riverbed.
El sistema micro inyección y dosificación de oxígeno de la invención comprende paneles construidos con tuberías de acero para transportar el oxígeno o aire, conectados perpendicularmente con mangueras microperforadas que liberan burbujas de oxígeno o aire alimentado a través de las mencionadas microperforaciones. El mencionado sistema permite adicionar oxígeno a masas de agua con altos caudales y alta velocidad de descarga, es decir de alrededor de 7 m/s o mayor. The micro injection and oxygen dosing system of the invention comprises panels constructed with steel pipes for transporting oxygen or air, connected perpendicularly with microperforated hoses that release oxygen bubbles or air fed through said microperforations. The aforementioned system allows oxygen to be added to bodies of water with high flow rates and high discharge speed, that is to say around 7 m / s or greater.
De esta forma, las burbujas de oxígeno o aire son transportadas de manera efectiva al caudal de agua de descarga de una hidroeléctrica, aumentando el DO en dichas aguas y previniendo así posibles consecuencias ambientales negativas. In this way, the oxygen or air bubbles are effectively transported to the discharge water flow of a hydroelectric plant, increasing the OD in these waters and thus preventing possible negative environmental consequences.
DESCRIPCIÓN DE LAS FIGURAS DESCRIPTION OF THE FIGURES
La Figura 1 muestra la estructura general de una hidroeléctrica desde una vista panorámica. Figure 1 shows the general structure of a hydroelectric from a panoramic view.
La Figura 2 ilustra una casa de máquinas de una hidroeléctrica. Figure 2 illustrates a machine house of a hydroelectric plant.
La Figura 3 ilustra el Panel Tipo II de la invención. La Figura 4 ilustra la posible conexión entre dos paneles Tipo II de la invención. Figure 3 illustrates the Type II Panel of the invention. Figure 4 illustrates the possible connection between two Type II panels of the invention.
La Figura 5 ilustra el Panel Tipo I de la invención. Figure 5 illustrates the Type I Panel of the invention.
La Figura 6 ilustra el proceso para la oxigenación de agua de descarga de una hidroeléctrica de la invención. Figure 6 illustrates the process for oxygenation of discharge water from a hydroelectric plant of the invention.
La Figura 7 ilustra modalidades particulares del sistema de oxigenación de la invención mediante la combinación de paneles Tipo I y Tipo II. Figure 7 illustrates particular embodiments of the oxygenation system of the invention by the combination of Type I and Type II panels.
La Figura 8 ilustra el sistema de alimentación para el sistema de micro inyección y dosificación de oxígeno de la invención. Figure 8 illustrates the feeding system for the micro injection and oxygen dosing system of the invention.
Descripción de los elementos que conforman el sistema de oxigenación de la invención Description of the elements that make up the oxygenation system of the invention
(1 1 ) Panel Tipo II (1 1) Type II Panel
(12) (a) Tubería de acero mayor longitud y (b) Tubería de acero de menor longitud. Las tuberías 12a y 12b pueden tener un diámetro de 3” (80 mm) a 10” (250 mm), donde la selección del diámetro dependerá de la cantidad de oxígeno a inyectar, la cual a su vez es dependiente de la calidad de agua y el caudal del agua descargada.  (12) (a) Longer steel pipe and (b) Shorter steel pipe. The pipes 12a and 12b can have a diameter of 3 ”(80 mm) to 10” (250 mm), where the diameter selection will depend on the amount of oxygen to be injected, which in turn is dependent on the quality of water and the discharge of discharged water.
(13) Mangueras microperforadas que pueden ser de caucho o látex. Las microperforaciones características de las mangueras de la invención tienen un diámetro de 0.03 a 0.09 mm. De manera preferida la microperforación tiene un diámetro de 0.07 mm.  (13) Microperforated hoses that can be made of rubber or latex. The characteristic microperforations of the hoses of the invention have a diameter of 0.03 to 0.09 mm. Preferably, the microperforation has a diameter of 0.07 mm.
(14) Conectores de la tubería a la manguera micro perforada que corresponden a conectores tipo triclamp.  (14) Tubing connectors to the micro perforated hose corresponding to triclamp type connectors.
(15) Malla de protección de acero fabricada a partir de varillas de acero con un diámetro seleccionado entre 3/32” (2.3812 mm) a 21/64” (8.3344 mm), donde la selección del diámetro dependerá del calibre de la tubería (12).  (15) Steel protection mesh manufactured from steel rods with a diameter selected between 3/32 ”(2.3812 mm) to 21/64” (8.3344 mm), where the diameter selection will depend on the pipe gauge ( 12).
(16) Elementos de aseguramiento tipo triclamp.  (16) Triclamp type assurance elements.
(17) Posición que muestra como perfiles de sección cuadrada (23) se incrustan directamente a la tubería de acero (12) en su estructura tipo“I”. (18) Codos. (17) Position showing how square section profiles (23) are embedded directly to the steel pipe (12) in its "I" type structure. (18) Elbows.
(19) Conector tipo T.  (19) Type T connector.
(20) Tubería de salida.  (20) Outlet pipe.
(21 ) Niples.  (21) Nipples.
(22) Férulas.  (22) Splints.
(23) Perfiles de sección cuadrada.  (23) Square section profiles.
(24) Tubería de reducción.  (24) Reduction pipe.
(25) Tubería de alimentación y distribución de aire y oxígeno hasta los Paneles Tipo I o Tipo II.  (25) Air and oxygen supply and distribution pipe to Type I or Type II Panels.
(26) Panel Tipo I.  (26) Type I Panel.
(27) Acople mainfold.  (27) Mainfold coupling.
DESCRIPCIÓN DETALLADA DETAILED DESCRIPTION
La Figura 3 ilustra una modalidad preferida no limitativa de un Panel Tipo II (1 1 ) del sistema de micro inyección y dosificación de oxígeno de la invención, que se caracteriza por comprender una tubería de acero (12a) y una tubería de acero (12b). A la tubería de acero (12a) se encuentran unidas de manera perpendicular mangueras microperforadas (13) por medio de conectores de manguera de acero tipo triclamp (14). Figure 3 illustrates a preferred non-limiting embodiment of a Type II Panel (1 1) of the micro injection and oxygen dosing system of the invention, characterized by comprising a steel pipe (12a) and a steel pipe (12b ). To the steel pipe (12a) microperforated hoses (13) are connected perpendicularly by means of triclamp steel hose connectors (14).
La Figura 4 muestra la unión de las mangueras microperforadas (13) a las tuberías de acero (12a) comprenden además niples (21 ) y férulas (22) para asegurar el flujo de gas oxígeno o aire desde las tuberías de acero (12a) a las mangueras microperforadas (13). Figure 4 shows the joining of the microperforated hoses (13) to the steel pipes (12a) further comprising nipples (21) and splints (22) to ensure the flow of oxygen or air gas from the steel pipes (12a) to the microperforated hoses (13).
De acuerdo con la Figura 3, la estructura anteriormente descrita se encuentra protegida por una malla de acero (15) y unos perfiles de sección cuadrada (23) los cuales se incrustan directamente a la tubería de acero (12) en su estructura tipo Ί” como se muestra en la posición (17) de la Figura 4. According to Figure 3, the structure described above is protected by a steel mesh (15) and square section profiles (23) which are embedded directly to the steel pipe (12) in its Ί ”type structure. as shown in position (17) of Figure 4.
Dada la estructura rectangular del panel Tipo II (11 ), las tuberías de acero (12a) se conectan a tuberías de acero tipo (12b) mediante codos (18) soldados y asegurados con acoples triclamp (16). Given the rectangular structure of the Type II panel (11), the steel pipes (12a) are connected to steel pipes type (12b) by elbows (18) welded and secured with triclamp couplings (16).
Para asegurar la alimentación del gas de oxígeno o aire, dos tuberías de acero (12b) se unen a una T (19), que a su vez se une en el extremo libre a una tubería de reducción (24) que va conectada a la tubería de alimentación y distribución de gas oxígeno o aire (25) que se muestra en la Figura 8. To ensure the supply of oxygen or air gas, two steel pipes (12b) join a T (19), which in turn joins at the free end to a reduction pipe (24) that is connected to the oxygen or air gas supply and distribution pipe (25) shown in Figure 8.
El panel (1 1 ) también puede opcionalmente comprender una tubería de salida (20) unida a una T (19) ubicada entre dos de las tuberías de acero (12b) como se muestra en la figura 4, donde la tubería de salida (20) va unida a un segundo panel (1 1 ). Alternativamente, dicha tubería (20) puede estar ausente, de manera que el panel (1 1 ) no se une a otro. The panel (1 1) can also optionally comprise an outlet pipe (20) attached to a T (19) located between two of the steel pipes (12b) as shown in Figure 4, where the outlet pipe (20 ) is attached to a second panel (1 1). Alternatively, said pipe (20) may be absent, so that the panel (1 1) does not join another.
En una modalidad alternativa, como se muestra en la Figura 5 dos tuberías de acero (12b) se conectan a una T (19) cuyo tercer extremo es conectado a una tubería (12a), para formar un Panel Tipo I (26). De manera similar al panel tipo II, las tuberías (12a) comprenden además niples (21 ) y férulas (22) para asegurar el flujo de gas oxígeno o aire desde las tuberías de acero (12a) a las mangueras microperforadas (13). In an alternative embodiment, as shown in Figure 5, two steel pipes (12b) are connected to a T (19) whose third end is connected to a pipe (12a), to form a Type I Panel (26). Similar to the type II panel, the pipes (12a) further comprise nipples (21) and splints (22) to ensure the flow of oxygen gas or air from the steel pipes (12a) to the microperforated hoses (13).
El sistema de micro inyección y dosificación de oxígeno de la invención es anclado al canal de descarga (E) en la posición (1 ) de acuerdo con la Figura 2, mediante la instalación de vigas de acero inoxidable que soportan el sistema y que son ancladas al concreto del canal de descarga (E) mediante pernos de acero inoxidable. La ubicación exacta de cada viga y perno dependerá de las condiciones particulares del canal de descarga (E) de la hidroeléctrica en la cual se instale el sistema de micro inyección y dosificación de oxígeno de la invención, y las cuales resultan obvias para el experto medio en la materia. The micro injection and oxygen dosing system of the invention is anchored to the discharge channel (E) in position (1) according to Figure 2, by installing stainless steel beams that support the system and are anchored. to the concrete of the discharge channel (E) by stainless steel bolts. The exact location of each beam and bolt will depend on the particular conditions of the discharge channel (E) of the hydroelectric plant in which the micro injection and oxygen dosing system of the invention is installed, and which are obvious to the average expert in the matter.
Para alimentar el sistema de micro inyección y dosificación de oxígeno de la invención, tal como se muestra en la Figura 6, se instalan tanques de almacenamiento de oxígeno (2), evaporadores (3), unidades de control (4) y protección, tubería de transporte del oxígeno con sus válvulas de protección (5), y tuberías de distribución hasta los paneles Tipo I y/o Tipo II. To supply the micro injection and oxygen dosing system of the invention, as shown in Figure 6, oxygen storage tanks (2), evaporators (3), control units (4) and protection, piping are installed of oxygen transport with its protection valves (5), and distribution pipes to the Type I and / or Type II panels.
El experto en la materia reconocerá que el sistema de micro inyección y dosificación de oxígeno de la invención comprenderá múltiples paneles de Tipo II (Figura 7A), múltiples paneles Tipo I (Figura 7B) o una combinación de paneles Tipo I y Tipo II (Figura 7C). Adicionalmente, de micro inyección y dosificación de oxígeno de la invención tiene la posibilidad de operar parcial o totalmente con aire, al acoplarse con el sistema por medio de un mainfold (27), el cual flexibiliza la operación como se muestra en la Figura 8. The person skilled in the art will recognize that the micro injection and oxygen dosing system of the invention will comprise multiple Type II panels (Figure 7A), multiple Type I panels (Figure 7B) or a combination of Type I and Type II panels (Figure 7C). Additionally, micro injection and oxygen dosing of the invention has the possibility of operating partially or totally with air, when coupled with the system by means of a mainfold (27), which makes the operation more flexible as shown in Figure 8.
Finalmente, tal como ilustra la Figura 6, la presente invención se refiere a un proceso para la oxigenación de agua de descarga de una hidroeléctrica que comprende el ingreso del agua de descarga (7) a la zona de oxigenación, que comprende paneles tipo I, paneles tipo II o una combinación de los mismos como se muestra en la posición (8), a través de los cuales es liberado gas oxígeno proveniente de tanques de almacenamiento del gas (2). Finally, as Figure 6 illustrates, the present invention relates to a process for the oxygenation of discharge water from a hydroelectric plant comprising the entry of discharge water (7) to the oxygenation zone, which comprises type I panels, Type II panels or a combination thereof as shown in position (8), through which oxygen gas is released from gas storage tanks (2).
El método para la oxigenación de la invención resulta eficiente al aumentar los niveles de OD en el agua de descarga de una hidroeléctrica tal como se evidencia en la tabla siguiente: The oxygenation method of the invention is efficient in increasing the levels of OD in the discharge water of a hydroelectric plant as evidenced in the following table:
Figure imgf000009_0001
Figure imgf000010_0001
Figure imgf000009_0001
Figure imgf000010_0001

Claims

REIVINDICACIONES
1. Un panel tipo II para la micro inyección y dosificación de oxígeno para aumentar el OD en aguas de descarga de una hidroeléctrica que comprende una tubería de acero (12a) conectada a una o más tuberías de acero (12b) mediante codos (18) soldados y asegurados con acoples triclamp (16), mangueras microperforadas (13) unidas de manera perpendicular a la tubería de acero (12a) por medio de conectores de manguera de acero tipo triclamp (14), niples (21 ) y férulas (22), una malla de acero (15) y unos perfiles de sección cuadrada (23) que estabilizan la estructura. 1. A type II panel for micro injection and oxygen dosing to increase the OD in discharge waters of a hydroelectric plant comprising a steel pipe (12a) connected to one or more steel pipes (12b) by elbows (18) welded and secured with triclamp couplings (16), microperforated hoses (13) connected perpendicular to the steel pipe (12a) by means of triclamp steel hose connectors (14), nipples (21) and splints (22) , a steel mesh (15) and square section profiles (23) that stabilize the structure.
2. El panel de la reivindicación 1 que adicionalmente comprende una T (19) que une dos tuberías de acero (12b) que a su vez se une en el extremo libre a una tubería de reducción (24) que va conectada a la tubería de alimentación y distribución de gas oxígeno o aire (25). 2. The panel of claim 1 further comprising a T (19) that joins two steel pipes (12b) which in turn joins at the free end to a reduction pipe (24) which is connected to the pipeline supply and distribution of oxygen or air gas (25).
3. El panel de la reivindicación 1 o 2 que adicionalmente puede comprender una tubería de salida (20) unida a una T (19) ubicada entre dos de las tuberías de acero (12b). 3. The panel of claim 1 or 2 which may additionally comprise an outlet pipe (20) attached to a T (19) located between two of the steel pipes (12b).
4. Un panel tipo I para la micro inyección y dosificación de oxígeno para aumentar el OD en aguas de descarga de una hidroeléctrica que comprende dos tuberías de acero (12b) se conectan a una T (19) cuyo tercer extremo es conectado a una tubería (12a), para formar un Panel Tipo I (26), donde las tuberías (12a) comprenden además niples (21 ) y férulas (22) para asegurar el flujo de gas oxígeno o aire desde las tuberías de acero (12a) a las mangueras microperforadas (13). 4. A type I panel for micro injection and oxygen dosing to increase the OD in discharge waters of a hydroelectric plant comprising two steel pipes (12b) are connected to a T (19) whose third end is connected to a pipeline (12a), to form a Type I Panel (26), where the pipes (12a) further comprise nipples (21) and splints (22) to ensure the flow of oxygen or air gas from the steel pipes (12a) to the microperforated hoses (13).
5. Un sistema de micro inyección y dosificación de oxígeno para aumentar el OD en aguas de descarga de una hidroeléctrica que comprende uno o más paneles tipo I como el de la reivindicación 4 y/o tipo II como el de la reivindicación 1. 5. A micro injection and oxygen dosing system for increasing the OD in discharge waters of a hydroelectric plant comprising one or more type I panels as in claim 4 and / or type II as in claim 1.
6. Un proceso para la oxigenación de agua de descarga de una hidroeléctrica que comprende el ingreso del agua de descarga (7) a la zona de oxigenación, que comprende paneles tipo I como el de la reivindicación 4, paneles tipo II o una combinación de los mismos a través de los cuales es liberado gas oxígeno proveniente de tanques de almacenamiento del gas (2). 6. A process for the oxygenation of discharge water from a hydroelectric plant comprising the entry of discharge water (7) into the oxygenation zone, comprising type I panels such as that of claim 4, type II panels or a combination of the same through which oxygen gas is released from gas storage tanks (2).
PCT/IB2019/052237 2018-04-27 2019-03-19 System for microinjection and metering of oxygen for discharge waters of a hydroelectric plant WO2019207370A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PE2020001438A PE20201333A1 (en) 2018-04-27 2019-03-19 MICRO INJECTION AND OXYGEN DOSING SYSTEM FOR DISCHARGE WATERS OF A HYDROELECTRIC

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CONC2018/0004570A CO2018004570A1 (en) 2018-04-27 2018-04-27 Micro injection and oxygen dosing system for discharge waters of a hydroelectric plant
CONC2018/0004570 2018-04-27

Publications (1)

Publication Number Publication Date
WO2019207370A1 true WO2019207370A1 (en) 2019-10-31

Family

ID=62814249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2019/052237 WO2019207370A1 (en) 2018-04-27 2019-03-19 System for microinjection and metering of oxygen for discharge waters of a hydroelectric plant

Country Status (4)

Country Link
CL (1) CL2020002413A1 (en)
CO (1) CO2018004570A1 (en)
PE (1) PE20201333A1 (en)
WO (1) WO2019207370A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110952511A (en) * 2019-12-21 2020-04-03 福建省中达建设发展有限公司 Pump station flow passage construction method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6106729A (en) * 1999-01-20 2000-08-22 Prince; Jack E. Aeration assembly for dam sites
WO2002098544A1 (en) * 2001-05-18 2002-12-12 Midwest Water Management, Llp Floating fine-bubble aeration system
CN1398797A (en) * 2001-06-11 2003-02-26 严泰庚 Quick installation of aerator in aerator tank
WO2013116893A1 (en) * 2012-02-06 2013-08-15 Collins Jack David Mixing apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6106729A (en) * 1999-01-20 2000-08-22 Prince; Jack E. Aeration assembly for dam sites
WO2002098544A1 (en) * 2001-05-18 2002-12-12 Midwest Water Management, Llp Floating fine-bubble aeration system
CN1398797A (en) * 2001-06-11 2003-02-26 严泰庚 Quick installation of aerator in aerator tank
WO2013116893A1 (en) * 2012-02-06 2013-08-15 Collins Jack David Mixing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110952511A (en) * 2019-12-21 2020-04-03 福建省中达建设发展有限公司 Pump station flow passage construction method

Also Published As

Publication number Publication date
PE20201333A1 (en) 2020-11-25
CO2018004570A1 (en) 2018-07-10
CL2020002413A1 (en) 2021-01-22

Similar Documents

Publication Publication Date Title
KR101594086B1 (en) Nanosized bubble and hydroxyl radical generator, and system for processing contaminated water without chemicals using the same
ES2953747T3 (en) Liquid supply apparatus
CA2720605C (en) Device for supplying gas into water
US8919744B1 (en) Water aeration system and method
WO2019207370A1 (en) System for microinjection and metering of oxygen for discharge waters of a hydroelectric plant
CN205974009U (en) Solar energy river course oxygenates machine
KR101248103B1 (en) Air diffuser
KR101493984B1 (en) Oxygen dissolution device
US9586184B2 (en) Air-powered water circulation systems for ponds, lakes, municipal water tanks, and other bodies of water
ES2199135T3 (en) METHOD AND APPARATUS FOR MIXTURE, AIR AND OXYGENATION.
JP2022027924A (en) Fine air bubble generation device
US8870445B2 (en) Liquid accelerator and chemical mixing apparatus and method
US20110272831A1 (en) Wastewater treatment system
KR101394385B1 (en) Water improment system, and water improment method using the same
JP5800120B2 (en) Method and system for suppressing adhesion of marine organisms and method for inhibiting marine life swimming
AU2010212397B2 (en) Aeration device
JP2574736B2 (en) Gas-liquid pressurized mixing equipment and waste liquid treatment equipment using the same
JP2011147870A (en) Method and system of suppressing adhesion of marine organism and method of inhibiting swimming of marine organism
JP2011104586A (en) Method and system for controlling adhesion of marine organism and method and system for reducing concentration of chlorine in water
JP5725937B2 (en) Abolition pipe filling device and abolition pipe filling method
CN210795946U (en) Self-suction type micro-nano bubble generating device
CN112931382B (en) Freshwater fish temporary culture device comprehensively utilizing tail gas and cooling water of ozone generator during working
JP2004298817A (en) Water purification system and gas/liquid mixing apparatus
KR102645028B1 (en) Composite device for generating directional circulating water
EP3568232A1 (en) Fluid flow control apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19792825

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19792825

Country of ref document: EP

Kind code of ref document: A1