WO2019206314A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2019206314A1
WO2019206314A1 PCT/CN2019/084689 CN2019084689W WO2019206314A1 WO 2019206314 A1 WO2019206314 A1 WO 2019206314A1 CN 2019084689 W CN2019084689 W CN 2019084689W WO 2019206314 A1 WO2019206314 A1 WO 2019206314A1
Authority
WO
WIPO (PCT)
Prior art keywords
network
radio bearer
identifier
terminal
information
Prior art date
Application number
PCT/CN2019/084689
Other languages
English (en)
French (fr)
Inventor
刘菁
韩立锋
戴明增
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19792917.7A priority Critical patent/EP3780879A4/en
Publication of WO2019206314A1 publication Critical patent/WO2019206314A1/zh
Priority to US17/081,858 priority patent/US11665575B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel
    • H04W28/0263Traffic management, e.g. flow control or congestion control per individual bearer or channel involving mapping traffic to individual bearers or channels, e.g. traffic flow template [TFT]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/22Negotiating communication rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • H04W76/16Involving different core network technologies, e.g. a packet-switched [PS] bearer in combination with a circuit-switched [CS] bearer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/14Backbone network devices

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a communication method and apparatus.
  • the 3rd generation partnership project (3GPP) version 10 introduces the concept of relay.
  • a relay node (RN) 102 is introduced between the terminal 103 and the access network device 101.
  • the RN 102 accesses the access network device 101 through a wireless backhaul link, and the RN 102 communicates with the terminal 103 through a wireless access link.
  • the RN can be used as a cell under the management of the access network device, and the RN forwards the data between the terminal and the access network device based on the IP data packet.
  • the wireless backhaul refers to providing data transmission through a wireless access technology and transmitting data to a corresponding core network.
  • the user plane core network device for example, a PDN gateway (PGW)
  • PGW PDN gateway
  • An E-UTRAN radio sceding bearer (E-RAB) (at least the default bearer of the RN) is established to establish a data radio bearer (DRB) between the RN and the access network device.
  • E-RAB E-UTRAN radio sceding bearer
  • DRB data radio bearer
  • the RN completes the mapping of the user plane bearer of the terminal on each interface, including: the terminal-based packet-based wireless service tunneling protocol between the DRB and the RN and the access network device between the terminal and the RN (general) Packet radio service tunnelling protocol (GTP) tunnel mapping, and terminal-specific GTP tunnel between RN and access network equipment and access network equipment and terminal service gateway (SGW)/PGW are specific to the terminal Mapping of GTP tunnels.
  • GTP Packet radio service tunnelling protocol
  • SGW terminal service gateway
  • the access network device may map the downlink data to the corresponding bearer according to the mapping carried by the user on the user plane of each interface.
  • the terminal is transmitted to the terminal.
  • the terminal can map the uplink data to the corresponding bearer according to the mapping carried by the user plane of each interface, and the corresponding user plane protocol stack is as shown in FIG. 3 . Shown.
  • the RN scenario is usually in the same system scenario, that is, the wireless access link and the wireless backhaul link adopt the same network standard.
  • the quality of service (QoS) is usually based on the bearer of the same granularity. Mapping method.
  • the new radio (NR) is introduced in the 3GPP R15 standard, there may be a heterogeneous scenario in the access and backhaul (IAB), namely: the wireless access link and the wireless backhaul chain.
  • the QoS is usually based on different granularity of bearer mapping. For example, in long-term evolution (LTE) networks, QoS is based on E-RAB granularity, ie, terminal and access.
  • LTE long-term evolution
  • a DRB is established between the network devices, and a GTP tunnel is established between the access network device and the core network device.
  • the DRB and the GTP tunnel are respectively associated with the E-RAB, thereby implementing data between the terminal and the access network device.
  • the DRB is mapped to the GTP tunnel between the access network device and the core network device.
  • the QoS is based on the flow granularity of the bearer mode, that is, the DRB is established between the terminal and the access network device.
  • a GTP tunnel is established between the network device and the core network device, where the NR network includes a 5G network or a next-generation network, and the DRB is in one-to-one correspondence with the flow, and the GTP tunnel can correspond to multiple flows, thereby implementing data in the terminal.
  • the present application provides a communication method and apparatus for solving bearer mapping of user data transmission in a heterogeneous scenario, thereby improving the quality of terminal service transmission.
  • a first aspect of the present application provides a communication method, which is applied to a wireless backhaul system, where the wireless backhaul system includes a first network and a second network, where the first network and the second network adopt different network standards, where The terminal and the access network device in the wireless backhaul system communicate with the first device in the wireless backhaul system, and the first device and the terminal use the network standard communication corresponding to the first network, and the first device and the access network The device uses the network standard communication corresponding to the second network.
  • the method provided by the present application includes: acquiring, by the first device, information about the first radio bearer in the first network, where the information of the first radio bearer is used to indicate the first And transmitting, by the first device, information of the first radio bearer to the first management network element in the second network, where the first management network element is configured to determine, according to the information of the first radio bearer, the first radio bearer and the second radio A mapping relationship between the bearers, where the second radio bearer is a radio bearer of the first device in the second network.
  • the first aspect of the present application provides a communication method, where the information about the first radio bearer of the terminal in the first network is obtained by the first device, and the information about the first radio bearer of the obtained terminal in the first network is sent to After the first management network element receives the information of the first radio bearer, the first management network element can determine, according to the information of the first radio bearer, the first radio bearer and the second radio of the first device in the second network.
  • the mapping relationship between the bearers so that in the heterogeneous scenario, the services of the terminal can be mapped to the corresponding bearers in the first network and the second network, thereby improving the quality of the service transmission.
  • the information of the first radio bearer includes an identifier of the first radio bearer, and a quality of service (QoS) parameter corresponding to the identifier of the first radio bearer.
  • QoS quality of service
  • the network system corresponding to the first network is a long-term evolution LTE network
  • the network system corresponding to the second network is an NR network.
  • the QoS parameter corresponding to the identifier of the first radio bearer includes one or more of the following: a quality class identifier (QCI), an allocation and retention priority (ARP).
  • QCI quality class identifier
  • ARP allocation and retention priority
  • the identifier of the second radio bearer is a QoS flow identifier (QFI)
  • the QoS parameters corresponding to the QFI include the following: One or more: 5G QoS Identity (5QI), Allocation and Retention Priority (ARP), Guaranteed Bit Rate (GBR), and Maximum Bit Rate (MBR).
  • 5QI 5G QoS Identity
  • ARP Allocation and Retention Priority
  • GRR Guaranteed Bit Rate
  • MRR Maximum Bit Rate
  • the network system corresponding to the first network is an NR network
  • the network system corresponding to the second network is a long-term evolution LTE network.
  • the QoS parameters corresponding to the identifier of the second radio bearer include one or more of the following: quality classification identifier (QCI), allocation and reservation priority (ARP), guaranteed bit rate (GBR), and maximum bit. Rate (MBR); the identifier of the first radio bearer is a quality of service flow indicator (QFI), and the QoS parameter corresponding to the QFI includes one or more of the following: 5G QoS identifier 5QI, allocation and reservation priority (ARP), Guaranteed bit rate (GBR) and maximum bit rate (MBR).
  • QCI quality classification identifier
  • ARP allocation and reservation priority
  • GRR guaranteed bit rate
  • MRR maximum bit rate
  • the first device receives a mapping relationship between the first radio bearer and the second radio bearer sent by the first management network element. Receiving the mapping relationship by the first device, so that the first device may map the terminal service transmitted on the first radio bearer to the corresponding second in the process of communicating (for example, data or signaling) with the terminal.
  • the radio bearer is sent to the access network device, or the access network device can map the terminal service transmitted on the first radio bearer to the corresponding second radio bearer and send the terminal service to the first device, where Mapping the data or signaling to the terminal, and mapping the data or signaling sent by the access network device to the terminal to the data or signaling bearer sent by the access network device to the first device
  • the bearer is transmitted to and transmitted to the terminal, and in the process of communicating with the access network device, the data or signaling sent by the terminal may be mapped to the designated device and sent according to the bearer transmitted by the terminal or the signaling bearer and the mapping relationship.
  • the data or signaling bearer bears the mapping relationship and is uploaded to the access network device, so that the data transmission quality can be made. High.
  • the first device has a first protocol stack and a second protocol stack, and the first protocol stack and the second protocol stack are used in different network standards, when the first device uses the network standard corresponding to the first network
  • the terminal communicates
  • the first device uses the first protocol stack
  • the first device uses the second protocol stack.
  • a second aspect of the present application provides a communication method, which is applied to a wireless backhaul system, where the wireless backhaul system includes a first network and a second network, where the first network and the second network adopt different network standards.
  • the terminal and the access network device in the wireless backhaul system communicate with the first device in the wireless backhaul system, and the first device and the terminal use the network standard communication corresponding to the first network, and the first device and the access
  • the network device uses the network standard communication corresponding to the second network, the second network includes the first management network element, and the first management network element is used to control the session management of the first device in the second network, and the method provided by the application
  • the first management network element obtains the information of the first radio bearer in the first network, where the information of the first radio bearer is used to indicate the first radio bearer, and the first management network element is configured according to the information of the first radio bearer. Determining a mapping relationship between the first radio bearer and the second radio bearer, where the second radio bearer is
  • the second aspect of the present application provides a communication method, where the information of the first radio bearer of the terminal in the first network is obtained by the first management network element, and is determined according to the information of the first radio bearer of the obtained terminal in the first network. Acquiring a mapping relationship between the first radio bearer and the second radio bearer of the first device in the second network, and determining the mapping relationship by using the first management network element, so that the access network device can be configured in the heterogeneous scenario Mapping the service of the terminal to the corresponding device in the second network according to the mapping relationship, and transmitting, by the first device, the service mapping sent by the terminal to the corresponding network device in the second network, Thereby improving the quality of service transmission.
  • the first management network element acquires information about the first radio bearer of the terminal in the first network, and the first management network element acquires the first wireless terminal in the first network from the first device.
  • the first management network element acquires information of the first radio bearer of the terminal in the first network from the terminal network element of the core network control plane of the first network.
  • the first management network element obtains the information of the first radio bearer of the terminal in the first network to be flexible.
  • the first management network element obtains the mapping relationship between the first radio bearer and the second radio bearer in the second network according to the information of the first radio bearer
  • the method further includes: acquiring, by the first management network element, information of the second radio bearer of the first device in the second network, where the information of the second radio bearer includes an identifier of the second radio bearer and an identifier corresponding to the identifier of the second radio bearer Quality of Service (QoS) parameters.
  • QoS Quality of Service
  • the information of the first radio bearer includes an identifier of the first radio bearer and a quality of service (QoS) parameter corresponding to the identifier of the first radio bearer, where the first management network element is configured according to the first radio bearer. And determining, by the information, the mapping relationship between the first radio bearer and the second radio bearer, where the first management network element searches for the identifier of the first radio bearer in the second network according to the QoS parameter corresponding to the identifier of the first radio bearer.
  • QoS quality of service
  • the first management network element determines the identifier of the first radio bearer and the second radio bearer The first management network element triggers the first QoS parameter corresponding to the identifier of the first radio bearer if the QoS parameter matching the QoS parameter corresponding to the identifier of the first radio bearer does not exist in the second network.
  • the device establishes a second radio bearer in the second network, where the second radio bearer is identified by the identifier of the second radio bearer and the identifier of the second radio bearer Indicative of target QoS parameters; determining a first management element has a mapping relation between the identifier identifying a first radio bearer and the second radio bearer.
  • the bearer between different bearers eg, E-RAB granularity based bearer and QoS flow granularity based
  • the conversion ensures the quality of the service of the terminal data transmission.
  • the identifier of the second radio bearer associated with the QoS parameter matched by the QoS parameter corresponding to the identifier of the first radio bearer is established.
  • the mapping relationship between the bearers of different granularities is facilitated, and on the other hand, when the QoS parameters matching the QoS parameters corresponding to the identifiers of the first radio bearers are not present in the second network,
  • the QoS parameter corresponding to the bearer identifier establishes a second radio bearer, and establishes a mapping relationship between the identifier of the newly created second radio bearer and the identifier of the first radio bearer, thereby improving reliability of data transmission.
  • the network system corresponding to the first network is a long-term evolution LTE network
  • the network system corresponding to the second network is an NR network.
  • the QoS parameter corresponding to the identifier of the first radio bearer includes one or more of the following: quality class identifier QCI, allocation and reservation priority ARP, guaranteed bit rate GBR, and maximum bit rate MBR; second wireless
  • the identifier of the bearer is a quality of service flow identifier (QFI)
  • the QoS parameters corresponding to the QFI include one or more of the following: 5G QoS identifier 5QI, allocation and retention priority (ARP), guaranteed bit rate (GBR), and Maximum bit rate (MBR).
  • the network system corresponding to the first network is an NR network
  • the network system corresponding to the second network is a long-term evolution LTE network.
  • the QoS parameter corresponding to the identifier of the second radio bearer includes one or more of the following: quality class identifier (QCI), allocation and reservation priority (ARP), guaranteed bit rate (GBR), and maximum bit. Rate (MBR);
  • QCI quality class identifier
  • ARP allocation and reservation priority
  • GBR guaranteed bit rate
  • MBR maximum bit. Rate
  • the identifier of the first radio bearer is the quality of service flow identifier QFI
  • the QoS parameters corresponding to the QFI include one or more of the following: 5G QoS identifier 5QI, allocation and reservation priority ARP, guaranteed bit rate GBR, and maximum Bit rate MBR.
  • the first management network element sends a mapping relationship between the first radio bearer and the second radio bearer of the first device in the second network to the first device and/or the access network device, by sending The mapping relationship is such that, in a heterogeneous scenario, the access network device can map the service of the terminal to the corresponding device in the second network according to the mapping relationship, or the first device sends the service sent by the terminal.
  • the mapping is transmitted to the access network device on the corresponding bearer in the second network, thereby improving the quality of the service transmission.
  • a third aspect of the present application provides a communication device that can implement the method of the first aspect or any possible implementation of the first aspect, and thus can also implement the first aspect or any possible implementation of the first aspect The beneficial effect.
  • the communication device may be a first device, such as a relay device, or may be a chip applied to the first device.
  • the above method can be implemented by software, hardware, or by executing corresponding software through hardware.
  • the communication device is applied to a wireless backhaul system, and the communication device may be a first device or a chip in the first device, where the wireless backhaul system includes a first network and a second network, and the first network and the second network are used.
  • Different network standards wherein the terminal and the access network device in the wireless backhaul system communicate through the first device in the wireless backhaul system, and the first device and the terminal use the network standard communication corresponding to the first network, and the communication device
  • the communication device provided by the present application includes: an obtaining unit, configured to acquire information about a first radio bearer of the terminal in the first network, where the first radio bearer is used by the network device.
  • the information is used to indicate the first radio bearer
  • the sending unit is configured to send the information of the first radio bearer to the first management network element in the second network
  • the first management network element is configured to determine, according to the information of the first radio bearer, a mapping relationship between the first radio bearer and the second radio bearer, wherein the second radio bearer is a radio bearer of the communication device in the second network.
  • the information of the first radio bearer includes an identifier of the first radio bearer and a quality of service (QoS) parameter corresponding to the identifier of the first radio bearer.
  • QoS quality of service
  • the network system corresponding to the first network is a Long Term Evolution (LTE) network
  • the network system corresponding to the second network is an NR network.
  • LTE Long Term Evolution
  • the QoS parameters corresponding to the identifier of the first radio bearer include one or more of the following: Quality Class Identifier (QCI), Allocation and Retention Priority (ARP), Guaranteed Bit Rate (GBR), and Maximum Bit rate (MBR);
  • the identifier of the second radio bearer is a quality of service flow identifier (QFI)
  • the QoS parameters corresponding to the QFI include one or more of the following: 5G QoS identifier (5QI), allocation, and reservation priority ( ARP), guaranteed bit rate (GBR) and maximum bit rate (MBR).
  • the network system corresponding to the first network is an NR network
  • the network system corresponding to the second network is a long-term evolution LTE network.
  • the QoS parameters corresponding to the identifier of the second radio bearer include one or more of the following: Quality Class Identifier (QCI), Allocation and Retention Priority (ARP), Guaranteed Bit Rate (GBR), and Maximum Bit rate (MBR);
  • the identifier of the first radio bearer is a quality of service flow indicator (QFI)
  • the QoS parameter corresponding to (QFI) includes one or more of the following: 5G QoS identifier (5QI), allocation and reservation priority Level (ARP), guaranteed bit rate (GBR) and maximum bit rate (MBR).
  • the communication device further includes: a receiving unit, configured to receive a mapping relationship between the first radio bearer and the second radio bearer sent by the first management network element.
  • the communication device has a first protocol stack and a second protocol stack, and the first protocol stack and the second protocol stack are applied to different network standards, when the communication device uses the network standard corresponding to the first network.
  • the communication device uses the first protocol stack when communicating with the terminal, and the communication device uses the second protocol stack when the communication device communicates with the access network device using the network system corresponding to the second network.
  • a communication device provided by the fourth aspect of the present application is applicable to a wireless backhaul system, where the communication device may be a first device or a chip applied to the first device, where the wireless backhaul system includes a network and a second network, the first network and the second network adopt different network standards, wherein the terminal in the wireless backhaul system and the access network device communicate through the communication device in the wireless backhaul system, and the communication device
  • the network system communication corresponding to the first network is used between the terminal and the terminal, and the communication device and the access network device use the network standard communication corresponding to the second network.
  • the communication device provided by the application includes: a communication interface and a processor, where And the information about the first radio bearer of the terminal in the first network, where the information of the first radio bearer is used to indicate the first radio bearer, and the communication interface is used to be the first one in the second network.
  • the management network element sends the information of the first radio bearer, where the first management network element is configured to determine, according to the information of the first radio bearer, the first radio bearer and Mapping relationship between the two radio bearers, the second radio bearer is a wireless bearer communication apparatus in the second network.
  • the network system corresponding to the first network is a long-term evolution LTE network
  • the network system corresponding to the second network is an NR network.
  • the QoS parameters corresponding to the identifier of the first radio bearer include one or more of the following: Quality Class Identifier (QCI), Allocation and Retention Priority (ARP), Guaranteed Bit Rate (GBR), and Maximum Bit rate (MBR);
  • the identifier of the second radio bearer is a quality of service flow identifier (QFI)
  • the QoS parameters corresponding to the QFI include one or more of the following: 5G QoS identifier (5QI), allocation and reservation priority (ARP) Guaranteed bit rate (GBR) and maximum bit rate (MBR).
  • the network system corresponding to the first network is an NR network
  • the network system corresponding to the second network is a long-term evolution LTE network.
  • the QoS parameters corresponding to the identifier of the second radio bearer include one or more of the following: Quality Class Identifier (QCI), Allocation and Retention Priority (ARP), Guaranteed Bit Rate (GBR), and Maximum Bit rate (MBR);
  • the identifier of the first radio bearer is a quality of service flow identifier (QFI)
  • the QoS parameters corresponding to the QFI include one or more of the following: 5G QoS identifier (5QI), allocation, and reservation priority ( ARP), guaranteed bit rate (GBR) and maximum bit rate (MBR).
  • the communication interface is further configured to receive a mapping relationship between the first radio bearer and the second radio bearer sent by the first management network element.
  • the communication device has a first protocol stack and a second protocol stack, the first protocol stack and the second protocol stack being used in different network standards, when the communication device uses the network standard corresponding to the first network
  • the communication device uses the first protocol stack when communicating with the terminal, and the communication device uses the second protocol stack when the communication device communicates with the access network device using the network system corresponding to the second network.
  • the information of the first radio bearer includes an identifier of the first radio bearer and a quality of service (QoS) parameter corresponding to the identifier of the first radio bearer.
  • QoS quality of service
  • the communication interface and the processor of the communication device are coupled to each other.
  • the communication device further includes a memory, wherein the memory is used to store code and data, and the processor, the communication interface, and the memory are coupled to each other.
  • a fifth aspect of the present application provides a communication device, which can implement the method in any of the possible implementations of the second aspect or the second aspect, and thus can also implement any possible implementation of the second aspect or the second aspect The beneficial effect.
  • the communication device may be a first management network element or a chip applied to the first management network element.
  • the above method can be implemented by software, hardware, or by executing corresponding software through hardware.
  • the communication device is applied to a wireless backhaul system, where the communication device is a first management network element or a chip applied to the first management network element, where the wireless backhaul system includes a first network and a second network,
  • the network and the second network adopt different network standards, wherein the terminal in the wireless backhaul system and the access network device communicate through the communication device, and the communication device and the terminal use the network standard communication corresponding to the first network,
  • the communication device and the access network device use the network standard communication corresponding to the second network
  • the communication device is configured to control session management of the first device in the second network
  • the access network device is used to access the second device by the second device.
  • the communication device includes: an acquiring unit, configured to acquire information about a first radio bearer of the terminal in the first network, where the information of the first radio bearer is used to indicate the first radio bearer; Determining, according to information of the first radio bearer, a mapping relationship between the first radio bearer and the second radio bearer, where the second radio bearer is the second device in the second Radio bearer in the network.
  • the obtaining unit is specifically configured to: obtain information about the first radio bearer of the terminal in the first network from the first device; or the acquiring unit is specifically configured to: correspond to the slave terminal in the first network
  • the core network control plane network element obtains information of the first radio bearer of the terminal in the first network.
  • the acquiring unit is further configured to acquire information about the second radio bearer of the first device in the second network, where the information of the second radio bearer includes the identifier of the second radio bearer and the second wireless The QoS parameter corresponding to the bearer identifier.
  • the information of the first radio bearer includes an identifier of the first radio bearer and a quality of service (QoS) parameter corresponding to the identifier of the first radio bearer, and the determining unit provided by the application is further used.
  • QoS quality of service
  • the communication device further includes a processing unit, configured to trigger the communication device to establish the second radio bearer in the second network according to the QoS parameter corresponding to the identifier of the first radio bearer
  • the second radio bearer is indicated by the identifier of the second radio bearer and the QoS parameter corresponding to the identifier of the second radio bearer
  • the network system corresponding to the first network is a long-term evolution LTE network
  • the network system corresponding to the second network is an NR network.
  • the QoS parameter corresponding to the identifier of the first radio bearer includes one or more of the following: Quality Class Identifier (QCI), Allocation and Retention Priority (ARP), Guaranteed Bit Rate (GBR), and Maximum Bit rate (MBR);
  • the identifier of the second radio bearer is a quality of service flow identifier (QFI)
  • the QoS parameters corresponding to the QFI include one or more of the following: 5G QoS identifier (5QI), allocation, and reservation priority ( ARP), guaranteed bit rate (GBR) and maximum bit rate (MBR).
  • the network system corresponding to the second network is a long-term evolution LTE network
  • the network system corresponding to the first network is an NR network.
  • the QoS parameter corresponding to the identifier of the second radio bearer includes one or more of the following: Quality Class Identifier (QCI), Allocation and Retention Priority (ARP), Guaranteed Bit Rate (GBR), and Maximum Bit rate (MBR);
  • the identifier of the first radio bearer is a quality of service flow identifier (QFI)
  • the QoS parameters corresponding to the QFI include one or more of the following: 5G QoS identifier (5QI), allocation, and reservation priority ( ARP), guaranteed bit rate (GBR), maximum bit rate (MBR).
  • the apparatus provided by the application further includes: a sending unit, configured to send, to the first device and/or the access network device, the first wireless bearer and the second wireless device of the first device in the second network The mapping relationship between bearers.
  • a sixth aspect of the present application provides a communication device, which is applied to a wireless backhaul system, where the communication device is a first management network element or a chip applied to the first management network element, where the wireless backhaul system includes a network and a second network, the first network and the second network adopt different network standards, wherein the terminal in the wireless backhaul system and the access network device communicate through the communication device, and the first device and the terminal use The network standard communication corresponding to the first network, the first device and the access network device use the network standard communication corresponding to the second network, and the communication device is used to control the session management of the first device in the second network, and the access network device
  • the communication device provided by the present application includes: a communication interface and a processor, wherein the communication interface is configured to acquire information of the first radio bearer of the terminal in the first network, where the The information of the radio bearer is used to indicate the first radio bearer, and the processor is further configured to acquire the first radio bearer and the second radio bearer according
  • the communication interface is configured to acquire information of the first radio bearer of the terminal in the first network from the first device; or, the communication interface, the core network for the slave terminal in the first network
  • the control plane network element obtains information about the first radio bearer of the terminal in the first network.
  • the communication interface is further configured to acquire information about the second radio bearer of the first device in the second network, where the information of the second radio bearer includes the identifier of the second radio bearer and the second wireless The QoS parameter corresponding to the bearer identifier.
  • the information of the first radio bearer includes an identifier of the first radio bearer and a quality of service (QoS) parameter corresponding to the identifier of the first radio bearer
  • the processor provided by the application is used according to the a QoS parameter corresponding to the identifier of the radio bearer, and a QoS parameter matching the QoS parameter corresponding to the identifier of the first radio bearer in the second network; if the QoS parameter corresponding to the identifier of the first radio bearer and the identifier of the second radio bearer
  • the processor determines that the QoS parameter matches the QoS parameter corresponding to the identifier of the first radio bearer in the second network.
  • a processor configured to trigger the communication device to establish a second radio bearer in the second network according to the QoS parameter corresponding to the identifier of the first radio bearer, where the second radio bearer is identified by the identifier of the second radio bearer and the identifier of the second radio bearer Corresponding QoS parameter indication; the processor is further configured to determine that there is a mapping between the identifier of the first radio bearer and the identifier of the second radio bearer .
  • the network system corresponding to the first network is a long-term evolution LTE network
  • the network system corresponding to the second network is an NR network.
  • the QoS parameter corresponding to the identifier of the first radio bearer includes one or more of the following: Quality Class Identifier (QCI), Allocation and Retention Priority (ARP), Guaranteed Bit Rate (GBR), and Maximum Bit rate (MBR);
  • the identifier of the second radio bearer is a quality of service flow identifier (QFI)
  • the QoS parameters corresponding to the QFI include one or more of the following: 5G QoS identifier (5QI), allocation, and reservation priority ( ARP), guaranteed bit rate (GBR), maximum bit rate (MBR).
  • the network system corresponding to the second network is a long-term evolution LTE network
  • the network system corresponding to the first network is an NR network.
  • the QoS parameter corresponding to the identifier of the second radio bearer includes one or more of the following: quality class identifier (QCI), allocation and reservation priority (ARP), guaranteed bit rate (GBR), maximum Bit rate (MBR);
  • QFI quality of service flow identifier
  • the QoS parameters corresponding to the QFI include one or more of the following: 5G QoS identifier (5QI), allocation, and reservation priority ( ARP), guaranteed bit rate (GBR), maximum bit rate (MBR).
  • the communication interface provided by the present application is configured to send a mapping relationship between the first radio bearer and the second radio bearer to the first device and/or the access network device.
  • the communication interface and the processor of the communication device are coupled to each other.
  • the communication device further includes a memory, wherein the memory is used to store code and data, and the processor, the receiver, and the memory are coupled to each other.
  • a seventh aspect of the present application provides a computer readable storage medium having stored therein a computer program or instructions that, when executed, implement any of the first aspect to the first aspect A possible implementation of the described method.
  • An eighth aspect of the present application provides a computer readable storage medium having stored therein a computer program or an instruction, when the computer program or the instruction is executed, implementing any one of the second aspect to the second aspect A possible implementation of the described method.
  • a ninth aspect of the present application provides a computer program product comprising a computer program or instructions that, when executed, implement any of the possible implementations of the first aspect to the first aspect The method described.
  • a tenth aspect of the present application provides a computer program product comprising a computer program or instructions that, when executed, implement any one of the possible implementations of the second aspect to the second aspect The method described.
  • An eleventh aspect of the present application provides a chip, the chip comprising a processor and an interface circuit, the interface circuit being coupled to a processor, the processor being configured to run a computer program or instructions to implement any one of the first aspect to the first aspect Possible Implementations
  • the method described is for interface circuits to communicate with other modules outside the chip.
  • a twelfth aspect of the present application provides a chip including a processor and an interface circuit, the interface circuit and a processor coupled to the computer for executing a computer program or instructions to implement any one of the second aspect to the second aspect Possible Implementations
  • the method described is for interface circuits to communicate with other modules outside the chip.
  • the chip described above in the present application may further include one or more (including two) memories in which instructions or computer programs are stored.
  • the present application provides a wireless backhaul system, comprising: one or more wireless backhaul devices as described in any of the possible aspects of the third to third aspects, and A communication device as described in any one of the fifth aspect to the fifth aspect.
  • the wireless backhaul system provided in the thirteenth aspect may further include other communication devices, such as an access network device, a terminal, and the like.
  • FIG. 1 is a schematic structural diagram of a wireless backhaul system
  • FIG. 2 is a schematic diagram of a control plane protocol stack architecture provided by the prior art
  • FIG. 3 is a schematic diagram of a user plane protocol stack architecture provided by the prior art
  • FIG. 4 is a schematic structural diagram of a wireless backhaul system according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of another base station according to another embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of another wireless backhaul system according to another embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of still another wireless backhaul system according to another embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of a control plane protocol stack according to another embodiment of the present application.
  • FIG. 10 is a schematic diagram of still another control plane protocol stack according to another embodiment of the present application.
  • FIG. 11 is a schematic diagram of another control plane protocol stack according to another embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram of a user plane protocol stack according to another embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of another user plane protocol stack according to another embodiment of the present disclosure.
  • FIG. 14 is a schematic flowchart diagram of a communication method according to another embodiment of the present disclosure.
  • FIG. 15 is a schematic flowchart diagram of a communication method according to another embodiment of the present disclosure.
  • 16 is a schematic flowchart of a communication method according to another embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of a bearer mapping according to another embodiment of the present disclosure.
  • FIG. 18 is a schematic flowchart diagram of a communication method according to another embodiment of the present application.
  • FIG. 19 is a flowchart of a specific implementation process of a communication method according to another embodiment of the present application.
  • FIG. 21 is a schematic structural diagram of a communication apparatus according to another embodiment of the present disclosure.
  • FIG. 22 is a schematic structural diagram of a wireless backhaul device according to another embodiment of the present disclosure.
  • FIG. 23 is a schematic structural diagram of a communication apparatus according to another embodiment of the present disclosure.
  • FIG. 24 is a schematic structural diagram of a communication apparatus according to another embodiment of the present disclosure.
  • FIG. 25 is a schematic structural diagram of a relay device according to another embodiment of the present disclosure.
  • FIG. 26 is a schematic structural diagram of still another relay device according to another embodiment of the present disclosure.
  • FIG. 27 is a schematic structural diagram of a chip according to another embodiment of the present application.
  • the network architecture and the service scenario described in the embodiments of the present application are for the purpose of more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute a limitation of the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of the present application are equally applicable to similar technical problems.
  • At least one means one or more, and "a plurality” means two or more.
  • the character "/” generally indicates that the contextual object is an "or” relationship.
  • "At least one of the following” or a similar expression thereof refers to any combination of these items, including any combination of a single item or a plurality of items. For example, at least one of a, b, or c may represent: a, b, c, ab, ac, bc, or abc, where a, b, c may be single or multiple .
  • FIG. 4 is a schematic diagram of a wireless backhaul system including: one or more (including two) access network devices 203 (only one shown) connected to the core network, and connected The wireless backhaul node 202 connected to the network access device 203 and one or more terminals 201 (only one terminal is shown) accessing the access network device 203 through the wireless backhaul node 202.
  • the wireless backhaul node in the following may be a wireless backhaul node in the 5G network.
  • the wireless backhaul node in the 5G network may be called For the IAB node, there may be other names, which are not specifically limited in this embodiment of the present application.
  • the method provided by the embodiment of the present application can also be applied to other networks, for example, to an evolved packet system (EPS) network (that is, a so-called fourth generation (4th generation, Referred to as 4G) network or LTE network).
  • EPS evolved packet system
  • 4G fourth generation
  • LTE LTE
  • the wireless backhaul node in the following may be a wireless backhaul node in the EPS network.
  • the wireless backhaul node in the EPS network may be referred to as a relay. Relay node (RN).
  • RN Relay node
  • the wireless backhaul node 202 and the terminal 201 and the access network device 203 both use a wireless connection, and the network standard used by the wireless backhaul node 202 and the terminal to communicate with the terminal and the wireless backhaul node 202 and the access network
  • the network between the devices 203 uses different network standards.
  • the wireless backhaul node 202 can be one or more wireless backhaul devices located between the terminal and the access network device, such as a relay device.
  • the wireless backhaul node 202 communicates with the terminal 201 using the network standard corresponding to the first network, and the wireless backhaul node 202 communicates with the access network device 203 using the network standard corresponding to the second network.
  • the network system corresponding to the first network is an LTE network
  • the network system corresponding to the second network is an NR network
  • the NR network includes a 5G network or a next generation network.
  • the network system corresponding to the first network is an NR network
  • the network system corresponding to the second network is an LTE network
  • the network system corresponding to the first network is an LTE network
  • the network system corresponding to the second network is an NR network as an example, and the present application is not limited.
  • the wireless backhaul node 202 is configured to perform data and/or signaling backhaul between the access network device 203 and the terminal 201.
  • the access network device 203 is used by the wireless backhaul node 202 to access the second network and for transmitting data and/or signaling to the terminal 201.
  • the access network device 203 can also generally function as a physical network element, for example, a host (Donor) access network device, which is accessed in a new radio (NR) system (or 5G system).
  • the network access device 203 may be a DGN (donor gNodeB).
  • the host access network device may be a DeNB (donor eNodeB).
  • the host access network device may also be simply referred to as: gNB or eNB. .
  • the host access network device may generally include a logical network element: a base station accessed by the wireless backhaul node and a core network user plane network element serving the wireless backhaul node.
  • the core network control plane network element serving the wireless backhaul node may be built in the host access network device or may be independent of the host access network device (the core of the service provided by the wireless backhaul node in FIG. 4)
  • the network control plane network element is located outside the host access network device as an example).
  • the base station accessed by the wireless backhaul node is connected to the core network control plane network element that provides the service for the wireless backhaul node.
  • MME_UE represents an MME serving the UE
  • PGW/SGW_UE represents a PGW/SGW serving the UE.
  • the home access network device may further include a home eNB gateway (HeNB_GW). If the HeNB_GW exists in the host access network device, the HeNB_GW is respectively connected to the core network control plane network element serving the terminal, and is connected to the core network user plane network element serving the terminal.
  • HeNB_GW home eNB gateway
  • the core network control plane network element serving the terminal and the core network user plane network element serving the terminal and the core network user plane network serving the wireless backhaul node Meta connection.
  • the network system corresponding to the first network in the present application is different from the network system corresponding to the second network.
  • the first network and the second network may be 2G networks, 3G networks, LTE networks (eg, 4G networks), NR networks (eg, 5G networks), and any two different networks in other networks in the future.
  • LTE networks eg, 4G networks
  • NR networks eg, 5G networks
  • only the first network and the second network are 4G networks, and any two different networks in the NR network are taken as an example.
  • the first network is an LTE network and the second network is an NR network.
  • the network format of the second network used between the wireless backhaul node and the access network device is an NR network. That is, the NR technology is used between the wireless backhaul node and the access network device, and the core network serving the wireless backhaul node is a next generation core network (NGC).
  • the NGC includes: a core network control plane network element corresponding to the wireless backhaul node and a core network user plane network element corresponding to the wireless backhaul node.
  • the core network control plane network element corresponding to the wireless backhaul node includes an access and mobility management function (AMF) network element and a session management function (SMF) connected to the AMF network element.
  • AMF access and mobility management function
  • SMF session management function
  • the network element, the core network user plane network element corresponding to the wireless backhaul node is a user plan function (UPF) network element
  • the base station accessed by the wireless backhaul node is an NR base station, such as a next generation base station (next generation NB) , gNB).
  • the gNB is connected to the AMF network element
  • the AMF network element is connected to the SMF network element
  • the SMF network element is connected to the UPF network element.
  • the core network that provides services for the terminal may be an evolved packet core network (EPC), which includes: a terminal's PGW/serving gateway (S-GW) and mobility management.
  • EPC evolved packet core network
  • S-GW serving gateway
  • MME mobility management entity
  • the name of the interface between the foregoing network elements is only an example. In the specific implementation, the interface name may be other names, which is not specifically limited in this embodiment of the present application.
  • the access network device, the AMF network element, the SMF network element, the UPF network element, and the like mentioned above are only one name, and the name does not limit the device itself.
  • the network element or the network element corresponding to the access network device, the AMF network element, the SMF network element, and the UPF network element may be other names, which is not specifically limited in this embodiment of the present application. . A unified explanation is given here, and will not be described below.
  • the network format of the second network used between the wireless backhaul node 202 and the access network device 203 is an LTE network. That is, the wireless backhaul node 202 and the access network device 203 use the LTE technology.
  • the access network device accessed by the wireless backhaul node 202 is an LTE base station (for example, an eNB).
  • the core network user plane network element corresponding to the wireless backhaul node is the PGW/SGW.
  • the core network control plane network element corresponding to the wireless backhaul node is the MME network element.
  • the core network control plane network element corresponding to the terminal may be an AMF network element and an SMF network element.
  • the core network user plane network element corresponding to the terminal may be a UPF network element.
  • the wireless backhaul node 202 when the wireless backhaul node 202 receives the data transmitted by the terminal 201, or when the wireless backhaul node 202 transmits data to the terminal 201, the wireless backhaul node 202 generally functions as an access device similar to the base station.
  • the wireless backhaul node 202 receives data transmitted by the host access network device, or when the wireless backhaul node 202 transmits data to the host access network device, the wireless backhaul node 202 typically acts as a terminal-like device.
  • the wireless backhaul node 202 acts as a terminal, the wireless backhaul node 202 can access the wireless network in a manner similar to the terminal.
  • the access network device 203 can be a device that communicates with the terminal 201, which can be a base station, a relay station, or an access point, and the like.
  • the access network device 203 may be a base transceiver station (BTS) in a global system for mobile communication (GSM) or a code division multiple access (CDMA) network, and may also be It is an eNB or an eNodeB (evolutional NodeB) in LTE.
  • BTS base transceiver station
  • GSM global system for mobile communication
  • CDMA code division multiple access
  • the access network device 203 may also be a 5G communication system, an access network device in a new radio (NR) or an access network device in a future evolved network, such as a next generation base station (NR NodeB, gNB), It can be a wearable device or an in-vehicle device.
  • NR next generation base station
  • gNB next generation base station
  • the 5G communication system and new radio (NR) are the next generation communication systems under study.
  • the communication system can also be applied to future-oriented communication technologies, and the technical solutions provided by the embodiments of the present application are applicable.
  • the access network in the future can be implemented by using a cloud radio access network (C-RAN) architecture.
  • C-RAN cloud radio access network
  • One possible way is to divide the protocol stack architecture and functions of the traditional base station into two parts: one part is called a central unit (CU), and the other part is called a distributed unit (DU).
  • the actual deployment of CU and DU is more flexible.
  • the CU parts of multiple base stations are integrated to form a large-scale functional network element.
  • FIG. 5 it is a schematic diagram of a network architecture provided by an embodiment of the present application.
  • the network architecture includes a CN device and a RAN device, wherein the RAN device includes one or more CUs and one or more DUs, and the access network device 203 can be the RAN device.
  • the RAN device may be implemented by one node or by multiple nodes.
  • the RAN device is used to implement radio resource control (RRC), packet data convergence protocol (PDCP), radio link control (RLC), and medium access control (medium access control).
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • RLC radio link control
  • medium access control medium access control
  • the function of the protocol layer such as MAC).
  • the CU and the DU may be divided according to a protocol layer of the wireless network. For example, the functions of the packet data convergence layer protocol layer and the foregoing protocol layer are set in the CU, the protocol layer below the PDCP, including the functions of the RLC and the MAC layer. Set in DU.
  • CN denotes a core network.
  • the division of the protocol layer is only an example, and can also be divided in other protocol layers, for example, in the RLC layer, the functions of the RLC layer and the above protocol layer are set in the CU, and the functions of the protocol layer below the RLC layer are set in the DU; Alternatively, in a certain protocol layer, for example, a part of the function of the RLC layer and a function of a protocol layer above the RLC layer are set in the CU, and the remaining functions of the RLC layer and the functions of the protocol layer below the RLC layer are set in the DU. In addition, it may be divided in other manners, for example, according to the delay division, the function that needs to meet the delay requirement in the processing time is set in the DU, and the function that does not need to meet the delay requirement is set in the CU.
  • control plane (CP) and the user plane (UP) of the CU may be separated into different network elements to implement, respectively, with respect to the architecture shown in FIG. Control plane CU network element (CU-CP network element) and user plane CU network element (CU-UP network element).
  • CU-CP network element Control plane CU network element
  • CU-UP network element user plane CU network element
  • data generated by the CU may be sent to the terminal through the DU, or data generated by the terminal may be sent to the CU through the DU.
  • the DU can be directly encapsulated by the protocol layer and then transmitted to the terminal or CU without parsing the data.
  • the signaling of the RRC or PDCP layer will eventually process the data transmitted to the physical layer (PHY) to the terminal, or be converted from the data of the received PHY layer.
  • the signaling of the RRC or PDCP layer can also be considered as being sent by the DU.
  • the CU is used as the access network device in the RAN.
  • the CU may be divided into access network devices in the CN, which is not limited herein.
  • the device in the following embodiments of the present application may be located in a terminal or an access network device according to the functions implemented by the present application.
  • the access network device may be a CU node, or a DU node, or a RAN device including a CU node and a DU node function.
  • the terminal 201 may be a user equipment (UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or User device.
  • the terminal can communicate with one or more core networks (such as network slices) via a radio access network (RAN), or can communicate with another terminal, such as device to device (D2D). Or communication in a machine to machine (M2M) scenario.
  • RAN radio access network
  • D2D device to device
  • M2M machine to machine
  • the terminal may be a station (STA) in a wireless local area network (WLAN), which may be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (wireless local loop) , WLL) stations, personal digital assistant (PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, and next-generation communication systems, such as A terminal in a fifth-generation (5G) communication network or a terminal in a future public land mobile network (PLMN) network.
  • 5G fifth-generation
  • PLMN public land mobile network
  • the terminal may also be a wearable device.
  • a wearable device which can also be called a wearable smart device, is a general term for applying wearable technology to intelligently design and wear wearable devices such as glasses, gloves, watches, clothing, and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are more than just a hardware device, but they also implement powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-size, non-reliable smartphones for full or partial functions, such as smart watches or smart glasses, and focus on only one type of application, and need to work with other devices such as smartphones. Use, such as various smart bracelets for smart signs monitoring, smart jewelry, etc.
  • FIG. 7 and FIG. 8 show a schematic diagram of another communication system of the present application.
  • FIG. 7 and FIG. 8 differ from FIG. 4 in that the wireless backhaul node 202 and one are in FIG. Or two or more (including two) wireless backhaul nodes 204 (only one wireless backhaul node 204 is shown in FIG. 7) constitute a multi-hop communication system architecture, and the wireless backhaul node 204 and the access network device 203
  • FIG. 4 is a single-hop IAB architecture
  • one or more (including two) wireless backhaul nodes 205 are also introduced in FIG. 8, and the wireless backhaul node 202 passes two communications in FIG.
  • the link is in communication with the access network device 203, that is, the wireless backhaul node 202 is directly connected to the access network device 203, and is connected to the access network device 203 via the wireless backhaul node 205.
  • the interface between the terminal 201 and the wireless backhaul node 202 is the first interface (for example, an LTE network).
  • the first interface is a Uu interface
  • the wireless backhaul node 204 and the access network device 203 use the network standard communication corresponding to the second network
  • the interface between the wireless backhaul node 204 and the access network device 203 for the second interface for example, when the NR network is used, the second interface is the Un interface).
  • the name of the above interface and the like are only one name, and the name does not limit the interface itself.
  • the interface between the terminal 201 and the wireless backhaul node 202, the interface between the wireless backhaul node 204 and the access network device 203 may be other names. This is not specifically limited. A unified explanation is given here, and will not be described below.
  • FIG. 4, FIG. 7, and FIG. 8 are only a schematic diagram of the communication system architecture used in the present application, and more or more complex communication system architectures may be included in the actual communication process.
  • an LTE network is used between the terminal and the wireless backhaul node.
  • the wireless backhaul node and the access network device use the NR network for communication, establish a data transmission channel for the terminal, and transmit the terminal data to the LTE core network.
  • FIG. 9 shows a control plane protocol stack of the L3 architecture of the present application.
  • the control plane protocol stack of the terminal is a control plane protocol stack running under the LTE system.
  • the following includes: a non-access stratum (NAS) layer, a radio resource control (RRC) layer, a packet data convergence protocol (PDCP) layer, and a radio link control ( a radio link control (RLC) layer, a medium access control (MAC) layer, and a physical layer (PHY) layer.
  • NAS non-access stratum
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC medium access control
  • PHY physical layer
  • the first protocol stack and the second protocol stack corresponding to the access network device wherein when the control plane protocol stack of the terminal is a control plane protocol stack in the LTE system, the first protocol stack may also be a protocol stack under the LTE system.
  • the control plane protocol stack corresponding to the access network device is the control plane protocol stack under the NR system
  • the second protocol stack is the protocol stack under the NR system.
  • the first protocol stack includes, in order from top to bottom, an RRC layer, a PDCP layer, an RLC layer, a MAC layer, and a PHY layer.
  • the second protocol stack includes, in order from top to bottom, an S1 application protocol (AP) layer, A stream control transmission protocol (SCTP) layer, an IP layer, a PDCP layer, an RLC layer, a MAC layer, and a PHY layer.
  • AP application protocol
  • SCTP stream control transmission protocol
  • the control plane protocol stack of the access network device includes: a third protocol stack corresponding to the second protocol stack, and a fourth protocol stack corresponding to the core network device, where the NR network is used between the wireless backhaul node and the access network device
  • the third protocol stack includes, in order from top to bottom, an S1AP layer, an SCTP layer, an IP layer, a PDCP layer, an RLC layer, a MAC layer, and a PHY layer.
  • the fourth protocol stack includes, in order from top to bottom, an S1AP layer and an SCTP.
  • the layer, the IP layer, the L2, and the L1 layer, the core network device includes, in order from top to bottom, a NAS layer, an S1AP layer, an SCTP layer, an IP layer, an L2, and an L1 layer. That is to say, the S1 connection of the terminal is directly established between the wireless backhaul node and the MME serving the terminal, and the wireless backhaul node transmits the S1AP message of the terminal to the gNB through the air interface of the NR, and is further sent by the gNB to the NB.
  • the MME that serves the terminal.
  • the LTE network is taken as an example only for the network system corresponding to the first network
  • the NR network corresponding to the second network is taken as an example.
  • the network format corresponding to the first network is In the NR network
  • the core network accessed by the terminal is the NR core network
  • the control plane protocol stack of the terminal is a control plane protocol stack running under the NR system, and the wireless backhaul is performed.
  • the first protocol stack included in the node 202 is a protocol stack under the NR system
  • the second protocol stack is a protocol stack under the LTE system
  • the third protocol stack of the access network device is a protocol stack under the NR system, as shown in FIG.
  • the control plane protocol stack of the terminal is a NAS layer, an RRC layer, a PDCP layer, an RLC layer, a MAC layer, and a PHY layer running under the NR system from top to bottom
  • the first protocol stack is sequentially from top to bottom.
  • the RRC layer, the PDCP layer, the RLC layer, the MAC layer, and the PHY layer are included, and the second protocol stack includes NGAP, SCTP, IP, PDCP, RLC layer, MAC layer, and PHY layer in order from top to bottom. That is, the NG connection of the terminal is directly established between the wireless backhaul node and the AMF serving the terminal, and the wireless backhaul node transmits the NGAP message of the terminal to the eNB through the air interface of the LTE, and is further sent by the eNB to the eNB. AMF that serves the terminal.
  • the network system corresponding to the first network used between the terminal and the wireless backhaul node is an LTE network
  • the network system corresponding to the second network used between the wireless backhaul node and the gNB is an NR network
  • the wireless back The transmitting node generates an S1AP message, but the S1AP is carried on the NR network and sent to the MME corresponding to the terminal.
  • the network system corresponding to the first network used between the terminal and the wireless backhaul node is an NR network
  • the network system corresponding to the network used between the wireless backhaul node and the eNB is an LTE network
  • the wireless backhaul node generates an NGAP message.
  • the NGAP is carried on the LTE network and sent to the terminal on the corresponding AMF network element in the NR network.
  • the access network device can also be divided into multiple logical network elements based on the above figure. Therefore, the control plane protocol stack shown in FIG. 9 can further adopt the protocol stack as shown in FIG. 11, and the difference between FIG. 11 and FIG. 9 lies in Further, the transmission between the logical network elements in the access network device is further refined, and the control plane protocol stack corresponding to the terminal and the wireless backhaul node is the same.
  • the control plane protocol stack shown in FIG. 9 can further adopt the protocol stack as shown in FIG. 11, and the difference between FIG. 11 and FIG. 9 lies in Further, the transmission between the logical network elements in the access network device is further refined, and the control plane protocol stack corresponding to the terminal and the wireless backhaul node is the same.
  • the control plane protocol stack of the access network device integrates the wireless a base station to which the backhaul node is connected, a core network user plane network element serving the wireless backhaul node, and a protocol stack of three logical network elements of the HeNB_GW, wherein the protocol stack corresponding to the base station accessed by the wireless backhaul node includes a fifth protocol stack corresponding to the second protocol stack of the wireless backhaul node and a sixth protocol stack, wherein the fifth protocol stack is a protocol stack running under the NR system, and the fifth protocol stack includes a PDCP layer from top to bottom.
  • the RLC layer, the MAC layer, and the PHY layer includes, in order from top to bottom, a GTP-U layer, a UDP layer, an IP layer, an L2 layer, and an L1 layer; and a core network user plane serving the wireless backhaul node.
  • the protocol stack corresponding to the network element includes The seventh protocol stack and the eighth protocol stack, wherein the seventh protocol stack includes an IP layer, a GTP-user plane (U) layer, a user datagram protocol (UDP) layer, an IP layer, and an L2 layer.
  • the L1 layer, the eighth protocol stack includes an IP layer, an L2 layer, and an L1 layer
  • the protocol stack corresponding to the HeNB_GW includes two ninth protocol stacks, where the ninth protocol stack includes an S1-AP layer, an SCTP layer, an IP layer, and an L2 layer. L1 layer. That is to say, the signaling of the terminal is transmitted to the core network device serving the terminal through the user plane of the wireless backhaul node in the access network device.
  • an S1 connection is established between the wireless backhaul node and the access network device, and the S1 connection carries the access network device on the NR air interface, and the control plane protocol stack is adopted between the network elements shown in FIG. 9 and FIG.
  • the interaction between the terminal and the user plane bearer of each interface includes: mapping between the terminal DRB of the terminal and the wireless backhaul node, the UE GTP tunnel between the wireless backhaul node and the access network device, and the wireless The GTP tunnel mapping between the GTP tunnel of the terminal between the backhaul node and the access network device and the access network device and the core network user plane network element corresponding to the terminal.
  • FIG. 12 shows a user plane protocol stack of the L3 architecture of the embodiment.
  • the user plane protocol stack of the terminal is a user plane protocol stack running under the LTE system, and the user of the terminal.
  • the top layer protocol stack includes, in order from top to bottom, an IP layer, a PDCP layer, an RLC layer, a MAC layer, and a PHY layer.
  • the user plane protocol stack of the wireless backhaul node includes a tenth protocol stack corresponding to the user plane protocol stack of the terminal.
  • the eleventh protocol stack wherein the tenth protocol stack is a protocol stack running under the LTE system, and the tenth protocol stack includes, in order from top to bottom, a PDCP layer, an RLC layer, a MAC layer, and a PHY layer, and an eleventh protocol stack.
  • the eleventh protocol stack includes, in order from top to bottom, a GTP-U layer, a UDP layer, an IP layer, an SDAP layer, a PDCP layer, an RLC layer, a MAC layer, and a PHY layer.
  • the user plane protocol stack of the access network device includes a twelfth protocol stack and a thirteenth protocol stack that are peered with the eleventh protocol stack, wherein the twelfth protocol stack includes, in order from top to bottom, a GTP-U layer.
  • UDP layer, IP layer, service data adaptation protocol service data adaptation protocol (service data adaptation protocol, The SDAP layer, the PDCP layer, the RLC layer, the MAC layer, and the PHY layer
  • the thirteenth protocol stack includes, in order from top to bottom, a GTP-U layer, a UDP layer, an IP layer, an L2 layer, and an L1 layer, and users of the core network device.
  • the top-layer protocol stack includes, in order from top to bottom, an IP layer, a GTP-U layer, a UDP layer, an IP layer, an L2 layer, and an L1 layer.
  • the access network device can also be divided into multiple logical network elements based on the above figure. Therefore, the user plane protocol stack shown in FIG. 12 can further adopt the user plane protocol stack as shown in FIG. The difference between FIG. 13 and FIG. 12 is that the transmission between logical network elements in the access network device is further refined.
  • the user plane protocol stack corresponding to the terminal and the wireless backhaul node are the same.
  • the user plane protocol stack of the access network device integrates the base station accessed by the wireless backhaul node and the core network serving the wireless backhaul node.
  • User plane network element and protocol stack of three logical network elements of HeNB_GW User plane network element and protocol stack of three logical network elements of HeNB_GW.
  • the protocol stack corresponding to the base station accessed by the wireless backhaul node includes a fourteenth protocol stack and a fifteenth protocol stack running under the NR system, wherein the fourteenth protocol stack includes the SDAP layer from top to bottom.
  • the PDCP layer, the RLC layer, the MAC layer, and the PHY layer, the fifteenth protocol stack includes, in order from top to bottom, a GTP-U layer, a UDP layer, an IP layer, an L2, and an L1 layer, and a core network that provides services for the wireless backhaul node.
  • the protocol stack corresponding to the user plane network element includes a sixteenth protocol stack and a seventeenth protocol stack.
  • the sixteenth protocol stack includes, in order from top to bottom, an IP layer, a GTP-U layer, a UDP layer, an IP layer, an L2 layer, and an L1 layer.
  • the seventeenth protocol stack includes, in order from top to bottom, an IP layer and an L2 layer.
  • the L1 layer, the protocol stack corresponding to the HeNB_GW includes two eighteenth protocol stacks, wherein the eighteenth protocol stack includes, in order from top to bottom, a GTP-U layer, a UDP layer, an IP layer, an L2 layer, and an L1 layer.
  • the network standard used by the first network is an NR network
  • the network standard used by the second network is an LTE network.
  • the user plane protocol stack corresponding to the terminal is a user plane protocol stack running under the NR system.
  • the tenth protocol stack included in the wireless backhaul node is a user plane protocol stack running under the NR system.
  • the eleventh protocol stack included in the wireless backhaul node is a user plane protocol stack running under the LTE system.
  • the twelfth protocol stack included in the access network device is a user plane protocol stack running under the LTE system
  • the user plane protocol stack of the core network device is a user plane protocol stack running under the NR system.
  • a GTP tunnel corresponding to each terminal's E-RAB is established between the wireless backhaul node and the access network device, and the GTP tunnel of the terminal is carried on the NR air interface and sent to the access network device.
  • the execution body of the communication method provided in the present application may be the first management unit or the communication device applied to the first management unit, for example, a chip
  • the execution body of another communication method provided by the present application may be The first device or the wireless backhaul device applied to the first device, for example, a chip
  • the following embodiment will be the first management unit of the communication method
  • the first execution unit of the other communication method is the first The device is an example.
  • FIG. 14 shows a flow of a communication method provided by the present application, which is applied to a wireless backhaul system, where the wireless backhaul system includes a first network and a second network, first The network and the second network adopt different network standards, wherein the terminal in the wireless backhaul system and the access network device communicate with each other through the first device, and the first device and the terminal use the network standard communication corresponding to the first network. The first device and the access network device use the network standard communication corresponding to the second network.
  • the first management network element acquires information about the first radio bearer of the terminal in the first network, where the information of the first radio bearer is used to indicate the first radio bearer of the terminal in the first network.
  • the first management network element is configured to control session management of the first device in the second network.
  • the access network device is used by the first device to access the second network.
  • the first management network element in this embodiment may be a core network control plane network element of the first device in the second network, or a chip in the core network control plane network element of the first device in the second network, The application does not limit this.
  • the network system used by the first network in this embodiment is a long-term evolution LTE network
  • the network system used by the second network is an NR network.
  • the information of the first radio bearer may be E-RAB bearer information
  • the QoS parameter corresponding to the identifier of the first radio bearer includes one or more of the following: a QoS class identifier (QCI), an allocation, and a reservation priority.
  • QCI QoS class identifier
  • Level ARP guaranteed bit rate
  • maximum bit rate MBR maximum bit rate
  • the QoS parameters corresponding to the identifier of the first radio bearer include: QCI and GBR.
  • the identifier of the second radio bearer is the quality of service flow identifier QFI
  • the QoS parameter corresponding to the QFI includes one or more of the following: 5G QoS identifier 5QI, allocation and reservation priority ARP, guaranteed bit rate GBR, and maximum bit rate MBR, for example
  • the QFI corresponding QoS parameters include: QCI and GBR.
  • the value of QCI may be any point value or range value of 0-255.
  • the value of QCI is 1-4.
  • the value of QCI can be: 5-9.
  • the different values corresponding to the QCI can correspond to different delays, packet loss rates, and the like.
  • GBR refers to the guaranteed rate of data transmission.
  • the identifier of a first radio bearer corresponds to one QCI and GBR, that is, the identifier of the first radio bearer can be regarded as an index.
  • the core network control plane network element of the terminal in the first network may be a mobility management entity (MME), and the network standard corresponding to the second network.
  • MME mobility management entity
  • the first management network element is an SMF network element, or is a chip applied to the SMF network element, that is, the core network control plane network element corresponding to the first equipment in the second network is an SMF network element.
  • the network system corresponding to the second network in the present application is a long-term evolution LTE network
  • the network system corresponding to the first network is an NR network
  • the QoS corresponding to the identifier of the second radio bearer The parameters include one or more of the following: quality class identification QCI, allocation and retention priority ARP, guaranteed bit rate GBR, and maximum bit rate MBR.
  • the QoS parameters corresponding to the identifier of the second radio bearer include: QCI and GBR; the identifier of the first radio bearer is the QoS parameter flow identification QFI, and the QoS parameter corresponding to the QFI includes one or more of the following: 5G QoS identifier 5QI , assign and retain priority ARP, guaranteed bit rate GBR and maximum bit rate MBR.
  • the QoS parameters corresponding to the QFI include QCI and GBR.
  • the network element of the core network control plane of the terminal in the first network may be an AMF network element.
  • the first device accesses the first device in the LTE network through the LTE network.
  • the core network SGW/PGW is connected to the core network control plane (for example, the AMF network element and the SMF network element) in the first network through the SGW/PGW.
  • the terminal is in the core network user plane (for example, the UPF network element) in the first network
  • the first management network element is the SMF network element in the first network or the chip in the SMF network element.
  • the information about the first radio bearer in the application may include an identifier of the first radio bearer and a quality of service (QoS) parameter corresponding to the identifier of the first radio bearer.
  • QoS quality of service
  • the first radio bearer in the application may be a data radio bearer (DRB) or a signaling radio bearer (SRB).
  • DRB data radio bearer
  • SRB signaling radio bearer
  • the first management network element determines, according to information of the first radio bearer, a mapping relationship between the first radio bearer and the second radio bearer, where the second radio bearer is a radio bearer of the first device in the second network.
  • the mapping relationship between the first radio bearer and the second radio bearer of the first device in the second network may refer to the identifier of the first radio bearer and the second radio bearer of the first device in the second network.
  • the mapping relationship between the identifiers may refer to the mapping relationship between the identifiers.
  • the identifier of a radio bearer in this application may be a number of a radio bearer or an index of a radio bearer, which is not limited in this application.
  • identifiers related to radio bearers reference may be made to the description herein. A unified explanation is given here, and will not be described below.
  • the radio bearer may be indicated by an identifier of a radio bearer and a QoS parameter corresponding to the identifier of the radio bearer.
  • the first radio bearer may be indicated by an identifier of the first radio bearer and a QoS parameter corresponding to the identity of the first radio bearer.
  • the terminal may have multiple first radio bearers in the first network.
  • only the information of the first radio bearer includes an identifier of the first radio bearer and a QoS parameter corresponding to the identifier of the first radio bearer.
  • the information of the first radio bearer may include multiple first radio bearers.
  • Each first radio bearer corresponds to information of a first radio bearer, and the information of each first radio bearer includes an identifier of the first radio bearer and a Qos parameter corresponding to the identifier of the first radio bearer, as shown in Table 1. Shown.
  • the first management network element may determine a mapping relationship between each first radio bearer and a second radio bearer of the first device in the second network, that is, a first radio bearer and a second radio bearer mapping.
  • the present application provides a communication method, where the information of the first radio bearer of the terminal in the first network is obtained by the first device, and the information of the first radio bearer of the obtained terminal in the first network is sent to the first management.
  • a network element such that after receiving the information of the first radio bearer, the first management network element may determine, according to the QoS parameter included in the information of the first radio bearer, the first radio bearer and the second device in the second network.
  • the mapping relationship between the radio bearers is such that in the heterogeneous scenario, the services of the terminal can be mapped to the corresponding bearers in the first network and the second network, thereby improving the quality of the service transmission.
  • the first management network element in the application may obtain the information of the first radio bearer of the terminal in the first network in multiple manners.
  • the S101 in the present application may be specifically implemented in the following manner: S1011, the first management The network element may obtain information of the first radio bearer of the terminal in the first network from the first device.
  • the method provided by the present application further includes S103 and S104 before S1011, as shown in FIG.
  • the first device acquires information about a first radio bearer of the terminal in the first network, where the information of the first radio bearer is used to indicate the first radio bearer.
  • the information of the first radio bearer includes an identifier of the first radio bearer and a quality of service (QoS) parameter corresponding to the identifier of the first radio bearer.
  • QoS quality of service
  • the first device may be a wireless backhaul node as shown in the above figure, or a chip disposed in the wireless backhaul node.
  • the first device may obtain information about the first radio bearer established by the terminal in the first network by using an S1AP message.
  • the first device may obtain information about the first radio bearer established by the terminal in the first network during the initial network access of the terminal.
  • the first device sends information about the first radio bearer to the first management network element in the second network.
  • the first device in the present application may first send the information of the first radio bearer to the access network device, so that the information of the first radio bearer is sent by the access network device to the first device in the first network.
  • Management network elements such as core network control plane network elements.
  • the network system corresponding to the second network is an NR network
  • the network element corresponding to the core network control plane of the first device in the second network is an AMF network element and an SMF network element, that is, the access network device
  • the information of a radio bearer is sent to the AMF network element of the second device in the second network, and the AMF network element sends the information of the first radio bearer to the SMF network element.
  • the network system corresponding to the second network is an NR network
  • the core network control plane network element of the first device in the second network is an AMF network element and an SMF network element
  • the terminal is in the core of the first network.
  • the network element of the network control plane is the MME network element.
  • the MME network element that provides the service for the terminal can obtain the information of the first radio bearer of the terminal in the first network, that is, the information of the first radio bearer that the MME network element obtains directly SMF network element sent to the first device in the NR network.
  • a direct interface exists between the MME network element of the first network and the SMF network element of the second network.
  • the S101 in this embodiment may be specifically implemented by: acquiring, by the first management network element, the first radio bearer of the terminal in the first network from the network element of the core network control plane of the first network. information.
  • the first management network element obtains information of one or more first radio bearers of the terminal in the first network from the network element of the core network control plane of the first network, the foregoing S103 and S104 may be omitted, but the terminal is An interface capable of interactive signaling exists between the core network control plane network element of the first network and the first management network element.
  • the core network control plane network elements of the terminal in the first network are AMF network elements and SMF network elements.
  • the first device may send, by the AMF network element, the information of the second radio bearer of the first device in the second network to the SMF network element, where the SMF network element determines the first radio bearer and the second radio bearer according to the information of the second radio bearer. Mapping relationship.
  • the method provided by the present application further includes S105 and S106, as shown in FIG.
  • the first management network element sends a mapping relationship between the first radio bearer and the second radio bearer of the first device in the second network.
  • the first management network element may send, to the first device and/or the access network device, a mapping relationship between the identifier of the first radio bearer and the identifier of the second radio bearer of the first device in the second network.
  • the first management network element in the application may further send the mapping relationship between the identifier of the first radio bearer and the identifier of the second radio bearer of the first device in the second network to the first device.
  • the core network user plane network element so that the core network user plane network element accessed by the first device can perform bearer mapping of the service according to the mapping relationship.
  • the first device receives a mapping relationship between the first radio bearer sent by the first management NE and the second radio bearer of the first device in the second network.
  • the first device After the first device receives the mapping relationship between the first radio bearer and the second radio bearer in the second network, the first device receives the downlink transmission sent by the access network device, and the first device And transmitting the downlink transmission to the bearer having the mapping relationship with the information carried by the downlink transmission to the terminal according to the information about the bearer of the downlink transmission and the mapping relationship between the first radio bearer and the second radio bearer.
  • the first device may map the uplink transmission to the uplink transmission according to the information about the bearer of the uplink transmission and the mapping relationship between the first radio bearer and the second radio bearer.
  • the bearer information is transmitted to the access network device on the bearer with the mapping relationship, and is sent by the access network device to the core network device corresponding to the terminal.
  • the first radio bearers of the terminal in the first network are E-RAB ID1 and E-RAB ID2.
  • E-RAB ID1 and the DRB1 mapping between the terminal and the first device the E-RAB ID1 and the GTP tunnel 1 mapping between the access network device and the MME serving the terminal
  • E-RAB ID2 and the terminal and the A DRB2 mapping between devices
  • the E-RAB ID2 mapping with the GTP tunnel 2 between the access network device and the MME serving the terminal are E-RAB ID1 and E-RAB ID2.
  • the second radio bearers of the first device in the second network are QFI1 and QFI2, wherein the QFI1 is in the DRB1 mapping between the first device and the access network device, and the QFI2 is in the DRB2 between the first device and the access network device. Mapping. If the SMF network element determines that the E-RAB ID1 and the QFI1 have a mapping, and the E-RAB ID2 and the QFI2 have a mapping, the terminal service extracted by the access network device from the GTP tunnel 1 is mapped to the first device and the access network device. The DRB1 is sent to the first device, and the data is mapped by the first device to the DRB1 between the terminal and the first device and sent to the terminal.
  • the terminal service extracted by the access network device from the GTP tunnel 2 is mapped to the DRB2 between the first device and the access network device and sent to the first device, and the first device maps the data to the terminal and the first device.
  • the DRB2 between the devices is sent to the terminal.
  • the method provided by this embodiment is preceded by S102, as shown in FIG. 18.
  • the first management network element acquires information about a second radio bearer of the first device in the second network, where the information of the second radio bearer includes an identifier of the second radio bearer and a QoS parameter corresponding to the identifier of the second radio bearer. .
  • the information about the second radio bearer in the application is used to determine the second radio bearer of the first device in the second network.
  • the first device in this application has multiple second radio bearers in the second network, and each second radio bearer can be identified by a second radio bearer and the QoS corresponding to the identifier of the second radio bearer. Parameter indication.
  • S102 in this embodiment may be implemented by: determining, by the first management network element, a first QoS parameter that matches a Qos parameter corresponding to the identifier of the first radio bearer in the second network; The management network element determines a mapping relationship between the identity of the first radio bearer and the identity of the second radio bearer associated with the first QoS parameter.
  • the QoS parameters include QCI or 5QI, and/or guaranteed rate and/or maximum rate of service transmission, and different QCIs or 5QIs may correspond to different delays and/or packet loss rates.
  • the QoS parameters corresponding to the two radio bearers match.
  • the similarity refers to the mutual difference between the two comparison objects is less than or equal to the threshold. For example, if the difference between the delay and/or the packet loss rate of the two radio bearers and/or the guaranteed rate and/or the maximum rate of the service transmission is less than or equal to the threshold, the QoS parameters of the two radio bearers match, This embodiment does not limit the threshold.
  • the QoS parameters corresponding to the two radio bearers are matched. For example, if the packet loss rates of the two radio bearers are the same or similar, the two radio bearers are corresponding. QoS parameter matching; for example, if the guaranteed rates of the service transmissions of the two radio bearers are the same or similar, the QoS parameters corresponding to the two radio bearers are matched; for example, the maximum rate of the service transmission corresponding to the two radio bearers is the same or Similar, the QoS parameters corresponding to the two radio bearers are matched.
  • the QoS parameters corresponding to the two radio bearers are matched.
  • the delay and the packet loss rate of the two radio bearers are the same or similar, the QoS parameters of the two radio bearers are matched. For example, the delays corresponding to the two radio bearers and the guaranteed rate of the service transmission are respectively the same.
  • the QoS parameters corresponding to the two radio bearers are matched; for example, if the delays corresponding to the two radio bearers and the maximum rates of the service transmission are respectively the same or similar, the QoS parameters corresponding to the two radio bearers are matched; For example, if the packet loss rate corresponding to the two radio bearers and the guaranteed rate of the service transmission are respectively the same or similar, the QoS parameters corresponding to the two radio bearers are matched; for example, the packet loss rate and the service transmission corresponding to the two radio bearers are respectively If the maximum rates are the same or similar, the QoS parameters of the two radio bearers are matched. For example, if the guaranteed rate of the service transmission corresponding to the two radio bearers and the maximum rate of the service transmission are respectively the same or similar, the two radio bearers are respectively The corresponding QoS parameters match.
  • the QoS parameters corresponding to the two radio bearers are matched; for example, the delays of the two radio bearers. If the packet loss rate and the maximum rate of the service transmission are the same or similar, the QoS parameters of the two radio bearers are matched. For example, the packet loss rate corresponding to the two radio bearers, the guaranteed rate of the service transmission, and the maximum rate of the service transmission. If they are the same or similar, the QoS parameters corresponding to the two radio bearers are matched.
  • the QoS parameters of the two radio bearers match.
  • the first QoS parameter that matches the Qos parameter corresponding to the identifier of the first radio bearer may refer to the first QoS parameter that is the same as the Qos parameter corresponding to the identifier of the first radio bearer, and may also refer to the first radio bearer. Identifying a first QoS parameter whose corresponding Qos parameter is similar.
  • the delay corresponding to the QCI included in the Qos parameter corresponding to the identifier of the first radio bearer is A, and if the delay corresponding to the QCI included in the first QoS parameter should also be A, or is close to A, the first wireless
  • the Qos parameter corresponding to the bearer identifier matches the first QoS parameter.
  • the terminal has two or more radio bearers in the first network.
  • the radio bearer 1 corresponds to QCI1+GBR1
  • the radio bearer 2 corresponds to QCI2+GBR2.
  • the first device has a service flow in the second network
  • QFI1 corresponds to QCI1+GBR1. Therefore, the first management network element can determine the QFI1 of the first device in the second network and the radio bearer of the terminal in the first device. 1 has the same quality of service, so that the traffic on the radio bearer 1 is mapped to the first device and transmitted on the bearer corresponding to QFI1 in the second network.
  • the different delays corresponding to the two radio bearers belong to the same delay range, that is, the difference between the different delays of the two radio bearers is less than or equal to the threshold, and the first management network element can also consider the two radio bearers.
  • the corresponding QoS parameters match.
  • the packet loss ratios of the two radio bearers are different, and the packet loss ratios of the two radio bearers belong to the same packet loss rate range, that is, the difference between the different packet loss rates of the two radio bearers is less than or equal to the threshold.
  • the first management network element may also consider that the QoS parameters corresponding to the two radio bearers match.
  • the guaranteed rate/maximum rate of the service transmission corresponding to the two radio bearers is different, and the guaranteed rate/maximum rate of the service transmission corresponding to the two radio bearers belongs to the same rate range, that is, different services corresponding to the two radio bearers. If the difference between the guaranteed rate and the maximum rate of the transmission is less than or equal to the threshold, the first management network element may also consider that the QoS parameters corresponding to the two radio bearers match.
  • the first QoS parameter that matches the Qos parameter corresponding to the identifier of the first radio bearer may exist in the second network, and the first QoS parameter that matches the Qos parameter corresponding to the identifier of the first radio bearer may not exist.
  • the first QoS parameter that the first management network element in the application determines that the Qos parameter corresponding to the identifier of the first radio bearer in the second network matches may be implemented in the following manner.
  • the first management network element determines the QoS parameter matching the Qos parameter corresponding to the identifier of the first radio bearer as the first QoS parameters.
  • the first management network element triggers the first device in the second according to the Qos parameter corresponding to the identifier of the first radio bearer.
  • Establishing a target second radio bearer in the network where the target second radio bearer is indicated by the identifier of the target second radio bearer and the target QoS parameter corresponding to the target second radio bearer; the first management network element targets the target second radio bearer
  • the QoS parameters are determined as the first QoS parameters.
  • the first device of the present application has a first protocol stack and a second protocol stack, where the first protocol stack and the second protocol stack are used in different network standards, when the first device and the network standard corresponding to the first network are used.
  • the first device uses the first protocol stack, and when the first device communicates with the access network device by using the network standard corresponding to the second network, the first device uses the second protocol stack.
  • the first protocol stack is a protocol stack that the first device has when communicating with the terminal in the first network
  • the second protocol stack For the protocol stack used by the first device in the second network and the access network device accessed by the first device, the first network and the second network are different according to any two of the LTE network and the NR network.
  • the network is an example.
  • the first protocol stack when the network system corresponding to the first network is an LTE network, the first protocol stack includes, in order from the top and bottom, an RRC layer, a PDCP layer, an RLC layer, a MAC layer, and a PHY layer running under the LTE network.
  • the second protocol stack includes, in order from the top to the bottom, an S1-AP layer, an SCTP layer, an IP layer, a PDCP layer running under the NR network, an RLC layer, a MAC layer, and a PHY. Floor.
  • the first protocol stack when the network system corresponding to the first network is an NR network, the first protocol stack includes, in order from the top and bottom, an RRC layer, a PDCP layer, an RLC layer, a MAC layer, and a PHY layer running under the NR network.
  • the second protocol stack includes an NGAP layer, an SCTP layer, an IP layer, a PDCP layer, an RLC layer, a MAC layer, and a PHY layer running under the LTE network.
  • the first device is the RN
  • the network system corresponding to the first network is the LTE network
  • the network system corresponding to the second network is the 5G NR network
  • the first management network element is the SMF network element.
  • the IAB obtains the information of the E-RAB bearer established by the terminal by using the S1AP message, where the information carried by the E-RAB includes the E-RAB ID and the E-RAB ID.
  • QoS parameters are the parameters that are the E-RAB bearer established by the terminal by using the S1AP message, where the information carried by the E-RAB includes the E-RAB ID and the E-RAB ID.
  • the SGW/PGW corresponding to the terminal sends a create session respone message for the create session request to the MME corresponding to the terminal, where the create session respone message includes the E-RAB ID and the E a QoS parameter corresponding to the RAB ID, and an SGW GTP ID, wherein the SGW GTP ID is used to identify a GTP tunnel between the access network device and the SGW serving the terminal.
  • the MME then sends an initial context setup request message to the HeNB_GW, where the initial context setup request message carries the E-RAB ID, the QoS parameter corresponding to the E-RAB ID, and the SGW GTP ID.
  • the HeNB_GW processes the initial context setup request message and sends the message to the wireless backhaul node.
  • the processed initial context setup request message includes the E-RAB ID and the QoS parameter corresponding to the E-RAB ID, and the GTP ID corresponding to the HeNB_GW.
  • the GTP ID corresponding to the HeNB_GW is used to identify the GTP tunnel between the access network device and the HeNB_GW serving the terminal, so that the wireless backhaul node can determine the QoS parameters corresponding to the E-RAB ID and the E-RAB ID. Carry information for the E-RAB.
  • the wireless backhaul node sends the received E-RAB bearer information to the gNB.
  • the wireless backhaul node may send the information carried by the E-RAB to the gNB through the NAS message.
  • the gNB sends the information carried by the E-RAB to the AMF network element corresponding to the wireless backhaul node.
  • the gNB can send the information carried by the E-RAB to the AMF network element through the NAS message.
  • the AMF network element sends the information carried by the E-RAB to the SMF network element corresponding to the wireless backhaul node.
  • the AMF network element may send information carried by the E-RAB through a newly defined message with the SMF network element, or may also pass existing messages between the AMF network element and the SMF network element (for example, an AMF network element and an SMF network).
  • the N11 interface message between the elements) sends the information carried by the E-RAB.
  • the SMF network element determines a mapping relationship between the E-RAB ID and the QFI ID according to the information carried by the E-RAB and the information of the QFI bearer of the wireless backhaul node in the second network.
  • the QFI bearer information includes a QFI ID and a QoS profile parameter associated with the QFI ID.
  • the SMF network element determines, according to the QoS parameter corresponding to the E-RAB ID, a QoS profile parameter whose Qos parameter corresponding to the E-RAB ID is the same as the Qos parameter corresponding to the E-RAB ID, or a Qos parameter corresponding to the E-RAB ID.
  • the difference between the QoS profile parameters is less than the threshold.
  • the SMF network element establishes a mapping relationship between the E-RAB ID and the QFI ID associated with the QoS profile parameter.
  • the SMF network element sends the mapping relationship between the E-RAB ID and the QFI ID to the wireless backhaul node and the DgNB.
  • the SMF network element may send a mapping relationship between the E-RAB ID and the QFI ID to the UPF and gNB in the DgNB.
  • the SMF network element may send a mapping relationship between the E-RAB ID and the QFI ID to the UPF and the gNB in the DgNB by the following procedure.
  • the SMF network element first sends the mapping relationship between the E-RAB ID and the QFI ID to the AMF network element through the N11 interface message, and then the mapping relationship between the E-RAB ID and the QFI ID is sent by the AMF network element through the N2 interface message.
  • the DgNB the N2 interface is the interface between the AMF network element and the gNB network element.
  • Both the UPF network element and the gNB are set in the DgNB. Therefore, when the DgNB obtains the mapping relationship between the E-RAB ID and the QFI ID sent by the SMF network element, then the internal UPF network element and the gNB are The mapping relationship between the E-RAB ID and the QFI ID is known.
  • the wireless backhaul node receives a mapping relationship between the E-RAB ID and the QFI ID. After the wireless backhaul node has the mapping relationship between the E-RAB ID and the QFI ID, it can receive the uplink transmission sent by the terminal, according to the E-RAB1 where the uplink transmission is located, and the wireless backhaul node has The mapping relationship between the E-RAB ID and the QFI ID is selected from the mapping relationship between the E-RAB ID and the QFI ID, and the QFI that has a mapping relationship with the E-RAB1, for example, QFI1, and the uplink transmission is performed on the QFI1. Transfer to the access network device.
  • the wireless backhaul node when receiving the downlink transmission sent by the access network device, the wireless backhaul node can determine the QFI1 according to the mapping relationship between the E-RAB ID and the QFI ID and the QFI1 where the downlink transmission is located. Corresponding E-RAB1, and transmitting downlink transmission to the terminal on the E-RAB1.
  • the method shown in FIG. 20 differs from the method shown in FIG. 19 in that S301 is used instead of S201-S204 in FIG. 19 in FIG. S302 in FIG. 20 is the same as S205 in FIG. 19, S303 in FIG. 20 is the same as S206 in FIG. 19, S304 in FIG. 20 is the same as S207 in FIG. 20, for example, S301, the terminal is established in the first network.
  • the E-RAB carries the information
  • the terminal sends the E-RAB bearer information to the corresponding SMF network element of the RN in the second network, and the E-RAB bearer information, and the E-RAB bearer information. It includes the E-RAB ID and the QoS parameters corresponding to the E-RAB ID.
  • the present application provides a communication method, where the information of the first radio bearer of the terminal in the first network is obtained by the first device, and the information of the first radio bearer of the obtained terminal in the first network is sent to the first management.
  • the network element after the first management network element receives the information of the first radio bearer, may determine, according to the QoS parameter included in the information of the first radio bearer, the identifier of the first radio bearer and the first device in the second network.
  • the mapping relationship between the identifiers of the second radio bearers is determined by the first management network element, so that the access network device can map the services of the terminal to the second network according to the mapping relationship in the heterogeneous scenario.
  • the corresponding bearer is transmitted to the first device, or the first device transmits the service mapping sent by the terminal to the corresponding bearer in the second network, thereby improving service transmission quality.
  • each network element for example, the first management network element and the first device, in order to implement the above functions, includes hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
  • the embodiment of the present application may divide the function module of the first management network element and the first device according to the foregoing method example.
  • each function module may be divided according to each function, or two or more functions may be integrated into one.
  • Processing module can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner. The following is an example of dividing each functional module by using corresponding functions:
  • FIG. 21 is a schematic structural diagram of a communication device involved in the foregoing embodiment.
  • the communication device may be a first management network element or a chip applied to the first management network element.
  • the communication device includes an acquisition unit 301 and a determination unit 302.
  • the obtaining unit 301 is configured to support the communication device to execute S101, S1011, and S107 in the foregoing embodiment.
  • the determining unit 302 is configured to support the communication device to execute S102 and S205 and S302 in the above embodiment.
  • the communication device may further include a processing unit 303 and a transmitting unit 304.
  • the processing unit 303 is configured to enable the communication device to perform the QoS parameter corresponding to the identifier of the first radio bearer in the foregoing embodiment, to trigger the first device to establish a target second radio bearer in the second network, where the sending unit 304 is configured to support the communication.
  • the apparatus executes S105, S206, and S303 in the above embodiment. All the related content of the steps involved in the foregoing method embodiments may be referred to the functional description of the corresponding functional modules, and details are not described herein again.
  • FIG. 22 shows a possible structural diagram of the communication apparatus involved in the above embodiment.
  • the communication device may be a first device or a chip applied to the first device, and the communication device includes an acquisition unit 401 and a transmission unit 402.
  • the obtaining unit 401 is configured to support the communication device to execute S103 and S201 in the foregoing embodiment.
  • the transmitting unit 402 is configured to support the communication device to execute S104 and S202 in the above embodiment.
  • the communication device may further include a receiving unit 403, configured to support the communication device to perform S106 and S207 and S304 in the foregoing embodiment.
  • each unit in the device may all be implemented by software in the form of processing component calls; or may be implemented entirely in hardware; some units may be implemented in software in the form of processing component calls, and some units may be implemented in hardware.
  • each unit may be a separately set processing element, or may be integrated in one chip of the device, or may be stored in a memory in the form of a program, which is called by a processing element of the device and executes the unit.
  • All or part of these units can be integrated or implemented independently.
  • the processing elements described herein can be an integrated circuit with signal processing capabilities. In the implementation process, each step of the above method or each of the above units may be implemented by an integrated logic circuit of hardware in the processor element or by software in the form of a processing component call.
  • the units in any of the above devices may be one or more integrated circuits configured to implement the above methods, such as: one or more application specific integrated circuits (ASICs), or one or A plurality of digital singnal processors (DSPs), or one or more field programmable gate arrays (FPGAs), and the like.
  • ASICs application specific integrated circuits
  • DSPs digital singnal processors
  • FPGAs field programmable gate arrays
  • the processing element can be a general purpose processor, such as a central processing unit (CPU) or other processor that can invoke the program.
  • these units can be integrated and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • the above receiving unit is an interface circuit of the communication device for receiving signals from other devices or modules or units.
  • the receiving unit or the acquisition unit is an interface circuit for the chip to receive signals from other chips or devices.
  • the above transmitting unit is an interface circuit of the communication device for transmitting signals to other devices.
  • the transmitting unit is an interface circuit for transmitting signals to other chips or devices.
  • FIG. 23 is a schematic diagram showing a possible logical structure of the communication device involved in the foregoing embodiment, where the communication device may be the first management network element in the foregoing embodiment, or Applied to the chip in the first management network element.
  • the communication device includes a processing module 312 and a communication module 313.
  • the processing module 312 is configured to perform control management on the action of the communication device.
  • the processing module 312 is configured to perform a step of performing message or data processing on the communication device side.
  • the support communication device performs S102 and S205 and S302 in the foregoing embodiment.
  • the communication module 313 is for supporting the communication device to execute S101, S1011, and S107, S105, S206, and S303 in the above embodiment. And/or other processes performed by the communication device for the techniques described herein.
  • the communication device may further include a storage module 311, configured to store program codes and data of the communication device.
  • the processing module 312 can be a processor or a controller, such as a central processing unit, a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a transistor logic device, Hardware components or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, such as a combination of one or more microprocessors, a combination of a digital signal processor and a microprocessor, and the like.
  • the communication module 313 can be a transceiver, a transceiver circuit, a communication interface, or the like.
  • the storage module 311 can be a memory.
  • the processing module 312 is the processor 320
  • the communication module 313 is the communication interface 330 or the transceiver
  • the storage module 311 is the memory 340
  • the communication device involved in the present application may be the device shown in FIG.
  • the communication interface 330, one or more (including two) processors 320, and the memory 340 are connected to each other through a bus 310; the bus 310 may be a PCI bus or an EISA bus or the like.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in FIG. 24, but it does not mean that there is only one bus or one type of bus.
  • the memory 340 is used to store program codes and data of the communication device.
  • the communication interface 330 is configured to support the communication device to communicate with other devices (eg, the first device), and the processor 320 is configured to support the communication device to execute the program code and data stored in the memory 240 to implement S102, S205, S302 provided by the present application, S101, S1011, S107, S105, S206, and S303.
  • FIG. 25 is a schematic structural diagram of a relay device according to an embodiment of the present application. It can be the first device in the above embodiment, and is used to implement the operation of the first device in the above embodiment.
  • the relay device includes a processor 510, a memory 520, and an interface 530.
  • the processor 510, the memory 520, and the interface 530 are connected by a bus 540, which can be implemented by a connection circuit.
  • the memory 520 is configured to store a program, and when the program is invoked by the processor 510, the method performed by the first device in the above embodiment may be implemented.
  • Interface 530 is used to implement communications with other network devices.
  • the above method performed by the first device may be performed by a communication device, which may be a relay device, or a chip applied to the relay device, and each unit of the communication device (for example, described in the above embodiments)
  • the functions of the obtaining unit 401, the transmitting unit 402, and the receiving unit 403) may be implemented by the processor 510 calling a program stored in the memory 520. That is, the above communication device includes a memory for storing a program, and the program is called by the processor to execute the method performed by the first device in the above method embodiment.
  • the processor herein may be a general purpose processor, such as a central processing unit (CPU), or another processor that can invoke the program; or the processor may be configured to implement the first device in the above embodiment.
  • One or more integrated circuits that perform the method such as: one or more application specific integrated circuits (ASICs), or one or more microprocessors (digital singnal processors, DSPs), or one or more Field programmable gate array (FPGA) and so on.
  • ASICs application specific integrated circuits
  • DSPs digital singnal processors
  • FPGA Field programmable gate array
  • the number of memories is not limited and may be one or more.
  • FIG. 26 is a schematic structural diagram of another relay device according to an embodiment of the present application. It can be the first device in the above embodiment, and is used to implement the operation of the first device in the above embodiment.
  • the relay device includes an antenna 610, a radio frequency device 620, and a baseband device 630.
  • the antenna 610 is connected to the radio frequency device 620.
  • the radio frequency device 620 receives the information sent by the terminal through the antenna 610, and transmits the information sent by the terminal to the baseband device 630 for processing.
  • the baseband device 630 processes the information of the terminal and sends the information to the radio frequency device 620.
  • the radio frequency device 620 processes the information of the terminal and sends the information to the terminal through the antenna 610.
  • the baseband device 630 can be a physical device or can include at least two devices that are physically separate.
  • the baseband device 630 can be integrated with the radio frequency device 620 or physically separated.
  • the baseband device 630 can include one or more (including two) baseband boards, and a plurality of processing elements can be integrated on the baseband board to implement the baseband processing function.
  • the relay device is a RAN device, for example, an eNB in an LTE system.
  • the baseband device 630 can be a baseband device in the eNB; for example, the relay device can be a RAN device, and the baseband device can be a DU node.
  • the above method performed by the first device may be performed by a communication device that may be applied to the first device, which may be located in the baseband device 630, in one implementation, the various units shown in Figure 22 pass through the processing element A form implementation of the scheduler, such as baseband device 630, includes processing element 631 and storage element 632, and processing element 631 invokes a program stored by storage element 632 to perform the method performed by the first device in the above method embodiments.
  • the baseband device 630 may further include an interface 633 for interacting with the radio frequency device 620, such as a common public radio interface (CPRI), when the baseband device 630 and the radio frequency device 620 are physically disposed at Together, the interface can be an in-board interface, or an inter-board interface, where the board refers to the board.
  • CPRI common public radio interface
  • the various units shown in FIG. 22 may be one or more processing elements configured to implement the methods performed by the relay device above, the processing elements being disposed on baseband device 630, where the processing elements may An integrated circuit, such as: one or more application specific integrated circuits (ASICs), or one or more digital signal processing (DSP), or one or more field programmable gate arrays (field-programmable gate array, FPGA) and the like. These integrated circuits can be integrated to form a chip.
  • ASICs application specific integrated circuits
  • DSP digital signal processing
  • FPGA field-programmable gate array
  • the various units shown in FIG. 22 may be integrated together in the form of a system-on-a-chip (SOC), for example, the baseband device 630 includes a SOC chip for implementing the above method.
  • the processing element 631 and the storage element 632 may be integrated within the chip, and the method performed by the above network device or the functions of the various units shown in Fig. 22 may be implemented by the processing element 631 invoking the stored program of the storage element 632.
  • one or more (including two) integrated circuits may be integrated into the chip for implementing the method performed by the above first device or the functions of the various units shown in FIG.
  • the functions of the partial units are implemented by the processing component calling program, and the functions of the partial units are implemented by the form of an integrated circuit.
  • the above wireless backhaul device includes one or more (including two) processing elements and storage elements, wherein the processing elements are used to perform the method performed by the first device provided by the above embodiments.
  • the processing element may perform some or all of the steps performed by the first device in the above embodiment in a manner of executing the program stored in the storage element in the first manner; or in a second manner: by hardware in the processor element
  • the integrated logic circuit performs some or all of the steps performed by the first device in the foregoing embodiment in combination with the instructions; of course, some or all of the steps performed by the first device in the foregoing embodiment may be performed in combination with the first mode and the second mode. .
  • the processing elements herein are the same as described above, and may be a general purpose processor, such as a central processing unit (CPU), or may be one or more integrated circuits configured to implement the above methods, for example: one or more specific An application specific integrated circuit (ASIC), or one or more digital singnal processors (DSPs), or one or more field programmable gate arrays (FPGAs) or the like.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • DSPs digital singnal processors
  • FPGAs field programmable gate arrays
  • the storage element can be a memory or a collective name for a plurality of storage elements.
  • FIG. 27 is a schematic structural diagram of a chip 150 according to an embodiment of the present invention.
  • Chip 150 includes one or more (including two) processors 1510 and interface circuitry 1530.
  • the chip 150 further includes a memory 1540, which may include a read only memory and a random access memory, and provides operating instructions and data to the processor 1510.
  • a portion of the memory 1540 may also include a non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • the memory 1540 stores the following elements, executable modules or data structures, or a subset thereof, or their extended set:
  • the corresponding operation is performed by calling an operation instruction stored in the memory 1540 (which can be stored in the operating system).
  • One possible implementation manner is: the first management network element, the structure of the chip used by the first device is similar, and different devices can use different chips to implement their respective functions.
  • the processor 1510 controls the first management network element, the operation of the first device, and the processor 1510 may also be referred to as a central processing unit (CPU).
  • Memory 1540 can include read only memory and random access memory and provides instructions and data to processor 1510.
  • a portion of the memory 1540 may also include a non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • the application memory 1540, the interface circuit 1530, and the memory 1540 are coupled together by a bus system 1520.
  • the bus system 1520 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 1520 in FIG.
  • the method disclosed in the foregoing embodiments of the present invention may be applied to the processor 1510 or implemented by the processor 1510.
  • the processor 1510 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 1510 or an instruction in a form of software.
  • the processor 1510 may be a general purpose processor, a digital signal processing (DSP), an application specific integrated circuit (ASIC), or an off-the-shelf programmable gate array.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 1540, and the processor 1510 reads the information in the memory 1540 and performs the steps of the above method in combination with its hardware.
  • the interface circuit 1530 is configured to perform the steps of receiving and transmitting, by the first management network element in the embodiment shown in FIG. 14, FIG. 15, FIG. 16, FIG. 18, FIG. 19, FIG.
  • the processor 1510 is configured to perform the steps of the processing of the first device in the embodiment shown in FIG. 14, FIG. 15, FIG. 16, FIG. 18, FIG. 19, FIG.
  • the instructions stored by the memory for execution by the processor may be implemented in the form of a computer program product.
  • the computer program product may be written in the memory in advance, or may be downloaded in software and installed in the memory.
  • a computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, computer instructions can be wired from a website site, computer, server or data center (eg, Coax, fiber, digital subscriber line (DSL) or wireless (eg, infrared, wireless, microwave, etc.) is transmitted to another website, computer, server, or data center.
  • a website site eg, computer, server or data center
  • DSL digital subscriber line
  • wireless eg, infrared, wireless, microwave, etc.
  • the computer readable storage medium can be any available media that can be stored by the computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • Useful media can be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media (eg, solid state disk, SSD), and the like.
  • a computer storage medium stores instructions.
  • the first management network element or the chip applied to the first management network element executes S101 in the embodiment. S1011 and S107, S102 and S205, and S302, S105, S206, and S303. And/or other processes performed by the first management network element or applied to a chip in the first management network element for the techniques described herein.
  • a computer storage medium stores instructions for causing the first device or the chip applied to the first device to execute S103, S201, and S104 in the embodiment when the instruction is executed. And S202, S106 and S207 and S304. And/or other processes performed by the first device or applied to a chip in the first device for the techniques described herein.
  • the aforementioned readable storage medium may include various media that can store program codes, such as a USB flash drive, a removable hard disk, a read only memory, a random access memory, a magnetic disk, or an optical disk.
  • program codes such as a USB flash drive, a removable hard disk, a read only memory, a random access memory, a magnetic disk, or an optical disk.
  • a computer program product storing instructions, when the instruction is executed, causing the first management network element or the chip applied to the first management network element to execute S101 in the embodiment S1011 and S107, S102 and S205, and S302, S105, S206, and S303. And/or other processes performed by the first management network element or applied to a chip in the first management network element for the techniques described herein.
  • a computer program product in another aspect, storing instructions, when the instruction is executed, causing the first device or the chip applied to the first device to execute S103, S201 in the embodiment, S104 and S202, S106 and S207 and S304. And/or other processes performed by the first device or applied to a chip in the first device for the techniques described herein.
  • a chip is provided, the chip being applied to a first management network element, the chip comprising one or more (including two) processors and interface circuits, an interface circuit and the one or more (including two
  • the processor is interconnected by a line for executing instructions to execute S101, S1011 and S107, S102 and S205 and S302, S105, S206 and S303 in the embodiment. And/or other processes performed by the first management network element for the techniques described herein.
  • a chip is provided, the chip being applied to a first device, the chip comprising one or more (including two) processors and interface circuits, an interface circuit and the one or more (including two)
  • the processor is interconnected by a line for executing instructions to execute S103, S201, S104 and S202, S106 and S207 and S304 in the embodiment of the embodiment. And/or other processes performed by the first device for the techniques described herein.
  • the present application also provides a communication system including the communication device shown in FIGS. 21, 23, and 24, and the communication device shown in FIGS. 22, 25, and 26.
  • the present application provides a communication system, which acquires information of a first radio bearer of a terminal in a first network by using a first device, and sends information about the first radio bearer of the obtained terminal in the first network to the first management.
  • a network element such that after receiving the information of the first radio bearer, the first management network element may determine, according to the QoS parameter included in the information of the first radio bearer, the first radio bearer and the second device in the second network.
  • the mapping relationship between the radio bearers is such that in the heterogeneous scenario, the services of the terminal can be mapped to the corresponding bearers in the first network and the second network, thereby improving the quality of the service transmission.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of cells is only a logical function division.
  • multiple units or components may be combined or integrated. Go to another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.

Abstract

本申请提供一种通信方法及装置,涉及通信技术领域,用以解决异制式场景下用户数据传输的承载映射,从而提高终端业务传输的质量,该方案应用于具有不同的网络制式的无线回传系统中,无线回传系统中的第一设备位于终端和接入网设备之间,第一设备与终端之间使用第一网络对应的网络制式通信,第一设备与接入网设备之间使用第二网络对应的网络制式通信,第二网络中包括第一管理网元,该方法包括:第一管理网元获取终端在第一网络的第一无线承载的信息;以及根据第一无线承载的信息,确定第一无线承载与第二无线承载之间的映射关系,该方案适用于具有多个网络制式,且网络制式不同的无线回传系统中。

Description

一种通信方法及装置
本申请要求于2018年04月28日提交国家知识产权局、申请号为201810404964.0、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
第三代合作伙伴计划(3rd generation partnership project,3GPP)第10版本(release,R10),引入了中继(relay)的概念。如图1所示,在终端103和接入网设备101之间引入中继节点(relay node,RN)102。其中,RN102通过无线回传链路(backhaul link)接入接入网设备101,RN102通过无线接入链路(access link)与终端103通信。对终端103而言,RN可以作为接入网设备管理下的一个小区,RN在终端和接入网设备之间基于IP数据包进行转发。该无线回传是指通过无线接入技术提供数据传输,将数据传输到对应的核心网。
在RN作为终端接入接入网设备的过程中,接入网设备内置的为RN提供服务的用户面核心网设备(例如,数据分组网网关(PDN gateway,PGW))触发RN的E-UTRAN无线接入承载(E-UTRAN radio sccess bearer,E-RAB)(至少是RN的默认承载)建立,从而建立RN和接入网设备之间的数据无线承载(data radio bearer,DRB)。在终端通过RN接入接入网设备的过程中,如图2所示的协议栈所示,RN可以通过终端发送的S1-AP消息来获知终端的E-RAB信息。此外,通过控制面的交互,RN完成终端在各接口的用户面承载的映射,包括:终端和RN之间的DRB与RN和接入网设备之间特定于终端的分组无线业务隧道协议(general packet radio service tunnelling protocol,GTP)隧道的映射,以及RN和接入网设备之间特定于终端的GTP隧道与接入网设备和终端的服务网关(service gateway,SGW)/PGW之间特定于终端的GTP隧道的映射。这样在接入网设备和终端之间传输数据的过程中,对终端的下行数据传输而言,接入网设备可以根据终端在各接口的用户面承载的映射将下行数据映射到对应的承载上传输至终端,对终端的上行数据传输而言,终端可以根据在各接口的用户面承载的映射将上行数据映射到对应的承载上传输至接入网设备,相应的用户面协议栈如图3所示。
但是,RN场景通常是同制式场景,即无线接入链路和无线回传链路采用相同的网络制式,在相同的网络制式下,服务质量(quality of service,QoS)通常基于相同粒度的承载映射方式。而在3GPP R15标准引入新空口(new radio,NR)后,接入回传一体化(integegrate access and backhaul,IAB)可能存在一种异制式场景,即:无线接入链路和无线回传链路采用不同的网络制式,而不同制式下QoS通常基于不同粒度的承载映射方式,例如,长期演进(long time evolution,LTE)网络下,QoS基于E-RAB粒度的承载方式,即终端和接入网设备之间建立DRB,接入网设备和核心网设备之间建立GTP隧道,其中,该DRB和GTP隧道都分别与E-RAB一一对应,从而实现数据在终端和接入网设备之间的DRB与接入网设备和核心网设备之间的GTP隧道一一 映射;而NR网络下,QoS基于流(flow)粒度的承载方式,即终端和接入网设备之间建立DRB,接入网设备和核心网设备之间建立GTP隧道,其中,该NR网络包括5G网络或下一代网络,该DRB与flow一一对应,该GTP隧道可与多个flow对应,从而实现数据在终端和接入网设备之间的DRB与接入网设备和核心网设备之间的GTP隧道一对多映射。因此,对于IAB异制式场景,由于不同粒度的承载映射方式可能导致终端在各接口的用户面承载的映射存在差异,如果没有把数据映射到对应的承载上,那么就可能造成数据的传输质量下降,严重时甚至丢包,因此,如何在异制式场景下解决不同粒度承载之间的映射,是未来通信系统中亟需解决的技术问题。
发明内容
本申请提供一种通信方法及装置,用以解决异制式场景下用户数据传输的承载映射,从而提高终端业务传输的质量。
本申请的第一方面提供一种通信方法,应用于无线回传系统中,该无线回传系统包括第一网络和第二网络,其中,第一网络和第二网络采用不同的网络制式,其中,无线回传系统中终端和接入网设备通过所述无线回传系统中的第一设备通信,第一设备与终端之间使用第一网络对应的网络制式通信,第一设备与接入网设备之间使用第二网络对应的网络制式通信,本申请提供的方法包括:第一设备获取终端在第一网络中的第一无线承载的信息,该第一无线承载的信息用于指示第一无线承载;第一设备向第二网络中的第一管理网元发送第一无线承载的信息,该第一管理网元用于根据第一无线承载的信息,确定第一无线承载与第二无线承载之间的映射关系,其中,该第二无线承载为第一设备在第二网络中的无线承载。
本申请的第一方面提供一种通信方法,通过第一设备获取终端在第一网络中的第一无线承载的信息,并将获取到的终端在第一网络的第一无线承载的信息发送给第一管理网元,这样第一管理网元在接收到第一无线承载的信息之后,便可以根据第一无线承载的信息确定第一无线承载与第一设备在第二网络中的第二无线承载之间的映射关系,这样在异制式场景下,使得终端的业务可以映射到第一网络和第二网络中对应的承载上传输,从而提高了业务传输质量。
一种可能的设计中,该第一无线承载的信息包括第一无线承载的标识,以及与第一无线承载的标识对应的服务质量(QoS)参数。
一种可能的设计中,第一网络对应的网络制式为长期演进LTE网络,第二网络对应的网络制式为NR网络。
一种可能的设计中,该第一无线承载的标识对应的QoS参数包括以下一项或者多项:质量类标识(quality class identifier,QCI)、分配和保留优先级(allocation and retention priority,ARP)、保证比特率(guaranteed bit rate,GBR)和最大比特率(maximum bit rate,MBR);第二无线承载的标识为服务质量流flow标识(QoS flow identifier,QFI),QFI对应的QoS参数包括以下一项或者多项:5G QoS标识(5QI)、分配和保留优先级(ARP)、保证比特率(GBR)和最大比特率(MBR)。
一种可能的设计中,第一网络对应的网络制式为NR网络,第二网络对应的网络制式为长期演进LTE网络。
一种可能的设计中,第二无线承载的标识对应的QoS参数包括以下一项或者多项: 质量分类标识(QCI)、分配和保留优先级(ARP)、保证比特率(GBR)和最大比特率(MBR);第一无线承载的标识为服务质量流(flow)标识(QFI),QFI对应的QoS参数包括以下一项或者多项:5G QoS标识5QI、分配和保留优先级(ARP)、保证比特率(GBR)和最大比特率(MBR)。
一种可能的设计中,第一设备接收第一管理网元发送的第一无线承载与第二无线承载之间的映射关系。通过第一设备接收该映射关系,这样第一设备在与终端进行通信(例如,数据或者信令)的过程中,第一设备可以将第一无线承载上传输的终端业务映射到对应的第二无线承载上发送给接入网设备,或者,接入网设备可以将第一无线承载上传输的终端业务映射到对应的第二无线承载上发送给第一设备,便可以结合接入网设备发送给终端的数据或者信令的承载,以及该映射关系,将接入网设备发送给终端的数据或者信令映射到与接入网设备发送给第一设备的数据或者信令的承载具有映射关系的承载上并传输给终端,以及在与接入网设备通信的过程中,可以根据终端发送数据或者信令的承载,以及映射关系将终端发送的数据或者信令映射到指定与第一设备发送数据或者信令的承载具有映射关系的承载上并上传给接入网设备,这样可以使得数据的传输质量提高。
一种可能的设计中,第一设备具有第一协议栈和第二协议栈,第一协议栈和第二协议栈用于不同的网络制式,当第一设备使用第一网络对应的网络制式与终端通信时,第一设备使用第一协议栈,当第一设备使用第二网络对应的网络制式与接入网设备通信时,第一设备使用第二协议栈。
本申请的第二方面提供一种通信方法,应用于无线回传系统中,其中,该无线回传系统包括第一网络和第二网络,该第一网络和第二网络采用不同的网络制式,其中,无线回传系统中终端和接入网设备通过、无线回传系统中的第一设备通信,该第一设备与终端之间使用第一网络对应的网络制式通信,第一设备与接入网设备之间使用第二网络对应的网络制式通信,第二网络中包括第一管理网元,第一管理网元用于控制第一设备在第二网络中的会话管理,本申请提供的方法包括:第一管理网元获取终端在第一网络中的第一无线承载的信息,该第一无线承载的信息用于指示第一无线承载;第一管理网元根据第一无线承载的信息,确定第一无线承载与第二无线承载之间的映射关系,其中,第二无线承载为第一设备在第二网络中的无线承载。
本申请的第二方面提供一种通信方法,通过第一管理网元获取终端在第一网络的第一无线承载的信息,并根据获取到的终端在第一网络的第一无线承载的信息确定获取第一无线承载与第一设备在第二网络中的第二无线承载之间的映射关系,通过第一管理网元确定上述映射关系,这样在异制式场景下,使得接入网设备便可以根据映射关系将终端的业务映射到第二网络中对应的承载上传输给第一设备,或者,第一设备将终端发送的业务映射在第二网络中对应的承载上传输给接入网设备,从而提高了业务传输质量。
一种可能的设计中,第一管理网元获取终端在第一网络中的第一无线承载的信息,包括:第一管理网元从第一设备处获取终端在第一网络中的第一无线承载的信息;或者,第一管理网元从终端在第一网络的核心网控制面网元获取终端在第一网络中的第一无线承载的信息。通过该方法使得第一管理网元获取终端在第一网络中的第一无线 承载的信息变得灵活。
一种可能的设计中,第一管理网元根据第一无线承载的信息,获取第一无线承载与第一设备在第二网络中的第二无线承载之间的映射关系之前,本申请提供的方法还包括:第一管理网元获取第一设备在第二网络中的第二无线承载的信息,该第二无线承载的信息包括第二无线承载的标识以及与第二无线承载的标识对应的服务质量(QoS)参数。
一种可能的设计中,第一无线承载的信息包括第一无线承载的标识、以及与第一无线承载的标识对应的服务质量(QoS)参数,该第一管理网元根据第一无线承载的信息,确定第一无线承载与第二无线承载之间的映射关系,包括:第一管理网元根据第一无线承载的标识对应的QoS参数,在第二网络中查找与第一无线承载的标识对应的QoS参数匹配的QoS参数;如果第一无线承载的标识对应的QoS参数与第二无线承载的标识对应的QoS参数匹配,第一管理网元确定第一无线承载的标识和第二无线承载的标识之间具有映射关系;如果第二网络中不存在与第一无线承载的标识对应的QoS参数匹配的QoS参数,第一管理网元根据第一无线承载的标识对应的QoS参数触发第一设备在第二网络中建立第二无线承载,该第二无线承载由第二无线承载的标识以及与第二无线承载的标识对应的目标QoS参数指示;第一管理网元确定第一无线承载的标识和第二无线承载的标识之间具有映射关系。通过根据QoS参数建立第一无线承载的标识和第二无线承载的标识之间的映射关系,这样可以实现基于不同粒度(例如,基于E-RAB粒度的承载和基于QoS flow粒度)的承载之间的转换,从而保证终端数据传输的业务质量。此外,在第二网络中具有与第一无线承载的标识对应的QoS参数匹配的QoS参数时,建立与第一无线承载的标识对应的QoS参数匹配的QoS参数关联的第二无线承载的标识之间的映射关系,这样便于实现不同粒度的承载之间的转换,另一方面,在第二网络中不具有与第一无线承载的标识对应的QoS参数匹配的QoS参数时,通过基于第一无线承载的标识对应的Qos参数建立第二无线承载,并建立新建的第二无线承载的标识和第一无线承载的标识之间的映射关系,提高了数据传输的可靠性。
一种可能的设计中,第一网络对应的网络制式为长期演进LTE网络,第二网络对应的网络制式为NR网络。
一种可能的设计中,第一无线承载的标识对应的QoS参数包含以下一项或者多项:质量类标识QCI、分配和保留优先级ARP、保证比特率GBR和最大比特率MBR;第二无线承载的标识为服务质量流(flow)标识(QFI),该QFI对应的QoS参数包括以下一项或者多项:5G QoS标识5QI、分配和保留优先级(ARP)、保证比特率(GBR)和最大比特率(MBR)。
一种可能的设计中,第一网络对应的网络制式为NR网络,第二网络对应的网络制式为长期演进LTE网络。
一种可能的设计中,第二无线承载的标识对应的QoS参数包含以下一项或者多项:质量类标识(QCI)、分配和保留优先级(ARP)、保证比特率(GBR)和最大比特率(MBR);第一无线承载的标识为服务质量流flow标识QFI,QFI对应的QoS参数包括以下一项或者多项:5G QoS标识5QI、分配和保留优先级ARP、保证比特率GBR 和最大比特率MBR。
一种可能的设计中,第一管理网元向第一设备和/或接入网设备发送第一无线承载与第一设备在第二网络中的第二无线承载之间的映射关系,通过发送映射关系,这样在异制式场景下,使得接入网设备便可以根据映射关系将终端的业务映射到第二网络中对应的承载上传输给第一设备,或者,第一设备将终端发送的业务映射在第二网络中对应的承载上传输给接入网设备,从而提高了业务传输质量。
本申请的第三方面提供一种通信装置,该通信装置可以实现第一方面或第一方面的任意可能的实现方式中的方法,因此也能实现第一方面或第一方面任意可能的实现方式中的有益效果。该通信装置可以为第一设备,例如,中继设备,也可以为应用于第一设备中的芯片。其可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
该通信装置,应用于无线回传系统中,该通信装置可以为第一设备或者为第一设备中的芯片,无线回传系统包括第一网络和第二网络,第一网络和第二网络采用不同的网络制式,其中,无线回传系统中终端和接入网设备通过无线回传系统中的第一设备通信,第一设备与终端之间使用第一网络对应的网络制式通信,通信装置与接入网设备之间使用第二网络对应的网络制式通信,本申请提供的通信装置包括:获取单元,用于获取终端在第一网络中的第一无线承载的信息,该第一无线承载的信息用于指示第一无线承载;发送单元,用于向第二网络中的第一管理网元发送第一无线承载的信息以便该第一管理网元用于根据第一无线承载的信息,确定第一无线承载与第二无线承载之间的映射关系,其中,第二无线承载为该通信装置在第二网络中的无线承载。
在一种可能的设计中,第一无线承载的信息包括第一无线承载的标识以及与第一无线承载的标识对应的服务质量(QoS)参数。
在一种可能的设计中,第一网络对应的网络制式为长期演进(LTE)网络,该第二网络对应的网络制式为NR网络。
在一种可能的设计中,第一无线承载的标识对应的QoS参数包括以下一项或者多项:质量类标识(QCI)、分配和保留优先级(ARP)、保证比特率(GBR)和最大比特率(MBR);第二无线承载的标识为服务质量流(flow)标识(QFI),QFI对应的QoS参数包括以下一项或者多项:5G QoS标识(5QI)、分配和保留优先级(ARP)、保证比特率(GBR)和最大比特率(MBR)。
在一种可能的设计中,第一网络对应的网络制式为NR网络,该第二网络对应的网络制式为长期演进LTE网络。
在一种可能的设计中,第二无线承载的标识对应的QoS参数包括以下一项或者多项:质量类标识(QCI)、分配和保留优先级(ARP)、保证比特率(GBR)和最大比特率(MBR);第一无线承载的标识为服务质量流(flow)标识(QFI),(QFI)对应的QoS参数包括以下一项或者多项:5G QoS标识(5QI)、分配和保留优先级(ARP)、保证比特率(GBR)和最大比特率(MBR)。
在一种可能的设计中,该通信装置还包括:接收单元,用于接收第一管理网元发送的第一无线承载与第二无线承载之间的映射关系。
在一种可能的设计中,该通信装置具有第一协议栈和第二协议栈,该第一协议栈 和第二协议栈应用于不同的网络制式,当通信装置使用第一网络对应的网络制式与终端通信时,通信装置使用第一协议栈,当通信装置使用第二网络对应的网络制式与接入网设备通信时,通信装置使用第二协议栈。
本申请的第四方面提供的一种通信装置,该通信装置可以应用于无线回传系统中,通信装置可以为第一设备或者为应用于第一设备中的芯片,该无线回传系统包括第一网络和第二网络,第一网络和第二网络采用不同的网络制式,其中,无线回传系统中的终端和接入网设备之间通过该无线回传系统中的通信装置通信,通信装置与终端之间使用第一网络对应的网络制式通信,通信装置与接入网设备之间使用第二网络对应的网络制式通信,本申请提供的通信装置包括:通信接口和处理器,其中,处理器,用于通过通信接口获取终端在第一网络中的第一无线承载的信息,该第一无线承载的信息用于指示第一无线承载;通信接口,用于向第二网络中的第一管理网元发送第一无线承载的信息,该第一管理网元用于根据第一无线承载的信息,确定第一无线承载与第二无线承载之间的映射关系,该第二无线承载为通信装置在所述第二网络中的无线承载。
在一种可能的设计中,第一网络对应的网络制式为长期演进LTE网络,该第二网络对应的网络制式为NR网络。
在一种可能的设计中,第一无线承载的标识对应的QoS参数包括以下一项或者多项:质量类标识(QCI)、分配和保留优先级(ARP)、保证比特率(GBR)和最大比特率(MBR);第二无线承载的标识为服务质量流flow标识(QFI),QFI对应的QoS参数包括以下一项或者多项:5G QoS标识(5QI)、分配和保留优先级(ARP)、保证比特率(GBR)和最大比特率(MBR)。
在一种可能的设计中,第一网络对应的网络制式为NR网络,该第二网络对应的网络制式为长期演进LTE网络。
在一种可能的设计中,第二无线承载的标识对应的QoS参数包括以下一项或者多项:质量类标识(QCI)、分配和保留优先级(ARP)、保证比特率(GBR)和最大比特率(MBR);第一无线承载的标识为服务质量流(flow)标识(QFI),QFI对应的QoS参数包括以下一项或者多项:5G QoS标识(5QI)、分配和保留优先级(ARP)、保证比特率(GBR)和最大比特率(MBR)。
在一种可能的设计中,通信接口,还用于接收第一管理网元发送的第一无线承载与第二无线承载之间的映射关系。
在一种可能的设计中,该通信装置具有第一协议栈和第二协议栈,该第一协议栈和第二协议栈用于不同的网络制式,当通信装置使用第一网络对应的网络制式与终端通信时,通信装置使用第一协议栈,当通信装置使用第二网络对应的网络制式与接入网设备通信时,通信装置使用第二协议栈。
在一种可能的设计中,第一无线承载的信息包括第一无线承载的标识以及与第一无线承载的标识对应的服务质量(QoS)参数。
可选的,该通信装置的通信接口和处理器相互耦合。
可选的,该通信装置还包括存储器,其中,存储器用于存储代码和数据,处理器、通信接口和存储器相互耦合。
本申请的第五方面提供一种通信装置,该通信装置可以实现第二方面或第二方面的任意可能的实现方式中的方法,因此也能实现第二方面或第二方面任意可能的实现方式中的有益效果。该通信装置可以为第一管理网元,也可以为应用于第一管理网元的芯片。其可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
该通信装置,应用于无线回传系统中,该通信装置为第一管理网元或者为应用于第一管理网元中的芯片,其中,无线回传系统包括第一网络和第二网络,第一网络和第二网络采用不同的网络制式,其中,无线回传系统中的终端和接入网设备之间通过该通信装置通信,通信装置与终端之间使用第一网络对应的网络制式通信,通信装置与接入网设备之间使用第二网络对应的网络制式通信,该通信装置用于控制第一设备在第二网络中的会话管理,接入网设备用于第一设备接入第二网络中,本申请提供通信装置包括:获取单元,用于获取终端在第一网络中的第一无线承载的信息,该第一无线承载的信息用于指示第一无线承载;确定单元,还用于根据第一无线承载的信息,确定第一无线承载与第二无线承载之间的映射关系,该第二无线承载为第一设备在第二网络中的无线承载。
在一种可能的设计中,获取单元具体用于:从第一设备处获取终端在第一网络中的第一无线承载的信息;或者,获取单元具体用于:从终端在第一网络中对应的核心网控制面网元获取终端在第一网络中的第一无线承载的信息。
在一种可能的设计中,获取单元,还用于获取第一设备在第二网络中的第二无线承载的信息,该第二无线承载的信息包括第二无线承载的标识以及与第二无线承载的标识对应的QoS参数。
在一种可能的设计中,第一无线承载的信息包括第一无线承载的标识、以及与所述第一无线承载的标识对应的服务质量(QoS)参数,本申请提供的确定单元,还用于根据所述第一无线承载的标识对应的QoS参数,在所述第二网络中查找与所述第一无线承载的标识对应的QoS参数匹配的QoS参数;如果第一无线承载的标识对应的QoS参数与第二无线承载的标识对应的QoS参数匹配,所述确定单元,还用于确定第一无线承载的标识和第二无线承载的标识之间具有映射关系;如果第二网络中不存在与第一无线承载的标识对应的QoS参数匹配的QoS参数,该通信装置还包括处理单元,用于根据第一无线承载的标识对应的QoS参数触发通信装置在第二网络中建立第二无线承载,第二无线承载由第二无线承载的标识以及与第二无线承载的标识对应的QoS参数指示;确定单元,还用于确定第一无线承载的标识和第二无线承载的标识之间具有映射关系。
在一种可能的设计中,第一网络对应的网络制式为长期演进LTE网络,第二网络对应的网络制式为NR网络。
在一种可能的设计中,第一无线承载的标识对应的QoS参数包含以下一项或者多项:质量类标识(QCI)、分配和保留优先级(ARP)、保证比特率(GBR)和最大比特率(MBR);第二无线承载的标识为服务质量流(flow)标识(QFI),QFI对应的QoS参数包括以下一项或者多项:5G QoS标识(5QI)、分配和保留优先级(ARP)、保证比特率(GBR)和最大比特率(MBR)。
在一种可能的设计中,第二网络对应的网络制式为长期演进LTE网络,第一网络 对应的网络制式为NR网络。
在一种可能的设计中,第二无线承载的标识对应的QoS参数包含以下一项或者多项:质量类标识(QCI)、分配和保留优先级(ARP)、保证比特率(GBR)和最大比特率(MBR);第一无线承载的标识为服务质量流(flow)标识(QFI),QFI对应的QoS参数包括以下一项或者多项:5G QoS标识(5QI)、分配和保留优先级(ARP)、保证比特率(GBR)、最大比特率(MBR)。
在一种可能的设计中,本申请提供的装置还包括:发送单元,用于向第一设备和/或接入网设备发送第一无线承载与第一设备在第二网络中的第二无线承载之间的映射关系。
本申请的第六方面提供一种通信装置,应用于无线回传系统中,该通信装置为第一管理网元或者为应用于第一管理网元中的芯片,其中,无线回传系统包括第一网络和第二网络,第一网络和第二网络采用不同的网络制式,其中,无线回传系统中的终端和接入网设备之间通过该通信装置通信,第一设备与终端之间使用第一网络对应的网络制式通信,第一设备与接入网设备之间使用第二网络对应的网络制式通信,通信装置用于控制第一设备在第二网络中的会话管理,接入网设备用于第一设备接入第二网络中,本申请提供的通信装置包括:通信接口以及处理器,其中,通信接口,用于获取终端在第一网络中的第一无线承载的信息,该第一无线承载的信息用于指示第一无线承载;处理器,还用于根据第一无线承载的信息,获取第一无线承载与第二无线承载之间的映射关系,该第二无线承载为第一设备在第二网络中的无线承载。
在一种可能的设计中,通信接口,用于从第一设备处获取终端在第一网络中的第一无线承载的信息;或者,通信接口,用于从终端在第一网络中的核心网控制面网元获取终端在第一网络中的第一无线承载的信息。
在一种可能的设计中,通信接口,还用于获取第一设备在第二网络中的第二无线承载的信息,该第二无线承载的信息包括第二无线承载的标识以及与第二无线承载的标识对应的QoS参数。
在一种可能的设计中,第一无线承载的信息包括第一无线承载的标识、以及与第一无线承载的标识对应的服务质量(QoS)参数,本申请提供的处理器,用于根据第一无线承载的标识对应的QoS参数,在第二网络中查找与第一无线承载的标识对应的QoS参数匹配的QoS参数;如果第一无线承载的标识对应的QoS参数与第二无线承载的标识对应的QoS参数匹配,处理器确定第一无线承载的标识和第二无线承载的标识之间具有映射关系,如果第二网络中不存在与第一无线承载的标识对应的QoS参数匹配的QoS参数,处理器,用于根据第一无线承载的标识对应的QoS参数触发通信装置在第二网络中建立第二无线承载,第二无线承载由第二无线承载的标识以及与第二无线承载的标识对应的QoS参数指示;处理器还用于确定第一无线承载的标识和第二无线承载的标识之间具有映射关系。
在一种可能的设计中,第一网络对应的网络制式为长期演进LTE网络,第二网络对应的网络制式为NR网络。
在一种可能的设计中,第一无线承载的标识对应的QoS参数包含以下一项或者多项:质量类标识(QCI)、分配和保留优先级(ARP)、保证比特率(GBR)和最大 比特率(MBR);第二无线承载的标识为服务质量流(flow)标识(QFI),QFI对应的QoS参数包括以下一项或者多项:5G QoS标识(5QI)、分配和保留优先级(ARP)、保证比特率(GBR)、最大比特率(MBR)。
在一种可能的设计中,第二网络对应的网络制式为长期演进LTE网络,第一网络对应的网络制式为NR网络。
在一种可能的设计中,第二无线承载的标识对应的QoS参数包含以下一项或者多项:质量类标识(QCI)、分配和保留优先级(ARP)、保证比特率(GBR)、最大比特率(MBR);第一无线承载的标识为服务质量流(flow)标识(QFI),QFI对应的QoS参数包括以下一项或者多项:5G QoS标识(5QI)、分配和保留优先级(ARP)、保证比特率(GBR)、最大比特率(MBR)。
在一种可能的设计中,本申请提供的通信接口,用于向第一设备和/或接入网设备发送第一无线承载与第二无线承载之间的映射关系。
可选的,该通信装置的通信接口和处理器相互耦合。
可选的,该通信装置还包括存储器,其中,存储器用于存储代码和数据,处理器、接收器和存储器相互耦合。
本申请的第七方面提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当计算机程序或指令被运行时,实现如第一方面至第一方面的任一种可能的实现方式所描述的方法。
本申请的第八方面提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当计算机程序或指令被运行时,实现如第二方面至第二方面的任一种可能的实现方式所描述的方法。
本申请的第九方面提供一种计算机程序产品,该计算机程序产品包括计算机程序或指令,当计算机程序或指令被运行时,实现如第一方面至第一方面的任一种可能的实现方式所描述的方法。
本申请的第十方面提供一种计算机程序产品,该计算机程序产品包括计算机程序或指令,当计算机程序或指令被运行时,实现如第二方面至第二方面的任一种可能的实现方式所描述的方法。
本申请的第十一方面提供一种芯片,芯片包括处理器和接口电路,接口电路和处理器耦合,处理器用于运行计算机程序或指令,以实现如第一方面至第一方面的任一种可能的实现方式所描述的方法,接口电路用于与芯片之外的其它模块进行通信。
本申请的第十二方面提供一种芯片,芯片包括处理器和接口电路,接口电路和处理器耦合,处理器用于运行计算机程序或指令,以实现如第二方面至第二方面的任一种可能的实现方式所描述的方法,接口电路用于与芯片之外的其它模块进行通信。
可选的,本申请中上述描述的芯片还可以包括一个或两个以上(包括两个)的存储器,该一个或两个以上的存储器中存储有指令或计算机程序。
第十三方面,本申请提供一种无线回传系统,该无线回传系统包括一个或者多个如第三方面至第三方面的任一种可能的设计中描述的无线回传的装置,以及第五方面至第五方面的任一种可能的实现方式描述的通信装置。
当然可以理解的是,第十三方面提供的无线回传系统还可以包括其他通信装置, 例如,接入网设备,终端等。
附图说明
图1为一种无线回传系统的结构示意图;
图2为现有技术提供的一种控制面协议栈架构示意图;
图3为现有技术提供的一种用户面协议栈架构示意图;
图4为本申请一个实施例提供的一种无线回传系统的结构示意图;
图5为本申请一个实施例提供的一种基站的结构示意图;
图6为本申请另一个实施例提供的另一种基站的结构示意图;
图7为本申请另一个实施例提供的另一种无线回传系统的结构示意图;
图8为本申请另一个实施例提供的又一种无线回传系统的结构示意图;
图9为本申请另一个实施例提供的一种控制面协议栈示意图;
图10为本申请另一个实施例提供的再一种控制面协议栈示意图;
图11为本申请另一个实施例提供的另一种控制面协议栈示意图;
图12为本申请另一个实施例提供的一种用户面协议栈示意图;
图13为本申请另一个实施例提供的另一种用户面协议栈示意图;
图14为本申请另一个实施例提供的一种通信方法的流程示意图;
图15为本申请另一个实施例提供的一种通信方法的流程示意图;
图16为本申请另一个实施例提供的一种通信方法的流程示意图;
图17为本申请另一个实施例提供的一种承载映射的结构示意图;
图18为本申请另一个实施例提供的一种通信方法的流程示意图;
图19为本申请另一个实施例提供的一种通信方法的具体实施流程;
图20为本申请另一个实施例提供的一种通信方法的具体实施流程;
图21为本申请另一个实施例提供的一种通信装置的结构示意图;
图22为本申请另一个实施例提供的一种无线回传装置的结构示意图;
图23为本申请另一个实施例提供的一种通信装置的结构示意图;
图24为本申请另一个实施例提供的一种通信装置的结构示意图;
图25为本申请另一个实施例提供的一种中继设备的结构示意图;
图26为本申请另一个实施例提供的又一种中继设备的结构示意图;
图27为本申请另一个实施例提供的一种芯片的结构示意图。
具体实施方式
需要说明的是,本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”, 描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
图4给出了一种无线回传系统示意图,该无线回传系统包括:与核心网连接的一个或两个以上(包括两个)接入网设备203(仅示出1个)、与接入网设备203连接的无线回传节点202,以及通过无线回传节点202接入接入网设备203的一个或者多个终端201(仅示出1个终端)。
当本申请实施例提供的方法应用在5G网络或NR系统中时,下文中的无线回传节点可以为5G网络中的无线回传节点,示例性的,5G网络中的无线回传节点可以称为IAB节点,当然也可以有其他名称,本申请实施例对此不作具体限定。
但是需要说明的是,本申请实施例提供的方法也可以应用于其他网络中,比如,可以应用在演进分组系统(evolved packet system,EPS)网络(即通常所说的第四代(4th generation,简称4G)网络或者LTE网络)中。当本申请实施例提供的方法应用在EPS网络中时,下文中的无线回传节点可以为EPS网络中的无线回传节点,示例性的,EPS网络中的无线回传节点可以称为中继节点(relay node,RN)。
其中,无线回传节点202与终端201和接入网设备203之间均使用无线连接,且无线回传节点202与终端之间的通信所使用的网络制式与无线回传节点202与接入网设备203之间的通信所使用的网络制式不同。
示例性的,无线回传节点202可以为位于终端和接入网设备之间的一个或者多个无线回传设备,例如,中继设备。
作为一种示例,无线回传节点202与终端201使用第一网络对应的网络制式通信,无线回传节点202与接入网设备203使用第二网络对应的网络制式通信。
一种示例,第一网络对应的网络制式为LTE网络,该第二网络对应的网络制式为NR网络,其中,该NR网络包括5G网络或下一代网络。
另一种示例,第一网络对应的网络制式为NR网络,第二网络对应的网络制式为LTE网络。图4中以第一网络对应的网络制式为LTE网络,第二网络对应的网络制式为NR网络为例,并不对本申请构成限制。
其中,无线回传节点202用于在接入网设备203和终端201之间进行数据和/或信令的回传。接入网设备203用于无线回传节点202接入第二网络,以及用于向终端201回传数据和/或信令。接入网设备203通常还可以作为一个物理网元,例如,被称之为宿主(Donor)接入网设备,在新空口(new radio,NR)系统(或称5G系统)中该宿主接入网设备203可以为DgNB(donor gNodeB),在LTE系统(或称4G系统)中该宿主接入网设备可以为DeNB(donor eNodeB),当然,宿主接入网设备还可以简称为:gNB或者eNB。
如图4所示,该宿主接入网设备通常可以包括如下逻辑网元:无线回传节点所接入的基站和为无线回传节点提供服务的核心网用户面网元。其中,为无线回传节点提供服务的核心网控制面网元可以内置在宿主接入网设备内,也可独立于宿主接入网设备之外(图4 中以为无线回传节点提供服务的核心网控制面网元位于宿主接入网设备外为例)。无线回传节点所接入的基站与为无线回传节点提供服务的核心网控制面网元连接。
可以理解的是,在图4中MME_UE表示为UE提供服务的MME,PGW/SGW_UE表示为UE提供服务的PGW/SGW。
可选的,宿主接入网设备还可以包括家庭网关(home eNB gateway,HeNB_GW)。如果HeNB_GW在宿主接入网设备中存在,则HeNB_GW分别与为终端提供服务的核心网控制面网元连接,以及与为终端提供服务的核心网用户面网元连接。
如果宿主接入网设备中不存在HeNB_GW,则为终端提供服务的核心网控制面网元,以及为终端提供服务的核心网用户面网元与为无线回传节点提供服务的核心网用户面网元连接。
可以理解的是,本申请中的第一网络对应的网络制式和第二网络对应的网络制式不同。示例性的,第一网络和第二网络可以为2G网络、3G网络、LTE网络(例如,4G网络)、NR网络(例如,5G网络)以及未来其它的网络中任意两个不同的网络。下述实施例中仅以第一网络和第二网络为4G网络、NR网络中任意两个不同的网络为例。例如,第一网络为LTE网络,第二网络为NR网络。
一种示例:当无线回传节点与接入网设备之间使用的第二网络的网络制式为NR网络。即无线回传节点与接入网设备之间使用NR技术,则为该无线回传节点提供服务的核心网为下一代核心网(next generation core network,NGC)。NGC包括:无线回传节点对应的核心网控制面网元和无线回传节点对应的核心网用户面网元。其中,无线回传节点对应的核心网控制面网元包括接入和流动性管理功能(access and mobility management function,AMF)网元以及与AMF网元连接的会话管理功能(session management function,SMF)网元,无线回传节点对应的核心网用户面网元为用户面功能(user plan function,UPF)网元,无线回传节点所接入的基站为NR基站,例如下一代基站(next generation NB,gNB)。其中,gNB与AMF网元连接,AMF网元与SMF网元连接,SMF网元与UPF网元连接。
当无线回传节点与终端之间使用的第一网络的网络制式为LTE网络式时,即无线回传节点与终端之间为LTE系统。在LTE系统中,为终端提供服务的核心网可以为演进型分组核心网(evolved packet core network,EPC),该EPC包括:终端的PGW/服务网关(serving gateway,S-GW)和移动性管理设备(mobility management entity,MME)网元等功能网元。其中,MME与HeNB_GW,以及PGW/SGW与HeNB_GW连接。
需要说明的是,上述各个网元之间的接口名字只是一个示例,具体实现中接口名字可能为其他名字,本申请实施例对此不作具体限定。
需要说明的是,上述涉及到的接入网设备、AMF网元、SMF网元、UPF网元等仅是一个名字,名字对设备本身不构成限定。在5G网络以及未来其它的网络中,接入网设备、AMF网元、SMF网元、UPF网元所对应的网元或网元也可以是其他的名字,本申请实施例对此不作具体限定。在此进行统一说明,以下不再赘述。
另一种示例,当无线回传节点202与接入网设备203之间使用的第二网络的网络制式为LTE网络。即无线回传节点202与接入网设备203使用LTE技术。此时,无线回传节点202所接入的接入网设备为LTE基站(例如,eNB)。那么无线回传节点对应的核心网用户面网元为PGW/SGW。无线回传节点对应的核心网控制面网元为MME网元。终端对应的核心网控 制面网元可以为AMF网元以及SMF网元。终端对应的核心网用户面网元可以为UPF网元。
在实际通信过程中,当无线回传节点202接收终端201发送的数据,或者当无线回传节点202向终端201发送数据时,无线回传节点202通常作为一个类似基站的接入设备。当无线回传节点202接收宿主接入网设备发送的数据,或者当无线回传节点202向宿主接入网设备发送数据时,无线回传节点202通常作为一个类似终端的设备。当无线回传节点202作为一个终端时,无线回传节点202可以采用与终端类似的方式接入无线网络。
示例性的,接入网设备203可以是和终端201通信的设备,接入网设备203可以是基站、中继站或接入点等。接入网设备203可以是全球移动通信系统(global system for mobile communication,GSM)或码分多址(code division multiple access,CDMA)网络中的基站收发信台(base transceiver station,BTS),还可以是LTE中的eNB或eNodeB(evolutional NodeB)。接入网设备203还可以是5G通信系统、新空口(new radio,简称NR)中的接入网设备或未来演进网络中的接入网设备,例如下一代基站(NR NodeB,gNB),还可以是可穿戴设备或车载设备等。5G通信系统、新空口(new radio,NR)是正在研究当中的下一代通信系统。此外,所述通信系统还可以适用于面向未来的通信技术,都适用本申请实施例提供的技术方案。
由于未来接入网可以采用云无线接入网(cloud radio access network,C-RAN)架构来实现。一种可能的方式是将传统基站的协议栈架构和功能分割为两部分:一部分称为集中单元(central unit,CU),另一部分称为分布单元(distributed unit,DU)。而CU和DU的实际部署方式比较灵活。例如多个基站的CU部分集成在一起,组成一个规模较大的功能网元。如图5所示,其为本申请实施例提供的一种网络架构的示意图。如图5所示,该网络架构包括CN设备和RAN设备,其中,该RAN设备包括一个或多个CU和一个或多个DU,该接入网设备203可以为该RAN设备。其中RAN设备可以由一个节点实现,也可以由多个节点实现。RAN设备用于实现无线资源控制(radio resource control,RRC)、分组数据汇聚协议(packet data convergence protocol,PDCP)、无线链路控制(radio link control,RLC)、媒体接入控制(medium access control,MAC)等协议层的功能。如图5所示,CU和DU可以根据无线网络的协议层进行划分,例如分组数据汇聚层协议层及以上协议层的功能设置在CU,PDCP以下的协议层,包括RLC和MAC层等的功能设置在DU。在图5中CN表示核心网(core network)。
这种协议层的划分仅仅是一种举例,还可以在其他协议层划分,例如在RLC层划分,将RLC层及以上协议层的功能设置在CU,RLC层以下协议层的功能设置在DU;或者,在某个协议层中划分,例如将RLC层的部分功能和RLC层以上的协议层的功能设置在CU,将RLC层的剩余功能和RLC层以下的协议层的功能设置在DU。此外,也可以按其他方式划分,例如按时延划分,将处理时间需要满足时延要求的功能设置在DU,不需要满足该时延要求的功能设置在CU。
此外,请继续参考图5,相对于图6所示的架构,还可以将CU的控制面(control plane,CP)和用户面(user plane,UP)分离,分成不同网元来实现,分别为控制面CU网元(CU-CP网元)和用户面CU网元(CU-UP网元)。
在以上网络架构中,CU产生的数据可以通过DU发送给终端,或者终端产生的数据可以通过DU发送给CU。DU可以不对该数据进行解析而直接通过协议层封装后传给终端或 CU。例如,RRC或PDCP层的信令最终会处理为物理层(physical layer,PHY)的数据发送给终端,或者,由接收到的PHY层的数据转变而来。在这种架构下,该RRC或PDCP层的信令,即也可以认为是由DU发送的。
在以上实施例中CU作为RAN中接入网设备,此外,也可以将CU划分为CN中的接入网设备,在此不做限制。
本申请以下实施例中的装置,根据其实现的功能,可以位于终端或接入网设备。当采用以上CU-DU的结构时,接入网设备可以为CU节点、或DU节点、或包括CU节点和DU节点功能的RAN设备。
终端201可以是用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。该终端可以经无线接入网(radio access network,RAN)与一个或多个核心网(例如网络切片)进行通信,也可以与另一终端进行通信,如设备对设备(device to device,D2D)或机器对机器(machine to machine,M2M)场景下的通信。终端可以是无线局域网(wireless local area networks,WLAN)中的站点(station,STA),可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其他处理设备、车载设备、可穿戴设备以及下一代通信系统,例如,第五代(fifth-Generation,5G)通信网络中的终端或者未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的终端等。
作为示例,在本发明实施例中,该终端还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其他设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
如图7和图8所示,图7和图8给出了本申请另一种通信系统示意图,图7和图8与图4的区别在于,在图7中由无线回传节点202和一个或两个以上(包括两个)无线回传节点204(图7中仅示出了一个无线回传节点204)构成多跳的通信系统架构,该无线回传节点204与接入网设备203之间无线连接,而图4为单跳的IAB架构,在图8中还引入了一个或两个以上(包括两个)无线回传节点205,在图8中无线回传节点202通过两个通信链路与接入网设备203通信,也即无线回传节点202直接与接入网设备203连接,以及通过所述无线回传节点205与接入网设备203连接。
如图7中所示,当终端201和无线回传节点202之间使用第一网络对应的网络制式通信时,终端201和无线回传节点202之间的接口为第一接口(例如,LTE网络时,第一接口为Uu接口),当无线回传节点204和接入网设备203之间使用第二网络对应的网络制式通信时,无线回传节点204和接入网设备203之间的接口为第二接口(例如,NR网络时,第二接口为Un接口)。
可以理解的是,上述接口的名称等仅是一个名字,名字对接口本身不构成限定。在5G网络以及未来其它的网络中,终端201和无线回传节点202之间的接口、无线回传节点204和接入网设备203之间的接口也可以是其他的名字,本申请实施例对此不作具体限定。在此进行统一说明,以下不再赘述。
需要说明的是,图4、图7和图8仅是本申请所使用的通信系统架构的一个示意,在实际通信过程中还可以包括更多或者更复杂的通信系统架构。
在介绍本申请实施例提供的方案之前,首先介绍本实施例所涉及到的协议栈架构:如图9至图13所示,下述实施例中,终端与无线回传节点之间使用LTE网络,无线回传节点和接入网设备之间采用NR网络进行通信,为终端建立一个数据传输通道,将终端的数据传输到LTE核心网。
例如,如图9所示,图9示出了本申请的L3架构的控制面协议栈,对于终端而言,该终端的控制面协议栈为运行在LTE系统下的控制面协议栈,由上至下依次包括:非接入层(non-access stratum,NAS)层、无线资源控制(radio resource control,RRC)层、分组数据汇聚协议(packet data convergence protocol,PDCP)层、无线链路控制(radio link control,RLC)层、媒体接入控制(medium access control,MAC)层以及物理层(physical layer,PHY)层,对于无线回传节点202而言,该无线回传节点202包括与终端对应的第一协议栈以及与接入网设备对应的第二协议栈,其中,当终端的控制面协议栈为LTE系统下的控制面协议栈时,第一协议栈也可以LTE系统下的协议栈,当接入网设备对应的控制面协议栈为NR系统下的控制面协议栈时,第二协议栈为NR系统下的协议栈。
例如,第一协议栈由上至下依次包括:RRC层、PDCP层、RLC层、MAC层以及PHY层,第二协议栈由上至下依次包括:S1应用协议(application protocol,AP)层、流控制传输协议(stream control transmission protocol,SCTP)层、IP层、PDCP层、RLC层、MAC层以及PHY层。接入网设备的控制面协议栈包括:与第二协议栈对应的第三协议栈,以及与核心网设备对应的第四协议栈,当无线回传节点与接入网设备之间使用NR网络通信时,第三协议栈由上至下依次包括:S1AP层、SCTP层、IP层、PDCP层、RLC层、MAC层以及PHY层,第四协议栈由上至下依次包括:S1AP层、SCTP层、IP层、L2以及L1层,核心网设备由上至下依次包括:NAS层、S1AP层、SCTP层、IP层、L2以及L1层。也就是说,终端的S1连接是直接建立在无线回传节点和为终端提供服务的MME之间,无线回传节点将终端的S1AP消息承载在NR的空口发送到gNB,并由gNB进一步发送到为终端提供服务的MME。
可以理解的是,图9仅以第一网络对应的网络制式为LTE网络为例,以第二网络对应的网络制式为NR网络为例,在实际过程中,当第一网络对应的网络制式为NR网络时,第二网络对应的网络制式为LTE网络时,终端所接入的核心网为NR核心网,则终端的控制面协议栈为运行在NR系统下的控制面协议栈,无线回传节点202包括的第一协议栈为NR系统下的协议栈,第二协议栈为LTE系统下的协议栈,接入网设备的第三协议栈为NR系统下的协议栈,如图10所示,示例性的,终端的控制面协议栈由上至下依次为运行在NR系统下的NAS层、RRC层、PDCP层、RLC层、MAC层、PHY层,第一协议栈由上至下依次包括RRC层、PDCP层、RLC层、MAC层、PHY层,第二协议栈由上至下依次包括NGAP、SCTP、IP、PDCP、RLC层、MAC层、PHY层。也就是说,终端的NG连接是直接建立在无线回传 节点和为终端提供服务的AMF之间,无线回传节点将终端的NGAP消息承载在LTE的空口发送到eNB,并由eNB进一步发送到为终端提供服务的AMF。
需要说明的是,终端和无线回传节点之间使用的第一网络对应的网络制式为LTE网络,无线回传节点和gNB之间使用的第二网络对应的网络制式为NR网络,则无线回传节点生成S1AP消息,但该S1AP是承载在NR网络发送到终端对应的MME上。终端和无线回传节点之间使用的第一网络对应的网络制式为NR网络,无线回传节点和和eNB之间使用的网络对应的网络制式为LTE网络,则无线回传节点生成NGAP消息,但该NGAP是承载在LTE网络发送到终端在NR网络中对应的AMF网元上。
基于上图接入网设备还可以划分为多个逻辑网元,因此,如图9所示的控制面协议栈还可以进一步采用如图11所示的协议栈,图11与图9的区别在于进一步细化了接入网设备内的各逻辑网元之间的传输,终端和无线回传节点各自对应的控制面协议栈相同,在图9中接入网设备的控制面协议栈综合了无线回传节点所接入的基站、为无线回传节点提供服务的核心网用户面网元以及HeNB_GW三个逻辑网元的协议栈,其中,无线回传节点所接入的基站对应的协议栈包括与无线回传节点的第二协议栈对应的第五协议栈以及第六协议栈,其中,第五协议栈为运行在NR系统下的协议栈,第五协议栈由上至下依次包括PDCP层、RLC层、MAC层以及PHY层,第六协议栈由上至下依次包括:GTP-U层、UDP层、IP层、L2层以及L1层;为无线回传节点提供服务的核心网用户面网元对应的协议栈包括第七协议栈以及第八协议栈,其中,第七协议栈包括IP层、GTP-用户面(user plane,U)层、用户数据报协议(user datagram protocol,UDP)层、IP层、L2层以及L1层,第八协议栈包括IP层、L2以及L1层,HeNB_GW对应的协议栈包括两个第九协议栈,其中,第九协议栈包括S1-AP层、SCTP层、IP层、L2以及L1层。也就是说,终端的信令在接入网设备内通过无线回传节点的用户面传递给为终端提供服务的核心网设备。
例如,无线回传节点和接入网设备之间建立S1连接,该S1连接承载在NR空口上发送接入网设备,如图9和图11所示的各个网元之间通过控制面协议栈之间的交互,完成终端在各接口的用户面承载的映射,包括:终端和无线回传节点之间终端的DRB与无线回传节点和接入网设备之间UE GTP隧道的映射,以及无线回传节点和接入网设备之间终端的GTP隧道与接入网设备和终端对应的核心网用户面网元之间GTP隧道的映射。
如图12所示,图12示出了本实施例的L3架构的用户面协议栈,对于终端而言,终端的用户面协议栈为运行在LTE系统下的用户面协议栈,该终端的用户面协议栈由上至下依次包括:IP层、PDCP层、RLC层、MAC层以及PHY层,无线回传节点的用户面协议栈包括与终端的用户面协议栈对应的第十协议栈和第十一协议栈,其中,第十协议栈为运行在LTE系统下的协议栈,该第十协议栈由上至下依次包括:PDCP层、RLC层、MAC层以及PHY层,第十一协议栈为运行在NR系统下的用户面协议栈,该第十一协议栈由上至下依次包括:GTP-U层、UDP层、IP层、SDAP层、PDCP层、RLC层、MAC层以及PHY层,接入网设备的用户面协议栈包括与第十一协议栈对等的第十二协议栈以及第十三协议栈,其中,第十二协议栈由上至下依次包括:GTP-U层、UDP层、IP层、业务数据适配层(service data adaptation protocol,SDAP)层、PDCP层、RLC层、MAC层以及PHY层,第十三协议栈由上至下依次包括:GTP-U层、UDP层、IP层、L2层以及L1层,核心网设备的用户面协议栈由上至下依次包括:IP层、GTP-U层、UDP层、IP层、L2层以及L1层。
基于上图接入网设备还可以划分为多个逻辑网元,因此,如图12所示的用户面协议栈还可以进一步采用如图13所示的用户面协议栈。图13与图12的区别在于进一步细化了接入网设备内的各逻辑网元之间的传输。终端和无线回传节点各自对应的用户面协议栈相同,在图12中接入网设备的用户面协议栈综合了无线回传节点所接入的基站、为无线回传节点提供服务的核心网用户面网元以及HeNB_GW三个逻辑网元的协议栈。其中,无线回传节点所接入的基站对应的协议栈包括运行在NR系统下的第十四协议栈以及第十五协议栈,其中,第十四协议栈由上至下依次包括SDAP层、PDCP层、RLC层、MAC层以及PHY层,第十五协议栈由上至下依次包括:GTP-U层、UDP层、IP层、L2以及L1层,为无线回传节点提供服务的核心网用户面网元对应的协议栈包括第十六协议栈和第十七协议栈。其中,第十六协议栈由上至下依次包括:IP层、GTP-U层、UDP层、IP层、L2以及L1层,第十七协议栈由上至下依次包括:IP层、L2层以及L1层,HeNB_GW对应的协议栈包括两个第十八协议栈,其中,第十八协议栈由上至下依次包括:GTP-U层、UDP层、IP层、L2层以及L1层。
需要说明的是,当第一网络使用的网络制式为NR网络,第二网络使用的网络制式为LTE网络时。终端对应的用户面协议栈为运行在NR系统下的用户面协议栈。无线回传节点包括的第十协议栈为运行在NR系统下的用户面协议栈。无线回传节点包括的第十一协议栈为运行在LTE系统下的用户面协议栈。接入网设备包括的第十二协议栈为运行在LTE系统下的用户面协议栈,核心网设备的用户面协议栈为运行在NR系统下的用户面协议栈。如上述用户面协议栈所示,无线回传节点和接入网设备之间建立特定于每个终端的E-RAB的GTP隧道,该终端的GTP隧道承载在NR空口上发送给接入网设备。
可以理解的是,本申请中提供的通信方法的执行主体可以为第一管理单元或应用于第一管理单元中通信装置,例如,芯片,本申请提供的另一种通信方法的执行主体可以为第一设备或者为应用于第一设备中的无线回传装置,例如,芯片,下述实施例将以通信方法的执行主体为第一管理单元,以及另一种通信方法的执行主体为第一设备为例。
如图14所示,图14示出了本申请提供的一种通信方法的流程,该方法应用于无线回传系统中,其中,该无线回传系统包括第一网络和第二网络,第一网络和第二网络采用不同的网络制式,其中,该无线回传系统中的终端和接入网设备之间通过第一设备通信,第一设备与终端之间使用第一网络对应的网络制式通信,该第一设备与接入网设备之间使用第二网络对应的网络制式通信。
S101、第一管理网元获取终端在第一网络中的第一无线承载的信息,该第一无线承载的信息用于指示终端在第一网络中的第一无线承载。第一管理网元用于控制第一设备在第二网络中的会话管理。
可选的,接入网设备用于第一设备接入第二网络。
本实施例中的第一管理网元可以为第一设备在第二网络中的核心网控制面网元,或者为第一设备在第二网络中的核心网控制面网元中的芯片,本申请对此不作限定。
作为一种示例,本实施例中的第一网络使用的网络制式为长期演进LTE网络,第二网络使用的网络制式为NR网络。此时,第一无线承载的信息可以为E-RAB承载信息,第一无线承载的标识对应的QoS参数包括以下一项或者多项:质量类标识(QoS class identifier,QCI)、分配和保留优先级ARP、保证比特率和最大比特率MBR。例如,该第一无线承载的 标识对应的QoS参数包括:QCI和GBR。
第二无线承载的标识为服务质量流flow标识QFI,QFI对应的QoS参数包括以下一项或者多项:5G QoS标识5QI、分配和保留优先级ARP、保证比特率GBR和最大比特率MBR,例如,该QFI对应的QoS参数包括:QCI和GBR。
其中,QCI的取值可以为0-255中的任一个点值或者范围值。例如,对于GBR业务,QCI的取值为1-4。对于非GBR业务该QCI的取值可以为:5-9。QCI对应的不同取值可以对应不同的时延、丢包率等。GBR指数据传输的保证速率。
例如,一个第一无线承载的标识对应一个QCI和GBR,也即第一无线承载的标识可以看做一个索引,一旦QCI和GBR确定,那么该QCI和GBR对应的业务的QoS就确定了。
当第一网络对应的网络制式为长期演进LTE网络时,终端在第一网络中的核心网控制面网元可以为移动管理网元(mobility management entity,MME),当第二网络对应的网络制式为NR网络时,第一管理网元为SMF网元,或者为应用于SMF网元中的芯片,也即上述第一设备在第二网络中对应的核心网控制面网元为SMF网元。
作为另一种可能的实现方式,本申请中的第二网络对应的网络制式为长期演进LTE网络,所述第一网络对应的网络制式为NR网络,因此,第二无线承载的标识对应的QoS参数包括以下一项或者多项:质量类标识QCI、分配和保留优先级ARP、保证比特率GBR和最大比特率MBR。例如,该第二无线承载的标识对应的QoS参数包括:QCI和GBR;第一无线承载的标识为服务质量流flow标识QFI,QFI对应的QoS参数包括以下一项或者多项:5G QoS标识5QI、分配和保留优先级ARP、保证比特率GBR和最大比特率MBR。例如,该QFI对应的QoS参数包括QCI和GBR。
当第一网络使用的网络制式为NR网络时。终端在第一网络中对应的核心网控制面网元可以为AMF网元,当第二网络对应的网络制式为LTE网络时,第一设备通过LTE网络接入第一设备在LTE网络中对应的核心网SGW/PGW,并通过SGW/PGW连接到终端在第一网络中的核心网控制面(例如,AMF网元以及SMF网元)。或者终端在第一网络中的核心网用户面(例如,UPF网元),则第一管理网元为终端在第一网络中的SMF网元或者为应用于SMF网元中的芯片。
可选的,本申请中的第一无线承载的信息可以包括第一无线承载的标识以及与第一无线承载的标识对应的服务质量(QoS)参数。
可选的,本申请中的第一无线承载可以为数据无线承载(data radio bearer,DRB),也可以为信令无线承载(signaling radio bearer,SRB)。
S102、第一管理网元根据第一无线承载的信息,确定第一无线承载与第二无线承载之间的映射关系,其中,第二无线承载为第一设备在第二网络中的无线承载。
作为一种示例,第一无线承载与第一设备在第二网络中的第二无线承载之间的映射关系可以指第一无线承载的标识和第一设备在第二网络中的第二无线承载的标识之间的映射关系。
本申请中一个无线承载的标识可以为一个无线承载的编号或者无线承载的索引,本申请对此不作限定,后续凡涉及无线承载的标识均可以参考此处的描述。在此进行统一说明,以下不再赘述。
需要说明的是,本实施例中无线承载可以由一个无线承载的标识以及无线承载的标识 对应的QoS参数指示。例如,第一无线承载可以由第一无线承载的标识以及第一无线承载的标识对应的QoS参数指示。
终端在第一网络中可以存在多个第一无线承载,上述实施例中仅以第一无线承载的信息包括一个第一无线承载的标识和第一无线承载的标识对应的QoS参数为例。当终端在第一网络中存在多个第一无线承载时,第一无线承载的信息可以包括多个第一无线承载。其中,每个第一无线承载对应一个第一无线承载的信息,每个第一无线承载的信息包括第一无线承载的标识以及一个与该第一无线承载的标识对应的Qos参数,如表1所示。第一管理网元可以确定每个第一无线承载与第一设备在第二网络中的第二无线承载之间的映射关系,即:一个第一无线承载与一个第二无线承载映射。
表1无线承载和无线承载标识以及对应的Qos参数之间的关系:
第一无线承载的信息 标识 Qos参数
第一无线承载1 标识1 Qos参数1
第一无线承载2 标识2 Qos参数2
本申请提供一种通信方法,通过第一设备获取终端在第一网络中的第一无线承载的信息,并将获取到的终端在第一网络中的第一无线承载的信息发送给第一管理网元,这样第一管理网元在接收到第一无线承载的信息之后,便可以根据第一无线承载的信息包括的QoS参数确定第一无线承载与第一设备在第二网络中的第二无线承载之间的映射关系,这样在异制式场景下,使得终端的业务可以映射到第一网络和第二网络中对应的承载上传输,从而提高了业务传输质量。
本申请中第一管理网元可以以多种方式获取终端在第一网络中的第一无线承载的信息,作为一种示例,本申请中的S101具体可以通过以下方式实现:S1011、第一管理网元可以从第一设备处获取终端在第一网络中的第一无线承载的信息。在这种情况下,作为本申请的另一个实施例,本申请提供的方法在S1011之前,还包括S103和S104,如图15所示。
S103、第一设备获取终端在第一网络中的第一无线承载的信息,该第一无线承载的信息用于指示第一无线承载。
可选的,该第一无线承载的信息包括第一无线承载的标识、以及与第一无线承载的标识对应的服务质量(QoS)参数。
示例性的,第一设备可以为如上图所示的无线回传节点,或者为设置在无线回传节点中的芯片。
示例性的,第一设备可以通过S1AP消息获取终端在第一网络中建立的第一无线承载的信息。
例如,第一设备可以在终端初始入网的过程中,获取终端在第一网络中建立的第一无线承载的信息。
S104、第一设备向第二网络中的第一管理网元发送第一无线承载的信息。
例如,本申请中第一设备可以先将第一无线承载的信息发送给接入网设备,以由接入网设备将该第一无线承载的信息发送给第一设备在第二网络的第一管理网元,例如核心网控制面网元。
作为一种示例,第二网络对应的网络制式为NR网络,则第一设备在第二网络中对应的核心网控制面网元为AMF网元和SMF网元,即接入网设备将该第一无线承载的信息发送给 第一设备在第二网络的AMF网元,AMF网元再将第一无线承载的信息发送给SMF网元。
作为另一种示例,第二网络对应的网络制式为NR网络,则第一设备在第二网络中的核心网控制面网元为AMF网元和SMF网元,终端在第一网络中的核心网控制面网元为MME网元。终端在接入网络过程中,为终端提供服务的MME网元可以获取到终端在第一网络中的第一无线承载的信息,则即该MME网元将获取到的第一无线承载的信息直接发送给第一设备在NR网络中的SMF网元。该方案中,要求第一网络的MME网元和第二网络的SMF网元之间存在直接的接口。
作为另一种示例,本实施例中的S101具体可以通过以下方式实现:第一管理网元从终端在第一网络的核心网控制面网元获取终端在第一网络中的第一无线承载的信息。当第一管理网元从终端在所述第一网络的核心网控制面网元获取终端在第一网络的一个或者多个第一无线承载的信息时,上述S103以及S104可以省略,但是终端在所述第一网络的核心网控制面网元和第一管理网元之间存在可以交互信令的接口。
作为另一示例。当第一网络对应的网络制式为NR网络,第二网络对应的网络制式为LTE网络,则终端在第一网络中的核心网控制面网元为AMF网元和SMF网元。第一设备可以通过AMF网元向SMF网元发送第一设备在第二网络中的第二无线承载的信息,SMF网元根据第二无线承载的信息,确定第一无线承载和第二无线承载的映射关系。
作为本申请的另一个实施例,S102之后,本申请提供的方法还包括S105和S106,如图16所示。
S105、第一管理网元发送第一无线承载与第一设备在第二网络中的第二无线承载之间的映射关系。
可选的,第一管理网元可以向第一设备和/或接入网设备发送第一无线承载的标识与第一设备在第二网络中的第二无线承载的标识之间的映射关系。
可选的,本申请中第一管理网元还可以将第一无线承载的标识与第一设备在第二网络中的第二无线承载的标识之间的映射关系发送给第一设备所接入的核心网用户面网元,这样第一设备所接入的核心网用户面网元便可以根据映射关系进行业务的承载映射。
S106、第一设备接收第一管理网元发送的第一无线承载与第一设备在第二网络中的第二无线承载之间的映射关系。
在第一设备接收到第一无线承载与第一设备在第二网络中的第二无线承载之间的映射关系之后,第一设备在接收到接入网设备发送的下行传输时,第一设备可以根据该下行传输所在承载的信息,以及上述第一无线承载与第二无线承载之间的映射关系,将下行传输映射到与下行传输所在承载的信息具有映射关系的承载上传输至终端。第一设备在接收到终端发送的上行传输时,第一设备可以根据该上行传输所在承载的信息,以及上述第一无线承载与第二无线承载之间的映射关系,将上行传输映射到上行传输所在承载的信息具有映射关系的承载上传输至接入网设备,以由接入网设备发送给终端对应的核心网设备。
示例性的,以下行传输为例,如图17所示,终端在第一网络中的第一无线承载为E-RAB ID1和E-RAB ID2。其中,E-RAB ID1与终端和第一设备之间的DRB1映射,E-RAB ID1与接入网设备和为终端提供服务的MME之间的GTP隧道1映射;E-RAB ID2与终端和第一设备之间的DRB2映射,E-RAB ID2与接入网设备和为终端提供服务的MME之间GTP隧道2映射。第一设备在第二网络中的第二无线承载为QFI1和QFI2,其中,QFI1在第一设备和接入 网设备之间的DRB1映射,QFI2在第一设备和接入网设备之间的DRB2映射。如果SMF网元确定E-RAB ID1和QFI1具有映射,E-RAB ID2和QFI2具有映射,则接入网设备从GTP隧道1中提取出的终端业务,映射到第一设备和接入网设备之间的DRB1上发送给第一设备,并由第一设备将该数据映射到终端和第一设备之间的DRB1上发送给终端。接入网设备从GTP隧道2中提取出的终端业务,映射到第一设备和接入网设备之间的DRB2上发送给第一设备,并由第一设备将该数据映射到终端和第一设备之间的DRB2上发送给终端。
可选的,作为本申请的又一个实施例,本实施例提供的方法在S102之前,如图18所示。
S107、第一管理网元获取第一设备在第二网络中的第二无线承载的信息,该第二无线承载的信息包括第二无线承载的标识以及与第二无线承载的标识对应的QoS参数。
可选的,本申请中的第二无线承载的信息用于确定第一设备在第二网络的第二无线承载。
可以理解的是,本申请中的第一设备在第二网络中存在多个第二无线承载,每个第二无线承载可由一个第二无线承载的标识,以及第二无线承载的标识对应的QoS参数指示。
作为一种可能的实现方式,本实施例中的S102可以通过以下方式实现:第一管理网元确定第二网络中与第一无线承载的标识对应的Qos参数匹配的第一QoS参数;第一管理网元确定第一无线承载的标识与第一QoS参数关联的第二无线承载的标识之间的映射关系。
需要说明的是,QoS参数包括QCI或者5QI,和/或业务传输的保证速率和/或最大速率,而不同的QCI或者5QI可以对应不同的时延和/或丢包率等。
两个无线承载对应的时延和/或丢包率和/或业务传输的保证速率和/或最大速率相同或者相近,则该两个无线承载对应的QoS参数匹配。
其中,相近指两个比较对象的相互差值小于或等于阈值。例如,两个无线承载分别对应的时延和/或丢包率和/或业务传输的保证速率和/或最大速率相互差值小于或等于阈值,则该两个无线承载对应的QoS参数匹配,本实施例对该阈值不作限定。
例如,两个无线承载对应的时延相同或相近,则该两个无线承载对应的QoS参数匹配;再例如,两个无线承载对应的丢包率相同或相近,则该两个无线承载对应的QoS参数匹配;再例如,两个无线承载对应的业务传输的保证速率相同或相近,则该两个无线承载对应的QoS参数匹配;再例如,两个无线承载对应的业务传输的最大速率相同或相近,则该两个无线承载对应的QoS参数匹配。
例如,两个无线承载对应时延、丢包率、业务传输的保证速率和业务传输的最大速率其中的至少两个分别相同或相近时,则该两个无线承载对应的QoS参数匹配。
例如,两个无线承载对应的时延和丢包率分别相同或相近,则该两个无线承载对应的QoS参数匹配;再例如,两个无线承载对应的时延和业务传输的保证速率分别相同或相近,则该两个无线承载对应的QoS参数匹配;再例如,两个无线承载对应的时延和业务传输的最大速率分别相同或相近,则该两个无线承载对应的QoS参数匹配;再例如,两个无线承载对应的丢包率和业务传输的保证速率分别相同或相近,则该两个无线承载对应的QoS参数匹配;再例如,两个无线承载对应的丢包率和业务传输的最大速率分别相同或相近,则该两个无线承载对应的QoS参数匹配;再例如,两个无线承载对应的业务传输的保证速率和业务传输的最大速率分别相同或相近,则该两个无线承载对应的QoS参数匹配。
再例如,两个无线承载对应的时延、丢包率和业务传输的保证速率分别相同或相近, 则该两个无线承载对应的QoS参数匹配;再例如,两个无线承载对应的时延、丢包率和业务传输的最大速率分别相同或相近,则该两个无线承载对应的QoS参数匹配;再例如,两个无线承载对应的丢包率、业务传输的保证速率和业务传输的最大速率分别相同或相近,则该两个无线承载对应的QoS参数匹配。
再例如,两个无线承载对应的时延、丢包率、业务传输的保证速率和业务传输的最大速率分别相同或相近,则该两个无线承载对应的QoS参数匹配。
示例性的,与第一无线承载的标识对应的Qos参数匹配的第一QoS参数可以指与第一无线承载的标识对应的Qos参数相同的第一QoS参数,也可以指与第一无线承载的标识对应的Qos参数相近的第一QoS参数。
例如,与第一无线承载的标识对应的Qos参数包括的QCI对应的时延为A,如果第一QoS参数包括的QCI对应的时延也应为A,或者与A相近,则该第一无线承载的标识对应的Qos参数与该第一QoS参数匹配。
示例性的,终端如果在第一网络中存在两个或两个以上的无线承载。例如,无线承载1对应QCI1+GBR1,无线承载2对应QCI2+GBR2。而第一设备在第二网络中存在一个业务流,QFI1对应QCI1+GBR1,因此,第一管理网元便可以确定第一设备在第二网络中的QFI1和终端在第一设备中的无线承载1具有相同业务质量,从而将无线承载1上的业务映射到第一设备在第二网络中的QFI1对应的承载上去传输。
例如,两个无线承载对应的不同时延属于同一个时延范围,即两个无线承载对应的不同时延相互差值小于或等于阈值,则第一管理网元也可以认为该两个无线承载对应的QoS参数匹配。
例如,两个无线承载对应的丢包率不同,且两个无线承载对应的丢包率属于同一个丢包率范围,即两个无线承载对应的不同丢包率相互差值小于或等于阈值,则第一管理网元也可以认为该两个无线承载对应的QoS参数匹配。
又例如,两个无线承载对应的业务传输的保证速率/最大速率不同,且两个无线承载对应的业务传输的保证速率/最大速率属于同一个速率范围,即两个无线承载对应的不同的业务传输的保证速率/最大速率相互差值小于或等于阈值,则第一管理网元也可以认为该两个无线承载对应的QoS参数匹配。
由于第二网络中可能存在与第一无线承载的标识对应的Qos参数匹配的第一QoS参数,也可能不存在与第一无线承载的标识对应的Qos参数匹配的第一QoS参数,因此,本申请中第一管理网元确定第二网络中与第一无线承载的标识对应的Qos参数匹配的第一QoS参数可以通过以下方式实现。
方式1、如果第二网络中存在与第一无线承载的标识对应的Qos参数匹配的QoS参数,第一管理网元将与第一无线承载的标识对应的Qos参数匹配的QoS参数确定为第一QoS参数。
方式2、如果第二网络中不存在与第一无线承载的标识对应的Qos参数匹配的QoS参数,第一管理网元根据与第一无线承载的标识对应的Qos参数触发第一设备在第二网络中建立目标第二无线承载,目标第二无线承载由目标第二无线承载的标识以及与目标第二无线承载对应的目标QoS参数指示;第一管理网元将目标第二无线承载对应的目标QoS参数确定为第一QoS参数。
可选的,本申请第一设备具有第一协议栈和第二协议栈,第一协议栈和第二协议栈用于不同的网络制式,当第一设备与使用第一网络对应的网络制式与终端通信时,第一设备使用第一协议栈,当第一设备使用第二网络对应的网络制式与接入网设备通信时,第一设备使用第二协议栈。
在第一网络和第二网络对应的网络制式为任意两个不同的网络制式时,该第一协议栈为该第一设备在第一网络下与终端通信时具有的协议栈,第二协议栈为该第一设备在第二网络下与第一设备接入的接入网设备之间使用的协议栈,下述以第一网络和第二网络为LTE网络和NR网络中任意两个不同的网络为例。
示例性的,第一网络对应的网络制式为LTE网络时,第一协议栈由上之下依次包括:运行在LTE网络下的RRC层、PDCP层、RLC层、MAC层以及PHY层。第二网络对应的网络制式为NR网络时,第二协议栈由上之下依次包括:S1-AP层、SCTP层、IP层、运行在NR网络下的PDCP层、RLC层、MAC层以及PHY层。
示例性的,第一网络对应的网络制式为NR网络时,第一协议栈由上之下依次包括:运行在NR网络下的RRC层、PDCP层、RLC层、MAC层以及PHY层。第二网络对应的网络制式为LTE网络时,第二协议栈由上之下依次包括:NGAP层、SCTP层、IP层、运行在LTE网络下的PDCP层、RLC层、MAC层以及PHY层。
下述将以第一设备为RN,以第一网络对应的网络制式为LTE网络,第二网络对应的网络制式为5G NR网络,第一管理网元为SMF网元为例,详细介绍本申请提供的一种通信方法,如图19所示。
S201、在终端通过无线回传节点接入网络的过程中,IAB通过S1AP消息获知终端建立的E-RAB承载的信息,该E-RAB承载的信息包括E-RAB ID以及E-RAB ID对应的QoS参数。
例如,在终端通过无线回传节点接入第一网络过程中。在第一网络中,终端对应的SGW/PGW向终端对应的MME发送针对建立会话请求(create session request)的会话响应(create session respone)消息,该create session respone消息中包括E-RAB ID以及E-RAB ID对应的QoS参数,以及SGW GTP ID,其中,SGW GTP ID用于识别接入网设备和为终端提供服务的SGW之间的GTP隧道。然后MME向HeNB_GW发送初始上下文建立请求(initial context setup request)消息,该initial context setup request消息中携带E-RAB ID、E-RAB ID对应的QoS参数,以及SGW GTP ID。HeNB_GW将该initial context setup request消息作处理后发送给无线回传节点,例如,处理后的initial context setup request消息除E-RAB ID、E-RAB ID对应的QoS参数,还包括HeNB_GW对应的GTP ID,其中,HeNB_GW对应的GTP ID用于识别接入网设备和为终端提供服务的HeNB_GW之间的GTP隧道,这样无线回传节点便可以将E-RAB ID、E-RAB ID对应的QoS参数确定为E-RAB承载信息。
S202、无线回传节点将接收到的E-RAB承载信息发送给gNB。
示例性的,无线回传节点可以通过NAS消息向gNB发送E-RAB承载的信息。
S203、gNB将该E-RAB承载的信息发送给无线回传节点对应的AMF网元。
示例性的,gNB可以通过NAS消息向AMF网元发送E-RAB承载的信息。
S204、AMF网元将该E-RAB承载的信息发送给无线回传节点对应的SMF网元。
例如,AMF网元可以通过与SMF网元之间新定义的消息发送E-RAB承载的信息,也可以通过AMF网元和SMF网元之间已有的消息(例如,AMF网元和SMF网元之间的N11接口 消息)发送E-RAB承载的信息。
S205、SMF网元根据E-RAB承载的信息以及无线回传节点在第二网络中的QFI承载的信息,确定E-RAB ID和QFI ID之间的映射关系。
例如,QFI承载信息包括QFI ID以及QFI ID关联的QoS profile参数。
例如,SMF网元根据E-RAB ID对应的QoS参数确定与E-RAB ID对应的Qos参数与E-RAB ID对应的Qos参数相同的QoS profile参数,或者与E-RAB ID对应的Qos参数之间的差值小于阈值的QoS profile参数。SMF网元建立E-RAB ID和QoS profile参数关联的QFI ID之间的映射关系。
S206、SMF网元将E-RAB ID和QFI ID之间的映射关系发送给无线回传节点以及DgNB。
例如,SMF网元可以将E-RAB ID和QFI ID之间的映射关系发送给DgNB内的UPF和gNB。
例如,SMF网元可以通过如下过程向DgNB内的UPF和gNB发送E-RAB ID和QFI ID之间的映射关系。
SMF网元先通过N11接口消息将E-RAB ID和QFI ID之间的映射关系发送给AMF网元,然后由AMF网元将E-RAB ID和QFI ID之间的映射关系通过N2接口消息发送给DgNB(N2接口是AMF网元和gNB网元之间的接口)。对UPF网元和gNB而言都是设置在在DgNB内,因此,当DgNB获取SMF网元发送的E-RAB ID和QFI ID之间的映射关系后,那么其内部的UPF网元和gNB就获知了该E-RAB ID和QFI ID之间的映射关系。
S207、无线回传节点接收E-RAB ID和QFI ID之间的映射关系。这样在无线回传节点具有E-RAB ID和QFI ID之间的映射关系之后,便可以在接收到终端发送的上行传输时,根据该上行传输所在的E-RAB1,以及无线回传节点具有的E-RAB ID和QFI ID之间的映射关系,从E-RAB ID和QFI ID之间的映射关系中选择与该E-RAB1具有映射关系的QFI,例如,QFI1,并将上行传输在QFI1上传输给接入网设备。另一方面,无线回传节点在接收到接入网设备发送的下行传输时,便可以根据具有的E-RAB ID和QFI ID之间的映射关系以及该下行传输所在的QFI1,确定与该QFI1对应的E-RAB1,并在该E-RAB1上将下行传输传给终端。
如图20所示,图20所示的方法与图19所示的方法的区别在于:在图20中使用S301替代了图19中的S201-S204。图20中的S302与图19中的S205相同,图20中的S303与图19中的S206相同,图20中的S304与图20中的S207相同,例如,S301、终端在第一网络中建立E-RAB承载信息时,终端在第一网络中对应的MME将该E-RAB承载信息发送给RN在第二网络中对应的SMF网元,该E-RAB承载信息,该E-RAB承载信息包括E-RAB ID以及E-RAB ID对应的QoS参数。
本申请提供一种通信方法,通过第一设备获取终端在第一网络中的第一无线承载的信息,并将获取到的终端在第一网络中的第一无线承载的信息发送给第一管理网元,这样第一管理网元在接收到第一无线承载的信息之后,便可以根据第一无线承载的信息包括的QoS参数确定获取第一无线承载的标识与第一设备在第二网络中的第二无线承载的标识之间的映射关系,通过第一管理网元确定上述映射关系,这样在异制式场景下,使得接入网设备便可以根据映射关系将终端的业务映射到第二网络中对应的承载上传输给第一设备,或者,第一设备将终端发送的业务映射在第二网络中对应的承载上传输给接入网设备,从而提高了业务传输质量。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如第一管理网元、第一设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对第一管理网元、第一设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明:
在采用集成的单元的情况下,图21示出了上述实施例中所涉及的通信装置的结构示意图,该通信装置可以为第一管理网元或者为应用于第一管理网元中的芯片。通信装置包括:获取单元301以及确定单元302。其中,获取单元301用于支持通信装置执行上述实施例中的S101、S1011以及S107。确定单元302用于支持通信装置执行上述实施例中的S102以及S205以及S302。
此外,通信装置还可以包括处理单元303以及发送单元304。该处理单元303用于支持通信装置执行上述实施例中的根据第一无线承载的标识对应的Qos参数触发第一设备在第二网络中建立目标第二无线承载,该发送单元304用于支持通信装置执行上述实施例中的S105、S206以及S303。上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
如图22所示,在采用集成的单元的情况下,图22示出了上述实施例中所涉及的通信装置的一种可能的结构示意图。该通信装置可以为第一设备,或者为应用于第一设备中的芯片,该通信装置包括:获取单元401以及发送单元402。其中,获取单元401用于支持通信装置执行上述实施例中的S103、S201。发送单元402用于支持通信装置执行上述实施例中的S104以及S202。可选的,该通信装置还可以包括接收单元403,用于支持通信装置执行上述实施例中的S106以及S207以及S304。
应理解以上装置中单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且装置中的单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。例如,各个单元可以为单独设立的处理元件,也可以集成在装置的某一个芯片中实现,此外,也可以以程序的形式存储于存储器中,由装置的某一个处理元件调用并执行该单元的功能。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路实现或者以软件通过处理元件调用的形式实现。
在一个例子中,以上任一装置中的单元可以是被配置成实施以上方法的一个或多个集 成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)等。再如,当装置中的单元可以通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
以上接收单元(或用于接收的单元)是一种该通信装置的接口电路,用于从其它装置或模块或单元接收信号。例如,当该通信装置以芯片的方式实现时,该接收单元或者获取单元是该芯片用于从其它芯片或装置接收信号的接口电路。以上发送单元(或用于发送的单元)是一种该通信装置的接口电路,用于向其它装置发送信号。例如,当该通信装置以芯片的方式实现时,该发送单元是该芯片用于向其它芯片或装置发送信号的接口电路。
在采用集成的单元的情况下,图23示出了上述实施例中所涉及的通信装置的一种可能的逻辑结构示意图,该通信装置可以为上述实施例中的第一管理网元,或者为应用于第一管理网元中的芯片。通信装置包括:处理模块312和通信模块313。处理模块312用于对通信装置的动作进行控制管理,例如,处理模块312用于执行在通信装置侧进行消息或数据处理的步骤,例如,支持通信装置执行上述实施例中的S102以及S205以及S302;通信模块313用于支持通信装置执行上述实施例中的S101、S1011以及S107、S105、S206以及S303。和/或用于本文所描述的技术的其他由通信装置执行的过程。
可选的,通信装置还可以包括存储模块311,用于存储通信装置的程序代码和数据。
其中,处理模块312可以是处理器或控制器,例如可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。通信模块313可以是收发器、收发电路或通信接口等。存储模块311可以是存储器。
当处理模块312为处理器320,通信模块313为通信接口330或收发器时,存储模块311为存储器340时,本申请所涉及的通信装置可以为图24所示的设备。
其中,通信接口330、一个或两个以上(包括两个)处理器320以及存储器340通过总线310相互连接;总线310可以是PCI总线或EISA总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,图24中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。其中,存储器340用于存储通信装置的程序代码和数据。通信接口330用于支持通信装置与其他设备(例如,第一设备)通信,处理器320用于支持通信装置执行存储器240中存储的程序代码和数据以实现本申请提供的S102、S205、S302、S101、S1011、S107、S105、S206以及S303。
请参考图25,其为本申请实施例提供的一种中继设备的结构示意图。其可以为以上实施例中的第一设备,用于实现以上实施例中第一设备的操作。
如图25所示,该中继设备包括:处理器510,存储器520,和接口530,处理器510、存储器520和接口530通过总线540连接,该总线可以通过连接电路来实现。其中,存储器520用于存储程序,该程序被处理器510调用时,可以实现以上实施例中第一设备执行 的方法。接口530用于实现与其它网络设备的通信。
以上由第一设备执行的方法可以由通信装置执行,该通信装置可以为中继设备,或者为应用于中继设备中的芯片,且该通信装置的各个单元(例如,上述实施例中描述的获取单元401、发送单元402以及接收单元403)的功能可以通过处理器510调用存储器520中存储的程序来实现。即,以上通信装置包括存储器和处理器,存储器用于存储程序,该程序被处理器调用,以执行以上方法实施例中由第一设备执行的方法。这里的处理器,可以是通用处理器,例如中央处理器(central processing unit,CPU),还可以是其它可以调用程序的处理器;或者该处理器可以被配置成实施以上实施例中第一设备执行方法的一个或多个集成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate Array,FPGA)等。存储器的数量不做限制,可以是一个也可以是多个。
请参考图26,其为本申请实施例提供的另一种中继设备的结构示意图。其可以为以上实施例中的第一设备,用于实现以上实施例中第一设备的操作。如图26所示,该中继设备包括:天线610、射频装置620、基带装置630。天线610与射频装置620连接。在上行方向上,射频装置620通过天线610接收终端发送的信息,将终端发送的信息发送给基带装置630进行处理。在下行方向上,基带装置630对终端的信息进行处理,并发送给射频装置620,射频装置620对终端的信息进行处理后经过天线610发送给终端。
基带装置630可以为物理上的一个装置,也可以包括物理上分开的至少两个装置。基带装置630可以和射频装置620集成在一起,也可以物理上分开。基带装置630可以包括一个或两个以上(包括两个)基带板,基带板上可以集成多个处理元件,以实现基带处理功能。该中继设备为RAN设备,例如为LTE系统中的eNB,此时基带装置630可以为eNB中的基带装置;再如,该中继设备可以为RAN设备,基带装置可以为DU节点。
以上由第一设备执行的方法可以由通信装置执行,该通信装置可以应用于第一设备中,该通信装置可以位于基带装置630,在一种实现中,图22所示的各个单元通过处理元件调度程序的形式实现,例如基带装置630包括处理元件631和存储元件632,处理元件631调用存储元件632存储的程序,以执行以上方法实施例中第一设备执行的方法。此外,该基带装置630还可以包括接口633,用于与射频装置620交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI),当基带装置630与射频装置620物理上布置在一起时,该接口可以为板内接口,或板间接口,这里的板是指电路板。
在另一种实现中,图22所示的各个单元可以是被配置成实施以上中继设备执行的方法的一个或多个处理元件,这些处理元件设置于基带装置630上,这里的处理元件可以为集成电路,例如:一个或多个专用集成电路(application specific integrated circuit,ASIC),或,一个或多个数字信号处理(digital signal processing,DSP),或,一个或者多个现场可编程门阵列(field-programmable gate array,FPGA)等。这些集成电路可以集成在一起,构成芯片。
例如,图22所示的各个单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现,例如,基带装置630包括SOC芯片,用于实现以上方法。该芯片内可以集成处理元件631和存储元件632,由处理元件631调用存储元件632的存储的程序的形式实 现以上网络设备执行的方法或图22所示各个单元的功能。或者,该芯片内可以集成一个或两个以上(包括两个)集成电路,用于实现以上第一设备执行的方法或图21所示各个单元的功能。或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
总之,以上无线回传装置包括一个或两个以上(包括两个)处理元件和存储元件,其中所述处理元件用于执行以上实施例所提供的第一设备执行的方法。处理元件可以以第一种方式:即执行存储元件存储的程序的方式执行以上实施例中第一设备执行的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行以上实施例中第一设备执行的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行以上实施例中第一设备执行的部分或全部步骤。
这里的处理元件同以上描述,可以是通用处理器,例如中央处理器(central processing unit,CPU),还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)等。
存储元件可以是一个存储器,也可以是多个存储元件的统称。
图27是本发明实施例提供的芯片150的结构示意图。芯片150包括一个或两个以上(包括两个)处理器1510和接口电路1530。
可选的,该芯片150还包括存储器1540,存储器1540可以包括只读存储器和随机存取存储器,并向处理器1510提供操作指令和数据。存储器1540的一部分还可以包括非易失性随机存取存储器(non-volatile random access memory,NVRAM)。
在一些实施方式中,存储器1540存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:
在本发明实施例中,通过调用存储器1540存储的操作指令(该操作指令可存储在操作系统中),执行相应的操作。
一种可能的实现方式为:第一管理网元,第一设备所用的芯片的结构类似,不同的装置可以使用不同的芯片以实现各自的功能。
处理器1510控制第一管理网元,第一设备的操作,处理器1510还可以称为中央处理单元(central processing unit,CPU)。存储器1540可以包括只读存储器和随机存取存储器,并向处理器1510提供指令和数据。存储器1540的一部分还可以包括非易失性随机存取存储器(non-volatile random access memory,NVRAM)。例如应用中存储器1540、接口电路1530以及存储器1540通过总线系统1520耦合在一起,其中总线系统1520除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图27中将各种总线都标为总线系统1520。
上述本发明实施例揭示的方法可以应用于处理器1510中,或者由处理器1510实现。处理器1510可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1510中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1510可以是通用处理器、数字信号处理器(digital signal processing,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列
(field-programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1540,处理器1510读取存储器1540中的信息,结合其硬件完成上述方法的步骤。
可选地,接口电路1530用于执行图14、图15、图16、图18、图19、图20所示的实施例中的第一管理网元,第一设备的接收和发送的步骤。
处理器1510用于执行图14、图15、图16、图18、图19、图20所示的实施例中的第一设备的处理的步骤。
在上述实施例中,存储器存储的供处理器执行的指令可以以计算机程序产品的形式实现。计算机程序产品可以是事先写入在存储器中,也可以是以软件形式下载并安装在存储器中。
计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘solid state disk,SSD)等。
一方面,提供一种计算机存储介质,计算机可读存储介质中存储有指令,当指令被运行时,使得第一管理网元或者应用于第一管理网元中的芯片执行实施例中的S101、S1011以及S107、S102以及S205以及S302、S105、S206以及S303。和/或用于本文所描述的技术的其他由第一管理网元或者应用于第一管理网元中的芯片执行的过程。
又一方面,提供一种计算机存储介质,计算机可读存储介质中存储有指令,当指令被运行时,使得第一设备或者应用于第一设备中的芯片执行实施例中的S103、S201、S104以及S202、S106以及S207以及S304。和/或用于本文所描述的技术的其他由第一设备或者应用于第一设备中的芯片执行的过程。
前述的可读存储介质可以包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
一方面,提供一种包含指令的计算机程序产品,计算机程序产品中存储有指令,当指令被运行时,使得第一管理网元或者应用于第一管理网元中的芯片执行实施例中的S101、S1011以及S107、S102以及S205以及S302、S105、S206以及S303。和/或用于本文所描述的技术的其他由第一管理网元或者应用于第一管理网元中的芯片执行的过程。
又一方面,提供一种包含指令的计算机程序产品,计算机程序产品中存储有指令,当指令被运行时,使得第一设备或者应用于第一设备中的芯片执行实施例中的S103、S201、S104以及S202、S106以及S207以及S304。和/或用于本文所描述的技术的其他由第一设备或者应用于第一设备中的芯片执行的过程。
一方面,提供一种芯片,该芯片应用于第一管理网元中,芯片包括一个或两个以上(包括两个)处理器和接口电路,接口电路和该一个或两个以上(包括两个)处理器通过线路互联,处理器用于运行指令,以执行实施例中的S101、S1011以及S107、S102以及S205以及S302、S105、S206以及S303。和/或用于本文所描述的技术的其他由第一管理网元执行的过程。
又一方面,提供一种芯片,该芯片应用于第一设备中,芯片包括一个或两个以上(包括两个)处理器和接口电路,接口电路和该一个或两个以上(包括两个)处理器通过线路互联,处理器用于运行指令,以执行实施例中实施例中的S103、S201、S104以及S202、S106以及S207以及S304。和/或用于本文所描述的技术的其他由第一设备执行的过程。
此外,本申请还提供一种通信系统,该通信系统包括如图21、图23以及图24所示的通信装置,图22、图25以及图26所示的通信装置。
本申请提供一种通信系统,通过第一设备获取终端在第一网络中的第一无线承载的信息,并将获取到的终端在第一网络中的第一无线承载的信息发送给第一管理网元,这样第一管理网元在接收到第一无线承载的信息之后,便可以根据第一无线承载的信息包括的QoS参数确定第一无线承载与第一设备在第二网络中的第二无线承载之间的映射关系,这样在异制式场景下,使得终端的业务可以映射到第一网络和第二网络中对应的承载上传输,从而提高了业务传输质量。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (19)

  1. 一种通信方法,其特征在于,应用于无线回传系统中,其中,所述无线回传系统包括第一网络和第二网络,所述第一网络和所述第二网络采用不同的网络制式,其中,所述无线回传系统中终端和接入网设备通过所述无线回传系统中的第一设备通信,所述第一设备与终端之间使用所述第一网络对应的网络制式通信,所述第一设备与所述接入网设备之间使用所述第二网络对应的网络制式通信,所述第二网络中包括第一管理网元,所述第一管理网元用于控制所述第一设备在所述第二网络中的会话管理,所述方法包括:
    所述第一管理网元获取所述终端在所述第一网络中的第一无线承载的信息,所述第一无线承载的信息用于指示第一无线承载;
    所述第一管理网元根据所述第一无线承载的信息,确定所述第一无线承载与第二无线承载之间的映射关系,其中,所述第二无线承载为所述第一设备在所述第二网络中的无线承载。
  2. 根据权利要求1所述的方法,其特征在于,所述第一管理网元获取所述终端在所述第一网络中的所述第一无线承载的信息,包括:
    所述第一管理网元从所述第一设备处获取所述终端在所述第一网络中的所述第一无线承载的信息;
    或者,
    所述第一管理网元从所述终端在所述第一网络的核心网控制面网元获取所述终端在所述第一网络中的所述第一无线承载的信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一管理网元根据所述第一无线承载的信息,确定所述第一无线承载与第二无线承载之间的映射关系之前,所述方法还包括:
    所述第一管理网元获取所述第一设备在所述第二网络中的所述第二无线承载的信息,所述第二无线承载的信息包括第二无线承载的标识以及与所述第二无线承载的标识对应的服务质量QoS参数。
  4. 根据权利要求3所述的方法,其特征在于,所述第一无线承载的信息包括第一无线承载的标识、以及与所述第一无线承载的标识对应的服务质量QoS参数,所述第一管理网元根据所述第一无线承载的信息,确定所述第一无线承载与第二无线承载之间的映射关系包括:
    所述第一管理网元根据所述第一无线承载的标识对应的QoS参数,在所述第二网络中查找与所述第一无线承载的标识对应的QoS参数匹配的QoS参数;
    如果第一无线承载的标识对应的QoS参数与所述第二无线承载的标识对应的QoS参数匹配,所述第一管理网元确定所述第一无线承载的标识和所述第二无线承载的标识之间具有映射关系;或
    如果所述第二网络中不存在与所述第一无线承载的标识对应的QoS参数匹配的QoS参数,所述第一管理网元根据所述第一无线承载的标识对应的QoS参数触发所述第一设备在所述第二网络中建立第二无线承载,所述第二无线承载由第二无线承载的标识以及与所述第二无线承载的标识对应的QoS参数指示;所述第一管理网元确定所述第一无线承载的标识和所述第二无线承载的标识之间具有映射关系。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述方法还包括:
    所述第一管理网元向所述第一设备和/或所述接入网设备发送所述第一无线承载与所述第二无线承载之间的映射关系。
  6. 一种通信方法,其特征在于,应用于无线回传系统中,所述无线回传系统包括第一网络和第二网络,所述第一网络和所述第二网络采用不同的网络制式,其中,所述无线回传系统中的终端和接入网设备通过所述无线回传系统中的第一设备通信,所述第一设备与所述终端之间使用所述第一网络对应的网络制式通信,所述第一设备与所述接入网设备之间使用所述第二网络对应的网络制式通信,所述方法包括:
    所述第一设备获取所述终端在所述第一网络中的第一无线承载的信息,所述第一无线承载的信息用于指示第一无线承载;
    所述第一设备向所述第二网络中的第一管理网元发送所述第一无线承载的信息以便所述第一管理网元根据所述第一无线承载的信息确定所述第一无线承载与第二无线承载之间的映射关系,其中,所述第二无线承载为所述第一设备在所述第二网络中的无线承载。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    所述第一设备接收所述第一管理网元发送的所述第一无线承载与所述第二无线承载之间的映射关系。
  8. 根据权利要求6或7所述的方法,其特征在于,所述第一设备具有第一协议栈和第二协议栈,所述第一协议栈和所述第二协议栈用于不同的网络制式,所述第一设备使用所述第一网络对应的网络制式与所述终端通信时,所述第一设备使用所述第一协议栈,所述第一设备使用所述第二网络对应的网络制式与所述接入网设备通信时,所述第一设备使用所述第二协议栈。
  9. 一种通信装置,其特征在于,应用于无线回传系统中,该通信装置可以为第一管理网元或者为应用于第一管理网元中的芯片,其中,所述无线回传系统包括第一网络和第二网络,所述第一网络和所述第二网络采用不同的网络制式,其中,所述无线回传系统中终端和接入网设备通过所述无线回传系统中的第一设备通信,所述第一设备与所述终端之间使用所述第一网络对应的网络制式通信,所述第一设备与所述接入网设备之间使用所述第二网络对应的网络制式通信,所述通信装置用于控制所述第一设备在所述第二网络中的会话管理,所述通信装置包括:
    获取单元,用于获取所述终端在所述第一网络中的第一无线承载的信息,所述第一无线承载的信息用于指示第一无线承载;
    确定单元,用于根据所述第一无线承载的信息,确定所述第一无线承载与第二无线承载之间的映射关系,其中,所述第二无线承载为所述第一设备在所述第二网络中的无线承载。
  10. 根据权利要求9所述的通信装置,其特征在于,所述获取单元,具体用于从所述第一设备处获取所述终端在所述第一网络中的第一无线承载的信息;或者,
    所述获取单元,具体用于从所述终端在所述第一网络的核心网控制面网元获取所述终端在所述第一网络中的第一无线承载的信息。
  11. 根据权利要求9或10所述的通信装置,其特征在于,所述获取单元,还用于获取所述第一设备在所述第二网络中的所述第二无线承载的信息,所述第二无线承载的信息包 括第二无线承载的标识以及与所述第二无线承载的标识对应的服务质量QoS参数。
  12. 根据权利要求11所述的通信装置,其特征在于,所述第一无线承载的信息包括第一无线承载的标识、以及与所述第一无线承载的标识对应的服务质量QoS参数,所述确定单元,还用于根据所述第一无线承载的标识对应的QoS参数,在所述第二网络中查找与所述第一无线承载的标识对应的QoS参数匹配的QoS参数;
    如果第一无线承载的标识对应的QoS参数与第二无线承载的标识对应的QoS参数匹配,所述确定单元,还用于确定所述第一无线承载的标识和所述第二无线承载的标识之间具有映射关系;
    如果所述第二网络中不存在与所述第一无线承载的标识对应的QoS参数匹配的QoS参数,所述装置还包括处理单元,用于根据所述第一无线承载的标识对应的QoS参数触发所述装置在所述第二网络中建立第二无线承载,所述第二无线承载由第二无线承载的标识以及与所述第二无线承载的标识对应的QoS参数指示;所述确定单元,还用于确定所述第一无线承载的标识和所述第二无线承载的标识之间具有映射关系。
  13. 根据权利要求9-12任一项所述的通信装置,其特征在于,所述通信装置还包括:
    发送单元,用于向所述第一设备和/或所述接入网设备发送所述第一无线承载与所述第二无线承载之间的映射关系。
  14. 一种通信装置,其特征在于,所述通信装置应用于无线回传系统中,该无线回传装置为第一设备或者为应用于第一设备中的芯片,所述无线回传系统包括第一网络和第二网络,所述第一网络和所述第二网络采用不同的网络制式,其中,所述通信装置中的终端和接入网设备通过所述无线回传系统中的第一设备通信,所述通信装置与所述终端之间使用所述第一网络对应的网络制式通信,所述通信装置与所述接入网设备之间使用所述第二网络对应的网络制式通信,所述通信装置包括:
    获取单元,用于获取所述终端在所述第一网络中的第一无线承载的信息,所述第一无线承载的信息用于指示第一无线承载;
    发送单元,用于向所述第二网络中的第一管理网元发送所述第一无线承载的信息以便所述第一管理网元根据所述第一无线承载的信息,确定所述第一无线承载与第二无线承载之间的映射关系,其中,所述第二无线承载为所述第一设备在所述第二网络中的无线承载。
  15. 根据权利要求14所述的装置,其特征在于,所述通信装置还包括:
    接收单元,用于接收所述第一管理网元发送的所述第一无线承载与所述第二无线承载之间的映射关系。
  16. 根据权利要求14或15所述的装置,其特征在于,所述无线回传装置具有第一协议栈和第二协议栈,所述第一协议栈和所述第二协议栈用于不同的网络制式,当所述通信装置使用所述第一网络对应的网络制式与所述终端通信时,所述通信装置使用所述第一协议栈,当所述通信装置使用所述第二网络对应的网络制式与所述接入网设备通信时,所述通信装置使用所述第二协议栈。
  17. 一种芯片,其特征在于,所述芯片包括处理器和接口电路,所述接口电路和所述处理器耦合,所述处理器用于运行计算机程序或指令,以实现如权利要求1至5任一项所述的方法,或者以实现如权利要求6至8任一项所述的方法,所述接口电路用于与所述芯片之外的其它模块进行通信。
  18. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序或指令,当所述计算机程序或指令被运行时,实现如权利要求1至5任一项所述的方法或者实现如权利要求6-8任一项所述的方法。
  19. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序或指令,当所述计算机程序或指令被运行时,实现如权利要求1至5任一项所述的方法或者实现如权利要求6-8任一项所述的方法。
PCT/CN2019/084689 2018-04-28 2019-04-26 一种通信方法及装置 WO2019206314A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19792917.7A EP3780879A4 (en) 2018-04-28 2019-04-26 COMMUNICATION PROCESS AND APPARATUS
US17/081,858 US11665575B2 (en) 2018-04-28 2020-10-27 Communication method and communications apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810404964.0A CN110418427B (zh) 2018-04-28 2018-04-28 一种通信方法及装置
CN201810404964.0 2018-04-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/081,858 Continuation US11665575B2 (en) 2018-04-28 2020-10-27 Communication method and communications apparatus

Publications (1)

Publication Number Publication Date
WO2019206314A1 true WO2019206314A1 (zh) 2019-10-31

Family

ID=68294817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084689 WO2019206314A1 (zh) 2018-04-28 2019-04-26 一种通信方法及装置

Country Status (4)

Country Link
US (1) US11665575B2 (zh)
EP (1) EP3780879A4 (zh)
CN (1) CN110418427B (zh)
WO (1) WO2019206314A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111436057B (zh) * 2019-01-15 2022-06-28 华为技术有限公司 一种会话管理方法及装置
CN113259961B (zh) * 2020-02-13 2023-02-10 华为技术有限公司 网络管理方法和装置
EP4109836A4 (en) * 2020-03-17 2023-07-19 Huawei Technologies Co., Ltd. DATA TRANSMISSION METHOD AND DEVICE
CN113497799B (zh) * 2020-04-08 2022-09-16 维沃移动通信有限公司 协议架构确定方法、装置及设备
WO2022067818A1 (zh) * 2020-09-30 2022-04-07 华为技术有限公司 一种数据传输方法及装置
US11570662B2 (en) * 2020-12-31 2023-01-31 Charter Communications Operating, Llc Methods and apparatus for multi-radio access technology access and backhaul
WO2022264730A1 (ja) * 2021-06-16 2022-12-22 日本電気株式会社 情報処理装置、情報処理方法、コンピュータ可読媒体、及び無線通信システム
CN113630902B (zh) * 2021-08-19 2023-04-28 联想(北京)有限公司 基于网络服务质量的数据包传输方法及相关设备
CN116867000A (zh) * 2022-03-28 2023-10-10 华为技术有限公司 一种数据传输的方法及通信装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018029578A1 (en) * 2016-08-12 2018-02-15 Nokia Technologies Oy Long term evolution (lte) light connection enhancements for long term evolution (lte)-new radio access technology (nr) interworking
WO2018044358A1 (en) * 2016-09-02 2018-03-08 Intel IP Corporation Lte-assisted 5g direct access

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8902805B2 (en) * 2008-10-24 2014-12-02 Qualcomm Incorporated Cell relay packet routing
KR100968037B1 (ko) * 2009-04-21 2010-07-07 엘지전자 주식회사 무선 통신 시스템에서 무선 베어러를 관리하는 방법 및 장치
EP2484146B1 (en) * 2009-10-01 2017-12-06 LG Electronics Inc. Method of controlling data flow in wireless communication system
EP2355608B1 (en) * 2009-10-30 2016-03-09 Institute for Imformation Industry Donor evolved nodeb, relay node and communication method thereof
US9504079B2 (en) * 2010-02-22 2016-11-22 Huawei Technologies Co., Ltd. System and method for communications in communications systems with relay nodes
US8724472B2 (en) * 2010-03-25 2014-05-13 Qualcomm Incorporated Data radio bearer mapping in a telecommunication network with relays
US20110267943A1 (en) * 2010-04-30 2011-11-03 Qualcomm Incorporated Static uu-un bearer mapping based on quality of service
JP4932933B2 (ja) * 2010-10-06 2012-05-16 株式会社エヌ・ティ・ティ・ドコモ 無線通信を中継する中継局及び中継方法
EP2686968B1 (en) * 2011-03-14 2018-07-11 Telefonaktiebolaget LM Ericsson (publ) Relay node, donor radio base station and methods therein
CN104521187B (zh) * 2012-08-03 2017-10-17 华为技术有限公司 支持具有统一回程传送网络的多无线电接入技术中继的系统和方法
MX343027B (es) * 2012-09-07 2016-10-21 Huawei Tech Co Ltd Metodo de transmision de interfaz de aire y dispositivo y sistema relacionados.
US9503393B2 (en) * 2013-08-08 2016-11-22 Telefonaktiebolaget Lm Ericsson (Publ) S-GW relocation and QoS change without mobility
CN104717717B (zh) * 2013-12-16 2018-11-13 中国电信股份有限公司 移动中继承载处理方法和装置
KR20160122092A (ko) * 2015-04-13 2016-10-21 삼성전자주식회사 D2d 통신을 지원하는 무선 통신 시스템에서 중계 트래픽 제어 방법 및 장치
EP3440864A1 (en) 2016-04-06 2019-02-13 Sony Corporation Base station, virtual cell, user equipment
CN107466074B (zh) * 2016-06-06 2019-12-31 中国移动通信有限公司研究院 一种处理数据链路的方法和装置
CN107734571B (zh) * 2016-08-12 2019-09-17 电信科学技术研究院 一种数据传输通道的处理方法及设备
CN108809590B (zh) * 2017-05-05 2019-10-15 中国移动通信有限公司研究院 一种数据传输方法和新接入子层实体
CN110324907B (zh) * 2018-03-30 2021-05-25 电信科学技术研究院有限公司 一种业务承载配置方法及装置
CN110351700B (zh) * 2018-04-05 2022-06-17 中兴通讯股份有限公司 一种自接入回传链路的中继转发方法及节点

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018029578A1 (en) * 2016-08-12 2018-02-15 Nokia Technologies Oy Long term evolution (lte) light connection enhancements for long term evolution (lte)-new radio access technology (nr) interworking
WO2018044358A1 (en) * 2016-09-02 2018-03-08 Intel IP Corporation Lte-assisted 5g direct access

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Overall description Stage 2 (Release 15)", 3GPP TS 36. 300 V15.1.0, 31 March 2018 (2018-03-31), XP051450927 *
"Study on Integrated Access and Backhaul (Release 15)", 3GPP TR 38. 874 V0.1.0, 28 February 2018 (2018-02-28), XP051392940 *
HUAWEI: "Overview on Support of IAB", 3GPP TSG-RAN WG3#99 R3-180815, 2 March 2018 (2018-03-02), XP051401228 *
KDDI CORPORATION: "Consideration on NSA operation in architectures, la, 1b and 2a", 3GPP TSG RAN WG2 #101BIS R2-1806198, 20 April 2018 (2018-04-20), XP051435803 *
See also references of EP3780879A4

Also Published As

Publication number Publication date
US20210045006A1 (en) 2021-02-11
EP3780879A4 (en) 2021-06-09
CN110418427B (zh) 2021-06-08
US11665575B2 (en) 2023-05-30
CN110418427A (zh) 2019-11-05
EP3780879A1 (en) 2021-02-17

Similar Documents

Publication Publication Date Title
WO2019206314A1 (zh) 一种通信方法及装置
US10624146B2 (en) Radio link failure handling method, related device, and communications system
US20200252853A1 (en) Information transmission method and device
US11770865B2 (en) Relay communication method and relay communications apparatus and system
JP6904419B2 (ja) 無線アクセスネットワークノード、コアネットワークノード、及び無線端末並びにこれらの方法
JP7396519B2 (ja) 無線アクセスネットワークノード及び無線端末並びにこれらの方法
US11553540B2 (en) Data processing method and device
CN108605320A (zh) 用于建立无线资源控制连接的方法和装置
US20190028177A1 (en) Method and device for relay transmission, and relay terminal apparatus
US10355836B2 (en) Bearer setup in dual connectivity
US20200329408A1 (en) Path switch method between lte and 5g node
EP4033799A1 (en) Relay transmission method, relay terminal and remote terminal
US20240022990A1 (en) Information transmission method and apparatus
US9408117B2 (en) Base station device, handover controlling method, and radio communication system
CN113455100B (zh) 用于中继通信的方法和装置
WO2021127943A1 (zh) 无线通信方法和终端设备
WO2022233011A1 (zh) 建立连接的方法和终端设备
WO2023184405A1 (zh) 无线通信的方法、网络设备和终端设备
WO2021102841A1 (zh) 一种基于网络切片的数据传输方法、装置和系统
CN115580904A (zh) 无线通信方法与装置、终端和网络设备
CN116648941A (zh) 参数配置方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19792917

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019792917

Country of ref document: EP

Effective date: 20201103