WO2019205590A1 - 电池认证方法、设备电池、无人机及存储介质 - Google Patents

电池认证方法、设备电池、无人机及存储介质 Download PDF

Info

Publication number
WO2019205590A1
WO2019205590A1 PCT/CN2018/115456 CN2018115456W WO2019205590A1 WO 2019205590 A1 WO2019205590 A1 WO 2019205590A1 CN 2018115456 W CN2018115456 W CN 2018115456W WO 2019205590 A1 WO2019205590 A1 WO 2019205590A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
authentication
microprocessor
encryption chip
verification code
Prior art date
Application number
PCT/CN2018/115456
Other languages
English (en)
French (fr)
Inventor
秦威
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Publication of WO2019205590A1 publication Critical patent/WO2019205590A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/30Authentication, i.e. establishing the identity or authorisation of security principals
    • G06F21/44Program or device authentication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/08Network architectures or network communication protocols for network security for authentication of entities
    • H04L63/0876Network architectures or network communication protocols for network security for authentication of entities based on the identity of the terminal or configuration, e.g. MAC address, hardware or software configuration or device fingerprint
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0819Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s)
    • H04L9/0825Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s) using asymmetric-key encryption or public key infrastructure [PKI], e.g. key signature or public key certificates
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0861Generation of secret information including derivation or calculation of cryptographic keys or passwords

Definitions

  • the present application relates to the field of batteries, and in particular, to a battery authentication method, a device battery, a drone, and a storage medium.
  • the electronic devices include related products based on electric energy, for example, smart phones, personal computers and the like.
  • electric energy for example, smart phones, personal computers and the like.
  • most electronic devices support the installation of batteries and are powered by batteries.
  • the present application provides a battery authentication method, a device battery, a drone, and a storage medium for solving the problem that the battery mismatch causes damage to the electronic device.
  • a first aspect of the present application is to provide a battery authentication method, including: receiving an authentication code sent by a device host, where the authentication code is generated by the device host according to a pre-stored public key and an asymmetric encryption algorithm; The encryption chip in the device battery sends the authentication code, so that the encryption chip obtains a verification code according to the stored private key corresponding to the public key and the asymmetric encryption algorithm; and receives the returned by the encryption chip. And verifying the code, and sending the verification code to the device host, so that the device host performs authentication according to the verification code.
  • a second aspect of the present application provides a battery authentication method, including: receiving an authentication code sent by a microprocessor in a battery of the device, where the authentication code is generated and sent by the device host according to a pre-stored public key and an asymmetric encryption algorithm. Providing to the microprocessor; obtaining a verification code according to a private key corresponding to the public key stored by the self and the asymmetric encryption algorithm; and transmitting the verification code to the microprocessor to make the micro The processor sends the verification code to the device host for authentication.
  • a third aspect of the present application is to provide a device battery, including: a microprocessor and an encryption chip; wherein the microprocessor is configured to receive an authentication code sent by a device host, where the authentication code is the device host Generating according to a pre-stored public key and an asymmetric encryption algorithm; the microprocessor is further configured to send the authentication code to the encryption chip; and the encryption chip is configured to receive a microprocessor sent by the device battery Authenticating code, and obtaining a verification code according to the private key corresponding to the public key and the asymmetric encryption algorithm stored in the self; the encryption chip is further configured to send the verification code to the microprocessor; The microprocessor is further configured to receive a verification code returned by the encryption chip, and send the verification code to the device host, so that the device host performs authentication according to the verification code.
  • a fourth aspect of the present application is to provide a device battery, including: a microprocessor and an encryption chip; wherein the microprocessor includes a first processor and a first memory; the encryption chip includes a second processor and a second memory; the first memory and the second memory storing a computer program; the first processor executing the computer program stored in the first memory to implement the method of the first aspect; The second processor executes the computer program stored by the second memory to implement the method of the second aspect.
  • a fifth aspect of the present application provides a drone comprising: a device host and the device battery according to the third aspect; or a device host and the device battery according to the fourth aspect.
  • a sixth aspect of the present application is to provide a computer readable storage medium having stored therein a computer program that, when executed, implements the method of the first aspect.
  • a seventh aspect of the present application is to provide a computer readable storage medium having stored therein a computer program that, when executed, implements the method of the second aspect.
  • a microprocessor and an encryption chip are separately disposed in the device battery, and when the device battery is loaded, the device host is based on the pre-stored public key and the asymmetric
  • the encryption algorithm generates an authentication code and forwards it to the encryption chip of the device battery through the microprocessor of the device battery.
  • the encryption chip obtains the verification code based on the authentication code, and forwards it to the device host through the microprocessor, so that the device host pairs the device according to the verification code.
  • the battery is certified.
  • the device host authenticates the device battery to ensure the matching of the battery, thereby avoiding damage to the electronic device, and the device battery of the solution is independently provided with an encryption chip specially used for authentication processing, thereby effectively ensuring the security of the authentication data. Sex, improve the accuracy and security of battery certification.
  • FIG. 1A-1B are schematic flowcharts of a battery authentication method according to Embodiment 1 of the present application.
  • FIG. 2 is a schematic flowchart of a battery authentication method according to Embodiment 2 of the present application.
  • 3A-3C are schematic flowcharts of a battery authentication method according to Embodiment 3 of the present application.
  • FIG. 4A is a schematic structural diagram of a battery authentication method according to Embodiment 4 of the present application.
  • FIG. 4B is a process interaction diagram of a battery authentication method according to Embodiment 4 of the present application.
  • FIG. 5 is a schematic structural diagram of a device battery 50 according to Embodiment 5 of the present application.
  • FIG. 6 is a schematic structural diagram of a device host 60 according to Embodiment 6 of the present application.
  • FIG. 7 is a schematic structural diagram of a device battery 700 according to Embodiment 8 of the present application.
  • FIG. 8 is a schematic structural diagram of a device host 800 according to Embodiment 9 of the present application.
  • FIG. 1A is a schematic flowchart of a battery authentication method according to Embodiment 1 of the present application.
  • the embodiment provides a battery authentication method for ensuring battery matching.
  • the embodiment is applied to a microprocessor in a battery of the device, and the battery authentication method includes:
  • Step 102 Send the authentication code to an encryption chip in the device battery, so that the encryption chip obtains a verification code according to the stored private key corresponding to the public key and the asymmetric encryption algorithm;
  • the device battery is separately provided with a microprocessor and an encryption chip.
  • the microprocessor may be a component having processing capability, capable of performing instruction fetching, executing instructions, and exchanging information with external memory and logic components.
  • the microprocessor may be used for battery management,
  • the microprocessor in the scheme is mainly used as an intermediary component to implement information interaction between the device host and the encryption chip.
  • the encryption chip is a general term for a type of security chip that integrates various types of symmetric and asymmetric algorithms, and has a very high security level, which can ensure that the stored key and information data are not illegally read and falsified.
  • the model is not limited to Infineon SLE95200, NXPA1006 and the like.
  • the solution independently sets an encryption chip dedicated to battery authentication processing in the device battery, and the encryption chip has a security feature for preventing data from being illegally read and falsified. It can effectively improve the safety and reliability of battery certification.
  • the battery authentication method of the embodiment may be implemented by a computer program, such as an application software, an upgrade program, or the like, or may be implemented by a medium storing a related computer program, for example, a U disk, an optical disk, or the like; or Implemented by a physical device that integrates or installs a related computer program, such as a chip or the like.
  • the battery authentication method of this embodiment can be implemented by executing a related computer program by a microprocessor disposed in the battery of the device.
  • the drone is mainly powered by the device battery to provide real-time mobile power.
  • the flight time supported by a single device battery often cannot meet the user's needs, so the user usually prepares multiple device batteries for replacement, while the drone is for the device battery compared to other electronic devices.
  • the power supply performance requirements are higher and more precise, and the quality of the power supply signal largely affects the normal operation of the drone.
  • the battery certification scheme provided by the scheme can authenticate the equipment battery installed by the drone, thereby preventing the drone from being damaged and ensuring that it can work stably and satisfactorily.
  • the device host of the electronic device when the device battery is detected to be loaded, the device host of the electronic device sends an authentication code to the microprocessor of the device battery, and the microprocessor of the device battery forwards the authentication code to the encryption chip of the device battery.
  • the encryption chip prestores a private key and an encryption algorithm.
  • the encryption chip obtains the verification code according to the authentication code, the private key, and the encryption algorithm, and sends the verification code to the microprocessor.
  • the microprocessor forwards the verification code to the device host, and the device host performs battery authentication according to the verification code. If the authentication is successful, the device battery matches the electronic device and can be used normally. On the contrary, if the authentication fails, the electronic device is instructed. The device stopped working.
  • the microprocessor or the fuel gauge of the device battery is used for battery authentication. Since the fuel gauge or the microprocessor itself is not a professional security chip, its protection against soft and hardware cracking is weak, so The protection data is less protective and cannot guarantee the accuracy and reliability of battery certification.
  • the professional encryption chip has a protection strategy against hardware cracking, and thus can ensure the reliability of battery authentication.
  • the encryption algorithm used in this solution is an asymmetric encryption algorithm, which cannot crack and decrypt without obtaining a private key.
  • the private key can be effectively prevented from being stolen, thereby ensuring the reliability and reliability of the battery authentication comprehensively and reliably.
  • an encryption tool is used to generate a pair of corresponding private key and public key.
  • the solution stores the public key in the device host of the electronic device, and encapsulates the private key in the crystal of the encryption chip.
  • the encryption chip is independently set in the device battery. It can be understood that the encryption chip in the solution only communicates with the microprocessor disposed in the battery of the device, which can prevent the private key stored in the encryption chip from being illegally acquired by the external connection.
  • the asymmetric algorithm may be an elliptic curve encryption algorithm with a high security factor.
  • the microprocessor can control whether the battery supplies power to the electronic device. Specifically, if the authentication fails, the electronic device and the device battery do not match. If the power supply continues, in addition to causing damage to the electronic device, the battery may also be worn out.
  • the method may further include:
  • Control according to the authentication result, outputting or stopping outputting the power supply signal of the device battery.
  • the device after the device host performs authentication according to the verification code forwarded by the microprocessor by the encryption chip of the device battery, and obtains the authentication result, the device sends the authentication result to the microprocessor of the device battery. According to the authentication result, the microprocessor controls the battery of the device to supply power and communication normally if the authentication is successful. Otherwise, the control device battery stops outputting the power supply signal and stops communication with the device host, thereby avoiding the mismatch between the electronic device and the device battery. Loss of equipment battery.
  • the method of the method for the encryption chip and the device host in this embodiment may refer to the related content in the second embodiment and the third embodiment, which will not be described herein.
  • a microprocessor and an encryption chip are separately disposed in the device battery.
  • the device host When the device battery is loaded, the device host generates an authentication code according to the pre-stored public key and the asymmetric encryption algorithm, and passes the device.
  • the microprocessor of the battery forwards the encryption chip to the battery of the device, and the encryption chip obtains the verification code based on the authentication code, and forwards it to the device host through the microprocessor, so that the device host authenticates the device battery according to the verification code.
  • the device host authenticates the device battery to ensure the matching of the battery, thereby avoiding damage to the electronic device, and the device battery of the solution is independently provided with an encryption chip specially used for authentication processing, thereby effectively ensuring the security of the authentication data. Sex, improve the accuracy and security of battery certification.
  • FIG. 2 is a schematic flowchart of a battery authentication method according to Embodiment 2 of the present application.
  • the embodiment provides a battery authentication method for ensuring battery matching.
  • the embodiment is applied to an encryption chip in a device battery, and the battery authentication method includes:
  • 201 Receive an authentication code sent by a microprocessor in a battery of the device, where the authentication code is generated by the device host according to a pre-stored public key and an asymmetric encryption algorithm, and sent to the microprocessor.
  • the device battery is separately provided with a microprocessor and an encryption chip.
  • the microprocessor may be a component having processing capability, capable of performing instruction fetching, executing instructions, and exchanging information with external memory and logic components.
  • the microprocessor may be used for battery management,
  • the microprocessor in the scheme is mainly used as an intermediary component to implement information interaction between the device host and the encryption chip.
  • the encryption chip is a general term for a type of security chip that integrates various types of symmetric and asymmetric algorithms, and has a very high security level, which can ensure that the stored key and information data are not illegally read and falsified.
  • the model is not limited to Infineon SLE95200, NXPA1006 and the like.
  • the solution independently sets an encryption chip dedicated to battery authentication processing in the device battery, and the encryption chip has a security feature for preventing data from being illegally read and falsified. It can effectively improve the safety and reliability of battery certification.
  • the battery authentication method of the embodiment may be implemented by a computer program, such as an application software, an upgrade program, or the like, or may be implemented by a medium storing a related computer program, for example, a U disk, an optical disk, or the like; or Implemented by a physical device that integrates or installs a related computer program, such as a chip or the like.
  • the battery authentication method of this embodiment can be implemented by executing an associated computer program through an encryption chip disposed in the device battery.
  • the solution can be applied to a drone, and the battery authentication scheme provided by the solution can authenticate the battery of the device installed by the drone, thereby preventing the drone from being damaged and ensuring that it can stably and satisfactorily Work runs.
  • the device host of the electronic device sends an authentication code to the microprocessor of the device battery, and the microprocessor of the device battery forwards the authentication code to the encryption chip of the device battery.
  • the encryption chip prestores a private key and an encryption algorithm.
  • the encryption chip obtains the verification code according to the authentication code, the private key, and the encryption algorithm, and sends the verification code to the microprocessor.
  • the microprocessor forwards the verification code to the device host, and the device host performs battery authentication according to the verification code.
  • the professional encryption chip has a protection strategy against hardware cracking, and thus can ensure the reliability of battery authentication.
  • the encryption algorithm used in this solution is an asymmetric encryption algorithm, which cannot crack and decrypt without obtaining a private key.
  • the private key can be effectively prevented from being stolen, thereby ensuring the reliability and reliability of the battery authentication comprehensively and reliably.
  • the asymmetric algorithm may be an elliptic curve encryption algorithm with a high security factor.
  • the method flow of the microprocessor and the device host in this embodiment may refer to the related content in the first embodiment and the third embodiment, and the embodiment is not described herein.
  • a microprocessor and an encryption chip are separately disposed in the device battery.
  • the device host When the device battery is loaded, the device host generates an authentication code according to the pre-stored public key and the asymmetric encryption algorithm, and passes the device.
  • the microprocessor of the battery forwards the encryption chip to the battery of the device, and the encryption chip obtains the verification code based on the authentication code, and forwards it to the device host through the microprocessor, so that the device host authenticates the device battery according to the verification code.
  • the device host authenticates the device battery to ensure the matching of the battery, thereby avoiding damage to the electronic device, and the device battery of the solution is independently provided with an encryption chip specially used for authentication processing, thereby effectively ensuring the security of the authentication data. Sex, improve the accuracy and security of battery certification.
  • FIG. 3A is a schematic flowchart of a battery authentication method according to Embodiment 3 of the present application.
  • the embodiment provides a battery authentication method for ensuring battery matching.
  • the embodiment is applied to the device host for description.
  • the battery authentication method includes:
  • the device battery is separately provided with a microprocessor and an encryption chip.
  • the microprocessor may be a component having processing capability, capable of performing instruction fetching, executing instructions, and exchanging information with external memory and logic components.
  • the microprocessor may be used for battery management,
  • the microprocessor in the scheme is mainly used as an intermediary component to implement information interaction between the device host and the encryption chip.
  • the encryption chip is a general term for a type of security chip that integrates various types of symmetric and asymmetric algorithms, and has a very high security level, which can ensure that the stored key and information data are not illegally read and falsified.
  • the model is not limited to Infineon SLE95200, NXPA1006 and the like.
  • the solution independently sets an encryption chip dedicated to battery authentication processing in the device battery, and the encryption chip has a security feature for preventing data from being illegally read and falsified. It can effectively improve the safety and reliability of battery certification.
  • the battery authentication method of the embodiment may be implemented by a computer program, such as an application software, an upgrade program, or the like, or may be implemented by a medium storing a related computer program, for example, a U disk, an optical disk, or the like; or Implemented by a physical device that integrates or installs a related computer program, such as a chip or the like.
  • the battery authentication method of this embodiment can be implemented by the device host executing a related computer program.
  • the solution can be applied to a drone, and the battery authentication scheme provided by the solution can authenticate the device battery installed by the drone, thereby preventing the drone from being damaged and ensuring that it can stably and satisfactorily Work runs.
  • the device host of the electronic device sends an authentication code to the microprocessor of the device battery, and the microprocessor of the device battery forwards the authentication code to the encryption chip of the device battery.
  • the encryption chip prestores a private key and an encryption algorithm.
  • the encryption chip obtains the verification code according to the authentication code, the private key, and the encryption algorithm, and sends the verification code to the microprocessor.
  • the microprocessor forwards the verification code to the device host, and the device host performs battery authentication according to the verification code.
  • the microprocessor or the fuel gauge of the device battery is used for battery authentication. Since the fuel gauge or the microprocessor itself is not a professional security chip, its protection against soft and hardware cracking is weak, so The protection data is less protective and cannot guarantee the accuracy and reliability of battery certification.
  • the professional encryption chip has a protection strategy against hardware cracking, and thus can ensure the reliability of battery authentication.
  • the encryption algorithm used in this solution is an asymmetric encryption algorithm, which cannot crack and decrypt without obtaining a private key.
  • the private key can be effectively prevented from being stolen, thereby ensuring the reliability and reliability of the battery authentication comprehensively and reliably.
  • the asymmetric algorithm may be an elliptic curve encryption algorithm with a high security factor.
  • the device host can control whether the electronic device works normally, for example, whether the drone can take off.
  • the method may further include:
  • the authentication if the authentication is successful, it indicates that the device battery matches the electronic device, and the electronic device can be instructed to work normally. On the contrary, if the authentication fails, the electronic device is instructed to stop working.
  • the device host obtains the authentication result according to the device battery authentication, and if the authentication fails, the control electronic device stops working, thereby avoiding damage to the electronic device caused by the battery mismatch.
  • the method may further include:
  • the device host After the device host authenticates the device battery according to the verification code forwarded by the microprocessor, the device host sends the authentication result to the microprocessor of the device battery. According to the authentication result, the microprocessor controls the battery of the device to supply power and communication normally if the authentication is successful. Otherwise, the control device battery stops outputting the power supply signal and stops communication with the device host, thereby avoiding the mismatch between the electronic device and the device battery. Loss of equipment battery.
  • the method of the method for the microprocessor and the encryption chip in the device battery in this embodiment may refer to the related content in the first embodiment and the second embodiment, and the embodiment is not described herein.
  • a microprocessor and an encryption chip are separately disposed in the device battery.
  • the device host When the device battery is loaded, the device host generates an authentication code according to the pre-stored public key and the asymmetric encryption algorithm, and passes the device.
  • the microprocessor of the battery forwards the encryption chip to the battery of the device, and the encryption chip obtains the verification code based on the authentication code, and forwards it to the device host through the microprocessor, so that the device host authenticates the device battery according to the verification code.
  • the device host authenticates the device battery to ensure the matching of the battery, thereby avoiding damage to the electronic device, and the device battery of the solution is independently provided with an encryption chip specially used for authentication processing, thereby effectively ensuring the security of the authentication data. Sex, improve the accuracy and security of battery certification.
  • FIG. 4A is a schematic structural diagram of a battery authentication method according to Embodiment 4 of the present application.
  • FIG. 4B is a flow diagram of a battery authentication method according to Embodiment 4 of the present application.
  • the drone includes an aircraft host (ie, a device host) and a drone battery (ie, a device battery); wherein the drone battery includes a separate battery micro-processing
  • the device ie, the microprocessor in the device battery
  • the battery encryption chip ie, the encryption chip in the device battery
  • FIG. 4B including:
  • the aircraft host generates the authentication data M (ie, the authentication code) by using a public key and a random function;
  • the aircraft host sends the authentication data M to the battery microprocessor.
  • the battery microprocessor forwards the authentication data M to the battery encryption chip
  • the battery encryption chip generates the response data V2 (ie, the verification code) by using a private key, authentication data M, and an Elliptic curve cryptography (ECC algorithm);
  • the battery encryption chip sends the response data V2 to the battery microprocessor.
  • the battery microprocessor forwards the response data V2 to the aircraft host;
  • the aircraft host uses the public key, the authentication data M and the ECC algorithm to generate the verification data V1; 408, the aircraft host comparison response data V2 and the verification data V1, obtain the authentication result, if the authentication is successful, execute 409, otherwise execute 410;
  • the aircraft host is allowed to take off, the indication is normal;
  • the aircraft host is not allowed to take off, the indication is not normal;
  • the aircraft host sends an authentication result to the battery microprocessor.
  • the control device battery turns off the output and the communication.
  • a microprocessor and an encryption chip are separately disposed in the device battery.
  • the device host When the device battery is loaded, the device host generates an authentication code according to the pre-stored public key and the asymmetric encryption algorithm, and passes the device.
  • the microprocessor of the battery forwards the encryption chip to the battery of the device, and the encryption chip obtains the verification code based on the authentication code, and forwards it to the device host through the microprocessor, so that the device host authenticates the device battery according to the verification code.
  • the device host authenticates the device battery to ensure the matching of the battery, thereby avoiding damage to the electronic device, and the device battery of the solution is independently provided with an encryption chip specially used for authentication processing, thereby effectively ensuring the security of the authentication data. Sex, improve the accuracy and security of battery certification.
  • the device battery 50 includes: a microprocessor 51 and an encryption chip 52;
  • the microprocessor 51 is configured to receive an authentication code sent by the device host, where the authentication code is generated by the device host according to a pre-stored public key and an asymmetric encryption algorithm;
  • the microprocessor 51 is further configured to send the authentication code to the encryption chip;
  • the encryption chip 52 is configured to receive an authentication code sent by a microprocessor in the battery of the device, and obtain a verification code according to the private key corresponding to the public key and the asymmetric encryption algorithm stored by the encryption chip;
  • the encryption chip 52 is further configured to send the verification code to the microprocessor
  • the microprocessor 51 is further configured to receive a verification code returned by the encryption chip, and send the verification code to the device host, so that the device host performs authentication according to the verification code.
  • the microprocessor 51 and the encryption chip 52 are separately disposed in the device battery 50.
  • the microprocessor 51 can refer to a component having processing capability, capable of performing instruction fetching, executing instructions, and exchanging information with external memory and logic components. When applied to a device battery, the microprocessor can be used for battery management.
  • the microprocessor is mainly used as an intermediary component to realize information interaction between the device host and the encryption chip.
  • the encryption chip 52 is a general term for a type of security chip that integrates various types of symmetric and asymmetric algorithms, and has a very high security level, which can ensure that the internal storage key and information data are not illegally read and tampered with.
  • the solution independently sets an encryption chip dedicated to battery authentication processing in the device battery, and the encryption chip has a security feature for preventing data from being illegally read and falsified. It can effectively improve the safety and reliability of battery certification.
  • the device host of the electronic device transmits an authentication code to the microprocessor 51 of the device battery 50, and the microprocessor 51 forwards the authentication code to the encryption of the device battery 50.
  • Chip 52 The encryption chip 52 prestores a private key and an encryption algorithm.
  • the encryption chip obtains the verification code according to the authentication code, the private key, and the encryption algorithm, and sends the verification code to the microprocessor 51.
  • the microprocessor 51 forwards the verification code to the device host, and the device host performs battery authentication according to the verification code.
  • the microprocessor or the fuel gauge of the device battery is used for battery authentication. Since the fuel gauge or the microprocessor itself is not a professional security chip, its protection against soft and hardware cracking is weak, so The protection data is less protective and cannot guarantee the accuracy and reliability of battery certification.
  • the professional encryption chip 52 has a protection strategy against hardware cracking, and thus can ensure the reliability of battery authentication.
  • the encryption algorithm used in this solution is an asymmetric encryption algorithm, which cannot crack and decrypt without obtaining a private key.
  • the encryption chip 52 which is independently disposed inside the device battery 50 and can prevent data from being illegally read and cracked, can effectively prevent the private key from being stolen, thereby ensuring the reliability and reliability of the battery authentication comprehensively and reliably.
  • the asymmetric algorithm may be an elliptic curve encryption algorithm with a high security factor.
  • the microprocessor 51 can control whether the battery supplies power to the electronic device.
  • the microprocessor 51 is further configured to receive an authentication result returned by the device host, and the microprocessor 51 is further configured to control whether the device battery and the device host perform communication or disconnection according to the authentication result.
  • the device host after the device host performs authentication according to the verification code forwarded by the microprocessor by the encryption chip of the device battery, and obtains the authentication result, the device sends the authentication result to the microprocessor of the device battery.
  • the microprocessor controls the battery of the device to supply power and communication normally if the authentication is successful. Otherwise, the control device battery stops outputting the power supply signal and stops communication with the device host, thereby avoiding the mismatch between the electronic device and the device battery. Loss of equipment battery.
  • the device battery provided in this embodiment is separately provided with a microprocessor and an encryption chip.
  • the device host When the device battery is loaded, the device host generates an authentication code according to the pre-stored public key and the asymmetric encryption algorithm, and passes through the microprocessor of the device battery.
  • the encryption chip forwarded to the device battery, the encryption chip obtains the verification code based on the authentication code, and forwards it to the device host through the microprocessor, so that the device host authenticates the device battery according to the verification code.
  • the device host authenticates the device battery to ensure the matching of the battery, thereby avoiding damage to the electronic device, and the device battery of the solution is independently provided with an encryption chip specially used for authentication processing, thereby effectively ensuring the security of the authentication data. Sex, improve the accuracy and security of battery certification.
  • FIG. 6 is a schematic structural diagram of a device host 60 according to Embodiment 6 of the present application; as shown in FIG. 6, the device host 60 includes:
  • a generating module 61 configured to generate an authentication code according to the pre-stored public key and the asymmetric encryption algorithm
  • the sending module 62 is configured to send the authentication code to a microprocessor in the device battery, so that the microprocessor sends the authentication code to an encryption chip in the device battery, where the authentication code is used to enable The encryption chip obtains a verification code and returns it to the microprocessor according to the stored private key corresponding to the public key and the asymmetric encryption algorithm;
  • the receiving module 63 is configured to receive the verification code sent by the microprocessor
  • the processing module 64 is configured to perform authentication according to the verification code to obtain an authentication result.
  • the device battery is separately provided with a microprocessor and an encryption chip.
  • the solution independently sets an encryption chip dedicated to battery authentication processing in the device battery, and the encryption chip has a security feature for preventing data from being illegally read and falsified. It can effectively improve the safety and reliability of battery certification.
  • the generating module 61 when the device battery is detected, the generating module 61 generates an authentication code according to the pre-stored public key and the asymmetric encryption algorithm, and the sending module 62 sends the authentication code to the microprocessor of the device battery.
  • the microprocessor forwards the authentication code to the encryption chip of the device battery.
  • the encryption chip prestores a private key and an encryption algorithm.
  • the encryption chip obtains the verification code according to the authentication code, the private key, and the encryption algorithm, and sends the verification code to the microprocessor.
  • the receiving module 63 receives the verification code forwarded by the microprocessor, and the processing module 64 performs battery authentication according to the verification code.
  • the professional encryption chip has a protection strategy against hardware cracking, and thus can ensure the reliability of battery authentication.
  • the encryption algorithm used in this solution is an asymmetric encryption algorithm, which cannot crack and decrypt without obtaining a private key.
  • the private key can be effectively prevented from being stolen, thereby ensuring the reliability and reliability of the battery authentication comprehensively and reliably.
  • the asymmetric algorithm may be an elliptic curve encryption algorithm with a high security factor.
  • the device host can control whether the electronic device works normally, for example, whether the drone can take off.
  • the processing module 64 is further configured to control whether the electronic device works normally according to the authentication result. Specifically, if the authentication is successful, the device battery is matched with the electronic device, and the processing module 64 can instruct the electronic device to work normally. Conversely, if the authentication fails, the processing module 64 instructs the electronic device to stop working.
  • the device host obtains the authentication result according to the device battery authentication, and if the authentication fails, the control electronic device stops working, thereby avoiding damage to the electronic device caused by the battery mismatch.
  • the sending module 62 is further configured to send the authentication result to the microprocessor, so that the microprocessor controls the device battery output according to the authentication result. Or stop outputting the power supply signal.
  • the processing module 64 authenticates the device battery according to the verification code forwarded by the microprocessor
  • the processing module 64 sends the authentication result to the microprocessor of the device battery.
  • the microprocessor controls the battery of the device to supply power and communication normally if the authentication is successful. Otherwise, the control device battery stops outputting the power supply signal and stops communication with the device host, thereby avoiding the mismatch between the electronic device and the device battery. Loss of equipment battery.
  • the device host when detecting that the device battery is loaded, the device host generates an authentication code according to the pre-stored public key and the asymmetric encryption algorithm, and forwards the encryption code to the device battery through the microprocessor of the device battery.
  • the encryption chip obtains the verification code based on the authentication code, and forwards it to the device host through the microprocessor, so that the device host authenticates the device battery according to the verification code.
  • the device host authenticates the device battery to ensure the matching of the battery, thereby avoiding damage to the electronic device, and the device battery of the solution is independently provided with an encryption chip specially used for authentication processing, thereby effectively ensuring the security of the authentication data. Sex, improve the accuracy and security of battery certification.
  • the seventh embodiment of the present application provides a drone, which includes the device battery according to any of the foregoing embodiments, and the device host according to any of the foregoing embodiments.
  • the device host of the drone sends an authentication code to the microprocessor of the device battery, and the microprocessor of the device battery forwards the authentication code to the device battery for encryption. chip.
  • the encryption chip prestores a private key and an encryption algorithm.
  • the encryption chip obtains the verification code according to the authentication code, the private key, and the encryption algorithm, and sends the verification code to the microprocessor.
  • the microprocessor forwards the verification code to the device host, and the device host performs battery authentication according to the verification code.
  • the microprocessor or the fuel gauge of the device battery is used for battery authentication. Since the fuel gauge or the microprocessor itself is not a professional security chip, its protection against soft and hardware cracking is weak, so The protection data is less protective and cannot guarantee the accuracy and reliability of battery certification.
  • the unmanned aerial vehicle provided in this embodiment includes a device host and a device battery separately provided with a microprocessor and an encryption chip.
  • the device host When the device battery is loaded, the device host generates an authentication code according to the pre-stored public key and the asymmetric encryption algorithm. And the microprocessor of the device battery is forwarded to the encryption chip of the device battery, and the encryption chip obtains the verification code based on the authentication code, and forwards it to the device host through the microprocessor, so that the device host authenticates the device battery according to the verification code.
  • the device host authenticates the device battery to ensure the matching of the battery, thereby avoiding damage to the electronic device, and the device battery of the solution is independently provided with an encryption chip specially used for authentication processing, thereby effectively ensuring the security of the authentication data. Sex, improve the accuracy and security of battery certification.
  • FIG. 7 is a schematic structural diagram of a device battery 700 according to Embodiment 8 of the present application.
  • the device battery 700 includes a microprocessor 701 and an encryption chip 702.
  • the microprocessor 701 includes a first processor. And a first memory;
  • the encryption chip 702 includes a second processor and a second memory; the first memory and the second memory store a computer program;
  • the first processor executes the computer program stored in the first memory to implement the method in the first embodiment
  • the second processor executes the computer program stored in the second memory to implement the method of the second embodiment.
  • the first memory and the second memory are collectively referred to as a memory.
  • the memory stores a computer program.
  • a computer program can include program code, the program code including computer operating instructions.
  • the memory may include a high speed RAM memory and may also include a non-volatile memory such as at least one disk memory.
  • the first processor and the second processor are collectively referred to as processors.
  • the processor executes the computer program stored by the memory to implement the method of any of the above embodiments.
  • the processor may be a central processing unit (CPU), or an application specific integrated circuit (ASIC), or one or more configured to implement the embodiments of the present application. Integrated circuits.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • the memory and the processor may be connected to each other through a bus and complete communication with each other.
  • the bus may be an Industry Standard Architecture (ISA) bus, a Peripheral Component (PCI) bus, or an Extended Industry Standard Architecture (EISA) bus. Wait.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into an address bus, a data bus, a control bus, etc., but does not mean that there is only one bus or one type of bus.
  • the memory and the processor can complete communication with each other through the internal interface.
  • FIG. 8 is a schematic structural diagram of a device host 800 according to Embodiment 9 of the present application.
  • the device host 800 includes: a processor and a memory.
  • the memory stores a computer program.
  • a computer program can include program code, the program code including computer operating instructions.
  • the memory may include a high speed RAM memory and may also include a non-volatile memory such as at least one disk memory.
  • the processor executes the computer program stored in the memory to implement the method in the third embodiment.
  • the processor may be a central processing unit (CPU), or an application specific integrated circuit (ASIC), or one or more configured to implement the embodiments of the present application. Integrated circuits.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • the memory and the processor may be connected to each other through a bus and complete communication with each other.
  • the bus may be an Industry Standard Architecture (ISA) bus, a Peripheral Component (PCI) bus, or an Extended Industry Standard Architecture (EISA) bus. Wait.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into an address bus, a data bus, a control bus, etc., but does not mean that there is only one bus or one type of bus.
  • the memory and the processor can complete communication with each other through the internal interface.
  • Embodiment 10 of the present application provides a drone, which includes the device battery as described in Embodiment 8, and the device host as described in Embodiment 9.
  • the device host of the drone sends an authentication code to the microprocessor of the device battery, and the microprocessor of the device battery forwards the authentication code to the device battery for encryption. chip.
  • the encryption chip prestores a private key and an encryption algorithm.
  • the encryption chip obtains the verification code according to the authentication code, the private key, and the encryption algorithm, and sends the verification code to the microprocessor.
  • the microprocessor forwards the verification code to the device host, and the device host performs battery authentication according to the verification code.
  • the microprocessor or the fuel gauge of the device battery is used for battery authentication. Since the fuel gauge or the microprocessor itself is not a professional security chip, its protection against soft and hardware cracking is weak, so The protection data is less protective and cannot guarantee the accuracy and reliability of battery certification.
  • the unmanned aerial vehicle provided in this embodiment includes a device host and a device battery separately provided with a microprocessor and an encryption chip.
  • the device host When the device battery is loaded, the device host generates an authentication code according to the pre-stored public key and the asymmetric encryption algorithm. And the microprocessor of the device battery is forwarded to the encryption chip of the device battery, and the encryption chip obtains the verification code based on the authentication code, and forwards it to the device host through the microprocessor, so that the device host authenticates the device battery according to the verification code.
  • the device host authenticates the device battery to ensure the matching of the battery, thereby avoiding damage to the electronic device, and the device battery of the solution is independently provided with an encryption chip specially used for authentication processing, thereby effectively ensuring the security of the authentication data. Sex, improve the accuracy and security of battery certification.
  • the present application also provides a computer readable storage medium storing a computer program that, when executed, implements the method of the first embodiment described above.
  • the present application also provides a computer readable storage medium storing a computer program that, when executed, implements the method of Embodiment 2 above.
  • the present application also provides a computer readable storage medium storing a computer program that, when executed, implements the method of Embodiment 3 above.
  • the aforementioned program can be stored in a computer readable storage medium.
  • the program when executed, performs the steps including the above-described method embodiments; and the foregoing storage medium includes various media that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种电池认证方法、设备电池(50、700)、无人机及存储介质,包括:接收设备主机(60、800)发送的认证码,认证码是设备主机(60、800)根据预存的公钥和非对称加密算法生成的(S101);向设备电池(50、700)内的加密芯片(52、702)发送认证码,以使加密芯片(52、702)根据其存储的与公钥对应的私钥和非对称加密算法,获得验证码(S102);接收加密芯片(52、702)返回的验证码,并将验证码发送给设备主机(60、800),以使设备主机(60、800)根据验证码进行认证(S103)。设备主机(60、800)对设备电池(50、700)进行认证,保证电池的匹配性,从而避免电子设备损伤,并且设备电池(50、700)中独立设置有专门用于进行认证处理的加密芯片(52、702),从而有效保证认证数据的安全性,提高电池认证的准确性和安全性。

Description

电池认证方法、设备电池、无人机及存储介质
申请要求于2018年4月23日申请的、申请号为201810366034.0、申请名称为“电池认证方法、设备电池、无人机及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电池领域,尤其涉及一种电池认证方法、设备电池、无人机及存储介质。
背景技术
随着电子技术的不断发展,电子设备的集成度越来越高,体积也越来越小,这里的电子设备包括以电能为工作基础的相关产品,例如,智能手机、个人电脑等。目前,为了提高电子设备的便携性,大多电子设备支持安装电池并通过电池供电。
为了保证电子设备稳定持久工作,用户通常会额外准备一些电池,以替换使用。然而可以理解,不同电子设备匹配的供电信号不同,因此,如果安装的电池的供电信号与电子设备不匹配,则会对电子设备造成损伤。
发明内容
本申请提供一种电池认证方法、设备电池、无人机及存储介质,用于解决电池不匹配导致电子设备损伤的问题。
本申请的第一个方面是提供一种电池认证方法,包括:接收设备主机发送的认证码,所述认证码是所述设备主机根据预存的公钥和非对称加密算法生成的;向所述设备电池内的加密芯片发送所述认证码,以使所述加密芯片根据其存储的与所述公钥对应的私钥和所述非对称加密算法,获得验证码;接收所述加密芯片返回的验证码,并将所述验证码发送给所述设备主机,以使所述设备主机根据所述验证码进行认证。
本申请的第二个方面是提供一种电池认证方法,包括:接收设备电池内 的微处理器发送的认证码,所述认证码是设备主机根据预存的公钥和非对称加密算法生成并发送给所述微处理器的;根据自身存储的与所述公钥对应的私钥和所述非对称加密算法,获得验证码;向所述微处理器发送所述验证码,以使所述微处理器将所述验证码发送给所述设备主机进行认证。
本申请的第三个方面是提供一种设备电池,包括:微处理器和加密芯片;其中,所述微处理器,用于接收设备主机发送的认证码,所述认证码是所述设备主机根据预存的公钥和非对称加密算法生成的;所述微处理器,还用于向所述加密芯片发送所述认证码;所述加密芯片,用于接收设备电池内的微处理器发送的认证码,并根据自身存储的与所述公钥对应的私钥和所述非对称加密算法,获得验证码;所述加密芯片,还用于向所述微处理器发送所述验证码;所述微处理器,还用于接收所述加密芯片返回的验证码,并将所述验证码发送给所述设备主机,以使所述设备主机根据所述验证码进行认证。
本申请的第四个方面是提供一种设备电池,包括:微处理器和加密芯片;其中,所述微处理器包括第一处理器和第一存储器;所述加密芯片包括第二处理器和第二存储器;所述第一存储器和所述第二存储器存储有计算机程序;所述第一处理器执行所述第一存储器存储的计算机程序,以实现第一方面所述的方法;所述第二处理器执行所述第二存储器存储的计算机程序,以实现第二方面所述的方法。
本申请的第五个方面是提供一种无人机,包括:设备主机和如第三方面所述的设备电池;或包括:设备主机和如第四方面所述的设备电池。
本申请的第六个方面是提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,计算机程序被执行时实现第一方面的方法。
本申请的第七个方面是提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,计算机程序被执行时实现第二方面的方法。
本申请提供的电池认证方法、设备电池、无人机及存储介质中,设备电池内分离设置有微处理器和加密芯片,当设备电池被装入时,设备主机根据预存的公钥和非对称加密算法生成认证码,并通过设备电池的微处理器转发给设备电池的加密芯片,加密芯片基于认证码获得验证码,并通过微处理器转发给设备主机,以使设备主机根据验证码对设备电池进行认证。本方案中设备主机对设备电池进行认证,保证电池的匹配性,从而避免电子设备损伤, 并且本方案的设备电池中独立设置有专门用于进行认证处理的加密芯片,从而有效保证认证数据的安全性,提高电池认证的准确性和安全性。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。
图1A-图1B为本申请实施例一提供的电池认证方法的流程示意图;
图2为本申请实施例二提供的一种电池认证方法的流程示意图;
图3A-图3C为本申请实施例三提供的电池认证方法的流程示意图;
图4A为本申请实施例四提供的一种电池认证方法的架构示意图;
图4B为本申请实施例四提供的一种电池认证方法的流程交互图;
图5为本申请实施例五提供的一种设备电池50的结构示意图;
图6为本申请实施例六提供的一种设备主机60的结构示意图;
图7为本申请实施例八提供的设备电池700的结构示意图;
图8为本申请实施例九提供的设备主机800的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。
针对需要保证电池匹配的需求,图1A为本申请实施例一提供的一种电池认证方法的流程示意图;参考图1A可知,本实施例提供了一种电池认证方法,用于保证电池匹配。具体的,以该实施例应用于设备电池内的微处理器进行说明,该电池认证方法包括:
101、接收设备主机发送的认证码,所述认证码是所述设备主机根据预存的公钥和非对称加密算法生成的;
102、向所述设备电池内的加密芯片发送所述认证码,以使所述加密芯片 根据其存储的与所述公钥对应的私钥和所述非对称加密算法,获得验证码;
103、接收所述加密芯片返回的验证码,并将所述验证码发送给所述设备主机,以使所述设备主机根据所述验证码进行认证。
其中,设备电池内分离设置有微处理器和加密芯片。所述微处理器可以指具备处理能力的,能够完成取指令、执行指令,以及与外界存储器和逻辑部件交换信息等操作的部件,应用于设备电池时,微处理器可用于进行电池管理,本方案中的微处理器主要用于作为中介部件实现设备主机和加密芯片的信息交互。
所述加密芯片是对内部集成了各类对称与非对称算法,自身具有极高安全等级,可以保证内部存储的密钥和信息数据不会被非法读取与篡改的一类安全芯片的统称,例如,型号不限于英飞凌SLE95200,NXPA1006等类似的芯片。相比于由设备电池的微处理器进行电池认证处理,本方案在设备电池中独立设置专门用于进行电池认证处理的加密芯片,基于加密芯片具备防止数据被非法读取和篡改的安全特性,能够有效提高电池认证的安全性和可靠性。
在实际应用中,该实施例的电池认证方法可以通过计算机程序实现,例如应用软件,升级程序等,也可以通过存储有相关计算机程序的介质,例如,U盘、光盘等实现;或者,还可以通过集成或安装有相关计算机程序的实体装置实现,例如,芯片等。结合本实施例的应用场景,该实施例的电池认证方法可以通过设置在设备电池内的微处理器执行相关计算机程序实现。
结合实际场景进行示例:实际应用中,厂家生产的电子设备通常支持电池的拆卸替换,因此除了在电子设备中配套原装电池外,厂家还通常会生产与电子设备的供电需求匹配的设备电池,以便用户替换使用。本方案中认证成功的设备电池,能够保证其提供的供电信号与电子设备需要的供电信号匹配或一致。但实际应用中存在不法厂商生产销售假冒电池的情形,这些假冒电池的供电性能往往无法满足电子设备的要求,最终导致使用这些电池的电子设备产生损伤。
尤其是无人机场景,由于其使用场景和地点较为灵活,因此无人机主要由设备电池提供移动实时供电。然而由于受到电池技术的限制,单个设备电池支持的飞行时间往往无法满足用户需要,故用户通常会准备多个设备电池, 以便替换使用,而相比于其它电子设备,无人机对设备电池的供电性能要求更高更精准,供电信号的质量很大程度上影响无人机的正常工作。对此,通过本方案提供的电池认证方案,能够对无人机安装的设备电池进行认证,从而避免无人机受损,保证其能够稳定良好地工作运行。
结合本方案,当检测到设备电池装入时,电子设备的设备主机会向该设备电池的微处理器发送认证码,设备电池的微处理器将该认证码转发给设备电池的加密芯片。加密芯片中预存有私钥和加密算法,相应的,加密芯片根据认证码、私钥和加密算法获得验证码,并将验证码发送给微处理器。微处理器将该验证码转发给设备主机,设备主机根据该验证码进行电池认证,如果认证成功,则说明该设备电池与电子设备匹配,可正常使用,相反的,如果认证失败,则指示电子设备停止工作。与本方案相比,采用设备电池的微处理器或电量计进行电池认证的方案,由于电量计或微处理器本身并非专业的安全芯片,其对软、硬件破解的防护能力较弱,因此对认证数据的保护力度较小,无法保证电池认证的准确性和可靠性。
可以理解,专业的加密芯片具有防止硬件破解的防护策略,因此能够保证电池认证的可靠性。此外,本方案中采用的加密算法为非对称加密算法,该算法在未获取私钥的情形下无法破解解密。结合独立设置在设备电池内部的,能够防止数据被非法读取和破解的加密芯片,能够有效防止私钥被盗,从而全面可靠地保证电池认证的安全性和可靠性。结合实际场景举例来说,加密芯片被生产时会利用加密工具产生一对对应的私钥和公钥,本方案将公钥存储在电子设备的设备主机中,将私钥封装在加密芯片的晶圆中,且该加密芯片被独立设置于设备电池内。可以理解,本方案中的加密芯片只与设置在设备电池内的微处理器通信,该方式能够避免加密芯片中存储的私钥被外接非法获取。另外,基于非对称加密算法的特性,即便设备主机中的公钥被外界获取,也无法破解加密算法,不影响电池认证,从而保证电池认证的可靠性。可选的,所述非对称算法可以为安全系数较高的椭圆曲线加密算法。本方案通过采用非对称加密算法,无需在认证过程中传输秘钥,从而进一步保证认证数据的安全性。
后续,基于设备主机获得的认证结果,微处理器可以控制电池是否向电子设备供电。具体的,如果认证失败,则说明电子设备和设备电池不匹配, 如果继续供电,除了会对电子设备造成损伤外,对电池也会产生损耗。为解决上述问题,如图1B所示,在实施例一的基础上,所述方法还可以包括:
104、接收设备主机返回的认证结果;
105、根据所述认证结果,控制所述设备电池输出或停止输出供电信号。
本实施方式中,设备主机根据设备电池的加密芯片通过微处理器转发的验证码,进行认证并获得认证结果后,会将该认证结果发送给设备电池的微处理器。微处理器根据该认证结果,如果认证成功,则控制设备电池正常供电和通信,否则,控制设备电池停止输出供电信号并停止与设备主机的通信,从而避免因电子设备和设备电池不匹配导致对设备电池的损耗。
需要说明的是,本实施例中涉及加密芯片和设备主机的方法流程可以参照后述实施例二和实施例三中的相关内容,本实施例在此不再阐述。
本实施例提供的电池认证方法中,设备电池内分离设置有微处理器和加密芯片,当设备电池被装入时,设备主机根据预存的公钥和非对称加密算法生成认证码,并通过设备电池的微处理器转发给设备电池的加密芯片,加密芯片基于认证码获得验证码,并通过微处理器转发给设备主机,以使设备主机根据验证码对设备电池进行认证。本方案中设备主机对设备电池进行认证,保证电池的匹配性,从而避免电子设备损伤,并且本方案的设备电池中独立设置有专门用于进行认证处理的加密芯片,从而有效保证认证数据的安全性,提高电池认证的准确性和安全性。
图2为本申请实施例二提供的一种电池认证方法的流程示意图;参考图2可知,本实施例提供了一种电池认证方法,用于保证电池匹配。具体的,以该实施例应用于设备电池内的加密芯片进行说明,该电池认证方法包括:
201、接收设备电池内的微处理器发送的认证码,所述认证码是设备主机根据预存的公钥和非对称加密算法生成并发送给所述微处理器的;
202、根据自身存储的与所述公钥对应的私钥和所述非对称加密算法,获得验证码;
203、向所述微处理器发送所述验证码,以使所述微处理器将所述验证码发送给所述设备主机进行认证。
其中,设备电池内分离设置有微处理器和加密芯片。所述微处理器可以 指具备处理能力的,能够完成取指令、执行指令,以及与外界存储器和逻辑部件交换信息等操作的部件,应用于设备电池时,微处理器可用于进行电池管理,本方案中的微处理器主要用于作为中介部件实现设备主机和加密芯片的信息交互。
所述加密芯片是对内部集成了各类对称与非对称算法,自身具有极高安全等级,可以保证内部存储的密钥和信息数据不会被非法读取与篡改的一类安全芯片的统称,例如,型号不限于英飞凌SLE95200,NXPA1006等类似的芯片。相比于由设备电池的微处理器进行电池认证处理,本方案在设备电池中独立设置专门用于进行电池认证处理的加密芯片,基于加密芯片具备防止数据被非法读取和篡改的安全特性,能够有效提高电池认证的安全性和可靠性。
在实际应用中,该实施例的电池认证方法可以通过计算机程序实现,例如应用软件,升级程序等,也可以通过存储有相关计算机程序的介质,例如,U盘、光盘等实现;或者,还可以通过集成或安装有相关计算机程序的实体装置实现,例如,芯片等。结合本实施例的应用场景,该实施例的电池认证方法可以通过设置在设备电池内的加密芯片执行相关计算机程序实现。
结合实际场景进行示例:本方案可应用于无人机,通过本方案提供的电池认证方案,能够对无人机安装的设备电池进行认证,从而避免无人机受损,保证其能够稳定良好地工作运行。结合本方案,当检测到设备电池装入时,电子设备的设备主机会向该设备电池的微处理器发送认证码,设备电池的微处理器将该认证码转发给设备电池的加密芯片。加密芯片中预存有私钥和加密算法,相应的,加密芯片根据认证码、私钥和加密算法获得验证码,并将验证码发送给微处理器。微处理器将该验证码转发给设备主机,设备主机根据该验证码进行电池认证。
可以理解,专业的加密芯片具有防止硬件破解的防护策略,因此能够保证电池认证的可靠性。此外,本方案中采用的加密算法为非对称加密算法,该算法在未获取私钥的情形下无法破解解密。结合独立设置在设备电池内部的,能够防止数据被非法读取和破解的加密芯片,能够有效防止私钥被盗,从而全面可靠地保证电池认证的安全性和可靠性。可选的,所述非对称算法可以为安全系数较高的椭圆曲线加密算法。本方案通过采用非对称加密算法, 无需在认证过程中传输秘钥,从而进一步保证认证数据的安全性。后续,基于设备主机获得的认证结果,微处理器可以控制电池是否向电子设备供电。
需要说明的是,本实施例中涉及微处理器和设备主机的方法流程可以参照实施例一和实施例三中的相关内容,本实施例在此不再阐述。
本实施例提供的电池认证方法中,设备电池内分离设置有微处理器和加密芯片,当设备电池被装入时,设备主机根据预存的公钥和非对称加密算法生成认证码,并通过设备电池的微处理器转发给设备电池的加密芯片,加密芯片基于认证码获得验证码,并通过微处理器转发给设备主机,以使设备主机根据验证码对设备电池进行认证。本方案中设备主机对设备电池进行认证,保证电池的匹配性,从而避免电子设备损伤,并且本方案的设备电池中独立设置有专门用于进行认证处理的加密芯片,从而有效保证认证数据的安全性,提高电池认证的准确性和安全性。
图3A为本申请实施例三提供的一种电池认证方法的流程示意图;参考图3A可知,本实施例提供了一种电池认证方法,用于保证电池匹配。具体的,以该实施例应用于设备主机进行说明,该电池认证方法包括:
301、根据预存的公钥和非对称加密算法,生成认证码;
302、向设备电池内的微处理器发送所述认证码,以使所述微处理器将所述认证码发送给所述设备电池内的加密芯片,所述认证码用于使所述加密芯片根据其存储的与所述公钥对应的私钥和所述非对称加密算法,获得验证码并返回给所述微处理器;
303、接收所述微处理器发送的所述验证码,并根据所述验证码进行认证,获得认证结果。
其中,设备电池内分离设置有微处理器和加密芯片。所述微处理器可以指具备处理能力的,能够完成取指令、执行指令,以及与外界存储器和逻辑部件交换信息等操作的部件,应用于设备电池时,微处理器可用于进行电池管理,本方案中的微处理器主要用于作为中介部件实现设备主机和加密芯片的信息交互。
所述加密芯片是对内部集成了各类对称与非对称算法,自身具有极高安全等级,可以保证内部存储的密钥和信息数据不会被非法读取与篡改的一类 安全芯片的统称,例如,型号不限于英飞凌SLE95200,NXPA1006等类似的芯片。相比于由设备电池的微处理器进行电池认证处理,本方案在设备电池中独立设置专门用于进行电池认证处理的加密芯片,基于加密芯片具备防止数据被非法读取和篡改的安全特性,能够有效提高电池认证的安全性和可靠性。
在实际应用中,该实施例的电池认证方法可以通过计算机程序实现,例如应用软件,升级程序等,也可以通过存储有相关计算机程序的介质,例如,U盘、光盘等实现;或者,还可以通过集成或安装有相关计算机程序的实体装置实现,例如,芯片等。结合本实施例的应用场景,该实施例的电池认证方法可以通过设备主机执行相关计算机程序实现。
结合实际场景进行示例:本方案可以应用于无人机,通过本方案提供的电池认证方案,能够对无人机安装的设备电池进行认证,从而避免无人机受损,保证其能够稳定良好地工作运行。结合本方案,当检测到设备电池装入时,电子设备的设备主机会向该设备电池的微处理器发送认证码,设备电池的微处理器将该认证码转发给设备电池的加密芯片。加密芯片中预存有私钥和加密算法,相应的,加密芯片根据认证码、私钥和加密算法获得验证码,并将验证码发送给微处理器。微处理器将该验证码转发给设备主机,设备主机根据该验证码进行电池认证。与本方案相比,采用设备电池的微处理器或电量计进行电池认证的方案,由于电量计或微处理器本身并非专业的安全芯片,其对软、硬件破解的防护能力较弱,因此对认证数据的保护力度较小,无法保证电池认证的准确性和可靠性。
可以理解,专业的加密芯片具有防止硬件破解的防护策略,因此能够保证电池认证的可靠性。此外,本方案中采用的加密算法为非对称加密算法,该算法在未获取私钥的情形下无法破解解密。结合独立设置在设备电池内部的,能够防止数据被非法读取和破解的加密芯片,能够有效防止私钥被盗,从而全面可靠地保证电池认证的安全性和可靠性。可选的,所述非对称算法可以为安全系数较高的椭圆曲线加密算法。本方案通过采用非对称加密算法,无需在认证过程中传输秘钥,从而进一步保证认证数据的安全性。
后续,设备主机基于获得的认证结果,可以控制电子设备是否正常工作,例如,可以控制无人机是否起飞。相应的,如图3B所示,在实施例三的基础 上,所述方法还可以包括:
304、根据所述认证结果,控制电子设备是否正常工作。
具体的,如果认证成功,则说明该设备电池与电子设备匹配,可指示电子设备正常工作,相反的,如果认证失败,则指示电子设备停止工作。
本实施方式中,设备主机根据对设备电池进行认证获得认证结果,若认证失败,则控制电子设备停止工作,从而避免因电池不匹配导致对电子设备造成损伤。
此外,假设电子设备和设备电池不匹配,如果继续供电,除了会对电子设备造成损伤外,对电池也会产生损耗。为解决该问题,如图3C所示,在实施例三的基础上,所述方法还可以包括:
305、向所述微处理器发送所述认证结果,以使所述微处理器根据所述认证结果,控制所述设备电池输出或停止输出供电信号。
具体的,设备主机根据设备电池的加密芯片通过微处理器转发的验证码,对设备电池进行认证获得认证结果后,将该认证结果发送给设备电池的微处理器。微处理器根据该认证结果,如果认证成功,则控制设备电池正常供电和通信,否则,控制设备电池停止输出供电信号并停止与设备主机的通信,从而避免因电子设备和设备电池不匹配导致对设备电池的损耗。
需要说明的是,本实施例中涉及设备电池中微处理器和加密芯片的方法流程可以参照实施例一和实施例二中的相关内容,本实施例在此不再阐述。
本实施例提供的电池认证方法中,设备电池内分离设置有微处理器和加密芯片,当设备电池被装入时,设备主机根据预存的公钥和非对称加密算法生成认证码,并通过设备电池的微处理器转发给设备电池的加密芯片,加密芯片基于认证码获得验证码,并通过微处理器转发给设备主机,以使设备主机根据验证码对设备电池进行认证。本方案中设备主机对设备电池进行认证,保证电池的匹配性,从而避免电子设备损伤,并且本方案的设备电池中独立设置有专门用于进行认证处理的加密芯片,从而有效保证认证数据的安全性,提高电池认证的准确性和安全性。
为了更好地理解本方案,图4A为本申请实施例四提供的一种电池认证方法的架构示意图;图4B为本申请实施例四提供的一种电池认证方法的流程 交互图,以本方案应用于无人机作为示例,参照图4A所示,该无人机包括飞机主机(即设备主机)和无人机电池(即设备电池);其中,无人机电池包括分离设置的电池微处理器(即设备电池内的微处理器)和电池加密芯片(即设备电池内的加密芯片),基于该架构实现本方案提供的电池认证方法,其流程交互可如图4B所示,包括:
401、飞机主机利用公钥和随机函数产生认证数据M(即认证码);
402、飞机主机将该认证数据M发送给电池微处理器;
403、电池微处理器向电池加密芯片转发该认证数据M;
404、电池加密芯片利用私钥、认证数据M和椭圆曲线加密算法(Elliptic curve cryptography,简称ECC算法)产生回应数据V2(即验证码);
405、电池加密芯片将回应数据V2发送给电池微处理器;
406、电池微处理器向飞机主机转发该回应数据V2;
407、飞机主机利用公钥、认证数据M和ECC算法,产生验证数据V1;408、飞机主机比较回应数据V2和验证数据V1,获得认证结果,若认证成功,则执行409,否则执行410;
409、飞机主机允许起飞,指示正常;
410、飞机主机不允许起飞,指示不正常;
411、飞机主机向电池微处理器发送认证结果;
412、电池微处理器若接收到认证成功的认证结果,则控制设备电池供电和通信保持正常;
413、电池微处理器若接收到认证失败的认证结果,则控制设备电池关闭输出和通信。
本实施例提供的电池认证方法中,设备电池内分离设置有微处理器和加密芯片,当设备电池被装入时,设备主机根据预存的公钥和非对称加密算法生成认证码,并通过设备电池的微处理器转发给设备电池的加密芯片,加密芯片基于认证码获得验证码,并通过微处理器转发给设备主机,以使设备主机根据验证码对设备电池进行认证。本方案中设备主机对设备电池进行认证,保证电池的匹配性,从而避免电子设备损伤,并且本方案的设备电池中独立设置有专门用于进行认证处理的加密芯片,从而有效保证认证数据的安全性,提高电池认证的准确性和安全性。
图5为本申请实施例五提供的一种设备电池50的结构示意图;参考图5可知,该设备电池50包括:微处理器51和加密芯片52;其中,
微处理器51,用于接收设备主机发送的认证码,所述认证码是所述设备主机根据预存的公钥和非对称加密算法生成的;
微处理器51,还用于向所述加密芯片发送所述认证码;
加密芯片52,用于接收设备电池内的微处理器发送的认证码,并根据自身存储的与所述公钥对应的私钥和所述非对称加密算法,获得验证码;
加密芯片52,还用于向所述微处理器发送所述验证码;
微处理器51,还用于接收所述加密芯片返回的验证码,并将所述验证码发送给所述设备主机,以使所述设备主机根据所述验证码进行认证。
其中,设备电池50内分离设置有微处理器51和加密芯片52。微处理器51可以指具备处理能力的,能够完成取指令、执行指令,以及与外界存储器和逻辑部件交换信息等操作的部件,应用于设备电池时,微处理器可用于进行电池管理,本方案中的微处理器主要用于作为中介部件实现设备主机和加密芯片的信息交互。加密芯片52是对内部集成了各类对称与非对称算法,自身具有极高安全等级,可以保证内部存储的密钥和信息数据不会被非法读取与篡改的一类安全芯片的统称。相比于由设备电池的微处理器进行电池认证处理,本方案在设备电池中独立设置专门用于进行电池认证处理的加密芯片,基于加密芯片具备防止数据被非法读取和篡改的安全特性,能够有效提高电池认证的安全性和可靠性。
结合实际场景进行示例:当检测到设备电池50装入时,电子设备的设备主机会向设备电池50的微处理器51发送认证码,微处理器51将该认证码转发给设备电池50的加密芯片52。加密芯片52中预存有私钥和加密算法,相应的,加密芯片根据认证码、私钥和加密算法获得验证码,并将验证码发送给微处理器51。微处理器51将该验证码转发给设备主机,设备主机根据该验证码进行电池认证。与本方案相比,采用设备电池的微处理器或电量计进行电池认证的方案,由于电量计或微处理器本身并非专业的安全芯片,其对软、硬件破解的防护能力较弱,因此对认证数据的保护力度较小,无法保证电池认证的准确性和可靠性。
可以理解,专业的加密芯片52具有防止硬件破解的防护策略,因此能够保证电池认证的可靠性。此外,本方案中采用的加密算法为非对称加密算法,该算法在未获取私钥的情形下无法破解解密。结合独立设置在设备电池50内部的,能够防止数据被非法读取和破解的加密芯片52,能够有效防止私钥被盗,从而全面可靠地保证电池认证的安全性和可靠性。可选的,所述非对称算法可以为安全系数较高的椭圆曲线加密算法。本方案通过采用非对称加密算法,无需在认证过程中传输秘钥,从而进一步保证认证数据的安全性。
后续,基于设备主机获得的认证结果,微处理器51可以控制电池是否向电子设备供电。可选的,微处理器51,还用于接收设备主机返回的认证结果;微处理器51,还用于根据所述认证结果,控制设备电池与所述设备主机之间进行或断开通信。本实施方式中,设备主机根据设备电池的加密芯片通过微处理器转发的验证码,进行认证并获得认证结果后,会将该认证结果发送给设备电池的微处理器。微处理器根据该认证结果,如果认证成功,则控制设备电池正常供电和通信,否则,控制设备电池停止输出供电信号并停止与设备主机的通信,从而避免因电子设备和设备电池不匹配导致对设备电池的损耗。
需要说明的是,本实施例涉及的方法流程可以参照前述方法实施例中的相关内容,本实施例在此不再阐述。
本实施例提供的设备电池内分离设置有微处理器和加密芯片,当设备电池被装入时,设备主机根据预存的公钥和非对称加密算法生成认证码,并通过设备电池的微处理器转发给设备电池的加密芯片,加密芯片基于认证码获得验证码,并通过微处理器转发给设备主机,以使设备主机根据验证码对设备电池进行认证。本方案中设备主机对设备电池进行认证,保证电池的匹配性,从而避免电子设备损伤,并且本方案的设备电池中独立设置有专门用于进行认证处理的加密芯片,从而有效保证认证数据的安全性,提高电池认证的准确性和安全性。
图6为本申请实施例六提供的一种设备主机60的结构示意图;参考图6可知,该设备主机60包括:
生成模块61,用于根据预存的公钥和非对称加密算法,生成认证码;
发送模块62,用于向设备电池内的微处理器发送所述认证码,以使所述微处理器将所述认证码发送给所述设备电池内的加密芯片,所述认证码用于使所述加密芯片根据其存储的与所述公钥对应的私钥和所述非对称加密算法,获得验证码并返回给所述微处理器;
接收模块63,用于接收所述微处理器发送的所述验证码;
处理模块64,用于根据所述验证码进行认证,获得认证结果。
其中,设备电池内分离设置有微处理器和加密芯片。相比于由设备电池的微处理器进行电池认证处理,本方案在设备电池中独立设置专门用于进行电池认证处理的加密芯片,基于加密芯片具备防止数据被非法读取和篡改的安全特性,能够有效提高电池认证的安全性和可靠性。
结合实际场景进行示例:当检测到设备电池装入时,生成模块61根据预存的公钥和非对称加密算法,生成认证码,发送模块62向设备电池的微处理器发送该认证码,设备电池的微处理器将该认证码转发给设备电池的加密芯片。加密芯片中预存有私钥和加密算法,相应的,加密芯片根据认证码、私钥和加密算法获得验证码,并将验证码发送给微处理器。接收模块63接收微处理器转发的该验证码,处理模块64根据该验证码进行电池认证。
可以理解,专业的加密芯片具有防止硬件破解的防护策略,因此能够保证电池认证的可靠性。此外,本方案中采用的加密算法为非对称加密算法,该算法在未获取私钥的情形下无法破解解密。结合独立设置在设备电池内部的,能够防止数据被非法读取和破解的加密芯片,能够有效防止私钥被盗,从而全面可靠地保证电池认证的安全性和可靠性。可选的,所述非对称算法可以为安全系数较高的椭圆曲线加密算法。本方案通过采用非对称加密算法,无需在认证过程中传输秘钥,从而进一步保证认证数据的安全性。
后续,设备主机基于获得的认证结果,可以控制电子设备是否正常工作,例如,可以控制无人机是否起飞。相应的,处理模块64,还用于根据所述认证结果,控制电子设备是否正常工作。具体的,如果认证成功,则说明该设备电池与电子设备匹配,处理模块64可指示电子设备正常工作,相反的,如果认证失败,则处理模块64指示电子设备停止工作。本实施方式中,设备主机根据对设备电池进行认证获得认证结果,若认证失败,则控制电子设备停止工作,从而避免因电池不匹配导致对电子设备造成损伤。
此外,为了避免因不匹配导致的电池损耗,发送模块62,还用于向所述微处理器发送所述认证结果,以使所述微处理器根据所述认证结果,控制所述设备电池输出或停止输出供电信号。具体的,处理模块64根据设备电池的加密芯片通过微处理器转发的验证码,对设备电池进行认证获得认证结果后,发送模块62将该认证结果发送给设备电池的微处理器。微处理器根据该认证结果,如果认证成功,则控制设备电池正常供电和通信,否则,控制设备电池停止输出供电信号并停止与设备主机的通信,从而避免因电子设备和设备电池不匹配导致对设备电池的损耗。
需要说明的是,本实施例中涉及的方法流程可以参照前述方法实施例中的相关内容,本实施例在此不再阐述。
本实施例提供的设备主机,当检测到设备电池被装入时,设备主机根据预存的公钥和非对称加密算法生成认证码,并通过设备电池的微处理器转发给设备电池的加密芯片,加密芯片基于认证码获得验证码,并通过微处理器转发给设备主机,以使设备主机根据验证码对设备电池进行认证。本方案中设备主机对设备电池进行认证,保证电池的匹配性,从而避免电子设备损伤,并且本方案的设备电池中独立设置有专门用于进行认证处理的加密芯片,从而有效保证认证数据的安全性,提高电池认证的准确性和安全性。
本申请实施例七提供一种无人机,该无人机包括如前述任一实施例所述的设备电池、以及如前述任一实施例所述的设备主机。
结合实际场景进行示例:当检测到设备电池装入时,无人机的设备主机会向该设备电池的微处理器发送认证码,设备电池的微处理器将该认证码转发给设备电池的加密芯片。加密芯片中预存有私钥和加密算法,相应的,加密芯片根据认证码、私钥和加密算法获得验证码,并将验证码发送给微处理器。微处理器将该验证码转发给设备主机,设备主机根据该验证码进行电池认证。与本方案相比,采用设备电池的微处理器或电量计进行电池认证的方案,由于电量计或微处理器本身并非专业的安全芯片,其对软、硬件破解的防护能力较弱,因此对认证数据的保护力度较小,无法保证电池认证的准确性和可靠性。
本实施例提供的无人机,包括设备主机和分离设置有微处理器和加密 芯片的设备电池,当设备电池被装入时,设备主机根据预存的公钥和非对称加密算法生成认证码,并通过设备电池的微处理器转发给设备电池的加密芯片,加密芯片基于认证码获得验证码,并通过微处理器转发给设备主机,以使设备主机根据验证码对设备电池进行认证。本方案中设备主机对设备电池进行认证,保证电池的匹配性,从而避免电子设备损伤,并且本方案的设备电池中独立设置有专门用于进行认证处理的加密芯片,从而有效保证认证数据的安全性,提高电池认证的准确性和安全性。
图7为本申请实施例八提供的设备电池700的结构示意图,如图7所示,该设备电池700包括微处理器701和加密芯片702;其中,所述微处理器701包括第一处理器和第一存储器;所述加密芯片702包括第二处理器和第二存储器;所述第一存储器和所述第二存储器存储有计算机程序;
所述第一处理器执行所述第一存储器存储的计算机程序,以实现上述实施例一中的方法;
所述第二处理器执行所述第二存储器存储的计算机程序,以实现上述实施例二的方法。
其中,所述第一存储器和所述第二存储器后述统称为存储器。所述存储器存储有计算机程序。具体地,计算机程序可以包括程序代码,所述程序代码包括计算机操作指令。存储器可能包括高速RAM存储器,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。
其中,所述第一处理器和所述第二处理器后述统称为处理器。所述处理器执行所述存储器存储的计算机程序,以实现上述任一实施例中的方法。
其中,处理器可能是一个中央处理器(Central Processing Unit,简称为CPU),或者是特定集成电路(Application Specific Integrated Circuit,简称为ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路。
可选的,在具体实现上,如果存储器和处理器独立实现,则存储器和处理器可以通过总线相互连接并完成相互间的通信。所述总线可以是工业标准体系结构(Industry Standard Architecture,简称为ISA)总线、外部设备互连(Peripheral Component,简称为PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,简称为EISA)总线等。所述总线 可以分为地址总线、数据总线、控制总线等,但并不表示仅有一根总线或一种类型的总线。
可选的,在具体实现上,如果存储器和处理器集成在一块芯片上实现,则存储器和处理器可以通过内部接口完成相互间的通信。
图8为本申请实施例九提供的设备主机800的结构示意图,该设备主机800包括:处理器和存储器。
存储器存储有计算机程序。具体地,计算机程序可以包括程序代码,所述程序代码包括计算机操作指令。存储器可能包括高速RAM存储器,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。
所述处理器执行所述存储器存储的计算机程序,以实现上述实施例三中的方法。
其中,处理器可能是一个中央处理器(Central Processing Unit,简称为CPU),或者是特定集成电路(Application Specific Integrated Circuit,简称为ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路。
可选的,在具体实现上,如果存储器和处理器独立实现,则存储器和处理器可以通过总线相互连接并完成相互间的通信。所述总线可以是工业标准体系结构(Industry Standard Architecture,简称为ISA)总线、外部设备互连(Peripheral Component,简称为PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,简称为EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等,但并不表示仅有一根总线或一种类型的总线。
可选的,在具体实现上,如果存储器和处理器集成在一块芯片上实现,则存储器和处理器可以通过内部接口完成相互间的通信。
本申请实施例十提供一种无人机,该无人机包括如实施例八所述的设备电池、以及如实施例九所述的设备主机。
结合实际场景进行示例:当检测到设备电池装入时,无人机的设备主机会向该设备电池的微处理器发送认证码,设备电池的微处理器将该认证码转 发给设备电池的加密芯片。加密芯片中预存有私钥和加密算法,相应的,加密芯片根据认证码、私钥和加密算法获得验证码,并将验证码发送给微处理器。微处理器将该验证码转发给设备主机,设备主机根据该验证码进行电池认证。与本方案相比,采用设备电池的微处理器或电量计进行电池认证的方案,由于电量计或微处理器本身并非专业的安全芯片,其对软、硬件破解的防护能力较弱,因此对认证数据的保护力度较小,无法保证电池认证的准确性和可靠性。
本实施例提供的无人机,包括设备主机和分离设置有微处理器和加密芯片的设备电池,当设备电池被装入时,设备主机根据预存的公钥和非对称加密算法生成认证码,并通过设备电池的微处理器转发给设备电池的加密芯片,加密芯片基于认证码获得验证码,并通过微处理器转发给设备主机,以使设备主机根据验证码对设备电池进行认证。本方案中设备主机对设备电池进行认证,保证电池的匹配性,从而避免电子设备损伤,并且本方案的设备电池中独立设置有专门用于进行认证处理的加密芯片,从而有效保证认证数据的安全性,提高电池认证的准确性和安全性。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,所述计算机程序被执行时实现上述实施例一中的方法。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,所述计算机程序被执行时实现上述实施例二中的方法。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,所述计算机程序被执行时实现上述实施例三中的方法。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述装置侧实施例的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。需要说明的是,本申请中的各实施方式可以单独实施,也可以在不冲突的前提下结合实施。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代 码的介质。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (14)

  1. 一种电池认证方法,其特征在于,包括:
    接收设备主机发送的认证码,所述认证码是所述设备主机根据预存的公钥和非对称加密算法生成的;
    向所述设备电池内的加密芯片发送所述认证码,以使所述加密芯片根据其存储的与所述公钥对应的私钥和所述非对称加密算法,获得验证码;
    接收所述加密芯片返回的验证码,并将所述验证码发送给所述设备主机,以使所述设备主机根据所述验证码进行认证。
  2. 根据权利要求1所述的方法,其特征在于,所述非对称加密算法为椭圆曲线加密算法。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    接收设备主机返回的认证结果;
    根据所述认证结果,控制所述设备电池输出或停止输出供电信号。
  4. 一种电池认证方法,其特征在于,包括:
    接收设备电池内的微处理器发送的认证码,所述认证码是设备主机根据预存的公钥和非对称加密算法生成并发送给所述微处理器的;
    根据自身存储的与所述公钥对应的私钥和所述非对称加密算法,获得验证码;
    向所述微处理器发送所述验证码,以使所述微处理器将所述验证码发送给所述设备主机进行认证。
  5. 根据权利要求4所述的方法,其特征在于,所述非对称加密算法为椭圆曲线加密算法。
  6. 一种设备电池,其特征在于,包括:微处理器和加密芯片;其中,
    所述微处理器,用于接收设备主机发送的认证码,所述认证码是所述设备主机根据预存的公钥和非对称加密算法生成的;
    所述微处理器,还用于向所述加密芯片发送所述认证码;
    所述加密芯片,用于接收设备电池内的微处理器发送的认证码,并根据自身存储的与所述公钥对应的私钥和所述非对称加密算法,获得验证码;
    所述加密芯片,还用于向所述微处理器发送所述验证码;
    所述微处理器,还用于接收所述加密芯片返回的验证码,并将所述验证 码发送给所述设备主机,以使所述设备主机根据所述验证码进行认证。
  7. 根据权利要求6所述的设备电池,其特征在于,所述非对称加密算法为椭圆曲线加密算法。
  8. 根据权利要求6或7所述的设备电池,其特征在于,
    所述微处理器,还用于接收设备主机返回的认证结果;
    所述微处理器,还用于根据所述认证结果,控制设备电池与所述设备主机之间进行或断开通信。
  9. 根据权利要求6~8任一项所述的设备电池,其特征在于,所述加密芯片独立设置于所述设备电池中。
  10. 根据权利要求9所述的设备电池,其特征在于,所述加密芯片只与所述微处理器连接并通信。
  11. 一种设备电池,其特征在于,包括:微处理器和加密芯片;其中,所述微处理器包括第一处理器和第一存储器;所述加密芯片包括第二处理器和第二存储器;所述第一存储器和所述第二存储器存储有计算机程序;
    所述第一处理器执行所述第一存储器存储的计算机程序,以实现权利要求1-3中任一项所述的方法;
    所述第二处理器执行所述第二存储器存储的计算机程序,以实现权利要求4或5所述的方法。
  12. 一种无人机,其特征在于,包括:设备主机和如权利要求6-10中任一项所述的设备电池;或
    包括:设备主机和如权利要求11所述的设备电池。
  13. 一种计算机可读存储介质,其特征在于,该计算机可读存储介质中存储有计算机程序,所述计算机程序被执行时实现权利要求1-3中任一项所述的方法。
  14. 一种计算机可读存储介质,其特征在于,该计算机可读存储介质中存储有计算机程序,所述计算机程序被执行时实现权利要求4或5所述的方法。
PCT/CN2018/115456 2018-04-23 2018-11-14 电池认证方法、设备电池、无人机及存储介质 WO2019205590A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810366034.0 2018-04-23
CN201810366034.0A CN108614967A (zh) 2018-04-23 2018-04-23 电池认证方法、设备电池、无人机及存储介质

Publications (1)

Publication Number Publication Date
WO2019205590A1 true WO2019205590A1 (zh) 2019-10-31

Family

ID=63660614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115456 WO2019205590A1 (zh) 2018-04-23 2018-11-14 电池认证方法、设备电池、无人机及存储介质

Country Status (2)

Country Link
CN (1) CN108614967A (zh)
WO (1) WO2019205590A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108614967A (zh) * 2018-04-23 2018-10-02 深圳市道通智能航空技术有限公司 电池认证方法、设备电池、无人机及存储介质
CN112039827A (zh) * 2019-06-04 2020-12-04 广东伊之密精密机械股份有限公司 一种加密装置、加密系统、注塑机和控制方法
WO2022204899A1 (zh) * 2021-03-29 2022-10-06 深圳市大疆创新科技有限公司 可移动平台的控制方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101595489A (zh) * 2006-12-28 2009-12-02 摩托罗拉公司 认证附件的方法
CN102255109A (zh) * 2011-04-06 2011-11-23 宇龙计算机通信科技(深圳)有限公司 一种对移动终端电池的认证方法及移动终端
CN106533669A (zh) * 2016-11-15 2017-03-22 百度在线网络技术(北京)有限公司 设备识别的方法、装置和系统
CN107643493A (zh) * 2017-09-15 2018-01-30 深圳市道通智能航空技术有限公司 一种电池电量预估方法和装置、无人机
CN108614967A (zh) * 2018-04-23 2018-10-02 深圳市道通智能航空技术有限公司 电池认证方法、设备电池、无人机及存储介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003124923A (ja) * 2001-10-15 2003-04-25 Nec Infrontia Corp バッテリに暗号鍵を格納する方式
CN101582770B (zh) * 2004-11-26 2012-04-25 索尼计算机娱乐公司 认证系统、认证请求设备及其控制方法
CN100373376C (zh) * 2005-01-21 2008-03-05 深圳市致芯微电子有限公司 加密芯片、利用该加密芯片的cpu程序加密方法和系统
CN101655814A (zh) * 2008-08-18 2010-02-24 联想(北京)有限公司 一种智能电池的认证方法及终端
CN107483184B (zh) * 2017-07-19 2019-02-01 北京摩拜科技有限公司 电池管理方法、设备、电池、物品及系统
CN107395610B (zh) * 2017-08-07 2019-12-24 维沃移动通信有限公司 一种通讯认证方法、第一终端及第二终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101595489A (zh) * 2006-12-28 2009-12-02 摩托罗拉公司 认证附件的方法
CN102255109A (zh) * 2011-04-06 2011-11-23 宇龙计算机通信科技(深圳)有限公司 一种对移动终端电池的认证方法及移动终端
CN106533669A (zh) * 2016-11-15 2017-03-22 百度在线网络技术(北京)有限公司 设备识别的方法、装置和系统
CN107643493A (zh) * 2017-09-15 2018-01-30 深圳市道通智能航空技术有限公司 一种电池电量预估方法和装置、无人机
CN108614967A (zh) * 2018-04-23 2018-10-02 深圳市道通智能航空技术有限公司 电池认证方法、设备电池、无人机及存储介质

Also Published As

Publication number Publication date
CN108614967A (zh) 2018-10-02

Similar Documents

Publication Publication Date Title
US20210192090A1 (en) Secure data storage device with security function implemented in a data security bridge
US9509502B2 (en) Symmetric keying and chain of trust
TWI391864B (zh) 臨界保全參數之產生及用於智慧卡記憶體模組的交換系統與方法
EP3706019B1 (en) Hardware-enforced access protection
TWI632483B (zh) 安全裝置及在其內提供安全服務至主機的方法、安全設備以及電腦軟體產品
TWI424321B (zh) 雲端儲存系統及方法
CN103069384A (zh) 用从储存设备加载的操作系统代码安全地引导主机设备的主机设备和方法
WO2019205590A1 (zh) 电池认证方法、设备电池、无人机及存储介质
EP3198518B1 (en) Prevention of cable-swap security attack on storage devices
CN103701977A (zh) 便捷式电子设备、通信系统以及信息认证方法
TW201837775A (zh) 智慧安全儲存器
WO2012031508A1 (zh) 计算机存储器访问的控制方法和计算机
US11520859B2 (en) Display of protected content using trusted execution environment
WO2019120231A1 (zh) 确定tpm可信状态的方法、装置及存储介质
TWI522840B (zh) 網路上之安全資訊存取技術
US10110568B2 (en) Keyless access to laptop
CN102833296A (zh) 用于构建安全的计算环境的方法和设备
KR102310811B1 (ko) 클라우드 기반 데이터 전자인증 및 암호화 방법 및 시스템
WO2018076163A1 (zh) 指纹算法库与指纹传感器的绑定认证方法及指纹识别系统
CN106603237B (zh) 一种安全支付方法及装置
WO2016066026A1 (zh) 一种借助外部终端验证的安全智能卡及其验证方法
US11588808B2 (en) Operating system with automatic login mechanism and automatic login method
KR20230160744A (ko) 계산적 스토리지 다운로드 프로그램을 위한 인증 메커니즘
KR20160105724A (ko) Otp를 이용한 근거리 사용자 인식 시스템
KR20140007627A (ko) 아이씨 칩

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18915933

Country of ref document: EP

Kind code of ref document: A1