WO2019205588A1 - 虚拟现实头戴式显示装置及测定其位置和姿态的方法、虚拟现实显示设备 - Google Patents

虚拟现实头戴式显示装置及测定其位置和姿态的方法、虚拟现实显示设备 Download PDF

Info

Publication number
WO2019205588A1
WO2019205588A1 PCT/CN2018/115433 CN2018115433W WO2019205588A1 WO 2019205588 A1 WO2019205588 A1 WO 2019205588A1 CN 2018115433 W CN2018115433 W CN 2018115433W WO 2019205588 A1 WO2019205588 A1 WO 2019205588A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared light
light reflecting
virtual reality
display device
reflecting member
Prior art date
Application number
PCT/CN2018/115433
Other languages
English (en)
French (fr)
Inventor
马占山
田文红
楚明磊
王晨如
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/470,544 priority Critical patent/US11036288B2/en
Publication of WO2019205588A1 publication Critical patent/WO2019205588A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/012Head tracking input arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/163Wearable computers, e.g. on a belt
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/006Mixed reality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10048Infrared image

Definitions

  • the present disclosure relates to the field of virtual reality and spatial positioning technologies, and in particular, to a virtual reality head mounted display device and a method for determining the position and posture thereof, and a virtual reality display device.
  • the spatial positioning system for interaction plays a vital role in providing immersion. It is also widely regarded as an indispensable function in virtual reality head-mounted display devices.
  • the laser and the photosensitive sensor are used to determine the position of the moving object.
  • the principle is that two or more laser emitters are used to scan the X and Y directions and emit infrared light.
  • a plurality of infrared receivers are arranged on the body of the virtual reality head-mounted display device, and the infrared light emitted by the laser emitter is received by the receiver in excess of the quantitative amount, and the infrared light received by each receiver is received.
  • the optical path and angle are different to calibrate the spatial position and attitude of the head mounted display device.
  • the working principle is that a plurality of infrared LEDs are arranged on the body of the virtual reality head-mounted display device, and the LED is transparently processed through the outer casing.
  • the infrared camera captures the LED bright spot to solve the spatial position and posture of the virtual reality head mounted display device.
  • the present disclosure provides a virtual reality head mounted display device comprising: a body; and at least four infrared light reflecting members disposed on an outer surface of the body and configured to retroreflect infrared light, wherein the at least The four infrared light reflecting components are not in the same plane.
  • the infrared light reflecting component comprises a retroreflective film.
  • the retroreflective film comprises a bead array reflective film.
  • the at least four infrared light reflecting members comprise a first infrared light reflecting member and a second infrared light reflecting member; wherein the infrared light is formed by the infrared light reflected by the first infrared light reflecting member The infrared bright spots formed by the reflection by the second infrared light reflecting member are different.
  • the first infrared light reflecting member has a larger reflective surface area than the second infrared light reflecting member.
  • the reflective surface area of the first infrared light reflecting component is twice the reflective surface area of the second infrared light reflecting component.
  • the first infrared light reflecting member is different in shape from the second infrared light reflecting member.
  • the body includes a display screen and a headband coupled to the display screen for wear by a wearer, the display screen having a first side for displaying an image for the wearer and facing away from the first side a second side, the headband having a third side, the third side facing away from the first side of the display screen when the virtual reality head mounted display device is used by a wearer, wherein the first side
  • An infrared light reflecting member includes: a third infrared light reflecting member disposed at a center of a surface of the second side of the display screen, and a fourth infrared light reflecting member disposed on the headband a surface of the three sides; and the second infrared light reflecting member includes: a plurality of fifth infrared light reflecting members disposed around the third infrared light reflecting member, and a sixth infrared light reflecting member disposed on the A fourth infrared light reflecting member periphery on the surface of the third side of the headband.
  • the plurality of fifth infrared light reflecting members around the third infrared light reflecting member comprise a first group of the fifth infrared light reflecting members and a second group of the fifth infrared light reflecting members Wherein the first group of the fifth infrared light reflecting members are disposed adjacent to the first peripheral region of the display screen edge, disposed around the third infrared light reflecting member, and the second group of the fifth infrared light reflecting members Provided in a second peripheral region closer to the third infrared light reflecting member than the first peripheral region, disposed around the third infrared light reflecting member; and provided on the surface of the third side of the headband a fourth infrared light reflecting member; a surface of the third side of the headband is provided with a plurality of sixth infrared light reflecting members, each of the fourth infrared light reflecting members is composed of the plurality of sixth infrared light At least some of the sixth infrared light reflecting members are surrounded by the reflecting members.
  • one of the third infrared light reflecting members is disposed at a center of a surface of the second side of the display screen; the first group of the fifth infrared light reflecting members includes six a fifth infrared light reflecting member, wherein the second group of the fifth infrared light reflecting members includes four of the fifth infrared light reflecting members.
  • two fourth infrared light reflecting members are disposed on a surface of the third side of the headband; six sixth infrared rays are disposed on a surface of the third side of the headband
  • the light reflecting members, each of the fourth infrared light reflecting members, are surrounded by four sixth infrared light reflecting members of the six sixth infrared light reflecting members.
  • the present disclosure further provides a virtual reality display device, comprising: the virtual reality head mounted display device of any of the above embodiments; an infrared light source configured to emit infrared light to the at least four infrared light reflecting members;
  • the image collector is configured to collect infrared light reflected by the infrared light reflecting component and generate image data for calculating a spatial position and a posture of the body.
  • the infrared source and the image collector are disposed in close proximity.
  • the body includes a processor configured to receive image data from the image collector and calculate a spatial position and pose of the body based on the image data.
  • the virtual reality display device further includes a processor independent of the body, the processor configured to receive image data from the image collector and configured to calculate the image based on the image data a spatial location and attitude of the body; and the processor is further configured to communicate information regarding the spatial position and attitude to the body.
  • the present disclosure also provides a method for determining a position and an attitude of a virtual reality head mounted display device according to any of the above embodiments, comprising: emitting infrared light to the infrared light reflecting member; and utilizing an image collector The infrared light reflected by the infrared light reflecting member is collected to generate image data, and the spatial position and posture of the body are calculated based on the image data.
  • FIG. 1 is a front elevational view of a virtual reality head mounted display device in accordance with an embodiment of the present disclosure
  • FIG. 2 is a rear elevational view of a virtual reality head mounted display device in accordance with an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of retroreflection of an infrared light reflecting member according to an exemplary embodiment of the present disclosure
  • FIG. 4 is a structural view of an exemplary microbead array reflective film
  • Figures 5a and 5b show infrared light reflecting members having different shapes
  • Figures 5c and 5d illustrate infrared light reflecting components having different reflective surface areas
  • FIG. 6 is a block diagram of a virtual reality display device in accordance with one embodiment of the present disclosure.
  • Figure 7 illustrates a block diagram of a virtual reality display device in accordance with an alternate embodiment of the present disclosure
  • FIG. 8 illustrates a flow chart of a method for determining the position and posture of a virtual reality head mounted display device in accordance with an embodiment of the present disclosure.
  • FIG. 1 and 2 illustrate a virtual reality head mounted display device 10 including a body 100 and a plurality of infrared light reflecting members 200 disposed on an outer surface of the body 100.
  • the plurality of infrared light reflecting members 200 are capable of reflecting infrared light (for example, infrared light emitted from the infrared light source 20), so that the infrared bright spots formed after the reflection can be collected by the image collector 30 and generate image data.
  • the positioning information of the body 100 of the virtual reality head mounted display device can be obtained.
  • the positioning information can include the physical coordinates, the spatial position, the posture, and the like of the body 100 of the virtual reality head mounted display device.
  • the positioning information of the body 100 of the virtual reality head-mounted display device can be acquired in real time, thereby providing the user with a better sense of immersion.
  • the infrared light reflecting member 200 since the plurality of infrared lights reflected by the plurality of infrared light reflecting members 200 are required to form a three-dimensional shape when the virtual reality head mounted display device 100 is spatially positioned, the infrared light reflecting member 200 The number is not less than four, and at least four infrared light reflecting members 200 are not in the same plane. In an alternative embodiment of the present disclosure, the plurality of infrared light reflecting members 200 may all be in different planes.
  • the infrared light reflecting member 200 may be disposed to retroreflect infrared light.
  • the term "retroreflection” refers to the reflection of reflected light from the opposite direction of the incident ray to the light source. This property is maintained when the direction of incident light varies over a wide range. For example, the reflected ray has only a small divergence angle with respect to the opposite direction of the incident ray, such as less than 10 degrees, or even less than 5 degrees.
  • the infrared light emitted by the infrared light source 20 can be reflected back substantially along the original path, so that the image collector 30 for receiving the reflected infrared light can be combined with the infrared light source. 20 are arranged together, which helps to simplify the structure of the system.
  • the infrared light reflecting member 200 includes a first infrared light reflecting member 210 and a second infrared light reflecting member 220, and the infrared light is reflected by the first infrared light reflecting member 210.
  • the formed infrared bright spot is different from the infrared bright spot formed by the second infrared light reflecting part 220, that is, after the image data is collected and generated by the image collector 30, the infrared light passes through the first infrared light respectively.
  • the reflective component 210 is different from the infrared bright spot formed by the second infrared light reflecting component 220, so that the feature points can be set according to different infrared bright spots, and the infrared light reflecting components 200 in the image data can be distinguished according to the feature points.
  • the infrared bright spot position makes it easy to calculate the positioning information of the body 100 of the virtual reality head mounted display device.
  • the reflection areas and/or shapes of the first infrared light reflecting member 210 and the second infrared light reflecting member 220 are set to be different.
  • the first infrared light reflecting member 210 has a larger emitting surface area than the second infrared light reflecting member 220.
  • the reflective surface area of the first infrared light reflecting member 210 is the second infrared light reflecting member 220.
  • the reflection surface area is twice.
  • the first infrared light reflecting member 210 and the second infrared light reflecting member 220 as shown in FIG. 5d are both rectangular as shown in FIG. 5c, the first infrared light reflecting member 210 as shown in FIG. 5c
  • the reflected surface area is significantly larger than the reflective surface area of the second infrared light reflecting member 220 as shown in Fig. 5d.
  • the first infrared light reflecting member 210 is different in shape from the second infrared light reflecting member 220.
  • the first infrared light reflecting member 210 shown in FIG. 5a is elongated, and the second infrared light reflecting member 220 shown in FIG. 5b is circular.
  • the shapes of the first infrared light reflecting member 210 and the second infrared light reflecting member 220 in the embodiment of the present disclosure are not limited thereto as long as the shape difference of the first infrared light reflecting member 210 and the second infrared light reflecting member 220 is different.
  • the infrared bright spot formed by the infrared light reflected by the first infrared light reflecting part 210 and the infrared bright spot formed by the second infrared light reflecting part 220 can be distinguished, so that different infrared light spots can be better distinguished.
  • the infrared light reflecting component 200 described in the present disclosure may include a retroreflective film, which can realize retroreflection, that is, the incident light is reflected along the original path. Going back, and the reflected light has a small angle of divergence and compact structure.
  • the retroreflective film described in the present disclosure may include a bead array reflective film 40.
  • FIG. 4 shows an example of a bead array reflective film 40.
  • the bead array reflective film 40 includes a plurality of array-arranged spherical lenses 41, a reflective layer 42, and a transparent adhesive layer 43.
  • the spherical lens 41 is arranged on the reflective layer 42, a part of the lower surface is embedded in the reflective layer 42, and the adhesive layer 43 is used to bond the spherical lens 41 to the reflective layer 42.
  • the retroreflective effect of each of the spherical lenses 41 on infrared light is as shown in FIG.
  • the incident light 44 is refracted by the upper surface of the spherical lens 41 and then reflected at the interface between the spherical lens and the reflective layer 42 , and then the reflected light 45 is emitted from the spherical lens 41 in a substantially opposite direction to the direction in which the spherical lens 41 is incident.
  • Retroreflection As an example, the spherical lens 41 may have a refractive index between 1.9 and 2.1, for example, a diameter may be less than 0.8 mm.
  • the spherical lens 41 may be made of a transparent material such as glass. It should be noted that the structure of the retroreflective film in the embodiments of the present disclosure is not limited to the above examples, and the structure of any other known microbead array reflective film 40 or any other known retroreflective film is known. Can be applied.
  • Microbead array reflective film is an important member of the existing microbead type reflective material.
  • the reflective microbead array is arranged in a pattern or text into a material such as ABS resin or PC resin by injection molding or hot melt molding. It is made in a substrate made by a process, and its optical characteristics are: it can retroreflect the light emitted by the light source, and has higher retroreflection efficiency and performance during the retroreflection process.
  • infrared light is emitted through the infrared light source 20 and then reflected through the surface of the infrared light reflecting member 200 having the bead array structure, and has a light between the reflected light and the source light.
  • the divergence of a small angle (for example, within 10 degrees or even within 5 degrees) is such that infrared light can be easily collected by the image collector 30 after being reflected by the infrared light reflecting member 200.
  • the body 100 of the virtual reality head mounted display device includes a display screen 110 and a headband 120 that is coupled to the display screen 110 for wear by the wearer.
  • the display screen 110 has a first side 111 for displaying an image for the wearer and a second side 112 facing away from the first side 111, the headband 120 having a third side 123, the third side 123 being
  • the virtual reality head mounted display device is facing away from the first side 111 of the display screen 110 when used by the wearer.
  • the first infrared light reflecting member 210 includes a set of infrared light reflecting members (hereinafter referred to as a third infrared light reflecting member 230) disposed at a center of a surface of the second side 112 of the display screen 110 and a third side 123 disposed on the headband 120.
  • the second infrared light reflecting member 220 includes a plurality of fifth infrared light reflecting members 250 disposed around the third infrared light reflecting member 230 at the center of the surface of the second side 112 of the display screen 110 and disposed on the head
  • the sixth infrared light reflecting member 260 around the fourth infrared light reflecting member 240 on the surface of the third side 123 of the belt 120.
  • the plurality of fifth infrared light reflecting members 250 around the third infrared light reflecting member 230 may include a first group of fifth infrared light reflecting members 250 and a second group of fifth infrared light reflecting members 250.
  • the first set of fifth infrared light reflecting members 250 are disposed adjacent to the first peripheral region 310 of the edge of the display screen 110, around the third infrared light reflecting member 230.
  • the second group of fifth infrared light reflecting members 250 are disposed closer to the second peripheral region 320 of the third infrared light reflecting member 230 than the first peripheral region 310, and disposed around the third infrared light reflecting member 230.
  • a plurality of fourth infrared light reflecting members 240 are disposed on the surface of the third side 123 of the headband 120.
  • a plurality of sixth infrared light reflecting members 260 are disposed on a surface of the third side 123 of the headband 120, and each of the fourth infrared light reflecting members 240 is at least one of the plurality of sixth infrared light reflecting members 260 Some sixth infrared light reflecting members 260 surround.
  • the third infrared light reflecting member 230 at the center of the surface of the second side 112 of the display screen 110 is one; and the plurality of fifth infrared light reflecting members 250 around the third infrared light reflecting member 230 are 10 And wherein the six fifth infrared light reflecting members 250 (the first group) are disposed in the first peripheral region 310 near the edge of the display screen 110, disposed around the third infrared light reflecting member 230 at the center, and the remaining four fifth The infrared light reflecting member 250 (second group) is disposed at the second peripheral region 320 of the third infrared light reflecting member 230 closer to the center than the first peripheral region 310, and is also disposed around the third infrared light reflecting member 230 at the center
  • the fourth infrared light reflecting member 240 on the surface of the third side 123 of the headband 120 is two; the fifth infrared light reflecting member 250 around the fourth infrared light reflecting member 240 is six, two fourth infrared light
  • the present disclosure also provides a virtual reality display device including the above-described virtual reality head mounted display device 10, infrared light source 20, and image collector 30.
  • the infrared light source 20 is mainly used for emitting infrared light to the infrared reflecting component 200 located on the body 100 of the virtual reality head mounted display device.
  • the infrared light source 20 can be, for example, an infrared light emitter (such as an infrared light LED emitter);
  • the image collector 30 is mainly used for collecting infrared light reflected by the infrared light reflecting component 200 and generating image data for calculating the spatial position and posture of the body 100 of the virtual reality head mounted display device.
  • the image collector 30 may be a camera or other may be used.
  • the infrared light source emits infrared light to the infrared light reflecting member 200 of the virtual reality head mounted display device 10, the infrared light reflecting member 200 reflects the infrared light, and the image collector 30 transmits the infrared light.
  • the infrared bright spots formed after the emission are collected and image data is generated.
  • the image collector 30 can be placed in close proximity to the infrared light source 20, saving space in the device.
  • the body 100 of the virtual reality head mounted display device further includes a processor 50.
  • the processor 50 can also be configured to receive image data from the image collector 30 and configured to calculate a spatial position and attitude of the body 100 based on the image data. Image capturer 30 will communicate the image data to processor 50 to cause processor 50 to perform the above calculations.
  • the processor 50 is disposed independently of the body 100 of the virtual reality head mounted display device, the information about the spatial position and posture is transmitted to the body 100 of the virtual reality head mounted display device 10 after the processor 50 is calculated.
  • accurate positioning of the body 100 of the virtual reality head mounted display device can be achieved.
  • the virtual reality head-mounted display can be finally realized.
  • the device is incorporated into the camera coordinate system, and the three-dimensional model of the device is fitted, and the player's head and hand movements are monitored in real time.
  • the information of the spatial position and posture of the virtual reality head mounted display device may include, for example, a rotation angle, translation information, and the like.
  • PnP is a classic algorithm for calculating the pose of a camera or a space object in computer vision. The position and position of the camera or space object is determined by the scene object corresponding to the n point. The specific content of the algorithm is well known to those skilled in the art, and details are not described herein again.
  • the processor 50 may be disposed in the body 100 of the virtual reality head mounted display device (as shown in FIG. 6), or may be disposed outside the body 100 of the virtual reality head mounted display device (or independently of the virtual
  • the body 100 of the realistic head mounted display device is disposed as shown in FIG. 7).
  • the processor 50 herein may be a computer or other terminal having a computing function, an image
  • the collector 30 transmits the image data to the processor 50 to calculate the spatial position and attitude of the body 100 of the virtual reality head mounted display device.
  • the image collector 30 and the body 100 of the virtual reality head mounted display device can be connected by way of wireless or wired connection, and the wireless connection can be Bluetooth, WIFI, etc., and the wired mode can be For USB transfer methods, etc.
  • the present disclosure also provides a method for determining the position and posture of the above-described virtual reality head mounted display device.
  • the method can include:
  • Emulating infrared light for example, using infrared light source 20 to infrared light emitting component 200;
  • the infrared light reflected by the infrared light reflecting member 200 is collected by the image collector 30 to generate image data, and the spatial position and posture of the body of the virtual reality head mounted display device are calculated based on the image data.
  • the infrared light source 20 emits infrared light to the infrared light reflecting member 200 for reflecting the infrared light, and the infrared light reflecting member 200 transmits the infrared light.
  • the reflection is performed, and the infrared bright spot formed after the reflection is collected by the image collector 30 to generate image data, and the positioning information is generated after processing and calculating the image data, and then the positioning information is input to the virtual reality headset.
  • the real-time positioning of the body 100 of the virtual reality head-mounted display device can be realized, and the physical coordinates, the spatial position and the posture of the body 100 of the current virtual reality head-mounted display device can be solved, thereby
  • the immersive feeling of the user during use can be improved, and in the specific embodiment of the present disclosure, since the infrared light reflecting member 200 is easy to install, it is not difficult to arrange due to the complicated appearance of the virtual reality head mounted display device 10. The problem is that it is easy to assemble, and it is cheaper and easier to implement.
  • the above technical solution of the present disclosure has the advantage of simple design, reflecting infrared light by providing a reflecting component on the outer surface of the virtual reality head mounted display device, so that the image collector collects image data containing infrared bright spots, and passes the image data. Processing and calculation to achieve high-precision spatial positioning of the virtual reality head-mounted display device.
  • the cost is low, the assembly is convenient, and the infrared light reflecting component is not subjected to virtual The limitations of the actual shape of the head mounted display device.

Abstract

提供了一种虚拟现实头戴式显示装置及测定其位置和姿态的方法以及一种虚拟现实显示设备。该虚拟现实头戴式显示装置包括:本体;和至少四个红外光反射部件,设置于所述本体的外表面并配置成对红外光进行逆反射,其中,所述至少四个红外光反射部件不在同一平面内。

Description

虚拟现实头戴式显示装置及测定其位置和姿态的方法、虚拟现实显示设备
相关申请的交叉引用
本申请要求于2018年4月23日递交中国专利局的、申请号为201810365837.4的中国专利申请的权益,该申请的全部内容以引用方式并入本文。
技术领域
本公开涉及虚拟现实及空间定位技术领域,特别是涉及一种虚拟现实头戴式显示装置及测定其位置和姿态的方法以及一种虚拟现实显示设备。
背景技术
虚拟现实领域中,用于交互的空间定位系统在提供沉浸感上起到了至关重要的作用,也被普遍认为是虚拟现实头戴式显示设备中不可或缺的一项功能,目前应用于虚拟现实头戴式显示设备中的定位系统主要分为两种:
1、基于激光发射器的空间定位,依靠激光和光敏传感器来确定运动物体的位置,其原理为,使用两台以上的激光发射器,分别在X和Y两个方向进行扫描并发出红外光,在虚拟现实头戴式显示设备的机身上配备红外接收器多个枚,在同一姿态,同时超过定量的接收器接收到激光发射器发出的红外光,通过各个接收器所接受到的红外光的光程以及角度的不同来标定头戴式显示设备的空间位置以及姿态。
2、基于红外发光二极管(LED)亮斑的空间定位,其工作原理为,在虚拟现实头戴式显示设备的机身上排列多个颗红外LED,通过外壳对LED进行透光处理,通过外置红外摄像头拍摄LED亮斑,从而解算虚拟现实头戴式显示设备的空间位置及其姿态。
公开内容
本公开提供了一种虚拟现实头戴式显示装置,包括:本体;和至少四个红外光反射部件,设置于所述本体的外表面并配置成对红外光进行逆反射,其中,所述至少四个红外光反射部件不在同一平面内。
在一些实施例中,所述红外光反射部件包括逆反射膜。
在一些实施例中,所述逆反射膜包括微珠阵列反射膜。
在一些实施例中,所述至少四个红外光反射部件包括第一红外光反射部件以及第二红外光反射部件;其中,红外光经第一红外光反射部件反射后所形成的红外亮斑与经第二红外光反射部件反射后所形成的红外亮斑不同。
在一些实施例中,所述第一红外光反射部件比所述第二红外光反射部件反射表面积大。
在一些实施例中,所述第一红外光反射部件的反射表面积为所述第二红外光反射部件的反射表面积的两倍。
在一些实施例中,所述第一红外光反射部件与所述第二红外光反射部件的形状不同。
在一些实施例中,所述本体包括显示屏和与显示屏连接并供佩戴者佩戴的头带,所述显示屏具有用于为佩戴者显示图像的第一侧和背对所述第一侧的第二侧,所述头带具有第三侧,所述第三侧在所述虚拟现实头戴式显示装置被佩戴者使用时背对显示屏的所述第一侧,其中,所述第一红外光反射部件包括:第三红外光反射部件,设置于所述显示屏的所述第二侧的表面的中心处,和第四红外光反射部件,设置于所述头带的所述第三侧的表面上;且所述第二红外光反射部件包括:多个第五红外光反射部件,设置于所述第三红外光反射部件周边,和第六红外光反射部件,设置于所述头带的所述第三侧的表面上的第四红外光反射部件周边。
在一些实施例中,所述第三红外光反射部件周边的所述多个第五红外光反射部件包括第一组所述第五红外光反射部件和第二组所述第五红外光反射部件,其中第一组所述第五红外光反射部件设置在靠近所述显示屏边缘的第一外围区域,围绕所述第三红外光反射部件设置,并且第二组所述第五红外光反射部件设置在比第一外围区域更靠近所述第三红外光反射部件的第二外围区域,围绕所述第三红外光反射部件设置;所述头带的所述第三侧的表面上设置有多个第四红外光反射部件;所述头带的所述第三侧的表面上设置有多个第六红外光反射部件,每个第四红外光反射部件均由所述多个第六红外光反射部件中的至少一些第六红外光反射部件围绕。
在一些实施例中,所述显示屏的所述第二侧的表面中心处设置有一个所述第三红外光反射部件;所述第一组所述第五红外光反射部件包括6个所述第五红外光反射部件,所述第二组所述第五红外光反射部件包括4个所述第五红外光反射部件。
在一些实施例中,所述头带的所述第三侧的表面上设置有2个第四红外光反射部件;所述头带的所述第三侧的表面上设置有6个第六红外光反射部件,每个第四红外 光反射部件均由所述6个第六红外光反射部件中的4个第六红外光反射部件围绕。
本公开还提供了一种虚拟现实显示设备,包括:如上任一实施例所述的虚拟现实头戴式显示装置;红外光源,配置成发射红外光至所述至少四个红外光反射部件;和图像采集器,配置成采集经所述红外光反射部件反射后的红外光并生成图像数据以供计算所述本体的空间位置及姿态。
在一些实施例中,所述红外光源和所述图像采集器紧邻设置。
在一些实施例中,所述本体包括处理器,所述处理器配置成接收来自所述图像采集器的图像数据并基于所述图像数据计算所述本体的空间位置及姿态。
在一些实施例中,所述虚拟现实显示设备还包括独立于所述本体的处理器,所述处理器配置成接收来自所述图像采集器的图像数据并配置成基于所述图像数据计算所述本体的空间位置及姿态;且所述处理器还配置成将关于所述空间位置及姿态的信息传送给所述本体。
本公开还提供了一种用于测定上述任一实施例所述的虚拟现实头戴式显示装置的位置和姿态的方法,包括:发射红外光至所述红外光反射部件;以及利用图像采集器采集经所述红外光反射部件反射后的红外光并生成图像数据且基于所述图像数据计算所述本体的空间位置及姿态。
附图说明
下面结合附图对本公开的具体实施方式作进一步详细的说明。
图1为根据本公开一个实施例中的虚拟现实头戴式显示装置的正视图;
图2为根据本公开一个实施例中的虚拟现实头戴式显示装置的后视图;
图3为根据本公开一个示例性实施例的红外光反射部件的逆反射原理图;
图4为一种示例性的微珠阵列反射膜的结构图;
图5a和5b示出了具有不同形状的红外光反射部件;
图5c和5d示出了具有不同反射表面积的红外光反射部件;
图6为根据本公开一个实施例的虚拟现实显示设备的框图;
图7示出本公开一个替换实施例的虚拟现实显示设备的框图;以及
图8示出本公开一个实施例的用于测定虚拟现实头戴式显示装置的位置和姿态的方法流程图。
具体实施方式
为了更清楚地说明本公开,下面结合优选实施例和附图对本公开做进一步的说明。附图中相似的部件以相同的附图标记进行表示。本领域技术人员应当理解,下面所具体描述的内容是说明性的而非限制性的,不应以此限制本公开的保护范围。
图1和图2示出一种虚拟现实头戴式显示装置10,该虚拟现实头戴式显示装置10包括本体100以及设置于该本体100的外表面的多个红外光反射部件200。
多个红外光反射部件200能够将红外光(例如来自于红外光源20所发射的红外光)进行反射,从而反射后所形成的红外亮斑能够被图像采集器30进行采集并生成图像数据,图像数据经过进一步的处理以及计算以后能够得出虚拟现实头戴式显示装置的本体100的定位信息,定位信息可以包括为虚拟现实头戴式显示装置的本体100的物理坐标、空间位置及其姿态等,当用户戴着虚拟现实头戴式显示装置的本体100运动时,能够实时的获取虚拟现实头戴式显示装置的本体100的定位信息,从而能够提供给用户更好沉浸感。
在本公开的具体实施例中,由于在对虚拟现实头戴式显示装置100进行空间定位时,多个红外光反射部件200所反射的多个红外光需构成立体形状,所以红外光反射部件200的数量不小于四个,且至少四个红外光反射部件200不在同一平面内。在本公开的一个可选实施例中,多个红外光反射部件200可均处于不同的平面中。
在本公开的实施例中,所述红外光反射部件200可以设置成对红外光进行逆反射。所谓“逆反射”是指反射光线从靠近入射光线的反方向、向光源返回的反射。当入射光线的方向在较大范围内变化时,仍能保持这种性质。例如,反射光线相对于入射光线的反方向只有小的发散角,例如小于10度,甚至小于5度。
利用这种逆反射的红外光反射部件200,可以将红外光源20所发射的红外光基本上沿原路反射回去,这样,用于接收被反射的红外光的图像采集器30就可以与红外光源20布置在一起,这有助于简化系统的结构。
在本公开的一种示例性实施例中,红外光反射部件200包括有第一红外光反射部件210以及第二红外光反射部件220,且红外光经过所述第一红外光反射部件210反射后所形成的红外亮斑与经过第二红外光反射部件220反射后所形成的红外亮斑不同,也就是说,通过图像采集器30采集并生成图像数据后,由于红外光分别经过第一红外光反射部件210与第二红外光反射部件220反射后所形成的红外亮斑不同,从而能够根据不同的红外亮斑来设置特征点,根据特征点能够区分图像数据中各个红外光 反射部件200所形成的红外亮斑位置,这样能够便于计算出虚拟现实头戴式显示装置的本体100的定位信息。
在本公开的具体实施例中,为了能够使红外光经第一红外光反射部件210反射后所形成的红外亮斑与经第二红外光反射部件220反射后所形成的红外亮斑不同,可以将第一红外光反射部件210与第二红外光反射部件220的反射面积和/或形状设置为不同。
在一个示例性的实施例中,第一红外光反射部件210比第二红外光反射部件220的发射表面积大,作为示例,第一红外光反射部件210的反射表面积为第二红外光反射部件220的反射表面积的两倍。例如,尽管如图5c所示的第一红外光反射部件210和如图5d所示的第二红外光反射部件220均为矩形,但是,如图5c所示的第一红外光反射部件210的反射表面积明显大于如图5d所示的第二红外光反射部件220的反射表面积。
在一个示例性的实施例中,第一红外光反射部件210与第二红外光反射部件220的形状不同。例如,如图5a所示的第一红外光反射部件210为长条形,而如图5b所示的第二红外光反射部件220为圆形。然而,在本公开的实施例中的第一红外光反射部件210和第二红外光反射部件220的形状不限于此,只要第一红外光反射部件210和第二红外光反射部件220的形状差异能够使得红外光经第一红外光反射部件210反射后所形成的红外亮斑与经第二红外光反射部件220反射后所形成的红外亮斑可以被区分开,就可以更好地区分不同的红外亮斑所对应的不同的位置。
为了能够方便图像采集器对红外光经过反射所形成的红外亮斑的采集,本公开中所述的红外光反射部件200可以包括逆反射膜,其能实现逆反射,即将入射光沿原路反射回去,并且其反射的光线具有小角度的发散,结构紧凑的特点。
作为示例,本公开中所述的逆反射膜可以包括微珠阵列反射膜40。图4示出了一种微珠阵列反射膜40的示例。在该示例中,微珠阵列反射膜40包括多个阵列排布的球状透镜41、反射层42以及透明的粘合层43。该球状透镜41排布于所述反射层42上,下表面的一部分嵌于反射层42中,粘合层43用于将球状透镜41粘接到反射层42。每个球状透镜41对于红外光的逆反射作用如图3所示。入射光44经过球状透镜41的上表面折射之后在球状透镜与反射层42的界面处被反射,之后反射光45沿着与射入球状透镜41的方向的大致反方向射出球状透镜41,从而实现逆反射。作为示例,球状透镜41的折射率可在1.9至2.1之间,例如直径可以小于0.8mm。例如,球状透 镜41可以由玻璃等透明材料制成。需要说明的是,本公开的实施例的中的逆反射膜的结构不限于上述示例,其他任何形式的已知的微珠阵列反射膜40的结构或者已知的其他任何形式的逆反射膜均可以应用。
微珠阵列反射膜作为现有微珠型反光材料中的重要一员,目前一般采用将反光微珠阵列式排布成图案或文字植入到ABS树脂或PC树脂等材质通过注塑或热熔成型等工艺制成的基板内制作而成,其光学特性为:可以将光源所发出光线进行逆反射,并且在逆反射过程中,更高的逆向反射效率和性能。
也就是说,在本公开的示例性实施例中,红外光经由红外光源20发射以后会经过具有微珠阵列结构的红外光反射部件200表面进行反射,并且其反射的光线与源光线之间具有小角度(例如10度以内,甚至5度以内)的发散,以使得红外光能够在经过红外光反射部件200进行反射以后便于被图像采集器30进行采集。
在如图1以及图2所示的示例中,虚拟现实头戴式显示装置的本体100包括显示屏110和头带120,头带120与显示屏110连接,供佩戴者佩戴。显示屏110具有用于为佩戴者显示图像的第一侧111和背对所述第一侧111的第二侧112,所述头带120具有第三侧123,所述第三侧123在所述虚拟现实头戴式显示装置被佩戴者使用时背对显示屏110的所述第一侧111。
在所述虚拟现实头戴式显示装置被佩戴者佩戴使用时,显示屏110的第一侧111面向佩戴者的人眼,以提供图像显示,相应地,显示屏110的第二侧112则背对佩戴者的人眼。而在所述虚拟现实头戴式显示装置被佩戴者佩戴使用时,所述头带120的第三侧123背对佩戴者的人眼。第一红外光反射部件210包括设置于显示屏110第二侧112的表面中心处的一组红外光反射部件(下称第三红外光反射部件230)和设置于头带120的第三侧123的表面上的另一组红外光反射部件(下称第四红外光反射部件240)。第二红外光反射部件220包括设置于所述显示屏110的第二侧112的表面的中心处的第三红外光反射部件230周边的多个第五红外光反射部件250和设置于所述头带120的第三侧123的表面上的第四红外光反射部件240周边的第六红外光反射部件260。
作为示例,第三红外光反射部件230周边的多个第五红外光反射部件250可以包括第一组第五红外光反射部件250和第二组第五红外光反射部件250。第一组第五红外光反射部件250设置在靠近显示屏110边缘的第一外围区域310,围绕所述第三红外光反射部件230设置。第二组第五红外光反射部件250设置在比第一外围区域310 更靠近所述第三红外光反射部件230的第二外围区域320,围绕所述第三红外光反射部件230设置。头带120的第三侧123的表面上设置有多个第四红外光反射部件240。所述头带120的第三侧123的表面上设置有多个第六红外光反射部件260,每个第四红外光反射部件240均由所述多个第六红外光反射部件260中的至少一些第六红外光反射部件260围绕。
在一示例中,显示屏110的第二侧112的表面的中心处的第三红外光反射部件230为1个;第三红外光反射部件230周边的多个第五红外光反射部件250为10个,其中6个第五红外光反射部件250(第一组)设置在靠近显示屏110边缘的第一外围区域310,围绕中心处的第三红外光反射部件230设置,并且其余4个第五红外光反射部件250(第二组)设置在比第一外围区域310更靠近中心处的第三红外光反射部件230的第二外围区域320,也围绕中心处的第三红外光反射部件230设置;头带120的第三侧123的表面上的第四红外光反射部件240为2个;第四红外光反射部件240周边的第五红外光反射部件250为6个,2个第四红外光反射部件240均由所述6个第六红外光反射部件260中的4个第六红外光反射部件260围绕。
在如图6所示的示例中,本公开还提供一种虚拟现实显示设备,包括上述的虚拟现实头戴式显示装置10、红外光源20以及图像采集器30。
在本公开的具体实施中,上述红外光源以及图像采集器可以配合使用。红外光源20主要用于发射红外光至位于虚拟现实头戴式显示装置的本体100上的红外线反射部件200,红外光源20例如可以为红外光发射器(如红外光LED发射器);图像采集器30主要用于采集经红外光反射部件200反射后的红外光并生成图像数据以供计算虚拟现实头戴式显示装置的本体100的空间位置及姿态,图像采集器30可以为摄像头或其他可以用于进行图像采集的装置,通过红外光源发射红外光至虚拟现实头戴式显示装置10的红外光反射部件200上,红外光反射部件200会将红外光进行反射,图像采集器30会将红外光经过发射后所形成的红外亮斑进行采集并生成图像数据。在红外线反射部件200为逆反射膜的具体实施例中,可以将图像采集器30紧邻红外光源20设置,节省了设备的空间。
在一个可选的示例中,虚拟现实头戴式显示装置的本体100还包括处理器50。该处理器50还可以配置成接收来自所述图像采集器30的图像数据并配置成基于所述图像数据计算所述本体100的空间位置及姿态。图像采集器30会将图像数据传送给处理器50以使处理器50完成上述计算。例如在处理器50独立于虚拟现实头戴式显示装置 的本体100设置的情况下,处理器50计算完毕以后会将关于空间位置及姿态的信息传送给虚拟现实头戴式显示装置10的本体100,从而能够实现对虚拟现实头戴式显示装置的本体100的精准定位。
对于计算所述虚拟现实头戴式显示装置的空间位置及姿态可以采用本领域技术人员公知的技术,例如采用类似于现有技术中Oculus Rift的识别技术。只需将获得LCD发光的图像替换为获得红外光反射部件反射光的图像,即获得红外图像后,将图像采集器采集到的图像传输到上述处理器中,再通过视觉算法过滤掉无用的信息,从而获得反射膜的位置。再利用PnP(Perspective-n-point)算法,即利用至少四个不共面的红外光反射部件在设备上的位置信息、至少四个点获得的图像信息即可最终将虚拟现实头戴式显示装置纳入摄像头坐标系,拟合出设备的三维模型,并以此来实时监控玩家的头部、手部运动。
虚拟现实头戴式显示装置的空间位置及姿态的信息例如可以包括旋转角度和平移信息等。PnP是计算机视觉中计算照相机或空间物体姿态的一种经典的算法,通过n点对应的场景对象来决定照相机或空间物体的位置与定位。该算法的具体内容为本领域技术人员所熟知,在此不再赘述。
作为示例,处理器50可以设置在虚拟现实头戴式显示装置的本体100中(如图6所示),也可以设置在虚拟现实头戴式显示装置的本体100之外(或称独立于虚拟现实头戴式显示装置的本体100设置,如图7所示)。在如图7所示的虚拟现实显示设备还包括独立于虚拟现实头戴式显示装置的本体100的处理器50的情况下,这里的处理器50可以为计算机或其他具有计算功能的终端,图像采集器30会将图像数据传送给处理器50以计算虚拟现实头戴式显示装置的本体100的空间位置及姿态。
在本公开的具体实施中,图像采集器30与虚拟现实头戴式显示装置的本体100之间可以通过无线或者有线连接的方式进行连接,无线连接的方式可以为蓝牙、WIFI等,有线方式可以为USB传输方式等。
如图8所示,本公开还提供了一种用于测定上述虚拟现实头戴式显示装置的位置和姿态的方法。该方法可以包括:
发射红外光(例如采用红外光源20)至红外光发射部件200;
利用图像采集器30采集经红外光反射部件200反射后的红外光并生成图像数据且基于所述图像数据计算虚拟现实头戴式显示装置的本体的空间位置及姿态。
也就是说,用户在使用虚拟现实头戴式显示装置10进行动作的过程中,红外光源 20会发射红外光至用于反射红外光的红外光反射部件200,红外光反射部件200会将红外光进行反射,而经过反射后所形成的红外亮斑会被图像采集器30进行采集并生成图像数据,通过对图像数据的处理以及计算以后会生成定位信息,接着将定位信息输入至虚拟现实头戴式显示装置的本体100内,则可以实现对虚拟现实头戴式显示装置的本体100的实时定位,解算当前虚拟现实头戴式显示装置的本体100的物理坐标、空间位置及其姿态,从而能够提高用户在使用过程中的沉浸感,并且在本公开的具体实施例中,由于红外光反射部件200安装简易,所以不会因虚拟现实头戴式显示装置10外形复杂而产生难于排布的问题,实现了便捷的组装,并且成本低廉,更易实现。
本公开的上述技术方案具有设计简单的优点,通过在虚拟现实头戴式显示设备外表面设置反射部件来反射红外光,以使得图像采集器采集包含有红外亮斑的图像数据,通过对图像数据的处理、计算来达到对虚拟现实头戴式显示装置的高精度空间定位,在具体实施中,成本低廉,在安装上实现了便捷的组装,且在设置红外光反射部件时,不会受到虚拟现实头戴式显示装置外形的限制。
显然,本公开的上述实施例仅仅是为清楚地说明本公开所作的举例,而并非是对本公开的实施方式的限定,对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本公开的技术方案所引伸出的显而易见的变化或变动仍处于本公开的保护范围之列。

Claims (16)

  1. 一种虚拟现实头戴式显示装置,包括:
    本体;和
    至少四个红外光反射部件,设置于所述本体的外表面并配置成对红外光进行逆反射,其中,所述至少四个红外光反射部件不在同一平面内。
  2. 根据权利要求1所述的虚拟现实头戴式显示装置,其中,所述红外光反射部件包括逆反射膜。
  3. 根据权利要求2所述的虚拟现实头戴式显示装置,其中,所述逆反射膜包括微珠阵列反射膜。
  4. 根据权利要求1至3中任一项所述的虚拟现实头戴式显示装置,其中,
    所述至少四个红外光反射部件包括第一红外光反射部件以及第二红外光反射部件;其中,红外光经第一红外光反射部件反射后所形成的红外亮斑与经第二红外光反射部件反射后所形成的红外亮斑不同。
  5. 根据权利要求4所述的虚拟现实头戴式显示装置,其中,所述第一红外光反射部件比所述第二红外光反射部件反射表面积大。
  6. 根据权利要求5所述的虚拟现实头戴式显示装置,其中,所述第一红外光反射部件的反射表面积为所述第二红外光反射部件的反射表面积的两倍。
  7. 根据权利要求5所述的虚拟现实头戴式显示装置,其中,所述第一红外光反射部件与所述第二红外光反射部件的形状不同。
  8. 根据权利要求4所述的虚拟现实头戴式显示装置,其中,所述本体包括显示屏和与显示屏连接并供佩戴者佩戴的头带,所述显示屏具有用于为佩戴者显示图像的第一侧和背对所述第一侧的第二侧,所述头带具有第三侧,所述第三侧在所述虚拟现实头戴式显示装置被佩戴者使用时背对显示屏的所述第一侧,其中,
    所述第一红外光反射部件包括:
    第三红外光反射部件,设置于所述显示屏的所述第二侧的表面的中心处,和
    第四红外光反射部件,设置于所述头带的所述第三侧的表面上;且
    所述第二红外光反射部件包括:
    多个第五红外光反射部件,设置于所述第三红外光反射部件周边,和
    第六红外光反射部件,设置于所述头带的所述第三侧的表面上的第四红外光反射部件周边。
  9. 根据权利要求8所述的虚拟现实头戴式显示装置,其中,
    所述第三红外光反射部件周边的所述多个第五红外光反射部件包括第一组所述第五红外光反射部件和第二组所述第五红外光反射部件,其中第一组所述第五红外光反射部件设置在靠近所述显示屏边缘的第一外围区域,围绕所述第三红外光反射部件设置,并且第二组所述第五红外光反射部件设置在比第一外围区域更靠近所述第三红外光反射部件的第二外围区域,围绕所述第三红外光反射部件设置;
    所述头带的所述第三侧的表面上设置有多个第四红外光反射部件;
    所述头带的所述第三侧的表面上设置有多个第六红外光反射部件,每个第四红外光反射部件均由所述多个第六红外光反射部件中的至少一些第六红外光反射部件围绕。
  10. 根据权利要求9所述的虚拟现实头戴式显示装置,其中,
    所述显示屏的所述第二侧的表面中心处设置有一个所述第三红外光反射部件;
    所述第一组所述第五红外光反射部件包括6个所述第五红外光反射部件,所述第二组所述第五红外光反射部件包括4个所述第五红外光反射部件。
  11. 根据权利要求9所述的虚拟现实头戴式显示装置,其中,
    所述头带的所述第三侧的表面上设置有2个第四红外光反射部件;
    所述头带的所述第三侧的表面上设置有6个第六红外光反射部件,
    每个第四红外光反射部件均由所述6个第六红外光反射部件中的4个第六红外光反射部件围绕。
  12. 一种虚拟现实显示设备,包括:
    根据权利要求1-11中任一项所述的虚拟现实头戴式显示装置;
    红外光源,配置成发射红外光至所述至少四个红外光反射部件;和
    图像采集器,配置成采集经所述红外光反射部件反射后的红外光并生成图像数据以供计算所述本体的空间位置及姿态。
  13. 根据权利要求12所述的虚拟现实显示设备,其中,
    所述红外光源和所述图像采集器紧邻设置。
  14. 根据权利要求12或13所述的虚拟现实显示设备,其中,
    所述本体包括处理器,所述处理器配置成接收来自所述图像采集器的图像数据并 基于所述图像数据计算所述本体的空间位置及姿态。
  15. 根据权利要求12或13所述的虚拟现实显示设备,还包括独立于所述本体的处理器,所述处理器配置成接收来自所述图像采集器的图像数据并配置成基于所述图像数据计算所述本体的空间位置及姿态;且
    所述处理器还配置成将关于所述空间位置及姿态的信息传送给所述本体。
  16. 一种用于测定根据权利要求1-11中任一项所述的虚拟现实头戴式显示装置的位置和姿态的方法,包括:
    发射红外光至所述红外光反射部件;以及
    利用图像采集器采集经所述红外光反射部件反射后的红外光并生成图像数据且基于所述图像数据计算所述本体的空间位置及姿态。
PCT/CN2018/115433 2018-04-23 2018-11-14 虚拟现实头戴式显示装置及测定其位置和姿态的方法、虚拟现实显示设备 WO2019205588A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/470,544 US11036288B2 (en) 2018-04-23 2018-11-14 Head-mounted virtual reality display device, method for measuring position and posture of the same and virtual reality display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810365837.4A CN108563334B (zh) 2018-04-23 2018-04-23 一种虚拟现实头戴式显示设备、系统及其定位定姿方法
CN201810365837.4 2018-04-23

Publications (1)

Publication Number Publication Date
WO2019205588A1 true WO2019205588A1 (zh) 2019-10-31

Family

ID=63536395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115433 WO2019205588A1 (zh) 2018-04-23 2018-11-14 虚拟现实头戴式显示装置及测定其位置和姿态的方法、虚拟现实显示设备

Country Status (3)

Country Link
US (1) US11036288B2 (zh)
CN (1) CN108563334B (zh)
WO (1) WO2019205588A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108563334B (zh) 2018-04-23 2021-09-03 京东方科技集团股份有限公司 一种虚拟现实头戴式显示设备、系统及其定位定姿方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105159450A (zh) * 2015-08-25 2015-12-16 中国运载火箭技术研究院 一种便携式可交互桌面级虚拟现实系统
CN106406509A (zh) * 2016-05-16 2017-02-15 上海青研科技有限公司 一种头戴式眼控虚拟现实设备
US20170329398A1 (en) * 2016-05-13 2017-11-16 Google Inc. Eye tracking systems and methods for virtual reality environments
CN107423720A (zh) * 2017-08-07 2017-12-01 广州明医医疗科技有限公司 目标跟踪系统和立体显示设备
CN207216145U (zh) * 2017-06-27 2018-04-10 北京一数科技有限公司 一种穿戴式设备
CN108563334A (zh) * 2018-04-23 2018-09-21 京东方科技集团股份有限公司 一种虚拟现实头戴式显示设备、系统及其定位定姿方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10039445B1 (en) * 2004-04-01 2018-08-07 Google Llc Biosensors, communicators, and controllers monitoring eye movement and methods for using them
TWM443202U (en) 2012-04-13 2012-12-11 Kyohaya Technology Ltd Wall-mounted extension charger socket
CA2896985A1 (en) * 2013-01-03 2014-07-10 Meta Company Extramissive spatial imaging digital eye glass for virtual or augmediated vision
CN103558909B (zh) * 2013-10-10 2017-03-29 北京智谷睿拓技术服务有限公司 交互投射显示方法及交互投射显示系统
US9649558B2 (en) * 2014-03-14 2017-05-16 Sony Interactive Entertainment Inc. Gaming device with rotatably placed cameras
US10684477B2 (en) * 2014-09-30 2020-06-16 Omnivision Technologies, Inc. Near-eye display device and methods with coaxial eye imaging
US10656720B1 (en) * 2015-01-16 2020-05-19 Ultrahaptics IP Two Limited Mode switching for integrated gestural interaction and multi-user collaboration in immersive virtual reality environments
EP3064130A1 (en) * 2015-03-02 2016-09-07 MindMaze SA Brain activity measurement and feedback system
CN106258004B (zh) * 2015-04-20 2019-01-11 我先有限公司 虚拟实景装置与操作模式
US9910284B1 (en) * 2016-09-08 2018-03-06 Osterhout Group, Inc. Optical systems for head-worn computers
US20180046874A1 (en) * 2016-08-10 2018-02-15 Usens, Inc. System and method for marker based tracking
CN106226907B (zh) 2016-08-31 2019-02-05 深圳超多维科技有限公司 一种vr显示装置及头戴式vr显示设备
US10771898B2 (en) * 2017-01-09 2020-09-08 Apple Inc. Locating wireless devices
US10726574B2 (en) * 2017-04-11 2020-07-28 Dolby Laboratories Licensing Corporation Passive multi-wearable-devices tracking
US10789777B1 (en) * 2017-06-29 2020-09-29 Facebook Technologies, Llc Generating content for presentation by a head mounted display based on data captured by a light field camera positioned on the head mounted display
US10338400B2 (en) * 2017-07-03 2019-07-02 Holovisions LLC Augmented reality eyewear with VAPE or wear technology
US10775616B1 (en) * 2018-03-21 2020-09-15 Facebook Technologies, Llc Lenses integrated with micro-light emitting diodes
US10788892B2 (en) * 2018-05-23 2020-09-29 Facebook Technologies, Llc In-field illumination and imaging for eye tracking
US10598938B1 (en) * 2018-11-09 2020-03-24 Facebook Technologies, Llc Angular selective grating coupler for waveguide display

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105159450A (zh) * 2015-08-25 2015-12-16 中国运载火箭技术研究院 一种便携式可交互桌面级虚拟现实系统
US20170329398A1 (en) * 2016-05-13 2017-11-16 Google Inc. Eye tracking systems and methods for virtual reality environments
CN106406509A (zh) * 2016-05-16 2017-02-15 上海青研科技有限公司 一种头戴式眼控虚拟现实设备
CN207216145U (zh) * 2017-06-27 2018-04-10 北京一数科技有限公司 一种穿戴式设备
CN107423720A (zh) * 2017-08-07 2017-12-01 广州明医医疗科技有限公司 目标跟踪系统和立体显示设备
CN108563334A (zh) * 2018-04-23 2018-09-21 京东方科技集团股份有限公司 一种虚拟现实头戴式显示设备、系统及其定位定姿方法

Also Published As

Publication number Publication date
US20200379552A1 (en) 2020-12-03
CN108563334B (zh) 2021-09-03
CN108563334A (zh) 2018-09-21
US11036288B2 (en) 2021-06-15

Similar Documents

Publication Publication Date Title
US8933912B2 (en) Touch sensitive user interface with three dimensional input sensor
US11461982B2 (en) 3D object rendering using detected features
WO2018076202A1 (zh) 能够进行人眼追踪的头戴式可视设备及人眼追踪方法
JPWO2015012280A1 (ja) 視線検出装置
EP3371781B1 (en) Systems and methods for generating and using three-dimensional images
US10775647B2 (en) Systems and methods for obtaining eyewear information
KR20170036704A (ko) 헤드 마운트형 디스플레이 디바이스를 사용한 다중 유저 시선 투영
JP2014517361A (ja) カメラ式マルチタッチ相互作用装置、システム及び方法
KR20220110205A (ko) 헤드 장착식 디스플레이들에 대한 컨텐츠 안정화
WO2018154272A1 (en) Systems and methods for obtaining information about the face and eyes of a subject
CN104516532A (zh) 使用光学感测阵列确定光源姿态的设备和方法
US10698496B2 (en) System and method for tracking a human hand in an augmented reality environment
US20190086787A1 (en) Physical object reconstruction through a projection display system
WO2019205588A1 (zh) 虚拟现实头戴式显示装置及测定其位置和姿态的方法、虚拟现实显示设备
US10229313B1 (en) System and method for identifying and tracking a human hand in an interactive space based on approximated center-lines of digits
CN110007462B (zh) 头戴式显示器
US20180267601A1 (en) Light Projection for Guiding a User within a Physical User Area During Virtual Reality Operations
TW201901371A (zh) 三維定位系統與方法
JP6663736B2 (ja) 非接触表示入力装置及び方法
TWI705355B (zh) 可追蹤光學裝置
TW202310617A (zh) 人眼追蹤系統及虛擬實境顯示裝置
TWI798956B (zh) 眼球追蹤裝置以及眼球追蹤方法
TW201113759A (en) Three dimensional optical sensing system and game player
KR101145454B1 (ko) 적외선 마커를 이용한 컨텐츠 제어 방법, 시스템 및 컴퓨터 판독 가능한 기록 매체
KR20230034782A (ko) 깊이 센서를 이용하여 깊이 맵을 생성하는 증강 현실 디바이스 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18916512

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18916512

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04.05.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18916512

Country of ref document: EP

Kind code of ref document: A1