WO2019205578A1 - 一种构造煤原位煤层气水平井洞穴卸压开采模拟试验系统 - Google Patents

一种构造煤原位煤层气水平井洞穴卸压开采模拟试验系统 Download PDF

Info

Publication number
WO2019205578A1
WO2019205578A1 PCT/CN2018/114948 CN2018114948W WO2019205578A1 WO 2019205578 A1 WO2019205578 A1 WO 2019205578A1 CN 2018114948 W CN2018114948 W CN 2018114948W WO 2019205578 A1 WO2019205578 A1 WO 2019205578A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
well
gas
horizontal well
coal seam
Prior art date
Application number
PCT/CN2018/114948
Other languages
English (en)
French (fr)
Inventor
桑树勋
王海文
周效志
曹丽文
刘世奇
刘会虎
李自成
贾金龙
黄华州
刘长江
徐宏杰
王冉
朱术云
Original Assignee
中国矿业大学
奥理文地质科技(徐州)有限公司
中国石油大学(华东)
安徽理工大学
武汉工程大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学, 奥理文地质科技(徐州)有限公司, 中国石油大学(华东), 安徽理工大学, 武汉工程大学 filed Critical 中国矿业大学
Priority to US16/757,771 priority Critical patent/US11035228B2/en
Priority to AU2018420473A priority patent/AU2018420473B2/en
Publication of WO2019205578A1 publication Critical patent/WO2019205578A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/26Drill bits with leading portion, i.e. drill bits with a pilot cutter; Drill bits for enlarging the borehole, e.g. reamers
    • E21B10/32Drill bits with leading portion, i.e. drill bits with a pilot cutter; Drill bits for enlarging the borehole, e.g. reamers with expansible cutting tools
    • E21B10/325Drill bits with leading portion, i.e. drill bits with a pilot cutter; Drill bits for enlarging the borehole, e.g. reamers with expansible cutting tools the cutter being shifted by a spring mechanism
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/006Measuring wall stresses in the borehole
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • E21B21/06Arrangements for treating drilling fluids outside the borehole
    • E21B21/063Arrangements for treating drilling fluids outside the borehole by separating components
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/06Measuring temperature or pressure
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/046Directional drilling horizontal drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/18Drilling by liquid or gas jets, with or without entrained pellets
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/28Enlarging drilled holes, e.g. by counterboring
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C41/00Methods of underground or surface mining; Layouts therefor
    • E21C41/16Methods of underground mining; Layouts therefor
    • E21C41/18Methods of underground mining; Layouts therefor for brown or hard coal
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere
    • E21F17/18Special adaptations of signalling or alarm devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B2200/00Special features related to earth drilling for obtaining oil, gas or water
    • E21B2200/20Computer models or simulations, e.g. for reservoirs under production, drill bits

Definitions

  • the invention relates to a coalbed methane mining simulation test system, in particular to a structural test system for a coal seam in-situ coal seam horizontal well cave pressure relief mining, belonging to the field of coalbed methane exploitation.
  • Tectonic coal refers to coal whose coal seam is subjected to tectonic stress, and its original structure and structure are subjected to strong cracking and fractures, wrinkles, and polished surfaces.
  • the extensive development of tectonic coal and the richness of tectonic coal and coalbed methane resources are the prominent features of China's coal and coalbed methane resources.
  • the proportion of tectonic coal resources in China has been high.
  • the amount of tectonic coal and coalbed methane resources accounts for the total amount of coalbed methane resources in China. The proportion is even larger.
  • the tectonic coal has prominent features such as rich gas, low permeability and softness, mostly coal and gas outburst coal seams. Due to the hazard and difficulty in pumping and utilization, the coal is mostly discharged into the atmosphere, and the coal-bed methane is efficiently developed. It has a very prominent significance for energy, safety and ecology.
  • the method based on the hydrophobic depressurization and gas recovery theory is the main method for the development of in-situ coalbed methane surface wells.
  • the effect of the reformation method of the structural coal reservoir is extremely low and the hydraulic fracturing is poor. It is not suitable for structural coal reservoirs.
  • the results of exploration and development practice also show that CBM exploration and development technologies based on the theory of hydrophobic depressurization and depletion gas production include SVR technology series (straight well fracturing, U-well, multi-branched horizontal wells, Horizontal well fracturing, etc., ECBM technology series (CO 2 -ECBM, N 2 -ECBM, etc.) and their composite technologies are unable to achieve efficient development of coal-bed methane. Therefore, the construction of high-efficiency exploration and development technology and equipment for coal-bed methane has become one of the important technical bottlenecks restricting the rapid and large-scale development of China's coalbed methane industry.
  • the present invention provides a simulation test system for a coal mine in-situ coalbed methane horizontal well cavity pressure relief mining, which can realize large-caliber well formation, horizontal well cavity stress release and mixed fluid effective in horizontal soft wells of soft coal seam reservoirs.
  • the high-efficiency separation of the lift and output mixture provides a basis for efficient and continuous development of the in-situ coalbed methane.
  • a simulation test system for a coal mine in-situ coalbed methane horizontal well cavity pressure relief mining including coal seam stratum structure reconstruction and similar material simulation subsystem, horizontal well drilling reaming Simulation subsystem, horizontal well collapse hole cavity pressure relief excitation simulation subsystem, output lift simulation subsystem, gas-liquid-solid separation simulation subsystem and monitoring control subsystem, the coal-bearing stratum structure reconstruction and similar
  • the material simulation subsystem comprises a three-axis stress-sealing three-dimensional support, a similar material surrounding rock, a similar material coal seam, a high-pressure gas cylinder and a gas booster pump, and the three-axis stress-tight solid support is connected by six movable steel plates to form a sealed hexahedron.
  • the surrounding rock and similar material coal seams are placed in the same material, and the surrounding rock of the two similar materials are located above and below the similar material coal seam, respectively, the X-direction servo loading system, the Y-direction servo loading system and the Z-direction servo loading system respectively and the triaxial stress.
  • the port is connected and the outlet pipe is placed in the coal seam of similar material, and the power input port is connected with the outlet of the air compressor;
  • a pressure sensor, a temperature sensor and a strain gauge are arranged near the lower end of the similar material coal seam for measuring similar materials during the test. Pressure, temperature and strain of the coal seam;
  • the horizontal well drilling and reaming simulation subsystem comprises a simulated drilling rig, a drill string string, a drilling tool and a drilling fluid circulation system, and the drilling tool is a reciprocating drilling reaming drilling tool, and the drilling tool is connected with the drill string string.
  • the end-to-drilling end is a three-stage reaming and retracting assembly, a primary and secondary reaming and retracting assembly and a collar assembly, and the three-stage reaming and retracting assembly includes a plurality of circumferential settings that can be opened.
  • the closed blade the blade is locked by the locking mechanism
  • the first and second reaming and retracting assemblies comprise a plurality of circumferentially extendable and retractable plunger bits, the plunger bit being locked
  • the mechanism is locked and positioned;
  • the drill is provided with a drill positioning sensor and a drilling speed sensor;
  • the horizontal well collapse hole cavity pressure relief excitation simulation subsystem comprises a plunger pump, a water tank, a power source, a measuring device and a downhole injection device, the inlet of the plunger pump is connected with the water tank, the outlet is connected with the downhole injection device, and the downhole injection device
  • the horizontal section of the horizontal well is close to the wellhead side; the high potential end of the power supply is electrically connected to the copper placed in the horizontal well, and the low potential end is electrically connected to the high potential end of the measuring device, and the low potential end of the measuring device and the third
  • the output lifting simulation subsystem comprises a crushing disturbance device and a hydraulic jet pump, the hydraulic jet pump is a wide-flow jet pump, and is disposed in the vertical well near the bottom of the well; the crushing and disturbing device is arranged at the bottom of the vertical well and is relieved of pressure. Cave and vertical well connection;
  • the gas-liquid-solid separation simulation subsystem comprises a coal-liquid separation device, a wastewater collection and treatment device, a coal powder storage device and a gas collection bottle, and the inlet of the coal-liquid separation device is connected with the pipeline of the vertical wellhead, and the three outlets respectively
  • the wastewater collection and treatment device, the coal powder storage device and the gas collection bottle are connected; the coal water gas component sensor and the pressure sensor 2 are arranged on the vertical wellhead pipeline;
  • the monitoring and control simulation subsystem includes a three-layer network architecture and software of a field workstation, a monitoring instrument and a sensor and a central server control system, and is used for real-time detection and control of equipment operation and implementation process, and realizes collection, display and processing of test data. analysis.
  • the horizontal well collapse hole cavity pressure relief excitation simulation subsystem further comprises an abrasive tank and a mixing chamber, wherein the outlet of the abrasive tank and the outlet of the plunger pump are respectively connected with the mixing chamber, and the outlet of the mixing chamber is connected with the downhole injection device.
  • a branch line communicating with the water tank is arranged on the outlet line of the plunger pump, and a pressure regulating valve is arranged on the branch road.
  • the upper wing of the drill is rotated in the direction of the horizontal well well, and the drilling fluid outlet is arranged on the right side of the blade, and the inner cavity of the drill is gradually inclined toward the outer direction of the drill when it extends toward the outer circumference of the drill.
  • the simulated test system further includes a return water pump, and the inlet of the return water pump is connected with the wastewater collection and treatment device, and the outlet is connected with the water tank.
  • a filter is connected between the plunger pump and the water tank.
  • strain gauge is a distributed optical fiber measuring instrument distributed longitudinally along a similar material coal seam.
  • the present invention configures similar simulated materials corresponding to the physical and mechanical characteristics of the coal reservoir, and injects high-pressure gas into the similar material coal seam to simulate the geological pressure inside the coal seam through the high-pressure gas cylinder, and seals the three-dimensional stress through the triaxial stress.
  • the three-dimensional loading simulation of coal seam confining pressure provides a basis for simulating the mining of in-situ coalbed methane as much as possible;
  • the invention designs the drilling tool in the horizontal well drilling reaming subsystem into a three-stage drilling and a reaming drilling tool, and realizes further reaming after drilling in the horizontal section of the horizontal well through the two-way reciprocating drilling construction.
  • the horizontal section diameter is greatly increased, which avoids the problem of collapse of wellbore caused by overburden deformation caused by soft coal structure, and provides guarantee for continuous mining of in-situ coalbed methane in structural coal seam;
  • the high-pressure high-speed fluid is injected into the horizontal well cave at a certain pulse frequency to further cut and crush the medium, and the pressure pulsation excitation and stress release of the horizontal well of the simulated coal-bed methane are realized and realized.
  • the hydraulic displacement coal-liquid-gas mixture migrates along the pressure relief space to the straight section, which provides a guarantee for subsequent lifting;
  • the crushing and disturbing device of the bottom hole and the hydraulic jet pump Through the combination of the crushing and disturbing device of the bottom hole and the hydraulic jet pump, the further crushing of the coal powder and the lifting of the mixture to the vertical wellhead are realized; the coal, liquid and gas separation device realizes the efficient separation of the coal, liquid and gas of the produced mixture. And recycling of the excitation liquid;
  • monitoring instrument and sensor and central server control system three-layer network architecture and software, real-time detection and control of test equipment operation and implementation process, realizing the collection, display and processing analysis of test data, the entire mining system
  • the coordinated operation of each subsystem realized the efficient and continuous development of simulated coal-in-situ coalbed methane.
  • Figure 1 is a general schematic diagram of the system of the present invention.
  • FIG. 2 is a schematic view of a coal-based stratum structure reconstruction and similar material simulation subsystem of the present invention.
  • Figure 3 is a schematic view showing the structure of a drill in the present invention.
  • Figure 3 (a) is a schematic view of the drilling state of the drill.
  • Figure 3 (b) is a schematic view of the reaming state of the drill.
  • FIG. 4 is a schematic diagram of the pressure relief excitation simulation subsystem, the output lift simulation subsystem, and the gas-liquid-solid separation simulation subsystem of the present invention.
  • a simulation test system for the unloading and pressure mining of horizontal coal seam gas in the in-situ coalbed methane including coal-bearing stratum structure reconstruction and similar material simulation subsystem 1.
  • Horizontal well drilling and reaming simulation System 2 horizontal well collapse hole cavity pressure relief excitation simulation subsystem 3, output lift simulation subsystem 4, gas-liquid-solid separation simulation subsystem 5 and monitoring control subsystem, the coal-bearing stratum structure reconstruction
  • the similar material simulation subsystem 1 includes a three-axis stress-tight stereo stent 1.1, a similar material surrounding rock 1.3, a similar material coal seam 1.4, a high-pressure gas cylinder 1.2, and a gas booster pump 1.9, and the three-axis stress-tight stereo stent 1.1 is composed of six
  • the movable steel plates are connected to form a sealed hexahedron, in which similar material surrounding rock 1.3 and similar material coal layer 1.4 are placed, and two layers of similar material surrounding rock 1.3 are respectively located above and below the similar material coal
  • the similar material coal seam 1.4 increases the confining pressure; the inlet of the gas booster pump 1.9 is in communication with the outlet of the high pressure gas cylinder 1.2, the outlet pipeline is placed in the similar material coal seam 1.4, and the power input port is connected to the outlet of the air compressor 1.8, In the similar material coal seam 1.4, the gas pressure in the coal seam is increased; the outlet of the high pressure gas cylinder 1.2 is provided with a valve 6.13 for controlling the release of gas in the high pressure gas cylinder 1.2; a similar material is provided in the coal seam 1.4 near the lower end. (not shown), temperature sensor (not shown) and strain gauge (not shown) for measuring the pressure, temperature and strain of similar material coal seam 1.4 during the test;
  • the horizontal well drilling and reaming simulation subsystem includes a simulated drilling rig (not shown), a drill string string (not shown), a drilling tool and a drilling fluid circulation system, and a simulated drilling rig and a drill string string.
  • the connection between the two is the same as in the prior art.
  • the simulated drilling rig is used to power the drilling tool.
  • the string string is a string consisting of a kelly, a drill pipe, a drill collar and other downhole tools for installing the drilling tool;
  • the drilling tool is a reciprocating drilling reaming drilling tool.
  • the drilling tool is connected with the drill string tube string to the drilling end with three-stage reaming and retracting assembly respectively.
  • the three-stage reaming and retracting assembly 2.3 includes a plurality of circumferentially disposed open and closed blades 2.5, the blade 2.5 is locked by the locking mechanism 2.6, the first and second expansion
  • the hole and retraction assembly 2.2 includes a plurality of circumferentially extendable and retractable plunger bits 2.4, the plunger bit 2.4 is locked by a locking mechanism 2.7, and the drilling fluid positive circulation system is connected to other components.
  • the drill has a drill positioning sensor and a drilling speed sensor for monitoring the drill Position of the head and drilling speed; when drilling in the horizontal well 1.11, if drilling into the straight hole 1.12, the plunger bit 2.4 extends and starts drilling. If returning to the simulated drilling rig, the blade is opened 10.5. Since the diameter after opening is larger than the diameter when the plunger bit 10.4 is extended, the reaming of the horizontal well is realized, and the three-stage expansion in the rock mass of the drillable grades I, II, III, IV and V is realized. The hole expansion rate of the three stages reaches 150%, 200%, and 300%, respectively, and the diameter of the well after the hole expansion increases by 200%-300%;
  • the horizontal well collapse hole cavity pressure relief excitation simulation subsystem includes a plunger pump 3.1, a water tank 3.3, a power source 3.10, a measuring device 3.11 and a downhole injection device 3.12, the inlet of the plunger pump 3.1 is connected to the water tank 3.3, the outlet and the underground
  • the injection device 3.12 is connected, and the downhole injection device 3.12 is placed in the horizontal section of the horizontal well 1.11 near the wellhead side; the high potential end of the power supply 3.10 is electrically connected to the copper placed in the horizontal well 1.11, and the low potential end is connected to the measuring device 3.11.
  • the high-potential end is electrically connected, and the low-potential end of the measuring device 3.11 is electrically connected to the copper of the outer surface of the triaxial stress-tight stereo stent 1.1; the downhole pressure sensor and the saturation probe are provided at the horizontal well 1.11 near the vertical well 1.12; the horizontal well 1.11
  • the wellhead inlet line is provided with a valve 3.9 and a pressure sensor 3.8 for controlling the injection of the excitation liquid into the horizontal well 1.11 and monitoring the injection pressure. After the horizontal well 1.11 is reamed to create a cave hole, the plunger pump 3.1 is fixed.
  • the pulse frequency injects high-pressure high-speed fluid into the horizontal well cave, and is sprayed from the downhole injection device 3.12 to the horizontal well 1.11 horizontal section to form the pressure relief cave 6 to realize the coal seam gas Hirai pressure pulsation excitation and stress relief; and injected by a high pressure high velocity fluid, displacement gas - liquid - coal mixture in the expansion spaces to 1.12 migration vertical well, so as to be output.
  • the relief pressure excitation range (stress release zone width/coal thickness) ⁇ 15 is achieved by horizontal well pressure pulsation excitation and stress release; during the pressure relief excitation process, the measuring device 3.11 monitors the downhole voltage and current fields, the downhole pressure sensor and The saturation probe measures the pressure and saturation downhole;
  • the production lift simulation subsystem includes a crushing disturbance device 4.1 and a water jet pump 4.2, and the water jet pump 4.2 is a wide-flow jet pump, which is disposed in the vertical well 1.12 near the bottom of the well for gas-liquid- The coal mixture is lifted to the wellhead; the crushing disturbance device 4.1 is located at the bottom of the vertical well 1.12, the pressure relief cave 6 and the vertical well 1.12, and the bottom coal powder is broken, making it easier to be lifted by the hydraulic jet pump 4.2 to the 1.12 wellhead of the vertical well. Efficient output of fluids with pulverized coal concentration ⁇ 50%;
  • the gas-liquid-solid separation simulation subsystem includes a coal-liquid separation device 5.4, a wastewater collection and treatment device 5.6, a coal powder storage device 5.8, and a gas collection bottle 5.10, and the inlet of the coal-liquid separation device 5.4 is connected to the vertical well 1.12 wellhead pipeline.
  • the three outlets are connected to the wastewater collection and treatment device 5.6, the pulverized coal storage device 5.8 and the gas collection bottle 5.10;
  • the vertical well 1.12 wellhead pipeline is provided with a valve 5.2, a coal-water component sensor 5.1 and a pressure sensor 5.3, respectively It is used to control the discharge of the output in the vertical well, to detect the composition and pressure of the effluent;
  • the subsystem can realize the pretreatment of gas-liquid coal mixture, gas separation, liquid coal separation, coal-gas collection, excitation liquid (or water) Purification and treatment, gas separation efficiency of 90%-95%, excitation fluid separation and collection efficiency of 80%-90%, coal powder collection capacity of 98% or more.
  • the monitoring and control subsystem includes a three-layer network architecture and software of a field workstation, a monitoring instrument and a sensor and a central server control system, and is based on a high-precision sensor technology, and establishes a three-layer network architecture of a sensor, a field workstation, and a central server control system.
  • the horizontal well collapse hole-cavity pressure relief excitation simulation subsystem further includes an abrasive tank 3.5 and a mixing chamber 3.7, an outlet of the abrasive tank 3.5, and an outlet of the plunger pump 3.1 and a mixing chamber 3.7, respectively.
  • the outlet of the mixing chamber 3.7 is connected with the downhole injection device 3.12, and a certain proportion of abrasive is added to the excitation liquid, which can increase the ability of the excitation liquid to cut coal rock and improve the mining efficiency; the outlet of the abrasive tank 3.5 is provided with a shut-off valve 3.5.
  • the branch line of the plunger pump 3.1 is provided with a branch connected to the water tank 3.3, and the regulating circuit is provided with a pressure regulating valve 3.4 for controlling the pressure of the excitation liquid;
  • the upper wing 2.5 of the drill is rotated in the direction of the horizontal wellhead, and the drilling fluid outlet 2.8 is located on the right side of the blade 2.5, self-drilling.
  • the inner cavity extends toward the outer circumference of the drilling tool, it gradually slopes toward the blade 2.5; during drilling, the drilling fluid can serve as cooling and auxiliary cutting for the conventional drilling fluid, and can provide sufficient support for the blade 2.5 expansion.
  • the simulated test system further includes a return water pump 5.11, the inlet of the return water pump 5.11 is connected to the wastewater collection and processing device 5.6, and the outlet is connected to the water tank 3.3; the separated excitation liquid is processed and then enters.
  • the water tank 3.3 is recycled to ensure continuity of the test and save resources.
  • a filter 3.2 is connected between the plunger pump 3.1 and the water tank 3.3 to filter impurities flowing into the water of the plunger pump 3.1 from the water tank 3.3 to prevent the plunger pump 3.1 from being damaged due to impurities in the circulating water.
  • the strain gauge is preferably a distributed fiber optic gauge that can be longitudinally distributed along a similar material coal seam 1.4 to make the measured strain data more accurate.
  • the specific test process includes the following steps:
  • the three-axis stress-tight stereo stent 1.1 is preheated in a constant temperature room to reach the test design temperature;
  • the monitoring and control simulation subsystem collects the corresponding time, pressure, temperature, stress-strain, saturation, voltage/current, sedimentation solid mass, produced liquid mass, produced gas flow, etc. while controlling the above steps. Related data and record the data as a data file.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Geophysics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Earth Drilling (AREA)

Abstract

一种构造煤原位煤层气水平井洞穴卸压开采模拟试验系统,由煤系地层结构重构与相似材料模拟子系统(1)模拟构造煤储层,由水平井钻井扩孔模拟子系统(2)施工水平井(1.11)-直井(1.12)对接U型井,并对水平段扩孔;由水平井塌孔造洞穴卸压激励模拟子系统(3)实现水平井压力脉动激励和应力释放,并水力驱替煤液气混合物向直井段运移;由产出物举升模拟子系统(4)实现进一步破碎煤粉及混合物举升,由气液固分离模拟子系统(5)进行煤、液、气的分离,由监测控制子系统实时检测、控制装备运转和实施过程。该系统能够实现模拟松软构造煤储层水平井大口径成井、水平井造洞穴应力释放、混合流体有效举升及产出混合物的高效分离,为实现构造煤原位煤层气的高效开发提供指导依据。

Description

一种构造煤原位煤层气水平井洞穴卸压开采模拟试验系统 技术领域
本发明涉及一种煤层气开采模拟试验系统,特别是涉及一种构造煤原位煤层气水平井洞穴卸压开采模拟试验系统,属于煤层气开采领域。
背景技术
构造煤是指煤层受构造应力作用,原生结构、构造受到强裂破坏而产生碎裂、揉皱、擦光面等构造变动特征的煤。构造煤广泛发育和构造煤煤层气资源丰富是中国煤与煤层气资源的显著特征,构造煤资源量占我国已发现煤炭资源的比例很高,构造煤煤层气资源量占我国煤层气资源总量的比例更大。构造煤具有富气、低渗、松软等突出特征,多为煤与瓦斯突出煤层,因危害大且抽采利用困难,煤矿生产中多将其风排到大气中,构造煤煤层气的高效开发对能源、安全、生态具有十分突出的意义。
基于疏水降压解吸采气理论的方法是当前原位煤层气地面井开发的主要方法,由于构造煤储层渗透率极低且水力压裂等改造方式效果很差,疏水降压解吸采气理论不适合应用于构造煤储层,勘探开发实践结果也表明,基于疏水降压解吸采气理论基础的煤层气勘探开发技术,包括SVR技术系列(直井压裂、U型井、多分枝水平井、水平井压裂等)、ECBM技术系列(CO 2-ECBM、N 2-ECBM等)及其复合技术,均无法实现构造煤煤层气的高效开发。因而,构造煤煤层气高效勘探开发技术与装备成为制约中国煤层气产业快速规模化发展的重要技术瓶颈之一。
随着对煤层气开采技术的深入研究,煤矿区被保护层构造煤煤层气采动卸压增透开发理论为构造煤原位煤层气的开采提供了新的思路,但在实际开采应用中,由于构造煤本身的特性,存在覆岩变形造成井孔破断、煤与煤层气生产衔接困难等问题。因此,研创一种适用于构造煤原位煤层气开采的技术理论及开采模拟试验系统,对于打破我国构造煤煤层气地面井高效开发技术瓶颈,实现我国煤层气勘探开发具有重要的理论和实际生产指导意义。
发明内容
为了解决上述问题,本发明提供一种构造煤原位煤层气水平井洞穴卸压开采模拟试验系统,能够实现模拟松软构造煤储层水平井大口径成井、水平井造洞穴应力释放、混合流体有效举升及产出混合物的高效分离的开采过程,为实现构造煤原位煤层气的高效连续开发提供指导依据。
为了达到上述目的,本发明采用如下技术方案:一种构造煤原位煤层气水平井洞穴卸压开采模拟试验系统,包括煤系地层结构重构与相似材料模拟子系统、水平井钻孔扩孔模拟子系统、水平井塌孔造洞穴卸压激励模拟子系统、产出物举升模拟子系统、气液固分离模拟子系统和监测控制子系统,所述的煤系地层结构重构与相似材料模拟子系统包括三轴应力密封立体支架、相似材料围岩、相似材料煤层、高压气瓶和气体增压泵,所述的三轴应力密封立体支架由六块可移动钢板相连形成密封的六面体、其内放置相似材料围岩和相似材料煤层,两层相似材料围岩分别位于相似材料煤层上方和下方,X方向伺服加载系统、Y方向伺服加载系统和Z方向伺服加载系统分别与三轴应力密封立体支架外部对应的加载活塞液动连接;所述的气体增压泵的入口与高压气瓶的出口连通、出口管路置于相似材料煤层内、动力输入口与空压机出口连通;相似材料煤层内靠近下端处设有压力传感器、温度传感器和应变测量仪,用于测量试验过程中相似材料煤层的压力、温度和应变;
所述的水平井钻孔扩孔模拟子系统包括模拟钻机、钻柱管串、钻具及钻井液循环系统,钻具为往复式钻孔扩孔钻具,钻具自与钻柱管串连接端至钻进端分别为三级扩孔与收回总成、一级和二级扩孔与收回总成和领眼总成,三级扩孔与收回总成上包含若干周向设置可张开和闭合的刀翼,刀翼由锁定机构二锁紧定位,一级和二级扩孔与收回总成上包含若干周向设置的可伸出和缩回的柱塞钻头,柱塞钻头由锁定机构一锁紧定位;所述的钻具上设有钻头定位传感器和钻进速度传感器;
所述的水平井塌孔造洞穴卸压激励模拟子系统包括柱塞泵、水箱、电源、测量装置和井下喷射装置,柱塞泵的入口与水箱连通、出口与井下喷射装置连通,井下喷射装置置于水平井水平段靠近井口一侧;所述的电源的高电位端与置于水平井内的铜带电连接、低电位端与测量装置的高电位端电连接,测量装置的低电位端与三轴应力密封立体支架外表面的铜带电连接;在水平井靠近直井处设有井下压力传感器和饱和度探针;水平井井口进液管路上设有压力传感器一;
所述的产出物举升模拟子系统包括破碎扰动装置和水力喷射泵,水力喷射泵为宽流道射流泵、设在直井内靠近井底处;破碎扰动装置设在直井井底、卸压洞穴和直井连接处;
所述的气液固分离模拟子系统包括煤液气分离装置、废水收集与处理装置、煤粉储存装置和气体收集瓶,煤液气分离装置入口与直井井口管路连通、三个出口分别与废水收集与处理装置、煤粉储存装置和气体收集瓶连通;直井井口管路上设有煤水气组分传感器和压力传感器二;
所述的监测控制模拟子系统包括现场工作站、监测仪表及传感器和中央服务器控制系统三层网络架构和软件,用于实时检测、控制装备运转情况和实施过程,实现试验数据的采集、显示和处理分析。
进一步的,所述的水平井塌孔造洞穴卸压激励模拟子系统还包括磨料罐和混合腔,磨料罐出口、柱塞泵的出口分别与混合腔连通,混合腔的出口与井下喷射装置连通;在柱塞泵出口管路上设有与水箱连通的支路,支路上设有调压阀。
进一步的,所述的钻具上刀翼向水平井井口方向旋转张开,钻井液出口设在刀翼右方,自钻具内腔向钻具外圆延伸时逐渐向刀翼方向倾斜。
进一步的,所述的模拟试验系统还包括回水泵,回水泵的入口与废水收集与处理装置连通、出口与水箱连通。
进一步的,在柱塞泵与水箱之间连接有过滤器。
进一步的,所述的应变测量仪为分布式光纤测量仪,沿着相似材料煤层纵向分布。
本发明根据相似性原理,配置与构造煤储层相应物理、力学特征的相似模拟材料,通过高压气瓶向相似材料煤层中注入高压气体模拟煤层内部的地质压力,通过向三轴应力密封立体支架三维加载模拟煤层围压,为尽可能真实准确地模拟构造煤原位煤层气的开采提供基础;
本发明通过将水平井钻孔扩孔子系统中的钻具设计成三级钻孔及扩孔式的钻具,通过双向往复式钻井施工,实现了水平井水平段的钻孔后进一步扩孔,极大地增幅了水平段井径,避免了构造煤松软所造成的的覆岩变形致井孔坍塌的问题,为构造煤层原位煤层气的连续开采提供了保证;
通过在水平井扩孔造洞穴裸眼完井后,以一定脉冲频率向水平井洞穴注入高压高速流体,进一步切割、破碎媒体,实现了模拟构造煤煤层气水平井压力脉动激励和应力释放,并实现了水力驱替煤-液-气混合物沿卸压空间向直井段运移,为后续的举升提供了保证;
通过井底的破碎扰动装置和水力喷射泵配合,实现了煤粉的进一步破碎及混合物向直井井口的举升;通过煤液气分离装置,实现了产出混合物的煤、液、气的高效分离及激励液的循环利用;
通过现场工作站、监测仪表及传感器和中央服务器控制系统三层网络架构和软件,实现了实时检测、控制试验装备运转情况和实施过程,实现了试验数据的采集、显示和处理分析,整个开采系统中各个子系统的配合运行实现了模拟造煤原位煤层气的高效连续开发。
附图说明
图1是本发明的系统总体原理图。
图2是本发明的煤系地层结构重构与相似材料模拟子系统示意图。
图3是本发明中的钻具结构示意图。
图3(a)是钻具钻孔状态示意图。
图3(b)是钻具扩孔状态示意图。
图4是本发明的卸压激励模拟子系统、产出物举升模拟子系统、气液固分离模拟子系统示意图。
图中:1、煤系地层结构重构与相似材料模拟子系统,1.1、三轴应力密封立体支架,1.2、高压气瓶,1.3、相似材料围岩,1.4、相似材料煤层,1.5、Z方向伺服加载系统,1.6、Y方向伺服加载系统,1.7、X方向伺服加载系统,1.8、空压机,1.9气体增压泵,1.10、加载活塞,1.11、水平井,1.12、直井,1.13、阀门六,2、水平井钻孔扩孔模拟子系统,2.1、领眼总成,2.2、一级和二级扩孔与收回总成,2.3、三级扩孔与收回总成,2.4、柱塞钻头,2.5、刀翼,2.6、锁定机构二,2.7、锁定机构一,2.8、钻井液出口,3、水平井塌孔造洞穴卸压激励子系统,3.1、柱塞泵,3.2、过滤器,3.3、水箱,3.4、调压阀,3.5、磨料罐,3.6、截止阀,3.7、混合腔,3.8、压力传感器一,3.9、阀门一,3.10、电源,3.11、测量装置,3.12、井下喷射装置,4、产出物举升模拟子系统,4.1、破碎扰动装置,4.2、水力喷射泵,5、气液固分离模拟子系统,5.1、煤水气组分传感器,5.2、阀门二,5.3、压力传感器二,5.4、煤液气分离装置,5.6、废水收集与处理装置,5.8、煤粉储存装置,5.9、阀门五,5.10、气体收集瓶,5.11、回水泵,6、卸压洞穴。
具体实施方式
下面结合附图对本发明作进一步说明(以下描述中的左右方向与图1中的左右方向相同)。
如图1至图4所示,一种构造煤原位煤层气水平井洞穴卸压开采模拟试验系统,包括煤系地层结构重构与相似材料模拟子系统1、水平井钻孔扩孔模拟子系统2、水平井塌孔造洞穴卸压激励模拟子系统3、产出物举升模拟子系统4、气液固分离模拟子系统5和监测控制子系统,所述的煤系地层结构重构与相似材料模拟子系统1包括三轴应力密封立体支架1.1、相似材料围岩1.3、相似材料煤层1.4、高压气瓶1.2和气体增压泵1.9,所述的三轴应力密封立体支架1.1由六块可移动钢板相连形成密封的六面体、其内放置相似材料围岩1.3和相似材料煤层1.4,两层相似材料围岩1.3分别位于相似材料煤层1.4上方和下方用以模拟煤层顶板和底板,X方向伺服加载系统1.7、Y方向伺服加载系统1.6和Z方向伺服加载系统1.5分别与三轴应力密封立体支架1.1外部对应的加载活塞1.10液动连接,用以向相似材料煤层1.4增加围压;所述的气体增压泵1.9的入口与高压气瓶1.2的出口连通、出口管路置于相似材料煤层1.4内、动力输入口与空压机1.8出口连通,用于向相似材料煤层1.4内增加煤层内气体压力;高压气瓶1.2的出口处设有阀门六1.13,用于控制高压气瓶1.2内气体的释放;相似材料煤层1.4内靠近下端处设有压力传感器(图中未画出)、温度传感器(图中未画出)和应变测量仪(图中未画出),用于测量试验过程中相似材料煤层1.4的压力、温度和应变;
所述的水平井钻孔扩孔模拟子系统包括模拟钻机(图中未画出)、钻柱管串(图中未画出)、钻具及钻井液循环系统,模拟钻机、钻柱管串之间的连接与现有技术相同,模拟钻机用于为钻具提供动力,钻柱管串是由方钻杆、钻杆、钻铤及其他井下工具组成的管串,用于安装钻具;钻具为往复式钻孔扩孔钻具,钻具自与钻柱管串连接端至钻进端分别为三级扩孔与收回总成2.3、一级和二级扩孔与收回总成2.2和领眼总成2.1,三级扩孔与收回总成2.3上包含若干周向设置可张开和闭合的刀翼2.5,刀翼2.5由锁定机构二2.6锁紧定位,一级和二级扩孔与收回总成2.2上包含若干周向设置的可伸出和缩回的柱塞钻头2.4,柱塞钻头2.4由锁定机构一2.7锁紧定位,钻井液正循环系统与其他部件的连接与现有技术相同;所述的钻具上设有钻头定位传感器和钻进速度传感器,用于监测钻头的位置及钻进速度;在进行水平井1.11处钻井施工时,若向直井1.12方向钻进贯通,柱塞钻头2.4伸出,开始钻孔,若向模拟钻机方向返回,刀翼10.5张开,由于其张开后的直径大于柱塞钻头10.4伸出时的直径,故实现了水平井的扩孔,实现了可钻性等级I、II、III、IV和V岩体中的三级扩孔,三级扩孔率分别达到150%、200%、300%,扩孔后井径增幅200%-300%;
所述的水平井塌孔造洞穴卸压激励模拟子系统包括柱塞泵3.1、水箱3.3、电源3.10、测量装置3.11和井下喷射装置3.12,柱塞泵3.1的入口与水箱3.3连通、出口与井下喷射装置3.12连通,井下喷射装置3.12置于水平井1.11水平段靠近井口一侧;所述的电源3.10的高电位端与置于水平井1.11内的铜带电连接、低电位端与测量装置3.11的高电位端电连接,测量装置3.11的低电位端与三轴应力密封立体支架1.1外表面的铜带电连接;在水平井1.11靠近直井1.12处设有井下压力传感器和饱和度探针;水平井1.11井口进液管路上设有阀门一3.9和压力传感器一3.8,用于控制向水平井1.11内注入激励液及监测注入压力;水平井1.11扩孔造洞穴裸眼完井后,柱塞泵3.1以一定的脉冲频率向水平井洞穴注入高压高速流体,由井下喷射装置3.12喷射向水平井1.11水平段形成卸压洞穴6,实现构造煤煤层气水平井压力脉动激励和应力释放;并通过注入的高压高速流体,驱替气-液-煤混合物沿卸压空间向直井1.12运移,从而被产出。通过水平井压力脉动激励和应力释放实现卸压激励范围(应力释放区宽度/煤厚)≥15;泄压激励过程中,测量装置3.11对井下的电压场和电流场进行监测,井下压力传感器和饱和度探针对井下的压力和饱和度进行测量;
所述的产出物举升模拟子系统包括破碎扰动装置4.1和水力喷射泵4.2,水力喷射泵4.2为宽流道射流泵、设在直井1.12内靠近井底处,用于将气-液-煤混合物举升至井口;破碎扰动装置4.1设在直井1.12井底、卸压洞穴6和直井1.12连接处,破碎井底煤粉,使之更容易被水力喷射泵4.2举升至直井1.12井口,实现煤粉浓度≤50%的流体高效产出;
所述的气液固分离模拟子系统包括煤液气分离装置5.4、废水收集与处理装置5.6、煤粉储存装置5.8和气体收集瓶5.10,煤液气分离装置5.4入口与直井1.12井口管路连通、三个出口分别与废水收集与处理装置5.6、煤粉储存装置5.8和气体收集瓶5.10连通;直井1.12井口管路上设有阀门二5.2、煤水气组分传感器5.1和压力传感器二5.3,分别用于控制直井内产出物的排出、检测排出物的组分及压力;该子系统可实现气液煤混合物预处理、瓦斯分离、液煤分离、煤-气收集、激励液(或水)净化与处理,瓦斯分离效率90%-95%以上,激励液分离与收集效率80%-90%以上,煤粉收集能力98%以上。
所述的监测控制子系统包括现场工作站、监测仪表及传感器和中央服务器控制系统三层网络架构和软件,以高精传感器技术为基础,通过建立传感器、现场工作站、中央服务器控制系统三层网络架构,应用数据库技术与滤波算法实现海量数据实时存储与高精处理;利用智能算法,实现试验平台物理参数的闭环控制;应用组态分析软件与物联网感知技术,形成“精确化、可视化、交互化、快速化、智能化”的数据采集与监控系统,实时检测、控制试验系统运转情况和实施过程,实现工程数据的采集、显示和处理分析。
如图1、图4所示,所述的水平井塌孔造洞穴卸压激励模拟子系统还包括磨料罐3.5和混合腔3.7,磨料罐3.5出口、柱塞泵3.1的出口分别与混合腔3.7连通,混合腔3.7的出口与井下喷射装置3.12连通,在激励液中加入一定比例的磨料,可以增大激励液切割煤岩的能力,提高开采效率;磨料罐3.5的出口处设有截止阀3.5,用于控制向混合腔3.7输入磨料;在柱塞泵3.1出口管路上设有与水箱3.3连通的支路,支路上设有调压阀3.4,用于控制激励液的压力;
如图1、图3(a)、图3(b)所示,所述的钻具上刀翼2.5向水平井井口方向旋转张开,钻井液出口2.8设在刀翼2.5右方,自钻具内腔向钻具外圆延伸时逐渐向刀翼2.5方向倾斜;钻井时,钻井液既可以像常规钻井液起到冷却及辅助切割的作用,还可以为刀翼2.5扩张提供足够的支撑力,以减少与刀翼2.5连接部件的刚性变形,延长设备的使用寿命。
如图1、图4所示,所述的模拟试验系统还包括回水泵5.11,回水泵5.11的入口与废水收集与处理装置5.6连通、出口与水箱3.3连通;分离出的激励液经过处理后进入水箱3.3以循环利用,保证试验的连续性,并节约资源。
在柱塞泵3.1与水箱3.3之间连接有过滤器3.2,过滤从水箱3.3流入柱塞泵3.1的水中的杂质,避免因为循环水内存在杂质导致柱塞泵3.1损坏。
所述的应变测量仪优选分布式光纤测量仪,能够沿着相似材料煤层1.4纵向分布,使测量的应变数据更加准确。
具体试验过程包括如下步骤:
1)按照构造煤储层实际地质特征,根据相似性原理,配置相应物理、力学特征的相似模拟材料,置于三轴应力密封立体支架1.1内,同时布置应力传感器、温度传感器和应变测量仪;
将三轴应力密封立体支架1.1置于恒温房内预热,达到试验设计温度;
打开阀门六1.13,启动空压机1.8和气体增压泵1.9,向相似材料煤层1.4内注入气体,同时启动X方向伺服加载系统、Y方向伺服加载系统和Z方向伺服加载系统,向三轴应力密封立体支架1.1增加围压至试验设计压力,检查装置的气密性;若气密性合格,进行下一步骤;若气密性不合格,重复本步骤;
2)布置好各个设备的位置并将相应的设备连接,采用现有钻井钻具及工艺技术施工直井1.12和水平井1.11的直井段和造斜段至相似材料煤层1.4;施工期间,钻井液循环系统 为井下提供钻井液;
3)将钻井工具更换成往复式钻孔扩孔钻具并下到水平井造斜段处,对相似材料煤层1.4进行三级扩孔和大孔径成井,形成与直井1.12贯通的水平井段(形成水平井-直井对接的U型井),完成造洞穴裸眼完井;施工期间,钻井液循环系统为井下提供钻井液;
4)起出井下所有钻井工具,向水平井1.11水平段起点处下入井下喷射装置3.12及与电源3.10高电位端连接的铜带,向直井1.12下入气-液-煤混合物举升与产出装备,即破碎扰动装置4.1和水力喷射泵4.2,直井1.12井口与煤液气分离装置5.4连通;
5)打开阀门一3.9,启动柱塞泵3.1,以设定的频率向水平井1.11水平段注入高压高速流体,切割、破碎煤岩,实现水平井1.11水平段的压力脉动激励和应力释放,形成卸压洞穴6;再将水的速度加速成高速射流,进一步破碎并冲刷煤粉,并将形成的气-液-煤混合物向直井1.12井底运移;在对水平井1.11水平段进行压力脉动激励和应力释放过程中,可以在激励液中混合一定比例的磨料,增大激励液切割煤岩的能力,提高开采效率;
6)打开阀门二5.2和阀门五5.9,启动井下的破碎扰动装置4.1及水力喷射泵4.2,对流入直井1.12井底的煤粉进一步破碎后,将其举升至地面进入煤液气分离装置5.4;
7)对进入煤液气分离装置5.4内的混合物进行分离处理,使分离出的煤层气、激励液和煤粉分别进入气体收集瓶5.10、废水收集与处理装置5.6和煤粉储存装置中;
8)启动回水泵5.11,将处理后的激励液输送到水箱3.3内,以供循环使用;
监测控制模拟子系统在对上述各个步骤的进行控制的同时,采集相应的时间、压力、温度、应力-应变、饱和度、电压/电流、沉降固体质量、产出液体质量、产出气体流量等相关数据,并将数据记录为数据文件。

Claims (6)

  1. 一种构造煤原位煤层气水平井洞穴卸压开采模拟试验系统,其特征在于,包括煤系地层结构重构与相似材料模拟子系统(1)、水平井钻孔扩孔模拟子系统(2)、水平井塌孔造洞穴卸压激励模拟子系统(3)、产出物举升模拟子系统(4)、气液固分离模拟子系统(5)和监测控制子系统,所述的煤系地层结构重构与相似材料模拟子系统(1)包括三轴应力密封立体支架(1.1)、相似材料围岩(1.3)、相似材料煤层(1.4)、高压气瓶(1.2)和气体增压泵(1.9),所述的三轴应力密封立体支架(1.1)由六块可移动钢板相连形成密封的六面体、其内放置相似材料围岩(1.3)和相似材料煤层(1.4),两层相似材料围岩(1.3)分别位于相似材料煤层(1.4)上方和下方,X方向伺服加载系统(1.7)、Y方向伺服加载系统(1.6)和Z方向伺服加载系统(1.5)分别与三轴应力密封立体支架(1.1)外部对应的加载活塞(1.10)液动连接;所述的气体增压泵(1.9)的入口与高压气瓶(1.2)的出口连通、出口管路置于相似材料煤层(1.4)内、动力输入口与空压机(1.8)出口连通;相似材料煤层(1.4)内靠近下端处设有压力传感器、温度传感器和应变测量仪,用于测量试验过程中相似材料煤层(1.4)的压力、温度和应变;
    所述的水平井钻孔扩孔模拟子系统包括模拟钻机、钻柱管串、钻具及钻井液循环系统,钻具为往复式钻孔扩孔钻具,钻具自与钻柱管串连接端至钻进端分别为三级扩孔与收回总成(2.3)、一级和二级扩孔与收回总成(2.2)和领眼总成(2.1),三级扩孔与收回总成(2.3)上包含若干周向设置可张开和闭合的刀翼(2.5),刀翼(2.5)由锁定机构二(2.6)锁紧定位,一级和二级扩孔与收回总成(2.2)上包含若干周向设置的可伸出和缩回的柱塞钻头(2.4),柱塞钻头(2.4)由锁定机构一(2.7)锁紧定位;所述的钻具上设有钻头定位传感器和钻进速度传感器;
    所述的水平井塌孔造洞穴卸压激励模拟子系统包括柱塞泵(3.1)、水箱(3.3)、电源(3.10)、测量装置(3.11)和井下喷射装置(3.12),柱塞泵(3.1)的入口与水箱(3.3)连通、出口与井下喷射装置(3.12)连通,井下喷射装置(3.12)置于水平井(1.11)水平段靠近井口一侧;所述的电源(3.10)的高电位端与置于水平井(1.11)内的铜带电连接、低电位端与测量装置(3.11)的高电位端电连接,测量装置(3.11)的低电位端与三轴应力密封立体支架(1.1)外表面的铜带电连接;在水平井(1.11)靠近直井(1.12)处设有井下压力传感器和饱和度探针;水平井(1.11)井口进液管路上设有压力传感器一(3.8);
    所述的产出物举升模拟子系统包括破碎扰动装置(4.1)和水力喷射泵(4.2),水力喷 射泵(4.2)为宽流道射流泵、设在直井(1.12)内靠近井底处;破碎扰动装置(4.1)设在直井(1.12)井底、卸压洞穴(6)和直井(1.12)连接处;
    所述的气液固分离模拟子系统包括煤液气分离装置(5.4)、废水收集与处理装置(5.6)、煤粉储存装置(5.8)和气体收集瓶(5.10),煤液气分离装置(5.4)入口与直井(1.12)井口管路连通、三个出口分别与废水收集与处理装置(5.6)、煤粉储存装置(5.8)和气体收集瓶(5.10)连通;直井(1.12)井口管路上设有煤水气组分传感器(5.1)和压力传感器二(5.3);
    所述的监测控制模拟子系统包括现场工作站、监测仪表及传感器和中央服务器控制系统三层网络架构和软件,用于实时检测、控制装备运转情况和实施过程,实现试验数据的采集、显示和处理分析。
  2. 根据权利要求1所述的一种构造煤原位煤层气水平井洞穴卸压开采模拟试验系统,其特征是:所述的水平井塌孔造洞穴卸压激励模拟子系统还包括磨料罐(3.5)和混合腔(3.7),磨料罐(3.5)出口、柱塞泵(3.1)的出口分别与混合腔(3.7)连通,混合腔(3.7)的出口与井下喷射装置(3.12)连通;在柱塞泵(3.1)出口管路上设有与水箱(3.3)连通的支路,支路上设有调压阀(3.4)。
  3. 根据权利要求1或2所述的一种构造煤原位煤层气水平井洞穴卸压开采模拟试验系统,其特征是:所述的钻具上刀翼(2.5)向水平井井口方向旋转张开,钻井液出口(2.8)设在刀翼(2.5)右方,自钻具内腔向钻具外圆延伸时逐渐向刀翼(2.5)方向倾斜。
  4. 根据权利要求3所述的一种构造煤原位煤层气水平井洞穴卸压开采模拟试验系统,其特征是:所述的模拟试验系统还包括回水泵(5.11),回水泵(5.11)的入口与废水收集与处理装置(5.6)连通、出口与水箱(3.3)连通。
  5. 根据权利要求3所述的一种构造煤原位煤层气水平井洞穴卸压开采模拟试验系统,其特征是:在柱塞泵(3.1)与水箱(3.3)之间连接有过滤器(3.2)。
  6. 根据权利要求3所述的一种构造煤原位煤层气水平井洞穴卸压开采模拟试验系统,其特征是:所述的应变测量仪为分布式光纤测量仪,沿着相似材料煤层(1.4)纵向分布。
PCT/CN2018/114948 2018-04-28 2018-11-12 一种构造煤原位煤层气水平井洞穴卸压开采模拟试验系统 WO2019205578A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/757,771 US11035228B2 (en) 2018-04-28 2018-11-12 Simulation test system for gas extraction from tectonically-deformed coal seam in-situ by depressurizing horizontal well cavity
AU2018420473A AU2018420473B2 (en) 2018-04-28 2018-11-12 Simulation test system for gas extraction from tectonically-deformed coal seam in-situ by depressurizing horizontal well cavity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810404469.X 2018-04-28
CN201810404469.XA CN108798630B (zh) 2018-04-28 2018-04-28 一种构造煤原位煤层气水平井洞穴卸压开采模拟试验系统

Publications (1)

Publication Number Publication Date
WO2019205578A1 true WO2019205578A1 (zh) 2019-10-31

Family

ID=64093153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/114948 WO2019205578A1 (zh) 2018-04-28 2018-11-12 一种构造煤原位煤层气水平井洞穴卸压开采模拟试验系统

Country Status (4)

Country Link
US (1) US11035228B2 (zh)
CN (1) CN108798630B (zh)
AU (1) AU2018420473B2 (zh)
WO (1) WO2019205578A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111830231A (zh) * 2020-07-21 2020-10-27 安徽理工大学 一种煤水气混合物的高效分离、回收处理与循环利用试验方法
CN112081575A (zh) * 2020-09-10 2020-12-15 西南石油大学 多场耦合下煤层气井井周围岩形变可视化模拟装置与方法
CN112228036A (zh) * 2020-06-04 2021-01-15 精英数智科技股份有限公司 一种瓦斯抽采监控方法、系统、设备及可读存储介质
CN114778311A (zh) * 2022-04-18 2022-07-22 中国矿业大学 一种破断煤体各向异性强度及渗透性测试方法
CN114965150A (zh) * 2022-04-14 2022-08-30 安徽理工大学 联动测试煤层注水治理瓦斯及粉尘作用效果的方法
CN115467907A (zh) * 2022-11-15 2022-12-13 西南石油大学 钻井液排量控制的钻柱扭矩传递与分离装置及其方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109267940A (zh) * 2018-11-29 2019-01-25 中国矿业大学 一种基于射频识别技术的多级变径随钻扩孔钻具及方法
CN110261569B (zh) * 2019-06-21 2020-06-12 中国矿业大学 基于管网系统抽采煤层瓦斯效果的模拟实验系统及方法
CN110823707A (zh) * 2019-11-18 2020-02-21 中国矿业大学 卸压煤层气开发模拟的试样真三轴密封加载装置及方法
CN111307541B (zh) * 2019-12-19 2020-09-25 磐安叶层煤矿设备有限公司 一种煤层钻探气体分类收集装置
CN111271060B (zh) * 2020-01-20 2021-06-04 王�琦 多场耦合矿井智能开采模型试验系统
CN111551692A (zh) * 2020-05-21 2020-08-18 煤炭科学技术研究院有限公司 一种稳定压差二级联动诱发煤与瓦斯突出的实验装置与方法
CN112145073B (zh) * 2020-09-28 2022-04-01 中国矿业大学 一种原位可控的煤与瓦斯突出过程物理模拟方法
CN112267875B (zh) * 2020-10-22 2022-04-01 中国矿业大学 一种煤层水力冲孔最优出煤量确定方法
CN114412417B (zh) * 2020-10-28 2024-03-26 中国石油天然气股份有限公司 多级煤层气合采实验装置
CN112253120B (zh) * 2020-11-26 2023-06-09 河南理工大学 煤矿废弃资源流态化共采方法
CN112504936B (zh) * 2020-11-30 2021-12-03 中国地质大学(北京) 一种模拟研究深部煤层气渗透率试验装置及其试验方法
CN114961651B (zh) * 2021-02-22 2023-09-26 中国石油天然气股份有限公司 高温高压热风与支撑剂搅拌混合的提高低阶储层煤层气产率的装置及方法
CN113338867B (zh) * 2021-06-17 2022-08-30 中国石油化工股份有限公司 一种多煤层合采防串压力自调节装置
CN113202463B (zh) * 2021-06-21 2022-11-29 中国地质大学(北京) 一种多煤层煤层气合采物理模拟实验装置
CN113504125B (zh) * 2021-07-27 2024-03-19 辽宁工程技术大学 一种真三轴物理化学联合煤岩增透试验装置及方法
CN113605874B (zh) * 2021-08-10 2023-02-10 山西蓝焰煤层气集团有限责任公司 一种碎软煤层顶底板双层水平井煤层气抽采的方法
CN114000871B (zh) * 2021-10-29 2023-07-25 山东科技大学 一种天然气水合物储层渗流可视化试验装置及其使用方法
CN114059972B (zh) * 2021-11-24 2023-05-16 河南工程学院 一种用于煤层气负压抽采模拟装置
CN114352268B (zh) * 2022-01-14 2023-06-02 河南理工大学 一种含水围岩煤层瓦斯压力测试装置及方法
CN115064049A (zh) * 2022-05-17 2022-09-16 山东省地质矿产勘查开发局八〇一水文地质工程地质大队(山东省地矿工程勘察院) 一种用于降水井施工过程模拟的物理模型试验系统及方法
CN115097104B (zh) * 2022-06-28 2023-10-13 中国矿业大学 一种水平井洞穴激励卸压与流体运移模拟试验系统及试验方法
CN115263257B (zh) * 2022-08-19 2023-10-31 陕西延长石油(集团)有限责任公司 一种褶皱构造油藏驱油模拟实验装置及其模拟方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070062693A1 (en) * 2005-09-21 2007-03-22 Vetco Gray Inc. System, method, and apparatus for degassing tool for coal bed methane gas wells
CN201037402Y (zh) * 2007-03-06 2008-03-19 中国矿业大学 采空区卸压煤层气抽采模拟实验装置
CN103114870A (zh) * 2013-01-23 2013-05-22 重庆大学 多场耦合煤层气开采物理模拟试验系统
CN103114827A (zh) * 2013-01-23 2013-05-22 重庆大学 多场耦合煤层气抽采模拟试验方法
CN105064920A (zh) * 2015-08-05 2015-11-18 河南能源化工集团研究院有限公司 多场耦合低渗松软煤层冲孔卸压抽采模拟试验方法
WO2016076537A1 (ko) * 2014-11-10 2016-05-19 한국가스공사 탄층 가스 생산 방법

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3850477A (en) * 1972-02-18 1974-11-26 Univ Syracuse Res Corp Chemical comminution and mining of coal
US4976142A (en) * 1989-10-17 1990-12-11 Baroid Technology, Inc. Borehole pressure and temperature measurement system
US6280000B1 (en) * 1998-11-20 2001-08-28 Joseph A. Zupanick Method for production of gas from a coal seam using intersecting well bores
US6484801B2 (en) * 2001-03-16 2002-11-26 Baker Hughes Incorporated Flexible joint for well logging instruments
US7100695B2 (en) * 2002-03-12 2006-09-05 Reitz Donald D Gas recovery apparatus, method and cycle having a three chamber evacuation phase and two liquid extraction phases for improved natural gas production
US6968893B2 (en) * 2002-04-03 2005-11-29 Target Drilling Inc. Method and system for production of gas and water from a gas bearing strata during drilling and after drilling completion
US20050252661A1 (en) * 2004-05-13 2005-11-17 Presssol Ltd. Casing degasser tool
US7681639B2 (en) * 2008-06-17 2010-03-23 Innovative Drilling Technologies LLC Process to increase the area of microbial stimulation in methane gas recovery in a multi seam coal bed/methane dewatering and depressurizing production system through the use of horizontal or multilateral wells
CN101775975A (zh) * 2010-01-28 2010-07-14 郑州大学 水力掏穴卸压开采煤层气方法
CN101936153A (zh) * 2010-09-14 2011-01-05 中矿瑞杰(北京)科技有限公司 水力喷射钻孔卸压开采煤层气的方法
CN102297929B (zh) * 2011-07-06 2014-03-05 河南理工大学 构造煤卸压突出模拟实验装置
US8882204B2 (en) * 2012-08-21 2014-11-11 George Anthony Aulisio Apparatus and method for mining coal
CN103670338B (zh) * 2012-09-21 2016-06-15 新奥气化采煤有限公司 一种煤层气与煤共采方法
CN103061798B (zh) * 2012-12-30 2016-04-27 中北大学 井下顺层长钻孔连串造穴抽采煤层气方法
CA2852358C (en) * 2013-05-20 2021-09-07 Robert Gardes Continuous circulating concentric casing managed equivalent circulating density (ecd) drilling for methane gas recovery from coal seams
CN104213896A (zh) * 2014-09-01 2014-12-17 中国石油大学(北京) 煤层气储层压裂洞穴一体化完井方法
CN104391102B (zh) * 2014-11-12 2016-03-23 重庆大学 高压气体环向对称瞬时卸压破煤实验装置
CN104696003B (zh) * 2015-01-06 2017-04-05 中国矿业大学 一种钻割一体化与振荡注热协同强化煤层瓦斯抽采方法
CN104563990B (zh) * 2015-01-06 2018-04-20 中国矿业大学 一种钻冲割一体化与注热协同强化煤层瓦斯抽采方法
CN104763398A (zh) * 2015-02-11 2015-07-08 中国石油集团长城钻探工程有限公司 一种v型井底板辅助层开采构造煤煤层气方法
CN104863561B (zh) * 2015-04-15 2017-06-23 中国矿业大学 一种井下煤层脉冲爆震波定向致裂增透方法
CN105547849B (zh) * 2016-03-01 2018-12-04 安徽理工大学 大尺寸层状承压岩石真三轴加卸载试验装置及测试方法
CN205786608U (zh) * 2016-05-05 2016-12-07 安徽理工大学 承压断层采动活化与突水通道形成过程相似试验装置
CN106401586B (zh) * 2016-06-24 2019-02-22 中国矿业大学 一种煤岩同采工作面的煤岩分选与利用方法
CN108798516B (zh) * 2018-04-28 2020-08-04 中国矿业大学 一种构造煤原位煤层气水平井洞穴卸压开采方法
CN108843241B (zh) * 2018-04-28 2020-01-14 中国矿业大学 一种构造煤原位煤层气水平井洞穴卸压开采系统
CN108868740B (zh) * 2018-04-28 2021-09-14 中国矿业大学 一种构造煤原位煤层气水平井洞穴卸压开采模拟试验方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070062693A1 (en) * 2005-09-21 2007-03-22 Vetco Gray Inc. System, method, and apparatus for degassing tool for coal bed methane gas wells
CN201037402Y (zh) * 2007-03-06 2008-03-19 中国矿业大学 采空区卸压煤层气抽采模拟实验装置
CN103114870A (zh) * 2013-01-23 2013-05-22 重庆大学 多场耦合煤层气开采物理模拟试验系统
CN103114827A (zh) * 2013-01-23 2013-05-22 重庆大学 多场耦合煤层气抽采模拟试验方法
WO2016076537A1 (ko) * 2014-11-10 2016-05-19 한국가스공사 탄층 가스 생산 방법
CN105064920A (zh) * 2015-08-05 2015-11-18 河南能源化工集团研究院有限公司 多场耦合低渗松软煤层冲孔卸压抽采模拟试验方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112228036A (zh) * 2020-06-04 2021-01-15 精英数智科技股份有限公司 一种瓦斯抽采监控方法、系统、设备及可读存储介质
CN111830231A (zh) * 2020-07-21 2020-10-27 安徽理工大学 一种煤水气混合物的高效分离、回收处理与循环利用试验方法
CN112081575A (zh) * 2020-09-10 2020-12-15 西南石油大学 多场耦合下煤层气井井周围岩形变可视化模拟装置与方法
CN112081575B (zh) * 2020-09-10 2022-09-13 西南石油大学 多场耦合下煤层气井井周围岩形变可视化模拟装置与方法
CN114965150A (zh) * 2022-04-14 2022-08-30 安徽理工大学 联动测试煤层注水治理瓦斯及粉尘作用效果的方法
CN114965150B (zh) * 2022-04-14 2024-04-16 安徽理工大学 联动测试煤层注水治理瓦斯及粉尘作用效果的方法
CN114778311A (zh) * 2022-04-18 2022-07-22 中国矿业大学 一种破断煤体各向异性强度及渗透性测试方法
CN114778311B (zh) * 2022-04-18 2024-02-06 中国矿业大学 一种破断煤体各向异性强度及渗透性测试方法
CN115467907A (zh) * 2022-11-15 2022-12-13 西南石油大学 钻井液排量控制的钻柱扭矩传递与分离装置及其方法
CN115467907B (zh) * 2022-11-15 2023-03-03 西南石油大学 钻井液排量控制的钻柱扭矩传递与分离装置及其方法

Also Published As

Publication number Publication date
CN108798630A (zh) 2018-11-13
AU2018420473B2 (en) 2021-04-15
CN108798630B (zh) 2021-09-28
US20200318476A1 (en) 2020-10-08
US11035228B2 (en) 2021-06-15
AU2018420473A1 (en) 2020-04-23

Similar Documents

Publication Publication Date Title
WO2019205578A1 (zh) 一种构造煤原位煤层气水平井洞穴卸压开采模拟试验系统
WO2019205577A1 (zh) 一种构造煤原位煤层气水平井洞穴卸压开采模拟试验系统
WO2019205516A1 (zh) 一种构造煤原位煤层气水平井洞穴卸压开采系统
WO2019205515A1 (zh) 一种构造煤原位煤层气水平井洞穴卸压开采方法
CN103195468A (zh) 一种在围岩内进行高效强化抽采的系统工艺
CN102735547A (zh) 真三轴状态下煤岩水压致裂试验方法
CN102735548A (zh) 多功能真三轴流固耦合试验系统
CN101575983A (zh) 煤矿井下定向压裂增透消突方法及压裂增透消突装置
CN103939077A (zh) 一种高应力低孔隙率煤层射孔压裂增透方法
CN102889077B (zh) 检测模拟实际工况水力喷射压裂孔内压力分布的实验装置
CN102735549A (zh) 多功能真三轴流固耦合压力室
CN104389559B (zh) 一种防治厚煤层开采过程中瓦斯超限的方法及装置
CN107725020A (zh) 一种软煤逐级跃升水力压裂增渗装置及方法
CN109323971A (zh) 一种岩层底板渗流突水试验装置及试验方法
CN109025940B (zh) 一种针对致密油藏的co2压裂驱油一体化采油方法
Niu et al. Gas Extraction Mechanism and Effect of Ultra-High-Pressure Hydraulic Slotting Technology: a Case Study in Renlou Coal Mine
CN104234682A (zh) 一种适用于多、薄煤层的连续油管分层压裂方法
Yang et al. Application of coalbed methane hydraulic jet-increasing permeability-nitrogen injection to increase production in Shanxi mining area
Shang et al. Local asymmetric fracturing to construct complex fracture network in tight porous reservoirs during subsurface coal mining: An experimental study
Cai et al. New development of hydraulic fracturing technique for in-situ stress measurement at great depth of mines
CN208267898U (zh) 一种“三软”低透气性高瓦斯煤层泄压增透系统
CN103321630A (zh) 套管井电缆地层测试模拟井
Zhang et al. Exploration and Practice of Integrated Re-fracturing Technology for Horizontal Wells in Ultra-low Permeability Reservoirs in Huaqing Oilfield
Gao et al. Grouting method of the dam foundation and the field grouting test construction
CN117662101B (zh) 矿井下长距离压裂-注砂-测井一体化设备及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18916664

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018420473

Country of ref document: AU

Date of ref document: 20181112

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18916664

Country of ref document: EP

Kind code of ref document: A1