WO2019205442A1 - 补偿gamma电压改善串扰被耦合的电路及显示装置 - Google Patents

补偿gamma电压改善串扰被耦合的电路及显示装置 Download PDF

Info

Publication number
WO2019205442A1
WO2019205442A1 PCT/CN2018/105787 CN2018105787W WO2019205442A1 WO 2019205442 A1 WO2019205442 A1 WO 2019205442A1 CN 2018105787 W CN2018105787 W CN 2018105787W WO 2019205442 A1 WO2019205442 A1 WO 2019205442A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
voltage
gamma
liquid crystal
source driver
Prior art date
Application number
PCT/CN2018/105787
Other languages
English (en)
French (fr)
Inventor
周娟
张先明
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US16/247,786 priority Critical patent/US20190333466A1/en
Publication of WO2019205442A1 publication Critical patent/WO2019205442A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3696Generation of voltages supplied to electrode drivers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0271Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping
    • G09G2320/0276Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping for the purpose of adaptation to the characteristics of a display device, i.e. gamma correction

Definitions

  • the present invention relates to the field of circuit structure technologies, and in particular, to a circuit and a display device for compensating for gamma voltage to improve crosstalk coupling.
  • Vcom is feedback compensated by an operational amplifier.
  • the method is: using the negative feedback of the operational amplifier to compensate the Vcom feedback voltage, the operational amplifier is limited by the slew rate (SR) reaction speed, and the noise of the high frequency in the Vcom cannot be timely compensated, thus the crosstalk
  • SR slew rate
  • Embodiments of the present invention provide a circuit and a display device for compensating for gamma voltage to improve crosstalk, which can reduce the influence of crosstalk on the display effect of the panel to a certain extent, thereby improving the display effect to a certain extent.
  • a first aspect of the present invention provides a circuit for compensating for gamma voltage to improve crosstalk coupling, including: a gamma circuit, a source driver, a thin film transistor, a liquid crystal capacitor, a common voltage circuit, and an adjustment circuit;
  • An output end of the gamma circuit is connected to the input end of the source driver, an output end of the source driver is connected to a source of the thin film transistor, a drain of the thin film transistor and a first end of the liquid crystal capacitor Connected, a second end of the liquid crystal capacitor is connected to an output end of the common voltage circuit, and a first end of the adjusting circuit is connected to a connection point of an output end of the gamma circuit and an input end of the source driver
  • the second end of the adjusting circuit is connected to a connection point of the second end of the liquid crystal capacitor and the output end of the common voltage circuit, and the adjusting circuit is configured to be the third of the common voltage output by the common voltage circuit A ripple voltage is superimposed on the Gamma voltage output from the output of the Gamma circuit.
  • the ripple voltage in Vcom is superimposed on the Gamma voltage outputted by the Gamma circuit through the adjustment circuit, so that the superimposed Gamma voltage has a ripple voltage generated in Vcom due to crosstalk, and the Gamma voltage passes through the source driver, so that the source driver outputs
  • the data voltage has a ripple voltage component.
  • the gate of the thin film transistor is connected to the scan line.
  • the adjusting circuit includes a capacitor and a resistor, and the capacitor and the resistor are cascaded to form the adjusting circuit, and the adjusting circuit is configured to isolate the DC component in the Vcom by using a capacitor and a resistor cascade, and only the Vcom is used for the grain.
  • the wave voltage can be isolated from the DC signal multiple times through multiple adjustments of the capacitor and the resistor cascade. It is possible to reduce the DC component of the voltage after the regulation circuit as much as possible and reduce its influence on the Gamma voltage.
  • the adjustment circuit can also detect whether there is ripple voltage generation in Vcom, thereby judging whether crosstalk is generated.
  • the adjusting circuit includes a phase modulation unit, and the phase modulation unit is configured to adjust a phase and a second ripple voltage of the first ripple voltage through the capacitor and the resistor cascaded circuit in the adjusting circuit.
  • the phase of the first ripple voltage is the same, and the phase of the second ripple voltage is the same as the phase of the first ripple voltage by setting the phase modulation unit, so that the second ripple voltage is finally superimposed to the data voltage to a certain extent.
  • the phase coincides with the phase of the first ripple voltage in Vcom, thereby further improving the stability of the voltage difference between the two sections of the liquid crystal capacitor, thereby maintaining the gray scale brightness balance to a certain extent, and also improving the liquid crystal to some extent.
  • the display of the display is configured to adjust a phase and a second ripple voltage of the first ripple voltage through the capacitor and the resistor cascaded circuit in the adjusting circuit.
  • the phase of the first ripple voltage is the same, and the phase of the second ripple voltage is the same as the phase of the first ripple voltage by setting the phase modul
  • the common voltage circuit includes an operational amplifier and a feedback circuit.
  • the thin film transistors are arranged in an array on a panel, and the panel comprises a panel of a liquid crystal display.
  • an output of the Gamma circuit outputs a Gamma voltage
  • the Gamma voltage is an input voltage of the source driver.
  • the output end of the source driver outputs data data, and the data data is used to adjust grayscale brightness of the pixel unit.
  • an output end of the source driver is connected to a source of the thin film transistor through a data line.
  • an embodiment of the present invention provides a display device including the circuit of the above first aspect.
  • an embodiment of the present invention provides a terminal, where the terminal includes the display device of the second aspect.
  • the ripple voltage in Vcom is superimposed on the Gamma voltage outputted by the Gamma circuit through the adjustment circuit, so that the superimposed Gamma voltage has a ripple voltage generated in Vcom due to crosstalk, and the Gamma voltage passes through the source driver, so that the source driver outputs
  • the data voltage has a ripple voltage component.
  • FIG. 1 is a schematic structural diagram of a circuit for compensating a gamma voltage to improve crosstalk coupling according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a thin film transistor connected to a liquid crystal capacitor according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of an adjustment circuit of FIG. 1 according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of voltages after a second ripple voltage is superimposed on a data voltage according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram showing a phase difference between a data voltage and a Vcom voltage according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a display device according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • VADD analog circuit power supply
  • Vcom amplifier
  • Vcomout output voltage
  • feedback voltage VADD
  • Vcomout acts on the TFT to provide a reference voltage
  • Vcomout acts on the TFT to provide a reference voltage
  • Vcomout acts on the TFT to provide a reference voltage
  • Vcomout can be adjusted by negative feedback, thereby reducing crosstalk.
  • SR slew rate
  • FIG. 1 is a schematic structural diagram of a circuit for compensating for gamma voltage to improve crosstalk coupling.
  • the circuit includes: a gamma circuit 101, a source driver 102, and a thin film transistor 105. , a liquid crystal capacitor 103, a common voltage circuit 106 and an adjustment circuit 104;
  • An output end of the gamma circuit 101 is connected to an input end of the source driver 102, an output end of the source driver 102 is connected to a source of the thin film transistor 105, a drain of the thin film transistor 105 and the liquid crystal A first end of the capacitor 103 is connected, a second end of the liquid crystal capacitor 103 is connected to an output end of the common voltage circuit 106, and a first end of the adjusting circuit 104 is connected to an output end of the Gamma circuit 101.
  • connection point of the input end of the source driver 102, the second end of the adjusting circuit 104 is connected to a connection point of the second end of the liquid crystal capacitor 103 and an output end of the common voltage circuit 106, the adjusting circuit 104
  • a first ripple voltage of a common voltage output by the common voltage circuit 106 is superimposed to a Gamma voltage outputted from an output of the Gamma circuit 101.
  • the ripple voltage in Vcom is superimposed on the Gamma voltage outputted by the Gamma circuit through the adjustment circuit, so that the superimposed Gamma voltage has a ripple voltage generated in Vcom due to crosstalk, and the Gamma voltage passes through the source driver, so that the source driver outputs
  • the data voltage has a ripple voltage component.
  • the gate of the thin film transistor is connected to the scan line.
  • FIG. 2 is a schematic structural diagram of a thin film transistor connected to a liquid crystal capacitor according to an embodiment of the present invention.
  • the thin film transistor 201 and the liquid crystal capacitor 202 are connected.
  • the source of the thin film transistor 201 is connected to the source driver output terminal 204, the gate of the thin film transistor 201 and the scan line 203, and the drain and liquid crystal of the thin film transistor 201.
  • the first end of the capacitor 202 is connected, and the second end of the liquid crystal capacitor 202 is connected to the Vcom 205.
  • the Vcom and the scan line are simplified, and only a straight line is shown in the figure.
  • the source driver writes the data signal through the data line. Since the Vcom 205 is a constant voltage, the brightness adjustment of the transistor can be realized by the data signal.
  • the regulating circuit comprises a capacitor and a resistor, and the capacitor and the resistor are cascaded to form an adjusting circuit.
  • FIG. 3 is a schematic structural diagram of the adjustment circuit of FIG. 1 according to an embodiment of the present invention.
  • the adjustment circuit includes a first capacitor 301, a second capacitor 303, a first resistor 302, and a second resistor 304.
  • the first end of the first capacitor 301 is connected to the first end of the first resistor 302.
  • the second end of the first resistor 302 is connected to the first end of the second capacitor 303, and the second end of the second capacitor 303 is connected to the first end of the second resistor.
  • the feedback voltage of the Vcom can be The DC component is filtered twice, and after two times of filtering, the DC component can be reduced to a small extent or even the DC component can be reduced to obtain a pure second ripple voltage, and the DC component can be reduced or eliminated to reduce DC.
  • the effect of the component on the Gamma voltage at the output of the Gamma circuit which can introduce ripple voltage into the Gamma voltage, can also reduce the interference of the DC component in Vcom to the system to some extent.
  • FIG. 4 is a schematic diagram of voltages after the second ripple voltage is superimposed on the data voltage.
  • the adjusting circuit includes a phase modulating unit, and the phase modulating unit is configured to adjust a phase of the second ripple voltage after adjusting the first ripple voltage by adjusting the capacitor and the resistor cascading circuit in the circuit, and the first ripple voltage
  • the phase is the same.
  • the phase modulation unit By setting the phase modulation unit, the second ripple voltage is the same as the phase of the first ripple voltage, so that the second ripple voltage is finally superimposed on the data voltage and the first in the Vcom.
  • the phase of a ripple voltage is uniform, so that the stability of the voltage difference between the two sections of the liquid crystal capacitor can be further improved, so that the gray scale brightness balance can be maintained to a certain extent, and the display effect of the liquid crystal display can be improved to some extent. Please refer to FIG. 5.
  • FIG. 5 Please refer to FIG. 5.
  • FIG. 5 is a schematic diagram showing the phase difference between the data voltage and Vcom.
  • the phase adjustment unit can adjust ⁇ 2 to be consistent with ⁇ 1, thereby improving the stability of the voltage difference across the liquid crystal capacitor to a certain extent, thereby improving The balance of the gray level brightness improves the display effect to some extent.
  • the common voltage circuit includes an operational amplifier and a feedback circuit.
  • the thin film transistors are arranged in an array on the panel, and the panel is a panel of the liquid crystal display.
  • the output of the Gamma circuit outputs a Gamma voltage, which is the input voltage of the source driver.
  • the output of the source driver outputs data data, and the data data is used to adjust grayscale brightness of the pixel unit.
  • the output of the source driver is connected to the source of the thin film transistor through a data line.
  • a display device comprising the pixel drive circuit depicted in FIG.
  • FIG. 6 is a schematic structural diagram of a display device according to another embodiment of the present invention.
  • the display device shown in FIG. 6 may include a power supply circuit 601, a control circuit 602, and a display circuit 603.
  • the display circuit 603 includes a pixel driving circuit.
  • the main function of the power supply circuit 601 is to convert the input voltage and current into voltage and current required by the display device.
  • the main function of the control circuit 602 is to control the display by turning on and off the corresponding area.
  • the circuit presents different text, patterns, and the like. The essence of this operation is that the control circuit 602 displays different characters, patterns, and the like on the display circuit 603 by controlling the lighting of the pixel driving circuit included in the display circuit 603.
  • the display circuit 603 is composed of a dot matrix composed of a light-emitting device.
  • the light-emitting device may be an LED lamp, an OLED, or another light-emitting device, which is not specifically limited in the embodiment of the present invention.
  • the main function of the display circuit is responsible for the illuminating display. It should be noted that the description of the above display device is only an example. In some possible implementations, the display device may include two parts: a control circuit and a display circuit, wherein the power circuit is integrated in the control circuit. Do not add more details.
  • the display device includes but is not limited to: a display.
  • a terminal comprising the above display device.
  • FIG. 7 is a schematic structural diagram of a terminal according to another embodiment of the present invention.
  • the mobile terminal as shown in FIG. 7 may include one or more processors 701; a transceiver 702, a memory 703, a display 704, and a bus 705.
  • the processor 701, the transceiver 702, the memory 703, and the display 704 are connected by a bus 703 or other means.
  • the processor 701, the transceiver 702, the memory 703, and the display 704 are connected by a bus 705 as an example for description.
  • the processor 701 may be a central processing unit (CPU), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and dedicated integration.
  • DSPs digital signal processors
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 703 is used to store instructions and/or data, and the memory 703 may include read-only memory (ROM) and random access memory (RAM), and provides instructions and data to the processor 701. A portion of the memory 703 may also include a non-volatile random access memory. For example, the memory 703 can also store information of the device type.
  • ROM read-only memory
  • RAM random access memory
  • the processor 701 can call the code stored in the memory 702 via the bus 703 to perform a specific operation.
  • Display 704 can display text, graphics, etc. processed by processor 701.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种补偿gamma电压改善串扰被耦合的电路及显示装置,电路包括:Gamma电路(101)、源驱动器(102)、薄膜晶体管(105)、液晶电容(103)、公共电压电路(106)和调节电路(104);Gamma电路(101)的输出端与源驱动器(102)输入端连接,源驱动器(102)的输出端与薄膜晶体管(105)的源极相连接,薄膜晶体管(105)的漏极与液晶电容(103)的第一端相连接,液晶电容(103)的第二端与公共电压电路(106)的输出端相连接,调节电路(104)的第一端连接于Gamma电路(101)的输出端和源驱动器(102)的输入端的连接点,调节电路(104)的第二端连接于液晶电容(103)的第二端与公共电压电路(106)的输出端的连接点,能够在一定程度上提升显示效果。

Description

补偿gamma电压改善串扰被耦合的电路及显示装置 技术领域
本发明涉及电路结构技术领域,尤其涉及一种补偿gamma电压改善串扰被耦合的电路及显示装置。
背景技术
在具有薄膜晶体管(Thin Film Transistor,TFT)的液晶显示器的3-T架构的面板线路中,在源驱动器(source driver)输出每一行数据(data)电压给液晶电容以及存储电容充电时,data电压与公共电压(Common Voltage,Vcom)会产生电容耦合效应,会在Vcom中产生纹波电压并由此引起串扰,导致Vcom不稳定,使得液晶电容两段的电压差不稳定,从而影响面板的显示效果。
当前为了改善串扰的影响,利用运算放大器对Vcom进行反馈补偿。其方法为:利用运算放大器负反馈对Vcom反馈电压进行补偿,运算放大器会受限于压摆率(slew rate,SR)反应速度,对于Vcom中高频的噪声无法及时地跟进补偿,从而对串扰的改善效果较差,进而对显示效果造成不利影响。
发明内容
本发明实施例提供一种补偿gamma电压改善串扰被耦合的电路及显示装置,能够在一定程度上减少串扰对面板的显示效果的影响,进而能够在一定程度上提升显示效果。
本发明实施例的第一方面提供了一种补偿gamma电压改善串扰被耦合的电路,包括:Gamma电路、源驱动器、薄膜晶体管、液晶电容、公共电压电路和调节电路;
所述Gamma电路的输出端与所述源驱动器输入端连接,所述源驱动器的输出端与所述薄膜晶体管的源极相连接,所述薄膜晶体管的漏极与所述液晶电容的第一端相连接,所述液晶电容的第二端与所述公共电压电路的输出端相连接,所述调节电路的第一端连接于所述Gamma电路的输出端和所述源驱动器的输入端的连接点,所述调节电路的第二端连接于所述液晶电容的第二端与所 述公共电压电路的输出端的连接点,所述调节电路用于将所述公共电压电路输出的公共电压中的第一纹波电压叠加至所述Gamma电路的输出端输出的Gamma电压。
通过调节电路将Vcom中的纹波电压叠加至Gamma电路输出的Gamma电压上,使得叠加后的Gamma电压中具有Vcom中由于串扰而生成的纹波电压,Gamma电压通过源驱动器后,使得源驱动器输出的data电压中具有了纹波电压分量,当输出的data电压作用在液晶电容的一端时,由于Vcom作用于液晶电容的另一端且液晶电容的两段的电压差决定了其灰阶亮度,由于data电压中具有与Vcom中的纹波电压相同的分量,因此液晶电容两段的电压受到Vcom中纹波电压的影响将会减小,相对于现有方案中,仅对Vcom进行反馈处理来降低串扰,本方案中通过将纹波电压最终叠加到data电压上,使得液晶电容两段的电压差能够保持相对稳定,从而能够在一定程度上保持灰阶亮度均衡,进而在一定程度上提升了液晶显示器的显示效果。
可选的,所述薄膜晶体管的栅极与扫描线相连接。
可选的,所述调节电路包括电容和电阻,所述电容和电阻级联构成所述调节电路,通过电容和电阻级联构成调节电路能够将Vcom中的直流分量进行隔离,仅让Vcom中纹波电压通过调节电路,通过多个电容和电阻级联能够多次对直流信号进行隔离,能够尽可能的减少通过调节电路后的电压中不具有直流分量,减少其对Gamma电压的影响。同时调节电路也能检测Vcom中是否有纹波电压产生,从而判断是否有串扰的产生。
可选的,所述调节电路包括调相单元,所述调相单元用于调整第一纹波电压通过所述调节电路中电容和电阻级联的电路后的第二纹波电压的相位与所述第一纹波电压的相位相同,通过设置调相单元,将第二纹波电压与第一纹波电压的相位相同,从而能够在一定程度上保证最终将第二纹波电压叠加到data电压时与Vcom中的第一纹波电压的相位一致,因而能够进一步的提升液晶电容两段电压差的稳定性,从而能够在一定程度上保持灰阶亮度均衡,也能在一定程度上提升了液晶显示器的显示效果。
可选的,所述公共电压电路包括运算放大器和反馈电路。
可选的,所述薄膜晶体管呈阵列排布于面板上,所述面板包括液晶显示器的面板。
可选的,所述Gamma电路的输出端输出Gamma电压,所述Gamma电压为所述源驱动器的输入电压。
可选的,所述源驱动器的输出端输出data数据,所述data数据用于调节所述像素单元的灰阶亮度。
可选的,所述源驱动器的输出端与所述薄膜晶体管的源极通过数据线相连接。
第二方面,本发明实施例提供了一种显示装置,该显示装置包括上述第一方面的电路。
第三方面,本发明实施例提供了一种终端,该终端包含第二方面所述的显示装置。
通过实施本发明实施例,具有如下有益效果:
通过调节电路将Vcom中的纹波电压叠加至Gamma电路输出的Gamma电压上,使得叠加后的Gamma电压中具有Vcom中由于串扰而生成的纹波电压,Gamma电压通过源驱动器后,使得源驱动器输出的data电压中具有了纹波电压分量,当输出的data电压作用在液晶电容的一端时,由于Vcom作用于液晶电容的另一端且液晶电容的两段的电压差决定了其灰阶亮度,由于data电压中具有与Vcom中的纹波电压相同的分量,因此液晶电容两段的电压受到Vcom中纹波电压的影响将会减小,相对于现有方案中,仅对Vcom进行反馈处理来降低串扰,本方案中通过将纹波电压最终叠加到data电压上,使得液晶电容两段的电压差能够保持相对稳定,从而能够在一定程度上保持灰阶亮度均衡,进而在一定程度上提升了液晶显示器的显示效果。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供了一种补偿gamma电压改善串扰被耦合的电路的结构示意图;
图2为本发明实施例提供了一种薄膜晶体管与液晶电容相连接的结构示意图;
图3为本发明实施例提供了图1中调节电路的结构示意图;
图4为本发明实施例中第二纹波电压叠加到data电压后的电压示意图;
图5为本发明实施例中data电压与Vcom电压出现相位差的示意图;
图6为本发明实施例提供了一种显示装置的结构示意图;
图7为本发明实施例提供了一种终端的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,在本发明实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明。在本发明实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
需要说明的是,下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。
下文的公开提供了许多不同的实施例或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或字母。这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施例和/或设置之间的关系。
在本发明的描述中,需要说明的是,除非另有规定和限定,术语“安装”、“相连”、“连接”、“接”应做广义理解,例如,可以是机械连接或电连接,也 可以是两个元件内部的连通,可以是直接相连,也可以通过中间媒介间接相连,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
为了更好的理解本发明实施例,下面首先对现有技术中的方案进行简要的介绍,现有方案包括:模拟电路电源(VADD)、Vcom、放大器、输出电压(Vcomout)和反馈电压。其中,VADD通过电路后转化为Vcom,Vcom经过放大器后与反馈电压叠加形成Vcomout,Vcomout作用于TFT上为其提供基准电压,在受到串扰时,能够通过负反馈对Vcomout进行调节,从而达到减少串扰的目的,但是运算放大器会受限于压摆率(slew rate,SR)反应速度,对于Vcom中高频的噪声无法及时地跟进补偿,从而对串扰的改善效果较差,进而对显示效果造成不利影响。
请参阅图1,图1为本发明实施例提供了一种补偿gamma电压改善串扰被耦合的电路的结构示意图,如图1所示,该电路包括:Gamma电路101、源驱动器102、薄膜晶体管105、液晶电容103、公共电压电路106和调节电路104;
所述Gamma电路101的输出端与所述源驱动器102输入端连接,所述源驱动器102的输出端与所述薄膜晶体管105的源极相连接,所述薄膜晶体管105的漏极与所述液晶电容103的第一端相连接,所述液晶电容103的第二端与所述公共电压电路106的输出端相连接,所述调节电路104的第一端连接于所述Gamma电路101的输出端和所述源驱动器102的输入端的连接点,所述调节电路104的第二端连接于所述液晶电容103的第二端与所述公共电压电路106的输出端的连接点,所述调节电路104用于将所述公共电压电路106输出的公共电压中的第一纹波电压叠加至所述Gamma电路101的输出端输出的Gamma电压。
通过调节电路将Vcom中的纹波电压叠加至Gamma电路输出的Gamma电压上,使得叠加后的Gamma电压中具有Vcom中由于串扰而生成的纹波电压,Gamma电压通过源驱动器后,使得源驱动器输出的data电压中具有了纹波电压分量,当输出的data电压作用在液晶电容的一端时,由于Vcom作用于液晶电容的另一端且液晶电容的两段的电压差决定了其灰阶亮度,由于data电压中具有与Vcom中的纹波电压相同的分量,因此液晶电容两段的电压受到Vcom中纹波电压的影响将会减小,相对于现有方案中,仅对Vcom进行反馈处理来降低串扰,本方案中通过将纹波电压最终叠加到data电压上,使得液晶电容两段的 电压差能够保持相对稳定,从而能够在一定程度上保持灰阶亮度均衡,进而在一定程度上提升了液晶显示器的显示效果。
可选的,所述薄膜晶体管的栅极与扫描线相连接。
可选的,请参阅图2,图2为本发明实施例提供了一种薄膜晶体管与液晶电容相连接的结构示意图。如图2所示,包括:薄膜晶体管201和液晶电容202,薄膜晶体管201的源极与源驱动器输出端204相连接,薄膜晶体管201的栅极与扫描线203,薄膜晶体管201的漏极与液晶电容202的第一端相连接,所述液晶电容202的第二端与Vcom 205相连接,此处对Vcom和扫描线进行了简化处理,在图中仅表现为一条直线。其中,当扫描线203提供扫描信号时,该薄膜晶体管201导通,此时源驱动器通过数据线写入数据信号,由于Vcom 205为恒定电压,因此可通过数据信号可实现对晶体管的亮度调节。
可选的,调节电路包括电容和电阻,电容和电阻级联构成调节电路。请参阅图3,图3为本发明实施例图提供了图1中调节电路的结构示意图。如图3所示,调节电路包括第一电容301、第二电容303、第一电阻302和第二电阻304,其中,第一电容301的第一端与第一电阻302的第一端相连,第一电阻302的第二端与第二电容303的第一端相连,第二电容303的第二端与第二电阻的第一端相连,通过设置两个电容,可以对Vcom的反馈电压中的直流分量进行两次过滤,在经过两次过滤后能够在一定程度上将直流分量降低为很小甚至消除直流分量,则得到纯净的第二纹波电压,降低或消除直流分量能够减小直流分量对Gamma电路输出端的Gamma电压的影响,从而能够在Gamma电压中引入纹波电压的同时,也能在一定程度上降低Vcom中直流分量对系统产生的干扰。请参阅图4,图4为将第二纹波电压叠加到data电压后的电压示意图。如图4所示,当Vcom由于电容耦合效应产生串扰时电压上升v1,该串扰会同时叠加到data电压因此data电压也会上升v1,则液晶电容两端的电压差会保持相对稳定,从而能在一定程度上提升灰阶亮度的均匀性。
可选的,调节电路包括调相单元,调相单元用于调整第一纹波电压通过调节电路中电容和电阻级联的电路后的第二纹波电压的相位与所述第一纹波电压的相位相同,通过设置调相单元,将第二纹波电压与第一纹波电压的相位相同,从而能够在一定程度上保证最终将第二纹波电压叠加到data电压时与Vcom中的第一纹波电压的相位一致,因而能够进一步的提升液晶电容两段电压差的稳 定性,从而能够在一定程度上保持灰阶亮度均衡,也能在一定程度上提升了液晶显示器的显示效果。请参阅图5,图5为data电压与Vcom出现相位差的示意图。当第一纹波电压通过调节电路中由电容和电阻级联构成的电路后,可能会产生一定的相位偏差,导致如图5所示的Vcom与data电压中的纹波电压产生相位差ω2-ω1,其中,ω为角频率,从而导致在同一时刻时液晶电容两端的电压差不稳定,甚至会出现电压差相对于未将纹波电压叠加到data电压时,产生二次波动,进而会严重影响灰阶亮度均衡,降低显示效果,但在调节电路中增加调单元,调相单元能够将ω2调节为与ω1一致,从而能够在一定程度上提升液晶电容两端的电压差的稳定性,进而提升灰阶亮度的均衡性,在一定程度上提升显示效果。
可选的,公共电压电路包括运算放大器和反馈电路。
可选的,薄膜晶体管呈阵列排布于面板上,面板为液晶显示器的面板。
可选的,Gamma电路的输出端输出Gamma电压,所述Gamma电压为所述源驱动器的输入电压。
可选的,源驱动器的输出端输出data数据,所述data数据用于调节所述像素单元的灰阶亮度。
可选的,源驱动器的输出端与所述薄膜晶体管的源极通过数据线相连接。
在本发明的另一实施例中提供一种显示装置,该显示装置包含图1所描述的像素驱动电路。
参见图6,是本发明另一实施例提供的一种显示装置的结构示意图。如图6所示的显示装置可以包括:电源电路601、控制电路602、显示电路603。其中,显示电路603包括像素驱动电路,上述电源电路601的主要功能是将输入电压电流转化为显示装置所需要的电压电流;上述控制电路602的主要功能是通过控制相应区域的亮灭,使显示电路呈现不同的文字、图案等。这一操作的实质是控制电路602通过控制显示电路603中所包括的像素驱动电路的发光器件的亮灭情况,进而在显示电路603上呈现不同的文字、图案等。上述显示电路603由发光器件组成的点阵构成,在一些可能的实现方式中,发光器件可以是LED灯,也可以是OLED,还也可以是其它的发光器件,本发明实施例不作具体限定,该显示电路的主要功能是负责发光显示。需要说明的是,上述显示装置的描述只是作为一种示例,在一些可能的实现方式中,显示装置中可以包括控制电路 和显示电路这两部分,其中,控制电路中集成了电源电路,此处不多加赘述。
可选的,显示装置包括但不限于:显示器。
在本发明的另一实施例中提供一种终端,该终端包含上述显示装置。
参见图7,是本发明另一实施例提供的一种终端的结构示意图。如图7所示的移动终端可以包括:一个或多个处理器701;收发器702、存储器703、显示器704和总线705。上述处理器701、收发器702、存储器703和显示器704通过总线703或其他方式连接,本发明实施例中以处理器701、收发器702、存储器703和显示器704通过总线705连接为例进行说明。
在本发明实施例中,所称处理器701可以是中央处理单元(Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器703用于存储指令和/或数据,存储器703可以包括只读存储器(ROM,Read-Only Memory)和随机存取存储器(RAM,Random Access Memory),并向处理器701提供指令和数据。存储器703的一部分还可以包括非易失性随机存取存储器。例如,存储器703还可以存储设备类型的信息。
处理器701可以通过总线703调用存储器702中存储的代码,以执行具体的操作。
显示器704可以显示经过处理器701处理过的文字、图案等。
以上的具体实施方式,对本发明实施例的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上仅为本发明实施例的具体实施方式而已,并不用于限定本发明实施例的保护范围,凡在本发明实施例的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明实施例的保护范围之内。

Claims (10)

  1. 一种补偿gamma电压改善串扰被耦合的电路,其特征在于,所述电路包括:Gamma电路、源驱动器、薄膜晶体管、液晶电容、公共电压电路和调节电路;
    所述Gamma电路的输出端与所述源驱动器输入端连接,所述源驱动器的输出端与所述薄膜晶体管的源极相连接,所述薄膜晶体管的漏极与所述液晶电容的第一端相连接,所述液晶电容的第二端与所述公共电压电路的输出端相连接,所述调节电路的第一端连接于所述Gamma电路的输出端和所述源驱动器的输入端的连接点,所述调节电路的第二端连接于所述液晶电容的第二端与所述公共电压电路的输出端的连接点,所述调节电路用于将所述公共电压电路输出的公共电压中的第一纹波电压叠加至所述Gamma电路的输出端输出的Gamma电压。
  2. 根据权利要求1所述电路,其特征在于,所述薄膜晶体管的栅极与扫描线相连接。
  3. 根据权利要求1所述电路,其特征在于,所述调节电路包括电容和电阻,所述电容和电阻级联构成所述调节电路。
  4. 根据权利要求3所述电路,其特征在于,所述调节电路包括调相单元,所述调相单元用于调整第一纹波电压通过所述调节电路中电容和电阻级联的电路后的第二纹波电压的相位与所述第一纹波电压的相位相同。
  5. 根据权利要求1所述电路,其特征在于,所述公共电压电路包括运算放大器和反馈电路。
  6. 根据权利要求1所述电路,其特征在于,所述薄膜晶体管呈阵列排布于面板上,所述面板包括液晶显示器的面板。
  7. 根据权利要求6所述的电路,其特征在于,所述Gamma电路的输出端输出Gamma电压,所述Gamma电压为所述源驱动器的输入电压。
  8. 根据权利要求6所述电路,其特征在于,所述源驱动器的输出端输出data数据,所述data数据用于调节像素单元的灰阶亮度。
  9. 根据权利要求1所述电路,其特征在于,所述源驱动器的输出端与所述薄膜晶体管的源极通过数据线相连接。
  10. 一种显示装置,其特征在于,所述显示装置包含如权利要求1-9任一项所述的电路。
PCT/CN2018/105787 2018-04-25 2018-09-14 补偿gamma电压改善串扰被耦合的电路及显示装置 WO2019205442A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/247,786 US20190333466A1 (en) 2018-04-25 2019-01-15 Gamma compensation circuit and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810377784.8 2018-04-25
CN201810377784.8A CN108597466A (zh) 2018-04-25 2018-04-25 补偿gamma电压改善串扰被耦合的电路及显示装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/247,786 Continuation US20190333466A1 (en) 2018-04-25 2019-01-15 Gamma compensation circuit and display device

Publications (1)

Publication Number Publication Date
WO2019205442A1 true WO2019205442A1 (zh) 2019-10-31

Family

ID=63609146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/105787 WO2019205442A1 (zh) 2018-04-25 2018-09-14 补偿gamma电压改善串扰被耦合的电路及显示装置

Country Status (2)

Country Link
CN (1) CN108597466A (zh)
WO (1) WO2019205442A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109616067B (zh) 2019-01-02 2020-09-01 合肥京东方显示技术有限公司 一种电压补偿电路及其方法、显示驱动电路、显示装置
US11120772B1 (en) * 2020-04-13 2021-09-14 Novatek Microelectronics Corp. Source driving circuit, display apparatus and operation method of display apparatus
CN114141211B (zh) * 2021-12-16 2023-02-17 长沙惠科光电有限公司 Gamma电压生成电路、源极驱动电路、显示面板
CN118335030A (zh) * 2024-06-06 2024-07-12 禹创半导体(深圳)有限公司 一种解决串扰的电压补偿方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8194015B1 (en) * 2007-02-26 2012-06-05 Alta Analog, Inc. Reduction of the effect of AVDD power supply variation on gamma reference voltages and the ability to compensate for manufacturing variations
CN103065594A (zh) * 2012-12-14 2013-04-24 深圳市华星光电技术有限公司 一种数据驱动电路、液晶显示装置及一种驱动方法
CN104123919A (zh) * 2013-07-19 2014-10-29 深超光电(深圳)有限公司 液晶显示装置以及显示装置
CN104795036A (zh) * 2015-04-28 2015-07-22 京东方科技集团股份有限公司 一种补偿电路、驱动电路及其工作方法、显示装置
CN105070256A (zh) * 2015-06-04 2015-11-18 友达光电股份有限公司 显示装置及其操作方法
CN105304049A (zh) * 2015-11-19 2016-02-03 深圳市华星光电技术有限公司 一种液晶显示装置及其串扰缺陷控制方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101396688B1 (ko) * 2012-05-25 2014-05-19 엘지디스플레이 주식회사 액정표시장치 및 그 구동방법
KR102315963B1 (ko) * 2014-09-05 2021-10-22 엘지디스플레이 주식회사 액정표시장치
CN104392688B (zh) * 2014-12-15 2017-08-08 合肥京东方光电科技有限公司 源极驱动器及其驱动方法、阵列基板、显示装置
CN105206232A (zh) * 2015-09-07 2015-12-30 昆山龙腾光电有限公司 液晶显示装置及其信号传输方法
CN106023877B (zh) * 2016-08-15 2019-02-19 京东方科技集团股份有限公司 公共电压调节电路、方法、显示面板和装置
CN106652934B (zh) * 2016-11-24 2024-04-05 合肥鑫晟光电科技有限公司 源极驱动电路以及显示装置
CN107680546B (zh) * 2017-09-28 2020-06-05 深圳市华星光电技术有限公司 补偿延迟电路及显示装置
CN107886917B (zh) * 2017-10-31 2020-12-25 南京中电熊猫平板显示科技有限公司 显示装置及其电压补偿方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8194015B1 (en) * 2007-02-26 2012-06-05 Alta Analog, Inc. Reduction of the effect of AVDD power supply variation on gamma reference voltages and the ability to compensate for manufacturing variations
CN103065594A (zh) * 2012-12-14 2013-04-24 深圳市华星光电技术有限公司 一种数据驱动电路、液晶显示装置及一种驱动方法
CN104123919A (zh) * 2013-07-19 2014-10-29 深超光电(深圳)有限公司 液晶显示装置以及显示装置
CN104795036A (zh) * 2015-04-28 2015-07-22 京东方科技集团股份有限公司 一种补偿电路、驱动电路及其工作方法、显示装置
CN105070256A (zh) * 2015-06-04 2015-11-18 友达光电股份有限公司 显示装置及其操作方法
CN105304049A (zh) * 2015-11-19 2016-02-03 深圳市华星光电技术有限公司 一种液晶显示装置及其串扰缺陷控制方法

Also Published As

Publication number Publication date
CN108597466A (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
WO2019205442A1 (zh) 补偿gamma电压改善串扰被耦合的电路及显示装置
US9875706B1 (en) GOA circuit of reducing feed-through voltage
US8581827B2 (en) Backlight unit and liquid crystal display having the same
US8284184B2 (en) Method and device for avoiding image sticking
US20130135282A1 (en) Display device
US9892690B2 (en) Control circuit for backlight, a control method and a liquid crystal display device
US20180240433A1 (en) Source driver, method and display device
WO2019000516A1 (zh) 液晶面板驱动电路及液晶显示器
US9159292B2 (en) Display panel and display apparatus having the same
US8289098B2 (en) Gate pulse modulation circuit and sloping modulation method thereof
JP5837110B2 (ja) ディスプレイパネル駆動回路及びその駆動モジュール、ディスプレイ装置並びにその製造方法
WO2017069072A1 (ja) 映像信号線駆動回路およびそれを備える表示装置
CN110728961A (zh) 一种液晶显示器上电延时控制电路和控制方法
US6798146B2 (en) Display apparatus and method of driving the same
US20190333466A1 (en) Gamma compensation circuit and display device
KR102635230B1 (ko) 디스플레이 장치
EP2743914B1 (en) Driving circuit and display panel
CN110010099B (zh) 一种稳压电路、控制方法及显示装置
US10810922B2 (en) Device and method for driving display panel
TWI665654B (zh) Liquid crystal display and gamma voltage correction method thereof
TW201546790A (zh) Oled顯示器的資料驅動器黑畫面電壓補償方法
WO2015143656A1 (zh) 源极驱动模块以及液晶显示面板
KR100915239B1 (ko) 액정 표시 장치의 구동 장치
KR100992135B1 (ko) 액정 표시 장치의 구동 장치
CN110491346B (zh) 面板驱动电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915922

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18915922

Country of ref document: EP

Kind code of ref document: A1