WO2019205179A1 - 基于最优隐蔽性协议的物理层认证方法及系统 - Google Patents

基于最优隐蔽性协议的物理层认证方法及系统 Download PDF

Info

Publication number
WO2019205179A1
WO2019205179A1 PCT/CN2018/085210 CN2018085210W WO2019205179A1 WO 2019205179 A1 WO2019205179 A1 WO 2019205179A1 CN 2018085210 W CN2018085210 W CN 2018085210W WO 2019205179 A1 WO2019205179 A1 WO 2019205179A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
authentication
noise ratio
probability
physical layer
Prior art date
Application number
PCT/CN2018/085210
Other languages
English (en)
French (fr)
Inventor
谢宁
罗钢
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Priority to PCT/CN2018/085210 priority Critical patent/WO2019205179A1/zh
Publication of WO2019205179A1 publication Critical patent/WO2019205179A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/02Protecting privacy or anonymity, e.g. protecting personally identifiable information [PII]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of wireless communication technologies, and in particular, to a physical layer authentication method and system based on an optimal concealment protocol.
  • Physical layer authentication has two main advantages compared with traditional authentication technologies based on upper-layer cryptographic tools: First, physical layer authentication allows only illegal recipients to It performs noise observation to protect the tag, which is relatively safe from an information theory point of view. Second, physical layer authentication enables legitimate receivers to quickly distinguish between legitimate and illegal transmit segments without the need for higher layer processing.
  • the authentication scheme of the physical layer design can be divided into two categories: passive form and active form.
  • Auth-SUP Authentication Overlay
  • security usually means that an illegal receiving end cannot easily destroy identity authentication through various attacks (including interference attacks, replay attacks, and simulated attacks); robustness usually refers to transmission in a random fading environment, and authentication.
  • the scheme can resist channel fading and noise effects; concealment usually means that the receiving segment cannot detect that the authentication signal is abnormal without knowing the authentication scheme.
  • concealment usually means that the receiving segment cannot detect that the authentication signal is abnormal without knowing the authentication scheme.
  • the present disclosure has been made in view of the above circumstances, and an object thereof is to provide a physical layer authentication method and system based on an optimal concealment protocol capable of better evaluating request delay and concealment performance.
  • the first aspect of the present disclosure provides a physical layer authentication method based on an optimal concealment protocol, which is a physical layer authentication method for a wireless communication system including a transmitting end and a receiving end, and includes: the transmitting Transmitting, by the end, the marking signal to the wireless channel based on the optimal concealment protocol, the marking signal comprising an authentication signal and an information signal, wherein in the optimal concealment protocol, the receiving end feeds back a signal to noise ratio threshold to the transmitting end, Optimizing an energy allocation factor of the information signal and the signal to noise ratio threshold; the receiving end receives the marking signal, and based on the optimal concealment protocol, feeding back a signal to noise ratio threshold to the transmitting end,
  • the flag signal is processed to obtain a secret authentication probability; the authentication request transmission probability and the cover authentication rejection probability are obtained based on the received signal to interference and noise ratio of the information signal; and based on the secret authentication probability, the authentication request transmission probability, and the The covert authentication rejection probability calculates the secret authentication efficiency to determine the hidden level of the physical
  • the transmitting end transmits a marking signal based on an optimal concealment protocol
  • the receiving end receives the marking signal, and is processed according to an optimal concealment protocol to obtain a secret authentication efficiency (SAE).
  • SAE secret authentication efficiency
  • the optimal concealment protocol specifies that the receiving end feeds back a signal to noise ratio threshold to the transmitting end, and optimizes an energy allocation factor of the information signal and the signal to noise ratio threshold.
  • the level of concealment can be better evaluated based on the optimal concealment protocol and the metric for physical layer authentication, Secure Authentication Efficiency (SAE).
  • SAE Secure Authentication Efficiency
  • the optimized signal-to-noise ratio threshold ⁇ satisfies the following formula (III): In this case, an optimized signal-to-noise ratio threshold ⁇ can be obtained.
  • the optimized energy distribution factor Meet (IV):
  • the P SA is the secret authentication probability.
  • an optimized energy distribution factor can be obtained
  • the channel assumption condition is that the channel state information of the receiving end is known.
  • the concealment performance can be better evaluated based on the optimal concealment protocol.
  • P ART represents The authentication request transmission probability
  • P ACR represents the covert authentication rejection probability
  • P SA represents the secret authentication probability.
  • the signal to interference and noise ratio of the information signal is calculated by the following equation (VII): among them, An energy distribution factor representing the information signal, Representing an energy allocation factor of the authentication signal, the marker signal is transmitted in blocks, ⁇ b, i represents a channel signal to noise ratio of the ith block marker signal at the receiving end, and h b,i represents a channel of the ith block marker signal Gain, Indicates the noise variance of the receiving end.
  • the hidden authentication rejection probability can be obtained, and the hidden level of the physical layer authentication can be determined.
  • a second aspect of the present disclosure provides a physical layer authentication device based on an optimal concealment protocol, comprising: a processor that executes the computer program stored in the memory to implement the physics described in any of the above Layer authentication method; and memory.
  • a third aspect of the present disclosure provides a computer readable storage medium, wherein the computer readable storage medium stores at least one instruction, the at least one instruction being executed by a processor to implement any of the above Physical layer authentication method.
  • a fourth aspect of the present disclosure provides a physical layer authentication system based on an optimal concealment protocol, including: a transmitting device that transmits a flag signal to a wireless channel based on an optimal concealment protocol,
  • the flag signal includes an authentication signal and an information signal, in the optimal concealment protocol, the receiving device feeds back a signal to noise ratio threshold to the transmitting device, and optimizes an energy allocation factor of the information signal and the signal to noise ratio threshold
  • a receiving device comprising: a processing module, receiving the marking signal, and feeding back a signal to noise ratio threshold to the transmitting end based on the optimal concealment protocol, processing the marking signal to obtain a secret authentication probability; a calculation module that obtains an authentication request transmission probability and a covert authentication rejection probability based on the received signal to interference and noise ratio of the information signal; and a determination module that is based on the secret authentication probability, the authentication request transmission probability, and the covert authentication
  • the probability of rejection calculates the confidentiality authentication efficiency to determine the level of concealment of the physical layer authentication, according to the
  • the transmitting device transmits a flag signal based on an optimal concealment protocol
  • the receiving device receives the flag signal, and is processed to obtain a secret authentication efficiency (SAE) based on an optimal concealment protocol.
  • SAE secret authentication efficiency
  • the optimal concealment protocol specifies that the receiving device feeds back a signal to noise ratio threshold to the transmitting device, and optimizes an energy allocation factor of the information signal and the signal to noise ratio threshold.
  • the level of concealment can be better evaluated based on the optimal concealment protocol and the metric for physical layer authentication, Secure Authentication Efficiency (SAE).
  • SAE Secure Authentication Efficiency
  • the optimized signal-to-noise ratio threshold ⁇ satisfies the following formula (III): In this case, an optimized signal-to-noise ratio threshold ⁇ can be obtained.
  • the energy distribution factor is optimized Meet (IV):
  • the P SA is the secret authentication probability.
  • an optimized energy distribution factor can be obtained
  • the channel assumption condition is that the channel state information of the receiving end is known.
  • the concealment performance can be better evaluated based on the optimal concealment protocol.
  • P ART represents the authentication request transmission probability
  • P ACR represents the covert authentication rejection probability
  • P SA represents the secret authentication probability.
  • a signal to interference and noise ratio of the information signal is calculated by the following formula (VII): among them, An energy distribution factor representing the information signal, Representing an energy allocation factor of the authentication signal, the marker signal is transmitted in blocks, ⁇ b, i represents a channel signal to noise ratio of the ith block marker signal at the receiving end, and h b,i represents a channel of the ith block marker signal Gain, Indicates the noise variance of the receiving end.
  • the hidden authentication rejection probability can be obtained, and the hidden level of the physical layer authentication can be determined.
  • the present disclosure designs an optimal concealment protocol and proposes a new one for physical layer authentication.
  • the metric, Confidential Authentication Efficiency (SAE), provides a better assessment of the hidden performance of physical layer authentication.
  • FIG. 1 is a schematic diagram showing signal authentication of a physical layer authentication method according to an example of the present disclosure.
  • FIG. 2 is a flow chart showing a physical layer authentication method involved in an example of the present disclosure.
  • FIG. 3 is a schematic structural diagram showing a transmitting signal of a transmitting end of a physical layer authentication method according to an example of the present disclosure.
  • FIG. 4 is a schematic diagram showing a receiving end confidentiality authentication efficiency waveform of a physical layer authentication method according to an example of the present disclosure.
  • FIG. 5 is a schematic diagram showing an illegal receiving end secret authentication efficiency waveform of a physical layer authentication method according to an example of the present disclosure.
  • FIG. 6 is a schematic diagram showing the structure of a physical layer authentication system involved in an example of the present disclosure.
  • FIG. 7 is a schematic diagram showing a physical layer authentication system receiving apparatus signal processing module according to an example of the present disclosure.
  • FIG. 8 is a schematic structural diagram showing a physical layer authentication device according to an example of the present disclosure.
  • the present disclosure provides a physical layer authentication method, apparatus, and system based on an optimal concealment protocol.
  • the request delay and concealment performance of the physical layer authentication can be more accurately evaluated.
  • FIG. 1 is a signal model diagram showing a physical layer authentication method according to an example of the present disclosure.
  • a physical layer authentication method, device, and system based on an optimal concealment protocol may be a physical layer authentication method, device, and system of a wireless communication system having a transmitting end and a receiving end.
  • the receiving end may include a legal receiving end and an illegal receiving end.
  • the transmitting end is used to transmit signals to the wireless channel.
  • the transmitting end is usually the legal sender.
  • the transmitting end can also include an illegal sender.
  • the transmitters mentioned below all refer to legitimate senders.
  • the receiving end receives the signal transmitted by the transmitting end. Since the receiving end can include a legal receiving end and an illegal receiving end, the signal transmitted by the transmitting end can be received by the legal receiving end or by the illegal receiving end.
  • the receiving end can be a test receiving end.
  • the test receiving end generally refers to a receiving end for detecting a transmitting signal of the transmitting end.
  • the test receiving end may be a test device for detecting a transmitting signal of the transmitting end in a scenario simulating a wireless channel in daily life.
  • the test receiving end may include a legal receiving end and an illegal receiving end.
  • the transmitting end may be two or more, and the receiving end may be two or more.
  • the legal receiving end may be two or more, and the illegal receiving end may also be two or more.
  • the transmitting end in the case that the illegal receiving end exists, sends an authentication request, and the legal receiving end feeds back the signal to noise ratio threshold to the transmitting end.
  • the transmitting or receiving end of the signal model of FIG. 1 above may include a base station or user equipment.
  • the receiving end may also include a user equipment or a test equipment.
  • a base station e.g., an access point
  • the base station can refer to a device in an access network that communicates with a wireless terminal over one or more sectors over an air interface.
  • the base station can be used to convert the received air frame to the IP packet as a router between the wireless terminal and the rest of the access network, wherein the remainder of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can coordinate the management of attributes to the air interface.
  • the base station may be a base station (BTS, Base Transceiver Station) in GSM or CDMA, and may be a base station (NodeB) in WCDMA, and may be an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in LTE. .
  • BTS Base Transceiver Station
  • NodeB base station
  • eNB evolved base station
  • e-NodeB evolutional Node B
  • the user device or test device may include, but is not limited to, a smart phone, a notebook computer, a personal computer (PC), a personal digital assistant (PDA), a mobile internet device (Mobile Internet Device, MID). ), wearable devices (such as smart watches, smart bracelets, smart glasses) and other electronic devices, wherein the operating system of the user device may include but is not limited to Android operating system, IOS operating system, Symbian (Symbian) operating system , Blackberry (Blackberry) operating system, Windows Phone8 operating system, etc.
  • FIG. 2 is a flow chart showing a physical layer authentication method involved in an example of the present disclosure.
  • FIG. 3 is a schematic structural diagram showing a transmitting signal of a transmitting end of a physical layer authentication method according to an example of the present disclosure.
  • a physical layer authentication method based on an optimal concealment protocol is a physical layer authentication method of a wireless communication system having a transmitting end and a receiving end.
  • the receiving end may include a legal receiving end and an illegal receiving end.
  • the illegal receiving end is sometimes referred to as a listening end.
  • the physical layer authentication method based on the optimal concealment protocol includes the transmitting end transmitting a marking signal to the wireless channel based on the optimal concealment protocol, and the marking signal includes the authentication signal and
  • the information signal, in the optimal concealment protocol, the receiving end feeds back the signal to noise ratio threshold to the transmitting end, and optimizes the energy distribution factor and the signal to noise ratio threshold of the information signal (step S110).
  • the channel assumption condition of the physical layer authentication method may be that the channel state information of the receiving end is known, that is, the transmitting end knows the channel state information of the receiving end.
  • Channel State Information may be a channel attribute of a communication link.
  • the channel state information may be information such as signal scattering, environmental attenuation, and distance attenuation.
  • the receiving end may include a legal receiving end and an illegal receiving end.
  • the transmitting end knows the channel status information of the legal receiving end and the illegal receiving end.
  • the transmitting end knows the independent statistical data (also called the average signal to noise ratio) ⁇ b and ⁇ e in the channel state information of the legal receiving end and the illegal receiving end.
  • the independent statistical data ⁇ b and ⁇ e and their related calculations will be described in detail later. Based on the channel assumptions described above, it is possible to better evaluate the concealment performance of the physical layer authentication by the physical layer authentication method of the present disclosure.
  • the transmitting end can transmit a flag signal to the wireless channel. That is, the transmitting end can send an authentication request.
  • the flag signal can include an authentication signal and an information signal.
  • the authentication signal can reflect the key knowledge shared between the transmitting end and the legitimate receiving end.
  • the information signal can reflect the information to be delivered.
  • the authentication signal can be superimposed on the information signal.
  • the marker signal can be transmitted in blocks. The marker signal can be calculated by the following equation (1):
  • x i represents the i-th block flag signal
  • s i represents the i-th block information signal
  • t i represents the i-th block authentication signal.
  • An energy distribution factor representing a message signal Indicates the energy distribution factor of the authentication signal.
  • the embodiment is not limited thereto, and the transmitting end may transmit a regular signal to the wireless channel.
  • the authentication signal is not included in the regular signal.
  • the rate of the conventional signal can be set to R b .
  • the protocol that the physical layer authentication method complies with may be an optimal concealment protocol.
  • the optimal concealment protocol is effective for the physical layer optimization concealment analysis method of the present disclosure.
  • the optimal concealment protocol specifies that the receiving end feeds back the signal to noise ratio threshold (to be specifically described later) to the transmitting end, and optimizes the energy distribution factor and the signal to noise ratio threshold of the information signal. In other words, the optimal concealment protocol passes the optimized energy distribution factor.
  • Send an authentication request A method of optimizing the energy distribution factor of an information signal is described in detail later. Among them, the energy distribution factor of the information signal It can be called an authentication protocol parameter.
  • step S110 the transmitting end transmits a flag signal to the wireless channel based on the optimal concealment protocol. That is, the marker signal is transmitted by the transmitting end into the wireless channel.
  • the wireless channel has a channel gain h. Therefore, the marker signal transmitted over the wireless channel can include the channel gain h.
  • the physical layer authentication method may further include the receiving end receiving the marking signal, feeding back a signal to noise ratio threshold to the transmitting end based on the optimal concealment protocol, performing correlation processing on the marking signal, and obtaining a confidential authentication probability (step S120).
  • step S120 since the flag signal in step S110 is transmitted in blocks, the flag signal can be received by the receiving end in blocks. Since the receiving end can include a legal receiving end and an illegal receiving end, the receiving signal in the wireless communication system can include a legal receiving end and an illegal receiving end. The signal passing through the wireless channel received by the legal receiving end and the illegal receiving end can be calculated by the following formulas (2) and (3):
  • h b,i represents the channel gain of the ith block marker signal received by the legal receiver.
  • n b,i represents the noise of the legal receiver.
  • h e,i represents the channel gain of the i-th block flag signal received by the illegal receiving end.
  • n e,i represents the noise of the illegal receiving end.
  • h b, i obeys 0 mean variance as Complex Gaussian distribution.
  • h e, i obeys the 0 mean variance Complex Gaussian distribution.
  • n b, i obeys the 0 mean variance as Complex Gaussian distribution.
  • n e, i obeys 0 mean variance as Complex Gaussian distribution.
  • the channel signal to noise ratio of each of the labeled signals measured by the legal receiving end can be respectively obtained by the following formula (4).
  • equation (5) is calculated:
  • the average signal-to-noise ratio of the marker signals measured by the legal receiving end and the illegal receiving end can be calculated by the following equations (6) and (7), respectively:
  • the average signal to noise ratios shown in equations (6) and (7) can be known by the transmitting end.
  • the receiving end may perform channel estimation, that is, the legal receiving end and the illegal receiving end may perform channel estimation.
  • channel estimation the legal receiving end and the illegal receiving end can estimate the target marking signal in the received marked signal y i transmitted through the wireless channel.
  • the legal receiving end since the legal receiving end knows the optimal concealment protocol, the illegal receiving end does not know the optimal concealment protocol, so the legal receiving end can further process the target marking signal based on the optimal concealment protocol.
  • the receiving end involved in the processing of the signal below refers to the legal receiving end unless otherwise specified.
  • energy distribution factors at two signal-to-noise ratio thresholds are set (two SNR thresholds) See equations (13) and (14)). Additional energy distribution factor It can also be an optimized value. also because Energy distribution factor of the authentication signal The value can also be determined. So I know with In the case where the receiving end can extract the target mark signal The residual signal r i in .
  • the receiving end may further determine whether the residual signal r i includes the authentication signal t i .
  • the receiving end can feed back the signal to noise ratio threshold ⁇ of the marker signal to the transmitting end according to the result of the judgment. Since the feedback of the receiving end is based on the optimal concealment protocol, the receiving end may feed back the signal to noise ratio threshold ⁇ to the transmitting end based on the optimal concealment protocol.
  • the signal-to-noise ratio threshold ⁇ is feasible within a certain range under the optimal concealment protocol. The obtaining of the feasible range of the signal-to-noise ratio threshold ⁇ is described in detail later.
  • the receiving end may determine whether the residual signal r i includes the authentication signal t i . According to the result of the judgment, the receiving end can obtain the false alarm probability (PFA) and the detection rate (PD). Probability of secrecy authentication (PSA) can be obtained based on the detection rate (PD) under the constraint of false alarm probability (PFA).
  • the secret authentication probability (PSA) can be calculated by the following equation (8):
  • P D,1 represents the detection rate of the legal receiving end
  • P D,2 represents the detection rate of the illegal receiving end.
  • They are the optimal thresholds in the threshold test for the legal receiver and the illegal receiver, respectively.
  • the secret authentication probability can be determined by ⁇ b and ⁇ e .
  • the physical layer authentication method may further include obtaining an authentication request transmission probability and a covert authentication rejection probability based on a signal to interference and noise ratio of the received tag signal (step S130).
  • step S130 the terminology message-to-interference-plus-noise ratio (MINR) of the flag signal received by the predetermined receiving end can be calculated by the following formula (9):
  • ⁇ b,i represents the channel signal to noise ratio at the receiving end of the i-th block.
  • h b,i represents the channel gain of the i-th block flag signal received by the receiving end.
  • the signal transmitted by the transmitting end is a conventional signal, that is, the signal transmitted by the transmitting end does not include the authentication signal, the energy distribution factor of the authentication signal Zero, the energy distribution factor of the information signal Is 1.
  • the signal transmitted by the transmitting end is a marked signal, the energy distribution factor of the authentication signal It is not zero.
  • the signal to interference and noise ratio (MINR) when the transmitting end transmits the marking signal is smaller than the signal to interference and noise ratio (MINR) when the transmitting end transmits the conventional signal, so when the transmitting end transmits the marking signal, Signal to interference and noise ratio (MINR) is satisfied
  • the optimal concealment protocol is provided with a predetermined threshold, and when the signal to interference and noise ratio (MINR) is greater than a predetermined threshold, the transmitting end transmits an authentication request.
  • the predetermined threshold can be set to Where R b represents the conventional signal rate.
  • the Probability of Authentication-Request Transmission (PART) can be obtained based on the above-described Signal to Interference and Noise Ratio (MINR).
  • PART the authentication request transmission probability (PART) can be calculated by the following equation (10):
  • the performance of the authentication transmission request delay can be measured according to the authentication request transmission probability (PART).
  • the value of the Authentication Request Transfer Probability (PART) needs to be met.
  • ⁇ ART is the lower limit of the authentication request transmission probability (PART)
  • PART the feasible range of the signal-to-noise ratio threshold ⁇ fed back by the receiving end
  • the authentication concealment rejection event occurs at the receiving end when the information signal in the marking signal cannot be decoded without error at the receiving end.
  • the Probability of authentication-covertness rejection (PACR) at this time can be regarded as the authentication concealment rejection probability under the authentication request transmission probability (PART) condition.
  • the authentication covert rejection probability is also called the covert authentication rejection probability.
  • the Covert Authentication Rejection Probability (PACR) can be obtained based on the above-described Signal to Interference and Noise Ratio (MINR).
  • the Covert Authentication Rejection Probability (PACR) can be calculated by the following equation (11):
  • the level of concealment of the physical layer authentication technique can be measured according to the Covert Authentication Probability (PACR).
  • PRR Covert Authentication Probability
  • ⁇ ACR is the upper limit of the cover authentication rejection probability (PACR).
  • the feasible range of the signal-to-noise ratio threshold ⁇ fed back by the receiver under the optimal concealment protocol is obtained by combining the constraint of the above-mentioned authentication request transmission probability (PART) and the constraint of the cover authentication rejection probability (PACR).
  • the optimal concealment protocol may include two cases where the feasible range of the signal to noise ratio threshold ⁇ can be constrained.
  • the signal to noise ratio threshold ⁇ can be optimized.
  • the optimized signal-to-noise ratio threshold ⁇ satisfies the following equation (16):
  • the physical layer authentication method may further include calculating a secret authentication efficiency based on the secret authentication probability, the authentication request transmission probability, and the covert authentication rejection probability, to determine a concealment level of the physical layer authentication, according to the optimized signal to noise ratio threshold and optimization.
  • the energy allocation factor obtains the maximum value of the secret authentication efficiency (step S140).
  • step S140 the secret authentication probability (PSA), the authentication request transmission probability (PART), and the covert authentication rejection probability (PACR) can be obtained by the above steps S120 and S130.
  • PSA secret authentication probability
  • PART authentication request transmission probability
  • PSR covert authentication rejection probability
  • a secret authentication efficiency is calculated based on a Privacy Authentication Probability (PSA), an Authentication Request Transmission Probability (PART), and a Covert Authentication Rejection Probability (PACR).
  • PSA Privacy Authentication Probability
  • PART Authentication Request Transmission Probability
  • PCR Covert Authentication Rejection Probability
  • specifying a secret authentication efficiency can be calculated by the following equation (17):
  • P ART represents the authentication request transmission probability (PART)
  • P ACR represents the cover authentication rejection probability (PACR)
  • P SA represents the secret authentication probability (PSA).
  • SAE confidential authentication efficiency
  • the condition that the secret authentication efficiency (SAE) has a non-zero positive value is that the feasible range of the above-mentioned signal-to-noise ratio threshold ⁇ is satisfied and needs to be satisfied.
  • the Secure Authentication Efficiency includes an Authentication Request Transmission Probability (PART) and a Covered Authentication Rejection Probability (PACR), wherein the Authentication Request Transmission Probability (PART) can evaluate the request delay of the physical layer authentication.
  • Covert Authentication Rejection Probability can determine the level of concealment of physical layer authentication.
  • SAE Secure Authentication Efficiency
  • the optimized energy distribution factor In the case of the signal-to-noise ratio threshold ⁇ within the feasibility range, the secret authentication efficiency (SAE) constrained by the authentication request transmission probability (PART) and the covert authentication rejection probability (PACR) obtains the maximum value. Specifically, the relationship between the secret authentication efficiency (SAE) maximum value, the authentication request transmission probability (PART), and the covert authentication rejection probability (PACR) is obtained by the following equation (18):
  • ⁇ ACR is the upper limit of the Covered Authentication Rejection Probability (PACR)
  • ⁇ ART is the lower limit of the Authentication Request Transmission Probability (PART)
  • R b is the conventional signal rate.
  • an optimized energy distribution factor can be obtained according to equation (18) in the following two cases.
  • the transmitting end transmits the marking signal based on the optimal concealment protocol
  • the receiving end receives the marking signal
  • the processing is based on the optimal concealment protocol to obtain the confidential authentication efficiency (SAE).
  • the optimal concealment protocol specifies that the energy allocation factor of the information signal is an optimized value.
  • the receiving end feeds back the signal to noise ratio threshold to the transmitting end as an optimized value.
  • the level of concealment can be better evaluated based on the optimal concealment protocol and the metric for physical layer authentication, Secure Authentication Efficiency (SAE).
  • FIG. 4 is a schematic diagram showing a receiving end confidentiality authentication efficiency waveform of a physical layer authentication method according to an example of the present disclosure.
  • curve E represents a privacy authentication efficiency waveform diagram under an optimal concealment protocol.
  • Curves A, B, C, and D represent the waveforms of the secret authentication efficiency under the non-optimal concealment protocol.
  • the secret authentication efficiency under the optimal concealment protocol is higher than that under the non-optimal concealment protocol.
  • the higher the confidentiality authentication efficiency the higher the concealment level of the physical layer authentication. Therefore, the optimal concealment protocol is superior when the signal-to-noise ratio at the receiving end is high.
  • FIG. 5 is a schematic diagram showing an illegal receiving end secret authentication efficiency waveform of a physical layer authentication method according to an example of the present disclosure.
  • curve E represents a confidential authentication efficiency waveform diagram of an illegal receiving end under an optimal concealment protocol.
  • Curves A, B, C, and D represent the waveforms of the secret authentication efficiency of the illegal receiver under the non-optimal concealment protocol.
  • the confidential authentication efficiency under the optimal concealment protocol is the slowest decay compared to the secret authentication efficiency under the non-optimal concealment protocol.
  • the curve D under the non-optimal concealment protocol is the worst case.
  • the curve E under the optimal concealment protocol is the best case.
  • the physical layer authentication method based on the optimal concealment protocol is more effective for different requirements of the confidential authentication efficiency (SAE) of the legal receiving end and the illegal receiving end.
  • SAE confidential authentication efficiency
  • FIG. 6 is a schematic diagram showing the structure of a physical layer authentication system involved in an example of the present disclosure.
  • FIG. 7 is a schematic diagram showing a physical layer authentication system receiving apparatus signal processing module according to an example of the present disclosure.
  • the physical layer authentication system based on the optimal concealment protocol is a physical layer authentication system of a wireless communication system having a transmitting device and a receiving device.
  • the receiving device may include a legal receiving device and an illegal receiving device.
  • the transmitting device and the transmitting end of the present disclosure may be the same concept, and the receiving device and the receiving end may be the same concept.
  • the physical layer authentication system 1 (referred to as the physical layer authentication system 1 for short) based on the optimal concealment protocol may include the transmitting device 10 and the receiving device 20.
  • the receiving device 20 may include a legitimate receiving device and an illegal receiving device.
  • the transmitting device 10 transmits a flag signal to the wireless channel based on an optimal concealment protocol, the flag signal including an authentication signal and an information signal.
  • the receiving device feeds back the signal to noise ratio threshold to the transmitting device, optimizing The energy distribution factor and signal to noise ratio threshold of the information signal.
  • the channel assumption condition of the physical layer authentication system 1 in which the transmitting device 10 is located may be that the transmitting end knows the channel state information of the receiving end, that is, the channel state information of the receiving end is known.
  • the channel assumption condition in the above step S110 can be analogized.
  • transmitting device 10 transmits a tag signal to a wireless channel. That is, the transmitting device 10 can transmit an authentication request.
  • the flag signal can include an authentication signal and an information signal.
  • the authentication signal can reflect the key knowledge shared between the transmitting device 10 and the legitimate receiving device.
  • the information signal can reflect the information to be delivered.
  • the authentication signal can be superimposed on the information signal.
  • the marker signal can be transmitted in blocks.
  • the mark signal can be as shown in equation (1).
  • the embodiment is not limited thereto, and the transmitting device 10 can transmit a regular signal to a wireless channel. The authentication signal is not included in the regular signal.
  • an optimal concealment protocol is set based on the channel assumptions described above.
  • the protocol to be followed may be an optimal concealment protocol.
  • the optimal concealment protocol specifies that the receiving device feeds back the signal to noise ratio threshold (to be specifically described later) to the transmitting device, and optimizes the energy distribution factor and the signal to noise ratio threshold of the information signal. In other words, the optimal concealment protocol passes the optimized energy distribution factor.
  • Send an authentication request As shown in FIG. 6, the solid line indicates that the transmitting device 10 transmits an authentication request.
  • Optimized energy distribution factor The method can be compared to the optimized method in the above physical layer authentication method. Among them, the energy distribution factor of the information signal It can be called an authentication protocol parameter.
  • transmitting device 10 transmits a tag signal to a wireless channel based on an optimal concealment protocol.
  • the wireless channel has a channel gain h. Therefore, the marker signal transmitted over the wireless channel can include the channel gain h.
  • the illegal receiving device since the illegal receiving device does not know the optimal concealment protocol and there is no shared key knowledge with the transmitting device 10, the illegal receiving device generally cannot process the received marking signal for concealment analysis. .
  • the receiving device 20 involved in the processing of the signal below refers to the legal receiving device unless otherwise specified.
  • the physical layer authentication system 1 may also include a receiving device 20.
  • the receiving device 20 can be configured to receive and process tag signals that pass through the wireless channel.
  • the receiving device 20 feeds back the signal to noise ratio threshold ⁇ to the transmitting device 10.
  • the broken line indicates the feedback of the receiving device 20 to the transmitting device 10.
  • receiving device 20 can include processing module 21.
  • the processing module 21 receives the flag signal and processes the flag signal based on the optimal concealment protocol to obtain a Privacy Authentication Probability (PSA).
  • PSA Privacy Authentication Probability
  • the marker signal transmitted by the transmitting device 10 since the marker signal transmitted by the transmitting device 10 is transmitted in blocks, the marker signal can be received in blocks by the receiving device 20.
  • the illegal receiving device can also receive the marker signal in blocks. Therefore, the flag signals received by the processing module 21 and the illegal receiving device in the receiving device 20 can be as shown in equations (2) and (3), respectively.
  • the processing module 21 and the illegitimate receiving device in the receiving device 20 may perform channel estimation. Through the channel estimation, the processing module 21 and the illegal receiving device can estimate the target signal signal in the received tag signal y i transmitted through the wireless channel.
  • the signal-to-noise ratio SNR of each of the flag signals received by the processing module 21 and the illegal receiving device may be as shown in equations (4) and (5), respectively.
  • the average signal to noise ratio SNR of the flag signals received by the processing module 21 can be as shown in equations (6) and (7), respectively.
  • the processing module 21 of the receiving device 20 can further process the target tag signal based on the optimal concealment protocol.
  • energy distribution factors at two signal-to-noise ratio thresholds are set (two SNR thresholds) See equations (13) and (14)). Additional energy distribution factor It can also be an optimized value. also because Energy distribution factor of the authentication signal The value can also be determined. So I know with In the case that the processing module 21 can extract the target mark signal The residual signal r i in .
  • the processing module 21 acquires the residual signal r i , it may be determined whether the residual signal r i includes the authentication signal t i .
  • the receiving device 20 can feed back the threshold value ⁇ of the signal-to-noise ratio of the marker signal to the transmitting device 10 according to the result of the judgment. That is, the receiving device 20 may feed back the signal to noise ratio threshold ⁇ to the transmitting device 10 based on the optimal concealment protocol.
  • the feasible range of the signal to noise ratio threshold ⁇ can be analogous to the acquisition of the signal to noise ratio threshold ⁇ in the physical layer authentication method described above.
  • receiving device 20 may determine whether the residual signal r i includes an authentication signal t i . According to the result of the judgment, the receiving device 20 can obtain the false alarm probability (PFA) and the detection rate (PD). A Privacy Authentication Probability (PSA) can be obtained based on the detection rate (PD). The secret authentication probability (PSA) can be as shown in equation (8).
  • receiving device 20 can include computing module 22.
  • the calculation module 22 obtains the authentication request transmission probability and the cover authentication rejection probability based on the signal to interference and noise ratio of the received information signal.
  • the signal to interference and noise ratio (MINR) of the flag signal received by the predetermined receiving device 20 may be as shown in equation (9). If the signal transmitted by the transmitting device 10 is a conventional signal, that is, the signal transmitted by the transmitting device 10 does not include the authentication signal, the energy distribution factor of the authentication signal Zero, the energy distribution factor of the information signal Is 1. thus, If the signal transmitted by the transmitting device 10 is a marker signal, the energy distribution factor of the authentication signal It is not zero.
  • the optimal concealment protocol is provided with a predetermined threshold, and when the signal to interference and noise ratio (MINR) is greater than a predetermined threshold, the transmitting end transmits an authentication request.
  • the predetermined threshold can be set to Where Rb represents the conventional signal rate.
  • the authentication request transmission probability (PART) can be expressed by equation (10).
  • the value of the authentication request transmission probability (PART) needs to be met.
  • ⁇ ART is the lower limit of the authentication request transmission probability (PART).
  • the information signal in the flag signal cannot be implemented when the receiving device 20 is decoded without error, and the receiving device 20 generates an authentication covert rejection event.
  • the Covert Authentication Rejection Probability (PACR) can be obtained based on the above-described Signal to Interference and Noise Ratio (MINR).
  • the Covert Authentication Rejection Probability (PACR) can be as shown in equation (11). Based on the range of equation (11) and different signal to noise ratio thresholds ⁇ , equation (12) can be obtained.
  • the covert authentication rejection probability (PACR) needs to be satisfied.
  • ⁇ ACR is the upper limit of the cover authentication rejection probability (PACR).
  • the level of concealment of the physical layer authentication technique can be measured according to the Covert Authentication Probability (PACR).
  • a feasible range of the signal-to-noise ratio threshold ⁇ fed back by the receiving end is obtained, that is,
  • the optimal concealment protocol may include two cases where the feasible range of the signal to noise ratio threshold ⁇ can be constrained.
  • the constraint conditions for ⁇ ART and ⁇ ACR can satisfy the equation (15).
  • the signal to noise ratio threshold ⁇ can be optimized, and the optimized signal to noise ratio threshold ⁇ satisfies equation (16).
  • receiving device 20 can include a decision module 23.
  • the determining module 23 calculates the secret authentication efficiency according to the secret authentication probability, the authentication request transmission probability, and the probability of the covert authentication rejection, to determine the request delay and the concealment level of the physical layer authentication, according to the optimized signal to noise ratio threshold and the optimized energy allocation factor, Get the maximum value of confidential authentication efficiency.
  • PSA Privacy Authentication Probability
  • PART Authentication Request Transmission Probability
  • PCR Covert Authentication Rejection Probability
  • SAE Secure Authentication Efficiency
  • PSA Privacy Authentication Probability
  • PART Authentication Request Transmission Probability
  • PCR Covert Authentication Rejection Probability
  • the Secure Authentication Efficiency includes an Authentication Request Transmission Probability (PART) and a Covered Authentication Rejection Probability (PACR), wherein the Authentication Request Transmission Probability (PART) can evaluate the request delay of the physical layer authentication.
  • Covert Authentication Rejection Probability determines the level of concealment of physical layer authentication.
  • the optimized energy distribution factor In the case of the signal-to-noise ratio threshold ⁇ within the feasibility range, the secret authentication efficiency (SAE) constrained by the authentication request transmission probability (PART) and the covert authentication rejection probability (PACR) obtains the maximum value. Specifically, the relationship between the secret authentication efficiency (SAE) maximum value, the authentication request transmission probability (PART), and the covert authentication rejection probability (PACR) is obtained by the equation (18).
  • an optimized energy distribution factor for both equations (19) and (20) can be obtained according to equation (18).
  • FIG. 8 is a schematic structural diagram showing a physical layer authentication device according to an example of the present disclosure.
  • both the transmitting end and the receiving end include an authentication device 30 as shown in FIG.
  • the authentication device 30 includes a processor 31 and a memory 32.
  • the processor 31 and the memory 32 are respectively connected to the communication bus.
  • memory 32 may be a high speed RAM memory or a non-volatile memory.
  • the structure of the authentication device 30 shown in FIG. 8 does not constitute a limitation of the present disclosure, and may be a bus-shaped structure, a star structure, or may include more or less components than those shown in FIG. 8, or a combination of Some parts, or different parts are arranged.
  • the processor 31 is a control center of the authentication device 30. In some examples, it may be a Central Processing Unit (CPU) that connects various portions of the entire authentication device 30 using various interfaces and lines, by running or executing software programs stored in the memory 32 and/or Or module, and calling program code stored in memory 32 for performing the following operations:
  • CPU Central Processing Unit
  • the transmitting end transmits a marking signal to the wireless channel based on the optimal concealment protocol, and the marking signal includes an authentication signal and an information signal.
  • the receiving end is The transmitting end feedbacks the signal to noise ratio threshold, and optimizes an energy allocation factor of the information signal and the signal to noise ratio threshold (performed by the authentication device 30 at the transmitting end).
  • the receiving end receives the marking signal, and based on the optimal concealment protocol, feeds back the signal to noise ratio threshold to the transmitting end, processes the marking signal to obtain the secret authentication probability, and obtains the authentication request transmission probability and concealment based on the received signal to interference ratio of the received information signal.
  • Authenticating the rejection probability and calculating the secret authentication efficiency based on the secret authentication probability, the authentication request transmission probability, and the covert authentication rejection probability to determine a hidden level of the physical layer authentication, according to the optimized SNR threshold and the optimized energy allocation A factor that obtains a maximum value of the secret authentication efficiency (performed by the authentication device 30 at the receiving end).
  • processor 31 of authentication device 30 also performs the operation of setting the signal to noise ratio threshold ⁇ to satisfy the optimal concealment protocol
  • R b represents the conventional signal rate
  • energy distribution factor Need to satisfy the following formula (13)
  • ⁇ ART is the lower limit of the transmission probability of the authentication request.
  • ⁇ b represents the average signal to noise ratio.
  • ⁇ ART is the lower limit of the transmission probability of the authentication request.
  • ⁇ b represents the average signal to noise ratio.
  • the processor 31 of the authentication device 30 also performs the operation that the optimized signal to noise ratio threshold ⁇ satisfies the following equation (16):
  • processor 31 of authentication device 30 also performs the following operations: if ⁇ ART + ⁇ ACR ⁇ 1, the optimized energy distribution factor Satisfy the formula (19):
  • processor 31 of authentication device 30 also performs the following operations: if ⁇ ART + ⁇ ACR ⁇ 1, optimized energy distribution factor Satisfy the formula (20):
  • the processor 31 of the authentication device 30 also performs the following operations: the signal to interference and noise ratio of the information signal is calculated by the following equation (9): among them, An energy distribution factor representing an information signal, Indicates the energy distribution factor of the authentication signal, the marker signal is transmitted in blocks, ⁇ b, i represents the channel signal-to-noise ratio of the ith block marker signal at the receiving end, and h b,i represents the channel gain of the ith block marker signal. Indicates the noise variance at the receiving end.
  • a computer readable storage medium is disclosed in some examples, and those of ordinary skill in the art will appreciate that all or part of the various physical layer authentication methods in the above examples may be through a program (instruction) to instruct related hardware.
  • the program (instruction) may be stored in a computer readable memory (storage medium), and the memory may include: a flash disk, a read-only memory (ROM), a random access memory (RAM). , disk or CD, etc.

Abstract

本公开涉及一种基于最优隐蔽性协议的物理层认证方法,其特征在于,包括:发射端基于最优隐蔽性协议向无线信道发射标记信号,标记信号包括认证信号和信息信号,在最优隐蔽性协议中,接收端向发射端反馈信噪比阈值,优化信息信号的能量分配因子和信噪比阈值;接收端接收标记信号,基于最优隐蔽性协议,向发射端反馈信噪比阈值,对标记信号进行处理,获得保密认证概率;基于接收的信息信号的信干噪比获得认证请求传输概率、隐蔽认证拒绝概率;并且基于保密认证概率、认证请求传输概率、隐蔽认证拒绝概率计算出保密认证效率,以确定物理层认证的隐蔽等级,根据优化的信噪比阈值和优化的能量分配因子,获取保密认证效率的最大值。

Description

基于最优隐蔽性协议的物理层认证方法及系统 技术领域
本公开涉及无线通信技术领域,具体涉及一种基于最优隐蔽性协议的物理层认证方法及系统。
背景技术
随着无线设备的快速普及,对发射器认证的需求也急剧增长,物理层认证与基于上层密码工具的传统认证技术相比具有两个主要优势:首先,物理层认证通过允许非法接收方仅对其进行噪声观察来保护标签,从信息论的角度来看是相对安全的。其次,物理层认证使得合法的接收方能够快速的区分合法发射段和非法发射段,无需完成更高层处理。物理层设计的认证方案通常可以分为被动形式和主动形式两大类。
本文重点研究主动式,在发射端的消息信号中嵌入认证信号,然后在接收段处提取认证信号。常见的现有技术有:(1)使用时分多路复用方法将认证信号附加到数据上,但这需要额外的传输时间,并且容易将认证信号暴露给非法接收端,因为认证信号具有与消息信号相同的信噪比(SNR);(2)对于OFDM系统,通过根据认证信号在子载波上重复某些消息符号来产生环路平稳签名,这浪费了消息吞吐量;(3)频率偏移根据认证信号进行修改,然而,每秒传输的认证信号的比率相对较低;(4)对于预编码的双二进制信令系统,根据认证信号修改某些初始位,这种方案使得未知的接收段恢复消息信号具有挑战性,违背了隐蔽性的要求。
当前使用最广泛的认证技术是认证叠加(Auth-SUP)技术,认证叠加技术能够通过软件无线电平台提供和分析实验结果。通过分析,认证叠加技术可以在一定程度上克服上述四种现有技术的缺点,满足有效认证技术的要求。
然而,有效的物理层认证技术通常需要同时考虑安全性,鲁棒性 和隐蔽性。具体而言,安全性通常是指非法接收端不能通过各种攻击(包括干扰攻击,重放攻击和模拟攻击)轻易地破坏身份认证;鲁棒性通常是指在随机衰落环境中存在传输,认证方案能够抵抗信道衰落和噪声影响;隐蔽性通常是指接收段在不知道认证方案的情况下,不能够检测到认证信号是异常的。尽管现有的技术已经提出了一个通用的物理层认证框架来综合评估安全性和鲁棒性,但是在隐蔽性方面,由于其多样性和复杂性,现有技术对隐性水平缺乏量化分析,还有很多改善的余地。
发明内容
本公开是有鉴于上述的状况而提出的,其目的在于提供一种能够更好评估请求延迟和隐蔽性能的基于最优隐蔽性协议的物理层认证方法及系统。
为此,本公开的第一方面提供了一种基于最优隐蔽性协议的物理层认证方法,是包含发射端和接收端的无线通信系统的物理层认证方法,其特征在于,包括:所述发射端基于最优隐蔽性协议向无线信道发射标记信号,所述标记信号包括认证信号和信息信号,在所述最优隐蔽性协议中,所述接收端向所述发射端反馈信噪比阈值,优化所述信息信号的能量分配因子和所述信噪比阈值;所述接收端接收所述标记信号,基于所述最优隐蔽性协议,向所述发射端反馈信噪比阈值,对所述标记信号进行处理,获得保密认证概率;基于接收的所述信息信号的信干噪比获得认证请求传输概率和隐蔽认证拒绝概率;并且基于所述保密认证概率、所述认证请求传输概率和所述隐蔽认证拒绝概率计算出保密认证效率,以确定物理层认证的隐蔽等级,根据优化的所述信噪比阈值和优化的所述能量分配因子,获取所述保密认证效率的最大值。
在本公开中,所述发射端基于最优隐蔽性协议发射标记信号,所述接收端接收所述标记信号,基于最优隐蔽性协议经过处理获得保密认证效率(secrecy authentication efficiency,SAE)。其中,所述最优隐蔽性协议规定所述接收端向所述发射端反馈信噪比阈值,优化所述信息信号的能量分配因子和所述信噪比阈值。在这种情况下,基于最优 隐蔽性协议和用于物理层认证的衡量指标——保密认证效率(SAE),能够更好评估隐蔽等级。
在本公开第一方面所涉及的物理层认证方法中,在所述最优隐蔽性协议中,设置信噪比阈值μ满足
Figure PCTCN2018085210-appb-000001
其中,R b表示常规信号速率,能量分配因子
Figure PCTCN2018085210-appb-000002
需要满足下式(Ⅰ):
Figure PCTCN2018085210-appb-000003
其中,ε ART是认证请求传输概率的下限,
Figure PCTCN2018085210-appb-000004
γ b表示平均信噪比。由此,能够调节能量分配因子
Figure PCTCN2018085210-appb-000005
在本公开第一方面所涉及的物理层认证方法中,在所述最优隐蔽性协议中,设置信噪比阈值μ满足μ=0,能量分配因子
Figure PCTCN2018085210-appb-000006
需要满足下式(Ⅱ):
Figure PCTCN2018085210-appb-000007
其中,其中,ε ART是认证请求传输概率的下限,
Figure PCTCN2018085210-appb-000008
γ b表示平均信噪比。由此,能够调节能量分配因子
Figure PCTCN2018085210-appb-000009
在本公开第一方面所涉及的物理层认证方法中,所述优化的信噪比阈值μ满足下式(Ⅲ):
Figure PCTCN2018085210-appb-000010
在这种情况下,能够得到优化的信噪比阈值μ。
在本公开第一方面所涉及的物理层认证方法中,若ε ARTACR<1,优化的所述能量分配因子
Figure PCTCN2018085210-appb-000011
满足(Ⅳ):
Figure PCTCN2018085210-appb-000012
其中P SA为所述保密认证概率。在这种情况下,能够得到优化的能量分配因子
Figure PCTCN2018085210-appb-000013
在本公开第一方面所涉及的物理层认证方法中,若ε ARTACR≥1,优化的所述能量分配因子
Figure PCTCN2018085210-appb-000014
满足(Ⅴ):
Figure PCTCN2018085210-appb-000015
其中P SA为所述保密认证概率。在这种情况下,能够得到优化的能量分配因子
Figure PCTCN2018085210-appb-000016
在本公开第一方面所涉及的物理层认证方法中,信道假设条件是所述接收端的信道状态信息已知。在这种情况下,基于最优隐蔽性协议可以更好评估隐蔽性能。
在本公开第一方面所涉及的物理层认证方法中,所述保密认证效率由下式(Ⅵ)计算得到:η=P ART(1-P ACR)P SA(Ⅵ),其中,P ART表示所述认证请求传输概率,P ACR表示所述隐蔽认证拒绝概率,P SA表示所述保密认证概率。由此,能够确定物理层认证的隐蔽等级。
在本公开第一方面所涉及的物理层认证方法中,所述信息信号的信干噪比由下式(Ⅶ)计算得到:
Figure PCTCN2018085210-appb-000017
其中,
Figure PCTCN2018085210-appb-000018
表示所述信息信号的能量分配因子,
Figure PCTCN2018085210-appb-000019
表示所述认证信号的能量分配因子,所述标记信号分块发送,γ b,i表示第i块标记信号在所述接收端的信道信噪比,h b,i表示第i块标记信号的信道增益,
Figure PCTCN2018085210-appb-000020
表示所述接收端的噪声方差。由此,能够得到隐蔽认证拒绝概率,进而判断物理层认证的隐蔽等级。
本公开的第二方面提供了一种基于最优隐蔽性协议的物理层认证设备,其特征在于,包括:处理器,其执行所述存储器存储的计算机程序以实现上述任一项所述的物理层认证方法;以及存储器。
本公开的第三方面提供了一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有至少一个指令,所述至少一个指令被处理器执行时实现上述任一项所述的物理层认证方法。
本公开的第四方面提供了一种基于最优隐蔽性协议的物理层认证系统,其特征在于,包括:发射装置,所述发射装置基于最优隐蔽性协议向无线信道发射标记信号,所述标记信号包括认证信号和信息信号,在所述最优隐蔽性协议中,所述接收装置向所述发射装置反馈信 噪比阈值,优化所述信息信号的能量分配因子和所述信噪比阈值;接收装置,其包括:处理模块,其接收所述标记信号,基于所述最优隐蔽性协议,向所述发射端反馈信噪比阈值,对所述标记信号进行处理,获得保密认证概率;计算模块,其基于接收的所述信息信号的信干噪比获得认证请求传输概率和隐蔽认证拒绝概率;以及判定模块,其根据所述保密认证概率、所述认证请求传输概率和所述隐蔽认证拒绝的概率计算出保密认证效率,以确定物理层认证的隐蔽等级,根据优化的所述信噪比阈值和优化的所述能量分配因子,获取所述保密认证效率的最大值。
在本公开中,所述发射装置基于最优隐蔽性协议发射标记信号,所述接收装置接收所述标记信号,基于最优隐蔽性协议经过处理获得保密认证效率(SAE)。其中,所述最优隐蔽性协议规定所述接收装置向所述发射装置反馈信噪比阈值,优化所述信息信号的能量分配因子和所述信噪比阈值。在这种情况下,基于最优隐蔽性协议和用于物理层认证的衡量指标——保密认证效率(SAE),能够更好评估隐蔽等级。
在本公开第四方面所涉及的物理层认证系统中,在所述最优隐蔽性协议中,设置信噪比阈值μ满足
Figure PCTCN2018085210-appb-000021
其中,R b表示常规信号速率,能量分配因子
Figure PCTCN2018085210-appb-000022
需要满足下式(Ⅰ):
Figure PCTCN2018085210-appb-000023
其中,ε ART是认证请求传输概率的下限,
Figure PCTCN2018085210-appb-000024
γ b表示平均信噪比。由此,能够调节能量分配因子
Figure PCTCN2018085210-appb-000025
在本公开第四方面所涉及的物理层认证系统中,在所述最优隐蔽性协议中,设置信噪比阈值μ满足μ=0,能量分配因子
Figure PCTCN2018085210-appb-000026
需要满足下式(Ⅱ):
Figure PCTCN2018085210-appb-000027
其中, ε ART是认证请求传输概率的下限,
Figure PCTCN2018085210-appb-000028
γ b表示平均信噪比。由此,能够调节能量分配因子
Figure PCTCN2018085210-appb-000029
在本公开第四方面所涉及的物理层认证系统中,所述优化的信噪比阈值μ满足下式(Ⅲ):
Figure PCTCN2018085210-appb-000030
在这种情况下,能够得到优化的信噪比阈值μ。
在本公开第四方面所涉及的物理层认证系统中,若ε ARTACR<1,优化的所述能量分配因子
Figure PCTCN2018085210-appb-000031
满足(Ⅳ):
Figure PCTCN2018085210-appb-000032
其中P SA为所述保密认证概率。在这种情况下,能够得到优化的能量分配因子
Figure PCTCN2018085210-appb-000033
在本公开第四方面所涉及的物理层认证系统中,若ε ARTACR≥1,优化的所述能量分配因子
Figure PCTCN2018085210-appb-000034
满足(Ⅴ):
Figure PCTCN2018085210-appb-000035
其中P SA为所述保密认证概率。在这种情况下,能够得到优化的能量分配因子
Figure PCTCN2018085210-appb-000036
在本公开第四方面所涉及的物理层认证系统中,信道假设条件是所述接收端的信道状态信息已知。在这种情况下,基于最优隐蔽性协议可以更好评估隐蔽性能。
在本公开第四方面所涉及的物理层认证系统中,在所述判定模块中,所述保密认证效率由下式(Ⅵ)计算得到:η=P ART(1-P ACR)P SA(Ⅵ),其中,P ART表示所述认证请求传输概率,P ACR表示所述隐蔽认证拒绝概率,P SA表示所述保密认证概率。由此,能够确定物理层认证的隐蔽等级。
在本公开第四方面所涉及的物理层认证系统中,在所述计算模块中,所述信息信号的信干噪比由下式(Ⅶ)计算得到:
Figure PCTCN2018085210-appb-000037
其中,
Figure PCTCN2018085210-appb-000038
表示所述信息信号的能量分配因子,
Figure PCTCN2018085210-appb-000039
表示所述认证信号的能量分配因子,所述标记 信号分块发送,γ b,i表示第i块标记信号在所述接收端的信道信噪比,h b,i表示第i块标记信号的信道增益,
Figure PCTCN2018085210-appb-000040
表示所述接收端的噪声方差。由此,能够得到隐蔽认证拒绝概率,进而判断物理层认证的隐蔽等级。
与现有技术相比,本公开的示例具备以下有益效果:
在现有的技术中,由于系统的多样性和复杂性,缺乏对隐蔽水平的定量分析,因此,本公开设计了一种最优隐蔽性协议并提出了一种新的用于物理层认证的衡量指标——保密认证效率(SAE),能够更好评估物理层认证的隐蔽性能。
附图说明
图1是示出了本公开的示例所涉及的物理层认证方法的信号认证示意图。
图2是示出了本公开的示例所涉及的物理层认证方法流程示意图。
图3是示出了本公开的示例所涉及的物理层认证方法发射端发射信号的结构示意图。
图4是示出了本公开的示例所涉及的物理层认证方法的接收端保密认证效率波形示意图。
图5是示出了本公开的示例所涉及的物理层认证方法的非法接收端保密认证效率波形示意图。
图6是示出了本公开的示例所涉及的物理层认证系统结构示意图。
图7是示出了本公开的示例所涉及的物理层认证系统接收装置信号处理模块示意图。
图8是示出了本公开的示例所涉及的物理层认证设备的结构示意图。
具体实施方式
以下,参考附图,详细地说明本公开的优选实施方式。在下面的说明中,对于相同的部件赋予相同的符号,省略重复的说明。另外,附图只是示意性的图,部件相互之间的尺寸的比例或者部件的形状等可以与实际的不同。
本公开提供了基于最优隐蔽性协议的物理层认证方法、设备和系统。在本公开中,能够更加准确地评估物理层认证的请求延迟和隐蔽性能。以下结合附图进行详细描述本公开。
图1是示出了本公开的示例所涉及的物理层认证方法的信号模型示意图。如图1所示,基于最优隐蔽性协议的物理层认证方法、设备和系统可以是具有发射端和接收端的无线通信系统的物理层认证方法、设备和系统。其中,接收端可以包括合法接收端和非法接收端。
如图1所示,发射端用于向无线信道发射信号。发射端通常是合法发送方。发射端也可以包括非法发送方。下文提及的发射端均是指合法发送方。接收端接收发射端发射的信号。由于接收端可以包括合法接收端和非法接收端,故发射端发射的信号既可以被合法接收端接收,也可能被非法接收端接收。
在一些示例中,接收端可以是测试接收端。测试接收端通常是指用于检测发射端的发射信号的接收端。例如,测试接收端可以是在模拟日常生活中的无线信道的场景下,用于检测发射端发射信号的测试设备。其中,测试接收端可以包括合法接收端和非法接收端。
在一些示例中,发射端可以是两个或两个以上,接收端可以是两个或两个以上。具体而言,合法接收端可以是两个或两个以上,非法接收端也可以分别是两个或两个以上。
在一些示例中,如图1所示,在非法接收端存在的情况下,发射端发送认证请求,合法接收端向发射端反馈信噪比阈值。
在一些示例中,上述图1的信号模型中的发射端或接收端可以包括基站或用户设备。接收端还可以包括用户设备或测试设备。基站(例如接入点)可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中,接入网的其余部分可包括网际协议(IP)网络。基站可以协调对空中接口的属性管理。例如,基站可以是GSM或CDMA中的基站(BTS,Base Transceiver Station),可以是WCDMA中的基站(NodeB),可以是LTE中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B)。
在一些示例中,用户设备或测试设备可以包括但不限于智能手机、笔记本电脑、个人计算机(Personal Computer,PC)、个人数字助理(Personal Digital Assistant,PDA)、移动互联网设备(Mobile Internet Device,MID)、穿戴设备(如智能手表、智能手环、智能眼镜)等各类电子设备,其中,该用户设备的操作系统可包括但不限于Android操作系统、IOS操作系统、Symbian(塞班)操作系统、Black Berry(黑莓)操作系统、Windows Phone8操作系统等。
图2是示出了本公开的示例所涉及的物理层认证方法流程示意图。图3是示出了本公开的示例所涉及的物理层认证方法发射端发射信号的结构示意图。
在一些示例中,基于最优隐蔽性协议的物理层认证方法(有时简称“物理层认证方法”),是具有发射端和接收端的无线通信系统的物理层认证方法。其中,接收端可以包括合法接收端和非法接收端。另外,在下面的描述中,非法接收端有时也称为监听端。
另外,基于图1所示的信号模型,如图2所示,基于最优隐蔽性协议的物理层认证方法包括发射端基于最优隐蔽性协议向无线信道发射标记信号,标记信号包括认证信号和信息信号,在最优隐蔽性协议中,接收端向发射端反馈信噪比阈值,优化信息信号的能量分配因子和信噪比阈值(步骤S110)。
在步骤S110中,物理层认证方法的信道假设条件可以是接收端的信道状态信息已知,也即发射端知道接收端的信道状态信息。信道状态信息(Channel State Information,CSI)可以是通信链路的信道属性。例如,信道状态信息可以是信号散射、环境衰弱、距离衰减等信息。
具体而言,如上所述,接收端可以包括合法接收端和非法接收端。发射端知道合法接收端和非法接收端的信道状态信息。例如,发射端知道合法接收端和非法接收端的信道状态信息中的独立统计数据(也称为平均信噪比)γ b和γ e。独立统计数据γ b和γ e及其相关计算稍后会有详细介绍。基于上述的信道假设条件,能够通过本公开的物理层认证方法,更好评估物理层认证的隐蔽性能。
在一些示例中,基于上述信号模型,发射端可以向无线信道发射标记信号。也即发射端可以发送认证请求。如图3所示,标记信号可 以包括认证信号和信息信号。认证信号可以反应发射端和合法接收端之间共享的密钥知识。信息信号可以反映所要传递的信息。认证信号可以叠加在信息信号上。标记信号可以是成块发射的。标记信号可以由下式(1)计算得到:
x i=ρ ss itt i    (1)
其中,x i表示第i块标记信号,s i表示第i块信息信号,t i表示第i块认证信号。另外,
Figure PCTCN2018085210-appb-000041
表示消息信号的能量分配因子,
Figure PCTCN2018085210-appb-000042
表示认证信号的能量分配因子。
本实施方式不限于此,发射端可以向无线信道发射常规信号。常规信号中不包括认证信号。也即认证信号的能量分配因子
Figure PCTCN2018085210-appb-000043
为零,此时常规信号可以表示为x i=s i。另外常规信号的速率可以被设置为R b
在一些示例中,物理层认证方法遵从的协议可以是最优隐蔽性协议。另外,在上述的信道假设条件下,最优隐蔽性协议对于本公开的物理层优化隐蔽性分析方法有效。最优隐蔽性协议规定了接收端向发射端反馈信噪比阈值(后续具体说明),优化信息信号的能量分配因子和信噪比阈值。换而言之,最优隐蔽性协议通过优化的能量分配因子
Figure PCTCN2018085210-appb-000044
发送认证请求。优化信息信号的能量分配因子的方法后续详细描述。其中,信息信号的能量分配因子
Figure PCTCN2018085210-appb-000045
可以称为认证协议参数。
在步骤S110中,发射端基于最优隐蔽性协议向无线信道发射标记信号。也即标记信号被发射端发射进入无线信道。其中,无线信道存在信道增益h。故经过无线信道传输的标记信号可以包括信道增益h。
在一些示例中,物理层认证方法还可以包括接收端接收标记信号,基于最优隐蔽性协议,向发射端反馈信噪比阈值,对标记信号进行相关处理,获得保密认证概率(步骤S120)。
在步骤S120中,由于步骤S110中的标记信号是分块发射的,故标记信号可以被接收端分块接收。由于接收端可以包括合法接收端和非法接收端,故在无线通信系统中接收信号的可以包括合法接收端和非法接收端。其中,合法接收端和非法接收端接收的经过无线信道的标记信号可以由下式(2)和式(3)计算得到:
y b,i=h b,ix i+n b,i    (2)
y e,i=h e,ix i+n e,i     (3)
其中,h b,i表示合法接收端接收的第i块标记信号的信道增益。n b,i表示合法接收端的噪声。h e,i表示非法接收端接收的第i块标记信号的信道增益。n e,i表示非法接收端的噪声。另外,h b,i服从0均值方差为
Figure PCTCN2018085210-appb-000046
的复高斯分布。h e,i服从0均值方差为
Figure PCTCN2018085210-appb-000047
的复高斯分布。n b,i服从0均值方差为
Figure PCTCN2018085210-appb-000048
的复高斯分布。n e,i服从0均值方差为
Figure PCTCN2018085210-appb-000049
的复高斯分布。
在一些示例中,由于标记信号可以被接收端(包括合法接收端和非法接收端)分块接收,其中,合法接收端测得的每块标记信号的信道信噪比分别可以由下式(4)和式(5)计算得到:
Figure PCTCN2018085210-appb-000050
Figure PCTCN2018085210-appb-000051
其中,
Figure PCTCN2018085210-appb-000052
表示合法接收端的噪声方差。
Figure PCTCN2018085210-appb-000053
表示非法接收端的噪声方差。另外,合法接收端和非法接收端测得的标记信号的平均信噪比分别可以由下式(6)和式(7)计算得到:
Figure PCTCN2018085210-appb-000054
Figure PCTCN2018085210-appb-000055
在一些示例中,基于最优隐蔽性协议和上述的假设信道条件,式(6)和式(7)所示的平均信噪比都可以被发射端获知。
在一些示例中,接收端可以进行信道估计,也即合法接收端和非法接收端可以进行信道估计。通过信道估计,合法接收端和非法接收端可以估计出接收的经过无线信道传输的标记信号y i中的目标标记信号
Figure PCTCN2018085210-appb-000056
在一些示例中,由于合法接收端知晓最优隐蔽性协议,非法接收端不知道到最优隐蔽性协议,故合法接收端可以基于最优隐蔽性协议进一步处理目标标记信号
Figure PCTCN2018085210-appb-000057
下面在对信号的处理中所涉及的接收端若无特别说明均是指合法接收端。
在一些示例中,设置了两种信噪比阈值下的能量分配因子
Figure PCTCN2018085210-appb-000058
(两种信噪比阈值下的
Figure PCTCN2018085210-appb-000059
可以参见式(13)和式(14))。另外能量分配因子
Figure PCTCN2018085210-appb-000060
也可以是优化后的值。又因为
Figure PCTCN2018085210-appb-000061
故认证信号的能量分配因子
Figure PCTCN2018085210-appb-000062
的值也可以确定。故在知道
Figure PCTCN2018085210-appb-000063
Figure PCTCN2018085210-appb-000064
的情况下,接收端可以提取出目标标记信号
Figure PCTCN2018085210-appb-000065
中的残余信号r i
在一些示例中,接收端获取残余信号r i后,可以进一步判断残余信号r i中是否包含认证信号t i。接收端可以根据判断的结果向发射端反馈标记信号的信噪比阈值μ。由于接收端的反馈基于最优隐蔽性协议,故接收端可以是基于最优隐蔽性协议向发射端反馈信噪比阈值μ。另外,在最优隐蔽性协议下信噪比阈值μ在一定范围内具有可行性。信噪比阈值μ的可行范围的获得后续进行详细描述。
另外,在一些示例中,接收端可以判断残余信号r i中是否包含认证信号t i。根据判断的结果接收端可以得到虚警概率(PFA)和检测率(PD)。在虚警概率(PFA)的约束下基于检测率(PD)可以得到保密认证概率(Probability of secrecy authentication,PSA)。保密认证概率(PSA)可以由下式(8)计算得到:
Figure PCTCN2018085210-appb-000066
其中,P D,1表示合法接收端的检测率,P D,2表示非法接收端的检测率。
Figure PCTCN2018085210-appb-000067
Figure PCTCN2018085210-appb-000068
分别是合法接收端和非法接收端假设的阈值测试中的最佳阈值。由上式(8)可知,保密认证概率可以通过γ bandγ e确定。
在一些示例中,物理层认证方法还可以包括基于接收的标记信号的信干噪比获得认证请求传输概率和隐蔽认证拒绝概率(步骤S130)。
在步骤S130中,规定的接收端接收的标记信号的信干噪比(the terminology message-to-interference-plus-noise ratio,MINR)可以由下式(9)计算得到:
Figure PCTCN2018085210-appb-000069
其中,
Figure PCTCN2018085210-appb-000070
表示信息信号的能量分配因子。
Figure PCTCN2018085210-appb-000071
表示认证信号的能量分配因子。由于标记信号分块发送,γ b,i表示第i块接收端的信道信噪比。h b,i表示接收端接收的第i块标记信号的信道增益。
在一些示例中,若发射端发射的信号是常规信号,即发射端发射的信号不包括认证信号,则认证信号的能量分配因子
Figure PCTCN2018085210-appb-000072
为零,信息信号的能量分配因子
Figure PCTCN2018085210-appb-000073
为1。由此,
Figure PCTCN2018085210-appb-000074
若发射端发射的信号是标记信号,则认证信号的能量分配因子
Figure PCTCN2018085210-appb-000075
不为零,由式(9)可知,发射端发射标记信号时的信干噪比(MINR)比发射端发射常规信号时的信干噪比(MINR)小,故发射端发射标记信号时,信干噪比(MINR)满足
Figure PCTCN2018085210-appb-000076
另外,在一些示例中,最优隐蔽性协议中设置有预定阈值,当信干噪比(MINR)大于预定阈值,则发射端发送认证请求。预定阈值可以设置为
Figure PCTCN2018085210-appb-000077
其中,R b表示常规信号速率。在这种情况下,认证请求传输概率(Probability of authentication-request transmission,PART)可以根据上述的信干噪比(MINR)得到。基于任意的能量分配因子
Figure PCTCN2018085210-appb-000078
和信噪比阈值μ,认证请求传输概率(PART)可以由下式(10)计算得到:
Figure PCTCN2018085210-appb-000079
由此,根据认证请求传输概率(PART)能够衡量认证传输请求延迟的性能。在一些示例中,认证请求传输概率(PART)的值需要满足
Figure PCTCN2018085210-appb-000080
其中,ε ART是认证请求传输概率(PART)的下限, 基于上述认证请求传输概率(PART)的约束条件,可以得到接收端反馈的信噪比阈值μ的可行范围,即
Figure PCTCN2018085210-appb-000081
另外,在一些示例中,在标记信号中的信息信号不能实现在接收端无错误地被解码时,接收端就会发生认证隐蔽拒绝事件。此时的认证隐蔽拒绝的概率(Probability of authentication-covertness rejection,PACR)可以被认为是认证请求传输概率(PART)条件下的认证隐蔽拒绝概率。认证隐蔽拒绝概率也称隐蔽认证拒绝概率。隐蔽认证拒绝概率(PACR)可以根据上述的信干噪比(MINR)得到。隐蔽认证拒绝概率(PACR)可以由下式(11)计算得到:
Figure PCTCN2018085210-appb-000082
在一些示例中,在
Figure PCTCN2018085210-appb-000083
时,认证隐蔽拒绝发生。基于式(11)和上述的信噪比阈值μ的范围,可以得到下式(12):
Figure PCTCN2018085210-appb-000084
由此,根据隐蔽认证概率(PACR)能够量度物理层认证技术的隐蔽等级。另外,在最优隐蔽性协议下,隐蔽认证拒绝概率(PACR)需要满足
Figure PCTCN2018085210-appb-000085
其中,ε ACR是隐蔽认证拒绝概率(PACR)的上限。基于上述隐蔽认证拒绝概率(PACR)的约束条件,可以得到接收端反馈的信噪比阈值μ的可行范围,即
Figure PCTCN2018085210-appb-000086
其中,
Figure PCTCN2018085210-appb-000087
由此,在最优隐蔽性协议下接收端反馈的信噪比阈值μ的可行范围是可以综合上述认证请求传输概率(PART)的约束条件和隐蔽认证拒绝概率(PACR)的约束条件得到的。
另外,在一些示例中,基于上述的认证请求传输概率(PART)和隐蔽认证拒绝概率(PACR),最优隐蔽性协议可以包括两种能够约束信噪比阈值μ的可行范围的情况。
在一些示例中,在最优隐蔽性协议下,可以设置
Figure PCTCN2018085210-appb-000088
在这种情况下,P ACR=0。认证请求传输概率(PART)的值需要满足
Figure PCTCN2018085210-appb-000089
由此,能够约束信噪比阈值μ的可行范围。另外,基于
Figure PCTCN2018085210-appb-000090
的信噪比阈值μ约束情况,能量分配因子
Figure PCTCN2018085210-appb-000091
需要满足下式(13):
Figure PCTCN2018085210-appb-000092
在另一些示例中,在最优隐蔽性协议下,可以设置μ=0,在这种情况下,P ART=1。隐蔽认证拒绝概率(PACR)需要满足
Figure PCTCN2018085210-appb-000093
由此,能够约束信噪比阈值μ的可行范围。另外,基于μ=0的信噪比阈值μ约束情况,能量分配因子
Figure PCTCN2018085210-appb-000094
需要满足下式(14):
Figure PCTCN2018085210-appb-000095
综合上述两种约束信噪比阈值μ的可行范围的情况,对于ε ART和ε ACR的约束条件可以由下式(15)获得:
Figure PCTCN2018085210-appb-000096
其中,
Figure PCTCN2018085210-appb-000097
在一些示例中,为了更好地调整能量分配因子
Figure PCTCN2018085210-appb-000098
可以优化信噪比阈值μ。优化的信噪比阈值μ满足下式(16):
Figure PCTCN2018085210-appb-000099
在一些示例中,物理层认证方法还可以包括基于保密认证概率、认证请求传输概率和隐蔽认证拒绝概率计算出保密认证效率,以确定物理层认证的隐蔽等级,根据优化的信噪比阈值和优化的能量分配因子,获取保密认证效率的最大值(步骤S140)。
在步骤S140中,保密认证概率(PSA)、认证请求传输概率(PART)和隐蔽认证拒绝概率(PACR)可以通过上述步骤S120和S130得到。
在一些示例中,基于保密认证概率(PSA)、认证请求传输概率(PART)和隐蔽认证拒绝概率(PACR)计算出保密认证效率(secrecy authentication efficiency,SAE)。
在一些示例中,规定保密认证效率(SAE)可以由下式(17)计算得到:
η=P ART(1-P ACR)P SA    (17)
其中,P ART表示认证请求传输概率(PART),P ACR表示隐蔽认证拒绝概率(PACR),P SA表示保密认证概率(PSA)。η表示保密认证效率(SAE)。另外,使保密认证效率(SAE)具有非零正值的条件是满足上述信噪比阈值μ的可行范围同时需要满足
Figure PCTCN2018085210-appb-000100
在一些示例中,保密认证效率(SAE)中包括认证请求传输概率(PART)和隐蔽认证拒绝概率(PACR),其中认证请求传输概率(PART)可以评估物理层认证的请求延迟。隐蔽认证拒绝概率(PACR)可以确定物理层认证的隐蔽等级。由此,保密认证效率(SAE)可以更好评估请求延迟和隐蔽等级。
另外,在一些示例中,在优化的能量分配因子
Figure PCTCN2018085210-appb-000101
和可行性范围内的信噪比阈值μ情况下,受认证请求传输概率(PART)和隐蔽认证拒绝概率(PACR)约束的保密认证效率(SAE)获得最大值。具体而言,保密认证效率(SAE)最大值、认证请求传输概率(PART)和隐蔽认证拒绝概率(PACR)的关系由下式(18)获得:
Figure PCTCN2018085210-appb-000102
其中,ε ACR是隐蔽认证拒绝概率(PACR)的上限,而ε ART是认证请求传输概率(PART)的下限,R b表示常规信号速率。
在一些示例中,基于上述的优化的信噪比阈值μ,根据式(18)可以得到下列两种情况下的优化的能量分配因子
Figure PCTCN2018085210-appb-000103
若ε ARTACR<1,化简式(18)可以得到下式(19):
Figure PCTCN2018085210-appb-000104
由此,可以得到优化的能量分配因子
Figure PCTCN2018085210-appb-000105
若ε ARTACR≥1,化简式(18)可以得到下式(20):
Figure PCTCN2018085210-appb-000106
由此,可以得到优化的能量分配因子
Figure PCTCN2018085210-appb-000107
在这种情况下,基于上述的两种情况,能够得到最大化P SA下的最优隐蔽性协议所需的最优能量分配因子
Figure PCTCN2018085210-appb-000108
并且能够得到最大化的保密认证效率。
在本公开中,发射端基于最优隐蔽性协议发射标记信号,接收端接收标记信号,基于最优隐蔽性协议经过处理获得保密认证效率(SAE)。其中,最优隐蔽性协议规定信息信号的能量分配因子为优化值。另外,基于最优隐蔽性协议,接收端向发射端反馈信噪比阈值为优化值。在这种情况下,基于最优隐蔽性协议和用于物理层认证的衡量指标——保密认证效率(SAE),能够更好评估隐蔽等级。
图4是示出了本公开的示例所涉及的物理层认证方法的接收端保密认证效率波形示意图。
在一些示例中,如图4所示,曲线E代表在最优隐蔽性协议下的保密认证效率波形图。曲线A、B、C和D代表在非最优隐蔽性协议下的保密认证效率波形图。
根据图可知,在高信噪比区域,最优隐蔽性协议下保密认证效率比非最优隐蔽性协议下的保密认证效率高。保密认证效率高相应的物理层认证的隐蔽等级越高,因此,在接收端信噪比较高时最优隐蔽性协议更加优越。
图5是示出了本公开的示例所涉及的物理层认证方法的非法接收端保密认证效率波形示意图。
在一些示例中,如图5所示,曲线E代表在最优隐蔽性协议下非法接收端的保密认证效率波形图。曲线A、B、C和D代表在非最优隐蔽性协议下非法接收端的保密认证效率波形图。
由图可知,相比于非最优隐蔽性协议下的保密认证效率,最优隐蔽性协议下的保密认证效率衰减的最缓慢。通常保密认证效率越高越好,故非最优隐蔽性协议下的曲线D是最差的一种情况。最优隐蔽性协议下的曲线E是最好的一种情况。
综合考虑对合法接收端和非法接收端的不同要求,例如,对合法接收端和非法接收端的保密认证效率(SAE)的不同要求,基于最优隐蔽性协议的物理层认证方法更加有效。
图6是示出了本公开的示例所涉及的物理层认证系统结构示意图。图7是示出了本公开的示例所涉及的物理层认证系统接收装置信号处理模块示意图。
在一些示例中,基于最优隐蔽性协议的物理层认证系统,是具有发射装置和接收装置的无线通信系统的物理层认证系统。其中,接收装置可以包括合法接收装置和非法接收装置。另外,本公开的发射装置和发射端可以是相同的概念,接收装置和接收端可以是相同的概念。
在一些示例中,如图6所示,基于最优隐蔽性协议的物理层认证系统1(简称物理层认证系统1)可以包括发射装置10和接收装置20。接收装置20可以包括合法接收装置和非法接收装置。
在一些示例中,发射装置10基于最优隐蔽性协议向无线信道发射标记信号,标记信号包括认证信号和信息信号,在最优隐蔽性协议中,接收装置向发射装置反馈信噪比阈值,优化信息信号的能量分配因子和信噪比阈值。
在一些示例中,发射装置10所在的物理层认证系统1的信道假设条件可以是发射端知道接收端的信道状态信息,也即接收端的信道状态信息已知。具体而言,可以类比上述步骤S110中的信道假设条件。
在一些示例中,发射装置10向无线信道发射标记信号。也即发射装置10可以发送认证请求。标记信号可以包括认证信号和信息信号。认证信号可以反应发射装置10和合法接收装置之间共享的密钥知识。信息信号可以反映所要传递的信息。认证信号可以叠加在信息信号上。标记信号可以是成块发射的。标记信号可以如式(1)所示。本实施方式不限于此,发射装置10可以向无线信道发射常规信号。常规信号中不包括认证信号。
在一些示例中,基于上述的信道假设条件设置了最优隐蔽性协议。发射装置10在向无线信道发射标记信号时,遵从的协议可以是最优隐蔽性协议。最优隐蔽性协议规定了接收装置向发射装置反馈信噪比阈值(后续具体说明),优化信息信号的能量分配因子和信噪比阈值。换而言之,最优隐蔽性协议通过优化的能量分配因子
Figure PCTCN2018085210-appb-000109
发送认证请求。如图6所示,实线表示发射装置10发送认证请求。优化能量分配因子
Figure PCTCN2018085210-appb-000110
的方法可以类比上述物理层认证方法中的优化的方法。其中,信息信号的能量分配因子
Figure PCTCN2018085210-appb-000111
可以称为认证协议参数。
在一些示例中,发射装置10基于最优隐蔽性协议向无线信道发射标记信号。其中,无线信道存在信道增益h。故经过无线信道传输的标记信号可以包括信道增益h。
在一些示例中,由于非法接收装置不知道最优隐蔽性协议且与发射装置10之间也没有共享的密钥知识,故非法接收装置对接收到的标记信号通常不能进行处理以进行隐蔽性分析。下面在对信号的处理中所涉及的接收装置20若无特别说明均是指合法接收装置。
在一些示例中,如图6所示,物理层认证系统1还可以包括接收装置20。接收装置20可以用于接收和处理经过无线信道的标记信号。接收装置20向发射装置10反馈信噪比阈值μ。如图6所示,虚线表示接收装置20对发射装置10的反馈。
在一些示例中,如图7所示,接收装置20可以包括处理模块21。处理模块21接收标记信号,基于最优隐蔽性协议,对标记信号进行处理,获得保密认证概率(PSA)。
在一些示例中,由于发射装置10发射的标记信号是分块发射的,故标记信号可以被接收装置20分块接收。由于非法接收装置也可以分块接收标记信号。故接收装置20中的处理模块21和非法接收装置接收到的标记信号分别可以如式(2)和式(3)所示。
在一些示例中,接收装置20中的处理模块21和非法接收装置可以进行信道估计。通过信道估计,处理模块21和非法接收装置可以估计出接收的经过无线信道传输的标记信号y i中的目标标记信号
Figure PCTCN2018085210-appb-000112
另外,处理模块21和非法接收装置接收的每块标记信号的信噪比SNR分别可以如式(4)和式(5)所示。处理模块21接收的标记信号的平均信噪比SNR分别可以如式(6)和式(7)所示。
在一些示例中,由于接收装置20知晓最优隐蔽性协议,非法接收装置不知道到最优隐蔽性协议,故接收装置20的处理模块21可以基于最优隐蔽性协议进一步处理目标标记信号
Figure PCTCN2018085210-appb-000113
在一些示例中,设置了两种信噪比阈值下的能量分配因子
Figure PCTCN2018085210-appb-000114
(两种信噪比阈值下的
Figure PCTCN2018085210-appb-000115
可以参见式(13)和式(14))。另外能量分配因子
Figure PCTCN2018085210-appb-000116
也可以是优化后的值。又因为
Figure PCTCN2018085210-appb-000117
故认证信号的能量分配因子
Figure PCTCN2018085210-appb-000118
的值也可以确定。故在知道
Figure PCTCN2018085210-appb-000119
Figure PCTCN2018085210-appb-000120
的情况下,处理模块21可以提取出目标标记信号
Figure PCTCN2018085210-appb-000121
中的残余信号r i
在一些示例中,处理模块21获取残余信号r i后,可以判断残余信号r i中是否包含认证信号t i。接收装置20可以根据判断的结果将标记信号的信噪比的阈值μ反馈给发射装置10。也即接收装置20可以是基于最优隐蔽性协议向发射装置10反馈信噪比阈值μ。信噪比阈值μ的可行范围可以类比上述物理层认证方法中的信噪比阈值μ的获取。
另外,在一些示例中,接收装置20可以判断残余信号r i中是否包含认证信号t i。根据判断的结果接收装置20可以得到虚警概率(PFA)和检测率(PD)。基于检测率(PD)可以得到保密认证概率(PSA)。保密认证概率(PSA)可以如式(8)所示。
在一些示例中,如图7所示,接收装置20可以包括计算模块22。计算模块22基于接收的信息信号的信干噪比获得认证请求传输概率和隐蔽认证拒绝概率。
在一些示例中,规定的接收装置20接收的标记信号的信干噪比(MINR)可以如式(9)所示。若发射装置10发射的信号是常规信号,即发射装置10发射的信号不包括认证信号,则认证信号的能量分配因子
Figure PCTCN2018085210-appb-000122
为零,信息信号的能量分配因子
Figure PCTCN2018085210-appb-000123
为1。由此,
Figure PCTCN2018085210-appb-000124
若发射装置10发射的信号是标记信号,则认证信号的能量分配因子
Figure PCTCN2018085210-appb-000125
不为零,由式(9)可知,发射端发射标记信号时的信干噪比(MINR)比发射端发射常规信号时的信干噪比(MINR)小,故发射端发射标记信号时,信干噪比(MINR)满足
Figure PCTCN2018085210-appb-000126
另外,在一些示例中,最优隐蔽性协议中设置有预定阈值,当信干噪比(MINR)大于预定阈值,则发射端发送认证请求。预定阈值可以设置为
Figure PCTCN2018085210-appb-000127
其中, Rb表示常规信号速率。在这种情况下,基于信干噪比(MINR)、任意的能量分配因子
Figure PCTCN2018085210-appb-000128
和信噪比阈值μ,认证请求传输概率(PART)可以由式(10)表示。在一些示例中,在最优隐蔽性协议下,认证请求传输概率(PART)的值需要满足
Figure PCTCN2018085210-appb-000129
其中,ε ART是认证请求传输概率(PART)的下限。由此,得到接收端反馈的信噪比阈值μ的可行范围,即
Figure PCTCN2018085210-appb-000130
另外,在一些示例中,在标记信号中的信息信号不能实现在接收装置20无错误地被解码时,接收装置20就会发生认证隐蔽拒绝事件。隐蔽认证拒绝概率(PACR)可以根据上述的信干噪比(MINR)得到。隐蔽认证拒绝概率(PACR)可以如式(11)所示。基于式(11)和不同的信噪比阈值μ的范围,可以得到式(12)。
另外,在最优隐蔽性协议下,隐蔽认证拒绝概率(PACR)需要满足
Figure PCTCN2018085210-appb-000131
其中,ε ACR是隐蔽认证拒绝概率(PACR)的上限。由此,根据隐蔽认证概率(PACR)能够量度物理层认证技术的隐蔽等 级。另外,得到接收端反馈的信噪比阈值μ的可行范围,即
Figure PCTCN2018085210-appb-000132
另外,在一些示例中,基于上述的认证请求传输概率(PART)和隐蔽认证拒绝概率(PACR),最优隐蔽性协议可以包括两种能够约束信噪比阈值μ的可行范围的情况。
在一些示例中,在最优隐蔽性协议下,可以设置
Figure PCTCN2018085210-appb-000133
在这种情况下,P ACR=0。认证请求传输概率(PART)的值需要满足
Figure PCTCN2018085210-appb-000134
另外能量分配因子
Figure PCTCN2018085210-appb-000135
需要满足式(13)。在一些示例中,在最优隐蔽性协议下,可以设置μ=0,在这种情况下,P ART=1。认证请求传输概率(PART)的值需要满足
Figure PCTCN2018085210-appb-000136
另外能量分配因子
Figure PCTCN2018085210-appb-000137
需要满足式(14)。
综合上述两种约束信噪比阈值μ的可行范围的情况,对于ε ART和ε ACR的约束条件可以满足式(15)。另外,基于上述的信噪比阈值μ的可行范围和能量分配因子
Figure PCTCN2018085210-appb-000138
可以优化信噪比阈值μ,且优化的信噪比阈值μ满足式(16)。
在一些示例中,如图7所示,接收装置20可以包括判定模块23。判定模块23根据保密认证概率、认证请求传输概率和隐蔽认证拒绝的概率计算出保密认证效率,以确定物理层认证的请求延迟和隐蔽等级,根据优化的信噪比阈值和优化的能量分配因子,获取保密认证效率的最大值。另外,在一些示例中,保密认证概率(PSA)、认证请求传输概率(PART)和隐蔽认证拒绝概率(PACR)可以通过处理模块21和计算模块22得到。
在一些示例中,基于保密认证概率(PSA)、认证请求传输概率(PART)和隐蔽认证拒绝概率(PACR)计算出保密认证效率(SAE)。规定保密认证效率(SAE)可以由如式(17)所示。
在一些示例中,保密认证效率(SAE)中包括认证请求传输概率(PART)和隐蔽认证拒绝概率(PACR),其中认证请求传输概率(PART)可以评估物理层认证的请求延迟。隐蔽认证拒绝概率(PACR)可以确 定物理层认证的隐蔽等级。由此,保密认证效率(SAE)可以更好评估请求延迟和隐蔽等级。
另外,在一些示例中,在优化的能量分配因子
Figure PCTCN2018085210-appb-000139
和可行性范围内的信噪比阈值μ情况下,受认证请求传输概率(PART)和隐蔽认证拒绝概率(PACR)约束的保密认证效率(SAE)获得最大值。具体而言,保密认证效率(SAE)最大值、认证请求传输概率(PART)和隐蔽认证拒绝概率(PACR)的关系由式(18)获得。
在一些示例中,基于上述的优化的信噪比阈值μ,根据式(18)可以得到式(19)和式(20)两种情况下的优化的能量分配因子
Figure PCTCN2018085210-appb-000140
图8是示出了本公开的示例所涉及的物理层认证设备的结构示意图。在一些示例中,发射端与接收端都包含如图8所示的认证设备30。
在一些示例中,如图8所示,认证设备30包括处理器31和存储器32。其中,处理器31以及存储器32分别连接通信总线。在一些示例中,存储器32可以是高速RAM存储器,也可以是非易失性的存储器(non-volatile memory)。图8中示出的认证设备30的结构并不构成对本公开的限定,它可以是总线形结构、星型结构,还可以包括比图8所示的更多或更少的部件,或者组合某些部件,或者不同的部件布置。
其中,处理器31为认证设备30的控制中心。在一些示例中,可以是中央处理器(Central Processing Unit,CPU),处理器31利用各种接口和线路连接整个认证设备30的各个部分,通过运行或执行存储在存储器32内的软件程序和/或模块,以及调用存储在存储器32内存储的程序代码,用于执行以下操作:
在接收端的信道状态信息已知的情况下,发射端基于最优隐蔽性协议向无线信道发射标记信号,标记信号包括认证信号和信息信号,在最优隐蔽性协议中,所述接收端向所述发射端反馈信噪比阈值,优化所述信息信号的能量分配因子和所述信噪比阈值(由发射端的认证设备30执行)。接收端接收标记信号,基于最优隐蔽性协议,向发射端反馈信噪比阈值,对标记信号进行处理,获得保密认证概率;基于接收的信息信号的信干噪比获得认证请求传输概率和隐蔽认证拒绝概率;并且基于保密认证概率、认证请求传输概率和隐蔽认证拒绝概率计算出保密认证效率,以确定物理层认证的隐蔽等级,根据优化的所 述信噪比阈值和优化的所述能量分配因子,获取所述保密认证效率的最大值(由接收端的认证设备30执行)。
在一些示例中,认证设备30的处理器31还执行以下操作:在最优隐蔽性协议中,设置信噪比阈值μ满足
Figure PCTCN2018085210-appb-000141
其中,R b表示常规信号速率,能量分配因子
Figure PCTCN2018085210-appb-000142
需要满足下式(13)
Figure PCTCN2018085210-appb-000143
其中,ε ART是认证请求传输概率的下限,
Figure PCTCN2018085210-appb-000144
γ b表示平均信噪比。
在一些示例中,认证设备30的处理器31还执行以下操作:在最优隐蔽性协议中,设置信噪比阈值μ满足μ=0,能量分配因子
Figure PCTCN2018085210-appb-000145
需要满足下式(14):
Figure PCTCN2018085210-appb-000146
其中,ε ART是认证请求传输概率的下限,
Figure PCTCN2018085210-appb-000147
γ b表示平均信噪比。
在一些示例中,认证设备30的处理器31还执行以下操作:优化的信噪比阈值μ满足下式(16):
Figure PCTCN2018085210-appb-000148
在一些示例中,认证设备30的处理器31还执行以下操作:若ε ARTACR<1,优化的能量分配因子
Figure PCTCN2018085210-appb-000149
满足式(19):
Figure PCTCN2018085210-appb-000150
在一些示例中,认证设备30的处理器31还执行以下操作:若ε ARTACR≥1,优化的能量分配因子
Figure PCTCN2018085210-appb-000151
满足式(20):
Figure PCTCN2018085210-appb-000152
在一些示例中,认证设备30的处理器31还执行以下操作:保密 认证效率由下式(17)计算得到:η=P ART(1-P ACR)P SA(17),其中,P ART表示认证请求传输概率,P ACR表示隐蔽认证拒绝概率,P SA表示保密认证概率。
在一些示例中,认证设备30的处理器31还执行以下操作:信息信号的信干噪比由下式(9)计算得到:
Figure PCTCN2018085210-appb-000153
其中,
Figure PCTCN2018085210-appb-000154
表示信息信号的能量分配因子,
Figure PCTCN2018085210-appb-000155
表示认证信号的能量分配因子,标记信号分块发送,γ b,i表示第i块标记信号在接收端的信道信噪比,h b,i表示第i块标记信号的信道增益,
Figure PCTCN2018085210-appb-000156
表示接收端的噪声方差。
在一些示例中公开了一种计算机可读存储介质,本领域普通技术人员可以理解上述示例中的各种物理层认证方法中的全部或部分步骤是可以通过程序(指令)来指令相关的硬件来完成,该程序(指令)可以存储于计算机可读存储器(存储介质)中,存储器可以包括:闪存盘、只读存储器(Read-Only Memory,ROM)、随机存取器(Random Access Memory,RAM)、磁盘或光盘等。
虽然以上结合附图和实施例对本公开进行了具体说明,但是可以理解,上述说明不以任何形式限制本公开。本领域技术人员在不偏离本公开的实质精神和范围的情况下可以根据需要对本公开进行变形和变化,这些变形和变化均落入本公开的范围内。

Claims (10)

  1. 一种基于最优隐蔽性协议的物理层认证方法,是包含发射端和接收端的无线通信系统的物理层认证方法,其特征在于,
    包括:
    所述发射端基于最优隐蔽性协议向无线信道发射标记信号,所述标记信号包括认证信号和信息信号,在所述最优隐蔽性协议中,所述接收端向所述发射端反馈信噪比阈值,优化所述信息信号的能量分配因子和所述信噪比阈值;
    所述接收端接收所述标记信号,基于所述最优隐蔽性协议,向所述发射端反馈信噪比阈值,对所述标记信号进行处理,获得保密认证概率;
    基于接收的所述信息信号的信干噪比获得认证请求传输概率和隐蔽认证拒绝概率;并且
    基于所述保密认证概率、所述认证请求传输概率和所述隐蔽认证拒绝概率计算出保密认证效率,以确定物理层认证的隐蔽等级,
    根据优化的所述信噪比阈值和优化的所述能量分配因子,获取所述保密认证效率的最大值。
  2. 根据权利要求1所述的物理层认证方法,其特征在于:
    在所述最优隐蔽性协议中,设置信噪比阈值μ满足
    Figure PCTCN2018085210-appb-100001
    其中,R b表示常规信号速率,
    能量分配因子
    Figure PCTCN2018085210-appb-100002
    需要满足下式(Ⅰ):
    Figure PCTCN2018085210-appb-100003
    其中,ε ART是认证请求传输概率的下限,
    Figure PCTCN2018085210-appb-100004
    γ b表示平均信噪比。
  3. 根据权利要求1所述的物理层认证方法,其特征在于:
    在所述最优隐蔽性协议中,设置信噪比阈值μ满足μ=0,
    能量分配因子
    Figure PCTCN2018085210-appb-100005
    需要满足下式(Ⅱ):
    Figure PCTCN2018085210-appb-100006
    其中,ε ART是认证请求传输概率的下限,
    Figure PCTCN2018085210-appb-100007
    γ b表示平均信噪比。
  4. 根据权利要求2或3所述的物理层认证方法,其特征在于:
    所述优化的信噪比阈值μ满足下式(Ⅲ):
    Figure PCTCN2018085210-appb-100008
  5. 根据权利要求4所述的物理层认证方法,其特征在于:
    若ε ARTACR<1,优化的所述能量分配因子
    Figure PCTCN2018085210-appb-100009
    满足(Ⅳ):
    Figure PCTCN2018085210-appb-100010
    其中P SA为所述保密认证概率。
  6. 根据权利要求4所述的物理层认证方法,其特征在于:
    若ε ARTACR≥1,优化的所述能量分配因子
    Figure PCTCN2018085210-appb-100011
    满足(Ⅴ):
    Figure PCTCN2018085210-appb-100012
    其中P SA为所述保密认证概率。
  7. 根据权利要求1所述的物理层认证方法,其特征在于:
    信道假设条件是所述接收端的信道状态信息已知。
  8. 根据权利要求1所述的物理层认证方法,其特征在于:
    所述保密认证效率由下式(Ⅵ)计算得到:
    η=P ART(1-P ACR)P SA   (Ⅵ),
    其中,P ART表示所述认证请求传输概率,P ACR表示所述隐蔽认证拒绝概率,P SA表示所述保密认证概率。
  9. 根据权利要求1所述的物理层认证方法,其特征在于:
    所述信息信号的信干噪比由下式(Ⅶ)计算得到:
    Figure PCTCN2018085210-appb-100013
    其中,
    Figure PCTCN2018085210-appb-100014
    表示所述信息信号的能量分配因子,
    Figure PCTCN2018085210-appb-100015
    表示所述认证信号的能量分配因子,所述标记信号分块发送,γ b,i表示第i块标记信号在所述接收端的信道信噪比,h b,i表示第i块标记信号的信道增益,
    Figure PCTCN2018085210-appb-100016
    表示所述接收端的噪声方差。
  10. 一种基于最优隐蔽性协议的物理层认证系统,其特征在于,
    包括:
    发射装置,所述发射装置基于最优隐蔽性协议向无线信道发射标记信号,所述标记信号包括认证信号和信息信号,在所述最优隐蔽性协议中,所述接收装置向所述发射装置反馈信噪比阈值,优化所述信息信号的能量分配因子和所述信噪比阈值;
    接收装置,其包括:处理模块,其接收所述标记信号,基于所述最优隐蔽性协议,向所述发射端反馈信噪比阈值,对所述标记信号进行处理,获得保密认证概率;计算模块,其基于接收的所述信息信号的信干噪比获得认证请求传输概率和隐蔽认证拒绝概率;以及判定模块,其根据所述保密认证概率、所述认证请求传输概率和所述隐蔽认证拒绝的概率计算出保密认证效率,以确定物理层认证的隐蔽等级,根据优化的所述信噪比阈值和优化的所述能量分配因子,获取所述保密认证效率的最大值。
PCT/CN2018/085210 2018-04-28 2018-04-28 基于最优隐蔽性协议的物理层认证方法及系统 WO2019205179A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/085210 WO2019205179A1 (zh) 2018-04-28 2018-04-28 基于最优隐蔽性协议的物理层认证方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/085210 WO2019205179A1 (zh) 2018-04-28 2018-04-28 基于最优隐蔽性协议的物理层认证方法及系统

Publications (1)

Publication Number Publication Date
WO2019205179A1 true WO2019205179A1 (zh) 2019-10-31

Family

ID=68294734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085210 WO2019205179A1 (zh) 2018-04-28 2018-04-28 基于最优隐蔽性协议的物理层认证方法及系统

Country Status (1)

Country Link
WO (1) WO2019205179A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103379434A (zh) * 2012-04-27 2013-10-30 亮星科技有限公司 权限认证的方法、系统及装置
CN105263135A (zh) * 2015-07-24 2016-01-20 南京邮电大学 一种mimo通信系统的鲁棒性安全设计方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103379434A (zh) * 2012-04-27 2013-10-30 亮星科技有限公司 权限认证的方法、系统及装置
CN105263135A (zh) * 2015-07-24 2016-01-20 南京邮电大学 一种mimo通信系统的鲁棒性安全设计方法

Similar Documents

Publication Publication Date Title
Tao et al. Covert communication in downlink NOMA systems with random transmit power
US20200169883A1 (en) Security Detection Method for Physical Layer Authentication System
Li et al. Optimal power adaptation in covert communication with an uninformed jammer
Jin et al. Robust spectrum decision protocol against primary user emulation attacks in dynamic spectrum access networks
CN1930860B (zh) 基于用户-服务器的无线侵入检测的系统和方法
CN110381510B (zh) 基于叠加物理层认证标签的非正交多址认证系统
Huang et al. Identifying the fake base station: A location based approach
TW201410057A (zh) 基於頻譜相關性函數之感知無線電主動式頻譜偵測方法
WO2019061514A1 (zh) 安全的无线通信物理层斜率认证方法和装置
CN110381511B (zh) 基于共享物理层认证标签的非正交多址认证系统
WO2019061516A1 (zh) 隐蔽的无线通信物理层斜率认证方法和装置
CN110312255B (zh) 基于叠加认证标签的非正交多址认证系统的参数优化方法
Hou et al. Message integrity protection over wireless channel by countering signal cancellation: Theory and practice
CN110392371B (zh) 基于时分复用认证标签的非正交多址认证系统的优化方法
CN108966223B (zh) 基于单比特隐蔽性协议的物理层认证方法及系统
WO2019205179A1 (zh) 基于最优隐蔽性协议的物理层认证方法及系统
US20200015083A1 (en) Robust Physical Layer Slope Authentication Method in Wireless Communications and Apparatus
US11412378B2 (en) Smoothing technology-based blind authentication method and system for frequency selective fading channel
CN108934012B (zh) 基于最优隐蔽性协议的物理层认证方法及系统
CN108156102B (zh) 基于平滑技术的频率选择性衰落信道的盲认证方法和系统
CN108934011B (zh) 物理层认证的隐蔽性分析方法、设备、存储介质及系统
CN108966222B (zh) 基于自适应隐蔽性协议的物理层认证方法及系统
US20230180002A1 (en) PUF-BASED IoT DEVICE USING CHANNEL STATE INFORMATION, AND AUTHENTICATION METHOD THEREOF
CN110380798B (zh) 基于共享认证标签的非正交多址认证系统及参数优化方法
KR102443657B1 (ko) 하향 링크 보안 비직교 다중 접속 네트워크 환경에서 보안성능 향상을 위한 최적의 불규칙적인 가우시안 신호 설계 방법 및 그 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915802

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/02/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18915802

Country of ref document: EP

Kind code of ref document: A1