WO2019204894A1 - Method for diffusing p-type dopant and n-type dopant in silicon wafers in the same thermal step - Google Patents

Method for diffusing p-type dopant and n-type dopant in silicon wafers in the same thermal step Download PDF

Info

Publication number
WO2019204894A1
WO2019204894A1 PCT/BR2019/050148 BR2019050148W WO2019204894A1 WO 2019204894 A1 WO2019204894 A1 WO 2019204894A1 BR 2019050148 W BR2019050148 W BR 2019050148W WO 2019204894 A1 WO2019204894 A1 WO 2019204894A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffusion
process according
type dopant
dopant
carried out
Prior art date
Application number
PCT/BR2019/050148
Other languages
French (fr)
Portuguese (pt)
Inventor
Izete ZANESCO
Adriano MOEHLECKE
Original Assignee
União Brasileira De Educação E Assistência, Mantenedora Da Pucrs
Eletrosul Centrais Eletricas S/A
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by União Brasileira De Educação E Assistência, Mantenedora Da Pucrs, Eletrosul Centrais Eletricas S/A filed Critical União Brasileira De Educação E Assistência, Mantenedora Da Pucrs
Publication of WO2019204894A1 publication Critical patent/WO2019204894A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention provides a process for producing monofacial and bifacial solar cells on p + dopant diffusion crystalline silicon sheets (boron, aluminum, gallium, etc.), phosphorus diffusion, and annealing in the same thermal step.
  • the present invention is in the fields of solar energy converting devices, more specifically it relates to solar cells.
  • n + pp + structure solar cells The current industry standard technology of n + pp + structure solar cells is based on phosphorus diffusion on the front face (emitter) with POC and the formation of the retrodiffuser field (the p + region) with aluminum paste and diffusion. in a treadmill oven. This solar cell is bulging and can break during welding or encapsulation to form the photovoltaic module.
  • Another type of dopant to form the p + region is boron, which produces better quality passivable p + regions that are transparent to radiation. This feature is required in bifacial solar cells, a fact that does not occur when aluminum is used as a dopant.
  • boron is used as p + dopant because this region remains transparent to solar radiation after the diffusion process, which is not the case when aluminum is used as dopant.
  • the retrodiffuser field can also be formed by boron diffusion and enables surface passivation. Standard boron diffusion is performed in a BBr3 0 dopant quartz tube furnace. In this case, to prevent boron from entering both sides of the solar cell, oxidation is required, resin deposition on one face and oxide attack (with buffered hydrofluoric acid) on the resin-free face, that is, on the face where the boron will be diffused.
  • oxidation processes are also required to prevent dopant diffusion on the other side of the silicon slide.
  • WO 2005076960 discloses a method for producing crystalline silicon solar cells with contacts only on the rear face, avoiding the metal mesh on the front face, reducing the reflection of solar radiation on the front face. Unlike the present invention, it describes that there is a higher concentration of dopant in contact and the solar cell needs to be drilled, forming holes in it. Phosphorus and boron diffusion are mentioned in independent steps, as well as oxidation.
  • Recart et al. in "Large Area Thin BSF Solar Cells With Simultaneously Diffused Boron and Phosphorus Screen Printed Emitters” reveals a method of manufacturing thin solar cells (105 pm), where the efficiency of 11.6% was achieved.
  • Dopant diffusion is carried out by silkscreening of folders containing the phosphorus and boron dopants and firing simultaneously at the same temperature.
  • the "co-firing" technique is referred to as the process of burning the pastes with the conveyor dopants at the same time as the diffusions are performed.
  • unlike the present invention it is focused on the deposition of dopants spin-on and the diffusion of both dopants in the same thermal step in a quartz tube furnace at different temperatures, as well as annealing.
  • WO 2009064183 discloses a method of manufacturing crystalline silicon solar cells comprising the steps of phosphorus pre-diffusion in the silicon slide, phosphorus silicate extraction and chemical etching of one side in solution with HNO3 and HF for removal of the boron-diffusion-like layer by placing the phosphorus-doped face blades juxtaposed in the diffusion furnace to reduce the entry of boron into the phosphorus-doped face. In this thermal process, phosphorus also continues to be diffused. Unlike the present invention, to obtain the p + and n + regions of a solar cell, two high temperature thermal steps are performed as well as a process of extracting the n + one region by chemical attack based on HNOa and HF.
  • the present invention aims at solving the constant problems in the state of the art from a process that allows the dopant diffusion p + , the phosphorus diffusion, and 0 to be performed in the same thermal step. annealing on crystalline silicon sheets.
  • the process is carried out in a conventional quartz tube furnace by controlling oxygen and nitrogen gases, temperature and processing time.
  • the present invention has the diffusion of dopants on silicon sheets and annealing in the same thermal step, reducing the processing steps and time, as well as reducing the use of chemicals, thereby reducing the cost of producing the dopants. manufacturing process of monofacial and bifacial solar cells. [0010]
  • the present invention provides a type n-type dopant diffusion process on silicon blades in the same thermal step, comprising the steps:
  • step a prior to the thermal step:
  • step b thermal step:
  • the present invention presents a solar cell, obtained according to the process defined herein.
  • the present invention discloses the use of solar cell for production of electric energy from the exposure of the cell to solar radiation.
  • Figure 1 shows the comparison of (a) conventional solar cell manufacturing process flowchart with (b) high temperature step reduction and chemical treatment process flowchart.
  • Figure 1 presents two diagrams of solar cell manufacturing processes: one conventional and the other with the diffusion of type-d and d-type dopant on silicon sheets and annealing in the same thermal step.
  • the initial stage of both processes is the anisotropic attack or texturing of the silicon blade surfaces to reduce solar radiation reflection.
  • an RCA chemical cleaning HI: H202: H20
  • HCI RCA chemical cleaning
  • the p-type dopant boron, aluminum, gallium, etc.
  • the slides are introduced in a quartz tube oven and the p-type dopant diffusion process is performed at a high temperature (800 ° C to 1100 ° C).
  • the blades are removed from the oven, chemically cleaned and reinserted into a quartz furnace for surface oxidation at high temperatures (800 ° C to 1,100 ° C).
  • the silicon oxide layer formed will protect the p-type doped face during the following diffusion process of the n-type dopant.
  • the silicon blades undergo another process of HF oxide attack and chemical cleaning and are introduced in a quartz tube furnace for high temperature phosphorus diffusion (n-type dopant) using POC as source and then annealing is performed.
  • phosphorus diffusion is performed by the industry standard method with POCI3 in the same thermal step as p-type dopant diffusion (boron, aluminum, gallium, etc.).
  • p-type dopant diffusion boron, aluminum, gallium, etc.
  • annealing is performed in the conventional quartz tube furnace. Therefore, as shown in Figure 1, six process steps are not performed or are avoided with the present invention.
  • temperature and processing time for each step a process was developed in which the diffusion of p-type dopant (boron, aluminum, gallium, etc.), phosphorus diffusion and annealing are performed in the same thermal step.
  • the p-type dopant is deposited on one side of the silicon slide and after the insertion of the slides in the oven, the p-type dopant diffusion is first performed, followed by phosphorus diffusion and annealing.
  • a silicate is formed which protects the face with p-type dopant from phosphorus diffusion from POCI3. The diffusion of both doping and annealing in the same thermal step was experimentally optimized.
  • the boron and phosphorus silicates are removed and chemical cleaned.
  • surface passivation (optional) may or may not be performed and the anti-reflective film (AR) deposited.
  • AR anti-reflective film
  • the meshed electrical contact is silkscreened on both sides of the silicon sheets and a thermal burning process of Ag, Ag / AI or AI metal pastes is performed. In this thermal step the metal mesh pierces the AR film, establishing the electrical contact between metal and semiconductor.
  • the last step in the process is edge isolation, when a laser beam creates a groove on the edge of solar cells. Boron diffusion solar cells were produced with an efficiency of 16.1%. It is noted that this process is an industrial process, easily transferred to the current industry.
  • the present invention provides a process of p-type and n-type dopant diffusion on silicon sheets and annealing in the same thermal step, comprising the steps:
  • step a prior to the thermal step:
  • step b thermal step:
  • steps b1 to b3 are performed at temperatures between 800 ° C and 1100 ° C. In one embodiment, steps b1 to b3 are performed at a time between 10 min to 90 minutes.
  • step b1 is performed at a time of 20 min and a temperature of 950 ° C.
  • step b2 is performed in 50 min time and temperature was 845 ° C.
  • step b3 is performed at a time of 20 min and a temperature of 845 ° C.
  • the gases used in steps b1 through b3 are nitrogen and / or oxygen.
  • step b1 is performed in the presence of nitrogen and oxygen, oxygen being in the proportion of 5% to 50%.
  • step b2 is performed in the presence of nitrogen, oxygen and POC vapor, with 0 oxygen being 1% to 20% and 0 POCI3 vapor being 0.1% to 0.3. %.
  • step b3 is performed in the presence of nitrogen and oxygen, with oxygen being in the proportion of 5% to 50%.
  • the p-type dopant is boron, aluminum or gallium or other p-type impurity.
  • the n-type dopant is phosphorus
  • the thermal step is performed in a conventional quartz tube furnace.
  • the present invention presents a solar cell, obtained according to the process defined herein.
  • the present invention discloses the use of solar cell for the production of electric energy from the exposure of the cell to solar radiation.
  • the manufactured solar cells were characterized by measuring the electric current as a function of the applied voltage (lV curve) with the aid of a solar simulator under standard measurement conditions: solar cell temperature 25 ° C, irradiance 1000 W / m 2 and AM1.5G spectrum.
  • solar cell temperature 25 ° C, irradiance 1000 W / m 2 and AM1.5G spectrum.
  • the temperature from 845 ° C to 980 ° C
  • the time from 5 minutes to 50 minutes
  • the temperature of boron diffusion in the quartz tube oven were varied, the temperature (from 840 ° C to 990 ° C).

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The invention relates to a method for diffusing dopants for the production of solar cells with diffusion of p+ dopant (boron, aluminium, gallium, etc.) and diffusion of phosphorus in crystalline silicon wafers and annealing in the same thermal step, in order to reduce the number of steps and amount of time involved in the production of solar cells, and as a result, to reduce the cost of production. The invention pertains to the fields of solar energy conversion devices, specifically solar cells.

Description

Relatório Descritivo de Patente de Invenção  Patent Invention Descriptive Report
PROCESSO DE DIFUSÃO DE DOPANTE TIPO P E T IPO N EM LÂMINAS DE SILÍCIO NA MESMA ETAPA TÉRMICA  P AND T IPO N TYPE DIFFUSION PROCESS IN SILENCE BLADES ON THE SAME THERMAL STAGE
Campo da Invenção Field of the Invention
[0001] A presente invenção apresenta um processo de produção de células solares monofaciais e bifaciais em lâminas de silício cristalino com difusão de dopante p+ (boro, alumínio, gálio, etc.), difusão de fósforo, e recozimento na mesma etapa térmica. A presente invenção se situa nos campos de dispositivos de conversão de energia solar, mais especificamente refere-se a células solares. [0001] The present invention provides a process for producing monofacial and bifacial solar cells on p + dopant diffusion crystalline silicon sheets (boron, aluminum, gallium, etc.), phosphorus diffusion, and annealing in the same thermal step. The present invention is in the fields of solar energy converting devices, more specifically it relates to solar cells.
Antecedentes da Invenção  Background of the Invention
[0002] A tecnologia padrão da indústria atual de células solares com estrutura n+pp+ está baseada na difusão de fósforo na face frontal (emissor) com POC e na formação do campo retrodifusor (a região p+) com pasta de alumínio e difusão em forno de esteira. Esta célula solar apresenta abaulamento e pode quebrar durante a soldagem ou encapsulamento para formar 0 módulo fotovoltaico. Outro tipo de dopante para formar a região p+ (emissor na estrutura p+nn+ ou campo retrodifusor na estrutura n+pp+) é 0 boro, que produz regiões p+ de melhor qualidade, que podem ser passivadas e são transparentes à radiação solar, sendo necessária esta característica em células solares bifaciais, fato que não ocorre quando 0 alumínio é usado como dopante. Em células solares com emissor frontal p+ com estrutura p+nn+, usa- se boro como dopante p+ porque esta região permanece transparente à radiação solar após 0 processo de difusão, fato que não ocorre quando 0 alumínio é usado como dopante. Em células solares n+pp+, 0 campo retrodifusor também pode ser formado pela difusão de boro e possibilita a passivação da superfície. A difusão de boro padrão é realizada em forno com tubo de quartzo com 0 dopante BBr3. Neste caso, para evitar a entrada de boro em ambas as faces da célula solar, é necessária a realização de oxidação, deposição de resina em uma face e ataque do óxido (com ácido fluorídrico tamponado) na face sem resina, isto é, na face em que será difundido o boro. Para proteger a face com boro da difusão de fósforo, outra oxidação é realizada, seguida de deposição de resina e ataque do óxido na face em que será depositado fósforo. A difusão do dopante tipo p, boro ou alumínio, pode ser realizada pela deposição por spin-on do líquido que contém o dopante e, após a secagem, a difusão de boro ou alumínio pode ser implementada em forno convencional. Com o uso desta técnica, também são necessários processos de oxidação para evitar a difusão do dopante na outra face da lâmina de silício. The current industry standard technology of n + pp + structure solar cells is based on phosphorus diffusion on the front face (emitter) with POC and the formation of the retrodiffuser field (the p + region) with aluminum paste and diffusion. in a treadmill oven. This solar cell is bulging and can break during welding or encapsulation to form the photovoltaic module. Another type of dopant to form the p + region (emitter in the p + nn + structure or backscatter field in the n + pp + structure) is boron, which produces better quality passivable p + regions that are transparent to radiation. This feature is required in bifacial solar cells, a fact that does not occur when aluminum is used as a dopant. In solar cells with front emitter p + with structure p + nn + , boron is used as p + dopant because this region remains transparent to solar radiation after the diffusion process, which is not the case when aluminum is used as dopant. In solar cells n + pp + , the retrodiffuser field can also be formed by boron diffusion and enables surface passivation. Standard boron diffusion is performed in a BBr3 0 dopant quartz tube furnace. In this case, to prevent boron from entering both sides of the solar cell, oxidation is required, resin deposition on one face and oxide attack (with buffered hydrofluoric acid) on the resin-free face, that is, on the face where the boron will be diffused. To protect the boron face from phosphorus diffusion, another oxidation is performed, followed by resin deposition and oxide attack on the phosphorus deposited face. The diffusion of the p-type boron or aluminum dopant can be accomplished by spin-on deposition of the dopant-containing liquid and, after drying, the boron or aluminum diffusion can be implemented in a conventional oven. Using this technique, oxidation processes are also required to prevent dopant diffusion on the other side of the silicon slide.
[0003] Na busca pelo estado da técnica em literaturas científica e patentária, foram encontrados os seguintes documentos que tratam sobre o tema:  In the search for the state of the art in scientific and patent literature, the following documents dealing with the subject were found:
[0004] O documento patentário WO 2005076960 apresenta um método para produção de células solares de silício cristalino com contatos somente na face posterior, evitando a malha metálica na face frontal, reduzindo a reflexão da radiação solar na face frontal. Diferentemente da presente invenção, descreve que há maior concentração do dopante no contato e a célula solar necessita ser perfurada, formando buracos na mesma. É citada a difusão de fósforo e de boro em etapas independentes, além de oxidações.  WO 2005076960 discloses a method for producing crystalline silicon solar cells with contacts only on the rear face, avoiding the metal mesh on the front face, reducing the reflection of solar radiation on the front face. Unlike the present invention, it describes that there is a higher concentration of dopant in contact and the solar cell needs to be drilled, forming holes in it. Phosphorus and boron diffusion are mentioned in independent steps, as well as oxidation.
[0005] Recart et al. em "Large Area Thin BSF Solar Cells With Simultaneously Diffused Boron and Phosphorus Screen Printed Emitters" revela um método de fabricação de células solares finas (105 pm), onde foi alcançada a eficiência de 1 1 ,6 %. A difusão de dopantes é realizada a partir da deposição por serigrafia de pastas contendo os dopantes fósforo e boro e a queima é realizada simultaneamente na mesma temperatura. É mencionada a técnica “co-firinçf como o processo de queima das pastas com os dopantes em forno de esteira ao mesmo tempo que são realizadas as difusões. Entretanto, diferentemente a presente invenção está focada na deposição dos dopantes por spin-on e a difusão de ambos dopantes na mesma etapa térmica em forno com tubo de quartzo em diferentes temperaturas, além de um recozimento. Recart et al. in "Large Area Thin BSF Solar Cells With Simultaneously Diffused Boron and Phosphorus Screen Printed Emitters" reveals a method of manufacturing thin solar cells (105 pm), where the efficiency of 11.6% was achieved. Dopant diffusion is carried out by silkscreening of folders containing the phosphorus and boron dopants and firing simultaneously at the same temperature. The "co-firing" technique is referred to as the process of burning the pastes with the conveyor dopants at the same time as the diffusions are performed. However, unlike the present invention it is focused on the deposition of dopants spin-on and the diffusion of both dopants in the same thermal step in a quartz tube furnace at different temperatures, as well as annealing.
[0006] O documento WO 2009064183 revela um método de fabricação de células solares de silício cristalino, compreendendo as etapas de pré- difusão de fósforo na lâmina de silício, extração de silicatos de fósforo e ataque químico de uma das faces em solução com HNO3 e HF para remoção da camada tipo n e difusão de boro com a colocação das lâminas com a face dopada com fósforo de forma justapostas no forno de difusão para reduzir a entrada de boro na face previamente dopada com fósforo. Nesse processo térmico, 0 fósforo também continua sendo difundido. Diferentemente da presente invenção, para obter as regiões p+ e n+ de uma célula solar, dois passos térmicos de alta temperatura são realizados bem como um processo de extração da região n+ de uma face por ataque químico baseado em HNOa e HF. WO 2009064183 discloses a method of manufacturing crystalline silicon solar cells comprising the steps of phosphorus pre-diffusion in the silicon slide, phosphorus silicate extraction and chemical etching of one side in solution with HNO3 and HF for removal of the boron-diffusion-like layer by placing the phosphorus-doped face blades juxtaposed in the diffusion furnace to reduce the entry of boron into the phosphorus-doped face. In this thermal process, phosphorus also continues to be diffused. Unlike the present invention, to obtain the p + and n + regions of a solar cell, two high temperature thermal steps are performed as well as a process of extracting the n + one region by chemical attack based on HNOa and HF.
[0007] Assim, do que se depreende da literatura pesquisada, não foram encontrados documentos antecipando ou sugerindo os ensinamentos da presente invenção, de forma que a solução aqui proposta possui novidade e atividade inventiva frente ao estado da técnica. Thus, from what is clear from the researched literature, no documents were found anticipating or suggesting the teachings of the present invention, so that the solution proposed here has novelty and inventive activity in relation to the state of the art.
Sumário da Invenção  Summary of the Invention
[0008] Dessa forma, a presente invenção tem por objetivo resolver os problemas constantes no estado da técnica a partir de um processo que permite que seja realizada, na mesma etapa térmica, a difusão de dopante p+, a difusão de fósforo, e 0 recozimento em lâminas de silício cristalino. O processo é realizado em um forno convencional com tubo de quartzo, por meio do controle dos gases oxigénio e nitrogénio, da temperatura e do tempo de processamento. Thus, the present invention aims at solving the constant problems in the state of the art from a process that allows the dopant diffusion p + , the phosphorus diffusion, and 0 to be performed in the same thermal step. annealing on crystalline silicon sheets. The process is carried out in a conventional quartz tube furnace by controlling oxygen and nitrogen gases, temperature and processing time.
[0009] A presente invenção apresenta como vantagem a difusão dos dopantes nas lâminas de silício e 0 recozimento na mesma etapa térmica, reduzindo as etapas e 0 tempo do processamento, assim como reduzindo 0 uso de produtos químicos, diminuindo assim 0 custo de produção do processo de fabricação de células solares monofaciais e bifaciais. [0010] Em um objeto, a presente invenção apresenta um processo de difusão de dopante tipo p e tipo n em lâminas de silício na mesma etapa térmica, compreendendo as etapas: Advantageously, the present invention has the diffusion of dopants on silicon sheets and annealing in the same thermal step, reducing the processing steps and time, as well as reducing the use of chemicals, thereby reducing the cost of producing the dopants. manufacturing process of monofacial and bifacial solar cells. [0010] In one object, the present invention provides a type n-type dopant diffusion process on silicon blades in the same thermal step, comprising the steps:
etapa a, anterior a etapa térmica:  step a, prior to the thermal step:
a1 ) deposição de dopante líquido tipo p pela técnica de spin-on em uma face da lâmina de silício;  a1) deposition of p-type liquid dopant by spin-on technique on one side of the silicon slide;
etapa b, etapa térmica:  step b, thermal step:
b1 ) difusão do dopante tipo p em forno de quartzo a alta temperatura; b2) difusão do dopante tipo n a partir de fonte líquida ou gasosa a alta temperatura e  b1) diffusion of the p-type dopant in a high temperature quartz furnace; b2) diffusion of type n dopant from a high temperature liquid or gaseous source and
b3) recozimento das lâminas de silício ( annealing ).  b3) annealing of annealing blades.
[0011] Em um segundo objeto, a presente invenção apresenta uma célula solar, obtida conforme o processo aqui definido.  In a second object, the present invention presents a solar cell, obtained according to the process defined herein.
[0012] Em um terceiro objeto, a presente invenção apresenta o uso de célula solar para produção de energia elétrica a partir da exposição da célula à radiação solar.  In a third object, the present invention discloses the use of solar cell for production of electric energy from the exposure of the cell to solar radiation.
[0013] Estes e outros objetos da invenção serão imediatamente valorizados pelos versados na arte e pelas empresas com interesses no segmento, e serão descritos em detalhes suficientes para sua reprodução na descrição a seguir.  [0013] These and other objects of the invention will be immediately appreciated by those skilled in the art and companies having an interest in the segment, and will be described in sufficient detail for their reproduction in the following description.
Breve Descrição das Figuras  Brief Description of the Figures
[0014] É apresentada a seguinte figura:  [0014] The following figure is displayed:
[0015] A Figura 1 mostra a comparação do (a) fluxograma do processo de fabricação de células solares convencional com o (b) fluxograma do processo com redução de etapas em alta temperatura e tratamento químico.  [0015] Figure 1 shows the comparison of (a) conventional solar cell manufacturing process flowchart with (b) high temperature step reduction and chemical treatment process flowchart.
Descrição Detalhada da Invenção  Detailed Description of the Invention
[0016] A Figura 1 apresenta dois diagramas de processos de fabricação de células solares: um convencional e o outro com a difusão de dopante tipo p e tipo n em lâminas de silício e recozimento na mesma etapa térmica. A etapa inicial de ambos os processos é o ataque anisotrópico ou texturação das superfícies das lâminas de silício com o objetivo de reduzir a reflexão da radiação solar. Depois da texturação, realiza-se uma limpeza química RCA (HCI:H202:H20) para retirar contaminantes e deposita-se o dopante tipo p (boro, alumínio, gálio, etc.) por spin-on. Após a secagem, as lâminas são introduzidas em forno com tubo de quartzo e realiza-se o processo de difusão do dopante tipo p em alta temperatura (800 °C a 1 100 °C). No processo de difusão convencional, representado na Figura 1 a, após a difusão de boro, as lâminas são retiradas do forno, passam por limpeza química e são introduzidas novamente em um forno de quartzo para oxidação das superfícies em alta temperatura (800 °C a 1 100 °C). A camada de óxido de silício formada terá a função de proteger a face dopada com elemento tipo p durante o seguinte processo de difusão do dopante tipo n. No processo convencional, as lâminas de silício passam por mais um processo de ataque de óxido com HF e limpeza química e são introduzidas em forno de tubo de quartzo para realização da difusão de fósforo (dopante tipo n) em alta temperatura, utilizando o POC como fonte e, então, é realizado 0 recozimento. No processo de difusão proposto, representado na Figura 1 b, a difusão de fósforo é realizada pelo método padrão da indústria com POCI3 na mesma etapa térmica que a difusão do dopante tipo p (boro, alumínio, gálio, etc). Na mesma etapa térmica, após a difusão dos dopantes, é realizado 0 recozimento no forno convencional com tubo de quartzo. Portanto, conforme mostra a Figura 1 , seis etapas do processo não são realizadas ou são evitadas com a presente invenção. Com 0 controle dos gases oxigénio e nitrogénio, da temperatura e do tempo de processamento para cada etapa desenvolveu-se um processo no qual, a difusão do dopante tipo p (boro, alumínio, gálio, etc), a difusão de fósforo e 0 recozimento são realizados na mesma etapa térmica. Desta forma, evitam-se as oxidações (que podem degradar a lâmina de silício), limpezas químicas em ácido fluorídrico e RCA e tempo de processamento, reduzindo 0 custo de produção, principalmente de células solares de silício cristalino monofaciais ou bifaciais. Especificamente, deposita-se 0 dopante tipo p em uma das faces da lâmina de silício e após a inserção das lâminas no forno, primeiramente realiza- se a difusão do dopante tipo p, seguida da difusão de fósforo e recozimento. Na difusão do dopante tipo p forma-se um silicato que protege a face com o dopante tipo p da difusão de fósforo a partir de POCI3. A difusão de ambos dopantes e recozimento na mesma etapa térmica, foi otimizada experimentalmente. Conforme a Figura 1 , após a difusão de boro e fósforo e recozimento, realiza-se a remoção dos silicatos de boro e fósforo e limpeza química. Depois da limpeza, pode-se realizar ou não a passivação das superfícies (opcional) e deposita-se 0 filme antirreflexo (AR). O contato elétrico em forma de malha é depositado por serigrafia em ambas as faces das lâminas de silício e realiza-se um processo térmico de queima das pastas metálicas de Ag, Ag/AI ou AI. Nesta etapa térmica a malha metálica perfura 0 filme AR, estabelecendo 0 contato elétrico entre metal e semicondutor. A última etapa do processo é 0 isolamento de bordas, quando um feixe laser cria um sulco na borda das células solares. Foram produzidas células solares com difusão de boro com eficiência de 16,1 %. Salienta-se que este processo é um processo industrial, facilmente transferido para a indústria atual. [0016] Figure 1 presents two diagrams of solar cell manufacturing processes: one conventional and the other with the diffusion of type-d and d-type dopant on silicon sheets and annealing in the same thermal step. The initial stage of both processes is the anisotropic attack or texturing of the silicon blade surfaces to reduce solar radiation reflection. After texturing, an RCA chemical cleaning (HCI: H202: H20) is performed to remove contaminants and the p-type dopant (boron, aluminum, gallium, etc.) is deposited by spin-on. After drying, the slides are introduced in a quartz tube oven and the p-type dopant diffusion process is performed at a high temperature (800 ° C to 1100 ° C). In the conventional diffusion process, shown in Figure 1 a, after boron diffusion, the blades are removed from the oven, chemically cleaned and reinserted into a quartz furnace for surface oxidation at high temperatures (800 ° C to 1,100 ° C). The silicon oxide layer formed will protect the p-type doped face during the following diffusion process of the n-type dopant. In the conventional process, the silicon blades undergo another process of HF oxide attack and chemical cleaning and are introduced in a quartz tube furnace for high temperature phosphorus diffusion (n-type dopant) using POC as source and then annealing is performed. In the proposed diffusion process, shown in Figure 1b, phosphorus diffusion is performed by the industry standard method with POCI3 in the same thermal step as p-type dopant diffusion (boron, aluminum, gallium, etc.). In the same thermal step, after dopant diffusion, annealing is performed in the conventional quartz tube furnace. Therefore, as shown in Figure 1, six process steps are not performed or are avoided with the present invention. With the control of oxygen and nitrogen gases, temperature and processing time for each step a process was developed in which the diffusion of p-type dopant (boron, aluminum, gallium, etc.), phosphorus diffusion and annealing are performed in the same thermal step. This avoids oxidation (which can degrade the silicon slide), chemical cleaning of hydrofluoric acid and RCA and processing time, reducing the production cost, mainly of monofacial or bifacial crystalline silicon solar cells. Specifically, the p-type dopant is deposited on one side of the silicon slide and after the insertion of the slides in the oven, the p-type dopant diffusion is first performed, followed by phosphorus diffusion and annealing. In diffusion of p-type dopant a silicate is formed which protects the face with p-type dopant from phosphorus diffusion from POCI3. The diffusion of both doping and annealing in the same thermal step was experimentally optimized. According to Figure 1, after boron and phosphorus diffusion and annealing, the boron and phosphorus silicates are removed and chemical cleaned. After cleaning, surface passivation (optional) may or may not be performed and the anti-reflective film (AR) deposited. The meshed electrical contact is silkscreened on both sides of the silicon sheets and a thermal burning process of Ag, Ag / AI or AI metal pastes is performed. In this thermal step the metal mesh pierces the AR film, establishing the electrical contact between metal and semiconductor. The last step in the process is edge isolation, when a laser beam creates a groove on the edge of solar cells. Boron diffusion solar cells were produced with an efficiency of 16.1%. It is noted that this process is an industrial process, easily transferred to the current industry.
[0017] Em um primeiro objeto, a presente invenção apresenta um processo de difusão de dopante tipo p e tipo n em lâminas de silício e recozimento na mesma etapa térmica, compreendendo as etapas:  In a first object, the present invention provides a process of p-type and n-type dopant diffusion on silicon sheets and annealing in the same thermal step, comprising the steps:
etapa a, anterior a etapa térmica: step a, prior to the thermal step:
a1 ) deposição de dopante líquido tipo p pela técnica de spin-on em uma face da lâmina de silício;  a1) deposition of p-type liquid dopant by spin-on technique on one side of the silicon slide;
etapa b, etapa térmica:  step b, thermal step:
b1 ) difusão do dopante tipo p em forno de alta temperatura;  b1) diffusion of the p-type dopant in a high temperature oven;
b2) difusão do dopante tipo n a partir de fonte líquida ou gasosa a alta temperatura;  b2) diffusion of the type n dopant from a high temperature liquid or gas source;
b3) recozimento das lâminas de silício ( annealing ).  b3) annealing of annealing blades.
[0018] Em uma concretização, as etapas b1 a b3 são realizadas em temperatura entre 800 °C e 1 100 °C. [0019] Em uma concretização, as etapas b1 a b3 são realizadas em um tempo entre 10 min a 90 minutos. In one embodiment, steps b1 to b3 are performed at temperatures between 800 ° C and 1100 ° C. In one embodiment, steps b1 to b3 are performed at a time between 10 min to 90 minutes.
[0020] Em uma concretização, a etapa b1 é realizada no tempo de 20 min e temperatura de 950 °C.  In one embodiment, step b1 is performed at a time of 20 min and a temperature of 950 ° C.
[0021] Em uma concretização, a etapa b2 é realizada no tempo de 50 min e temperatura foi 845 °C.  In one embodiment, step b2 is performed in 50 min time and temperature was 845 ° C.
[0022] Em uma concretização, a etapa b3 é realizada no tempo de 20 min e temperatura de 845 °C.  In one embodiment, step b3 is performed at a time of 20 min and a temperature of 845 ° C.
[0023] Em uma concretização, os gases utilizados nas etapas b1 a b3 são nitrogénio e/ou oxigénio.  In one embodiment, the gases used in steps b1 through b3 are nitrogen and / or oxygen.
[0024] Em uma concretização, a etapa b1 é realizada na presença de nitrogénio e oxigénio, sendo o oxigénio na proporção de 5 % a 50 %.  In one embodiment, step b1 is performed in the presence of nitrogen and oxygen, oxygen being in the proportion of 5% to 50%.
[0025] Em uma concretização, a etapa b2 é realizada na presença de nitrogénio, oxigénio e vapor de POC , sendo 0 oxigénio na proporção de 1 % a 20 % e 0 vapor de POCI3 na proporção de 0,1 % a 0,3 %.  In one embodiment, step b2 is performed in the presence of nitrogen, oxygen and POC vapor, with 0 oxygen being 1% to 20% and 0 POCI3 vapor being 0.1% to 0.3. %.
[0026] Em uma concretização, a etapa b3 é realizada na presença de nitrogénio e oxigénio, sendo 0 oxigénio na proporção de 5 % a 50 %.  In one embodiment, step b3 is performed in the presence of nitrogen and oxygen, with oxygen being in the proportion of 5% to 50%.
[0027] Em uma concretização, 0 dopante tipo p é boro, alumínio ou gálio ou outra impureza tipo p.  In one embodiment, the p-type dopant is boron, aluminum or gallium or other p-type impurity.
[0028] Em uma concretização, 0 dopante tipo n é fósforo.  In one embodiment, the n-type dopant is phosphorus.
[0029] Em uma concretização, a etapa térmica é realizada em um forno convencional com tubo de quartzo.  In one embodiment, the thermal step is performed in a conventional quartz tube furnace.
[0030] Em um segundo objeto, a presente invenção apresenta uma célula solar, obtida conforme 0 processo aqui definido.  In a second object, the present invention presents a solar cell, obtained according to the process defined herein.
[0031] Em um terceiro objeto, a presente invenção apresenta 0 uso de célula solar para produção de energia elétrica a partir da exposição da célula à radiação solar.  In a third object, the present invention discloses the use of solar cell for the production of electric energy from the exposure of the cell to solar radiation.
Exemplos - concretizações  Examples - Embodiments
[0032] Os exemplos aqui mostrados têm 0 intuito somente de exemplificar uma das inúmeras maneiras de se realizar a invenção, contudo sem limitar, o escopo da mesma. O processo para fabricação de células solares em lâminas de silício crescido pela técnica Czochralski (Si-Cz) está esquematizado na Figura 1. Inicialmente, as lâminas de silício foram texturadas em uma solução de KOH e álcool isopropílico. Na sequência, as lâminas de Si- Cz foram submetidas à limpeza química RCA. Após a preparação das superfícies da lâmina, o líquido contendo boro PBF20, da Filmtronics, foi depositado por spin-on e, após a secagem, as lâminas foram introduzidas no forno com tubo de quartzo para a difusão de boro que formou o campo retrodifusor p+. Na mesma etapa térmica, foi realizada a difusão de fósforo e o recozimento. Para realizar a oxidação seca para passivar as duas superfícies da lâmina de Si, foi necessário atacar os silicatos de boro e de fósforo formados durante as difusões e foi realizada mais uma limpeza química RCA. Depois da oxidação para passivação, o filme antirreflexo de PO2 com espessura de 60 nm foi depositado na face frontal por evaporação com feixe de elétrons. O último passo foi a deposição dos contatos elétricos por serigrafia. Para formar a malha metálica na face frontal, utilizou-se a pasta de prata PV17F, da Dupont. Na face posterior, formou-se também uma malha metálica com a pasta de alumínio PV381 , da Dupont. Após a secagem das pastas metálicas no forno de esteira, foi implementado 0 processo de queima das pastas em uma única etapa térmica e realizado 0 isolamento das bordas com radiação laser. As células solares fabricadas foram caracterizadas por meio da medição da corrente elétrica em função da tensão aplicada (curva l-V) com auxílio de um simulador solar, sob condições padrão de medição: temperatura da célula solar de 25 °C, irradiância de 1000 W/m2 e espectro AM1 ,5G. Para otimizar 0 processo variou-se a temperatura (de 845 °C a 980 °C) e 0 tempo (de 5 minutos a 50 minutos) de difusão de boro no forno com tubo de quartzo, a temperatura (de 840 °C a 990 °C) e a velocidade da esteira (de 150 cm/min a 320 cm/min) do processo de queima das pastas metálicas no forno de esteira bem como avaliou-se a influência das pastas de metalização de alumínio (PV381 ), de alumínio e prata (PV3N1 ) e de alumínio e prata (PV51 G) para formar a malha metálica na face posterior das células solares. Após a otimização destas etapas, foram fabricadas células solares com eficiência de até 16,1 % para a temperatura de difusão de boro de 950 °C, durante 20 minutos, difusão de fósforo na temperatura de 845 °C durante 50 minutos e recozimento na mesma temperatura durante 20 minutos. A malha metálica na face posterior foi formada com a pasta de alumínio PV381. A temperatura e a velocidade de esteira no processo de queima das pastas metálicas foi de 860 °C e de 300 cm/min, respectivamente. The examples shown herein are intended solely to exemplify one of the numerous ways of carrying out the invention, however. without limiting the scope thereof. The process for manufacturing solar cells on Czochralski-grown silicon slides (Si-Cz) is outlined in Figure 1. Initially, the silicon slides were textured in a solution of KOH and isopropyl alcohol. Following, the SiCz slides were subjected to chemical RCA cleaning. After preparation of the slide surfaces, Filmtronics' PBF20 boron-containing liquid was deposited by spin-on and, after drying, the slides were introduced into the quartz tube furnace for the boron diffusion that formed the retrodiffuser field. + . In the same thermal step, phosphorus diffusion and annealing were performed. To perform the dry oxidation to passivate the two surfaces of the Si lamina, it was necessary to attack the boron and phosphorus silicates formed during the diffusions and another RCA chemical cleaning was performed. After oxidation for passivation, the 60 nm thick PO2 antireflection film was deposited on the front face by electron beam evaporation. The last step was the deposition of the electrical contacts by screen printing. To form the metal mesh on the front face, Dupont PV17F silver paste was used. On the back, a metal mesh was also formed with Dupont PV381 aluminum paste. After drying the metal pulps in the conveyor kiln, the pulp burning process was implemented in a single thermal step and the laser beam was isolated from the edges. The manufactured solar cells were characterized by measuring the electric current as a function of the applied voltage (lV curve) with the aid of a solar simulator under standard measurement conditions: solar cell temperature 25 ° C, irradiance 1000 W / m 2 and AM1.5G spectrum. In order to optimize the process, the temperature (from 845 ° C to 980 ° C) and the time (from 5 minutes to 50 minutes) of boron diffusion in the quartz tube oven were varied, the temperature (from 840 ° C to 990 ° C). ° C) and belt speed (from 150 cm / min to 320 cm / min) of the burning process of the metal pulps in the belt kiln as well as the influence of aluminum metallization pulps (PV381), aluminum and silver (PV3N1) and aluminum and silver (PV51 G) to form the metal mesh on the back of solar cells. After optimizing these steps, solar cells were fabricated with up to 16.1% efficiency at the boron diffusion temperature of 950 ° C for 20 minutes, phosphorus diffusion at 845 ° C for 50 minutes and annealing in it. temperature for 20 minutes. The metal mesh on the back face was formed with PV381 aluminum paste. The temperature and belt speed in the pulp burning process were 860 ° C and 300 cm / min, respectively.

Claims

Reivindicações Claims
1. Processo de difusão de dopante tipo p e tipo n em lâminas de silício e recozimento caracterizado por ser na mesma etapa térmica, por compreendendo as etapas:  1. D and P-type dopant diffusion process on silicon and annealing sheets characterized in that they are in the same thermal step, comprising the steps:
- etapa a, anterior a etapa térmica:  - step a, prior to the thermal step:
a1 ) deposição de dopante líquido tipo p pela técnica de spin-on em uma face da lâmina de silício;  a1) deposition of p-type liquid dopant by spin-on technique on one side of the silicon slide;
- etapa b, etapa térmica:  - step b, thermal step:
b1 ) difusão do dopante tipo p em forno de alta temperatura;  b1) diffusion of the p-type dopant in a high temperature oven;
b2) difusão do dopante tipo n a partir de fonte líquida ou gasosa a alta temperatura e  b2) diffusion of type n dopant from a high temperature liquid or gaseous source and
b3) recozimento das lâminas de silício ( annealing ).  b3) annealing of annealing blades.
2. Processo de acordo com a reivindicação 1 caracterizado pelas etapas b1 a b3 serem realizadas em temperatura entre 800 °C e 1 100 °C.  Process according to Claim 1, characterized in that the steps b1 to b3 are carried out at a temperature between 800 ° C and 1100 ° C.
3. Processo de acordo com a reivindicação 1 caracterizado pelas etapas b1 a b3 serem realizadas em um tempo entre 10 min a 90 minutos.  Process according to Claim 1, characterized in that steps b1 to b3 are carried out in a time between 10 min and 90 minutes.
4. Processo de acordo com a reivindicação 3 caracterizado pelo fato da etapa b1 ser realizada no tempo de 20 min e temperatura de 950 °C.  Process according to Claim 3, characterized in that step b1 is carried out in a time of 20 min and a temperature of 950 ° C.
5. Processo de acordo com a reivindicação 3 caracterizado pelo fato da etapa b2 ser realizada no tempo de 50 min e temperatura de 845 °C.  Process according to Claim 3, characterized in that step b2 is carried out at a time of 50 min and a temperature of 845 ° C.
6. Processo de acordo com a reivindicação 3 caracterizado pelo fato da etapa b3 ser realizada no tempo de 20 min e temperatura de 845 °C.  Process according to Claim 3, characterized in that step b3 is carried out in a time of 20 min and a temperature of 845 ° C.
7. Processo de acordo com a reivindicação 1 , caracterizado pelos gases utilizados nas etapas b1 a b3 serem nitrogénio e oxigénio.  Process according to Claim 1, characterized in that the gases used in steps b1 to b3 are nitrogen and oxygen.
8. Processo de acordo com a reivindicação 7 caracterizado pelo fato da etapa b1 ser realizada na presença de nitrogénio e oxigénio, sendo o oxigénio na proporção de 5 % a 50 %.  Process according to claim 7, characterized in that step b1 is carried out in the presence of nitrogen and oxygen, the oxygen being in the proportion of 5% to 50%.
9. Processo de acordo com a reivindicação 7 caracterizado pelo fato da etapa b2 ser realizada na presença de nitrogénio, oxigénio e vapor de POCI3, sendo o oxigénio na proporção de 1 % a 20 % e o vapor de POCI3 na proporção de 0,1 % a 0,3 %. Process according to Claim 7, characterized in that step b2 is carried out in the presence of nitrogen, oxygen and vapor of POCI3. oxygen being from 1% to 20% and vapor from POCI3 from 0.1% to 0.3%.
10. Processo de acordo com a reivindicação 7 caracterizado pelo fato da etapa b3 ser realizada na presença de nitrogénio e oxigénio, sendo 0 oxigénio na proporção de 5 % a 50 %.  Process according to Claim 7, characterized in that step b3 is carried out in the presence of nitrogen and oxygen, the oxygen being in the proportion of 5% to 50%.
1 1. Processo de acordo com a reivindicação 1 , caracterizado pelo dopante tipo p ser boro, alumínio ou gálio.  Process according to Claim 1, characterized in that the p-type dopant is boron, aluminum or gallium.
12. Processo de acordo com a reivindicação 1 , caracterizado pelo dopante tipo n ser fósforo.  Process according to Claim 1, characterized in that the n-type dopant is phosphorus.
13. Processo de acordo com qualquer uma das reivindicações 1 a 12, caracterizado pela etapa térmica ser realizada em um forno convencional com tubo de quartzo.  Process according to any one of Claims 1 to 12, characterized in that the thermal step is carried out in a conventional quartz tube furnace.
14. Célula solar, caracterizada por ser obtida conforme definido em qualquer uma das reivindicações 1 a 13.  Solar cell, characterized in that it is obtained as defined in any one of claims 1 to 13.
15. Uso de célula solar obtida conforme definido em qualquer uma das reivindicações 1 a 13, caracterizado por ser na produção de energia elétrica a partir da exposição da célula à radiação solar.  Use of a solar cell obtained as defined in any one of claims 1 to 13, characterized in that it is in the production of electric energy from exposure of the cell to solar radiation.
PCT/BR2019/050148 2018-04-27 2019-04-25 Method for diffusing p-type dopant and n-type dopant in silicon wafers in the same thermal step WO2019204894A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRBR1020180085760 2018-04-27
BR102018008576-0A BR102018008576A2 (en) 2018-04-27 2018-04-27 p-type and n-type dopant diffusion process on silicon slides in the same thermal step

Publications (1)

Publication Number Publication Date
WO2019204894A1 true WO2019204894A1 (en) 2019-10-31

Family

ID=68293380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2019/050148 WO2019204894A1 (en) 2018-04-27 2019-04-25 Method for diffusing p-type dopant and n-type dopant in silicon wafers in the same thermal step

Country Status (2)

Country Link
BR (1) BR102018008576A2 (en)
WO (1) WO2019204894A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5766964A (en) * 1994-09-09 1998-06-16 Georgia Tech Research Corporation Processes for producing low cost, high efficiency silicon solar cells
US8071418B2 (en) * 2010-06-03 2011-12-06 Suniva, Inc. Selective emitter solar cells formed by a hybrid diffusion and ion implantation process
BR102012030606A2 (en) * 2012-11-30 2014-09-09 Ubea DOPANTS DIFFUSION PROCESS IN SILICON BLADES FOR MANUFACTURE OF SOLAR CELLS
US9306087B2 (en) * 2012-09-04 2016-04-05 E I Du Pont De Nemours And Company Method for manufacturing a photovoltaic cell with a locally diffused rear side

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5766964A (en) * 1994-09-09 1998-06-16 Georgia Tech Research Corporation Processes for producing low cost, high efficiency silicon solar cells
US8071418B2 (en) * 2010-06-03 2011-12-06 Suniva, Inc. Selective emitter solar cells formed by a hybrid diffusion and ion implantation process
US9306087B2 (en) * 2012-09-04 2016-04-05 E I Du Pont De Nemours And Company Method for manufacturing a photovoltaic cell with a locally diffused rear side
BR102012030606A2 (en) * 2012-11-30 2014-09-09 Ubea DOPANTS DIFFUSION PROCESS IN SILICON BLADES FOR MANUFACTURE OF SOLAR CELLS

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHOI, J. ET AL.: "Co-diffusion of boron and phosphorus for ultra-thin crystalline Silicon solar cells", JOURNAL OF PHYSICS D: APPLIED PHYSICS, vol. 51, no. 27, 2018, XP020328631, DOI: 10.1088/1361-6463/aabf6d *
WEHR, G. ET AL.: "Influence of Diffusion Parameters on Electrical Characteristics of mc-Si Solar Cells with Aluminum and Phosphorus Diffusion Performed in the Same Thermal Step", MATERIALS RESEARCH., vol. 22, no. 1, 2019, pages e20180443, XP055649658, [retrieved on 20191001] *
ZANESCO, I. ET AL.: "DESENVOLVIMENTO DA CELULA SOLAR COM MAIOR EFICIENCIA NO BRASIL COM PROCESSO INDUSTRIAL", VII CONGRESSO BRASILEIRO DE ENERGIA SOLAR, 20 April 2018 (2018-04-20), XP055649666 *

Also Published As

Publication number Publication date
BR102018008576A2 (en) 2019-11-12

Similar Documents

Publication Publication Date Title
CN108666393B (en) Solar cell and preparation method thereof
JP6299757B2 (en) Manufacturing method of solar cell
JP6003791B2 (en) Manufacturing method of solar cell
JP6199727B2 (en) Manufacturing method of solar cell
US9685581B2 (en) Manufacturing method of solar cell
TW201351672A (en) Solar cell and method of manufacturing the same
WO2012176839A1 (en) Method for manufacturing rear face electrode type solar battery
JP2016086149A (en) Manufacturing method of solar cell
WO2018078666A1 (en) High photoelectric conversion efficiency solar-cell and manufacturing method for high photoelectric conversion efficiency solar-cell
US11631779B2 (en) Solar cell with high photoelectric conversion efficiency and method for manufacturing solar cell with high photoelectric conversion efficiency
JP7182052B2 (en) Solar cell manufacturing method
WO2019204894A1 (en) Method for diffusing p-type dopant and n-type dopant in silicon wafers in the same thermal step
JP6114108B2 (en) Manufacturing method of solar cell
US20130288421A1 (en) Method of fabricating a differential doped solar cell
WO2018078667A1 (en) Solar cell having high photoelectric conversion efficiency, and method for manufacturing solar cell having high photoelectric conversion efficiency
CN110785856B (en) Method for manufacturing high-efficiency solar cell
JP6647425B2 (en) Solar cell manufacturing method
JP6792465B2 (en) Manufacturing method of high photoelectric conversion efficiency solar cell
TW201817021A (en) Solar cell with high photoelectric conversion efficiency and method for manufacturing solar cell with high photoelectric conversion efficiency
BR102012030606A2 (en) DOPANTS DIFFUSION PROCESS IN SILICON BLADES FOR MANUFACTURE OF SOLAR CELLS
CN114613881B (en) Solar cell, preparation method thereof and photovoltaic module
JP6663492B2 (en) Solar cell, method for manufacturing solar cell, and system for manufacturing solar cell
JP6356855B2 (en) Manufacturing method of solar cell
CN107393976B (en) A kind of N-type double-sided solar battery piece and preparation method thereof
JP6868957B2 (en) Photoelectric conversion element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19793425

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19793425

Country of ref document: EP

Kind code of ref document: A1