WO2019203534A1 - Novel patient-derived xenograft model of glioblastoma and use thereof - Google Patents

Novel patient-derived xenograft model of glioblastoma and use thereof Download PDF

Info

Publication number
WO2019203534A1
WO2019203534A1 PCT/KR2019/004572 KR2019004572W WO2019203534A1 WO 2019203534 A1 WO2019203534 A1 WO 2019203534A1 KR 2019004572 W KR2019004572 W KR 2019004572W WO 2019203534 A1 WO2019203534 A1 WO 2019203534A1
Authority
WO
WIPO (PCT)
Prior art keywords
glioblastoma
patient
cells
animal model
derived
Prior art date
Application number
PCT/KR2019/004572
Other languages
French (fr)
Korean (ko)
Inventor
백선하
이주영
김정훈
조동현
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Publication of WO2019203534A1 publication Critical patent/WO2019203534A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5082Supracellular entities, e.g. tissue, organisms
    • G01N33/5088Supracellular entities, e.g. tissue, organisms of vertebrates
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2207/00Modified animals
    • A01K2207/12Animals modified by administration of exogenous cells
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/0331Animal model for proliferative diseases

Definitions

  • the present invention relates to a novel glioblastoma patient-derived xenograft model and its preparation and use, and more particularly to a glioblastoma patient-derived xenograft model that enables a quick selection of treatment options for the treatment of glioblastomas with a short average survival. And a method for screening the patient-specific glioblastoma treatment using the same and a method thereof.
  • Glioblastoma is a tumor originating from glial cells that are abundant in brain tissue and is known to account for 12-15% of all brain tumors. Glial cells support the tissues of the central nervous system and are located between blood vessels and nerve cells to participate in the metabolism of nerve cells, and when they are injured or inflamed, they proliferate to help cells recover. The starting tumor is glioblastoma. Glioblastomas, however, are the most common and malignant cancers in the brain and have an average survival time of less than 15 months.
  • glioblastoma patient-derived xenograft (PDX) models has been required to study the tumor characteristics of these glioblastomas and to investigate the potential therapeutic efficacy of various treatment options.
  • a patient derived xenograft (PDX) model of known glioblastoma for this is based on subcutaneous or intracranial injection of tumor cells in immunocompromised mice.
  • PDX tumors developed rapidly through subcutaneous injection, but were limited to subcutaneous spaces completely different from the brain microenvironment.
  • Intracranial injection on the other hand, tumors experience the microenvironment of the brain surrounding glioblastoma, but cells derived from some patients are often unable to form intracranial tumors and are often slow to form, resulting in lengthy treatments.
  • PDX of glioblastoma which can be performed more quickly, can be formed as soon as possible, and simulates the microenvironment of the brain, is required.
  • the present inventors have made efforts to develop a new glioblastoma patient-derived xenograft model that can rapidly produce a glioblastoma model and simulate the brain microenvironment.
  • the new glioblastoma PDX model which is effective in simulating the microenvironment of the brain while screening treatment options and can be observed with the naked eye without separate or bioluminescent imaging, unlike the intracranial tumor, It was confirmed that the original tumor cells and immunohistochemical characteristics are the same and retain the characteristics of the original glioblastoma, and completed the present invention.
  • An object of the present invention is to provide a patient-derived xenograft animal model of a new glioblastoma and its preparation.
  • Another object of the present invention is to provide information for patient-specific treatment using the animal model and to screen for glioblastoma therapeutics.
  • the present invention provides a patient-derived xenograft animal model of a new glioblastoma and its preparation and use.
  • the present invention provides a method for producing a xenograft patient-derived xenograft animal model comprising the step of injecting glioblastoma cells isolated from a glioblastoma patient into the vitreous of an animal other than a human.
  • the present invention also provides a xenograft animal model derived from glioblastoma patient prepared by the above method.
  • the invention also provides a method of providing information for screening for a patient-specific glioblastoma treatment comprising the following steps:
  • the genetic characteristics, immunochemical characteristics and tumor or immunoprotein expression characteristics of the glioblastoma of the glioblastoma patient-derived xenograft animal model may be further analyzed.
  • the present invention also provides a method for screening a glioblastoma therapeutic agent comprising the following steps:
  • the animal model or glioblastoma cells are compared with the control group without treatment with the candidate substance, and the size of the tumor tissue of the animal model is reduced or metastasis is inhibited or the glioblastoma cells are inhibited. Determining the candidate as a glioblastoma therapeutic agent if proliferation of the inhibitor is inhibited or killed.
  • the genetic characteristics, immunochemical characteristics and tumor or immunoprotein expression characteristics of the glioblastoma of the glioblastoma patient-derived xenograft animal model may be further analyzed.
  • the present invention provides a patient-derived xenograft animal model of a new glioblastoma, and its preparation and use, which enables a fast treatment option selection in the treatment of glioblastoma with a short average survival.
  • a patient-derived xenograft animal model of glioblastoma according to the present invention inherently retains the characteristics of a tumor.
  • even glioblastoma cells that do not form intracranial tumors by orthotopic transplantation form tumors within 4 weeks, considering the preparation period of patient-derived cells. Treatment options can be selected within a much shorter six weeks.
  • the patient-derived xenograft animal model of glioblastoma according to the present invention is an effective alternative by simulating the microenvironment of the brain, unlike the glioblastoma model transplanted subcutaneously.
  • 1 is for tumor cell isolation and culture of primary and recurrent glioblastoma patients
  • 1A is a picture of H & E sections (circle magnification, x50) of primary and recurrent tumors
  • 1B is a stereotactic biopy.
  • Pictures of GBL-28 and GBL-37 cells (scale bar, 100 ⁇ m).
  • FIG. 2 shows the uncertainty in orthotopic transplantation of glioblastoma cells derived from patients
  • 2B represents H & E sections of the brain of 4-6 weeks mice (U-87 MG (4 weeks), GBL-28 (6 weeks), GBL-37 (6 weeks)) after intracranial injection of each cell line.
  • 2C shows 4-6 weeks after intracranial injection of each cell line (U-87 MG (4 weeks), GBL-28 (6 weeks), GBL-37 (6 weeks) shows photographs of brain sections stained with antibodies to DAPI and GFAP (yellow dotted line indicates intracranial tumor, scale bar 2 mm).
  • 3 is for the development of a new patient-derived xenograft model of glioblastoma via intravitreal injection
  • 3A is a schematic illustrating intravitreal injection of tumor cells
  • 3B is GBL-28 and GBL-37 undergoing normal culture conditions Relative proportion of mice with grade 2-5 tumors after intravitreal injection of 3C relative to mice with grade 3 and 4 tumors after intravitreal injection of GBL-28 and GBL-37 hypoxia treated for 4 hours before injection Indicates a ratio.
  • 2D is a photograph of H & E sections within 4 weeks of intravitreal injection of GBL-28 and GBL-37 hypoxia treated for 4 hours prior to injection (yellow dashed lines represent the lens and retina, scale bar, 1 mm).
  • Figure 4 is a photograph showing the immunohistochemical characteristics of PDX tumors in the vitreous cavity
  • 4A is a photograph of eye sections stained using DAPI and antibodies to human mitochondria, GFAP, vimentin and nestin
  • scale bar, 1 mm 4B is an enlarged photograph (scale bar, 20 ⁇ m) of eye sections stained using antibodies against human mitochondria, GFAP, bimentin and nestin.
  • FIG. 5 is a photograph showing OLIG2-immune positive of PDX tumor in the vitreous cavity of mouse, which is an enlarged photograph of eye sections stained using an antibody against human OLIG2 antibody (scale bar, 10 ⁇ m).
  • Figure 6 is a photograph showing the separation and characteristics of tumor cells from the vitreous cavity of mice
  • 6A is the form of GBL-28, GBL-37, GBL-28N, GBL-37N, GBL-28H and GBL-37H
  • 6B is a photograph of glioblastoma cells stained using DAPI and GFAP and antibodies to human mitochondria (scale bar, 100 ⁇ m).
  • Figure 7 is a photograph showing the non-mentin-immunopositive of tumor cells isolated from the vitreous cavity of mice (scale bar, 100 ⁇ m).
  • Figure 8 is a photograph showing the nestin-immunopositive of tumor cells isolated from the vitreous cavity of mice (scale bar, 100 ⁇ m).
  • disease animal model in the present invention refers to an animal having a form of disease very similar to that of humans.
  • the significance of disease model animals in human disease research is due to physiological or genetic similarities between humans and animals.
  • biomedical disease model animals provide research materials for various causes, pathogenesis, and diagnosis of disease, and research on disease model animals allows for genetic, immunochemical, tumor and immune protein expression characteristics associated with disease.
  • basic data can be obtained to identify prognostic factors, to understand the interactions between expression genes and expression proteins, and to determine whether they are viable through the actual efficacy and toxicity tests of new drug candidates.
  • patient-derived xenograft in the present invention refers to a customized animal model for cancer patients produced by xenografting patient-derived cancer cells or cancer tissues to an immunodeficiency animal.
  • PDX patient-derived xenograft
  • the morphological environment is the same or similar
  • the genetic environment is the same or similar
  • the expression properties of the marker protein of cancer is the same, it can provide conditions reflecting the genetic, physiological and environmental characteristics of cancer patients.
  • an anticancer drug candidate, a radiation therapy (sensitizer), an immunotherapy candidate or the like which is determined to have an anticancer effect in a patient-derived xenograft animal model is treated to a cancer cell or a cancer tissue providing cancer patient, the anticancer agent Since the same effects as those treated with the candidate substance can be confirmed to the patient, the use of the patient-derived xenotransplantation animal model has the advantage that the anticancer drug can actually confirm the proper effect on the patient.
  • animal or “experimental animal” in the present invention means any mammalian animal other than human.
  • the animals include animals of all ages including embryos, fetuses, newborns and adults.
  • Animals for use in the present invention can be used, for example, from commercial sources.
  • Such animals may be laboratory or other animals, rabbits, rodents (e.g. mice, rats, hamsters, gerbils and guinea pigs), cattle, sheep, pigs, goats, horses, dogs, cats, birds (e.g. Chickens, turkeys, ducks, geese), primates (eg, chimpanzees, monkeys, rhesus monkeys).
  • the most preferred animal is a mouse.
  • treatment in the present invention means an approach for obtaining beneficial or desirable clinical results.
  • beneficial or desirable clinical outcomes include, but are not limited to, alleviation of symptoms, reduction of disease range, stabilization of disease state (ie, not worsening), delay or slowing of disease progression, disease state Improvement or temporary mitigation and alleviation (which may be partial or total), detectable or not detected.
  • Treatment refers to both therapeutic treatment and prophylactic or preventative measures. Such treatments include not only the disorders to be prevented but also the treatments required for already occurring disorders. By “palliating" a disease, the extent to which the disease state and / or undesirable clinical signs and / or the time course of progression is slowed or lengthened, as compared to the case without treatment.
  • the present invention relates to a novel xenograft patient-derived xenograft animal model and a method of manufacturing the same.
  • Intraocular tumors of a xenograft animal model derived from glioblastoma patient according to the present invention are positive for GEAP, non-mentin and nestin markers, indicating the tissue and cellular characteristics of glioblastoma, and also of the glial cell lineage. Characterized by OLIG2 positive.
  • Glioblastoma patient-derived xenograft animal models according to the present invention are produced by injecting glioblastoma cells isolated from glioblastoma patients into the vitreous of animals other than humans.
  • the "vitreous” is a colorless transparent gel-like structure filling the lens and the retina in the eye, also called a vitreous body.
  • the "animal” refers to any mammalian animal other than human. In this case, the animal may be characterized as an immunodeficiency animal, and an "immune deficient animal" may artificially damage some components of the immune system at the genetic level so that glioblastoma can develop, thereby implementing a normal immune system.
  • the immunodeficiency animal may be an animal in which a nervous system is formed.
  • the immunodeficiency animal may be a mouse that is engineered to be immunodeficient.
  • Balb / c nude mice can be used.
  • the previously reported glioblastoma patient-derived xenograft model is to produce a patient-derived xenograft model of glioblastoma through subcutaneous and intracranial injection.
  • the glioblastoma model which is administered subcutaneously, is a tumor microstructure. It is not possible to identify environmental features.
  • the tumors are relatively easily exposed to therapeutic agents through systemic administration, making it difficult to be an alternative to the actual treatment options.
  • the intracranial glioblastoma model has the advantage of providing a similar microenvironment (brain) in real patients, but it is often slower to form tumors and it takes more than 45 days to evaluate the efficacy of PDX therapeutics.
  • cells derived from some patients did not form intracranial tumors as in the control of the present invention.
  • imaging or bioluminescence imaging is required to investigate tumor formation.
  • glioblastoma patient-derived xenograft animal models through intravitreal injection prepared according to the method of the present invention have several advantages.
  • the production of rapid glioblastoma PDX enables the selection of a fast treatment option for treating glioblastomas with short average survival. Since the average survival of glioblastoma patients is less than 15 months, efficient and rapid screening systems are needed to screen for secondary treatment options, particularly if there are tumors resistant to conventional therapies. Since plaque-like tumor formation is observed within 2 weeks upon intravitreal injection of patient-derived glioblastoma cells, treatment options can be screened through systemic or direct intraocular administration from 2 weeks after injection.
  • glioblastoma cells isolated from the patient may be characterized in that the hypoxic treatment before injection into the vitreous of the animal. This resulted in a stable and consistent mass formation compared to normal culture group without hypoxic treatment (FIG. 3C). It is also noteworthy that all hypoxic treatments form tumors that extend out of the retina in the vitreous cavity. That is, the hypoxic treatment was confirmed invasive characteristics of glioblastoma cells during intravitreal injection.
  • hypoxic treatment means the presence of less oxygen than the amount of oxygen in general cell culture conditions.
  • the hypoxic condition may be characterized by less than 5%, preferably characterized in that the cells are cultured at an oxygen concentration of 0.01 to 3%, more preferably at an oxygen concentration of 1% or less.
  • the low oxygen treatment time may be characterized in that 1 to 48 hours, preferably 4 to 24 hours, more preferably about 6 to 12 hours.
  • the retina that makes up the central nervous system mimics the microenvironment of the original tumor.
  • the stacked neurons with dynamic synapses and the blood-retinal barrier system of the retinal vascular structure make the retina an effective alternative to the brain.
  • the retina and brain of the eye share many neurovascular features.
  • the retina is composed of layers of nerve cells in which several synapses are formed between various neuronal cell types.
  • microvascular endothelial cells of the brain and retina form a blood nerve barrier with peripheral cells, including perivascular and astrocytic cells.
  • other cellular components of the tumor microenvironment of glioblastoma including microglia and immune cells, are very similar between the brain and the retina.
  • intraocular tumors can be directly observed with the naked eye or easily monitored through an indirect ophthalmoscope using a simple optical lens (such as a 78 diopter lens). Can be. It is easier to perform tumorigenicity testing and monitoring because no additional imaging system is needed.
  • the visual grading system provides semi-quantitative scale data for quantitative analysis of tumor formation.
  • glioblastoma PDX through intravitreal injection prepared according to the method of the present invention requires fewer glioblastoma cells than intracranial injection. That is, glioblastoma cells of the patient injected into the vitreous may be characterized in that 5 ⁇ 10 x 10 4 cells. Therefore, given that the tumor tissue of the patient obtained during tumor removal surgery is limited, the advantage of requiring a small number of cells for PDX production is that the limited tissue allows for the production of more PDX, which has several options simultaneously. Enable evaluation Considering the preparation time of the patient-derived cells, all operations can be completed in 6 weeks, much shorter than the average time from initial surgery to relapse.
  • novel glioblastoma patient-derived xenograft animal model according to the present invention can be used for various purposes.
  • the present invention (a) performing a candidate treatment method for glioblastoma in the glioblastoma patient-derived xenograft animal model; And (b) to provide a method for providing information for the selection of patient-specific glioblastoma treatment comprising the step of confirming the therapeutic effect of the animal model in which the candidate treatment method was performed.
  • the glioblastoma PDX of the present invention reflects the characteristics of the patient from which the transplanted glioblastoma cells are derived, and thus can be used to select a treatment method suitable for the patient.
  • the candidate treatment means a variety of treatments that can be used for the selection of a customized treatment for treating glioblastoma onset in a patient of interest, and may include all conventionally known possible treatments for glioblastoma. For example, it may be chemotherapy, radiation therapy, surgical therapy, immune cell therapy, or a combination thereof.
  • the chemotherapy refers to a method for treating glioblastoma by administering to a patient a therapeutic candidate having a commonly known anticancer activity.
  • the radiation therapy is a method of treating glioblastoma by treating radiation to the patient
  • the surgical therapy is a method of treating glioblastoma by extracting the site where glioblastoma develops as a surgical operation.
  • the immunocytotherapy method is characterized by isolating immune cells exhibiting aggression against glioblastoma from peripheral blood mononuclear cells extracted from the patient's blood, fusing them with the glioblastoma cells isolated from the patient, and then administering them back to the patient in the form of an anticancer vaccine. To treat glioblastoma of the patient.
  • glioblastoma for selection of patient-specific glioblastoma treatment, further analysis of any one or more of the genetic characteristics, immunochemical characteristics and tumor or immunoprotein expression characteristics of glioblastoma of the glioblastoma patient-derived xenograft animal model The prognosis may be characterized.
  • Confirmation of the therapeutic effect is to confirm whether tumor size of the animal model is reduced or metastasis is inhibited, for example, but there is no limitation.
  • the eye of the animal model is directly observed by the naked eye or through an indirect ophthalmoscope. It may be characterized by.
  • the present invention provides a method for treating a glioblastoma cell derived from a glioblastoma patient-derived xenograft animal model or glioblastoma cell derived therefrom ; And (b) after treating the candidate substance, comparing the animal model or the glioblastoma cells with a control group not treated with the candidate substance, where the size of the tumor tissue of the animal model is reduced or metastasis is inhibited or the glioblastoma
  • the present invention relates to a method for screening a glioblastoma therapeutic agent comprising determining a candidate as a glioblastoma therapeutic agent when proliferation of cells is inhibited or killed.
  • the eye of the animal model can be observed directly with the naked eye or through an indirect ophthalmoscope to confirm the reduction in the size of the tumor tissue.
  • one or more genetic, immunochemical and tumor or immunoprotein expression characteristics of the glioblastoma of the glioblastoma patient-derived xenograft animal model are further analyzed. It may be characterized by predicting.
  • PDX xenograft animal model
  • glioblastoma Primary samples were taken from a 39-year-old female glioblastoma patient approved by the Seoul National University Hospital Clinical Trial Committee (IRB No. H-1009-025-331). A 39-year-old female patient whose initial symptom was a short-term memory deficit of 2 weeks, glioblastoma diagnosed with stereotactic brain biopsy (FIG. 1A). The patient was treated with chemoradiotherapy with surgical tumor removal (primary collection, primary tumor) and temozolamide. Three months after the initial operation, another surgical tumor removal (secondary collection, recurred tumor) was performed to control the recurrent tumor. Tumor tissue was prepared for primary culture in each surgery and glioblastoma cells were designated as GBL-28 (primary tumor) and GBL-37 (recurrent tumor), respectively (FIG. 1B).
  • HBSS Hanks Balanced Salt Solution
  • Tissues were centrifuged for 4 min at 1,100 rpm, rinsed with PIPES buffer and resuspended in phosphate buffered saline (PBS) with trypsin-EDTA at 37 ° C.
  • PBS phosphate buffered saline
  • the tissue was then digested with DNase I (20 U / mL) in a rocking shaker at 37 ° C. for 90 minutes and resuspended in DMEM (Dulbecco's Modified Eagle's media) containing 10% fetal bovine serum (FBS). And centrifuged at 1,100 rpm for 4 minutes.
  • DNase I (20 U / mL
  • DMEM Dulbecco's Modified Eagle's media
  • FBS fetal bovine serum
  • the resuspended cells were then filtered with a 40- ⁇ m cell strainer and plated in culture flasks.
  • the cells of primary and recurrent tumors were named GBL-28 and GBL-37, respectively.
  • glioblastoma cells obtained from tumors formed after intravitreal injection were also isolated according to the same protocol.
  • the isolated cells and cells used in the following examples were maintained as follows. That is, U-87 MG cells (catalog no. HTB-14, ATCC), GBL-28 and GBL-37 cells were prepared in DMEM containing 37 ° C. 10% FBS in humidified air of 95% air and 5% CO 2 . Maintained.
  • mice Six-week-old male Balb / c nude mice were purchased from Central Laboratory Animals and maintained under a 12 hour dark cycle. All animal experiments were conducted in accordance with the statement of the Association of Vision and Ophthalmology for Animal Use in Ophthalmology and Vision Research and approved by the Institutional Animal Care and Use Committee of Seoul National University and Seoul National University Hospital.
  • mice of Examples 1-2 were placed in the stereotactic frame (David Kopf Instruments). Small-scale craniotomy was performed 2-3 mm in the midline and 1 mm in the coronary sutures.
  • Glioblastoma cells of Example 1-1 (U-87 MG, GBL-28, GBL-37, 5 ⁇ L of 3 ⁇ 10 5 cells) were injected stereotactically into the brain parenchyma 3 mm deep.
  • thin sections of mouse brain (10 ⁇ m) were treated for H & E (hematoxylin and eosin) staining and immunofluorescence staining of GFAP.
  • thin slices of mouse brain were washed with PBS, infiltrated with PBS containing 0.05% (v / v) saponin and 5% (v / v) normal goat serum for 3 minutes, and then to block nonspecific binding 1 Treated with PBS containing 1.5% normal goat serum for an hour. The slice was then overnight at 4 ° C.
  • anti-GFAP antibody (1: 100, catalog number M0761 or Z0334, Dako), anti-human mitochondrial antibody (1: 100, catalog number MAB1273, Millipore or cat.no.PA5 -29550, Life Technologies), anti-nonmentin antibody (1: 100, catalog number ab11256, abcam), anti-estin antibody (1: 100, catalog number MAB5326, Millipore) and anti-oligodendrocyte transcription factor 2 ( OLIG2; 1: 100; cat.no.sc-293163, Santa Cruz) and correspond to the corresponding Alexa Fluor 488 or 594 IgG (1: 500, cat.no.A11008, A11029, A11032, A11037, A11055 and A21207, Life Technologies) for 1 hour. Nuclear staining was performed using 4 ', 6-diamidino-2-phenylindole dihydrochloride (DAPI, Sigma). The slides were then observed under a fluorescence microscope (Leica).
  • Figure 2B is representative of H & E sections of the brain of 4-6 weeks mice (U-87 MG (4 weeks), GBL-28 (6 weeks), GBL-37 (6 weeks)) after intracranial injection of each cell line.
  • Photograph (yellow dotted line indicates intracranial tumor, scale bar 2 mm)
  • 2C 4-6 weeks after intracranial injection of each cell line
  • Representative photographs of brain sections stained with antibodies to DAPI and GFAP at ⁇ 37 (week 6) are shown (yellow dashed lines indicate intracranial tumors, scale bars 2 mm).
  • U-87 MG cells had well formed intracranial tumors (FIGS. 2B and 2C, left), while GBL-28 and GBL-37 cells formed 6 weeks after intracranial injection. It wasn't. (2B and 2C, middle and right).
  • GBL-28 and GBL-37 cells obtained in Example 1-1 were each injected with 1 ⁇ 10 5 cells into the vitreous cavity of 6-week-old male Balb / c nude mice of Examples 1-2. Further, the 6-week-old males of Example 1-2 after treating 1 ⁇ 10 5 cells each of GBL-28 and GBL-37 cells obtained in Example 1-1 in a hypoxic state (1% O 2 ) for 4 hours. Injected into the vitreous cavity of Balb / c nude mice. From 2 weeks after injection, the eye was examined daily to observe tumor formation.
  • Intravitreal injection is a method of establishing an orthotopic model of retinoblastoma and delivering a therapeutic agent to retinal nerve tissue.
  • Intravitreal administered cells primarily form ocular tumors in the vitreous cavity between the lens and the retina (FIG. 3A). The tumor can then expand into the anterior chamber (between the cornea and the lens) and occupy the entire eye. The degree of tumor formation can be graded with a simple visual grading system, because the intravitreal cavity and the retina of Balb / c nude mice can be observed with the naked eye or through an indirect ophthalmoscope.
  • the visual grading system used grades of tumor formation from 0 to 5: grade 0 (no tumor formation), grade 1 (striped tumor), grade 2 (plaque-like tumor), grade 3 (clear mass formation), grade 4 (tumor-filled tumor), grade 5 (with spherical enlargement or eye rupture).
  • transplantation of patient-derived glioblastoma cells according to the conventional method failed to form intracranial tumors up to 6 weeks after tumor cell injection.
  • the patient-derived glioblastoma cells effectively formed plaque-like tumors from 2 weeks after intravitreal injection, and formed intracranial tumors by 4 weeks.
  • FIG. 3B is the relative proportion of mice with grades 2-5 tumors after intravitreal injection of GBL-28 and GBL-37 undergoing normal culture conditions
  • 3C is GBL-28 treated with hypoxia for 4 hours before injection and Relative proportions of mice with grade 3 and 4 tumors after intravitreal injection of GBL-37 are shown.
  • the immunohistochemical characteristics of PDX tumors in the vitreous cavity are examined to confirm their similarity to the original tumors, and whether these cells are caused by injected tumor cells rather than mice. In order to confirm, the following experiment was performed.
  • the characteristics of the original tumors that is, the original tumors of GBL-28 and GBL-37 were examined.
  • both primary and recurrent tumors were WHO grade IV glioblastoma (Table 1).
  • both tumors were positive for GFAP, vimentin and nestin in immunohistochemical analysis (Table 1). Both cells showed morphological characteristics of glial cells (FIG. 1C).
  • anti-GFAP antibody (1: 100, catalog number M0761 or Z0334, Dako), anti-human mitochondrial antibody (1: 100, catalog number MAB1273, Millipore or cat.no.PA5 -29550, Life Technologies), anti-nonmentin antibody (1: 100, cat.no.ab11256, abcam), anti-nestine antibody (1: 100, catalog number MAB5326, Millipore) and anti-oligodendrocyte transcription factors 2 (OLIG2; 1: 100; cat.no.sc-293163, Santa Cruz) and correspond to the corresponding Alexa Fluor 488 or 594 IgG (1: 500, cat.no.A11008, A11029, A11032, A11037, A11055 and A21207, Life Technologies) for 1 hour. Nuclear staining was performed using DAPI (4 ', 6-diamidino-2-phenylindole dihydrochloride, Sigma). The slides were then observed under a fluorescence microscope (Leica).
  • FIG. 4A tumors in the vitreous cavity and outside the retina of the glioblastoma animal model of Example 1-4 were positive for GFAP, bimentin, nestin and human mitochondria.
  • all markers showed cytoplasmic patterns indicating their intracellular location (FIG. 4B).
  • Table 1 the original tumors of GBL-28 and GBL-37 are positive for GFAP, bimentin, and nestin, and thus, the tumors of glioblastoma PDX according to the present invention retain their original tumor characteristics.
  • the tumors in the vitreous cavity and outside the retina of the glioblastoma animal model of Example 1-4 showed a positive response to OLIG2, one of the specific markers of glial cell lineage.
  • Tumor cells were isolated from novel glioblastoma PDX according to the present invention and confirmed similarity with original tumor cells (GBL-28 and GBL-37), and GBL having normal culture conditions in the mouse model of Examples 1-4.
  • GBL-28 and GBL-37 original tumor cells
  • GBL normal culture conditions
  • Example 1-1 Cells were isolated from the tumors of the mouse model of Example 1-4 in the same manner as in Example 1-1, inoculated into 4-well chamber slides (Nunc) and stabilized overnight. Cells were fixed at 4 ° C. for 10 minutes with 1% paraformaldehyde and infiltrated with 0.1% Triton X-100 solution (Cat. No. T8787, Sigma) for 3 minutes at room temperature. Label cells with anti-GFAP antibody, anti-human mitochondrial antibody, anti-mententin antibody, anti-nestine antibody overnight at 4 ° C. after treatment with 1% bovine serum albumin to minimize nonspecific binding and the corresponding Alexa Fluor 488 or 594 IgG (1: 500, Cat. No. A11008, A11029, A11032, A11037, A11055 and A21207, Life Technologies) was treated for 1 hour. Nuclear staining was performed using DAPI. The slides were then observed under a fluorescence microscope (Leica).
  • GBL-28 and GBL-37 are cells isolated from primary and recurrent tumors of glioblastoma patients, respectively, and GBL-28N and GBL-37N are normal when the glioblastoma model is produced in Examples 1-4.
  • GBL-28 and GBL-37 cells having culture conditions were cells isolated from mice 4 weeks after intravitreal injection, and GBL-28H and GBL-37H were injected into mice when the glioblastoma model was prepared in Example 1-4. All GBL-28 and GBL-37 cells were hypoxic treated for 4 hours and then isolated from mice 4 weeks after intravitreal injection.
  • glioblastoma xenograft model according to the present invention maintains the original tumor characteristics even through tumor cell separation experiments, suggesting that the glioblastoma xenograft model according to the present invention can be used to select treatment options of patients. do.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Environmental Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Food Science & Technology (AREA)
  • Animal Husbandry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Microbiology (AREA)
  • Toxicology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

The present invention relates to a novel patient-derived xenograft model of a glioblastoma, a manufacturing method therefor and a use thereof and, more specifically, to: a patient-derived xenograft model of a glioblastoma, the model enabling the rapid selection of treatment options during the treatment of glioblastoma having a short average survival time; a manufacturing method therefor; and a method for selecting a patient-specific glioblastoma treatment by using same. A patient-derived xenograft animal model of a glioblastoma, according to the present invention, possesses the inherent characteristics of a tumor. In addition, even patient glioblastoma cells, which do not form intracranial tumors in orthotopic transplantation, form tumors within four weeks such that, even in consideration of the preparation period for patient-derived cells, treatment options can be selected within six weeks, which is much shorter than the median time from initial surgery up to recurrence. Furthermore, unlike a subcutaneously transplanted model of a glioblastoma, a patient-derived xenograft animal model of a glioblastoma, according to the present invention, can be an effective alternative by mimicking the microenvironment of the brain. Moreover, the present invention enables, without any additional equipment, easy monitoring with the naked eye, a simple indirect ophthalmoscope or the like, and requires relatively fewer glioblastoma cells for the manufacture of a glioblastoma model, so as to enable the simultaneous evaluation of several treatment options at the same time, thereby being useful.

Description

신규한 교모세포종 환자 유래 이종 이식 모델 및 이의 용도New xenograft model derived from glioblastoma patient and its use
본 발명은 신규한 교모세포종 환자 유래 이종 이식 모델 및 이의 제법 및 용도에 대한 것으로, 보다 상세하게는 평균 생존기간이 짧은 교모세포종 치료에 있어 빠른 치료 옵션 선택을 가능하게 하는 교모세포종 환자 유래 이종 이식 모델 및 이의 제법 및 이를 이용한 환자 맞춤형 교모세포종 치료 선별 방법에 대한 것이다.The present invention relates to a novel glioblastoma patient-derived xenograft model and its preparation and use, and more particularly to a glioblastoma patient-derived xenograft model that enables a quick selection of treatment options for the treatment of glioblastomas with a short average survival. And a method for screening the patient-specific glioblastoma treatment using the same and a method thereof.
교모세포종은 뇌조직에 풍부하게 존재하고 있는 신경교세포에서 시작하는 종양으로 전체 뇌종양의 12~15%를 차지한다고 알려져 있다. 신경교세포는 중추 신경계의 조직을 지지하는 역할을 하며 혈관과 신경세포 사이에 위치하여 신경 세포의 물질대사에 관여하고, 상해나 염증이 있을 때에는 증식하여 세포의 회복을 돕는 일을 하는데 이 신경교세포에서 시작하는 종양이 교모세포종이다. 그러나, 교모세포종은 뇌에서 가장 흔한 암인 동시에 악성인 암이며, 교모세포종의 평균 생존 기간은 15개월 미만이다.Glioblastoma is a tumor originating from glial cells that are abundant in brain tissue and is known to account for 12-15% of all brain tumors. Glial cells support the tissues of the central nervous system and are located between blood vessels and nerve cells to participate in the metabolism of nerve cells, and when they are injured or inflamed, they proliferate to help cells recover. The starting tumor is glioblastoma. Glioblastomas, however, are the most common and malignant cancers in the brain and have an average survival time of less than 15 months.
이러한 교모세포종의 종양 특성을 연구하고 다양한 치료 옵션들의 잠재적인 치료 효능을 조사하기 위하여 교모세포종 환자 유래 이종이식(PDX) 모델의 개발이 요구되었다. 이를 위한 알려진 교모세포종의 환자 유래 이종이식 (PDX) 모델은 면역 저하 마우스에서 종양 세포의 피하 또는 두개 내 주입에 기반을 두고 있다. 그러나, 피하 주사를 통해 PDX 종양은 빠르게 발달되었지만 뇌 미세 환경과는 완전히 다른 피하 공간에 국한되는 문제가 있었다. 한편, 두개 내 주입을 통한 경우 종양은 교모세포종을 둘러싼 뇌의 미세환경을 경험하나, 일부 환자에서 유래한 세포는 두개 내 종양을 형성하지 못하는 경우가 많고 종종 종양 형성이 느려 치료 효능 평가를 위해서는 긴 시간이 요구되었다. 이에 교모세포종 환자의 생존기간의 중앙값이 15개월 미만인 것을 고려하면 보다 신속하게 수행 할 수 있고 가능한 더 빠르게 형성될 수 있고 뇌의 미세환경을 모사한 교모세포종의 PDX의 확립이 요구되었다. The development of glioblastoma patient-derived xenograft (PDX) models has been required to study the tumor characteristics of these glioblastomas and to investigate the potential therapeutic efficacy of various treatment options. A patient derived xenograft (PDX) model of known glioblastoma for this is based on subcutaneous or intracranial injection of tumor cells in immunocompromised mice. However, PDX tumors developed rapidly through subcutaneous injection, but were limited to subcutaneous spaces completely different from the brain microenvironment. Intracranial injection, on the other hand, tumors experience the microenvironment of the brain surrounding glioblastoma, but cells derived from some patients are often unable to form intracranial tumors and are often slow to form, resulting in lengthy treatments. Time was required Considering that the median survival of glioblastoma patients is less than 15 months, PDX of glioblastoma, which can be performed more quickly, can be formed as soon as possible, and simulates the microenvironment of the brain, is required.
이에 본 발명자들은 신속하게 교모세포종 모델을 제작할 수 있으면서도 뇌의 미세환경을 모사한 새로운 교모세포종 환자 유래 이종이식 모델을 개발하고자 예의 노력한 결과, 4주 내 종양을 형성하여 6주 이내 교모세포종 환자에 대한 치료 옵션을 스크리닝 할 수 있도록 하면서도 뇌의 미세환경을 모방하여 효과적이며 두개 내 종양과 달리 별도의 이미징이나 생물발광 이미징 없이 육안으로도 관찰이 가능한 새로운 교모세포종 PDX 모델을 제작하고, 제작된 PDX 모델이 원래 종양세포와 면역조직화학적 특성이 동일하고 본래의 교모세포종의 특징을 유지함을 확인하고, 본 발명을 완성하였다.Accordingly, the present inventors have made efforts to develop a new glioblastoma patient-derived xenograft model that can rapidly produce a glioblastoma model and simulate the brain microenvironment. The new glioblastoma PDX model, which is effective in simulating the microenvironment of the brain while screening treatment options and can be observed with the naked eye without separate or bioluminescent imaging, unlike the intracranial tumor, It was confirmed that the original tumor cells and immunohistochemical characteristics are the same and retain the characteristics of the original glioblastoma, and completed the present invention.
본 배경기술 부분에 기재된 상기 정보는 오직 본 발명의 배경에 대한 이해를 향상시키기 위한 것이며, 이에 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자에게 있어 이미 알려진 선행기술을 형성하는 정보를 포함하지 않을 수 있다.The above information described in this Background section is only for improving the understanding of the background of the present invention, and therefore does not include information that forms a prior art known to those of ordinary skill in the art. You may not.
본 발명의 목적은 새로운 교모세포종의 환자 유래 이종이식 동물모델 및 그 제법을 제공하는데 있다. An object of the present invention is to provide a patient-derived xenograft animal model of a new glioblastoma and its preparation.
본 발명의 다른 목적은 상기 동물모델을 이용하여 환자 맞춤형 치료를 위한 정보를 제공하고 교모세포종 치료제를 스크리닝하는데 있다.Another object of the present invention is to provide information for patient-specific treatment using the animal model and to screen for glioblastoma therapeutics.
상기 목적을 달성하기 위하여, 본 발명은 새로운 교모세포종의 환자 유래 이종이식 동물모델 및 그 제법 및 용도를 제공한다. In order to achieve the above object, the present invention provides a patient-derived xenograft animal model of a new glioblastoma and its preparation and use.
구체적으로, 본 발명은 교모세포종 환자로부터 분리된 교모세포종 세포들을 인간을 제외한 동물의 유리체내로 주입하는 단계를 포함하는, 교모세포종 환자 유래 이종 이식 동물모델의 제조방법을 제공한다.Specifically, the present invention provides a method for producing a xenograft patient-derived xenograft animal model comprising the step of injecting glioblastoma cells isolated from a glioblastoma patient into the vitreous of an animal other than a human.
본 발명은 또한, 상기 방법에 의하여 제조된 교모세포종 환자 유래 이종 이식 동물모델을 제공한다. The present invention also provides a xenograft animal model derived from glioblastoma patient prepared by the above method.
본 발명은 또한, 다음의 단계를 포함하는 환자 맞춤형 교모세포종 치료 선별을 위한 정보를 제공하는 방법을 제공한다:The invention also provides a method of providing information for screening for a patient-specific glioblastoma treatment comprising the following steps:
(a) 상기 교모세포종 환자 유래 이종 이식 동물모델에 교모세포종에 대한 후보 치료방법을 수행하는 단계; 및(a) performing a candidate treatment method for glioblastoma in the xenograft animal model derived from glioblastoma patient; And
(b) 상기 후보 치료방법이 수행된 동물모델의 치료 효과를 확인하는 단계.(b) confirming the therapeutic effect of the animal model in which the candidate treatment method was performed.
이때, 상기 교모세포종 환자 유래 이종 이식 동물모델의 교모세포종의 유전학적 특성, 면역화학적 특성 및 종양 또는 면역단백질 발현 특성 중 어느 하나 이상을 추가로 분석하는 것을 특징으로 할 수 있다. In this case, the genetic characteristics, immunochemical characteristics and tumor or immunoprotein expression characteristics of the glioblastoma of the glioblastoma patient-derived xenograft animal model may be further analyzed.
본 발명은 또한, 다음 단계를 포함하는 교모세포종 치료제의 스크리닝 방법을 제공한다:The present invention also provides a method for screening a glioblastoma therapeutic agent comprising the following steps:
(a) 상기 교모세포종 환자 유래 이종 이식 동물모델 또는 이로부터 유래된 교모세포종 세포에 치료 후보 물질을 처리하는 단계; 및(a) treating a candidate substance for treatment with a xenograft animal model derived from glioblastoma patient or glioblastoma cells derived therefrom; And
(b) 상기 후보 물질 처리 후, 상기 동물모델 또는 상기 교모세포종 세포를 후보물질을 처리하지 않은 대조군과 비교하여, 상기 동물모델의 종양 조직의 크기가 감소하거나 전이가 억제되는 경우이거나 상기 교모세포종 세포의 증식이 억제제거나 사멸하는 경우 후보물질을 교모세포종 치료제로 결정하는 단계.(b) after treatment with the candidate substance, the animal model or glioblastoma cells are compared with the control group without treatment with the candidate substance, and the size of the tumor tissue of the animal model is reduced or metastasis is inhibited or the glioblastoma cells are inhibited. Determining the candidate as a glioblastoma therapeutic agent if proliferation of the inhibitor is inhibited or killed.
이때, 상기 교모세포종 환자 유래 이종 이식 동물모델의 교모세포종의 유전학적 특성, 면역화학적 특성 및 종양 또는 면역단백질 발현 특성 중 어느 하나 이상을 추가로 분석하는 것을 특징으로 할 수 있다.In this case, the genetic characteristics, immunochemical characteristics and tumor or immunoprotein expression characteristics of the glioblastoma of the glioblastoma patient-derived xenograft animal model may be further analyzed.
본 발명은 평균 생존기간이 짧은 교모세포종 치료에 있어 빠른 치료 옵션 선택이 가능하게 하는 새로운 교모세포종의 환자 유래 이종이식 동물모델 및 그 제법 및 용도를 제공한다. The present invention provides a patient-derived xenograft animal model of a new glioblastoma, and its preparation and use, which enables a fast treatment option selection in the treatment of glioblastoma with a short average survival.
본 발명에 따른 교모세포종의 환자 유래 이종이식 동물모델은 본래 종양의 특징을 보유한다. 또한, 동소성 이식 방식으로는 두개 내 종양을 형성하지 않는 환자 교모세포종 세포조차도 4주 내 종양을 형성하여 환자 유래 세포의 준비기간을 고려하여도 교모세포종 환자에서 초기 수술에서 재발까지의 평균 시간보다 훨씬 짧은 6주 이내 치료 옵션 선별이 가능하다. 아울러, 본 발명에 따른 교모세포종의 환자 유래 이종이식 동물모델은 피하 내 이식한 교모세포종 모델과 달리 뇌의 미세환경을 모사하여 효과적인 대안이 된다. 추가로, 별도 장비 없이 육안 또는 간이한 간접적 검안경 등을 이용하여 쉽게 모니터링할 수 있으며, 교모세포종 모델 제작에 상대적으로 적은 수의 교모세포종 세포가 필요한바 동시에 여러 치료 옵션의 동시 평가를 가능하게 하여 유용하다.A patient-derived xenograft animal model of glioblastoma according to the present invention inherently retains the characteristics of a tumor. In addition, even glioblastoma cells that do not form intracranial tumors by orthotopic transplantation form tumors within 4 weeks, considering the preparation period of patient-derived cells. Treatment options can be selected within a much shorter six weeks. In addition, the patient-derived xenograft animal model of glioblastoma according to the present invention is an effective alternative by simulating the microenvironment of the brain, unlike the glioblastoma model transplanted subcutaneously. In addition, it can be easily monitored by using the naked eye or simple indirect ophthalmoscope, without any additional equipment, and requires a relatively small number of glioblastoma cells for the production of glioblastoma model, which enables the simultaneous evaluation of several treatment options. Do.
도 1은 원발성 및 재발성 교모세포종 환자의 종양 세포 분리 및 배양에 대한 것으로, 1A는 원발성 및 재발성 종양의 H & E 절편(원 배율, x50)의 사진이고, 1B는 정위 생검(stereotactic biopy), 개두술(craniotomy), 화학방사선병행요법(CCRT), 환자 유래 세포 (GBL-28 및 GBL-37)의 준비에 대한 도식 일정이며(이때 주는 초기 진단 및 정위 생검 후의 주를 의미함), 1C는 GBL-28과 GBL-37 세포의 사진이다(스케일 바, 100 μm).1 is for tumor cell isolation and culture of primary and recurrent glioblastoma patients, 1A is a picture of H & E sections (circle magnification, x50) of primary and recurrent tumors, and 1B is a stereotactic biopy. , Schematic schedule for the preparation of craniotomy, chemoradiocombination (CCRT), and patient-derived cells (GBL-28 and GBL-37), where 1C represents the week after initial diagnosis and stereotactic biopsy. Pictures of GBL-28 and GBL-37 cells (scale bar, 100 μm).
도 2는 환자 유래 교모세포종 세포의 동소성 이식시의 불확실성을 나타내는 것으로, 2A는 U-87 MG, GBL-28, GBL-37의 두개 내 주사 후 마우스(n = 12)의 카플란-마이어 생존 곡선을 나타내고, 2B는 각 세포주의 두개 내 주사 후 4~6주 마우스(U-87 MG(4주), GBL-28(6주), GBL-37(6주))의 두뇌의 H & E 절편의 사진을 나타내며(노란색 점선은 두개 내 종양을 나타냄, 스케일 바 2mm), 2C는 각 세포주의 두개 내 주사 후 4~6주(U-87 MG(4주), GBL-28(6주), GBL-37(6주))에 DAPI와 GFAP에 대한 항체를 사용하여 염색한 뇌 절편의 사진을 나타낸다(노란색 점선은 두개 내 종양을 나타냄, 스케일 바 2mm).FIG. 2 shows the uncertainty in orthotopic transplantation of glioblastoma cells derived from patients, 2A shows Kaplan-Meier survival curves of mice (n = 12) after intracranial injection of U-87 MG, GBL-28, and GBL-37 2B represents H & E sections of the brain of 4-6 weeks mice (U-87 MG (4 weeks), GBL-28 (6 weeks), GBL-37 (6 weeks)) after intracranial injection of each cell line. (Yellow dotted line indicates intracranial tumor, scale bar 2 mm), 2C shows 4-6 weeks after intracranial injection of each cell line (U-87 MG (4 weeks), GBL-28 (6 weeks), GBL-37 (6 weeks) shows photographs of brain sections stained with antibodies to DAPI and GFAP (yellow dotted line indicates intracranial tumor, scale bar 2 mm).
도 3는 유리체내 주사를 통한 교모세포종의 새로운 환자 유래 이종이식 모델 개발에 대한 것으로, 3A는 종양 세포의 유리 체내 주사를 설명하는 개략도이고, 3B는 정상적인 배양 조건을 거친 GBL-28 및 GBL-37의 유리체 내 주사 후 2 내지 5 등급 종양을 갖는 마우스의 상대적 비율이며, 3C는 주입 전 4 시간 동안 저산소증 처리한 GBL-28 및 GBL-37의 유리체 내 주사 후 3 및 4 등급 종양을 가진 마우스의 상대적 비율을 나타낸다. 2D는 주입 전에 4 시간 동안 저산소증 처리한 GBL-28과 GBL-37의 유리체강 내 주입 후 4 주안의 H & E 절편의 사진이다(노란색 점선은 수정체와 망막을 나타낸다. 스케일 바, 1 mm).3 is for the development of a new patient-derived xenograft model of glioblastoma via intravitreal injection, 3A is a schematic illustrating intravitreal injection of tumor cells, and 3B is GBL-28 and GBL-37 undergoing normal culture conditions Relative proportion of mice with grade 2-5 tumors after intravitreal injection of 3C relative to mice with grade 3 and 4 tumors after intravitreal injection of GBL-28 and GBL-37 hypoxia treated for 4 hours before injection Indicates a ratio. 2D is a photograph of H & E sections within 4 weeks of intravitreal injection of GBL-28 and GBL-37 hypoxia treated for 4 hours prior to injection (yellow dashed lines represent the lens and retina, scale bar, 1 mm).
도 4는 유리체강 내 PDX 종양의 면역 조직 화학적 특성을 나타내는 사진으로, 4A는 DAPI와 인간 미토콘드리아, GFAP, 비멘틴 및 네스틴에 대한 항체를 사용하여 염색 된 안구 절편의 사진(스케일 바, 1 mm)이고, 4B는 인간의 마이토콘드리아, GFAP, 비멘틴 및 네스틴에 대한 항체를 사용하여 염색된 안구 절편의 확대 사진(스케일 바, 20 μm)이다.Figure 4 is a photograph showing the immunohistochemical characteristics of PDX tumors in the vitreous cavity, 4A is a photograph of eye sections stained using DAPI and antibodies to human mitochondria, GFAP, vimentin and nestin (scale bar, 1 mm 4B is an enlarged photograph (scale bar, 20 μm) of eye sections stained using antibodies against human mitochondria, GFAP, bimentin and nestin.
도 5는 마우스의 유리체강 내에서 PDX 종양의 OLIG2-면역 양성을 나타내는 사진으로, 인간 OLIG2 항체에 대한 항체를 사용하여 염색된 안구 절편의 확대 사진이다(스케일 바, 10 μm).FIG. 5 is a photograph showing OLIG2-immune positive of PDX tumor in the vitreous cavity of mouse, which is an enlarged photograph of eye sections stained using an antibody against human OLIG2 antibody (scale bar, 10 μm).
도 6은 마우스들의 유리체 강으로부터 종양세포의 분리 및 그 특성을 나타내는 사진으로, 6A는 GBL-28, GBL-37, GBL-28N, GBL-37N, GBL-28H 및 GBL-37H 교모세포종 세포들의 형태학적 특징을 나타내는 사진이고, 6B는 DAPI 및 GFAP 및 인간 미토콘드리아에 대한 항체를 사용하여 염색된 교모세포종 세포의 사진이다(스케일 바, 100 μm).Figure 6 is a photograph showing the separation and characteristics of tumor cells from the vitreous cavity of mice, 6A is the form of GBL-28, GBL-37, GBL-28N, GBL-37N, GBL-28H and GBL-37H glioblastoma cells 6B is a photograph of glioblastoma cells stained using DAPI and GFAP and antibodies to human mitochondria (scale bar, 100 μm).
도 7은 마우스들의 유리체 강으로부터 분리된 종양세포들의 비멘틴-면역양성을 나타내는 사진이다(스케일 바, 100 μm).Figure 7 is a photograph showing the non-mentin-immunopositive of tumor cells isolated from the vitreous cavity of mice (scale bar, 100 μm).
도 8은 마우스들의 유리체 강으로부터 분리된 종양세포들의 네스틴-면역양성을 나타내는 사진이다(스케일 바, 100 μm).Figure 8 is a photograph showing the nestin-immunopositive of tumor cells isolated from the vitreous cavity of mice (scale bar, 100 μm).
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein is well known and commonly used in the art.
본 발명의 상세한 설명 등에서 사용되는 주요 용어의 정의는 다음과 같다.Definitions of main terms used in the detailed description of the present invention are as follows.
본 발명에서의 용어 "질환 동물모델"이란 사람의 질병과 아주 유사한 형태의 질병을 가진 동물을 말한다. 사람의 질병 연구에 있어 질환 모델 동물이 의미를 갖는 것은 사람과 동물들 간의 생리적 또는 유전적인 유사성에 의한다. 질병 연구에 있어 생체의학 질환모델 동물은 질병의 다양한 원인과 발병과정 및 진단에 대한 연구용 재료를 제공해주고, 질환 모델 동물의 연구를 통해 질병에 관련된 유전자 특성, 면역화학적 특성, 종양 및 면역 단백질 발현 특성, 예후 인자들을 알아내고, 발현 유전자 및 발현 단백질들 간의 상호작용을 이해할 수 있게 하고, 개발된 신약후보물질의 실제효능 및 독성검사를 통해 실용화 가능성 여부를 판단하는 기초 자료를 얻을 수 있다. The term "disease animal model" in the present invention refers to an animal having a form of disease very similar to that of humans. The significance of disease model animals in human disease research is due to physiological or genetic similarities between humans and animals. In disease research, biomedical disease model animals provide research materials for various causes, pathogenesis, and diagnosis of disease, and research on disease model animals allows for genetic, immunochemical, tumor and immune protein expression characteristics associated with disease. In addition, basic data can be obtained to identify prognostic factors, to understand the interactions between expression genes and expression proteins, and to determine whether they are viable through the actual efficacy and toxicity tests of new drug candidates.
본 발명에서의 용어 "환자 유래 이종이식 동물모델(Patient-derived xenograft, PDX)"이란, 환자 유래 암세포 또는 암조직을 면역결핍 동물에 이종이식하여 제작된 암 환자 맞춤형 동물모델로서, 암 환자에서 암과 형태학적 환경이 동일 또는 유사하고, 유전학적 환경이 동일 또는 유사하며 암의 마커 단백질의 발현특성이 동일하며, 암 환자의 유전적, 생리적 및 환경적 특성을 반영한 조건을 제공할 수 있다. 따라서, 환자 유래 이종이식 동물모델에서 항암 효과가 있다고 판단된 항암제 후보물질, 방사선 치료(방사선 수술) 증감제(sensitizer), 면역치료 후보물질 등을 암세포 또는 암 조직 제공 암 환자에게 처리하면, 이를 항암제 후보물질 등을 환자에게 처리한 것과 동일한 효과를 확인할 수 있으므로, 상기 환자 유래 이종이식 동물모델을 이용하면 항암제 등이 실제로 환자에게 적절한 효과를 나타낼 수 있는지 확인할 수 있다는 장점을 가진다.The term “patient-derived xenograft (PDX)” in the present invention refers to a customized animal model for cancer patients produced by xenografting patient-derived cancer cells or cancer tissues to an immunodeficiency animal. And the morphological environment is the same or similar, the genetic environment is the same or similar, the expression properties of the marker protein of cancer is the same, it can provide conditions reflecting the genetic, physiological and environmental characteristics of cancer patients. Therefore, when an anticancer drug candidate, a radiation therapy (sensitizer), an immunotherapy candidate or the like which is determined to have an anticancer effect in a patient-derived xenograft animal model is treated to a cancer cell or a cancer tissue providing cancer patient, the anticancer agent Since the same effects as those treated with the candidate substance can be confirmed to the patient, the use of the patient-derived xenotransplantation animal model has the advantage that the anticancer drug can actually confirm the proper effect on the patient.
본 발명에서의 용어 "동물" 또는 "실험동물"은 인간 이외의 임의의 포유류 동물을 의미한다. 상기 동물은 배아, 태아, 신생아 및 성인을 포함하는 모든 연령의 동물을 포함한다. 본 발명에서 사용하기 위한 동물들은, 예를 들어, 상업용 소스로부터 이용할 수 있다. 이런 동물들은 실험용 동물 또는 다른 동물, 토끼, 설치류(예를 들어, 마우스, 랫트, 햄스터, 게르빌루스 및 기니피그), 소, 양, 돼지, 염소, 말, 개, 고양이, 새(예를 들어, 닭, 칠면조, 오리, 거위), 영장류(예를 들어, 침팬지, 원숭이, 붉은털원숭이)를 포함하나 이에 한정되지 않는다. 가장 바람직한 동물은 마우스이다. The term "animal" or "experimental animal" in the present invention means any mammalian animal other than human. The animals include animals of all ages including embryos, fetuses, newborns and adults. Animals for use in the present invention can be used, for example, from commercial sources. Such animals may be laboratory or other animals, rabbits, rodents (e.g. mice, rats, hamsters, gerbils and guinea pigs), cattle, sheep, pigs, goats, horses, dogs, cats, birds (e.g. Chickens, turkeys, ducks, geese), primates (eg, chimpanzees, monkeys, rhesus monkeys). The most preferred animal is a mouse.
본 발명에서의 용어 "치료"는 이롭거나 바람직한 임상적 결과를 수득하기 위한 접근을 의미한다. 본 발명의 목적을 위해서, 이롭거나 바람직한 임상적 결과는 비제한적으로, 증상의 완화, 질병 범위의 감소, 질병 상태의 안정화(즉, 악화되지 않음), 질병 진행의 지연 또는 속도의 감소, 질병 상태의 개선 또는 일시적 완화 및 경감(부분적이거나 전체적일 수 있음), 검출가능하거나 또는 검출되지 않거나의 여부를 포함한다. "치료"는 치료학적 치료 및 예방적 또는 예방 조치 방법 모두를 가리킨다. 상기 치료들은 예방되는 장애뿐만 아니라 이미 발생한 장애에 있어서 요구되는 치료를 포함한다. 질병을 "완화(palliating) "하는 것은 치료를 하지 않는 경우와 비교하여, 질병상태의 범위 및/또는 바람직하지 않은 임상적 징후가 감소되거나 진행의 시간적 추이가 늦춰지거나 길어지는 것을 의미한다. The term "treatment" in the present invention means an approach for obtaining beneficial or desirable clinical results. For the purposes of the present invention, beneficial or desirable clinical outcomes include, but are not limited to, alleviation of symptoms, reduction of disease range, stabilization of disease state (ie, not worsening), delay or slowing of disease progression, disease state Improvement or temporary mitigation and alleviation (which may be partial or total), detectable or not detected. "Treatment" refers to both therapeutic treatment and prophylactic or preventative measures. Such treatments include not only the disorders to be prevented but also the treatments required for already occurring disorders. By "palliating" a disease, the extent to which the disease state and / or undesirable clinical signs and / or the time course of progression is slowed or lengthened, as compared to the case without treatment.
본 명세서를 통하여, 문맥에서 달리 표현하지 않으면, "포함하다" 및 "함유하다"란 문구는 제시된 단계 또는 단계들의 군을 포함하나, 임의의 다른 단계 또는 단계들의 군이 배제되지 않음을 내포하는 것으로 이해하여야 한다. Throughout this specification, the phrases “comprises” and “comprises”, unless stated otherwise in the context, include a given step or group of steps, but do not exclude any other step or group of steps. It must be understood.
이하, 구체적으로 본 발명을 설명한다.Hereinafter, the present invention will be described in detail.
본 발명은 일 관점에서, 신규한 교모세포종 환자 유래 이종 이식 동물모델 및 그 제조방법에 관한 것이다. The present invention relates to a novel xenograft patient-derived xenograft animal model and a method of manufacturing the same.
본 발명에 따른 교모세포종 환자 유래 이종 이식 동물모델의 안구 내 종양은 GEAP, 비멘틴, 네스틴 마커에 대한 양성을 나타내어 교모세포종의 조직 및 세포 특성을 나타내며, 또한, 신경교세포(glial cell) 계통의 특징인 OLIG2 양성임을 특징으로 할 수 있다. Intraocular tumors of a xenograft animal model derived from glioblastoma patient according to the present invention are positive for GEAP, non-mentin and nestin markers, indicating the tissue and cellular characteristics of glioblastoma, and also of the glial cell lineage. Characterized by OLIG2 positive.
본 발명에 따른 교모세포종 환자 유래 이종이식 동물모델은, 교모세포종 환자로부터 분리된 교모세포종 세포들을 인간을 제외한 동물의 유리체내로 주입함으로써 제작된다. 이때, "유리체"란 안구 내에서 수정체와 망막 사이를 채우고 있는 무색 투명한 젤 형태의 구조물로서, 초자체라고도 한다. 본 발명에 있어서, 상기 "동물"은 인간 이외의 임의의 포유류 동물을 의미한다. 이때, 동물은 면역 결핍된 동물임을 특징으로 할 수 있으며, "면역 결핍된 동물"이란 교모세포종이 발병될 수 있도록 면역시스템을 구성하는 일부 구성요소를 유전자 수준에서 인위적으로 손상시켜서 정상적인 면역시스템이 구현되지 않도록 조작하여 제조된 동물을 의미한다. 상기 면역결핍 동물로는 신경계가 형성된 동물을 사용할 수 있는데, 바람직하게는 면역결핍되도록 조작된 마우스가 될 수 있다. 예로, Balb/c 누드 마우스를 사용할 수 있다. Glioblastoma patient-derived xenograft animal models according to the present invention are produced by injecting glioblastoma cells isolated from glioblastoma patients into the vitreous of animals other than humans. At this time, the "vitreous" is a colorless transparent gel-like structure filling the lens and the retina in the eye, also called a vitreous body. In the present invention, the "animal" refers to any mammalian animal other than human. In this case, the animal may be characterized as an immunodeficiency animal, and an "immune deficient animal" may artificially damage some components of the immune system at the genetic level so that glioblastoma can develop, thereby implementing a normal immune system. It means an animal produced by manipulation so as not to. The immunodeficiency animal may be an animal in which a nervous system is formed. Preferably, the immunodeficiency animal may be a mouse that is engineered to be immunodeficient. For example, Balb / c nude mice can be used.
종래 보고된 교모세포종 환자 유래 이종이식 모델은 피하 및 두개 내 주입을 통해 교모세포종의 환자 유래 이종이식모델을 제작하는 것인데, 피하 투여 된 교모세포종 모델은 종양이 피하 조직에 국한되어 있기 때문에 종양의 미세 환경 관련 특징을 확인하는 것은 불가능하다. 또한 이 경우 종양은 혈액 뇌 장벽에 의해 보호되는 뇌종양과 달리 전신 투여를 통해 치료제에 비교적 쉽게 노출되게 되어 실질적인 치료옵션 선택을 위한 대안이 되기 어려웠다. 아울러, 두개 내 이식통한 교모세포종 모델은 실제 환자에서 유사한 미세 환경(뇌)를 제공하는 장점은 있으나, 종양형성이 느려 PDX 치료제의 효능을 평가하는 데 45일 이상이 걸리는 경우가 많다. 더욱이 일부 환자에서 유래한 세포는 본 발명의 대조예에서와 같이 두개 내 종양을 형성하지 못했다. 더욱이 이 경우 두개 내 종양이 효율적으로 발달하더라도, 종양 형성을 조사하기 위해서는 이미징 또는 생물 발광 이미징이 필요한 단점이 있다.The previously reported glioblastoma patient-derived xenograft model is to produce a patient-derived xenograft model of glioblastoma through subcutaneous and intracranial injection. The glioblastoma model, which is administered subcutaneously, is a tumor microstructure. It is not possible to identify environmental features. In addition, in this case, unlike the brain tumors protected by the blood brain barrier, the tumors are relatively easily exposed to therapeutic agents through systemic administration, making it difficult to be an alternative to the actual treatment options. In addition, the intracranial glioblastoma model has the advantage of providing a similar microenvironment (brain) in real patients, but it is often slower to form tumors and it takes more than 45 days to evaluate the efficacy of PDX therapeutics. Moreover, cells derived from some patients did not form intracranial tumors as in the control of the present invention. Moreover, in this case, although the intracranial tumor develops efficiently, imaging or bioluminescence imaging is required to investigate tumor formation.
이에 반하여, 본 발명의 방법에 따라 제작된 유리체내 주입을 통한 교모세포종 환자유래 이종이식 동물모델(PDX)은 몇 가지 장점을 가지고 있다. In contrast, glioblastoma patient-derived xenograft animal models (PDXs) through intravitreal injection prepared according to the method of the present invention have several advantages.
첫째, 신속한 교모세포종 PDX를 제조하게 하여 평균 생존기간이 짧은 교모세포종 치료에 있어 빠른 치료 옵션 선택이 가능하게 한다. 교모세포종 환자의 평균 생존 기간은 15 개월 미만이므로, 특히 종래 치료법에 대하여 내성 종양이 있는 경우 2 차 치료 옵션을 선별하기 위해서는 효율적이고 신속한 스크리닝 시스템이 필요하다. 환자 유래 교모세포종 세포를 유리체내 주입 시 플라크 유사 종양 형성이 2 주 이내에 관찰되기 때문에, 주사 후 2 주부터 전신 또는 직접 안구 내 투여를 통해 치료 옵션을 스크리닝 할 수 있다. 더욱이 본 발명의 실시예에서 확인할 수 있듯이, 두개 내로 주입한 경우 주사 후 6주에서도 두개 내 종양을 형성하지 않은 환자의 교모세포종 세포조차도, 유리체내로 주입한 경우 종양형성이 2주 이내 관찰되며 효과적으로 두개 내 종양을 형성하게 된다는 점은 주목할 점이다. First, the production of rapid glioblastoma PDX enables the selection of a fast treatment option for treating glioblastomas with short average survival. Since the average survival of glioblastoma patients is less than 15 months, efficient and rapid screening systems are needed to screen for secondary treatment options, particularly if there are tumors resistant to conventional therapies. Since plaque-like tumor formation is observed within 2 weeks upon intravitreal injection of patient-derived glioblastoma cells, treatment options can be screened through systemic or direct intraocular administration from 2 weeks after injection. In addition, as can be seen in the embodiment of the present invention, even glioblastoma cells of patients who did not form intracranial tumors even after 6 weeks when injected into the skull, tumor formation is observed within 2 weeks when injected into the vitreous and effectively It is worth noting that it will form intracranial tumors.
특히, 본 발명에 있어서, 환자로부터 분리된 교모세포종 세포는 동물의 유리체내로 주입 전 저산소 처리된 것임을 특징으로 할 수 있다. 이 경우 저산소 처리하지 않은 정상배양군에 비하여, 안정적이고 일관된 덩어리 형성을 가져왔다(도 3C). 아울러, 저산소 처리한 경우 모두 유리체 강에서 망막 바깥으로 확장되는 종양을 형성한다는 것도 주목할 사항이다. 즉, 저산소 처리하여 유리체내 주입 시 교모세포종 세포의 침윤성 특징을 확인할 수 있었다. 본 발명에서, "저산소(hypoxia) 처리"란 일반적인 세포 배양 조건의 산소 양보다 적은 양의 산소가 존재하는 것을 의미한다. 본 발명에 있어서, 저산소 조건은 5% 미만인 것을 특징으로 할 수 있으며, 바람직하게는 산소 농도 0.01 내지 3%, 더욱 바람직하게는 산소 농도 1% 이하에서 세포를 배양하는 것을 특징으로 할 수 있다. 이때, 저산소 처리 시간은 1 내지 48시간, 바람직하게는 4 내지 24시간, 더욱 바람직하게는 약 6시간 내지 12시간 처리하는 것을 특징으로 할 수 있다. In particular, in the present invention, glioblastoma cells isolated from the patient may be characterized in that the hypoxic treatment before injection into the vitreous of the animal. This resulted in a stable and consistent mass formation compared to normal culture group without hypoxic treatment (FIG. 3C). It is also noteworthy that all hypoxic treatments form tumors that extend out of the retina in the vitreous cavity. That is, the hypoxic treatment was confirmed invasive characteristics of glioblastoma cells during intravitreal injection. In the present invention, "hypoxia treatment" means the presence of less oxygen than the amount of oxygen in general cell culture conditions. In the present invention, the hypoxic condition may be characterized by less than 5%, preferably characterized in that the cells are cultured at an oxygen concentration of 0.01 to 3%, more preferably at an oxygen concentration of 1% or less. At this time, the low oxygen treatment time may be characterized in that 1 to 48 hours, preferably 4 to 24 hours, more preferably about 6 to 12 hours.
둘째, 중추 신경계를 구성하는 망막은 본래 종양의 미세 환경을 모방한다. 동적인 시냅스를 가지는 적층된 신경세포와 망막 혈관 구조의 혈액-망막 장벽 시스템은 망막을 뇌의 효과적인 대안으로 만든다. 눈의 망막과 뇌는 공통적으로 여러 신경혈관의 특징을 공유한다. 망막은 다양한 신경 세포 유형들 사이에 여러 개의 시냅스가 형성되는 신경 세포층으로 구성되어있다. 또한, 뇌와 망막의 미세 혈관 내피 세포는 혈관 주위 세포와 성상 세포를 포함한 주변 세포들로 혈액 신경 장벽을 형성한다. 아울러, 미세아교세포(microglia)와 면역세포를 포함한 교모세포종의 종양 미세환경의 다른 세포적 구성요소들이 두뇌와 망막 사이에서 매우 유사하다. Second, the retina that makes up the central nervous system mimics the microenvironment of the original tumor. The stacked neurons with dynamic synapses and the blood-retinal barrier system of the retinal vascular structure make the retina an effective alternative to the brain. The retina and brain of the eye share many neurovascular features. The retina is composed of layers of nerve cells in which several synapses are formed between various neuronal cell types. In addition, microvascular endothelial cells of the brain and retina form a blood nerve barrier with peripheral cells, including perivascular and astrocytic cells. In addition, other cellular components of the tumor microenvironment of glioblastoma, including microglia and immune cells, are very similar between the brain and the retina.
셋째, 교모세포종을 동소성 이식한 경우(두개 내 종양)과 비교하여, 안구 내 종양은 육안으로 직접 관찰하거나 간단한 광학 렌즈(78 디옵터 렌즈 등)를 사용하여 간접적 검안경(ophthalmoscope)을 통하여 쉽게 모니터링 할 수 있다. 추가 이미징 시스템이 필요 없기 때문에 종양 형성 검사 및 모니터링을 수행하는 것이 더 쉽다. 또한, 시각적 그레이딩 시스템은 종양 형성의 정량적 분석을 위해 준 정량적 스케일 데이터를 제공한다.Third, in comparison to the case of glioblastoma grafts (intracranial tumors), intraocular tumors can be directly observed with the naked eye or easily monitored through an indirect ophthalmoscope using a simple optical lens (such as a 78 diopter lens). Can be. It is easier to perform tumorigenicity testing and monitoring because no additional imaging system is needed. In addition, the visual grading system provides semi-quantitative scale data for quantitative analysis of tumor formation.
넷째, 본 발명의 방법에 따라 제작된 유리체내 주입을 통한 교모세포종 PDX는 두개 내 주입에 비하여 적은 수의 교모세포종 세포가 필요하다. 즉, 유리체내로 주입되는 환자의 교모세포종 세포는 5~10 x 104 세포임을 특징으로 할 수 있다. 따라서, 종양 제거 수술 시 얻어진 환자의 종양 조직은 한정되어 있는 점을 고려하면 PDX 제작에 적은 수의 세포가 필요한 장점은 한정된 조직으로 더 많은 수의 PDX 제작이 가능하게 하며, 이는 몇 가지 옵션을 동시에 평가할 수 있게 한다. 환자 유래 세포의 준비 시간을 고려하면 모든 수술은 초기 수술에서 재발까지의 평균 시간보다 훨씬 짧은 6 주 내에 완료 될 수 있다.Fourth, glioblastoma PDX through intravitreal injection prepared according to the method of the present invention requires fewer glioblastoma cells than intracranial injection. That is, glioblastoma cells of the patient injected into the vitreous may be characterized in that 5 ~ 10 x 10 4 cells. Therefore, given that the tumor tissue of the patient obtained during tumor removal surgery is limited, the advantage of requiring a small number of cells for PDX production is that the limited tissue allows for the production of more PDX, which has several options simultaneously. Enable evaluation Considering the preparation time of the patient-derived cells, all operations can be completed in 6 weeks, much shorter than the average time from initial surgery to relapse.
이러한 장점으로 인하여, 본 발명에 따른 신규한 교모세포종 환자 유래 이종 이식 동물모델은 다양한 용도로 사용될 수 있다.Due to these advantages, the novel glioblastoma patient-derived xenograft animal model according to the present invention can be used for various purposes.
이에 본 발명은 다른 관점에서, (a) 상기 교모세포종 환자 유래 이종 이식 동물모델에 교모세포종에 대한 후보 치료방법을 수행하는 단계; 및 (b) 상기 후보 치료방법이 수행된 동물모델의 치료 효과를 확인하는 단계를 포함하는 환자 맞춤형 교모세포종 치료 선별을 위한 정보를 제공하는 방법에 대한 것이다. In another aspect, the present invention, (a) performing a candidate treatment method for glioblastoma in the glioblastoma patient-derived xenograft animal model; And (b) to provide a method for providing information for the selection of patient-specific glioblastoma treatment comprising the step of confirming the therapeutic effect of the animal model in which the candidate treatment method was performed.
동일한 교모세포종이 발병된 환자라고 할지라도 그 특성이 개별적으로 모두 다르므로 개개의 환자에 따라 치료 효과가 다르고 예후가 다를 수 있다. 따라서, 모든 환자에 대하여 동일한 치료방법을 선택하였을 때, 그 효과가 다를 수 있으므로, 다양한 교모세포종의 치료방법 중에서 개개의 환자에 특이적이고 보다 효과적인 치료방법을 선택하거나 새로운 치료방법을 스크리닝할 필요가 있다. 본 발명의 교모세포종 PDX는 이식된 교모세포종 세포가 유래한 환자의 특성을 그대로 반영하므로, 이를 이용하여 그 환자에 적합한 치료방법의 선택을 가져올 수 있다.Even in patients with the same glioblastoma, the characteristics are all different individually, so the treatment effect may be different and the prognosis may be different for each patient. Therefore, when the same treatment is selected for all patients, the effects may be different, and thus, it is necessary to select a specific and more effective treatment method or screen a new treatment method among the various glioblastoma treatments. . The glioblastoma PDX of the present invention reflects the characteristics of the patient from which the transplanted glioblastoma cells are derived, and thus can be used to select a treatment method suitable for the patient.
상기 후보 치료방법은 목적하는 환자에서 발병된 교모세포종을 치료하기 위한 맞춤형 치료법의 선별에 사용될 수 있는 다양한 치료방법을 의미하는데, 통상적으로 알려진 가능한 모든 교모세포종의 치료방법을 포함할 수 있다. 예를 들어, 화학적 요법, 방사선 요법, 외과적 요법, 면역세포치료법 또는 이들의 조합이 될 수 있다.The candidate treatment means a variety of treatments that can be used for the selection of a customized treatment for treating glioblastoma onset in a patient of interest, and may include all conventionally known possible treatments for glioblastoma. For example, it may be chemotherapy, radiation therapy, surgical therapy, immune cell therapy, or a combination thereof.
상기 화학적 요법은 통상적으로 알려진 항암활성을 가지는 치료제 후보물질을 환자에게 투여하여 교모세포종을 치료하는 방법을 의미한다. 또한, 상기 방사선 요법은 방사선을 환자에게 처리하여 교모세포종을 치료하는 방법이며, 외과적 요법은 외과수술로서 교모세포종이 발병된 부위를 적출하여 교모세포종을 치료하는 방법이다. 상기 면역세포치료법은 환자의 혈액에서 추출한 말초혈액단핵세포에서 교모세포종에 공격성을 나타내는 면역세포를 분리하고, 이를 환자에서 분리된 교모세포종 세포와 융합시킨 다음, 환자에게 항암백신의 형태로 다시 투여함으로써, 환자에서 발병한 교모세포종을 치료하는 방법이다. The chemotherapy refers to a method for treating glioblastoma by administering to a patient a therapeutic candidate having a commonly known anticancer activity. In addition, the radiation therapy is a method of treating glioblastoma by treating radiation to the patient, and the surgical therapy is a method of treating glioblastoma by extracting the site where glioblastoma develops as a surgical operation. The immunocytotherapy method is characterized by isolating immune cells exhibiting aggression against glioblastoma from peripheral blood mononuclear cells extracted from the patient's blood, fusing them with the glioblastoma cells isolated from the patient, and then administering them back to the patient in the form of an anticancer vaccine. To treat glioblastoma of the patient.
아울러, 환자 맞춤형 교모세포종 치료 선별을 위해서는 바람직하게는, 상기 교모세포종 환자 유래 이종 이식 동물모델의 교모세포종의 유전학적 특성, 면역화학적 특성 및 종양 또는 면역단백질 발현 특성 중 어느 하나 이상을 추가로 분석하여 예후를 예측하는 것을 특징으로 할 수 있다. In addition, for selection of patient-specific glioblastoma treatment, further analysis of any one or more of the genetic characteristics, immunochemical characteristics and tumor or immunoprotein expression characteristics of glioblastoma of the glioblastoma patient-derived xenograft animal model The prognosis may be characterized.
상기 치료 효과 확인은 예컨대 상기 동물모델의 종양 조직의 크기가 감소하거나 전이가 억제되었는지를 확인하는 것으로, 그 제한은 없으나 바람직하게는 상기 동물모델의 안구를 육안으로 직접 관찰하거나 간접적 검안경을 통하여 관찰하는 것을 특징으로 할 수 있다.Confirmation of the therapeutic effect is to confirm whether tumor size of the animal model is reduced or metastasis is inhibited, for example, but there is no limitation. Preferably, the eye of the animal model is directly observed by the naked eye or through an indirect ophthalmoscope. It may be characterized by.
본 발명은 또 다른 관점에서, (a) 상기 교모세포종 환자 유래 이종 이식 동물모델 또는 이로부터 유래된 교모세포종 세포에 치료 후보 물질을 처리하는 단계; 및 (b) 상기 후보 물질 처리 후, 상기 동물모델 또는 상기 교모세포종 세포를 후보물질을 처리하지 않은 대조군과 비교하여, 상기 동물모델의 종양 조직의 크기가 감소하거나 전이가 억제되는 경우이거나 상기 교모세포종 세포의 증식이 억제제거나 사멸하는 경우 후보물질을 교모세포종 치료제로 결정하는 단계를 포함하는 교모세포종 치료제의 스크리닝 방법에 대한 것이다.In another aspect, the present invention provides a method for treating a glioblastoma cell derived from a glioblastoma patient-derived xenograft animal model or glioblastoma cell derived therefrom ; And (b) after treating the candidate substance, comparing the animal model or the glioblastoma cells with a control group not treated with the candidate substance, where the size of the tumor tissue of the animal model is reduced or metastasis is inhibited or the glioblastoma The present invention relates to a method for screening a glioblastoma therapeutic agent comprising determining a candidate as a glioblastoma therapeutic agent when proliferation of cells is inhibited or killed.
본 발명에 있어서, 상기 동물모델의 안구를 육안으로 직접 관찰하거나 간접적 검안경을 통하여 관찰하여 종양 조직의 크기 감소를 확인하는 것을 특징으로 할 수 있다.In the present invention, the eye of the animal model can be observed directly with the naked eye or through an indirect ophthalmoscope to confirm the reduction in the size of the tumor tissue.
아울러, 교모세포종 치료제 결정을 위해서는 바람직하게는, 상기 교모세포종 환자 유래 이종 이식 동물모델의 교모세포종의 유전학적 특성, 면역화학적 특성 및 종양 또는 면역단백질 발현 특성 중 어느 하나 이상을 추가로 분석하여 예후를 예측하는 것을 특징으로 할 수 있다. In addition, in order to determine a glioblastoma therapeutic agent, preferably, one or more genetic, immunochemical and tumor or immunoprotein expression characteristics of the glioblastoma of the glioblastoma patient-derived xenograft animal model are further analyzed. It may be characterized by predicting.
실시예Example
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention, it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as being limited by these examples.
특히, 하기 실시예에서는 동물로서 마우스를 이용하여 실험을 수행하였으나, 이에 제한되지 않고 임의의 포유류라면 종류와 무관하게 적용 가능하다는 것은 당업계에서 통상의 지식을 가진 자에게 자명한 사항이라 할 것이다.In particular, in the following examples, experiments were performed using a mouse as an animal, but the present invention is not limited thereto, and any mammal can be applied regardless of the type, which will be apparent to those skilled in the art.
[실시예 1]Example 1
교모세포종 환자 유래 이종 이식 동물모델(PDX)의 제조Preparation of xenograft animal model (PDX) derived from glioblastoma patient
1-1: 교모세포종 세포의 분리 및 일차 배양 1-1: Isolation and Primary Culture of Glioblastoma Cells
서울 대학교 병원 임상 시험위원회 (IRB No. H-1009-025-331)의 승인을 받은 39세의 여성 교모세포종 환자에서 1 차 샘플을 채취했다. 초기 증상이 2 주간의 단기 기억 결손이었던 39 세 여자 환자는, 교모세포종이 정위 뇌 생검 (stereotactic brain biopsy)으로 진단되었다(도 1A). 환자는 수술적 종양 제거(1차 수집, 원발성 종양)와 테모졸마이드로 화학방사선 병행요법 치료를 받았다. 초기 수술 3 개월 후 재발성 종양을 통제하기 위해 다른 수술적 종양 제거(2차 수집, 재발된 종양)가 시행되었다. 각 수술에서 종양 조직은 일차 배양을 위해 준비되었으며 교모세포종 세포는 GBL-28 (원발성 종양)과 GBL-37 (재발성 종양)으로 각각 지정되었다 (도 1B). Primary samples were taken from a 39-year-old female glioblastoma patient approved by the Seoul National University Hospital Clinical Trial Committee (IRB No. H-1009-025-331). A 39-year-old female patient whose initial symptom was a short-term memory deficit of 2 weeks, glioblastoma diagnosed with stereotactic brain biopsy (FIG. 1A). The patient was treated with chemoradiotherapy with surgical tumor removal (primary collection, primary tumor) and temozolamide. Three months after the initial operation, another surgical tumor removal (secondary collection, recurred tumor) was performed to control the recurrent tumor. Tumor tissue was prepared for primary culture in each surgery and glioblastoma cells were designated as GBL-28 (primary tumor) and GBL-37 (recurrent tumor), respectively (FIG. 1B).
상기 2차례의 종양 절제 도중 수집된 각각의 샘플들을 칼슘과 마그네슘이 포함 된 HBSS(HankS Balanced Salt Solution)에 넣은 다음 외과용 칼로 잘게 잘랐다. 조직을 1,100 rpm에서 4 분간 원심 분리하고, PIPES 완충액으로 헹구고 37 ℃에서 트립신-EDTA가 포함 된 인산 완충 식염수 (PBS)로 재현탁하였다. 그 다음 조직을 37 ℃에서 90 분 동안 진탕기(rocking shaker)에서 DNase I (20 U/mL)로 분해하고, 10 % 소태아혈청 (FBS)이 함유된 DMEM(Dulbecco's Modified Eagle's media)에 재현탁하고 1,100 rpm에서 4 분 동안 원심 분리하였다. 그 후, 재현탁된 세포를 40-μm 셀 스트레이너로 여과하고 배양 플라스크에서 플레이팅 하였다. 원발성 종양 및 재발된 종양의 세포를 각각 GBL-28 및 GBL-37로 명명 하였다. 이후 실시예에서 유리체내 주사 후 형성된 종양에서 얻은 교모세포종 세포도 동일한 프로토콜에 따라 분리 하였다.Each sample collected during the second tumor resection was placed in a Hanks Balanced Salt Solution (HBSS) containing calcium and magnesium and then chopped with a surgical knife. Tissues were centrifuged for 4 min at 1,100 rpm, rinsed with PIPES buffer and resuspended in phosphate buffered saline (PBS) with trypsin-EDTA at 37 ° C. The tissue was then digested with DNase I (20 U / mL) in a rocking shaker at 37 ° C. for 90 minutes and resuspended in DMEM (Dulbecco's Modified Eagle's media) containing 10% fetal bovine serum (FBS). And centrifuged at 1,100 rpm for 4 minutes. The resuspended cells were then filtered with a 40-μm cell strainer and plated in culture flasks. The cells of primary and recurrent tumors were named GBL-28 and GBL-37, respectively. In the following examples, glioblastoma cells obtained from tumors formed after intravitreal injection were also isolated according to the same protocol.
한편, 상기 분리된 세포들 및 이후의 실시예에서 사용한 세포들은 다음과 같이 유지되었다. 즉, 95 % 공기 및 5 % CO2의 가습된 공기에서 37 ℃ 10 % FBS를 함유한 DMEM에서 U-87 MG 세포(카탈로그 번호 HTB-14, ATCC), 상기 GBL-28 및 GBL-37세포를 유지 하였다.On the other hand, the isolated cells and cells used in the following examples were maintained as follows. That is, U-87 MG cells (catalog no. HTB-14, ATCC), GBL-28 and GBL-37 cells were prepared in DMEM containing 37 ° C. 10% FBS in humidified air of 95% air and 5% CO 2 . Maintained.
1-2: 실험동물의 준비1-2: Preparation of Laboratory Animals
6주령의 수컷 Balb/c 누드 마우스를 Central Laboratory Animals에서 구입하여 12 시간 암흑주기 하에 유지시켰다. 모든 동물 실험은 안과 및 시력 연구에서 동물 사용을 위한 안과 및 안과 연구 협회 (Association of Vision and Ophthalmology)의 성명서에 따라 수행되었으며 서울 대학교 및 서울 대학교 병원의 기관 동물 관리 및 사용위원회의 승인을 받았다.Six-week-old male Balb / c nude mice were purchased from Central Laboratory Animals and maintained under a 12 hour dark cycle. All animal experiments were conducted in accordance with the statement of the Association of Vision and Ophthalmology for Animal Use in Ophthalmology and Vision Research and approved by the Institutional Animal Care and Use Committee of Seoul National University and Seoul National University Hospital.
1-3: (대조예) 종래의 방법(교모세포종 세포의 동소성 이식)에 따른 교모세포종 동물모델의 제조 및 환자 유래 교모세포종 세포의 동소성 이식의 비확실성1-3: (Comparative) Preparation of an Animal Model of Glioblastoma According to the Conventional Method (Alloplastic Transplantation of Glioblastoma Cells) and Uncertainty of Alloplastic Transplantation of Patient-Derived Glioblastoma Cells
깊은 마취 후, 실시예 1-2의 마우스는 정위 프레임(David Kopf Instruments)에 배치되었다. 소규모 두개골절제술을 정중선에서 2-3 mm, 관상 봉합에서 1 mm 앞쪽으로 시행 하였다. 실시예 1-1의 교모세포종 세포들 (U-87 MG, GBL-28, GBL-37, 3 x 105 세포 5 μL)를 뇌 실질 내로 3 mm 깊이 정위적으로 주입 하였다. 종양 세포 주입 후 4~6 주에, 마우스 뇌의 얇은 박편(10 μm)을 H & E(hematoxylin and eosin) 염색과 GFAP의 면역 형광 염색을 위해 처리하였다. 즉, 마우스 뇌의 얇은 박편을 PBS로 세척하고, 0.05 % (v / v) 사포닌 및 5 % (v / v) 정상 염소 혈청을 함유하는 PBS가 3 분간 스며들게 한 후, 비특이적 결합을 차단하기 위하여 1시간 동안 1.5 % 정상 염소 혈청을 포함하는 PBS로 처리하였다. 그 다음, 상기 슬라이스를 4 ℃에서 하룻밤 동안 항-GFAP 항체(1 : 100, 카탈로그 번호 M0761 또는 Z0334, Dako), 항-인간 미토콘드리아 항체(1 : 100, 카탈로그 번호 MAB1273, Millipore 또는 cat.no.PA5-29550, Life Technologies), 항-비멘틴 항체 (1 : 100, 카탈로그 번호 ab11256, abcam), 항-네스틴 항체(1 : 100, 카탈로그 번호 MAB5326, Millipore) 및 항-희돌기교세포 전사 인자 2(OLIG2; 1:100; cat. no. sc-293163, Santa Cruz)로 표지하고, 대응되는 Alexa Fluor 488 또는 594 IgG (1 : 500, cat.no.A11008, A11029, A11032, A11037, A11055 및 A21207, Life Technologies)로 1시간 동안 처리 하였다. 핵 염색은 4', 6-diamidino-2-phenylindole dihydrochloride (DAPI, Sigma)를 사용하여 수행되었다. 이어서, 슬라이드를 형광 현미경 (Leica) 하에서 관찰 하였다.After deep anesthesia, the mice of Examples 1-2 were placed in the stereotactic frame (David Kopf Instruments). Small-scale craniotomy was performed 2-3 mm in the midline and 1 mm in the coronary sutures. Glioblastoma cells of Example 1-1 (U-87 MG, GBL-28, GBL-37, 5 μL of 3 × 10 5 cells) were injected stereotactically into the brain parenchyma 3 mm deep. Four to six weeks after tumor cell injection, thin sections of mouse brain (10 μm) were treated for H & E (hematoxylin and eosin) staining and immunofluorescence staining of GFAP. That is, thin slices of mouse brain were washed with PBS, infiltrated with PBS containing 0.05% (v / v) saponin and 5% (v / v) normal goat serum for 3 minutes, and then to block nonspecific binding 1 Treated with PBS containing 1.5% normal goat serum for an hour. The slice was then overnight at 4 ° C. anti-GFAP antibody (1: 100, catalog number M0761 or Z0334, Dako), anti-human mitochondrial antibody (1: 100, catalog number MAB1273, Millipore or cat.no.PA5 -29550, Life Technologies), anti-nonmentin antibody (1: 100, catalog number ab11256, abcam), anti-estin antibody (1: 100, catalog number MAB5326, Millipore) and anti-oligodendrocyte transcription factor 2 ( OLIG2; 1: 100; cat.no.sc-293163, Santa Cruz) and correspond to the corresponding Alexa Fluor 488 or 594 IgG (1: 500, cat.no.A11008, A11029, A11032, A11037, A11055 and A21207, Life Technologies) for 1 hour. Nuclear staining was performed using 4 ', 6-diamidino-2-phenylindole dihydrochloride (DAPI, Sigma). The slides were then observed under a fluorescence microscope (Leica).
그 결과, 도 2에 나타난 바와 같이, U-87 MG 군과 달리 교모세포종 환자에서 분리한 원발성 및 재발성 종양 유래 세포를 이식한 군에서는 6주가 경과하였음에도 두개 내 종양을 형성하지 못했다. 이전에도 동소성 이식시술은 본 발명자들을 포함한 여러 연구자들에 의해 반복적으로 수행되었지만, 몇몇 환자 유래 세포는 느리게 두개 내 종양을 형성하거나 전혀 종양을 발생시키지 못했다. 도 2는 환자 유래 교모세포종 세포의 동소성 이식시의 낮은 신뢰성을 나타내는 것으로, 2A는 U-87 MG, GBL-28, GBL-37의 두개 내 주사 후 마우스(n = 12)의 카플란-마이어 생존 곡선을 나타낸다. 본 발명의 대조예에서 Balb / c 누드 마우스의 줄무늬체(striatum) 내로 U-87 MG, GBL-28 및 GBL-37을 3 x 105 세포 주입 하였을 때, U-87 MG 군과 환자 유래 교모세포종 세포들 군들간 생존율 패턴은 상당히 달랐다 (P 값 <0.0001;도 2A). 이때, GraphPad Prism (GraphPad Software)을 사용하여 통계 분석을 수행하였고, GBL-28, GBL-37 및 U-87 MG의 동소성 이식 수술을 시행 한 그룹 간 통계적으로 유의한 차이를 알아 내기 위해 로그 순위 테스트를 수행하였다. <0.05의 P 값은 통계적으로 유의하다고 간주되었다.As a result, as shown in Figure 2, unlike the U-87 MG group in the group of transplanted primary and recurrent tumor-derived cells isolated from glioblastoma patients did not form intracranial tumor even after 6 weeks. Previously, orthotopic transplantation was repeatedly performed by several researchers, including the inventors, but some patient-derived cells slowly formed intracranial tumors or did not develop tumors at all. Figure 2 shows low reliability during orthotopic transplantation of glioblastoma cells derived from patients, 2A shows Kaplan-Meier survival of mice (n = 12) after intracranial injection of U-87 MG, GBL-28, and GBL-37. It shows a curve. In the control example of the present invention, when U-87 MG, GBL-28 and GBL-37 were injected 3 x 10 5 cells into the striatum of Balb / c nude mice, the U-87 MG group and the patient-derived glioblastoma Survival patterns were significantly different between groups of cells (P value <0.0001; FIG. 2A). At this time, statistical analysis was performed using GraphPad Prism (GraphPad Software), and the log rank was used to find statistically significant differences between groups undergoing orthotopic transplantation of GBL-28, GBL-37, and U-87 MG. The test was performed. P values of <0.05 were considered statistically significant.
도 2B는 각 세포주의 두개 내 주사 후 4~6주 마우스(U-87 MG(4주), GBL-28(6주), GBL-37(6주))의 두뇌의 H & E 절편의 대표 사진을 나타내며(노란색 점선은 두개 내 종양을 나타냄, 스케일 바 2mm), 2C는 각 세포주의 두개 내 주사 후 4~6주(U-87 MG(4주), GBL-28(6주), GBL-37(6주))에 DAPI와 GFAP에 대한 항체를 사용하여 염색한 뇌 절편의 대표 사진을 나타낸다(노란색 점선은 두개 내 종양을 나타냄, 스케일 바 2mm). 조직 검사 및 면역 조직 화학 검사에서 U-87 MG 세포는 두개 내 종양이 잘 형성되어 있었고 (도 2B와 2C, 왼쪽), GBL-28과 GBL-37 세포는 두개 내 주입 후 6 주 후에도 종양이 형성되지 않았다. (2B 및 2C, 중간 및 우측). Figure 2B is representative of H & E sections of the brain of 4-6 weeks mice (U-87 MG (4 weeks), GBL-28 (6 weeks), GBL-37 (6 weeks)) after intracranial injection of each cell line. Photograph (yellow dotted line indicates intracranial tumor, scale bar 2 mm), 2C 4-6 weeks after intracranial injection of each cell line (U-87 MG (4 weeks), GBL-28 (6 weeks), GBL) Representative photographs of brain sections stained with antibodies to DAPI and GFAP at −37 (week 6) are shown (yellow dashed lines indicate intracranial tumors, scale bars 2 mm). In histological and immunohistochemical studies, U-87 MG cells had well formed intracranial tumors (FIGS. 2B and 2C, left), while GBL-28 and GBL-37 cells formed 6 weeks after intracranial injection. It wasn't. (2B and 2C, middle and right).
1-4: (실험예) 교모세포종 세포의 유리체내 주입 및 신규한 교모세포종 동물모델의 제조1-4: (Experimental) Intravitreal injection of glioblastoma cells and preparation of new glioblastoma animal model
실시예 1-1에서 수득한 GBL-28 및 GBL-37 세포들을 각각 1 x 105 세포들을 실시예 1-2의 6주령 수컷 Balb/c 누드 마우스의 유리체강 내로 주입하였다. 추가로, 실시예 1-1에서 수득한 GBL-28 및 GBL-37 세포 각각 1 x 105 세포들을 4시간 동안 저산소 상태 (1 % O2)로 처리한 후 실시예 1-2의 6 주령 수컷 Balb/c 누드 마우스의 유리체강 내로 주입하였다. 주사 후 2 주부터 안구를 매일 검사하여 종양 형성을 관찰하였다. GBL-28 and GBL-37 cells obtained in Example 1-1 were each injected with 1 × 10 5 cells into the vitreous cavity of 6-week-old male Balb / c nude mice of Examples 1-2. Further, the 6-week-old males of Example 1-2 after treating 1 × 10 5 cells each of GBL-28 and GBL-37 cells obtained in Example 1-1 in a hypoxic state (1% O 2 ) for 4 hours. Injected into the vitreous cavity of Balb / c nude mice. From 2 weeks after injection, the eye was examined daily to observe tumor formation.
유리체내 주입법은 망막모세포종의 동소성 모델을 확립하고 망막 신경 조직에 치료제를 전달하는 방법이다. 유리체내 투여된 세포들은 일차적으로 수정체와 망막 사이의 유리체강 내에 안구 종양을 형성한다(도 3A). 그런 다음, 종양은 (각막과 수정체 사이) 전방(anterior chamber)으로 확장되어 안구 전체를 점유할 수 있다. Balb / c 누드 마우스의 유리체강 내와 망막이 육안으로 관찰되거나 간접 검안경을 통해 관찰 될 수 있기 때문에 종양 형성 정도는 단순한 시각적 등급 시스템으로 등급을 매길 수 있다. 시각적 등급 시스템은 종양 형성 정도를 0부터 5까지의 등급을 사용하였다: 등급 0 (종양 형성 없음), 등급 1 (줄무늬 종양), 등급 2 (플라크 유사 종양), 등급 3 (명확한 종괴 형성), 등급4 (유리체를 가득 채운 종양), 등급 5 (구체 확대 또는 안구 파열이 동반 됨).Intravitreal injection is a method of establishing an orthotopic model of retinoblastoma and delivering a therapeutic agent to retinal nerve tissue. Intravitreal administered cells primarily form ocular tumors in the vitreous cavity between the lens and the retina (FIG. 3A). The tumor can then expand into the anterior chamber (between the cornea and the lens) and occupy the entire eye. The degree of tumor formation can be graded with a simple visual grading system, because the intravitreal cavity and the retina of Balb / c nude mice can be observed with the naked eye or through an indirect ophthalmoscope. The visual grading system used grades of tumor formation from 0 to 5: grade 0 (no tumor formation), grade 1 (striped tumor), grade 2 (plaque-like tumor), grade 3 (clear mass formation), grade 4 (tumor-filled tumor), grade 5 (with spherical enlargement or eye rupture).
그 결과, 실시예 1-3에서 볼 수 있듯이 기존의 방식(동소성 이식)에 따른 환자 유래 교모세포종 세포의 이식은 종양세포 주입 후 6주까지도 두개 내 종양을 형성하는데 실패한 것과 달리, 본 발명에 따른 유리체내 주사에 따른 방법의 경우 환자 유래 교모세포종 세포들은 효과적으로 유리체내 주사 후 2주부터는 플라크 유사 종양으로서, 4주까지는 종괴로 두개 내 종양을 형성하였다. As a result, as shown in Examples 1-3, transplantation of patient-derived glioblastoma cells according to the conventional method (orthotopic transplantation) failed to form intracranial tumors up to 6 weeks after tumor cell injection. In the method according to the intravitreal injection, the patient-derived glioblastoma cells effectively formed plaque-like tumors from 2 weeks after intravitreal injection, and formed intracranial tumors by 4 weeks.
흥미롭게도, 정상 상태(도 3B) 및 4시간 동안 저산소 상태(1 % O2)로 처리(도 3C)한 세포들의 주입 후 종양 형성에 다른 패턴이 있었다. 정상 상태에서 배양 한 후에 주사한 세포는 다양한 등급의 종양을 형성했다(도 3B). 대조적으로, 저산소 처리는 안정적이고 일관된 덩어리 형성을 가져왔다(도 3C). 도 3에서, 3B는 정상적인 배양 조건을 거친 GBL-28 및 GBL-37의 유리체 내 주사 후 2 내지 5 등급 종양을 갖는 마우스의 상대적 비율이며, 3C는 주입 전 4 시간 동안 저산소증 처리한 GBL-28 및 GBL-37의 유리체내 주사 후 3 및 4 등급 종양을 가진 마우스의 상대적 비율을 나타낸다. Interestingly, there was another pattern in tumor formation after injection of cells that were treated in normal state (FIG. 3B) and hypoxic (1% O 2 ) for 4 hours (FIG. 3C). Cells injected after incubation at steady state formed various grades of tumor (FIG. 3B). In contrast, hypoxic treatment resulted in stable and consistent lump formation (FIG. 3C). In Figure 3, 3B is the relative proportion of mice with grades 2-5 tumors after intravitreal injection of GBL-28 and GBL-37 undergoing normal culture conditions, 3C is GBL-28 treated with hypoxia for 4 hours before injection and Relative proportions of mice with grade 3 and 4 tumors after intravitreal injection of GBL-37 are shown.
아울러, 저산소 처리(도 3D)한 경우 교모세포종 세포의 침윤성 특징을 설명하는 GBL-28과 GBL-37 세포 모두 유리체 강에서 망막 바깥으로 확장되는 종양을 형성한다는 것도 주목할 사항이다. 3D는 주입 전에 4 시간 동안 저산소증 처리한 GBL-28과 GBL-37의 유리체강 내 주입 후 4 주안의 H & E 절편의 대표 사진이다(노란색 점선은 수정체와 망막을 나타낸다. 스케일 바, 1 mm). 이때, 실험을 위하여 마우스 안구의 얇은 박편(10 μm)은 상기 실시예 1-3과 같이 준비 및 테스트하였다. It is also noteworthy that when hypoxic treatment (FIG. 3D), both GBL-28 and GBL-37 cells, which explain the invasive characteristics of glioblastoma cells, form tumors that extend out of the retina in the vitreous cavity. 3D is a representative photograph of H & E sections within 4 weeks after intravitreal injection of GBL-28 and GBL-37 hypoxia treated for 4 hours prior to injection (yellow dashed lines represent the lens and retina. Scale bar, 1 mm) . At this time, thin flakes (10 μm) of the mouse eye for the experiment was prepared and tested as in Example 1-3.
[실시예 2]Example 2
신규한 교모세포종 PDX 종양의 면역조직화학적 특성 분석Immunohistochemical Characterization of Novel Glioblastoma PDX Tumors
본 발명에 따른 신규한 교모세포종 PDX에 있어, 유리체강 내의 PDX 종양에 대한 면역 조직 화학적 특성을 조사하여 원래의 종양과의 유사성을 확인하고, 이들 세포가 마우스 유래가 아닌 주입된 종양 세포에 의한 것인지 확인하기 위하여, 다음의 실험을 수행하였다. In the novel glioblastoma PDX according to the present invention, the immunohistochemical characteristics of PDX tumors in the vitreous cavity are examined to confirm their similarity to the original tumors, and whether these cells are caused by injected tumor cells rather than mice. In order to confirm, the following experiment was performed.
먼저, 본 발명에 따른 교모세포종 PDX 종양조직을 살펴보기 전, 원래 종양, 즉 GBL-28과 GBL-37의 원래 종양의 특성을 살펴보았다. 교모세포종 환자의 조직 검사상 원발성 및 재발성 종양 모두 WHO grade IV 교모세포종 (표 1)였다. 또한 두 종양 모두 면역 조직 화학 분석에서 GFAP, 비멘틴(vimentin) 및 네스틴(nestin)에 양성이었다 (표 1). 두 세포 모두 신경교세포(glial cell)의 형태학적 특징을 보였다 (도 1C).First, before examining glioblastoma PDX tumor tissue according to the present invention, the characteristics of the original tumors, that is, the original tumors of GBL-28 and GBL-37 were examined. On histological examination of glioblastoma patients, both primary and recurrent tumors were WHO grade IV glioblastoma (Table 1). In addition, both tumors were positive for GFAP, vimentin and nestin in immunohistochemical analysis (Table 1). Both cells showed morphological characteristics of glial cells (FIG. 1C).
원발성 및 재발성 교모세포종 종양의 조직학적 및 면역조직화학적 특성Histological and Immunohistochemical Characteristics of Primary and Recurrent Glioblastoma Tumors.
특성characteristic 원발성 종양Primary tumor 재발성 종양Recurrent tumor
WHO 등급WHO rating IV/IVIV / IV IV/IVIV / IV
Increased cellularity   Increased cellularity U U
Nuclear polymorphism   Nuclear polymorphism U U
Mitosis (pHH3)  Mitosis (pHH3) 25/10 HPF25/10 HPF 27/10 HPF27/10 HPF
Vascular endothelial hyperplasia  Vascular endothelial hyperplasia U radish
Necrosis  Necrosis U U
면역조직화학성Immunohistochemistry
GFAP  GFAP 양성positivity 양성positivity
Vimentin  Vimentin 양성positivity 양성positivity
Nestin  Nestin 양성positivity 양성positivity
HPF, high-power field; pHH3, phosphohistone H3HPF, high-power field; pHH3, phosphohistone H3
한편, 실시예 1-4의 마우스 안구의 얇은 박편을 PBS로 세척하고, 0.05 % (v /v) 사포닌 및 5 % (v/v) 정상 염소 혈청을 함유하는 PBS가 3 분간 스며들게 한 후, 비특이적 결합을 차단하기 위하여 1시간 동안 1.5 % 정상 염소 혈청을 포함하는 PBS로 처리하였다. 그 다음, 상기 슬라이스를 4 ℃에서 하룻밤 동안 항-GFAP 항체 (1:100, 카탈로그 번호 M0761 또는 Z0334, Dako), 항-인간 미토콘드리아 항체 (1:100, 카탈로그 번호 MAB1273, Millipore 또는 cat.no.PA5-29550, Life Technologies), 항-비멘틴 항체 (1:100, cat.no. ab11256, abcam), 항-네스틴 항체 (1:100, 카탈로그 번호 MAB5326, Millipore) 및 항-희돌기교세포 전사 인자 2(OLIG2; 1:100; cat. no. sc-293163, Santa Cruz)로 표지하고, 대응되는 Alexa Fluor 488 또는 594 IgG (1 : 500, cat.no.A11008, A11029, A11032, A11037, A11055 및 A21207, Life Technologies)로 1시간 동안 처리 하였다. 핵 염색은 DAPI(4', 6-diamidino-2-phenylindole dihydrochloride, Sigma)를 사용하여 수행되었다. 이어서, 슬라이드를 형광 현미경 (Leica) 하에서 관찰 하였다.On the other hand, thin flakes of the mouse eye of Examples 1-4 were washed with PBS, and allowed to infiltrate PBS containing 0.05% (v / v) saponin and 5% (v / v) normal goat serum for 3 minutes, and then nonspecific To block binding, the cells were treated with PBS containing 1.5% normal goat serum for 1 hour. The slice was then overnight at 4 ° C. anti-GFAP antibody (1: 100, catalog number M0761 or Z0334, Dako), anti-human mitochondrial antibody (1: 100, catalog number MAB1273, Millipore or cat.no.PA5 -29550, Life Technologies), anti-nonmentin antibody (1: 100, cat.no.ab11256, abcam), anti-nestine antibody (1: 100, catalog number MAB5326, Millipore) and anti-oligodendrocyte transcription factors 2 (OLIG2; 1: 100; cat.no.sc-293163, Santa Cruz) and correspond to the corresponding Alexa Fluor 488 or 594 IgG (1: 500, cat.no.A11008, A11029, A11032, A11037, A11055 and A21207, Life Technologies) for 1 hour. Nuclear staining was performed using DAPI (4 ', 6-diamidino-2-phenylindole dihydrochloride, Sigma). The slides were then observed under a fluorescence microscope (Leica).
그 결과, 도 4A에 나타난 바와 같이, 실시예 1-4의 교모세포종 동물모델의 유리체강 내 및 망막 외부의 종양은 GFAP, 비멘틴, 네스틴 및 인간 마이토콘드리아에 양성이었다. 아울러, 모든 마커는 그들의 세포 내 위치를 나타내는 세포질 패턴을 보여 주었다 (도 4B). 표 1에 나타난 바와 같이, GBL-28과 GBL-37의 원래 종양은 GFAP, 비멘틴 및 네스틴에 양성인바 본 발명에 따른 교모세포종 PDX의 종양은 본래 종양의 특징을 유지함을 확인할 수 있었다. As a result, as shown in Fig. 4A, tumors in the vitreous cavity and outside the retina of the glioblastoma animal model of Example 1-4 were positive for GFAP, bimentin, nestin and human mitochondria. In addition, all markers showed cytoplasmic patterns indicating their intracellular location (FIG. 4B). As shown in Table 1, the original tumors of GBL-28 and GBL-37 are positive for GFAP, bimentin, and nestin, and thus, the tumors of glioblastoma PDX according to the present invention retain their original tumor characteristics.
또한, 도 5에 나타난 바와 같이, 실시예 1-4의 교모세포종 동물모델의 유리체강 내 및 망막 외부의 종양은 신경교세포(glial cell) 계통의 특정 마커 중 하나 인 OLIG2에 양성 반응을 보였다.In addition, as shown in Figure 5, the tumors in the vitreous cavity and outside the retina of the glioblastoma animal model of Example 1-4 showed a positive response to OLIG2, one of the specific markers of glial cell lineage.
이는 본 발명에 따른 교모세포종 이종이식모델의 종양의 면역조직화학적 특성이 본래의 환자의 종양의 특징을 그대로 유지하고 있다는 것을 보여주는 것으로, 본 발명에 따른 교모세포종 이종이식모델이 환자의 치료옵션 선택을 위하여 사용될 수 있음을 제시한다. This shows that the immunohistochemical characteristics of the tumors of the glioblastoma xenograft model according to the present invention retain the characteristics of the tumor of the original patient. It can be used to
[실시예 3]Example 3
신규한 교모세포종 PDX 종양의 종양 세포 분리 및 특성 규명Tumor Cell Isolation and Characterization of Novel Glioblastoma PDX Tumors
본 발명에 따른 신규한 교모세포종 PDX에서 종양세포를 분리하고 원래 종양 세포(GBL-28 및 GBL-37)과의 유사성을 확인하고, 아울러 실시예 1-4의 마우스 모델 중 정상 배양조건을 갖는 GBL-28 및 GBL-37를 주입한 PDX 의 종양에서 분리한 세포와 주입 전 4시간 동안 저산소 처리한 후 주입한 PDX 의 종양에서 분리한 세포간 특성을 비교하기 위하여, 다음의 실험을 수행하였다. Tumor cells were isolated from novel glioblastoma PDX according to the present invention and confirmed similarity with original tumor cells (GBL-28 and GBL-37), and GBL having normal culture conditions in the mouse model of Examples 1-4. In order to compare the characteristics of the cells isolated from tumors of PDX injected with -28 and GBL-37 and those from PDX injected after hypoxic treatment for 4 hours before injection, the following experiment was performed.
실시예 1-1과 같은 방법으로 실시예 1-4의 마우스모델의 종양에서 세포들을 분리배양하여 4-웰 챔버 슬라이드 (Nunc)에 접종하고 밤새 안정화시켰다. 세포를 4 ℃에서 1 % 파라포름알데히드로 10 분간 고정시키고 0.1 % Triton X-100 용액 (카탈로그 번호 T8787, Sigma)으로 3 분간 실온에서 침투시켰다. 비특이적 결합을 최소화하기 위해 1 % 소 혈청 알부민으로 처리 한 후 4 ℃에서 밤새 항 GFAP 항체, 항-인간 미토콘드리아 항체, 항-비멘틴 항체, 항-네스틴 항체로 세포를 표지하고, 대응하는 Alexa Fluor 488 또는 594 IgG (1 : 500, 카탈로그 번호 A11008, A11029, A11032, A11037, A11055 및 A21207, Life Technologies)를 1 시간 동안 처리 하였다. 핵 염색은 DAPI를 사용하여 수행되었다. 이어서, 슬라이드를 형광 현미경 (Leica) 하에서 관찰 하였다. Cells were isolated from the tumors of the mouse model of Example 1-4 in the same manner as in Example 1-1, inoculated into 4-well chamber slides (Nunc) and stabilized overnight. Cells were fixed at 4 ° C. for 10 minutes with 1% paraformaldehyde and infiltrated with 0.1% Triton X-100 solution (Cat. No. T8787, Sigma) for 3 minutes at room temperature. Label cells with anti-GFAP antibody, anti-human mitochondrial antibody, anti-mententin antibody, anti-nestine antibody overnight at 4 ° C. after treatment with 1% bovine serum albumin to minimize nonspecific binding and the corresponding Alexa Fluor 488 or 594 IgG (1: 500, Cat. No. A11008, A11029, A11032, A11037, A11055 and A21207, Life Technologies) was treated for 1 hour. Nuclear staining was performed using DAPI. The slides were then observed under a fluorescence microscope (Leica).
그 결과, 도 6A에 나타낸 바와 같이, 본 발명에 따른 교모세포종 모델의 종양에서 분리된 세포들은 모두 그들의 모세포, 즉 원래 종양에서 분리된 교모세포종 세포의 형태학적 특성을 유지 하였다. 아울러, 도 6B에 나타난 바와 같이, GFAP 마커에 대해서도 원래 종양에서 분리된 세포와 동일하게 양성으로 나타났다. 또한, 본 발명에 따른 교모세포종 모델의 종양에서 분리된 세포들은 모두 비멘틴(도 7) 및 네스틴(도 8) 마커 역시 원래 종양에서 분리된 세포와 동일하게 양성으로 나타났다. 도 6 내지 8에서, GBL-28 및 GBL-37은 각각 교모세포종 환자의 원발성 및 재발성 종양으로부터 분리한 세포들이고, GBL-28N 및 GBL-37N은 실시예 1-4에서 교모세포종 모델 제작 시 정상 배양 조건을 갖는 GBL-28 및 GBL-37 세포를 유리체내 주입한 후 4 주째에 마우스로부터 분리한 세포들이며, GBL-28H 및 GBL-37H는 실시예 1-4에서 교모세포종 모델 제작 시 마우스 내 주입 전 GBL-28 및 GBL-37 세포를 4시간 동안 저산소 처리한 다음 유리체내 주입한 후 4 주째에 마우스로부터 분리한 세포들이다. As a result, as shown in Figure 6A, all the cells isolated from the tumor of the glioblastoma model according to the present invention retained the morphological characteristics of their parent cells, that is, the glioblastoma cells originally isolated from the tumor. In addition, as shown in Figure 6B, the GFAP marker was also positively the same as the cells isolated from the original tumor. In addition, the cells isolated from the tumor of the glioblastoma model according to the present invention were all positively the same as the cells isolated from the non-mentin (FIG. 7) and nestin (FIG. 8) markers. 6 to 8, GBL-28 and GBL-37 are cells isolated from primary and recurrent tumors of glioblastoma patients, respectively, and GBL-28N and GBL-37N are normal when the glioblastoma model is produced in Examples 1-4. GBL-28 and GBL-37 cells having culture conditions were cells isolated from mice 4 weeks after intravitreal injection, and GBL-28H and GBL-37H were injected into mice when the glioblastoma model was prepared in Example 1-4. All GBL-28 and GBL-37 cells were hypoxic treated for 4 hours and then isolated from mice 4 weeks after intravitreal injection.
이는 본 발명에 따른 교모세포종 이종이식모델이 종양 세포 분리 실험을 통해서도 원래 종양의 특징을 유지한다는 것을 보여주는 것으로, 본 발명에 따른 교모세포종 이종이식모델이 환자의 치료옵션 선택을 위하여 사용될 수 있음을 제시한다. This shows that the glioblastoma xenograft model according to the present invention maintains the original tumor characteristics even through tumor cell separation experiments, suggesting that the glioblastoma xenograft model according to the present invention can be used to select treatment options of patients. do.
이상으로 본 발명의 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As described above in detail a specific part of the content of the present invention, for those skilled in the art, such a specific description is only a preferred embodiment, which is not limited by the scope of the present invention Will be obvious. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (15)

  1. 교모세포종 환자로부터 분리된 교모세포종 세포들을 인간을 제외한 동물의 유리체내로 주입하는 단계를 포함하는, 교모세포종 환자 유래 이종 이식 동물모델의 제조방법.A method for producing a xenograft patient-derived xenograft animal model comprising injecting glioblastoma cells isolated from a glioblastoma patient into the vitreous of an animal other than a human.
  2. 제1항에 있어서, 상기 교모세포종 세포들은 저산소 처리된 것임을 특징으로 하는 방법.The method of claim 1, wherein the glioblastoma cells are hypoxic treated.
  3. 제2항에 있어서, 상기 저산소 처리는 상기 교모세포종 세포들을 산소 농도 1% 이하에서 배양하는 것을 특징으로 하는 방법.The method of claim 2, wherein the hypoxic treatment is characterized in that the glioblastoma cells are cultured at an oxygen concentration of 1% or less.
  4. 제1항에 있어서, 상기 교모세포종 세포들은 5~10Х104의 세포들을 주입하는 것을 특징으로 하는 방법.The method of claim 1, wherein the glioblastoma cells are injected with 5-10 10 10 cells.
  5. 제1항에 있어서, 상기 원발성 또는 재발성 교모세포종 환자에서 분리된 것임을 특징으로 하는 방법. The method of claim 1, wherein said method is isolated from a patient with said primary or recurrent glioblastoma.
  6. 제1항 내지 제5항 중 어느 한 항의 방법에 의하여 제조된 교모세포종 환자 유래 이종 이식 동물모델.A xenograft transplant animal model derived from a glioblastoma patient prepared by the method of any one of claims 1 to 5.
  7. 제6항에 있어서, 상기 동물모델의 안구 내 종양은 GEAP, 비멘틴 및 네스틴 마커에 대한 양성을 나타내는 것을 특징으로 하는, 교모세포종 환자 유래 이종 이식 동물모델. The xenograft patient-derived xenograft animal model of claim 6, wherein the intraocular tumor of the animal model is positive for GEAP, non-mentin and nestin markers.
  8. 제7항에 있어서, 상기 동물모델은 추가로 OLIG2 마커에 대한 양성을 나타내는 것을 특징으로 하는, 교모세포종 환자 유래 이종 이식 동물모델. The xenograft patient derived xenograft animal model according to claim 7, wherein said animal model is further positive for an OLIG2 marker.
  9. 다음의 단계를 포함하는 환자 맞춤형 교모세포종 치료 선별을 위한 정보를 제공하는 방법:How to provide information for screening patient-specific glioblastoma treatment, which includes the following steps:
    (a) 제6항의 교모세포종 환자 유래 이종 이식 동물모델에 교모세포종에 대한 후보 치료방법을 수행하는 단계; 및(a) performing a candidate treatment method for glioblastoma in a xenograft animal model derived from glioblastoma patient of claim 6; And
    (b) 상기 후보 치료방법이 수행된 동물모델의 치료 효과를 확인하는 단계. (b) confirming the therapeutic effect of the animal model in which the candidate treatment method was performed.
  10. 제9항에 있어서, 상기 교모세포종 환자 유래 이종 이식 동물모델의 교모세포종의 유전학적 특성, 면역화학적 특성 및 종양 또는 면역단백질 발현 특성 중 어느 하나 이상을 추가로 분석하는 것을 특징으로 하는 방법.The method of claim 9, further comprising analyzing at least one of genetic, immunochemical, and tumor or immunoprotein expression characteristics of glioblastoma of the glioblastoma patient-derived xenograft animal model.
  11. 제9항에 있어서, 상기 후보 치료방법은 화학적 요법, 방사선 요법, 외과적 요법, 면역세포치료법 또는 이들의 조합인 것을 특징으로 하는 방법.The method of claim 9, wherein the candidate treatment is chemotherapy, radiation therapy, surgical therapy, immune cell therapy, or a combination thereof.
  12. 제9항에 있어서, 상기 치료 효과 확인은 상기 동물모델의 안구를 육안으로 직접 관찰하거나 간접적 검안경을 통하여 관찰하는 것을 특징으로 하는 방법.The method of claim 9, wherein the confirmation of the therapeutic effect is characterized by observing the eye of the animal model directly with the naked eye or through an indirect ophthalmoscope.
  13. 다음 단계를 포함하는 교모세포종 치료제의 스크리닝 방법.A method for screening a glioblastoma therapeutic agent comprising the following steps.
    (a) 제6항의 교모세포종 환자 유래 이종 이식 동물모델 또는 이로부터 유래된 교모세포종 세포에 치료 후보 물질을 처리하는 단계; 및(a) treating a xenograft animal model derived from glioblastoma patient of claim 6 or a glioblastoma cell derived therefrom; And
    (b) 상기 후보 물질 처리 후, 상기 동물모델 또는 상기 교모세포종 세포를 후보물질을 처리하지 않은 대조군과 비교하여, 상기 동물모델의 종양 조직의 크기가 감소하거나 전이가 억제되는 경우이거나 상기 교모세포종 세포의 증식이 억제제거나 사멸하는 경우 후보물질을 교모세포종 치료제로 결정하는 단계.(b) after treatment with the candidate substance, the animal model or glioblastoma cells are compared with the control group without treatment with the candidate substance, and the size of the tumor tissue of the animal model is reduced or metastasis is inhibited or the glioblastoma cells are inhibited. Determining the candidate as a glioblastoma therapeutic agent if proliferation of the inhibitor is inhibited or killed.
  14. 제13항에 있어서, 상기 교모세포종 환자 유래 이종 이식 동물모델의 교모세포종의 유전학적 특성, 면역화학적 특성 및 종양 또는 면역단백질 발현 특성 중 어느 하나 이상을 추가로 분석하는 것을 특징으로 하는 방법.The method of claim 13, further comprising analyzing at least one of genetic, immunochemical and tumor or immunoprotein expression characteristics of the glioblastoma of the glioblastoma patient-derived xenograft animal model.
  15. 제13항에 있어서, 상기 동물모델의 안구를 육안으로 직접 관찰하거나 간접적 검안경을 통하여 관찰하여 종양 조직의 크기 감소를 확인하는 것을 특징으로 하는 방법.The method of claim 13, wherein the eyeball of the animal model is directly observed with the naked eye or through an indirect ophthalmoscope to confirm the reduction in tumor tissue size.
PCT/KR2019/004572 2018-04-18 2019-04-16 Novel patient-derived xenograft model of glioblastoma and use thereof WO2019203534A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180044872A KR102125084B1 (en) 2018-04-18 2018-04-18 Novel Patient-derived Xenograft Model of Glioblastoma and Use thereof
KR10-2018-0044872 2018-04-18

Publications (1)

Publication Number Publication Date
WO2019203534A1 true WO2019203534A1 (en) 2019-10-24

Family

ID=68240166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/004572 WO2019203534A1 (en) 2018-04-18 2019-04-16 Novel patient-derived xenograft model of glioblastoma and use thereof

Country Status (2)

Country Link
KR (1) KR102125084B1 (en)
WO (1) WO2019203534A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102576165B1 (en) * 2021-02-09 2023-09-07 연세대학교 산학협력단 An animal model for invasive brain cancer and a method for producing thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130143532A (en) * 2012-06-21 2013-12-31 사회복지법인 삼성생명공익재단 Patient specific animal model for glioblastoma and uses thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130143532A (en) * 2012-06-21 2013-12-31 사회복지법인 삼성생명공익재단 Patient specific animal model for glioblastoma and uses thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CUNHA, A. M.: "A murine model of xenotransplantation of human glioblastoma with imunosupression by orogastric cyclosporin", ARQUIVOS DE NEURO-PSIQUIATRIA, vol. 69, no. 1, 1 January 2011 (2011-01-01), pages 112 - 117, XP055644131, DOI: 10.1590/S0004-282X2011000100021 *
FREEMAN, D.: "Experimental brain tumors. V. Behavior in intraocular transplants", CANCER RESEARCH, vol. 4, no. 5, 1 May 1994 (1994-05-01), pages 273 - 278, XP055644147 *
JOSEPH, J. V.: "Hypoxia enhances migration and invasion in glioblastoma by promoting a mesenchymal shift mediated by the H1F1a-ZEB1 axis", CANCER LETTERS, vol. 359, no. 1, 1 April 2015 (2015-04-01), pages 107 - 116, XP055644134, ISSN: 0304-3835, DOI: 10.1016/j.canlet.2015.01.010 *
VESELSKA, R.: "Nestin expression in the cell lines derived from gloiblastoma multiforme", BMC CANCER, vol. 6, no. 32, 2 February 2006 (2006-02-02), pages 1 - 12, XP021016235, ISSN: 1471-2407, DOI: 10.1186/1471-2407-6-32 *

Also Published As

Publication number Publication date
KR102125084B1 (en) 2020-06-19
KR20190121499A (en) 2019-10-28

Similar Documents

Publication Publication Date Title
Ciontea et al. C‐kit immunopositive interstitial cells (Cajal‐type) in human myometrium
Belkind-Gerson et al. Colitis induces enteric neurogenesis through a 5-HT4–dependent mechanism
Linden et al. Clostridium perfringens epsilon toxin causes selective death of mature oligodendrocytes and central nervous system demyelination
Luhmann et al. The superior function of the subplate in early neocortical development
Belecky-Adams et al. Correlations between Terminal Mitosis and Differentiated Fate of Retinal Precursor Cellsin Vivoandin Vitro: Analysis with the “Window-Labeling” Technique
Schumann et al. Immunocytochemical and ultrastructural evidence of glial cells and hyalocytes in internal limiting membrane specimens of idiopathic macular holes
Bukovsky Ovarian stem cell niche and follicular renewal in mammals
Redmond Jr et al. Influence of cell preparation and target location on the behavioral recovery after striatal transplantation of fetal dopaminergic neurons in a primate model of Parkinson’s disease
Aoki et al. Transplantation of cells from eye-like structures differentiated from embryonic stem cells in vitro and in vivo regeneration of retinal ganglion-like cells
Sanches et al. Telocytes play a key role in prostate tissue organisation during the gland morphogenesis
JP2023071728A (en) Differentiation and use of human microglia-like cells from pluripotent stem cells and hematopoietic progenitors
Miller et al. Striatal afferent BDNF is disrupted by synucleinopathy and partially restored by STN DBS
Chen et al. Characterization of interstitial Cajal progenitors cells and their changes in Hirschsprung’s disease
Rehermann et al. Neural reconnection in the transected spinal cord of the freshwater turtle Trachemys dorbignyi
Koh et al. Non–cell autonomous epileptogenesis in focal cortical dysplasia
Rubio et al. Connexin36 expression in major centers of the auditory system in the CNS of mouse and rat: Evidence for neurons forming purely electrical synapses and morphologically mixed synapses
Tikoo et al. Imaging of mast cells
WO2018133635A1 (en) Tumor cell zebrafish xenotransplantation model, and method of constructing and applying the same
Wang et al. Reduced oligodendrocyte precursor cell impairs astrocytic development in early life stress
Meijers et al. A model for aganglionosis in the chicken embryo
Zhang et al. Mouse astrocytes promote microglial ramification by releasing TGF-β and forming glial fibers
Kammergruber et al. Morphological and immunohistochemical characteristics of the equine corneal epithelium
Yang et al. Immune cells in the porcine retina: distribution, characterization and morphological features
WO2019203534A1 (en) Novel patient-derived xenograft model of glioblastoma and use thereof
Miedzybrodzki et al. The olfactory bulb and olfactory mucosa obtained from human cadaver donors as a source of olfactory ensheathing cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19788642

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19788642

Country of ref document: EP

Kind code of ref document: A1