WO2019203392A1 - Electrode material for thermoelectric power generation module and method for manufacturing same - Google Patents

Electrode material for thermoelectric power generation module and method for manufacturing same Download PDF

Info

Publication number
WO2019203392A1
WO2019203392A1 PCT/KR2018/007172 KR2018007172W WO2019203392A1 WO 2019203392 A1 WO2019203392 A1 WO 2019203392A1 KR 2018007172 W KR2018007172 W KR 2018007172W WO 2019203392 A1 WO2019203392 A1 WO 2019203392A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode material
thermoelectric
mixed powder
thermoelectric power
power module
Prior art date
Application number
PCT/KR2018/007172
Other languages
French (fr)
Korean (ko)
Inventor
문승필
김태완
김성웅
이규형
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Publication of WO2019203392A1 publication Critical patent/WO2019203392A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction

Definitions

  • the present invention relates to an electrode material for a thermoelectric power module and a manufacturing method thereof.
  • thermoelectric power module is a device that converts thermal energy into electrical energy.
  • the thermoelectric phenomenon generates heat and cools both ends of the material joint by applying a current between the two materials (Peltier effect), or conversely, the electromotive force is generated by the temperature difference between the two materials (seebeck effect). It is a phenomenon.
  • the Seebeck effect heat generated from a computer, an automobile engine, or the like can be converted into electric energy, and by using the Peltier effect, various cooling systems without a refrigerant can be realized.
  • thermoelectric generator module 100 includes a P-type thermoelectric material 50 and an N-type thermoelectric material 52.
  • the P-type thermoelectric material 50 and the N-type thermoelectric material 52 are diffusion barrier layers 40, 42, 44, 46, bonding layers 30, 32, 34, 36 and electrode materials (top and bottom, respectively).
  • 20, 22 and 24 are sequentially formed, and the electrode materials 20, 22 and 24 are in contact with the insulating substrates 10 and 12, respectively.
  • thermoelectric material (50, 52) Copper (Cu) or aluminum (Al) is mainly used for the electrode materials 20, 22, and 24 of the thermoelectric generator module 100.
  • the thermal expansion coefficient difference between the thermoelectric material (50, 52) and the electrode material (20, 22, 24) is large, 300 °C
  • the junction interface between the thermoelectric material (50, 52) and the electrode material (20, 22, 24) is destroyed due to the thermal stress generated by the difference in thermal expansion coefficient.
  • thermoelectric power generation module having a high temperature sealing portion for improving thermoelectric performance.
  • One object of the present invention is to provide a thermoelectric power module electrode material having excellent bonding property, stability and reliability by minimizing the coefficient of thermal expansion between the electrode material and the thermoelectric material of the thermoelectric power module.
  • Another object of the present invention is to provide an electrode material for thermoelectric power generation module having excellent thermoelectric power generation efficiency.
  • Still another object of the present invention is to provide a method of manufacturing the electrode material for the thermoelectric power module.
  • Still another object of the present invention is to provide a method of manufacturing a thermoelectric generator module including the electrode material for the thermoelectric generator module.
  • Still another object of the present invention is to provide a thermoelectric power module manufactured by the method of manufacturing the thermoelectric power module.
  • the electrode material in one embodiment is a cutter's rudayi teugye (skutterudite) thermal material and the thermal expansion coefficient (CTE) and the difference is not greater than about 1.5 X 10 -6 / °C, the periodic table 6 tribe transfer electrode comprising a metal and a copper material, and
  • the electrode material is represented by the following Chemical Formula 1 or Chemical Formula 2:
  • the skutterudite thermoelectric material may include at least one of CoSb 3 , FeSb 3 , and (Fe-Co-Ni) Sb 3 .
  • the electrode material manufacturing method includes preparing a first mixed powder comprising about 50 wt% to about 60 wt% of copper (Cu) and about 40 wt% to about 50 wt% of molybdenum (Mo); And discharge plasma sintering the first mixed powder.
  • the electrode material manufacturing method includes preparing a second mixed powder including about 48 wt% to about 58 wt% of tungsten (W) and about 42 wt% to about 52 wt% of copper (Cu); And discharge plasma sintering the second mixed powder.
  • the discharge plasma sintering may be sintered at a temperature of about 800 ° C. to about 950 ° C. while being pressurized to about 10 MPa to about 60 MPa.
  • the temperature increase may be carried out at a temperature increase rate of about 10 °C / min to about 300 °C / min.
  • the average particle diameter of the first mixed powder may be about 10 ⁇ m or less.
  • the average particle diameter of the second mixed powder may be about 10 ⁇ m or less.
  • thermoelectric power module including the electrode material.
  • the thermoelectric power module is the electrode material; And a scatterudite-based thermoelectric material having a thermal expansion coefficient of about 10.3 ⁇ 10 ⁇ 6 / ° C. to about 10.5 ⁇ 10 ⁇ 6 / ° C. bonded to the electrode material.
  • the skutterudite thermoelectric material may include at least one of CoSb 3 , FeSb 3 , and (Fe-Co-Ni) Sb 3 .
  • the bonding can be bonded with a paste composition comprising silver (Ag).
  • the thermal expansion coefficient difference between the scattered ruthet-based thermoelectric material and the electrode material may be about 1.5 ⁇ 10 ⁇ 6 / ° C. or less.
  • thermoelectric power module When the electrode material for thermoelectric power module according to the present invention is applied, the power generation efficiency of the thermoelectric power module is excellent, minimizing the difference in coefficient of thermal expansion between the sputter ludite-based thermoelectric material, the bonding between the electrode material and the thermoelectric material, stability and Reliability can be excellent.
  • thermoelectric power module 1 shows a conventional thermoelectric power module.
  • Figure 2 is a graph showing the results of measuring the electrical resistance of the junction interface between the electrode material and the thermoelectric material in the thermoelectric power module manufactured according to an embodiment of the present invention.
  • the electrode material is an electrode material including a transition metal and copper having a difference of about 1.5 ⁇ 10 ⁇ 6 / ° C. between a skutterudite thermoelectric material and a coefficient of thermal expansion (CTE) of about 6 times or less.
  • the electrode material is represented by the following Chemical Formula 1 or Chemical Formula 2:
  • thermoelectric material In the thermal expansion coefficient difference, the adhesion and reliability of the electrode material and the thermoelectric material may be excellent.
  • CTE thermal expansion coefficient
  • the difference in thermal expansion coefficient (CTE) exceeds about 1.5 X 10 ⁇ 6 / ° C., the interface between the thermoelectric material and the electrode material is separated, and thermoelectric power generation efficiency may decrease.
  • it may be from 0 to about 1.2 X 10 -6 / ° C.
  • the difference between the coefficient of thermal expansion of the scatterer-based thermoelectric material and the electrode material can be minimized, thereby preventing the separation of the interface between the thermoelectric material and the electrode material even at a high temperature. Power generation efficiency can be excellent at the same time.
  • the coefficient of thermal expansion (CTE) of the electrode material may be about 9.0 ⁇ 10 ⁇ 6 / ° C. to about 11.1 ⁇ 10 ⁇ 6 / ° C. Within this range, the phenomenon in which the interface between the thermoelectric material and the electrode material is separated even at a high temperature may be prevented, and thermoelectric power generation efficiency may be excellent at the same time.
  • the electrode material manufacturing method for the thermoelectric power module may include preparing a first mixed powder including about 50 wt% to about 60 wt% of copper (Cu) and about 40 wt% to about 50 wt% of molybdenum (Mo). Doing; And discharge plasma sintering the first mixed powder.
  • copper may be included in an amount of about 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, or 60% by weight based on the total weight of the first mixed powder.
  • the molybdenum may be included in about 40, 41, 42, 43, 44, 45, 46, 47, 48, 49 or 50% by weight relative to the total weight of the second mixed powder.
  • thermoelectric power generation efficiency is lowered, or the thermal expansion coefficient difference between the electrode material and the scatterudite-based thermoelectric material is increased, bonding and durability
  • the electrode material and the thermoelectric material may be degraded or destroyed during the thermoelectric power generation operation.
  • the electrode material manufacturing method for the thermoelectric power module may include preparing a second mixed powder including about 48 wt% to about 58 wt% of tungsten (W) and about 42 wt% to about 52 wt% of copper (Cu). Doing; And discharge plasma sintering the second mixed powder.
  • tungsten may be included in an amount of about 48, 49, 50, 51, 52, 53, 54, 55, 56, 57 or 58% by weight based on the total weight of the second mixed powder.
  • the copper may be included in an amount of about 42, 43, 44, 45, 46, 47, 48, 49, 50, 51 or 52% by weight based on the total weight of the second mixed powder.
  • thermoelectric generation efficiency is lowered, or the difference in the coefficient of thermal expansion between the electrode material and the scatterudite-based thermoelectric material is increased, bonding and durability
  • the electrode material and the thermoelectric material may be degraded or destroyed during thermoelectric power generation.
  • the electrode material for a thermoelectric power module which is bonded to the sputter ludite-based thermoelectric material of the present invention, can minimize the difference in coefficient of thermal expansion, thereby preventing the interface between the thermoelectric material and the electrode material being separated even at a high temperature.
  • the skutterudite thermoelectric material may include at least one of CoSb 3 , FeSb 3 , and (Fe-Co-Ni) Sb 3 .
  • the thermal expansion coefficient of the Co 4 Sb 12- based alloy which is the n-type scutterudite-based thermoelectric material, is about 10.5 X 10 -6 / ° C, and Fe 3 . 4 Co 0 .
  • the thermal expansion coefficient of the 6 Sb 12 based alloy is about 10.3 X 10 -6 / ° C.
  • the thermal expansion coefficient of the copper (Cu) is about 17 X 10 -6 / °C
  • the thermal expansion coefficient difference between the thermoelectric material and the electrode material is more than 40%
  • Mo molybdenum
  • W tungsten
  • molybdenum and copper included in the first mixed powder may be spherical.
  • tungsten and copper included in the second mixed powder may be spherical. Under the above conditions, durability and thermoelectric power generation efficiency may be excellent when manufacturing an electrode material.
  • the average particle diameter of molybdenum and copper included in the first mixed powder may be about 10 ⁇ m or less.
  • the thermoelectric power generation efficiency, mechanical strength and durability of the electrode material may be excellent at the same time.
  • the average particle diameter may be about 5 ⁇ m or less.
  • the average particle diameter of molybdenum and copper included in the first mixed powder may be greater than 0 ⁇ m and about 10 ⁇ m or less.
  • the average particle diameter of tungsten and copper included in the second mixed powder may be about 10 ⁇ m or less.
  • the thermoelectric power generation efficiency, mechanical strength and durability of the electrode material may be excellent at the same time.
  • the average particle diameter may be about 5 ⁇ m or less.
  • the average particle diameter of tungsten and copper included in the second mixed powder may be greater than 0 ⁇ m and about 10 ⁇ m or less.
  • the first mixed powder or the second mixed powder may be charged into a graphite mold, and then sintered by applying a DC pulse current in a direction parallel to the pressing direction while pressurizing the inside of the chamber with a punch in a single axis. .
  • the interior of the chamber during the discharge plasma sintering may be a vacuum condition of about 1.0 X 10 -2 torr or less. It is possible to prevent the phenomenon that the electrode material is oxidized during sintering under the vacuum condition.
  • the discharge plasma sintering may be performed by heating the first mixed powder or the second mixed powder at a pressure of about 10 MPa to about 60 MPa and raising the temperature to about 800 ° C. to about 950 ° C.
  • the pressurized pressure is about 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 , 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55 , 56, 57, 58, 59 or 60 MPa.
  • the sintered body can be produced by maintaining a predetermined time (for example, about 5 minutes to about 10 minutes). If the temperature is higher than about 950 °C the mechanical properties of the electrode material may be lowered due to excessive growth of the particles, when the temperature rise is less than about 800 °C due to incomplete sintering characteristics of the electrode material This can be degraded.
  • the temperature increase may be carried out at a temperature increase rate of about 10 °C / min to about 300 °C / min.
  • a temperature increase rate of about 10 °C / min to about 300 °C / min.
  • the temperature increase rate exceeds about 300 ° C / min it may be difficult to control the sintering temperature, when the temperature increase rate is less than about 10 ° C / min may take a long time productivity may be lowered.
  • thermoelectric power module includes an electrode material for the thermoelectric power module and a skutterudite thermoelectric material having a thermal expansion coefficient of about 10.3 X 10 -6 / ° C to about 10.5 X 10 -6 / ° C. It includes; step of bonding.
  • the bonding may be performed using a paste composition containing silver (Ag).
  • the paste composition may contain silver and an organic solvent.
  • the paste composition may further include a reducing agent and a dispersant.
  • the reducing agent may use hydrazine, sodium boron hydride, ascorbic acid, and the like.
  • the dispersant is polyvinylpyrrolidone (C 6 H 9 NO) n , PVP), sodium dodecyl sulfate (SDS), naphthalene sulfonic acid polycondensate ) And sodium salt (sodium salt) and the like can be used.
  • the scattererite-based thermoelectric material may include one or more of Co-Sb-based alloys and Fe-Co-Sb-based alloys.
  • thermoelectric power module manufactured by the manufacturing method of the thermoelectric power module
  • thermoelectric power module manufactured by the method of manufacturing the thermoelectric power module.
  • thermoelectric power module including the electrode material.
  • the thermoelectric power module is the electrode material; And a scatterudite-based thermoelectric material having a thermal expansion coefficient of about 10.3 ⁇ 10 ⁇ 6 / ° C. to about 10.5 ⁇ 10 ⁇ 6 / ° C. bonded to the electrode material.
  • the skutterudite thermoelectric material may include at least one of CoSb 3 , FeSb 3 , and (Fe-Co-Ni) Sb 3 .
  • the scattererite-based thermoelectric material may be an n-type thermoelectric material and may include a Co 4 Sb 12- based alloy having a thermal expansion coefficient of about 10.5 X 10 -6 / ° C, and a thermal expansion coefficient of p-type thermoelectric material. Fe 3.4 Co 0.6 Sb 12 based alloy of 10.3 X 10 -6 / ° C.
  • the bonding can be bonded with a paste composition comprising silver (Ag).
  • the thermal expansion coefficient difference between the scattered ruthet-based thermoelectric material and the electrode material may be about 1.5 ⁇ 10 ⁇ 6 / ° C. or less.
  • the adhesion and reliability of the electrode material and the thermoelectric material may be excellent. For example, it may be from 0 to about 1.2 X 10 -6 / ° C.
  • the power generation efficiency of the thermoelectric power module is excellent, and the difference in thermal expansion coefficient between the scattererite-based thermoelectric material is minimized, so that the bonding property and reliability of the electrode material and the thermoelectric material are improved. Can be excellent.
  • Example 1 Manufacturing of electrode material for thermoelectric power module
  • a first mixed powder comprising 55% by weight of spherical molybdenum (Mo) and 45% by weight of copper (Cu), each having an average particle diameter of 1 ⁇ m, was prepared.
  • the first mixed powder was sintered using a discharge plasma sintering apparatus to prepare an electrode material. Specifically, the first mixed powder was added to the graphite mold. Then, the mold is charged into a chamber to which a vacuum degree of 1.0 X 10 -2 torr or less is applied, and the punch is used to pressurize the mold at a pressure of 10 to 60 MPa in a single axis at a heating rate of 10 to 300 ° C / min. It heated up to 800-950 degreeC. While maintaining the temperature rise temperature for 5 to 10 minutes, by applying a direct current pulse current in a direction parallel to the pressing direction of the mold, and sintered, to prepare an electrode material.
  • An electrode material was manufactured in the same manner as in Example 1, except that a first mixed powder including 50 wt% of spherical molybdenum (Mo) and 50 wt% of copper (Cu) having an average particle diameter of 1 ⁇ m was applied. .
  • An electrode material was manufactured in the same manner as in Example 1, except that a first mixed powder including 60 wt% of spherical molybdenum (Mo) and 40 wt% of copper (Cu) having an average particle diameter of 1 ⁇ m was applied. .
  • Example 4 Electrode material manufacturing for thermoelectric power module
  • An electrode material was manufactured in the same manner as in Example 1, except that a second mixed powder including 53 wt% of spherical tungsten (W) and 47 wt% of copper (Cu) having an average particle diameter of 1 ⁇ m was applied. .
  • An electrode material was manufactured in the same manner as in Example 1, except that a second mixed powder including spherical tungsten (W) 48 wt% and 52 wt% copper (Cu) having an average particle diameter of 1 ⁇ m was applied. .
  • An electrode material was manufactured in the same manner as in Example 1, except that a second mixed powder including spherical tungsten (W) 58 wt% and 42 wt% copper (Cu) having an average particle diameter of 1 ⁇ m was applied. .
  • thermoelectric power module electrode material of Examples 1 to 6 For the thermoelectric power module electrode material of Examples 1 to 6, the coefficient of thermal expansion was measured and the results are shown in Table 1 below.
  • the electrode material for thermoelectric power module manufactured according to the present invention formed a composite structure containing particles of 10 ⁇ m or less, the thermal expansion coefficient of 9.2 X 10 -6 / °C to 11.1 X Formed in the range of 10 -6 / °C, it can be seen that the separation of the interface between the thermoelectric material and the electrode material can be prevented even at high temperatures by minimizing the difference in coefficient of thermal expansion of the scattererite-based thermoelectric material.
  • thermoelectric power module comprising the step of bonding the electrode material for the thermoelectric power module of Example 1 and the thermoelectric material (n-type: Co 4 Sb 12 system) using a paste composition containing silver (Ag), Prepared.
  • Figure 2 is a graph showing the results of measuring the electrical resistance of the junction interface between the electrode material and the thermoelectric material in the thermoelectric power module manufactured according to an embodiment of the present invention.
  • the electrode material according to the present invention when the electrode material according to the present invention is bonded to the thermoelectric material, the physical properties of the bonding interface do not decrease, and thus, the thermoelectric power generation efficiency is excellent.
  • thermoelectric power module was manufactured in the same manner as in Example 7, except that a copper (Cu) electrode material and a thermoelectric material (n-type: Co 4 Sb 12 system) were bonded using a paste composition containing silver (Ag). Prepared.
  • Example 7 For Example 7 and Comparative Example 1, after maintaining for 100 hours at a temperature of 500 °C, the appearance of the electrode material or thermoelectric material was observed. As a result, in Example 7, the durability of the electrode material and the thermoelectric material was maintained even at high temperature, but in Comparative Example 1 using the copper electrode material, the electrode material and the thermoelectric material were destroyed due to the difference in coefficient of thermal expansion.
  • Example 7 the durability of the electrode material and the thermoelectric material was maintained even at high temperature, but in Comparative Example 1 using the copper electrode material, the electrode material and the thermoelectric material were destroyed due to the difference in coefficient of thermal expansion.
  • Comparative Example 1 using the copper electrode material, the electrode material and the thermoelectric material were destroyed due to the difference in coefficient of thermal expansion.

Abstract

The present invention relates to an electrode material for a thermoelectric power generation module and a method for manufacturing same. In a method for manufacturing the electrode material for a thermoelectric power generation module according to an embodiment, the electrode material has a difference in coefficient of thermal expansion (CTE) of about 1.5 X 10-6/℃ or smaller compared with a skutterudite-based thermoelectric material and contains a transition metal in group 6 on the periodic table and copper, wherein the electrode material is represented by chemical formula 1 or 2 below: [formula 1] xMo(1-x)Cu (about 0.5 ≤ x ≤ about 0.6) [formula 2] yW(1-y)Cu (about 0.48 ≤ y ≤ about 0.58).

Description

열전발전모듈용 전극소재 및 그 제조방법Electrode material for thermoelectric power module and manufacturing method
본 발명은 열전발전모듈용 전극소재 및 그 제조방법에 관한 것이다.The present invention relates to an electrode material for a thermoelectric power module and a manufacturing method thereof.
열전발전모듈은 열에너지를 전기에너지로 전환하는 장치이다. 한편, 열전현상은 두 물질 사이에 전류를 인가함으로써 재료 접합부 양단에 발열 및 냉각이 이루어지거나(펠티에 효과, Peltier effect), 역으로 두 물질 간의 온도차에 의해 기전력이 발생(제백효과, Seebeck effect)하는 현상이다. 이러한 제백효과를 이용하면, 컴퓨터나 자동차 엔진 등에서 발생한 열을 전기에너지로 변환할 수 있고, 펠티에 효과를 이용하면, 냉매가 필요 없는 각종 냉각 시스템을 구현할 수 있다.A thermoelectric power module is a device that converts thermal energy into electrical energy. On the other hand, the thermoelectric phenomenon generates heat and cools both ends of the material joint by applying a current between the two materials (Peltier effect), or conversely, the electromotive force is generated by the temperature difference between the two materials (seebeck effect). It is a phenomenon. By using the Seebeck effect, heat generated from a computer, an automobile engine, or the like can be converted into electric energy, and by using the Peltier effect, various cooling systems without a refrigerant can be realized.
도 1은 통상적인 열전발전모듈을 나타낸 것이다. 상기 도 1을 참조하면, 열전발전모듈(100)은 P형 열전소재(50) 및 N형 열전소재(52)를 포함한다. 또한, P형 열전소재(50) 및 N형 열전소재(52)는 각각 상부 및 하부에 확산방지층(40, 42, 44, 46), 접합층(30, 32, 34, 36) 및 전극소재(20, 22, 24)가 순차적으로 형성되며, 전극소재(20, 22, 24)는 각각 절연기판(10, 12)과 접촉한다.1 shows a conventional thermoelectric power module. Referring to FIG. 1, the thermoelectric generator module 100 includes a P-type thermoelectric material 50 and an N-type thermoelectric material 52. In addition, the P-type thermoelectric material 50 and the N-type thermoelectric material 52 are diffusion barrier layers 40, 42, 44, 46, bonding layers 30, 32, 34, 36 and electrode materials (top and bottom, respectively). 20, 22 and 24 are sequentially formed, and the electrode materials 20, 22 and 24 are in contact with the insulating substrates 10 and 12, respectively.
열전발전모듈(100)의 전극소재(20, 22, 24)는 구리(Cu) 또는 알루미늄(Al)이 주로 사용되고 있다. 한편, 열전소재(50, 52)로 스커터루다이트(skutterudite)계 소재를 사용하는 경우 열전소재(50, 52)와 전극소재(20, 22, 24) 사이의 열팽창계수 차이가 커서, 300℃ 이상의 온도차 조건에서 장시간 구동하는 경우, 상기 열팽창계수 차이로 발생하는 열응력 때문에 열전소재(50, 52)와 전극소재(20, 22, 24) 사이의 접합계면이 파괴되는 문제가 있었다.Copper (Cu) or aluminum (Al) is mainly used for the electrode materials 20, 22, and 24 of the thermoelectric generator module 100. On the other hand, when using a skutterudite-based material as the thermoelectric material (50, 52), the thermal expansion coefficient difference between the thermoelectric material (50, 52) and the electrode material (20, 22, 24) is large, 300 ℃ When driving for a long time under the above temperature difference conditions, there is a problem that the junction interface between the thermoelectric material (50, 52) and the electrode material (20, 22, 24) is destroyed due to the thermal stress generated by the difference in thermal expansion coefficient.
본 발명의 배경기술은 대한민국 등록특허공보 제10-1454453호(2014.10.24 공고, 발명의 명칭: 열전성능 향상을 위한 고온부 밀봉구조를 갖는 열전발전모듈) 등에 개시되어 있다.Background art of the present invention is disclosed in Republic of Korea Patent Publication No. 10-1454453 (2014.10.24), the name of the invention: thermoelectric power generation module having a high temperature sealing portion for improving thermoelectric performance.
본 발명의 하나의 목적은 열전발전모듈의 전극소재와 열전소재와의 열팽창계수차를 최소화하여, 전극소재와 열전소재와의 접합성, 안정성 및 신뢰성이 우수한 열전발전모듈용 전극소재를 제공하는 것이다.One object of the present invention is to provide a thermoelectric power module electrode material having excellent bonding property, stability and reliability by minimizing the coefficient of thermal expansion between the electrode material and the thermoelectric material of the thermoelectric power module.
본 발명의 다른 목적은 열전 발전 효율성이 우수한 열전발전모듈용 전극소재를 제공하는 것이다.Another object of the present invention is to provide an electrode material for thermoelectric power generation module having excellent thermoelectric power generation efficiency.
본 발명의 또 다른 목적은 상기 열전발전모듈용 전극소재의 제조방법을 제공하는 것이다.Still another object of the present invention is to provide a method of manufacturing the electrode material for the thermoelectric power module.
본 발명의 또 다른 목적은 상기 열전발전모듈용 전극소재를 포함하는 열전발전모듈의 제조방법을 제공하는 것이다.Still another object of the present invention is to provide a method of manufacturing a thermoelectric generator module including the electrode material for the thermoelectric generator module.
본 발명의 또 다른 목적은 상기 열전발전모듈의 제조방법에 의해 제조된 열전발전모듈을 제공하는 것이다.Still another object of the present invention is to provide a thermoelectric power module manufactured by the method of manufacturing the thermoelectric power module.
본 발명의 하나의 관점은 열전발전모듈용 전극소재에 관한 것이다. 한 구체예에서 상기 전극소재는 스커터루다이트계(skutterudite) 열전소재와 열팽창계수(CTE) 차이가 약 1.5 X 10-6/℃ 이하이며, 주기율표 제6족인 전이금속과 구리를 포함하는 전극소재이고, 상기 전극소재는 하기 화학식 1 또는 화학식 2로 표시된다:One aspect of the present invention relates to an electrode material for a thermoelectric power module. The electrode material in one embodiment is a cutter's rudayi teugye (skutterudite) thermal material and the thermal expansion coefficient (CTE) and the difference is not greater than about 1.5 X 10 -6 / ℃, the periodic table 6 tribe transfer electrode comprising a metal and a copper material, and The electrode material is represented by the following Chemical Formula 1 or Chemical Formula 2:
[식 1][Equation 1]
xMo(1-x)Cu (약 0.5 ≤ x ≤ 약 0.6)xMo (1-x) Cu (about 0.5 ≤ x ≤ about 0.6)
[식 2][Equation 2]
yW(1-y)Cu (약 0.48 ≤ y ≤ 약 0.58).yW (1-y) Cu (about 0.48 ≦ y ≦ about 0.58).
한 구체예에서 상기 스커터루다이트계(skutterudite) 열전소재는 CoSb3계, FeSb3계 및 (Fe-Co-Ni)Sb3계 중 하나 이상 포함할 수 있다.In one embodiment, the skutterudite thermoelectric material may include at least one of CoSb 3 , FeSb 3 , and (Fe-Co-Ni) Sb 3 .
본 발명의 다른 관점은 상기 전극소재 제조방법에 관한 것이다. 한 구체예에서 상기 전극소재 제조방법은 구리(Cu) 약 50 중량% 내지 약 60 중량% 및 몰리브덴(Mo) 약 40 중량% 내지 약 50 중량%를 포함하는 제1 혼합분말을 제조하는 단계; 및 상기 제1 혼합분말을 방전 플라즈마 소결하는 단계;를 포함한다.Another aspect of the invention relates to a method for producing the electrode material. In one embodiment, the electrode material manufacturing method includes preparing a first mixed powder comprising about 50 wt% to about 60 wt% of copper (Cu) and about 40 wt% to about 50 wt% of molybdenum (Mo); And discharge plasma sintering the first mixed powder.
다른 구체예에서 상기 전극소재 제조방법은 텅스텐(W) 약 48 중량% 내지 약 58 중량% 및 구리(Cu) 약 42 중량% 내지 약 52 중량%를 포함하는 제2 혼합분말을 제조하는 단계; 및 상기 제2 혼합분말을 방전 플라즈마 소결하는 단계;를 포함한다.In another embodiment, the electrode material manufacturing method includes preparing a second mixed powder including about 48 wt% to about 58 wt% of tungsten (W) and about 42 wt% to about 52 wt% of copper (Cu); And discharge plasma sintering the second mixed powder.
한 구체예에서 상기 방전 플라즈마 소결은 약 10MPa 내지 약 60MPa으로 가압하면서, 약 800℃ 내지 약 950℃까지 승온하여 소결할 수 있다.In one embodiment, the discharge plasma sintering may be sintered at a temperature of about 800 ° C. to about 950 ° C. while being pressurized to about 10 MPa to about 60 MPa.
한 구체예에서 상기 승온은 약 10℃/min 내지 약 300℃/min의 승온속도로 실시할 수 있다.In one embodiment, the temperature increase may be carried out at a temperature increase rate of about 10 ℃ / min to about 300 ℃ / min.
한 구체예에서 상기 제1 혼합분말의 평균입경은 약 10㎛ 이하일 수 있다.In one embodiment, the average particle diameter of the first mixed powder may be about 10 μm or less.
한 구체예에서 상기 제2 혼합분말의 평균입경은 약 10㎛ 이하일 수 있다.In one embodiment, the average particle diameter of the second mixed powder may be about 10 μm or less.
본 발명의 또 다른 관점은 상기 전극소재를 포함하는 열전발전모듈에 관한 것이다. 상기 열전발전모듈은 상기 전극소재; 및 상기 전극소재에 접합된, 열팽창계수가 약 10.3 X 10-6/℃ 내지 약 10.5 X 10-6/℃인 스커터루다이트계 열전소재;를 포함한다.Another aspect of the present invention relates to a thermoelectric power module including the electrode material. The thermoelectric power module is the electrode material; And a scatterudite-based thermoelectric material having a thermal expansion coefficient of about 10.3 × 10 −6 / ° C. to about 10.5 × 10 −6 / ° C. bonded to the electrode material.
한 구체예에서 상기 스커터루다이트계(skutterudite) 열전소재는 CoSb3계, FeSb3계 및 (Fe-Co-Ni)Sb3계 중 하나 이상 포함할 수 있다.In one embodiment, the skutterudite thermoelectric material may include at least one of CoSb 3 , FeSb 3 , and (Fe-Co-Ni) Sb 3 .
한 구체예에서 상기 접합은 은(Ag)을 포함하는 페이스트 조성물로 접합될 수 있다.In one embodiment the bonding can be bonded with a paste composition comprising silver (Ag).
한 구체예에서 상기 스커터루다이트계 열전소재 및 전극소재의 열팽창계수 차이는, 약 1.5 X 10-6/℃ 이하일 수 있다.In one embodiment, the thermal expansion coefficient difference between the scattered ruthet-based thermoelectric material and the electrode material may be about 1.5 × 10 −6 / ° C. or less.
본 발명에 따른 열전발전모듈용 전극소재를 적용시, 열전발전모듈의 발전 효율성이 우수하며, 스커터루다이트계 열전소재와의 열팽창계수 차이를 최소화하여, 전극소재와 열전소재와의 접합성, 안정성 및 신뢰성이 우수할 수 있다.When the electrode material for thermoelectric power module according to the present invention is applied, the power generation efficiency of the thermoelectric power module is excellent, minimizing the difference in coefficient of thermal expansion between the sputter ludite-based thermoelectric material, the bonding between the electrode material and the thermoelectric material, stability and Reliability can be excellent.
도 1은 통상적인 열전발전모듈을 나타낸 것이다.1 shows a conventional thermoelectric power module.
도 2는 본 발명의 한 구체예에 따라 의해 제조된 열전발전모듈에서, 전극소재와 열전소재와의 접합계면의 전기저항을 측정한 결과를 나타낸 그래프이다.Figure 2 is a graph showing the results of measuring the electrical resistance of the junction interface between the electrode material and the thermoelectric material in the thermoelectric power module manufactured according to an embodiment of the present invention.
본 발명을 설명함에 있어서 관련된 공지기술 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다.In the following description of the present invention, when it is determined that detailed descriptions of related well-known technologies or configurations may unnecessarily obscure the subject matter of the present invention, the detailed description will be omitted.
그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로써 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있으므로 그 정의는 본 발명을 설명하는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.The terms to be described below are terms defined in consideration of functions in the present invention, and may be changed according to intentions or customs of users or operators, and the definitions should be made based on the contents throughout the present specification for describing the present invention.
이하, 첨부된 도면을 참조하여 본 발명을 상세히 설명하도록 한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
열전발전모듈용 전극소재Electrode material for thermoelectric power module
본 발명의 하나의 관점은 열전발전모듈용 전극소재에 관한 것이다. 한 구체예에서 상기 전극소재는 스커터루다이트계(skutterudite) 열전소재와 열팽창계수(CTE) 차이가 약 1.5 X 10-6/℃ 이하이며, 주기율표 제6족인 전이금속과 구리를 포함하는 전극소재이고, 상기 전극소재는 하기 화학식 1 또는 화학식 2로 표시된다:One aspect of the present invention relates to an electrode material for a thermoelectric power module. In one embodiment, the electrode material is an electrode material including a transition metal and copper having a difference of about 1.5 × 10 −6 / ° C. between a skutterudite thermoelectric material and a coefficient of thermal expansion (CTE) of about 6 times or less. The electrode material is represented by the following Chemical Formula 1 or Chemical Formula 2:
[식 1][Equation 1]
xMo(1-x)Cu (약 0.5 ≤ x ≤ 약 0.6)xMo (1-x) Cu (about 0.5 ≤ x ≤ about 0.6)
[식 2][Equation 2]
yW(1-y)Cu (약 0.48 ≤ y ≤ 약 0.58).yW (1-y) Cu (about 0.48 ≦ y ≦ about 0.58).
상기 열팽창계수 차이에서, 전극소재와 열전소재와의 접합성 및 신뢰성이 우수할 수 있다. 상기 열팽창계수(CTE) 차이가 약 1.5 X 10-6/℃를 초과하는 경우, 열전소재와 전극소재 간 계면이 분리되며, 열전발전 효율이 저하될 수 있다. 예를 들면, 0 내지 약 1.2 X 10-6/℃ 일 수 있다.In the thermal expansion coefficient difference, the adhesion and reliability of the electrode material and the thermoelectric material may be excellent. When the difference in thermal expansion coefficient (CTE) exceeds about 1.5 X 10 −6 / ° C., the interface between the thermoelectric material and the electrode material is separated, and thermoelectric power generation efficiency may decrease. For example, it may be from 0 to about 1.2 X 10 -6 / ° C.
상기 식 1 및 식 2에 따른 성분 범위에서, 스커터루다이트계 열전소재와 전극소재 열팽창계수 차이를 최소화할 수 있어, 고온에서도 열전소재와 전극소재 간 계면이 분리되는 현상을 방지할 수 있으며, 열전 발전 효율이 동시에 우수할 수 있다.In the component range according to Equation 1 and Formula 2, the difference between the coefficient of thermal expansion of the scatterer-based thermoelectric material and the electrode material can be minimized, thereby preventing the separation of the interface between the thermoelectric material and the electrode material even at a high temperature. Power generation efficiency can be excellent at the same time.
한 구체예에서 상기 전극소재의 열팽창계수(CTE)는 약 9.0 X 10-6/℃ 내지 약 11.1 X 10-6/℃ 일 수 있다. 상기 범위에서 고온에서도 열전소재와 전극소재 간 계면이 분리되는 현상을 방지할 수 있으며, 열전 발전 효율이 동시에 우수할 수 있다.In one embodiment, the coefficient of thermal expansion (CTE) of the electrode material may be about 9.0 × 10 −6 / ° C. to about 11.1 × 10 −6 / ° C. Within this range, the phenomenon in which the interface between the thermoelectric material and the electrode material is separated even at a high temperature may be prevented, and thermoelectric power generation efficiency may be excellent at the same time.
열전발전모듈용 전극소재 제조방법Manufacturing method of electrode material for thermoelectric power module
본 발명의 다른 관점은 상기 열전발전모듈용 전극소재 제조방법에 관한 것이다. 한 구체예에서 상기 열전발전모듈용 전극소재 제조방법은 구리(Cu) 약 50 중량% 내지 약 60 중량% 및 몰리브덴(Mo) 약 40 중량% 내지 약 50 중량%를 포함하는 제1 혼합분말을 제조하는 단계; 및 상기 제1 혼합분말을 방전 플라즈마 소결하는 단계;를 포함한다.Another aspect of the invention relates to a method of manufacturing an electrode material for the thermoelectric power module. In one embodiment, the electrode material manufacturing method for the thermoelectric power module may include preparing a first mixed powder including about 50 wt% to about 60 wt% of copper (Cu) and about 40 wt% to about 50 wt% of molybdenum (Mo). Doing; And discharge plasma sintering the first mixed powder.
예를 들면 상기 제1 혼합분말 전체 중량에 대하여 구리는 약 50, 51, 52, 53, 54, 55, 56, 57, 58, 59 또는 60 중량% 포함될 수 있다. 또한 상기 몰리브덴은 상기 제2 혼합분말 전체 중량에 대하여 약 40, 41, 42, 43, 44, 45, 46, 47, 48, 49 또는 50 중량% 포함될 수 있다.For example, copper may be included in an amount of about 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, or 60% by weight based on the total weight of the first mixed powder. In addition, the molybdenum may be included in about 40, 41, 42, 43, 44, 45, 46, 47, 48, 49 or 50% by weight relative to the total weight of the second mixed powder.
상기 구리(Cu) 및 몰리브덴(Mo)을 상기 함량 범위를 벗어나 전극소재를 제조시, 열전발전 효율성이 저하되거나, 전극소재와 스커터루다이트계 열전소재와의 열팽창계수 차가 증가하여, 접합성 및 내구성이 저하되어 열전발전 운전시 전극소재 및 열전소재가 열화되거나 파괴될 수 있다.When manufacturing the electrode material out of the content range of the copper (Cu) and molybdenum (Mo), the thermoelectric power generation efficiency is lowered, or the thermal expansion coefficient difference between the electrode material and the scatterudite-based thermoelectric material is increased, bonding and durability The electrode material and the thermoelectric material may be degraded or destroyed during the thermoelectric power generation operation.
다른 구체예에서 상기 열전발전모듈용 전극소재 제조방법은 텅스텐(W) 약 48 중량% 내지 약 58 중량% 및 구리(Cu) 약 42 중량% 내지 약 52 중량%를 포함하는 제2 혼합분말을 제조하는 단계; 및 상기 제2 혼합분말을 방전 플라즈마 소결하는 단계;를 포함한다.In another embodiment, the electrode material manufacturing method for the thermoelectric power module may include preparing a second mixed powder including about 48 wt% to about 58 wt% of tungsten (W) and about 42 wt% to about 52 wt% of copper (Cu). Doing; And discharge plasma sintering the second mixed powder.
예를 들면 상기 제2 혼합분말 전체 중량에 대하여 텅스텐은 약 48, 49, 50, 51, 52, 53, 54, 55, 56, 57 또는 58 중량% 포함될 수 있다. 또한 상기 구리는 상기 제2 혼합분말 전체 중량에 대하여 약 42, 43, 44, 45, 46, 47, 48, 49, 50, 51 또는 52 중량% 포함될 수 있다.For example, tungsten may be included in an amount of about 48, 49, 50, 51, 52, 53, 54, 55, 56, 57 or 58% by weight based on the total weight of the second mixed powder. In addition, the copper may be included in an amount of about 42, 43, 44, 45, 46, 47, 48, 49, 50, 51 or 52% by weight based on the total weight of the second mixed powder.
상기 텅스텐(W) 및 구리(Cu)를 상기 함량 범위를 벗어나 전극소재를 제조시, 열전발전 효율성이 저하되거나, 전극소재와 스커터루다이트계 열전소재와의 열팽창계수 차가 증가하여, 접합성 및 내구성이 저하되어 열전발전 운전시 전극소재 및 열전소재가 열화되거나 파괴될 수 있다.When manufacturing the electrode material out of the content range of the tungsten (W) and copper (Cu), the thermoelectric generation efficiency is lowered, or the difference in the coefficient of thermal expansion between the electrode material and the scatterudite-based thermoelectric material is increased, bonding and durability The electrode material and the thermoelectric material may be degraded or destroyed during thermoelectric power generation.
본 발명의 스커터루다이트계 열전소재와 접합되는, 열전발전모듈용 전극소재는 열팽창계수 차이를 최소화할 수 있어, 고온에서도 열전소재와 전극소재 간 계면이 분리되는 현상을 방지할 수 있다.The electrode material for a thermoelectric power module, which is bonded to the sputter ludite-based thermoelectric material of the present invention, can minimize the difference in coefficient of thermal expansion, thereby preventing the interface between the thermoelectric material and the electrode material being separated even at a high temperature.
한 구체예에서 상기 스커터루다이트계(skutterudite) 열전소재는 CoSb3계, FeSb3계 및 (Fe-Co-Ni)Sb3계 중 하나 이상 포함할 수 있다.In one embodiment, the skutterudite thermoelectric material may include at least one of CoSb 3 , FeSb 3 , and (Fe-Co-Ni) Sb 3 .
한 구체예에서 n형 스커터루다이트계 열전소재인 Co4Sb12계 합금의 열팽창계수는 약 10.5 X 10-6/℃이고 p형 스커터루다이트계 열전소재인 Fe3 . 4Co0 . 6Sb12계 합금의 열팽창계수는 약 10.3 X 10-6/℃이다.In one embodiment, the thermal expansion coefficient of the Co 4 Sb 12- based alloy, which is the n-type scutterudite-based thermoelectric material, is about 10.5 X 10 -6 / ° C, and Fe 3 . 4 Co 0 . The thermal expansion coefficient of the 6 Sb 12 based alloy is about 10.3 X 10 -6 / ° C.
한편, 상기 구리(Cu)의 열팽창계수는 약 17 X 10-6/℃이며, 상기 구리(Cu) 만을 적용하여 전극소재를 제조하는 경우, 열전소재와 전극소재 사이의 열팽창계수 차이가 40% 이상으로 증가하여, 고온에서 안정적인 계면을 유지하는 것이 불가능하다. 따라서 열팽창계수가 상대적으로 작은 몰리브덴(Mo)(열팽창계수 약 4.8 X 10-6/℃) 및 텅스텐(W)(열팽창계수 약 4.5 X 10-6/℃)을 적용하여 전극소재를 제조하여, 스커터루다이트 열전소재와의 열팽창계수 차이를 최소화할 수 있다. 이와 같이 열전소재 및 전극소재 사이의 열팽창계수 차이가 작아야 계면에서 분리되는 문제를 최소화하여 신뢰성이 우수한 열전발전모듈을 제조할 수 있다.On the other hand, the thermal expansion coefficient of the copper (Cu) is about 17 X 10 -6 / ℃, when applying the copper (Cu) only when manufacturing the electrode material, the thermal expansion coefficient difference between the thermoelectric material and the electrode material is more than 40% As a result, it is impossible to maintain a stable interface at high temperatures. Therefore, the electrode material was manufactured by applying molybdenum (Mo) (thermal expansion coefficient of about 4.8 X 10 -6 / ° C) and tungsten (W) (thermal expansion coefficient of about 4.5 X 10 -6 / ° C) with a relatively small coefficient of thermal expansion. It is possible to minimize the difference in coefficient of thermal expansion with the cutter Ludite thermoelectric material. In this way, the thermal expansion coefficient difference between the thermoelectric material and the electrode material should be small to minimize the problem of separation at the interface to produce a highly reliable thermoelectric power module.
한 구체예에서 상기 제1 혼합분말에 포함되는 몰리브덴 및 구리는, 구형일 수 있다. 한 구체예에서 상기 제2 혼합분말에 포함되는 텅스텐 및 구리는, 구형일 수 있다. 상기 조건에서 전극소재 제조시 내구성 및 열전 발전효율이 우수할 수 있다.In one embodiment, molybdenum and copper included in the first mixed powder may be spherical. In one embodiment, tungsten and copper included in the second mixed powder may be spherical. Under the above conditions, durability and thermoelectric power generation efficiency may be excellent when manufacturing an electrode material.
한 구체예에서 상기 제1 혼합분말에 포함되는 몰리브덴 및 구리의 평균입경은 약 10㎛ 이하일 수 있다. 상기 범위로 포함시, 상기 전극소재의 열전 발전 효율과, 기계적 강도 및 내구성이 동시에 우수할 수 있다. 예를 들면 상기 평균입경은 약 5㎛ 이하일 수 있다. 예를 들면 상기 제1 혼합분말에 포함되는 몰리브덴 및 구리의 평균입경은 0 ㎛ 초과 약 10 ㎛ 이하일 수 있다.In one embodiment, the average particle diameter of molybdenum and copper included in the first mixed powder may be about 10 μm or less. When included in the above range, the thermoelectric power generation efficiency, mechanical strength and durability of the electrode material may be excellent at the same time. For example, the average particle diameter may be about 5 μm or less. For example, the average particle diameter of molybdenum and copper included in the first mixed powder may be greater than 0 μm and about 10 μm or less.
한 구체예에서 상기 제2 혼합분말에 포함되는 텅스텐 및 구리의 평균입경은 약 10㎛ 이하일 수 있다. 상기 범위로 포함시, 상기 전극소재의 열전 발전 효율과, 기계적 강도 및 내구성이 동시에 우수할 수 있다. 예를 들면 상기 평균입경은 약 5㎛ 이하일 수 있다. 예를 들면 상기 제2 혼합분말에 포함되는 텅스텐 및 구리의 평균입경은 0 ㎛ 초과 약 10 ㎛ 이하일 수 있다.In one embodiment, the average particle diameter of tungsten and copper included in the second mixed powder may be about 10 μm or less. When included in the above range, the thermoelectric power generation efficiency, mechanical strength and durability of the electrode material may be excellent at the same time. For example, the average particle diameter may be about 5 μm or less. For example, the average particle diameter of tungsten and copper included in the second mixed powder may be greater than 0 μm and about 10 μm or less.
상기 방전 플라즈마 소결(Spark Plasma Sintering; SPS)법을 적용시, 단시간에 목적하는 재료를 제조할 수 있으며, 방전 플라즈마 소결법에 의해 제조된 소결체 형태의 부재의 미세조직은, 혼합분말 상태에서의 특성을 유지할 수 있다.When the Spark Plasma Sintering (SPS) method is applied, a desired material can be produced in a short time, and the microstructure of the sintered body form manufactured by the discharge plasma sintering method has characteristics in the mixed powder state. I can keep it.
한 구체예에서 상기 제1 혼합분말, 또는 제2 혼합분말을 그라파이트 몰드에 장입한 다음, 챔버 내부를 펀치로 1축으로 가압하면서 가압방향과 평행한 방향으로 직류펄스전류를 인가하여 소결할 수 있다.In one embodiment, the first mixed powder or the second mixed powder may be charged into a graphite mold, and then sintered by applying a DC pulse current in a direction parallel to the pressing direction while pressurizing the inside of the chamber with a punch in a single axis. .
한 구체예에서 상기 방전 플라즈마 소결시 상기 챔버 내부는 약 1.0 X 10-2 torr 이하의 진공도 조건일 수 있다. 상기 진공도 조건에서 소결시 전극소재가 산화되는 현상을 방지할 수 있다.In one embodiment, the interior of the chamber during the discharge plasma sintering may be a vacuum condition of about 1.0 X 10 -2 torr or less. It is possible to prevent the phenomenon that the electrode material is oxidized during sintering under the vacuum condition.
한 구체예에서 상기 방전 플라즈마 소결은 상기 제1 혼합분말 또는 제2 혼합분말을 약 10 MPa 내지 약 60 MPa 압력으로 가압하면서, 약 800℃ 내지 약 950℃까지 승온하여 소결할 수 있다.In one embodiment, the discharge plasma sintering may be performed by heating the first mixed powder or the second mixed powder at a pressure of about 10 MPa to about 60 MPa and raising the temperature to about 800 ° C. to about 950 ° C.
상기 가압 압력이 약 10 MPa 미만인 경우에는 혼합분말 입자 사이에 공극이 많게 되므로 원하는 밀도를 얻을 수 없고, 가압 압력이 약 60 MPa를 초과하는 경우에는 그 이상의 효과는 기대할 수 없고 고압에 따른 몰드, 유압장치 등의 설계가 추가됨으로써 설비 제작 비용이 증가할 수 있다. 예를 들면, 상기 가압 압력은 약 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59 또는 60 MPa일 수 있다.When the pressurization pressure is less than about 10 MPa, there are many voids between the mixed powder particles, so that the desired density cannot be obtained. When the pressurization pressure exceeds about 60 MPa, further effects cannot be expected. The addition of a design, such as an apparatus, can increase the cost of manufacturing equipment. For example, the pressurized pressure is about 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 , 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55 , 56, 57, 58, 59 or 60 MPa.
온도가 약 800℃ 내지 약 950℃까지 승온되면, 일정시간(예를 들면, 약 5분 내지 약 10분)을 유지하여 소결체를 제조할 수 있다. 상기 승온되는 온도가 약 950℃를 초과하는 경우에는 과도한 입자의 성장으로 인해 전극소재의 기계적 물성이 저하될 수 있고, 승온 온도가 약 800℃ 미만에서 완료되는 경우에는 불완전한 소결로 인해 전극소재의 특성이 저하될 수 있다. When the temperature is raised to about 800 ℃ to about 950 ℃, the sintered body can be produced by maintaining a predetermined time (for example, about 5 minutes to about 10 minutes). If the temperature is higher than about 950 ℃ the mechanical properties of the electrode material may be lowered due to excessive growth of the particles, when the temperature rise is less than about 800 ℃ due to incomplete sintering characteristics of the electrode material This can be degraded.
한 구체예에서 상기 승온은 약 10℃/min 내지 약 300℃/min의 승온속도로 실시할 수 있다. 상기 승온속도가 약 300℃/min을 초과하는 경우에는 소결 온도의 제어가 어려울 수 있고, 승온속도가 약 10℃/min 미만인 경우에는 시간이 오래 걸려 생산성이 저하될 수 있다.In one embodiment, the temperature increase may be carried out at a temperature increase rate of about 10 ℃ / min to about 300 ℃ / min. When the temperature increase rate exceeds about 300 ° C / min it may be difficult to control the sintering temperature, when the temperature increase rate is less than about 10 ° C / min may take a long time productivity may be lowered.
열전발전모듈 제조방법Manufacturing method of thermoelectric power module
본 발명의 또 다른 관점은 열전발전모듈 제조방법에 관한 것이다. 한 구체예에서 상기 열전발전모듈 제조방법은 상기 열전발전모듈용 전극소재와, 열팽창계수가 약 10.3 X 10-6/℃ 내지 약 10.5 X 10-6/℃인 스커터루다이트계(skutterudite) 열전소재를 접합하는 단계;를 포함한다.Another aspect of the invention relates to a method of manufacturing a thermoelectric power module. In one embodiment, the method of manufacturing a thermoelectric power module includes an electrode material for the thermoelectric power module and a skutterudite thermoelectric material having a thermal expansion coefficient of about 10.3 X 10 -6 / ° C to about 10.5 X 10 -6 / ° C. It includes; step of bonding.
한 구체예에서 상기 접합은 은(Ag)을 포함하는 페이스트 조성물을 이용하여 실시할 수 있다. 상기 페이스트 조성물은 은 및 유기 용제를 포함할 수 있다.In one embodiment, the bonding may be performed using a paste composition containing silver (Ag). The paste composition may contain silver and an organic solvent.
한 구체예에서 상기 페이스트 조성물은 추가적으로 환원제 및 분산제 등을 더 포함할 수 있다. In one embodiment, the paste composition may further include a reducing agent and a dispersant.
한 구체예에서 상기 환원제는 하이드라진(hydrazine), 소듐 보론 하이드라이드(sodium boron hydride) 및 아스코르브산(ascorbic acid) 등을 사용할 수 있다. In one embodiment, the reducing agent may use hydrazine, sodium boron hydride, ascorbic acid, and the like.
한 구체예에서 상기 분산제로는 폴리비닐피롤리돈(Polyvinyl pyrrolidone, (C6H9NO)n, PVP), 소듐 도데실 설페이트(Sodium dodecyl sulfate, SDS), 나프탈렌 술폰산 폴리콘덴세이트(Naphathalene sulfonic acid polycondensate) 및 소듐염(sodium salt) 등을 사용할 수 있다.In one embodiment, the dispersant is polyvinylpyrrolidone (C 6 H 9 NO) n , PVP), sodium dodecyl sulfate (SDS), naphthalene sulfonic acid polycondensate ) And sodium salt (sodium salt) and the like can be used.
한 구체예에서 상기 스커터루다이트계 열전소재는 Co-Sb계 합금 및 Fe-Co-Sb계 합금 중 하나 이상을 포함할 수 있다.In one embodiment, the scattererite-based thermoelectric material may include one or more of Co-Sb-based alloys and Fe-Co-Sb-based alloys.
열전발전모듈의 제조방법에 의해 제조된 열전발전모듈Thermoelectric power module manufactured by the manufacturing method of the thermoelectric power module
본 발명의 또 다른 관점은 상기 열전발전모듈의 제조방법에 의해 제조된 열전발전모듈에 관한 것이다. Another aspect of the invention relates to a thermoelectric power module manufactured by the method of manufacturing the thermoelectric power module.
본 발명의 또 다른 관점은 상기 전극소재를 포함하는 열전발전모듈에 관한 것이다. 상기 열전발전모듈은 상기 전극소재; 및 상기 전극소재에 접합된, 열팽창계수가 약 10.3 X 10-6/℃ 내지 약 10.5 X 10-6/℃인 스커터루다이트계 열전소재;를 포함한다.Another aspect of the present invention relates to a thermoelectric power module including the electrode material. The thermoelectric power module is the electrode material; And a scatterudite-based thermoelectric material having a thermal expansion coefficient of about 10.3 × 10 −6 / ° C. to about 10.5 × 10 −6 / ° C. bonded to the electrode material.
한 구체예에서 상기 스커터루다이트계(skutterudite) 열전소재는 CoSb3계, FeSb3계 및 (Fe-Co-Ni)Sb3계 중 하나 이상 포함할 수 있다. 예를 들면, 상기 스커터루다이트계 열전소재는 n형 열전소재로 열팽창계수가 약 10.5 X 10-6/℃인 Co4Sb12계 합금을 포함할 수 있으며, p형 열전소재로 열팽창계수가 약 10.3 X 10-6/℃인 Fe3.4Co0.6Sb12계 합금을 포함할 수 있다.In one embodiment, the skutterudite thermoelectric material may include at least one of CoSb 3 , FeSb 3 , and (Fe-Co-Ni) Sb 3 . For example, the scattererite-based thermoelectric material may be an n-type thermoelectric material and may include a Co 4 Sb 12- based alloy having a thermal expansion coefficient of about 10.5 X 10 -6 / ° C, and a thermal expansion coefficient of p-type thermoelectric material. Fe 3.4 Co 0.6 Sb 12 based alloy of 10.3 X 10 -6 / ° C.
한 구체예에서 상기 접합은 은(Ag)을 포함하는 페이스트 조성물로 접합될 수 있다.In one embodiment the bonding can be bonded with a paste composition comprising silver (Ag).
한 구체예에서 상기 스커터루다이트계 열전소재 및 전극소재의 열팽창계수 차이는, 약 1.5 X 10-6/℃ 이하일 수 있다. 상기 열팽창계수 차이에서, 전극소재와 열전소재와의 접합성 및 신뢰성이 우수할 수 있다. 예를 들면, 0 내지 약 1.2 X 10-6/℃ 일 수 있다.In one embodiment, the thermal expansion coefficient difference between the scattered ruthet-based thermoelectric material and the electrode material may be about 1.5 × 10 −6 / ° C. or less. In the thermal expansion coefficient difference, the adhesion and reliability of the electrode material and the thermoelectric material may be excellent. For example, it may be from 0 to about 1.2 X 10 -6 / ° C.
본 발명에 따른 열전발전모듈용 전극소재를 적용시, 열전발전모듈의 발전 효율성이 우수하며, 스커터루다이트계 열전소재와의 열팽창계수 차이를 최소화하여, 전극소재와 열전소재와의 접합성 및 신뢰성이 우수할 수 있다.When the electrode material for thermoelectric power module according to the present invention is applied, the power generation efficiency of the thermoelectric power module is excellent, and the difference in thermal expansion coefficient between the scattererite-based thermoelectric material is minimized, so that the bonding property and reliability of the electrode material and the thermoelectric material are improved. Can be excellent.
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.Hereinafter, the configuration and operation of the present invention through the preferred embodiment of the present invention will be described in more detail. However, this is presented as a preferred example of the present invention and in no sense can be construed as limiting the present invention.
실시예Example  And 비교예Comparative example
실시예Example 1: 열전발전모듈용 전극소재제조 1: Manufacturing of electrode material for thermoelectric power module
평균 입경이 각각 1㎛인, 구형의 몰리브덴(Mo) 55 중량% 및 구리(Cu) 45 중량%를 포함하는 제1 혼합분말을 준비하였다. 상기 제1 혼합분말을 방전 플라즈마 소결 장치를 이용하여 소결하여 전극소재를 제조하였다. 구체적으로 상기 제1 혼합분말을 그라파이트 몰드에 투입하였다. 그 다음에 1.0 X 10-2 torr 이하의 진공도를 적용한 챔버에 상기 몰드를 장입하고, 펀치를 이용하여 몰드를 1축으로 10~60MPa의 압력으로 가압하면서, 10~300℃/min의 승온속도로 800~950℃까지 승온하였다. 상기 승온완료된 온도를, 5~10분 동안 유지하면서, 상기 몰드의 가압방향과 평행한 방향으로 직류펄스전류를 인가하여 소결하여, 전극소재를 제조하였다.A first mixed powder comprising 55% by weight of spherical molybdenum (Mo) and 45% by weight of copper (Cu), each having an average particle diameter of 1 µm, was prepared. The first mixed powder was sintered using a discharge plasma sintering apparatus to prepare an electrode material. Specifically, the first mixed powder was added to the graphite mold. Then, the mold is charged into a chamber to which a vacuum degree of 1.0 X 10 -2 torr or less is applied, and the punch is used to pressurize the mold at a pressure of 10 to 60 MPa in a single axis at a heating rate of 10 to 300 ° C / min. It heated up to 800-950 degreeC. While maintaining the temperature rise temperature for 5 to 10 minutes, by applying a direct current pulse current in a direction parallel to the pressing direction of the mold, and sintered, to prepare an electrode material.
실시예Example 2: 열전발전모듈용 전극소재제조 2: Manufacturing of electrode material for thermoelectric power module
평균 입경이 각각 1㎛인, 구형의 몰리브덴(Mo) 50 중량% 및 구리(Cu) 50 중량%를 포함하는 제1 혼합분말을 적용한 것을 제외하고 상기 실시예 1과 동일한 방법으로 전극소재를 제조하였다.An electrode material was manufactured in the same manner as in Example 1, except that a first mixed powder including 50 wt% of spherical molybdenum (Mo) and 50 wt% of copper (Cu) having an average particle diameter of 1 μm was applied. .
실시예Example 3: 열전발전모듈용 전극소재제조 3: Manufacturing of electrode material for thermoelectric power module
평균 입경이 각각 1㎛인, 구형의 몰리브덴(Mo) 60 중량% 및 구리(Cu) 40 중량%를 포함하는 제1 혼합분말을 적용한 것을 제외하고 상기 실시예 1과 동일한 방법으로 전극소재를 제조하였다.An electrode material was manufactured in the same manner as in Example 1, except that a first mixed powder including 60 wt% of spherical molybdenum (Mo) and 40 wt% of copper (Cu) having an average particle diameter of 1 μm was applied. .
실시예Example 4: 열전발전모듈용 전극소재제조 4: Electrode material manufacturing for thermoelectric power module
평균 입경이 각각 1㎛인, 구형의 텅스텐(W) 53 중량% 및 구리(Cu) 47 중량%를 포함하는 제2 혼합분말을 적용한 것을 제외하고 상기 실시예 1과 동일한 방법으로 전극소재를 제조하였다.An electrode material was manufactured in the same manner as in Example 1, except that a second mixed powder including 53 wt% of spherical tungsten (W) and 47 wt% of copper (Cu) having an average particle diameter of 1 μm was applied. .
실시예Example 5: 열전발전모듈용 전극소재제조 5: Manufacturing of electrode material for thermoelectric power module
평균 입경이 각각 1㎛인, 구형의 텅스텐(W) 48 중량% 및 구리(Cu) 52 중량%를 포함하는 제2 혼합분말을 적용한 것을 제외하고 상기 실시예 1과 동일한 방법으로 전극소재를 제조하였다.An electrode material was manufactured in the same manner as in Example 1, except that a second mixed powder including spherical tungsten (W) 48 wt% and 52 wt% copper (Cu) having an average particle diameter of 1 μm was applied. .
실시예Example 6: 열전발전모듈용 전극소재제조 6: Manufacturing of electrode material for thermoelectric power module
평균 입경이 각각 1㎛인, 구형의 텅스텐(W) 58 중량% 및 구리(Cu) 42 중량%를 포함하는 제2 혼합분말을 적용한 것을 제외하고 상기 실시예 1과 동일한 방법으로 전극소재를 제조하였다.An electrode material was manufactured in the same manner as in Example 1, except that a second mixed powder including spherical tungsten (W) 58 wt% and 42 wt% copper (Cu) having an average particle diameter of 1 μm was applied. .
상기 실시예 1~6의 열전발전모듈용 전극소재에 대하여, 열팽창계수를 측정하여 그 결과를 하기 표 1에 나타내었다.For the thermoelectric power module electrode material of Examples 1 to 6, the coefficient of thermal expansion was measured and the results are shown in Table 1 below.
Figure PCTKR2018007172-appb-T000001
Figure PCTKR2018007172-appb-T000001
상기 표 1의 결과를 참조하면, 본 발명에 따라 제조된 열전발전모듈용 전극소재는, 10㎛ 이하의 입자를 포함하는 복합체 구조를 형성하였으며, 열팽창계수가 9.2 X 10-6/℃ 내지 11.1 X 10-6/℃의 범위로 형성되어, 스커터루다이트계 열전소재의 열팽창계수 차이를 최소화하여, 고온에서도 열전소재와 전극소재 간 계면의 분리 현상을 방지할 수 있음을 알 수 있었다.Referring to the results of Table 1, the electrode material for thermoelectric power module manufactured according to the present invention, formed a composite structure containing particles of 10㎛ or less, the thermal expansion coefficient of 9.2 X 10 -6 / ℃ to 11.1 X Formed in the range of 10 -6 / ℃, it can be seen that the separation of the interface between the thermoelectric material and the electrode material can be prevented even at high temperatures by minimizing the difference in coefficient of thermal expansion of the scattererite-based thermoelectric material.
실시예Example 7: 열전발전모듈 제조 7: Manufacturing thermoelectric module
상기 실시예 1의 열전발전모듈용 전극소재와, 열전소재(n형: Co4Sb12계)를, 은(Ag)을 포함하는 페이스트 조성물을 이용하여 접합하는 단계를 포함하여, 열전발전모듈을 제조하였다. The thermoelectric power module comprising the step of bonding the electrode material for the thermoelectric power module of Example 1 and the thermoelectric material (n-type: Co 4 Sb 12 system) using a paste composition containing silver (Ag), Prepared.
도 2는 본 발명의 한 구체예에 따라 의해 제조된 열전발전모듈에서, 전극소재와 열전소재와의 접합계면의 전기저항을 측정한 결과를 나타낸 그래프이다. 상기 도 2를 참조하면, 본 발명에 따른 전극소재를 열전소재와 접합시, 접합계면의 물성이 저하되지 않으면서, 전기적 특성이 우수하여 열전발전 효율성이 우수한 것을 알 수 있었다.Figure 2 is a graph showing the results of measuring the electrical resistance of the junction interface between the electrode material and the thermoelectric material in the thermoelectric power module manufactured according to an embodiment of the present invention. Referring to FIG. 2, when the electrode material according to the present invention is bonded to the thermoelectric material, the physical properties of the bonding interface do not decrease, and thus, the thermoelectric power generation efficiency is excellent.
비교예 1Comparative Example 1
구리(Cu) 전극소재와 열전소재(n형: Co4Sb12계)를 은(Ag)을 포함하는 페이스트 조성물을 이용하여 접합한 것을 제외하고, 상기 실시예 7과 동일한 방법으로 열전발전모듈을 제조하였다.A thermoelectric power module was manufactured in the same manner as in Example 7, except that a copper (Cu) electrode material and a thermoelectric material (n-type: Co 4 Sb 12 system) were bonded using a paste composition containing silver (Ag). Prepared.
상기 실시예 7 및 비교예 1에 대하여, 500℃의 온도에서 100 시간 동안 유지한 다음, 전극소재 또는 열전소재의 외관을 관찰하였다. 그 결과, 본 발명의 실시예 7의 경우, 고온 조건에서도 전극소재 및 열전소재의 내구성이 유지되었으나, 구리 전극소재를 적용한 비교예 1의 경우, 전극소재 및 열전소재가 열팽창계수 차이로 인해 파괴되었음을 알 수 있었다.For Example 7 and Comparative Example 1, after maintaining for 100 hours at a temperature of 500 ℃, the appearance of the electrode material or thermoelectric material was observed. As a result, in Example 7, the durability of the electrode material and the thermoelectric material was maintained even at high temperature, but in Comparative Example 1 using the copper electrode material, the electrode material and the thermoelectric material were destroyed due to the difference in coefficient of thermal expansion. Could know.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.Simple modifications or changes of the present invention can be easily carried out by those skilled in the art, and all such modifications or changes can be seen to be included in the scope of the present invention.

Claims (12)

  1. 스커터루다이트계(skutterudite) 열전소재와 열팽창계수(CTE) 차이가 약 1.5 X 10-6/℃ 이하이며, 주기율표 제6족인 전이금속과 구리를 포함하는 전극소재이고,Scatterudite thermoelectric material and the coefficient of thermal expansion (CTE) is about 1.5 X 10 -6 / ℃ or less, the electrode material containing a transition metal and copper of Group 6 of the periodic table,
    상기 전극소재는 하기 화학식 1 또는 화학식 2로 표시되는 전극소재: The electrode material is an electrode material represented by the following formula (1) or (2):
    [식 1][Equation 1]
    xMo(1-x)Cu (약 0.5 ≤ x ≤ 약 0.6)xMo (1-x) Cu (about 0.5 ≤ x ≤ about 0.6)
    [식 2][Equation 2]
    yW(1-y)Cu (약 0.48 ≤ y ≤ 약 0.58).yW (1-y) Cu (about 0.48 ≦ y ≦ about 0.58).
  2. 제1항에 있어서, 상기 스커터루다이트계(skutterudite) 열전소재는 CoSb3계, FeSb3계 및 (Fe-Co-Ni)Sb3계 중 하나 이상 포함하는 것을 특징으로 하는 전극소재.The electrode material of claim 1, wherein the skutterudite thermoelectric material comprises at least one of CoSb 3 , FeSb 3 , and (Fe-Co-Ni) Sb 3 .
  3. 구리(Cu) 약 50 중량% 내지 약 60 중량% 및 몰리브덴(Mo) 약 40 중량% 내지 약 50 중량%를 포함하는 제1 혼합분말을 제조하는 단계; 및Preparing a first mixed powder comprising about 50 wt% to about 60 wt% copper (Cu) and about 40 wt% to about 50 wt% molybdenum (Mo); And
    상기 제1 혼합분말을 방전 플라즈마 소결하는 단계;를 포함하는 것을 특징으로 하는 전극소재 제조방법.And discharge plasma sintering the first mixed powder.
  4. 텅스텐(W) 약 48 중량% 내지 약 58 중량% 및 구리(Cu) 약 42 중량% 내지 약 52 중량%를 포함하는 제2 혼합분말을 제조하는 단계; 및Preparing a second mixed powder comprising about 48 wt% to about 58 wt% tungsten (W) and about 42 wt% to about 52 wt% copper (Cu); And
    상기 제2 혼합분말을 방전 플라즈마 소결하는 단계;를 포함하는 것을 특징으로 하는 전극소재 제조방법.Electrode material production method comprising the; step of discharge plasma sintering the second mixed powder.
  5. 제3항 및 제4항중 어느 한 항에 있어서, 상기 방전 플라즈마 소결은 약 10MPa 내지 약 60MPa으로 가압하면서, 약 800℃ 내지 약 950℃까지 승온하여 소결하는 것을 특징으로 하는 전극소재 제조방법.5. The method of claim 3, wherein the discharge plasma sintering is sintered at a temperature of about 800 ° C. to about 950 ° C. while being pressurized to about 10 MPa to about 60 MPa. 6.
  6. 제5항에 있어서, 상기 승온은 약 10 ℃/min 내지 약 300 ℃/min의 승온속도로 실시하는 것을 특징으로 하는 전극소재 제조방법.The method of claim 5, wherein the temperature rise is about 10 ℃ / min to about 300 ℃ / min, the electrode material manufacturing method, characterized in that carried out at a temperature increase rate.
  7. 제3항에 있어서, 상기 제1 혼합분말의 평균입경은 약 10㎛ 이하인 것을 특징으로 하는 전극소재 제조방법.The method of claim 3, wherein the average particle diameter of the first mixed powder is about 10㎛ or less.
  8. 제4항에 있어서, 상기 제2 혼합분말의 평균입경은 약 10㎛ 이하인 것을 특징으로 하는 전극소재 제조방법.The method of claim 4, wherein the average particle diameter of the second mixed powder is about 10㎛ or less.
  9. 제1항 및 제2항중 어느 한 항의 전극소재; 및The electrode material of any one of claims 1 and 2; And
    상기 전극소재에 접합된, 열팽창계수가 약 10.3 X 10-6/℃ 내지 약 10.5 X 10-6/℃인 스커터루다이트계 열전소재;를 포함하는 열전발전모듈.And a sputter ludite-based thermoelectric material having a thermal expansion coefficient of about 10.3 × 10 −6 / ° C. to about 10.5 × 10 −6 / ° C. bonded to the electrode material.
  10. 제9항에 있어서, 상기 스커터루다이트계(skutterudite) 열전소재는 CoSb3계, FeSb3계 및 (Fe-Co-Ni)Sb3계 중 하나 이상 포함하는 것을 특징으로 하는 열전발전모듈.The thermoelectric power module of claim 9, wherein the skutterudite thermoelectric material comprises at least one of CoSb 3 , FeSb 3 , and (Fe-Co-Ni) Sb 3 .
  11. 제9항에 있어서, 상기 접합은 은(Ag)을 포함하는 페이스트 조성물로 접합되는 것을 특징으로 하는 열전발전모듈.10. The thermoelectric power module according to claim 9, wherein the junction is bonded with a paste composition containing silver (Ag).
  12. 제9항에 있어서, 상기 스커터루다이트계 열전소재 및 전극소재의 열팽창계수 차이는, 약 1.5 X 10-6/℃ 이하인 것을 특징으로 하는 열전발전모듈.10. The thermoelectric power module according to claim 9, wherein a difference in coefficient of thermal expansion between the scattererite-based thermoelectric material and the electrode material is about 1.5 × 10 −6 / ° C. or less.
PCT/KR2018/007172 2018-04-16 2018-06-25 Electrode material for thermoelectric power generation module and method for manufacturing same WO2019203392A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0043715 2018-04-16
KR1020180043715A KR102107960B1 (en) 2018-04-16 2018-04-16 An electrode member for thermoelectric generator module manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2019203392A1 true WO2019203392A1 (en) 2019-10-24

Family

ID=68239597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/007172 WO2019203392A1 (en) 2018-04-16 2018-06-25 Electrode material for thermoelectric power generation module and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR102107960B1 (en)
WO (1) WO2019203392A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060017170A1 (en) * 2004-07-23 2006-01-26 Lidong Chen CoSb3-based thermoelectric device fabrication method
US20130247953A1 (en) * 2012-03-23 2013-09-26 Trustees Of Boston College Electrode materials and configurations for thermoelectric devices
KR20160065048A (en) * 2013-09-30 2016-06-08 니뽄 서모스탯 가부시키가이샤 Thermoelectric conversion module
WO2017057259A1 (en) * 2015-09-28 2017-04-06 三菱マテリアル株式会社 Thermoelectric conversion module and thermoelectric conversion device
KR20170076358A (en) * 2015-12-24 2017-07-04 주식회사 엘지화학 Thermoelectric module and method for fabricating the same
KR101801367B1 (en) * 2017-09-01 2017-11-24 한밭대학교 산학협력단 Method of manufacturing thermoelectric element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060017170A1 (en) * 2004-07-23 2006-01-26 Lidong Chen CoSb3-based thermoelectric device fabrication method
US20130247953A1 (en) * 2012-03-23 2013-09-26 Trustees Of Boston College Electrode materials and configurations for thermoelectric devices
KR20160065048A (en) * 2013-09-30 2016-06-08 니뽄 서모스탯 가부시키가이샤 Thermoelectric conversion module
WO2017057259A1 (en) * 2015-09-28 2017-04-06 三菱マテリアル株式会社 Thermoelectric conversion module and thermoelectric conversion device
KR20170076358A (en) * 2015-12-24 2017-07-04 주식회사 엘지화학 Thermoelectric module and method for fabricating the same
KR101801367B1 (en) * 2017-09-01 2017-11-24 한밭대학교 산학협력단 Method of manufacturing thermoelectric element

Also Published As

Publication number Publication date
KR20190120484A (en) 2019-10-24
KR102107960B1 (en) 2020-05-07

Similar Documents

Publication Publication Date Title
WO2017014584A1 (en) Thermoelectric module and manufacturing method thereof
WO2012102523A2 (en) Thermoelectric device and thermoelectric module having the same, and method of manufacturing the same
WO2011122888A2 (en) Thermoelectric material, and thermoelectric module and thermoelectric device including the thermoelectric material
US20040042181A1 (en) Thermoelectric module and process for producing the same
WO2012050271A1 (en) Alloy of tungsten (w) and copper (cu) having functionally graded material (fgm) layers, metal material having the same and manufacturing method for alloy of w and cu
WO2018110794A1 (en) Thermoelectric element restrained from oxidation and volatilization and fabrication method therefor
WO2016167525A1 (en) Thermoelectric materials, and thermoelectric element and thermoelectric module comprising the same
WO2017014615A1 (en) Thermoelement using amorphous and exothermic binder, and production method therefor
WO2016171346A1 (en) Method for manufacturing bi-te-based thermoelectric material using resistance-heating element
CN1122319C (en) Thermoelectric conversion element
WO2019203392A1 (en) Electrode material for thermoelectric power generation module and method for manufacturing same
WO2020149464A1 (en) Thermoelectric material and preparation method therefor
WO2015057019A1 (en) Thermoelectric material and method for manufacturing same
WO2019156259A1 (en) Superconductor comprising magnesium diboride and manufacturing method therefor
WO2020149465A1 (en) Thermoelectric material manufacturing method
EP0606426A1 (en) Method for making an electrically conductive contact useful for joining high transition temperature superconductors
WO2011155659A1 (en) Method for manufacturing magnesium diboride superconductive wire, and magnesium diboride superconductive wire manufactured using same
WO2011059185A2 (en) Production method for a nanocomposite having improved thermoelectric efficiency, and nanocomposites produced thereby
WO2014115920A1 (en) Metal composite comprising aligned precipitate and preparation method therefor
WO2020045376A1 (en) Thermoelectric conversion material chip manufacturing method, and method for manufacturing thermoelectric conversion module using chip obtained by said manufacturing method
WO2020067617A1 (en) Method for recovering electrical properties and improving oxidation stability in two-dimensional material
WO2020196982A1 (en) Method for manufacturing aluminum-based clad frame member, and aluminum-based clad frame member manufactured using same
CN112823430A (en) Method for producing intermediate for thermoelectric conversion module
WO2019231018A1 (en) Method for manufacturing bi-sb-te-based thermoelectric material containing carbon nanotube, and thermoelectric material manufactured using same
WO2019035559A1 (en) Composite device manufacturing method and composite device manufactured thereby

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915668

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18915668

Country of ref document: EP

Kind code of ref document: A1