WO2019203341A1 - Sensor device and battery device - Google Patents

Sensor device and battery device Download PDF

Info

Publication number
WO2019203341A1
WO2019203341A1 PCT/JP2019/016795 JP2019016795W WO2019203341A1 WO 2019203341 A1 WO2019203341 A1 WO 2019203341A1 JP 2019016795 W JP2019016795 W JP 2019016795W WO 2019203341 A1 WO2019203341 A1 WO 2019203341A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
sensor
case
sensor device
terminal
Prior art date
Application number
PCT/JP2019/016795
Other languages
French (fr)
Japanese (ja)
Inventor
小山 和宏
正浩 鈴鹿
翔 佐賀
俊隆 福嶋
雄太 笠間
顕宏 岡部
Original Assignee
ノバルス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ノバルス株式会社 filed Critical ノバルス株式会社
Priority to JP2020514457A priority Critical patent/JPWO2019203341A1/en
Publication of WO2019203341A1 publication Critical patent/WO2019203341A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/247Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for portable devices, e.g. mobile phones, computers, hand tools or pacemakers
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a sensor device and a battery device.
  • IoT Internet of Things
  • sensor data of the sensor device is used.
  • a sensor device used in IoT is also referred to as an IoT device.
  • introduction of systems using sensing data collected from IoT devices is progressing in various fields. For example, temperature and humidity data can be collected with an IoT device installed on a farm, and the frequency and amount of watering can be managed using the collected data. Moreover, it can detect that the electric pot was used with the IoT device with which the electric pot was mounted
  • the purpose is to provide a sensor device and a battery device that facilitate the introduction of a system utilizing sensor data.
  • the outer positive terminal and the outer negative terminal are respectively exposed and attached to a case having a shape conforming to a battery standard that can be attached to a battery box of a battery-driven device or another shape, Inside the case, there are an inner positive terminal and an inner negative terminal connected to the outer positive terminal and the outer negative terminal, respectively, a battery accommodating portion for accommodating a battery, and an antenna for wireless communication And a sensor that measures at least one of temperature, humidity, and atmospheric pressure, and a transmitter that transmits data measured by the sensor to the external information processing device via the antenna.
  • FIG. 1 is a diagram showing an air conditioning management system using the sensor device according to the present embodiment.
  • FIG. 2 is a diagram illustrating an appearance of the sensor device of FIG.
  • FIG. 3 is a view showing a cross section of the sensor device of FIG. 1.
  • FIG. 4 is an equivalent circuit diagram of the sensor device of FIG.
  • FIG. 5 is a flowchart showing an operation procedure in the off-linked mode of the sensor device of FIG.
  • FIG. 6 is a flowchart showing an operation procedure in the on-linked mode of the sensor device of FIG.
  • FIG. 7 is a diagram showing an air temperature data collection system using the sensor device according to the present embodiment.
  • the sensor device 4 has a shape and size conforming to the battery standard, and is attached to the battery box of the battery-driven device 6.
  • Examples of the battery-driven device 6 include a desk lamp 61, a TV remote control 62, a battery-driven timepiece 63, and a battery ignition-type gas range 64.
  • the sensor device 4 is connected to a programmable logic controller (hereinafter simply referred to as PLC) 3 in accordance with a short-range wireless communication standard, typically Bluetooth (registered trademark) standard.
  • PLC programmable logic controller
  • the sensor device 4 transmits the measured temperature data to the PLC 3.
  • the PLC 3 holds the data of the air conditioner control program, and controls the air conditioner 5 in order to change the set temperature, air volume, and wind direction of the air conditioner 5 according to the temperature data measured by the sensor device 4.
  • the living room temperature can be kept constant at the user's preferred temperature.
  • the direction of the wind blown from the air conditioner 5 can be controlled, and the entire room can be maintained at a constant temperature.
  • the sensor device 4 has a shape conforming to the battery standard or other shapes.
  • the sensor device 4 typically has an AA shape.
  • the shape, size, and the like of the sensor device 4 are arbitrary depending on the battery used in the battery-driven device 6, and may be configured as a single shape, for example.
  • the sensor device 4 has a cylindrical case 41 having a height and a diameter in accordance with the AA battery standard.
  • An outer positive terminal 43 and an outer negative terminal 44 are attached to the front and rear end faces of the case 41 in accordance with the AA battery standard.
  • a battery accommodating portion 42 having a shape and size conforming to the smaller standard AAA battery standard is provided inside the case 41.
  • An inner positive terminal 45 and an inner negative terminal 46 that are in contact with the positive terminal and the negative terminal of the AAA battery 48 accommodated therein are respectively attached to the front and rear end faces of the battery accommodating portion 42.
  • the inner positive terminal 45 and the inner negative terminal 46 attached to the battery housing part 42 are connected to the outer positive terminal 43 and the outer negative terminal 44, respectively.
  • the battery housing part 42 is offset in the radial direction with respect to the cylindrical central axis of the case 41 with respect to the cylindrical central axis. Due to this offset, a small space is secured inside the case 41.
  • An electronic circuit board 47 that realizes various functions of the sensor device 4 is accommodated in this small space.
  • a temperature sensor 49 that measures temperature is mounted on the electronic circuit board 47.
  • the peripheral surface portion of the case 41 opposite to the electronic circuit board 47 is cut out in an oval shape.
  • the length of the notch is equal to or slightly shorter than that of the AAA battery, and the width is slightly wider than that of the AAA battery. Thereby, the AAA internal battery 48 can be inserted into and removed from the battery accommodating portion 42 through the notch.
  • the sensor device 4 is mounted on a battery box of a battery-driven device 6 having a power switch 7, measures the temperature around the battery-driven device 6, and transmits the measured temperature data to the PLC 3 wirelessly. And also functions as a power source for the battery-powered device 6.
  • the battery 48 accommodated in the battery accommodating portion 42 is a power source for components such as the temperature sensor 49 mounted on the electronic circuit board 47 and also a power source for the battery-driven device 6.
  • a DCDC converter 59, a comparator 57, an output transistor 55, an RFIC (high frequency integrated circuit) 56, and the like are mounted on an electronic circuit board 47 that realizes the function of the sensor device 4.
  • the DCDC converter 59 generates the power supply voltage Vdd of the comparator 57 and the RFIC 56 using the battery voltage of the internal battery 48 accommodated in the battery accommodating portion 42.
  • the RFIC is simply referred to as a processing unit as appropriate.
  • the comparator 57 detects the on / off of the power switch 7 of the battery-powered device 6 based on the internal current value of the electronic circuit board 47, here the current value between the inner negative terminal 46 and the outer negative terminal 44.
  • the detection resistor 51 is interposed between the inner negative terminal 46 and the outer negative terminal 44.
  • the current between the inner negative terminal 46 and the outer negative terminal 44 is converted into a voltage by the detection resistor 51, and the voltage across the detection resistor 51 (detection voltage) is applied to the input terminal (inverted input terminal) of the comparator 57.
  • the battery voltage of the internal battery 48 is divided by the voltage dividing resistors 52 and 53 and applied as a reference voltage to the other input terminal (non-inverting input terminal) of the comparator 57.
  • the comparator 57 compares the detection voltage with the reference voltage.
  • the detection voltage varies according to the on / off state of the power switch 7.
  • the resistance values of the voltage dividing resistors 52 and 53 are adjusted.
  • the output transistor 55 functions as a switching element that switches the output of the internal battery 48 on and off.
  • the output transistor 55 is controlled to be turned on and off by a gate voltage applied by a gate control signal from the RFIC 56.
  • the output transistor 55 is typically a P-channel MOSFET, and is interposed between the inner positive terminal 45 and the outer positive terminal 43.
  • the source terminal is connected to the inner positive terminal 45
  • the drain terminal is connected to the outer positive terminal 43
  • the gate terminal is connected to the OUT terminal of the RFIC 56.
  • the output transistor 55 when the gate voltage is higher than the threshold voltage (when the PWM signal is at a high level), the output transistor 55 is turned off. Therefore, the output of the internal battery 48 can be substantially adjusted by changing the duty ratio of the PWM signal.
  • the output transistor 55 may be an N-channel MOSFET or a bipolar transistor.
  • the RFIC 56 controls the sensor device 4 in an integrated manner.
  • An antenna 58 for wireless communication is connected to the ANT terminal of the RFIC 56.
  • the GND terminal is connected to the GND of the electronic circuit board 47.
  • the output terminal of the temperature sensor 49 is connected to the SENSOR terminal.
  • a power supply terminal of the temperature sensor 49 is connected to the Vs terminal.
  • the gate terminal of the output transistor 55 is connected to the OUT terminal.
  • the output terminal of the comparator 57 is connected to the IN terminal.
  • the RFIC 56 detects the temperature via the temperature sensor 49.
  • the antenna 58 is accommodated in the case 41. However, the antenna 58 may be attached to the outer surface of the case 41.
  • the RFIC 56 functionally includes a wireless communication unit, a PWM signal generation unit, and a control unit.
  • the sensor device 4 includes a temperature sensor 49.
  • a configuration including various sensors that acquire environmental information of a place where the sensor device 4 is installed such as a humidity sensor that measures humidity, a pressure sensor that measures atmospheric pressure, and a sound sensor that detects sound. It may be a structure provided with a plurality of types of sensors.
  • the sensor 49 is accommodated in the case 41. However, the sensor 49 may be adhered to the outer surface of the case 41, or a part of the case 41 may be opened and exposed from there.
  • the wireless communication unit transmits temperature data to the PLC 3 registered in advance as the output destination of the sensor data according to the control of the control unit.
  • the wireless communication unit receives a control signal instructing opening / closing of the output transistor 55 from a portable information processing terminal registered in advance as a user terminal for changing various settings of the sensor device 4 according to control of the control unit.
  • the control unit controls the wireless communication unit, allows the sensor device 4 to connect one external device, and connects the other external device. Ban.
  • the control unit controls the wireless communication unit in order to connect the PLC 3 to the sensor device 4 and not connect the portable information processing terminal.
  • the control unit controls the wireless communication unit to connect the PLC 3 to the sensor device 4 and not to connect the portable information processing terminal while the temperature sensor 49 is being driven. While 49 is not driven, the wireless communication unit is controlled so that the portable information processing terminal is connected to the sensor device 4 and the PLC 3 is not connected.
  • the mode is initialized to, for example, the on-linked mode by restarting the RFIC 56 by inserting / removing the battery 48 from / into the battery accommodating portion 42. Thereby, even if the mode is always selected, the mode can be selected by restarting the RFIC 56.
  • the PWM signal generator generates a PWM signal (pulse width signal modulation) with a duty ratio corresponding to the control signal received from the portable information processing terminal.
  • the PWM signal generated by the PWM signal generator is supplied to the gate of the output transistor 55.
  • the PWM signal generator When the output command value is 0%, the PWM signal generator generates a PWM signal with a duty ratio of 0% (only high level).
  • the output command value is 100%
  • a PWM signal having a duty ratio of 100% (low level only) is generated.
  • the PWM signal generator When the output command value is 50%, the PWM signal generator generates a drive signal with a duty ratio of 50% (the ratio between the low level and the high level is half).
  • the control unit includes a normal mode in which the temperature sensor 49 is always operated, and an interlocking mode in which the on / off of the temperature sensor 49 is interlocked with the on / off of the power switch 7 of the battery-driven device 6.
  • the on / off of the power switch 7 is replaced with the insertion / extraction of the sensor device to / from the battery box of the battery driven device 6, and the on / off of the temperature sensor 49 is the battery driven type. This is linked to the on / off of the operation of the device 6.
  • the temperature sensor 49 is operated when the battery-driven device 6 is in an on state, and the temperature sensor 49 is stopped when the battery-driven device 6 is in an off state, and the battery-driven device 6 is And an off-linked mode in which the temperature sensor 49 is operated in the off state and the temperature sensor 49 is stopped when the battery-powered device 6 is in the on state.
  • These modes are selected according to an instruction from a specific portable information processing terminal connected to the sensor device 4.
  • the mode can be selected during a period in which the temperature sensor 49 is in an off state or a predetermined period after the battery 48 is attached to the battery housing part 42. Thereby, even when the normal mode is selected, the temperature sensor 49 can be driven for a predetermined period after the battery 48 is mounted in the battery housing portion 42, and the mode can be selected during that period. .
  • the always mode is a mode in which the sensor device 4 always functions as an IoT device.
  • the control unit is configured to cause the PWM signal generating unit to supply a PWM signal having a predetermined duty ratio to the output transistor 55 in order to intentionally reduce the power output to the battery-powered device 6. May be controlled. Thereby, the function as a power supply of the battery-powered apparatus 6 can be reduced, and the time during which the sensor device 4 functions as an IoT device can be lengthened.
  • the interlocking mode is a mode in which the period during which the sensor device 4 functions as an IoT device is limited to a period in which the battery-driven device 6 is in an on state or an off state.
  • the temperature sensor 49 must be disposed close to the internal battery 48. If the internal battery 48 is warmed by self-heating, the temperature measured by the temperature sensor 49 may be higher than the actual temperature.
  • the temperature sensor 49 can be driven only during the period in which the battery-powered device 6 is in the off state, and the sensor device 4 can transmit only reliable temperature data to the PLC 3. There is also an effect.
  • the effect is high when the mounting target of the sensor device 4 generates heat in a use state such as a desk lamp or a battery ignition type gas range.
  • FIG. 5 shows an operation procedure in the off-linked mode of the sensor device 4 according to the present embodiment.
  • the power switch 7 is off.
  • the RFIC 56 is activated, and the sensor device 4 is wirelessly connected to the PLC 3.
  • the temperature sensor 49 is driven by the RFIC 56 (step S11), and the temperature data measured by the temperature sensor 49 is input to the RFIC 56 (step S12).
  • the temperature data is transmitted to the PLC 3 by the RFIC 56 (step S13).
  • Step S12 and step S13 are repeatedly executed at a preset period until the power switch 7 is turned on (step S14, OFF).
  • step S14 When the power switch 7 is turned on (step S14, ON), the driving of the temperature sensor 49 is stopped by the RFIC 56, and the data transmission to the PLC 3 is stopped (step S15).
  • step S16 When the power switch 7 is turned off (step S16, OFF), it waits until a preset standby time elapses (step S17, NO). After the standby time elapses (step S17, YES), the process goes to step S11. Returning, the temperature sensor 49 is driven again, and the measurement of temperature data is resumed. By providing the standby time, it is possible to secure a time until the battery 48 heated by self-heating is cooled and to ensure the reliability of the temperature measured by the temperature sensor 49.
  • FIG. 6 shows an operation procedure in the on-linked mode of the sensor device 4 according to the present embodiment.
  • the power switch 7 is off.
  • the RFIC 56 is activated.
  • the power switch 7 is turned on (step S21, ON)
  • the temperature sensor 49 is driven by the RFIC 56 (step S22)
  • the temperature data measured by the temperature sensor 49 is input to the RFIC 56 (step S23).
  • the temperature data is transmitted to the PLC 3 by the RFIC 56 (step S24).
  • Step S23 and step S24 are repeatedly executed at a preset cycle until the power switch 7 is turned off (step S25, ON).
  • step S25 When the power switch 7 is turned off (step S25, OFF), the driving of the temperature sensor 49 is stopped by the RFIC 56, and the data transmission to the PLC 3 is stopped (step S26).
  • step S26 When the power switch 7 is turned on, the process starts again from step S21.
  • the sensor device 4 has a battery shape defined in the AA battery standard, and can be attached to the battery box of the battery-driven device 6.
  • the sensor device 4 has a battery accommodating portion 42 that accommodates the AAA battery 48, and also functions as a power source for the battery-driven device 6.
  • the temperature data can be collected from the sensor device 4 simply by mounting the sensor device 4 on the battery box of the existing battery-driven device 6, and the user needs to secure the installation location of the sensor device 4. Otherwise, there is no need to perform a special installation work for installing the sensor device 4. That is, by using the sensor device 4 according to the present embodiment, it is possible to facilitate the introduction of a system utilizing temperature data measured by the temperature sensor, and to lower the system introduction barrier.
  • the air conditioning management system using the sensor device 4 has been described, but the system using the sensor device 4 is not limited to this.
  • the sensor device 4 can be used in an air temperature data collection system. As shown in FIG. 7, the sensor device 4 is mounted outdoors, for example, on a battery-driven outdoor light 65 installed in a parking space of a residence, and outdoor temperature data measured by the sensor device 4 is used as a resident's smartphone 2. The temperature data is transmitted together with the position information to the server apparatus 9 as an external information processing device via the Internet 1 by the application software of the temperature data collection system activated on the smartphone 2. In this way, the server device 9 collects outdoor temperature data together with the position information, and generates temperature map data obtained by mapping the collected temperature data on the map according to the position information.
  • the temperature map generated by the server device 9 is transmitted to the terminal 10 of the user of this system via the Internet 1, and the user displays the actually measured temperature on the map in real time, not the predicted temperature. Can be confirmed.
  • the sensor device 4 can be used in a barometric pressure data collection system.
  • the atmospheric pressure data collection system can provide the user of this system with an atmospheric pressure map obtained by mapping the actually measured atmospheric pressure on the map.
  • SYMBOLS 4 Sensor apparatus, 6 ... Battery drive type device, 7 ... Power switch, 41 ... Case, 42 ... Battery accommodating part, 43 ... Outer positive terminal, 44 ... Outer negative terminal, 45 ... Inner positive terminal, 46 ... Inner negative terminal 47 ... Electronic circuit board, 48 ... Battery, 49 ... Temperature sensor, 56 ... RFIC, 58 ... Antenna.

Abstract

The purpose of the present invention is to provide a sensor device capable of facilitating introduction of a system which uses sensor data. A sensor device 4 has: an outer positive electrode terminal 43 and an outer negative electrode terminal 44 respectively attached to the front and rear end surfaces of a case 41 that has a shape compliant with a battery standard so as to enable mounting to a battery box of a battery-driven device 6; and an inner positive electrode terminal 45 and an inner negative electrode terminal 46 that are located inside the case 41 and that are respectively connected to the outer positive electrode terminal 43 and the outer negative electrode terminal 44. The sensor device 4 is provided with: a battery storage part 42 that stores a battery 48; a wireless communication antenna 58; a sensor 49 that measures at least one of temperature, humidity, and atmospheric pressure; and a transmission part that transmits data measured by the sensor 49 to an external information processing device 3 via the antenna 58.

Description

センサ装置及び電池装置Sensor device and battery device
 本発明は、センサ装置及び電池装置に関する。 The present invention relates to a sensor device and a battery device.
 インターネット技術や各種センサー・テクノロジーの進化等を背景に、身の周りのあらゆるモノがインターネットにつながる、いわゆるIoT(Internet of Things)に関する技術が急速に発展している。IoTでは、通信機能を有するセンサ装置が多く利用され、センサ装置のセンサデータが活用される。IoTにおいて利用されるセンサ装置をIoTデバイスともいう。現在、様々な分野において、IoTデバイスから収集したセンシングデータを活用したシステムの導入が進んでいる。例えば、農場に設置したIoTデバイスで気温や湿度のデータを収集し、その収集したデータを活用して水遣り頻度、量などを管理することができる。また、電気ポットに装着したIoTデバイスで電気ポットが使用されたことを検知し、その検知したデータを活用して一人暮らしの高齢者を見守るシステムに利用することができる。 Technology against so-called IoT (Internet of Things), where everything around us is connected to the Internet, is rapidly developing against the background of the evolution of Internet technology and various sensor technologies. In IoT, many sensor devices having a communication function are used, and sensor data of the sensor device is used. A sensor device used in IoT is also referred to as an IoT device. Currently, introduction of systems using sensing data collected from IoT devices is progressing in various fields. For example, temperature and humidity data can be collected with an IoT device installed on a farm, and the frequency and amount of watering can be managed using the collected data. Moreover, it can detect that the electric pot was used with the IoT device with which the electric pot was mounted | worn, and can utilize for the elderly person living alone using the detected data.
 しかし、IoTデバイスを活用したシステムを導入するためには、IoTデバイスの設置場所を確保し、設置作業が必要とされる。これらの作業は、ユーザにとって面倒であり、IoTデバイスを活用したシステムの導入障壁となっていた。 However, in order to introduce a system using an IoT device, it is necessary to secure an installation place of the IoT device and perform installation work. These operations are troublesome for the user, and have been a barrier for introducing a system using an IoT device.
 目的は、センサデータを活用したシステムの導入を容易にするセンサ装置及び電池装置を提供することにある。 The purpose is to provide a sensor device and a battery device that facilitate the introduction of a system utilizing sensor data.
 本実施形態に係るセンサ装置は、電池駆動式機器の電池ボックスに装着可能な電池規格に準じた形状又は他の形状を有するケースに外側正極端子と外側負極端子とがそれぞれ露出して取り付けられ、前記ケースの内側には、前記外側正極端子と前記外側負極端子とにそれぞれ接続される内側正極端子と内側負極端子とを有し、電池を収容するための電池収容部と、無線通信用のアンテナと、温度、湿度、気圧のうち少なくとも一を計測するセンサと、前記センサにより計測されたデータを前記アンテナを介して外部情報処理デバイスに送信する送信部とが設けられる。 In the sensor device according to the present embodiment, the outer positive terminal and the outer negative terminal are respectively exposed and attached to a case having a shape conforming to a battery standard that can be attached to a battery box of a battery-driven device or another shape, Inside the case, there are an inner positive terminal and an inner negative terminal connected to the outer positive terminal and the outer negative terminal, respectively, a battery accommodating portion for accommodating a battery, and an antenna for wireless communication And a sensor that measures at least one of temperature, humidity, and atmospheric pressure, and a transmitter that transmits data measured by the sensor to the external information processing device via the antenna.
図1は、本実施形態に係るセンサ装置を用いた空調管理システムを示す図である。FIG. 1 is a diagram showing an air conditioning management system using the sensor device according to the present embodiment. 図2は、図1のセンサ装置の外観を示す図である。FIG. 2 is a diagram illustrating an appearance of the sensor device of FIG. 図3は、図1のセンサ装置の断面を示す図である。FIG. 3 is a view showing a cross section of the sensor device of FIG. 1. 図4は、図1のセンサ装置の等価回路図である。FIG. 4 is an equivalent circuit diagram of the sensor device of FIG. 図5は、図1のセンサ装置のオフ連動モードの動作手順を示すフローチャートである。FIG. 5 is a flowchart showing an operation procedure in the off-linked mode of the sensor device of FIG. 図6は、図1のセンサ装置のオン連動モードの動作手順を示すフローチャートである。FIG. 6 is a flowchart showing an operation procedure in the on-linked mode of the sensor device of FIG. 図7は、本実施形態に係るセンサ装置を用いた気温データ収集システムを示す図である。FIG. 7 is a diagram showing an air temperature data collection system using the sensor device according to the present embodiment.
 以下、図面を参照しながら本実施形態に係るセンサ装置を説明する。以下の説明において、略同一の機能及び構成を有する構成要素については、同一符号を付し、重複説明は必要な場合にのみ行う。 Hereinafter, the sensor device according to the present embodiment will be described with reference to the drawings. In the following description, components having substantially the same function and configuration are denoted by the same reference numerals, and redundant description will be given only when necessary.
 本実施形態に係るセンサ装置4は、電池規格に準ずる形状及び大きさを有し、電池駆動式機器6の電池ボックスに装着される。電池駆動式機器6としては、例えば電気スタンド61、テレビリモコン62、電池駆動式の時計63及び電池点火式のガスレンジ64が挙げられる。図1に示す空調管理システムにおいて、センサ装置4は、近距離無線通信規格、典型的にはBluetooth(登録商標)規格に従ってプログラマブル・ロジック・コントローラ(以下、単にPLCという)3に接続される。センサ装置4は、計測した温度データをPLC3に送信する。PLC3は、エアコン制御プログラムのデータを保持し、センサ装置4により計測された温度データに従って、エアコン5の設定温度、風量、風向きを変更するためにエアコン5を制御する。これにより、リビングの温度をユーザの好みの温度で一定に保つことができる。さらに、複数のセンサ装置4をリビングに分散して配置することで、エアコン5から吹き出される風の向きを制御し、部屋全体を一定の温度に保つことができる。 The sensor device 4 according to the present embodiment has a shape and size conforming to the battery standard, and is attached to the battery box of the battery-driven device 6. Examples of the battery-driven device 6 include a desk lamp 61, a TV remote control 62, a battery-driven timepiece 63, and a battery ignition-type gas range 64. In the air conditioning management system shown in FIG. 1, the sensor device 4 is connected to a programmable logic controller (hereinafter simply referred to as PLC) 3 in accordance with a short-range wireless communication standard, typically Bluetooth (registered trademark) standard. The sensor device 4 transmits the measured temperature data to the PLC 3. The PLC 3 holds the data of the air conditioner control program, and controls the air conditioner 5 in order to change the set temperature, air volume, and wind direction of the air conditioner 5 according to the temperature data measured by the sensor device 4. As a result, the living room temperature can be kept constant at the user's preferred temperature. Furthermore, by disposing the plurality of sensor devices 4 in the living room, the direction of the wind blown from the air conditioner 5 can be controlled, and the entire room can be maintained at a constant temperature.
 図2、図3に示すように、センサ装置4は電池規格に準じた形状又は他の形状を有する。典型的にはセンサ装置4は単三形の形状を有する。もちろん、センサ装置4の形状、大きさ等は電池駆動式機器6に使用される電池に応じて任意であり、例えば単一形として構成されてもよい。 2 and 3, the sensor device 4 has a shape conforming to the battery standard or other shapes. The sensor device 4 typically has an AA shape. Of course, the shape, size, and the like of the sensor device 4 are arbitrary depending on the battery used in the battery-driven device 6, and may be configured as a single shape, for example.
 センサ装置4は、単三形電池規格に準じた高さ及び直径の円筒形状のケース41を有する。ケース41の前後端面には、単三形電池規格に準じて外側正極端子43と外側負極端子44とが取り付けられる。ケース41の内側にはそれより小さい単四形電池規格に準じた形状及び大きさの電池収容部42が設けられる。電池収容部42の前後端面には、それに収容された単四形の電池48の正極端子と負極端子とに接する内側正極端子45と内側負極端子46とがそれぞれ取り付けられる。電池収容部42に取り付けられた内側正極端子45と内側負極端子46とは外側正極端子43と外側負極端子44とにそれぞれ接続される。 The sensor device 4 has a cylindrical case 41 having a height and a diameter in accordance with the AA battery standard. An outer positive terminal 43 and an outer negative terminal 44 are attached to the front and rear end faces of the case 41 in accordance with the AA battery standard. Inside the case 41, a battery accommodating portion 42 having a shape and size conforming to the smaller standard AAA battery standard is provided. An inner positive terminal 45 and an inner negative terminal 46 that are in contact with the positive terminal and the negative terminal of the AAA battery 48 accommodated therein are respectively attached to the front and rear end faces of the battery accommodating portion 42. The inner positive terminal 45 and the inner negative terminal 46 attached to the battery housing part 42 are connected to the outer positive terminal 43 and the outer negative terminal 44, respectively.
 電池収容部42はその円筒中心軸がケース41の円筒中心軸に対して半径方向にオフセットされる。このオフセットにより、ケース41の内側にわずかなスペースが確保される。このわずかなスペースにセンサ装置4の各種機能を実現する電子回路基板47が収容される。本実施形態では、電子回路基板47に温度を計測する温度センサ49が実装されている。電子回路基板47とは反対側のケース41の周面部分は長円形状に切り欠かれている。この切り欠きの長さは単四形電池と同等又は若干短く、幅は単四形電池の幅より若干広い。これにより切り欠きを介して単四形の内部電池48を電池収容部42に挿抜することができる。 The battery housing part 42 is offset in the radial direction with respect to the cylindrical central axis of the case 41 with respect to the cylindrical central axis. Due to this offset, a small space is secured inside the case 41. An electronic circuit board 47 that realizes various functions of the sensor device 4 is accommodated in this small space. In the present embodiment, a temperature sensor 49 that measures temperature is mounted on the electronic circuit board 47. The peripheral surface portion of the case 41 opposite to the electronic circuit board 47 is cut out in an oval shape. The length of the notch is equal to or slightly shorter than that of the AAA battery, and the width is slightly wider than that of the AAA battery. Thereby, the AAA internal battery 48 can be inserted into and removed from the battery accommodating portion 42 through the notch.
 センサ装置4は、電源スイッチ7を有する電池駆動式機器6の電池ボックスに装着され、電池駆動式機器6の周辺の温度を計測し、計測した温度データをPLC3に無線で送信する本来のIoTデバイスとして機能するとともに、電池駆動式機器6の電源としても機能する。電池収容部42に収容された電池48は、電子回路基板47に実装された温度センサ49などの部品の電源であるとともに、電池駆動式機器6の電源でもある。 The sensor device 4 is mounted on a battery box of a battery-driven device 6 having a power switch 7, measures the temperature around the battery-driven device 6, and transmits the measured temperature data to the PLC 3 wirelessly. And also functions as a power source for the battery-powered device 6. The battery 48 accommodated in the battery accommodating portion 42 is a power source for components such as the temperature sensor 49 mounted on the electronic circuit board 47 and also a power source for the battery-driven device 6.
 図4に示すように、センサ装置4の機能を実現する電子回路基板47には、DCDCコンバータ59、コンパレータ57、出力トランジスタ55及びRFIC(高周波集積回路)56等が実装されている。DCDCコンバータ59は電池収容部42に収容された内部電池48の電池電圧を用いてコンパレータ57及びRFIC56の電源電圧Vddを発生する。なお、RFICは、適宜、単に処理部という。 As shown in FIG. 4, a DCDC converter 59, a comparator 57, an output transistor 55, an RFIC (high frequency integrated circuit) 56, and the like are mounted on an electronic circuit board 47 that realizes the function of the sensor device 4. The DCDC converter 59 generates the power supply voltage Vdd of the comparator 57 and the RFIC 56 using the battery voltage of the internal battery 48 accommodated in the battery accommodating portion 42. The RFIC is simply referred to as a processing unit as appropriate.
 コンパレータ57は、電子回路基板47の内部電流値、ここでは内側負極端子46と外側負極端子44との間の電流値に基づいて、電池駆動式機器6の電源スイッチ7のオンオフを検知する。具体的には、内側負極端子46と外側負極端子44との間に検出抵抗51が介在される。検出抵抗51により内側負極端子46と外側負極端子44との間の電流は電圧に変換され、検出抵抗51の両端電圧(検出電圧)はコンパレータ57の入力端子(反転入力端子)に印加される。コンパレータ57の他の入力端子(非反転入力端子)には、内部電池48の電池電圧が分圧抵抗52,53で分圧されて参照電圧として印加される。コンパレータ57は、参照電圧に対して検出電圧を比較する。検出電圧は、電源スイッチ7のオンオフに従って変動する。この検出電圧の変動に従って、コンパレータ57の比較結果を変化させるために、分圧抵抗52,53の抵抗値は調整されている。 The comparator 57 detects the on / off of the power switch 7 of the battery-powered device 6 based on the internal current value of the electronic circuit board 47, here the current value between the inner negative terminal 46 and the outer negative terminal 44. Specifically, the detection resistor 51 is interposed between the inner negative terminal 46 and the outer negative terminal 44. The current between the inner negative terminal 46 and the outer negative terminal 44 is converted into a voltage by the detection resistor 51, and the voltage across the detection resistor 51 (detection voltage) is applied to the input terminal (inverted input terminal) of the comparator 57. The battery voltage of the internal battery 48 is divided by the voltage dividing resistors 52 and 53 and applied as a reference voltage to the other input terminal (non-inverting input terminal) of the comparator 57. The comparator 57 compares the detection voltage with the reference voltage. The detection voltage varies according to the on / off state of the power switch 7. In order to change the comparison result of the comparator 57 in accordance with the change in the detection voltage, the resistance values of the voltage dividing resistors 52 and 53 are adjusted.
 出力トランジスタ55は、内部電池48の出力のオンオフを切り替えるスイッチング素子として機能する。出力トランジスタ55は、RFIC56からのゲート制御信号により印加されるゲート電圧により、そのオンオフが制御される。具体的には、出力トランジスタ55は、典型的にはPチャンネルMOSFETであり、内側正極端子45と外側正極端子43との間に介在される。ソース端子は、内側正極端子45に接続され、ドレイン端子は外側正極端子43に接続され、ゲート端子はRFIC56のOUT端子に接続される。ゲート電圧がしきい値電圧より低いとき(PWM信号がローレベルのとき)、出力トランジスタ55はオンされる。一方、ゲート電圧がしきい値電圧より高いとき(PWM信号がハイレベルのとき)、出力トランジスタ55はオフされる。したがって、PWM信号のデューティー比を変更することで、実質的に内部電池48の出力を調整することができる。もちろん、回路構成を変更することで、出力トランジスタ55は、NチャンネルMOSFET又はバイポーラトランジスタを用いることもできる。 The output transistor 55 functions as a switching element that switches the output of the internal battery 48 on and off. The output transistor 55 is controlled to be turned on and off by a gate voltage applied by a gate control signal from the RFIC 56. Specifically, the output transistor 55 is typically a P-channel MOSFET, and is interposed between the inner positive terminal 45 and the outer positive terminal 43. The source terminal is connected to the inner positive terminal 45, the drain terminal is connected to the outer positive terminal 43, and the gate terminal is connected to the OUT terminal of the RFIC 56. When the gate voltage is lower than the threshold voltage (when the PWM signal is at a low level), the output transistor 55 is turned on. On the other hand, when the gate voltage is higher than the threshold voltage (when the PWM signal is at a high level), the output transistor 55 is turned off. Therefore, the output of the internal battery 48 can be substantially adjusted by changing the duty ratio of the PWM signal. Of course, by changing the circuit configuration, the output transistor 55 may be an N-channel MOSFET or a bipolar transistor.
 RFIC56は、センサ装置4を統括して制御する。RFIC56のANT端子には無線通信用のアンテナ58が接続される。GND端子は、電子回路基板47のGNDに接続される。SENSOR端子には温度センサ49の出力端子が接続される。Vs端子には、温度センサ49の電源端子が接続される。OUT端子には出力トランジスタ55のゲート端子が接続される。IN端子にはコンパレータ57の出力端子が接続される。RFIC56は温度センサ49を介して温度を検出する。典型的にはアンテナ58はケース41に収容される。しかしアンテナ58はケース41の外表面に貼着されていてもよい。 The RFIC 56 controls the sensor device 4 in an integrated manner. An antenna 58 for wireless communication is connected to the ANT terminal of the RFIC 56. The GND terminal is connected to the GND of the electronic circuit board 47. The output terminal of the temperature sensor 49 is connected to the SENSOR terminal. A power supply terminal of the temperature sensor 49 is connected to the Vs terminal. The gate terminal of the output transistor 55 is connected to the OUT terminal. The output terminal of the comparator 57 is connected to the IN terminal. The RFIC 56 detects the temperature via the temperature sensor 49. Typically, the antenna 58 is accommodated in the case 41. However, the antenna 58 may be attached to the outer surface of the case 41.
 RFIC56は、機能上、無線通信部、PWM信号発生部及び制御部を備える。ここでは、センサ装置4は、温度センサ49を備える。しかし、温度センサ49に代わって、湿度を計測する湿度センサ、気圧を計測する気圧センサ、音を検出する音センサなど、センサ装置4が設置された場所の環境情報を取得する各種センサを備える構成であってもよいし、複数種類のセンサを備える構成であってもよい。典型的にはセンサ49はケース41に収容される。しかしセンサ49はケース41の外表面に貼着されてもよいし、ケース41の一部が開口されそこから露出していてもよい。 The RFIC 56 functionally includes a wireless communication unit, a PWM signal generation unit, and a control unit. Here, the sensor device 4 includes a temperature sensor 49. However, instead of the temperature sensor 49, a configuration including various sensors that acquire environmental information of a place where the sensor device 4 is installed, such as a humidity sensor that measures humidity, a pressure sensor that measures atmospheric pressure, and a sound sensor that detects sound. It may be a structure provided with a plurality of types of sensors. Typically, the sensor 49 is accommodated in the case 41. However, the sensor 49 may be adhered to the outer surface of the case 41, or a part of the case 41 may be opened and exposed from there.
 無線通信部は、制御部の制御に従って、センサデータの出力先として予め登録されたPLC3に温度データを送信する。また、無線通信部は、制御部の制御に従って、センサ装置4の各種設定を変更するユーザ端末として予め登録された携帯型情報処理端末から出力トランジスタ55の開閉を指示する制御信号を受信する。センサ装置4に対して同時に2つの外部機器が接続できない場合、制御部は、無線通信部を制御し、センサ装置4に対して一方の外部機器の接続を許可し、他方の外部機器の接続を禁止する。例えば、後述の常時モードにおいて、制御部は、センサ装置4に対してPLC3を接続し、携帯型情報処理端末を接続しないために、無線通信部を制御する。後述の連動モードにおいて、制御部は、温度センサ49が駆動している間、センサ装置4に対してPLC3を接続し、携帯型情報処理端末を接続しないために無線通信部を制御し、温度センサ49が駆動していない間、センサ装置4に対して携帯型情報処理端末を接続し、PLC3を接続しないために、無線通信部を制御する。電池収容部42からの電池48の挿抜により、RFIC56を再起動することにより、モードは、例えばオン連動モードに初期化される。これにより、常時モードを選択した場合であっても、RFIC56を再起動することで、モード選択が可能となる。 The wireless communication unit transmits temperature data to the PLC 3 registered in advance as the output destination of the sensor data according to the control of the control unit. In addition, the wireless communication unit receives a control signal instructing opening / closing of the output transistor 55 from a portable information processing terminal registered in advance as a user terminal for changing various settings of the sensor device 4 according to control of the control unit. When two external devices cannot be connected to the sensor device 4 at the same time, the control unit controls the wireless communication unit, allows the sensor device 4 to connect one external device, and connects the other external device. Ban. For example, in the regular mode described later, the control unit controls the wireless communication unit in order to connect the PLC 3 to the sensor device 4 and not connect the portable information processing terminal. In the interlock mode described later, the control unit controls the wireless communication unit to connect the PLC 3 to the sensor device 4 and not to connect the portable information processing terminal while the temperature sensor 49 is being driven. While 49 is not driven, the wireless communication unit is controlled so that the portable information processing terminal is connected to the sensor device 4 and the PLC 3 is not connected. The mode is initialized to, for example, the on-linked mode by restarting the RFIC 56 by inserting / removing the battery 48 from / into the battery accommodating portion 42. Thereby, even if the mode is always selected, the mode can be selected by restarting the RFIC 56.
 PWM信号発生部は、携帯型情報処理端末から受信した制御信号に応じたデューティー比のPWM信号(パルス幅信号変調)を発生する。PWM信号発生部により発生されたPWM信号は出力トランジスタ55のゲートに供給される。出力指令値が0%の場合において、PWM信号発生部は、デューティー比0%(ハイレベルのみ)のPWM信号を発生する。出力指令値が100%の場合において、デューティー比100%(ローレベルのみ)のPWM信号を発生する。出力指令値が50%の場合、PWM信号発生部は、デューティー比50%(ローレベルとハイレベルの比が半分)の駆動信号を発生する。 The PWM signal generator generates a PWM signal (pulse width signal modulation) with a duty ratio corresponding to the control signal received from the portable information processing terminal. The PWM signal generated by the PWM signal generator is supplied to the gate of the output transistor 55. When the output command value is 0%, the PWM signal generator generates a PWM signal with a duty ratio of 0% (only high level). When the output command value is 100%, a PWM signal having a duty ratio of 100% (low level only) is generated. When the output command value is 50%, the PWM signal generator generates a drive signal with a duty ratio of 50% (the ratio between the low level and the high level is half).
 制御部は、温度センサ49を常時動作させる常時モードと、温度センサ49のオンオフを電池駆動式機器6の電源スイッチ7のオンオフに連動させる連動モードとを備える。もちろん、電源スイッチ7が設けられていない機器であれば、電源スイッチ7のオンオフは、電池駆動式機器6の電池ボックスへのセンサ装置の挿抜に代替され、温度センサ49のオンオフは、電池駆動式機器6の動作のオンオフに連動する。さらに連動モードには、電池駆動式機器6がオン状態のとき温度センサ49を動作させ、電池駆動式機器6がオフ状態のとき温度センサ49を停止させるオン連動モードと、電池駆動式機器6がオフ状態のとき温度センサ49を動作させ、電池駆動式機器6がオン状態のとき温度センサ49を停止させるオフ連動モードとを備える。これらモードは、センサ装置4に対して接続された特定の携帯型情報処理端末からの指示に従って選択される。モード選択は、温度センサ49がオフ状態の期間又は電池48を電池収容部42に装着してから所定の期間に行うことができる。これにより、常時モードが選択された場合であっても、電池48が電池収容部42に装着してから所定の期間は、温度センサ49の駆動を待機し、その間にモードを選択することができる。 The control unit includes a normal mode in which the temperature sensor 49 is always operated, and an interlocking mode in which the on / off of the temperature sensor 49 is interlocked with the on / off of the power switch 7 of the battery-driven device 6. Of course, if the device is not provided with the power switch 7, the on / off of the power switch 7 is replaced with the insertion / extraction of the sensor device to / from the battery box of the battery driven device 6, and the on / off of the temperature sensor 49 is the battery driven type. This is linked to the on / off of the operation of the device 6. Further, in the interlock mode, the temperature sensor 49 is operated when the battery-driven device 6 is in an on state, and the temperature sensor 49 is stopped when the battery-driven device 6 is in an off state, and the battery-driven device 6 is And an off-linked mode in which the temperature sensor 49 is operated in the off state and the temperature sensor 49 is stopped when the battery-powered device 6 is in the on state. These modes are selected according to an instruction from a specific portable information processing terminal connected to the sensor device 4. The mode can be selected during a period in which the temperature sensor 49 is in an off state or a predetermined period after the battery 48 is attached to the battery housing part 42. Thereby, even when the normal mode is selected, the temperature sensor 49 can be driven for a predetermined period after the battery 48 is mounted in the battery housing portion 42, and the mode can be selected during that period. .
 常時モードは、センサ装置4をIoTデバイスとして常時機能させるモードである。常時モードを選択することで、センサ装置4を本来のIoTデバイスとして特化することができる。常時モードが選択されたとき、制御部は、電池駆動式機器6への電源出力をあえて低下させるために、予め決められたデューティー比のPWM信号が出力トランジスタ55に供給させるためにPWM信号発生部を制御するようにしてもよい。これにより、電池駆動式機器6の電源としての機能を低下させ、センサ装置4がIoTデバイスとして機能する時間を長くすることができる。 The always mode is a mode in which the sensor device 4 always functions as an IoT device. By selecting the constant mode, the sensor device 4 can be specialized as an original IoT device. When the constant mode is selected, the control unit is configured to cause the PWM signal generating unit to supply a PWM signal having a predetermined duty ratio to the output transistor 55 in order to intentionally reduce the power output to the battery-powered device 6. May be controlled. Thereby, the function as a power supply of the battery-powered apparatus 6 can be reduced, and the time during which the sensor device 4 functions as an IoT device can be lengthened.
 連動モードは、センサ装置4をIoTデバイスとして機能させる期間を、電池駆動式機器6がオン状態又はオフ状態の期間に限定するモードである。連動モードを選択することで、常時モードに比して温度センサ49の駆動時間を短くし、電池48の消耗を抑え、電池駆動式機器6の電源としての機能をできるだけ長時間、確保することができる。温度センサ49は、内部電池48に近接して配置せざるを得ない。自己発熱により内部電池48が温められてしまうと、温度センサ49により計測される温度が実際の温度よりも高い値を示す可能性がある。オフ連動モードを選択することで、電池駆動式機器6がオフ状態の期間に限定して温度センサ49を駆動させることができ、センサ装置4は信頼性の高い温度データのみをPLC3に送信できるという効果もある。その効果は、センサ装置4の装着対象が電気スタンド、電池点火式のガスレンジなど使用状態で熱を発生する場合に高い。 The interlocking mode is a mode in which the period during which the sensor device 4 functions as an IoT device is limited to a period in which the battery-driven device 6 is in an on state or an off state. By selecting the interlock mode, it is possible to shorten the drive time of the temperature sensor 49 compared to the normal mode, suppress the consumption of the battery 48, and ensure the function as a power source of the battery-driven device 6 for as long as possible. it can. The temperature sensor 49 must be disposed close to the internal battery 48. If the internal battery 48 is warmed by self-heating, the temperature measured by the temperature sensor 49 may be higher than the actual temperature. By selecting the off-linked mode, the temperature sensor 49 can be driven only during the period in which the battery-powered device 6 is in the off state, and the sensor device 4 can transmit only reliable temperature data to the PLC 3. There is also an effect. The effect is high when the mounting target of the sensor device 4 generates heat in a use state such as a desk lamp or a battery ignition type gas range.
 図5は、本実施形態に係るセンサ装置4のオフ連動モードの動作手順を示している。初期状態において、電源スイッチ7はオフ状態である。電池収容部42に内部電池48が収容されると、RFIC56が起動し、センサ装置4はPLC3と無線接続される。RFIC56により、温度センサ49が駆動され(工程S11)、温度センサ49により計測された温度データがRFIC56に入力される(工程S12)。温度データは、RFIC56によりPLC3に送信される(工程S13)。工程S12と工程S13とは、電源スイッチ7がオンされるまで予め設定された周期で繰り返し実行される(工程S14、OFF)。電源スイッチ7がオンされると(工程S14、ON)、RFIC56により温度センサ49の駆動が停止され、PLC3へのデータ送信が停止される(工程S15)。電源スイッチ7がオフされると(工程S16、OFF)、予め設定された待機時間が経過するまで待機し(工程S17、NO)、待機時間が経過した後(工程S17、YES)、工程S11にリターンし、再び温度センサ49が駆動され、温度データの計測が再開される。待機時間を設けることで、自己発熱による温められた電池48が冷却されるまでの時間を確保し、温度センサ49により計測される温度の信頼性を担保することができる。 FIG. 5 shows an operation procedure in the off-linked mode of the sensor device 4 according to the present embodiment. In the initial state, the power switch 7 is off. When the internal battery 48 is accommodated in the battery accommodating portion 42, the RFIC 56 is activated, and the sensor device 4 is wirelessly connected to the PLC 3. The temperature sensor 49 is driven by the RFIC 56 (step S11), and the temperature data measured by the temperature sensor 49 is input to the RFIC 56 (step S12). The temperature data is transmitted to the PLC 3 by the RFIC 56 (step S13). Step S12 and step S13 are repeatedly executed at a preset period until the power switch 7 is turned on (step S14, OFF). When the power switch 7 is turned on (step S14, ON), the driving of the temperature sensor 49 is stopped by the RFIC 56, and the data transmission to the PLC 3 is stopped (step S15). When the power switch 7 is turned off (step S16, OFF), it waits until a preset standby time elapses (step S17, NO). After the standby time elapses (step S17, YES), the process goes to step S11. Returning, the temperature sensor 49 is driven again, and the measurement of temperature data is resumed. By providing the standby time, it is possible to secure a time until the battery 48 heated by self-heating is cooled and to ensure the reliability of the temperature measured by the temperature sensor 49.
 図6は、本実施形態に係るセンサ装置4のオン連動モードの動作手順を示している。初期状態において、電源スイッチ7はオフ状態である。電池収容部42に電池48が収容されると、RFIC56が起動する。電源スイッチ7がオンされると(工程S21、ON)、RFIC56により、温度センサ49が駆動され(工程S22)、温度センサ49により計測された温度データがRFIC56に入力される(工程S23)。温度データは、RFIC56によりPLC3に送信される(工程S24)。工程S23と工程S24とは、電源スイッチ7がオフされるまで予め設定された周期で繰り返し実行される(工程S25、ON)。電源スイッチ7がオフされると(工程S25、OFF)、RFIC56により温度センサ49の駆動が停止され、PLC3へのデータ送信が停止される(工程S26)。電源スイッチ7がオンされると、再び工程S21から処理が開始される。 FIG. 6 shows an operation procedure in the on-linked mode of the sensor device 4 according to the present embodiment. In the initial state, the power switch 7 is off. When the battery 48 is accommodated in the battery accommodating portion 42, the RFIC 56 is activated. When the power switch 7 is turned on (step S21, ON), the temperature sensor 49 is driven by the RFIC 56 (step S22), and the temperature data measured by the temperature sensor 49 is input to the RFIC 56 (step S23). The temperature data is transmitted to the PLC 3 by the RFIC 56 (step S24). Step S23 and step S24 are repeatedly executed at a preset cycle until the power switch 7 is turned off (step S25, ON). When the power switch 7 is turned off (step S25, OFF), the driving of the temperature sensor 49 is stopped by the RFIC 56, and the data transmission to the PLC 3 is stopped (step S26). When the power switch 7 is turned on, the process starts again from step S21.
 本実施形態に係るセンサ装置4は、単三形電池規格に規定された電池形状を有し、電池駆動式機器6の電池ボックスに装着することができる。センサ装置4は、単四形の電池48を収容する電池収容部42を有し、電池駆動式機器6の電源としても機能する。これにより、センサ装置4を既存の電池駆動式機器6の電池ボックスに装着するだけで、センサ装置4から温度データを収集することができ、ユーザは、センサ装置4の設置場所を確保する必要がなければ、センサ装置4を設置するための特別な設置作業をする必要もない。すなわち、本実施形態に係るセンサ装置4を用いることで、温度センサにより計測された温度データを活用したシステムの導入を容易にし、システムの導入障壁を低くすることができる。 The sensor device 4 according to the present embodiment has a battery shape defined in the AA battery standard, and can be attached to the battery box of the battery-driven device 6. The sensor device 4 has a battery accommodating portion 42 that accommodates the AAA battery 48, and also functions as a power source for the battery-driven device 6. As a result, the temperature data can be collected from the sensor device 4 simply by mounting the sensor device 4 on the battery box of the existing battery-driven device 6, and the user needs to secure the installation location of the sensor device 4. Otherwise, there is no need to perform a special installation work for installing the sensor device 4. That is, by using the sensor device 4 according to the present embodiment, it is possible to facilitate the introduction of a system utilizing temperature data measured by the temperature sensor, and to lower the system introduction barrier.
 本実施形態では、センサ装置4を活用した空調管理システムを説明したが、センサ装置4を活用したシステムはこれに限定されない。例えば、センサ装置4を気温データ収集システムに活用することができる。図7に示すように、センサ装置4を屋外、例えば住居の駐車スペースに設置された電池駆動式の屋外ライト65に装着し、センサ装置4により計測された屋外の温度データを、住人のスマートフォン2に送信させ、スマートフォン2で起動している気温データ収集システムのアプリケーションソフトによって、温度データを位置情報とともにインターネット1を介して外部情報処理デバイスとしてのサーバ装置9に送信させる。このようにして、サーバ装置9は、屋外の温度データを位置情報とともに収集し、収集した温度データを位置情報に従って地図上にマッピングした気温マップのデータを発生する。サーバ装置9により発生された気温マップはインターネット1を介して、本システムの利用者の端末10に送信され、利用者は予測された気温ではなく、実際に計測された気温をリアルタイムに地図上で確認することができる。もちろん、気圧センサを備える場合、センサ装置4は気圧データ収集システムに活用することができる。これにより、気圧データ収集システムは、実際に計測された気圧を地図上にマッピングした気圧マップを、本システムの利用者に提供することができる。 In the present embodiment, the air conditioning management system using the sensor device 4 has been described, but the system using the sensor device 4 is not limited to this. For example, the sensor device 4 can be used in an air temperature data collection system. As shown in FIG. 7, the sensor device 4 is mounted outdoors, for example, on a battery-driven outdoor light 65 installed in a parking space of a residence, and outdoor temperature data measured by the sensor device 4 is used as a resident's smartphone 2. The temperature data is transmitted together with the position information to the server apparatus 9 as an external information processing device via the Internet 1 by the application software of the temperature data collection system activated on the smartphone 2. In this way, the server device 9 collects outdoor temperature data together with the position information, and generates temperature map data obtained by mapping the collected temperature data on the map according to the position information. The temperature map generated by the server device 9 is transmitted to the terminal 10 of the user of this system via the Internet 1, and the user displays the actually measured temperature on the map in real time, not the predicted temperature. Can be confirmed. Of course, when a barometric pressure sensor is provided, the sensor device 4 can be used in a barometric pressure data collection system. Thereby, the atmospheric pressure data collection system can provide the user of this system with an atmospheric pressure map obtained by mapping the actually measured atmospheric pressure on the map.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.
 4…センサ装置、6…電池駆動式機器、7…電源スイッチ、41…ケース、42…電池収容部、43…外側正極端子、44…外側負極端子、45…内側正極端子、46…内側負極端子、47…電子回路基板、48…電池、49…温度センサ、56…RFIC、58…アンテナ。 DESCRIPTION OF SYMBOLS 4 ... Sensor apparatus, 6 ... Battery drive type device, 7 ... Power switch, 41 ... Case, 42 ... Battery accommodating part, 43 ... Outer positive terminal, 44 ... Outer negative terminal, 45 ... Inner positive terminal, 46 ... Inner negative terminal 47 ... Electronic circuit board, 48 ... Battery, 49 ... Temperature sensor, 56 ... RFIC, 58 ... Antenna.

Claims (6)

  1.  電池駆動式機器の電池ボックスに装着可能な電気規格に準じた形状又は他の形状を有するケースに外側正極端子と外側負極端子とがそれぞれ露出して取り付けられ、
     前記ケースの内側には、前記外側正極端子と前記外側負極端子とにそれぞれ接続される内側正極端子と内側負極端子とを有し、電池を収容するための電池収容部と、無線通信用のアンテナと、温度、湿度、気圧のうち少なくとも一を計測するセンサと、前記センサにより計測されたデータを前記アンテナを介して外部情報処理デバイスに送信する送信部と、が設けられるセンサ装置。
    The outer positive terminal and the outer negative terminal are respectively exposed and attached to a case having a shape conforming to an electrical standard that can be mounted on a battery box of a battery-driven device or another shape,
    Inside the case, there are an inner positive terminal and an inner negative terminal connected to the outer positive terminal and the outer negative terminal, respectively, a battery accommodating portion for accommodating a battery, and an antenna for wireless communication And a sensor device that measures at least one of temperature, humidity, and atmospheric pressure, and a transmitter that transmits data measured by the sensor to an external information processing device via the antenna.
  2.  前記ケースの内側には、前記電池駆動式機器の電源スイッチのオンオフを検知するスイッチ検知部と、前記電源スイッチがオフのとき前記データの送信を実行させ、前記電源スイッチがオンのとき前記データの送信を停止させるために、前記スイッチ検知部の検知結果に従って、前記センサを制御する制御部とがさらに設けられる請求項1記載のセンサ装置。 Inside the case, a switch detector for detecting on / off of a power switch of the battery-powered device, and transmitting the data when the power switch is off, and transmitting the data when the power switch is on. The sensor device according to claim 1, further comprising a control unit that controls the sensor according to a detection result of the switch detection unit in order to stop transmission.
  3.  前記ケースの内側には、前記電池駆動式機器の電源スイッチのオンオフを検知するスイッチ検知部と、前記電源スイッチがオンのとき前記データの送信を実行させ、前記電源スイッチがオフのとき前記データの送信を停止させるために、前記スイッチ検知部の検知結果に従って、前記センサを制御する制御部とがさらに設けられる請求項1記載のセンサ装置。 Inside the case, a switch detection unit that detects on / off of a power switch of the battery-powered device, and transmission of the data when the power switch is on, and transmission of the data when the power switch is off. The sensor device according to claim 1, further comprising a control unit that controls the sensor according to a detection result of the switch detection unit in order to stop transmission.
  4.  前記スイッチ検知部は、前記内側正極端子と前記外側正極端子との間又は前記内側負極端子と前記外側負極端子との間の電流値を検出する電流検出部と、前記検出された電流値に基づいて前記電源スイッチのオンオフを判定する判定部とを有する請求項2又は請求項3に記載のセンサ装置。 The switch detector is configured to detect a current value between the inner positive terminal and the outer positive terminal or between the inner negative terminal and the outer negative terminal, and based on the detected current value. The sensor device according to claim 2, further comprising: a determination unit that determines whether the power switch is on or off.
  5.  前記ケースの内側には、前記内側負極端子と前記外側負極端子との間又は前記内側正極端子と前記外側正極端子との間に介在される出力トランジスタと、前記アンテナを介して外部情報処理端末から前記出力トランジスタの開閉を指示する制御信号を受信する受信部と、前記制御信号に応じたデューティー比で前記出力トランジスタの開閉を制御するPWM信号を発生するPWM信号発生部とがさらに設けられる請求項2又は請求項3に記載のセンサ装置。 Inside the case is an output transistor interposed between the inner negative terminal and the outer negative terminal or between the inner positive terminal and the outer positive terminal, and from an external information processing terminal via the antenna. The receiving part which receives the control signal which instruct | indicates opening and closing of the said output transistor, and the PWM signal generation part which generate | occur | produces the PWM signal which controls opening and closing of the said output transistor with the duty ratio according to the said control signal are further provided. The sensor device according to claim 2 or claim 3.
  6.  電気規格に準じた形状又は他の形状を有するケースと、
     前記ケースに収容される電池と、
     前記ケースの外側に露出される、前記電池の電極に接続される外部端子と、
     前記ケースに収容され又は露出される温度、湿度、気圧のうち少なくとも一を計測するセンサと、
     前記ケースに収容される無線通信用のアンテナと、
     前記センサを介して温度、湿度、気圧のうち少なくとも一を検出するとともに前記検出された温度、湿度、気圧のうち少なくとも一に関するデータを前記アンテナを介して外部情報処理デバイスに送信する処理部と、
     前記電池の電圧を前記処理部の電源電圧に変換する変換部とを具備する電池装置。
    A case having a shape conforming to electrical standards or other shapes;
    A battery housed in the case;
    An external terminal connected to the electrode of the battery exposed to the outside of the case;
    A sensor that measures at least one of temperature, humidity, and atmospheric pressure contained or exposed in the case;
    An antenna for wireless communication housed in the case;
    A processing unit that detects at least one of temperature, humidity, and atmospheric pressure via the sensor and transmits data related to at least one of the detected temperature, humidity, and atmospheric pressure to the external information processing device via the antenna;
    A battery device comprising: a conversion unit that converts the voltage of the battery into a power supply voltage of the processing unit.
PCT/JP2019/016795 2018-04-20 2019-04-19 Sensor device and battery device WO2019203341A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020514457A JPWO2019203341A1 (en) 2018-04-20 2019-04-19 Sensor device and battery device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-081663 2018-04-20
JP2018081663 2018-04-20

Publications (1)

Publication Number Publication Date
WO2019203341A1 true WO2019203341A1 (en) 2019-10-24

Family

ID=68239906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016795 WO2019203341A1 (en) 2018-04-20 2019-04-19 Sensor device and battery device

Country Status (2)

Country Link
JP (1) JPWO2019203341A1 (en)
WO (1) WO2019203341A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6152597A (en) * 1997-06-27 2000-11-28 Potega; Patrick H. Apparatus for monitoring temperature of a power source
CN102957179A (en) * 2011-08-16 2013-03-06 昱鸿电子有限公司 Battery module with wireless transmission function, and wireless control method of same
JP2013178933A (en) * 2012-02-28 2013-09-09 Nippon Telegr & Teleph Corp <Ntt> Battery type sensor node, electronic equipment identification device and method, and program
JP2015075825A (en) * 2013-10-07 2015-04-20 シャープ株式会社 Self-propelled electronic device
US20170085117A1 (en) * 2015-09-22 2017-03-23 Kabushiki Kaisha Toshiba Battery-shaped wireless device
WO2017115602A1 (en) * 2015-12-29 2017-07-06 ノバルス株式会社 Battery-type power supply device provided with wireless communication function

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6152597A (en) * 1997-06-27 2000-11-28 Potega; Patrick H. Apparatus for monitoring temperature of a power source
CN102957179A (en) * 2011-08-16 2013-03-06 昱鸿电子有限公司 Battery module with wireless transmission function, and wireless control method of same
JP2013178933A (en) * 2012-02-28 2013-09-09 Nippon Telegr & Teleph Corp <Ntt> Battery type sensor node, electronic equipment identification device and method, and program
JP2015075825A (en) * 2013-10-07 2015-04-20 シャープ株式会社 Self-propelled electronic device
US20170085117A1 (en) * 2015-09-22 2017-03-23 Kabushiki Kaisha Toshiba Battery-shaped wireless device
WO2017115602A1 (en) * 2015-12-29 2017-07-06 ノバルス株式会社 Battery-type power supply device provided with wireless communication function

Also Published As

Publication number Publication date
JPWO2019203341A1 (en) 2021-05-20

Similar Documents

Publication Publication Date Title
US8278838B2 (en) Dimmer device with feedback function
JP6960187B2 (en) Power supply
US10334699B2 (en) Multi-mode control device
US20160192458A1 (en) Systems and methods of determining a type and feature set of a light source, and the control thereof
JP3186753U (en) Power saving lighting device with voice control module
KR20080112690A (en) Environment control system of indoor
JP5674860B2 (en) Earthquake warning device with rescue support function
US20120112726A1 (en) Power supply controller
WO2019203341A1 (en) Sensor device and battery device
KR102030233B1 (en) Apparatus for processing information based on internet of thing for containers and method for managing food using the same
WO2008007893A1 (en) Apparatus for automatic control of ventilation fan
US11215340B2 (en) Connected luminaire
US20190072250A1 (en) Emergency light bulb
EP3320702B1 (en) Wireless communication methods
US11862009B2 (en) Power-saving control system using remote-control communication
KR101799913B1 (en) Air-conditioner and method thereof
KR102015895B1 (en) LIGHT DEVICE FOR RELAYING THINGS, IoT SYSTEM INCLUDING THE SAME
WO2019203340A1 (en) Sensor device and battery device
US20130245789A1 (en) Electric tool and data transmission method
KR101926734B1 (en) The sensing device and the method for controlling the electronic device by the sensing device
JP2014145296A (en) Electric fan
US10172546B2 (en) Sensor, network system and controlling method for using the same
KR20120002306A (en) Bidet including non-contact charge system for remote controller
JP2019190871A (en) Beacon device
JPWO2019117006A1 (en) Battery-powered power supply and power supply

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19788222

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020514457

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/01/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19788222

Country of ref document: EP

Kind code of ref document: A1