WO2019202772A1 - Sliding member and method for producing same - Google Patents

Sliding member and method for producing same Download PDF

Info

Publication number
WO2019202772A1
WO2019202772A1 PCT/JP2018/044999 JP2018044999W WO2019202772A1 WO 2019202772 A1 WO2019202772 A1 WO 2019202772A1 JP 2018044999 W JP2018044999 W JP 2018044999W WO 2019202772 A1 WO2019202772 A1 WO 2019202772A1
Authority
WO
WIPO (PCT)
Prior art keywords
sliding
sliding layer
volume
molecular weight
weight polyethylene
Prior art date
Application number
PCT/JP2018/044999
Other languages
French (fr)
Japanese (ja)
Inventor
秀高 林
忍 大久保
真玄 上田
敦 市川
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2019202772A1 publication Critical patent/WO2019202772A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/02Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation
    • C10M107/04Polyethene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/10Metal oxides, hydroxides, carbonates or bicarbonates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M139/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing atoms of elements not provided for in groups C10M127/00 - C10M137/00
    • C10M139/04Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing atoms of elements not provided for in groups C10M127/00 - C10M137/00 having a silicon-to-carbon bond, e.g. silanes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M143/00Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation
    • C10M143/02Polyethene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M155/00Lubricating compositions characterised by the additive being a macromolecular compound containing atoms of elements not provided for in groups C10M143/00 - C10M153/00
    • C10M155/02Monomer containing silicon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M177/00Special methods of preparation of lubricating compositions; Chemical modification by after-treatment of components or of the whole of a lubricating composition, not covered by other classes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics

Definitions

  • the present invention relates to a sliding member and a manufacturing method thereof.
  • sliding members disclosed in Patent Documents 1 and 2 are known. These sliding members include a base material made of a steel material or an aluminum material and a sliding layer formed on the base material. In some cases, an underlayer is provided between the base material and the sliding layer.
  • the sliding layer contains a binder resin and a solid lubricant.
  • the binder resin is made of an epoxy resin or the like.
  • the solid lubricant of Patent Document 1 is composed of particulate molybdenum disulfide (MoS 2 ), particulate polytetrafluoroethylene (PTFE), and particulate polyethylene.
  • MoS 2 particulate molybdenum disulfide
  • PTFE particulate polytetrafluoroethylene
  • particulate polyethylene ultrahigh molecular weight polyethylene has been studied from the characteristics of self-lubricating property and wear resistance
  • the solid lubricant of Patent Document 2 contains particulate crosslinked ultrahigh molecular weight polyethylene.
  • sliding members can be used for propeller shafts, pistons, and the like in which the sliding layer slides with the mating member.
  • polyethylene having a good affinity with a lubricant is included as a solid lubricant, a low friction coefficient and high wear resistance are being achieved.
  • JP 2013-189869 A Japanese Unexamined Patent Publication No. 2016-69508
  • the sliding member is desired to further improve the sliding characteristics in order to ensure reliability.
  • the crosslinked ultrahigh molecular weight polyethylene is adopted as a part of the solid lubricant, the crosslinked ultrahigh molecular weight polyethylene is simply irradiated with radiation. If so, the sliding layer cannot always exhibit high heat resistance. In some cases, the crosslinked ultra-high molecular weight polyethylene becomes brittle, and on the contrary, the lubricating properties of the sliding layer are deteriorated.
  • the sliding layer containing the crosslinked ultra-high molecular weight polyethylene may have seizure resistance, abrasion resistance, and heat resistance, but depending on the application in which the sliding layer of the sliding member is used, further wear resistance Improvement of the property is desired.
  • the sliding layer can provide a sliding member that can exhibit excellent sliding characteristics in terms of wear resistance. Yes.
  • the sliding member of the present invention includes a base material, and a sliding layer formed on the base material and containing a binder resin, a solid lubricant, and an inorganic filler, and the sliding layer slides with a counterpart material.
  • the solid lubricant is an ultra high molecular weight polyethylene having a particulate shape and a melting point of 126.4 ° C. or higher and 132.0 ° C. or lower.
  • the inorganic filler is particulate titanium oxide, The titanium oxide is 1% by volume or more and 8% by volume or less with respect to all solid components in the sliding layer.
  • the wear resistance of the sliding layer is improved. This is presumably because the ultra-high molecular weight polyethylene is appropriately cross-linked, so that the cross-linked ultra-high molecular weight polyethylene is unlikely to elute from the surface of the sliding layer at high temperatures. Further, since the sliding layer has particulate titanium oxide, and the titanium oxide is 1% by volume or more and 8% by volume or less with respect to the total solid components in the sliding layer, the titanium oxide is slid with the partner agent. It is presumed that this is because the load acting between the moving layer is supported and the ultra high molecular weight polyethylene is difficult to fall off.
  • the ultra high molecular weight polyethylene preferably has a gel fraction of 26% or more.
  • the ultra high molecular weight polyethylene having a gel fraction within this range is appropriately cross-linked, the friction coefficient of the sliding layer is low, the wear amount is small, and the ultra high molecular weight polyethylene from the surface of the sliding layer at high temperatures. Is presumably because it is difficult to elute.
  • the sliding layer preferably contains a silane coupling agent.
  • a silane coupling agent it is estimated that the ultra-high molecular weight polyethylene is more difficult to elute from the surface of the sliding layer at high temperatures and to drop off because the silane coupling agent bonds the ultra-high molecular weight polyethylene and titanium oxide to the binder resin. Is done.
  • ultra high molecular weight polyethylene is 10% by volume or more and 35% by volume or less with respect to all solid components in the sliding layer.
  • the sliding layer can further improve the wear resistance in a dry environment.
  • the sliding layer contains a silane coupling agent, and the silane coupling agent is preferably 0.2% by volume or more and 8% by volume or less with respect to all solid components in the sliding layer. Also in this case, the sliding layer can further improve the wear resistance in a dry environment.
  • the solid lubricant is 12.0% by volume or more and 29.0% by volume or less with respect to the binder resin, and the silane coupling agent is 1% by volume or more with respect to all solid components in the sliding layer, It is preferably 5% by volume or less.
  • the sliding layer can further improve the wear resistance in a dry environment and an oil-in-water environment.
  • the manufacturing method of the sliding member of the present invention is a manufacturing method of a sliding member for manufacturing a sliding member that slides with a counterpart material, A crosslinking step of irradiating the particulate ultrahigh molecular weight polyethylene in a sealed state to crosslink the ultrahigh molecular weight polyethylene; A composition preparation step for preparing a sliding layer composition comprising a solid lubricant containing the ultrahigh molecular weight polyethylene crosslinked in the crosslinking step, a binder resin, and an inorganic filler that is particulate titanium oxide.
  • a sliding layer forming step of providing a sliding member by providing the sliding layer composition on a base material to form a sliding layer that slides with the counterpart material.
  • the sliding member of the present invention can be manufactured by the manufacturing method of the present invention.
  • the composition adjusting step preferably further contains a silane coupling agent.
  • a silane coupling agent in this case, ultra high molecular weight polyethylene and titanium oxide can be firmly bonded to the binder resin.
  • the sliding layer can exhibit excellent sliding characteristics in terms of wear resistance.
  • the manufacturing method of this invention can manufacture the sliding member in which a sliding layer can exhibit the sliding characteristic outstanding in the point of abrasion resistance.
  • FIG. 1 is a schematic perspective view showing a state of a ring-on-disk friction and wear test.
  • FIG. 2 is a schematic perspective view showing a state of a ball-on-disk friction and wear test.
  • ⁇ Crosslinking process> As means for irradiating the particulate ultrahigh molecular weight polyethylene in a hermetically sealed state, (1) a vacuum method in which the inside of the container containing the particulate ultrahigh molecular weight polyethylene is evacuated and the proportion of air is reduced, (2) A gas purge method or the like that fills the container with an inert gas or nitrogen and discharges air can be employed. As long as it is sealed, an atmosphere containing some oxygen may be used without using a vacuum method or a gas purge method.
  • the amount of radiation is expressed as a dose proportional to the energy absorbed by the unit mass.
  • Gray (Gy) is a unit that represents the amount of energy (referred to as absorbed dose) absorbed by a substance when the radiation hits the substance.
  • Binder resin has solid lubricant retention that makes it difficult to remove the solid lubricant, durability against shearing force that repeatedly acts under the layered film (hardness as a base), abrasion resistance, heat resistance, etc. Demonstrate.
  • the binder resin polyimide resin, epoxy resin, phenol resin, or the like can be used.
  • the polyimide resin polyamide imide (PAI), polyimide, or the like can be used. In consideration of cost and characteristics, it is optimal to use PAI as a binder resin.
  • Solid lubricant The solid lubricant is held by the binder resin and exhibits a low shear force and a low friction coefficient on the outermost surface.
  • the solid lubricant ultrahigh molecular weight polyethylene, fluororesin, or the like can be employed. Ultra high molecular weight polyethylene and fluororesin improve slipperiness by forming a film on the sliding surface of the sliding layer and transferring it to the mating material. Molybdenum dioxide and graphite improve slipperiness by a crystal structure having a low shear force, and realize low friction under a high load.
  • the fluororesin has sliding properties such as wear resistance and seizure resistance, but has oil repellency, and the contact angle of the lubricating oil is relatively low. large.
  • ultrahigh molecular weight polyethylene is inferior to fluororesin in terms of sliding properties, it has oleophilic properties, and the contact angle of lubricating oil is relatively small.
  • soft metals such as molybdenum dioxide, graphite, melamine cyanurate (MCA), calcium fluoride, copper, and tin can be employed.
  • MCA molybdenum dioxide
  • MCA melamine cyanurate
  • moderately crosslinked ultrahigh molecular weight polyethylene is difficult to elute from the surface of the sliding layer at high temperatures, and can improve excellent seizure resistance and wear resistance.
  • the average molecular weight of the ultrahigh molecular weight polyethylene before crosslinking is preferably 1 million to 7 million.
  • the crosslinked ultrahigh molecular weight polyethylene is preferably contained in a range of 12 to 61% by volume with respect to 100% by volume of the binder resin.
  • the addition amount of the crosslinked ultrahigh molecular weight polyethylene is small, the effect of addition is reduced.
  • the addition amount is large, supplementation by the binder resin is reduced, and the particles fall off to reduce the sliding characteristics of the sliding layer.
  • the specific gravity of the ultrahigh molecular weight polyethylene before crosslinking is preferably 0.92 to 0.96.
  • the ultra high molecular weight polyethylene before crosslinking preferably has a particle diameter of 30 ⁇ m or less, more preferably 15 ⁇ m or less, from the viewpoint of surface smoothness and wear resistance.
  • the sliding layer may have a filler in addition to the binder resin and the solid lubricant.
  • a filler those that improve the hardness of the sliding layer, such as hard particles such as titanium oxide, tricalcium phosphate, alumina, silica, silicon carbide, and silicon nitride, can be employed. In view of cost and characteristics, it is optimal to employ titanium oxide as an inorganic filler.
  • the functional group is preferably an epoxy group.
  • the sliding layer may contain a sulfur-containing metal compound such as ZnS or Ag 2 S as an extreme pressure agent.
  • the sliding layer can have a surfactant, a processing stabilizer, an antioxidant, and the like.
  • sliding layer forming process sliding with a solvent such as n-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, xylene, etc., depending on the type of coating method such as spray coating or roll coating. It is possible to dilute the layer composition and adjust the viscosity and the solid content. It is possible to form a sliding layer by coating the base material with a diluted composition of the sliding layer composition, followed by drying and firing.
  • a solvent such as n-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, xylene, etc.
  • Binder resin Polyamideimide resin (PAI) varnish
  • Solid lubricant Particulate ultrahigh molecular weight polyethylene (UHPE particles), particulate fluorine compound (PTFE particles)
  • Inorganic filler Titanium oxide Silane coupling agent
  • a plurality of plastic bags of the same size were prepared, and a certain amount of UHPE particles were put therein, and the inside of each bag was evacuated under the same conditions. Then, each bag was put in the electron beam irradiation apparatus, and the electron beam as a radiation was irradiated to the UHPE particle with the absorbed dose (kGy) shown in Table 1. Thus, the crosslinked product No. 1-6 UHPE particles were obtained. Uncrosslinked UHPE particles were not irradiated with an electron beam.
  • Table 1 shows the melting point (° C), gel fraction (%), and average particle size ( ⁇ m) of each UHPE particle. Table 1 also shows the melting point (° C.) and average particle diameter ( ⁇ m) of the PTFE particles.
  • the measurement conditions of the melting point are as follows. Analyzer: DSC Q2000 (TA instrument) Rate of temperature increase: 5 ° C./min (After the temperature was raised to 210 ° C., it was cooled to ⁇ 30 ° C. at ⁇ 20 ° C./min, and measurement was performed again.) Atmosphere: N 2 Sample weight: 5mg ⁇ 0.1mg each Melting point reading condition: Melting peak temperature during re-measurement
  • the gel fraction was measured as follows. First, each powder was pressed at a constant pressure while being heated at 180 ° C. to 230 ° C., thereby forming a sheet having a thickness of 0.3 mm. A 0.3 g piece was cut from each sheet. Each piece was placed in a flask and 500 ml of p-xylene was added to the flask. While each flask was heated to 130 ° C., stirring was performed for 4 hours to dissolve each small piece. The solution was filtered through a wire net having a mesh size of 106 ⁇ m while maintaining a high temperature of 130 ° C. The insoluble matter on the wire mesh was dried at 140 ° C. for 3 hours under vacuum, and the weight (g) of the insoluble matter after normal temperature was measured. And the gel fraction was calculated
  • required by the formula of gel fraction (%) weight (g) of an insoluble matter x100 / 0.3 (g).
  • composition preparation step PAI varnish, solid lubricant, inorganic filler, and silane coupling agent were blended at the blending ratios shown in Tables 2 to 4, and stirred well, and then passed through a three-roll mill. 16 and compositions for sliding layers of Comparative Examples 1 to 5 were prepared.
  • the solid lubricant is composed of PTFE particles and UHPE particles.
  • the case of adopting PTFE particles is Comparative Example 1
  • the uncrosslinked product of UHPE particles is Comparative Example 2
  • the crosslinked product No. 1 to 6 are any of Examples 1 to 16 and Comparative Examples 3 to 5.
  • each sliding layer composition is diluted with a solvent to form a diluted product. After coating each diluted product on a base material made of steel, drying is performed, and firing is performed at 220 ° C. for 1.5 hours. It was. Thereafter, surface grinding was performed to form sliding layers having a film thickness of 15 ⁇ m and 20 ⁇ m. Thus, the sliding members of Examples 1 to 16 and Comparative Examples 1 to 5 were obtained.
  • Each sliding member consists of a base material and a sliding layer formed on the base material.
  • the sliding layer contains a binder resin, a solid lubricant, an inorganic filler, and a silane coupling agent.
  • Each sliding member was subjected to the following tests 1 and 2.
  • ⁇ Test 1 (Ring on disk friction and wear test: in a dry environment)> This test evaluates the wear resistance under a certain level of dry environment in the sliding layer of each sliding member. That is, as shown in FIG. 1, the sliding layer 10a of each sliding member is formed on the upper surface of the base material 10 made of S45C. The thickness of the sliding layer 10a is about 20 ⁇ m. In this state, the ring 1 is placed on the upper surface of the sliding layer 10a of each sliding member. The ring 1 made of S45C is rotated under the conditions of a surface pressure of 5.4 MPa, a sliding speed of 0.9 m / second, and a sliding distance of 500 m. During this time, the specific wear amount ( ⁇ 10 ⁇ 6 mm 3 / N ⁇ m) of the sliding layer 10 a was measured. This test was performed on the sliding members of Examples 1 to 16 and Comparative Examples 1 to 5.
  • ⁇ Test 2 (ball-on-disk friction and wear test: in oil environment)> This test evaluates the wear resistance under a certain level of oil environment in the sliding layer of each sliding member. That is, as shown in FIG. 2, the sliding layer 20a of each sliding member is formed on the upper surface of the base material 20 made of S45C. The thickness of the sliding layer 20a is about 15 ⁇ m. In this state, the ball 3 is placed on the upper surface of the sliding layer 20a of each sliding member. Made of SUJ2, a ⁇ 3 / 16 inch ball 3 is rotated for a maximum of 120 seconds under the conditions of a load of 20 N and a sliding speed of 0.25 m / sec.
  • Test 1 The results of Test 1 and Test 2 are shown in Tables 5-7.
  • the sliding characteristics of the sliding member of Comparative Example 2 were used as criteria. As can be seen from Tables 2 to 4, the sliding members of Examples 1 to 16 have UHPE particles appropriately crosslinked, whereas the sliding member of Comparative Example 2 has UHPE particles crosslinked. This is because the presence or absence of crosslinking in the UHPE particles was used as a criterion.
  • each sliding members of Examples 1 to 16 if a reference the results of Test 1 in the sliding member of Comparative Example 2, the specific wear rate is 2.3 ( ⁇ 10 - 6 mm 3 / N ⁇ m). That is, the sliding members of Examples 1 to 16 can exhibit excellent wear resistance in a dry environment. More specifically, if the sliding layer contains titanium oxide and the melting point of the crosslinked ultrahigh molecular weight polyethylene is in the range of 126.4 ° C or higher and 132.0 ° C or lower, the sliding The wear resistance of the layer is improved.
  • the sliding members of Examples 1 to 16 employ UHPE particles that have been irradiated with radiation in a sealed state, so that ultrahigh molecular weight polyethylene is appropriately crosslinked. For this reason, it is inferred that ultrahigh molecular weight polyethylene is unlikely to elute and drop off from the surface of the sliding layer at high temperatures.
  • the sliding layer appropriately has particulate titanium oxide, the titanium oxide supports the load acting between the counterpart and the sliding layer, and the ultrahigh molecular weight polyethylene is difficult to fall off. It is guessed.
  • the sliding members of Comparative Examples 1 to 3 have a specific wear amount of 2.3 ( ⁇ 10 ⁇ 6 mm 3 / N ⁇ m) or more in the result of Test 1. . Therefore, the sliding members of Comparative Examples 1 to 3 are inferior in wear resistance in a dry environment as compared to the sliding members of Examples 1 to 16.
  • the sliding member of Comparative Example 1 is presumed to be inferior in wear resistance because it employs a fluorine compound (PTFE particle) instead of a suitably crosslinked UHPE particle.
  • the sliding layer can exhibit excellent sliding characteristics in terms of wear resistance in a dry environment. For this reason, if these sliding members are employ
  • the ultra high molecular weight polyethylene preferably has a gel fraction of 26% or more. Also in this case, the sliding members of Examples 1 to 16 can exhibit excellent wear resistance in a dry environment. The reason for this is that ultra high molecular weight polyethylene with a gel fraction in this range is moderately cross-linked, so the friction coefficient of the sliding layer is low, the amount of wear is small, and the ultra high molecular weight from the surface of the sliding layer at high temperatures. This is probably because polyethylene is difficult to elute.
  • the sliding layer preferably contains a silane coupling agent.
  • the sliding layer contains a silane coupling agent not only in a dry environment but also in an oil environment. I know that there is. More specifically, among the sliding members of Examples 1 to 10 and Examples 14, 15, and 16 containing the silane coupling agent, the sliding members of Examples 1 to 10 do not contain the silane coupling agent.
  • the sliding members of Examples 11 to 13 exhibit excellent wear resistance in an oil environment. That is, as can be seen from Tables 5 and 6, in the results of Test 2, in the sliding members of Examples 1 to 10, the durability time until film abrasion or film peeling exceeded 106 seconds, and the durability time was 120 seconds. Is over.
  • “> 120” shown in Tables 5 to 7 indicates that the durability time until film abrasion or film peeling exceeds 120 seconds.
  • the sliding members of Examples 11 to 13 all have a durability time of 95 seconds or less until film abrasion or film peeling. From this point, it is surmised that the sliding layer containing the silane coupling agent tends to have excellent wear resistance in an oil-in-water environment. The reason for this is that the silane coupling agent strongly binds the ultrahigh molecular weight polyethylene and titanium oxide to the binder resin, so that the ultra high molecular weight polyethylene is more difficult to elute from the surface of the sliding layer at high temperatures and to be removed. Guessed. Further, the sliding members of Examples 11 to 13 can exhibit excellent wear resistance in a dry environment even if they do not contain a silane coupling agent.
  • ultra high molecular weight polyethylene is 10% by volume or more and 35% by volume or less with respect to all solid components in the sliding layer.
  • the sliding layer can further improve the wear resistance in a dry environment. More specifically, in the result of Test 1, the specific wear amount of the sliding members of Examples 1 to 16 is less than 2.3 ( ⁇ 10 ⁇ 6 mm 3 / N ⁇ m). On the other hand, the specific wear amount of the sliding members of Comparative Examples 4 and 5 greatly exceeds 2.3 ( ⁇ 10 ⁇ 6 mm 3 / N ⁇ m). That is, the sliding members of Examples 1 to 16 can exhibit superior wear resistance in a dry environment as compared with the sliding members of Comparative Examples 4 and 5.
  • the sliding layer contains a silane coupling agent, and the silane coupling agent is preferably 0.2% by volume or more and 8% by volume or less with respect to all solid components in the sliding layer. Also in this case, the sliding layer can further improve the wear resistance in a dry environment. More specifically, in the results of Test 1, the specific wear amount of the sliding members of Examples 1 to 10 and Examples 14 to 16 is less than 2.3 ( ⁇ 10 ⁇ 6 mm 3 / N ⁇ m). .
  • the sliding layer can further improve the wear resistance in a dry environment and an oil-in-water environment. More specifically, in the sliding members of Examples 1 to 10, in the result of Test 2, the durability time until film abrasion or film peeling in the sliding member of Comparative Example 2 exceeded 106 seconds, and the durability time was further increased. Exceeds 120 seconds. As a result, the sliding members of Examples 1 to 10 can more reliably improve the wear resistance even in an oil environment. That is, the sliding members of Examples 1 to 10 can further improve the wear resistance in a dry environment and an oil-in-water environment.
  • the present invention in order to improve the adhesion between the base material and the sliding layer, it is possible to perform a degreasing step in which an alkali or the like is brought into contact with the base material.
  • a degreasing step in which an alkali or the like is brought into contact with the base material.
  • the present invention can be used for various sliding members.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Sliding-Contact Bearings (AREA)
  • Lubricants (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is a sliding member in which a sliding layer can exhibit excellent sliding characteristics in terms of wear resistance. The sliding member of the present invention is equipped with a base material and a sliding layer. The sliding layer is formed on the base material and slides with an opposing material. The sliding layer contains a binder resin, a solid lubricant, and an inorganic filler. The solid lubricant is an ultrahigh-molecular-weight polyethylene having a melting point of from 126.4°C to 132.0°C. The inorganic filler is particulate titanium oxide. The titanium oxide is from 1 vol% to 8 vol% relative to the total solid components in the sliding layer.

Description

摺動部材及びその製造方法Sliding member and manufacturing method thereof
 本発明は摺動部材及びその製造方法に関する。 The present invention relates to a sliding member and a manufacturing method thereof.
 従来、特許文献1、2に開示された摺動部材が知られている。これらの摺動部材は、鋼材やアルミ材からなる母材と、母材上に形成された摺動層とを備えている。母材と摺動層との間に下地層が設けられる場合もある。摺動層は、バインダ樹脂と固体潤滑剤とを含有している。バインダ樹脂はエポキシ樹脂等からなる。特許文献1の固体潤滑剤は、粒子状の二硫化モリブデン(MoS2)と、粒子状のポリテトラフルオロエチレン(PTFE)と、粒子状のポリエチレンとからなる。近年、自己潤滑性や耐摩耗性の特徴から超高分子量ポリエチレンが検討されており、特許文献2の固体潤滑剤は、粒子状の架橋された超高分子量ポリエチレンを含む。 Conventionally, sliding members disclosed in Patent Documents 1 and 2 are known. These sliding members include a base material made of a steel material or an aluminum material and a sliding layer formed on the base material. In some cases, an underlayer is provided between the base material and the sliding layer. The sliding layer contains a binder resin and a solid lubricant. The binder resin is made of an epoxy resin or the like. The solid lubricant of Patent Document 1 is composed of particulate molybdenum disulfide (MoS 2 ), particulate polytetrafluoroethylene (PTFE), and particulate polyethylene. In recent years, ultrahigh molecular weight polyethylene has been studied from the characteristics of self-lubricating property and wear resistance, and the solid lubricant of Patent Document 2 contains particulate crosslinked ultrahigh molecular weight polyethylene.
 これらの摺動部材は、摺動層が相手材と摺動するプロペラシャフト、ピストン等に採用され得る。特に、特許文献1の摺動層では、潤滑剤との親和性が良いポリエチレンが固体潤滑剤として含まれているため、低摩擦係数化と高い耐摩耗性とを実現しようとしている。また、特許文献2の摺動層では、架橋された超高分子量ポリエチレンを固体潤滑剤とし、耐焼付き性及び耐摩耗性の他、高い耐熱性も実現しようとしている。 These sliding members can be used for propeller shafts, pistons, and the like in which the sliding layer slides with the mating member. In particular, in the sliding layer of Patent Document 1, since polyethylene having a good affinity with a lubricant is included as a solid lubricant, a low friction coefficient and high wear resistance are being achieved. Moreover, in the sliding layer of patent document 2, it is trying to implement | achieve high heat resistance other than seizure resistance and abrasion resistance, using crosslinked ultrahigh molecular weight polyethylene as a solid lubricant.
特開2013-189569号公報JP 2013-189869 A 特開2016-69508号公報Japanese Unexamined Patent Publication No. 2016-69508
 しかし、摺動部材には、信頼性確保のため、さらなる摺動特性の向上が望まれている。この点、発明者らの試験結果によれば、架橋された超高分子量ポリエチレンを固体潤滑剤の一部として採用したとしても、架橋された超高分子量ポリエチレンが単純に放射線を照射しただけのものであれば、摺動層が必ずしも高い耐熱性を発揮できない。場合によっては、架橋された超高分子量ポリエチレンが脆くなり、かえって摺動層の潤滑特性が悪化してしまう。 However, the sliding member is desired to further improve the sliding characteristics in order to ensure reliability. In this regard, according to the test results of the inventors, even if the crosslinked ultrahigh molecular weight polyethylene is adopted as a part of the solid lubricant, the crosslinked ultrahigh molecular weight polyethylene is simply irradiated with radiation. If so, the sliding layer cannot always exhibit high heat resistance. In some cases, the crosslinked ultra-high molecular weight polyethylene becomes brittle, and on the contrary, the lubricating properties of the sliding layer are deteriorated.
 また、架橋された超高分子量ポリエチレンを含む摺動層は、耐焼付き性、耐摩耗性及び耐熱性を有し得るが、摺動部材の摺動層が使用される用途によっては、さらなる耐摩耗性の向上が望まれている。 In addition, the sliding layer containing the crosslinked ultra-high molecular weight polyethylene may have seizure resistance, abrasion resistance, and heat resistance, but depending on the application in which the sliding layer of the sliding member is used, further wear resistance Improvement of the property is desired.
 本発明は、上記従来の実情に鑑みてなされたものであって、摺動層が耐摩耗性の点で優れた摺動特性を発揮可能な摺動部材を提供することを解決すべき課題としている。 The present invention has been made in view of the above-described conventional situation, and as a problem to be solved, the sliding layer can provide a sliding member that can exhibit excellent sliding characteristics in terms of wear resistance. Yes.
 本発明の摺動部材は、母材と、前記母材上に形成され、バインダ樹脂と固体潤滑剤と無機充填剤とを含有する摺動層とを備え、前記摺動層が相手材と摺動する摺動部材であって、
 前記固体潤滑剤は、粒子状をなし、融点が126.4°C以上、132.0°C以下である超高分子量ポリエチレンであり、
 前記無機充填剤は、粒子状をなす酸化チタンであり、
 前記酸化チタンは、前記摺動層における全固体成分に対して、1体積%以上、8体積%以下であることを特徴とする。
The sliding member of the present invention includes a base material, and a sliding layer formed on the base material and containing a binder resin, a solid lubricant, and an inorganic filler, and the sliding layer slides with a counterpart material. A sliding member that moves,
The solid lubricant is an ultra high molecular weight polyethylene having a particulate shape and a melting point of 126.4 ° C. or higher and 132.0 ° C. or lower.
The inorganic filler is particulate titanium oxide,
The titanium oxide is 1% by volume or more and 8% by volume or less with respect to all solid components in the sliding layer.
 発明者らの試験結果によれば、摺動層が酸化チタンを含んだ状態で、超高分子量ポリエチレンの融点がこの範囲内にあれば、摺動層の耐摩耗性が向上する。この理由は、超高分子量ポリエチレンが適度に架橋されているため、架橋された超高分子量ポリエチレンが高温時に摺動層の表面から溶出、脱落し難いからであると推察される。また、摺動層が粒子状の酸化チタンを有しており、酸化チタンが摺動層における全固体成分に対して1体積%以上、8体積%以下であるため、酸化チタンが相手剤と摺動層との間で作用する荷重を支え、超高分子量ポリエチレンが脱落し難いからであると推測される。 According to the test results of the inventors, when the sliding layer contains titanium oxide and the melting point of the ultra high molecular weight polyethylene is within this range, the wear resistance of the sliding layer is improved. This is presumably because the ultra-high molecular weight polyethylene is appropriately cross-linked, so that the cross-linked ultra-high molecular weight polyethylene is unlikely to elute from the surface of the sliding layer at high temperatures. Further, since the sliding layer has particulate titanium oxide, and the titanium oxide is 1% by volume or more and 8% by volume or less with respect to the total solid components in the sliding layer, the titanium oxide is slid with the partner agent. It is presumed that this is because the load acting between the moving layer is supported and the ultra high molecular weight polyethylene is difficult to fall off.
 発明者らの試験結果によれば、超高分子量ポリエチレンはゲル分率が26%以上であることが好ましい。この場合、ゲル分率がこの範囲の超高分子量ポリエチレンは適度に架橋されているため、摺動層の摩擦係数が低く、摩耗量が少なく、かつ高温時に摺動層の表面から超高分子量ポリエチレンが溶出し難いからであると推察される。 According to the test results of the inventors, the ultra high molecular weight polyethylene preferably has a gel fraction of 26% or more. In this case, since the ultra high molecular weight polyethylene having a gel fraction within this range is appropriately cross-linked, the friction coefficient of the sliding layer is low, the wear amount is small, and the ultra high molecular weight polyethylene from the surface of the sliding layer at high temperatures. Is presumably because it is difficult to elute.
 摺動層は、シランカップリング剤を含有していることが好ましい。この場合、シランカップリング剤が超高分子量ポリエチレン及び酸化チタンとバインダ樹脂とを強固に結合させるため、超高分子量ポリエチレンが高温時に摺動層の表面からより溶出、脱落し難いからであると推測される。 The sliding layer preferably contains a silane coupling agent. In this case, it is estimated that the ultra-high molecular weight polyethylene is more difficult to elute from the surface of the sliding layer at high temperatures and to drop off because the silane coupling agent bonds the ultra-high molecular weight polyethylene and titanium oxide to the binder resin. Is done.
 摺動層は、超高分子量ポリエチレンが摺動層における全固体成分に対して10体積%以上、35体積%以下であることが好ましい。この場合、摺動層は、ドライ環境下において、耐摩耗性をより向上することができる。 In the sliding layer, it is preferable that ultra high molecular weight polyethylene is 10% by volume or more and 35% by volume or less with respect to all solid components in the sliding layer. In this case, the sliding layer can further improve the wear resistance in a dry environment.
 摺動層は、シランカップリング剤を含有し、シランカップリング剤が摺動層における全固体成分に対して0.2体積%以上、8体積%以下であることが好ましい。この場合も、摺動層は、ドライ環境下において、耐摩耗性をさらに向上することができる。 The sliding layer contains a silane coupling agent, and the silane coupling agent is preferably 0.2% by volume or more and 8% by volume or less with respect to all solid components in the sliding layer. Also in this case, the sliding layer can further improve the wear resistance in a dry environment.
 摺動層は、固体潤滑剤がバインダ樹脂に対して12.0体積%以上、29.0体積%以下であり、シランカップリング剤が摺動層における全固体成分に対して1体積%以上、5体積%以下であることが好ましい。この場合、摺動層は、ドライ環境下及び油中環境下において、耐摩耗性をさらに向上するができる。 In the sliding layer, the solid lubricant is 12.0% by volume or more and 29.0% by volume or less with respect to the binder resin, and the silane coupling agent is 1% by volume or more with respect to all solid components in the sliding layer, It is preferably 5% by volume or less. In this case, the sliding layer can further improve the wear resistance in a dry environment and an oil-in-water environment.
 本発明の摺動部材の製造方法は、相手材と摺動する摺動部材を製造するための摺動部材の製造方法であって、
 粒子状の超高分子量ポリエチレンに対して密閉状態で放射線を照射し、前記超高分子量ポリエチレンを架橋する架橋工程と、
 前記架橋工程で架橋された前記超高分子量ポリエチレンを含む固体潤滑剤と、バインダ樹脂と、粒子状の酸化チタンである無機充填剤とを含有する摺動層用組成物を調製する組成物調製工程と、
 母材上に前記摺動層用組成物を設けて前記相手材と摺動する摺動層を形成し、摺動部材を得る摺動層形成工程とを備えていることを特徴とする。
The manufacturing method of the sliding member of the present invention is a manufacturing method of a sliding member for manufacturing a sliding member that slides with a counterpart material,
A crosslinking step of irradiating the particulate ultrahigh molecular weight polyethylene in a sealed state to crosslink the ultrahigh molecular weight polyethylene;
A composition preparation step for preparing a sliding layer composition comprising a solid lubricant containing the ultrahigh molecular weight polyethylene crosslinked in the crosslinking step, a binder resin, and an inorganic filler that is particulate titanium oxide. When,
And a sliding layer forming step of providing a sliding member by providing the sliding layer composition on a base material to form a sliding layer that slides with the counterpart material.
 本発明の製造方法により、本発明の摺動部材を製造することができる。 The sliding member of the present invention can be manufactured by the manufacturing method of the present invention.
 組成物調整工程は、さらにシランカップリング剤を含有していることが好ましい。この場合、超高分子量ポリエチレン及び酸化チタンをバインダ樹脂に強固に結合させることができる。 The composition adjusting step preferably further contains a silane coupling agent. In this case, ultra high molecular weight polyethylene and titanium oxide can be firmly bonded to the binder resin.
 本発明の摺動部材によれば、摺動層が耐摩耗性の点で優れた摺動特性を発揮することができる。また、本発明の製造方法により、摺動層が耐摩耗性の点で優れた摺動特性を発揮可能な摺動部材を製造することができる。 According to the sliding member of the present invention, the sliding layer can exhibit excellent sliding characteristics in terms of wear resistance. Moreover, the manufacturing method of this invention can manufacture the sliding member in which a sliding layer can exhibit the sliding characteristic outstanding in the point of abrasion resistance.
図1は、リングオンディスク摩擦摩耗試験の様子を示す模式斜視図である。FIG. 1 is a schematic perspective view showing a state of a ring-on-disk friction and wear test. 図2は、ボールオンディスク摩擦摩耗試験の様子を示す模式斜視図である。FIG. 2 is a schematic perspective view showing a state of a ball-on-disk friction and wear test.
<架橋工程>
 粒子状の超高分子量ポリエチレンに対して密閉状態で放射線を照射する手段としては、(1)粒子状の超高分子量ポリエチレンを収納した容器内を真空引きし、空気の存在割合を下げる真空法、(2)容器内を不活性ガスや窒素で満たし、空気を排出するガスパージ法等を採用することができる。密閉されていれば、真空法やガスパージ法等を用いずに、多少の酸素を含む雰囲気であってもよい。
<Crosslinking process>
As means for irradiating the particulate ultrahigh molecular weight polyethylene in a hermetically sealed state, (1) a vacuum method in which the inside of the container containing the particulate ultrahigh molecular weight polyethylene is evacuated and the proportion of air is reduced, (2) A gas purge method or the like that fills the container with an inert gas or nitrogen and discharges air can be employed. As long as it is sealed, an atmosphere containing some oxygen may be used without using a vacuum method or a gas purge method.
 放射線としては、α線、β線、γ線の他、X線、電子線、イオン線を採用できる。放射線の量は、単位質量に吸収されるエネルギーに比例する線量で表わされる。グレイ(Gy)は、放射線がある物質に当たったとき、その物質に吸収されるエネルギー量(吸収線量という。)を表す単位である。 As the radiation, in addition to α rays, β rays and γ rays, X rays, electron rays and ion rays can be adopted. The amount of radiation is expressed as a dose proportional to the energy absorbed by the unit mass. Gray (Gy) is a unit that represents the amount of energy (referred to as absorbed dose) absorbed by a substance when the radiation hits the substance.
<組成物調製工程>
(バインダ樹脂)
 バインダ樹脂は、固体潤滑剤を脱離し難くする固体潤滑剤の保持性、層状の被膜下で繰り返し作用するせん断力に対する耐久性(土台としての硬さ)、破壊されにくい耐摩耗性、耐熱性等を発揮する。バインダ樹脂としては、ポリイミド系樹脂、エポキシ樹脂、フェノール樹脂等を採用できる。ポリイミド系樹脂としては、ポリアミドイミド(PAI)、ポリイミド等を採用することができる。コスト及び特性を考慮すると、PAIをバインダ樹脂とすることが最適である。
<Composition preparation process>
(Binder resin)
Binder resin has solid lubricant retention that makes it difficult to remove the solid lubricant, durability against shearing force that repeatedly acts under the layered film (hardness as a base), abrasion resistance, heat resistance, etc. Demonstrate. As the binder resin, polyimide resin, epoxy resin, phenol resin, or the like can be used. As the polyimide resin, polyamide imide (PAI), polyimide, or the like can be used. In consideration of cost and characteristics, it is optimal to use PAI as a binder resin.
(固体潤滑剤)
 固体潤滑剤は、バインダ樹脂に保持され、最表面で低せん断力及び低摩擦係数を発揮する。固体潤滑剤としては、超高分子量ポリエチレン、フッ素樹脂等を採用可能である。超高分子量ポリエチレン及びフッ素樹脂は、摺動層の摺動面に被膜を形成し、かつ相手材へ移着することで滑り性を向上させる。二酸化モリブデン及びグラファイトは、低せん断力をもつ結晶構造により滑り性を向上させ、かつ高荷重で低摩擦を実現する。発明者らの実験結果によれば、フッ素樹脂は、耐摩耗性、耐焼き付き性等の摺動特性を有しているものの、撥油特性を有しており、潤滑油の接触角が比較的大きい。一方、超高分子量ポリエチレンは、摺動特性ではフッ素樹脂より劣るものの、親油特性を有しており、潤滑油の接触角が比較的小さい。また、固体潤滑剤として、二酸化モリブデン、グラファイト、メラミンシアヌレート(MCA)やフッ化カルシウム、銅及び錫などの軟質金属を採用することができる。特に、適度に架橋された超高分子量ポリエチレンは、高温時に摺動層の表面から溶出し難く、優れた耐焼付き性及び耐摩耗性を向上することができる。
(Solid lubricant)
The solid lubricant is held by the binder resin and exhibits a low shear force and a low friction coefficient on the outermost surface. As the solid lubricant, ultrahigh molecular weight polyethylene, fluororesin, or the like can be employed. Ultra high molecular weight polyethylene and fluororesin improve slipperiness by forming a film on the sliding surface of the sliding layer and transferring it to the mating material. Molybdenum dioxide and graphite improve slipperiness by a crystal structure having a low shear force, and realize low friction under a high load. According to the results of experiments by the inventors, the fluororesin has sliding properties such as wear resistance and seizure resistance, but has oil repellency, and the contact angle of the lubricating oil is relatively low. large. On the other hand, although ultrahigh molecular weight polyethylene is inferior to fluororesin in terms of sliding properties, it has oleophilic properties, and the contact angle of lubricating oil is relatively small. As the solid lubricant, soft metals such as molybdenum dioxide, graphite, melamine cyanurate (MCA), calcium fluoride, copper, and tin can be employed. In particular, moderately crosslinked ultrahigh molecular weight polyethylene is difficult to elute from the surface of the sliding layer at high temperatures, and can improve excellent seizure resistance and wear resistance.
 架橋前の超高分子量ポリエチレンは、平均分子量が100万~700万個であることが好ましい。架橋された超高分子量ポリエチレンは、バインダ樹脂100体積%に対し、12~61体積%の範囲で含まれていることが好ましい。架橋された超高分子量ポリエチレンの添加量が少ないと添加効果が低減し、多いとバインダ樹脂による補足が低減し、粒子の脱落が生じて摺動層の摺動特性が低減する。 The average molecular weight of the ultrahigh molecular weight polyethylene before crosslinking is preferably 1 million to 7 million. The crosslinked ultrahigh molecular weight polyethylene is preferably contained in a range of 12 to 61% by volume with respect to 100% by volume of the binder resin. When the addition amount of the crosslinked ultrahigh molecular weight polyethylene is small, the effect of addition is reduced. When the addition amount is large, supplementation by the binder resin is reduced, and the particles fall off to reduce the sliding characteristics of the sliding layer.
 架橋前の超高分子量ポリエチレンの比重は0.92~0.96であることが好ましい。架橋前の超高分子量ポリエチレンは、表面平滑性及び耐摩耗性の点から、粒子径が30μm以下であることが好ましく、15μm以下であることがより好ましい。 The specific gravity of the ultrahigh molecular weight polyethylene before crosslinking is preferably 0.92 to 0.96. The ultra high molecular weight polyethylene before crosslinking preferably has a particle diameter of 30 μm or less, more preferably 15 μm or less, from the viewpoint of surface smoothness and wear resistance.
(充填剤)
 摺動層は、バインダ樹脂及び固体潤滑剤の他、充填剤を有し得る。充填剤としては、酸化チタン、第3リン酸カルシウム、アルミナ、シリカ、炭化ケイ素、窒化ケイ素等の硬質粒子のように、摺動層の硬さを向上させるものを採用することができる。コスト及び特性を考慮して、酸化チタンを無機充填剤として採用することが最適である。
(filler)
The sliding layer may have a filler in addition to the binder resin and the solid lubricant. As the filler, those that improve the hardness of the sliding layer, such as hard particles such as titanium oxide, tricalcium phosphate, alumina, silica, silicon carbide, and silicon nitride, can be employed. In view of cost and characteristics, it is optimal to employ titanium oxide as an inorganic filler.
 シランカップリング処理に用いるシランカップリング剤としては、官能基がエポキシ基であることが好ましい。官能基にエポキシ基をもつシランカップリング剤として2-(3、4エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシランが好ましい。これらは保存安定性も優れている。 As the silane coupling agent used for the silane coupling treatment, the functional group is preferably an epoxy group. 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycol as silane coupling agents having an epoxy group as a functional group Sidoxypropyltriethoxysilane is preferred. These also have excellent storage stability.
 摺動層は、ZnS、Ag2S等の硫黄含有金属化合物を極圧剤として含有し得る。また、摺動層は、界面活性剤、加工安定剤、酸化防止剤等を有し得る。 The sliding layer may contain a sulfur-containing metal compound such as ZnS or Ag 2 S as an extreme pressure agent. The sliding layer can have a surfactant, a processing stabilizer, an antioxidant, and the like.
<摺動層形成工程>
 摺動層形成工程としては、スプレーコート、ロールコート等の塗装方法の種類により、任意にn-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、キシレン等の溶剤で摺動層用組成物を希釈し、粘度調整及び固形分の濃度調整を行うことが可能である。母材に摺動層用組成物の希釈物をコーティングした後、乾燥、焼成を行い、摺動層を形成することが可能である。
<Sliding layer forming process>
As the sliding layer forming process, sliding with a solvent such as n-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, xylene, etc., depending on the type of coating method such as spray coating or roll coating. It is possible to dilute the layer composition and adjust the viscosity and the solid content. It is possible to form a sliding layer by coating the base material with a diluted composition of the sliding layer composition, followed by drying and firing.
 以下、本発明を具体化した実施例1~16と比較例1~5とを説明する。まず、以下の材料を準備した。
 バインダ樹脂:ポリアミドイミド樹脂(PAI)ワニス
 固体潤滑剤:粒子状の超高分子量ポリエチレン(UHPE粒子)、粒子状のフッ素化合物(PTFE粒子)
 無機充填剤:酸化チタン
 シランカップリング剤
Hereinafter, Examples 1 to 16 and Comparative Examples 1 to 5 embodying the present invention will be described. First, the following materials were prepared.
Binder resin: Polyamideimide resin (PAI) varnish Solid lubricant: Particulate ultrahigh molecular weight polyethylene (UHPE particles), particulate fluorine compound (PTFE particles)
Inorganic filler: Titanium oxide Silane coupling agent
 気密可能であり、同一の大きさのビニール製の袋を複数個用意し、これらにUHPE粒子を一定量入れ、同一条件下で各袋内を真空引きした。その後、各袋を電子線照射装置内に入れ、表1に示す吸収線量(kGy)でUHPE粒子に放射線としての電子線の照射を行った。こうして、架橋品No.1~6のUHPE粒子を得た。未架橋品のUHPE粒子は電子線の照射を行わなかったものである。 A plurality of plastic bags of the same size were prepared, and a certain amount of UHPE particles were put therein, and the inside of each bag was evacuated under the same conditions. Then, each bag was put in the electron beam irradiation apparatus, and the electron beam as a radiation was irradiated to the UHPE particle with the absorbed dose (kGy) shown in Table 1. Thus, the crosslinked product No. 1-6 UHPE particles were obtained. Uncrosslinked UHPE particles were not irradiated with an electron beam.
 表1に各UHPE粒子の融点(°C)、ゲル分率(%)及び平均粒径(μm)を示す。また、PTFE粒子の融点(°C)及び平均粒径(μm)も表1に示す。 Table 1 shows the melting point (° C), gel fraction (%), and average particle size (μm) of each UHPE particle. Table 1 also shows the melting point (° C.) and average particle diameter (μm) of the PTFE particles.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 ここで、融点の測定条件は以下のとおりである。
 分析装置:DSC Q2000(TA instrument)
 昇温速度:5°C/分(210°Cに昇温後、-20°C/分で30°Cまで冷却し、再度の測定を行った。)
 雰囲気:N2
 試料重量:各々5mg±0.1mg
 融点の読み取り条件:再度の測定時における融解のピーク温度
Here, the measurement conditions of the melting point are as follows.
Analyzer: DSC Q2000 (TA instrument)
Rate of temperature increase: 5 ° C./min (After the temperature was raised to 210 ° C., it was cooled to −30 ° C. at −20 ° C./min, and measurement was performed again.)
Atmosphere: N 2
Sample weight: 5mg ± 0.1mg each
Melting point reading condition: Melting peak temperature during re-measurement
 ゲル分率は以下のように測定した。まず、各粉体を180°C~230°Cで加熱しながら一定圧力で加圧することにより、厚さ0.3mmのシートに成形した。各シートから0.3gの小片を切断した。各小片をフラスコに入れるとともに、フラスコ内にp-キシレンを500ml加えた。各フラスコを130°Cに加熱しながら、4時間攪拌を行い、各小片の溶解を行った。130°Cの高温状態のまま、網目が106μmの金網にて溶液のろ過を行った。金網上の不溶解物を140°C、3時間、真空下の条件で乾燥し、常温後の不溶解物の重量(g)を測定した。そして、ゲル分率(%)=不溶解物の重量(g)×100/0.3(g)の計算式により、ゲル分率を求めた。 The gel fraction was measured as follows. First, each powder was pressed at a constant pressure while being heated at 180 ° C. to 230 ° C., thereby forming a sheet having a thickness of 0.3 mm. A 0.3 g piece was cut from each sheet. Each piece was placed in a flask and 500 ml of p-xylene was added to the flask. While each flask was heated to 130 ° C., stirring was performed for 4 hours to dissolve each small piece. The solution was filtered through a wire net having a mesh size of 106 μm while maintaining a high temperature of 130 ° C. The insoluble matter on the wire mesh was dried at 140 ° C. for 3 hours under vacuum, and the weight (g) of the insoluble matter after normal temperature was measured. And the gel fraction was calculated | required by the formula of gel fraction (%) = weight (g) of an insoluble matter x100 / 0.3 (g).
 組成物調製工程として、表2~4に示す配合割合でPAIワニスと固体潤滑剤と無機充填剤とシランカップリング剤とを配合し、よく撹拌した後、3本ロールミルを通し、実施例1~16及び比較例1~5の摺動層用組成物を調製した。固体潤滑剤は、PTFE粒子とUHPE粒子とからなる。ここで、固体潤滑剤において、PTFE粒子を採用した場合が比較例1であり、UHPE粒子の未架橋品が比較例2であり、UHPE粒子の架橋品No.1~6が実施例1~16、比較例3~5のいずれかである。 As a composition preparation step, PAI varnish, solid lubricant, inorganic filler, and silane coupling agent were blended at the blending ratios shown in Tables 2 to 4, and stirred well, and then passed through a three-roll mill. 16 and compositions for sliding layers of Comparative Examples 1 to 5 were prepared. The solid lubricant is composed of PTFE particles and UHPE particles. Here, in the solid lubricant, the case of adopting PTFE particles is Comparative Example 1, the uncrosslinked product of UHPE particles is Comparative Example 2, and the crosslinked product No. 1 to 6 are any of Examples 1 to 16 and Comparative Examples 3 to 5.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 以下の摺動層形成工程を行った。まず、各摺動層用組成物を溶剤によって希釈して希釈物とし、鋼材からなる母材上に各希釈物をコーティングした後、乾燥を行い、220°C×1.5時間で焼成を行った。この後、表面研削を行い、膜厚15μm及び20μmの摺動層を形成した。こうして、実施例1~16及び比較例1~5の各摺動部材を得た。 The following sliding layer formation process was performed. First, each sliding layer composition is diluted with a solvent to form a diluted product. After coating each diluted product on a base material made of steel, drying is performed, and firing is performed at 220 ° C. for 1.5 hours. It was. Thereafter, surface grinding was performed to form sliding layers having a film thickness of 15 μm and 20 μm. Thus, the sliding members of Examples 1 to 16 and Comparative Examples 1 to 5 were obtained.
 各摺動部材は、母材と、母材上に形成された摺動層とからなる。摺動層は、バインダ樹脂と固体潤滑剤と無機充填剤とシランカップリング剤とを含有する。各摺動部材を以下の試験1、2に供した。 Each sliding member consists of a base material and a sliding layer formed on the base material. The sliding layer contains a binder resin, a solid lubricant, an inorganic filler, and a silane coupling agent. Each sliding member was subjected to the following tests 1 and 2.
<試験1(リングオンディスク摩擦摩耗試験:ドライ環境下)>
 この試験は、各摺動部材の摺動層における一定水準のドライ環境下において、耐摩耗性を評価するものである。すなわち、図1に示すように、S45Cからなる母材10の上面に各摺動部材の摺動層10aが形成されている。摺動層10aの膜厚は約20μmである。この状態において、リング1を各摺動部材の摺動層10aの上面に載置する。S45C製のリング1を面圧5.4MPa、摺動速度0.9m/秒、摺動距離500mの条件下で、回転させる。この間の摺動層10aの比摩耗量(×10-6mm3/N・m)を測定した。この試験を実施例1~16及び比較例1~5の摺動部材に対して行った。
<Test 1 (Ring on disk friction and wear test: in a dry environment)>
This test evaluates the wear resistance under a certain level of dry environment in the sliding layer of each sliding member. That is, as shown in FIG. 1, the sliding layer 10a of each sliding member is formed on the upper surface of the base material 10 made of S45C. The thickness of the sliding layer 10a is about 20 μm. In this state, the ring 1 is placed on the upper surface of the sliding layer 10a of each sliding member. The ring 1 made of S45C is rotated under the conditions of a surface pressure of 5.4 MPa, a sliding speed of 0.9 m / second, and a sliding distance of 500 m. During this time, the specific wear amount (× 10 −6 mm 3 / N · m) of the sliding layer 10 a was measured. This test was performed on the sliding members of Examples 1 to 16 and Comparative Examples 1 to 5.
<試験2(ボールオンディスク摩擦摩耗試験:油中環境下)>
 この試験は、各摺動部材の摺動層における一定水準の油中環境下において、耐摩耗性を評価するものである。すなわち、図2に示すように、S45Cからなる母材20の上面に各摺動部材の摺動層20aが形成されている。摺動層20aの膜厚は約15μmである。この状態において、ボール3を各摺動部材の摺動層20aの上面に載置する。SUJ2製であり、Φ3/16インチのボール3を荷重20N、摺動速度0.25m/秒の条件で、最大120秒間回転させる。この際、冷凍機油4を摺動層20a上に5mg滴下する。この間の摺動層20aの膜摩滅または膜剥離までの耐久時間を測定した。この試験を実施例1~16及び比較例1~5の摺動部材に対して行った。
<Test 2 (ball-on-disk friction and wear test: in oil environment)>
This test evaluates the wear resistance under a certain level of oil environment in the sliding layer of each sliding member. That is, as shown in FIG. 2, the sliding layer 20a of each sliding member is formed on the upper surface of the base material 20 made of S45C. The thickness of the sliding layer 20a is about 15 μm. In this state, the ball 3 is placed on the upper surface of the sliding layer 20a of each sliding member. Made of SUJ2, a Φ3 / 16 inch ball 3 is rotated for a maximum of 120 seconds under the conditions of a load of 20 N and a sliding speed of 0.25 m / sec. At this time, 5 mg of the refrigerating machine oil 4 is dropped on the sliding layer 20a. During this time, the durability time until the sliding layer 20a was worn or peeled off was measured. This test was performed on the sliding members of Examples 1 to 16 and Comparative Examples 1 to 5.
 試験1及び試験2の結果を表5~7に示す。 The results of Test 1 and Test 2 are shown in Tables 5-7.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 実施例1~16の摺動部材の耐摩耗性を評価するにあたり、比較例2の摺動部材の摺動特性を判断基準とした。この理由は、表2~4からわかるように、実施例1~16の摺動部材はUHPE粒子が適度に架橋されているのに対し、比較例2の摺動部材はUHPE粒子が架橋されていないため、UHPE粒子における架橋の有無を判断基準としたからである。 In evaluating the wear resistance of the sliding members of Examples 1 to 16, the sliding characteristics of the sliding member of Comparative Example 2 were used as criteria. As can be seen from Tables 2 to 4, the sliding members of Examples 1 to 16 have UHPE particles appropriately crosslinked, whereas the sliding member of Comparative Example 2 has UHPE particles crosslinked. This is because the presence or absence of crosslinking in the UHPE particles was used as a criterion.
 表5~7からわかるように、実施例1~16の各摺動部材は、比較例2の摺動部材における試験1の結果を基準とすれば、比摩耗量が2.3(×10-6mm3/N・m)未満である。つまり、実施例1~16の摺動部材は、ドライ環境下において、優れた耐摩耗性を発揮できる。より具体的には、摺動層が酸化チタンを含んだ状態で、架橋された超高分子量ポリエチレンの融点が126.4°C以上、132.0°C以下の範囲内にあれば、摺動層の耐摩耗性が向上する。 As it can be seen from Table 5-7, each sliding members of Examples 1 to 16, if a reference the results of Test 1 in the sliding member of Comparative Example 2, the specific wear rate is 2.3 (× 10 - 6 mm 3 / N · m). That is, the sliding members of Examples 1 to 16 can exhibit excellent wear resistance in a dry environment. More specifically, if the sliding layer contains titanium oxide and the melting point of the crosslinked ultrahigh molecular weight polyethylene is in the range of 126.4 ° C or higher and 132.0 ° C or lower, the sliding The wear resistance of the layer is improved.
 この理由は、実施例1~16の摺動部材は、密閉状態で放射線を照射したUHPE粒子を採用しているため、超高分子量ポリエチレンが適度に架橋されている。このため、超高分子量ポリエチレンが高温時に摺動層の表面から溶出、脱落し難いからであると推察される。また、摺動層が粒子状の酸化チタンを適度に有しているため、酸化チタンが相手剤と摺動層との間で作用する荷重を支え、超高分子量ポリエチレンが脱落し難いからであると推測される。 This is because the sliding members of Examples 1 to 16 employ UHPE particles that have been irradiated with radiation in a sealed state, so that ultrahigh molecular weight polyethylene is appropriately crosslinked. For this reason, it is inferred that ultrahigh molecular weight polyethylene is unlikely to elute and drop off from the surface of the sliding layer at high temperatures. In addition, since the sliding layer appropriately has particulate titanium oxide, the titanium oxide supports the load acting between the counterpart and the sliding layer, and the ultrahigh molecular weight polyethylene is difficult to fall off. It is guessed.
 一方、表5~7からわかるように、比較例1~3の摺動部材は、試験1の結果において、比摩耗量が2.3(×10-6mm3/N・m)以上である。このため、比較例1~3の摺動部材は、実施例1~16の摺動部材と比較して、ドライ環境下において、耐摩耗性が劣っている。比較例1の摺動部材は、適度に架橋されたUHPE粒子ではなく、フッ素化合物(PTFE粒子)を採用しているため、耐摩耗性が劣るものと推察される。比較例2の摺動部材は、融点が134.6°Cの未架橋のUHPE粒子を採用しているため、高温時に摺動層の表面からUHPE粒子が溶出、脱落し易いからであると推察される。この点は、摺動層における組成の配合割合が同じである実施例1~3、9、10の摺動部材と、比較例2の摺動部材とを比較すれば明らかである。さらに、比較例3の摺動部材は、電子線の吸収線量が1000kGyであるため、架橋されたUHPE粒子が脆くなり、かえって摺動部材の耐摩耗性が悪化したと推察される。 On the other hand, as can be seen from Tables 5 to 7, the sliding members of Comparative Examples 1 to 3 have a specific wear amount of 2.3 (× 10 −6 mm 3 / N · m) or more in the result of Test 1. . Therefore, the sliding members of Comparative Examples 1 to 3 are inferior in wear resistance in a dry environment as compared to the sliding members of Examples 1 to 16. The sliding member of Comparative Example 1 is presumed to be inferior in wear resistance because it employs a fluorine compound (PTFE particle) instead of a suitably crosslinked UHPE particle. Since the sliding member of Comparative Example 2 employs uncrosslinked UHPE particles having a melting point of 134.6 ° C., it is assumed that the UHPE particles are likely to elute and drop off from the surface of the sliding layer at high temperatures. Is done. This point is apparent when the sliding members of Examples 1 to 3, 9, and 10 having the same composition ratio in the sliding layer are compared with the sliding member of Comparative Example 2. Furthermore, since the sliding member of Comparative Example 3 has an absorbed dose of electron beam of 1000 kGy, it is surmised that the crosslinked UHPE particles become brittle, and the wear resistance of the sliding member deteriorates.
 したがって、実施例1~16の摺動部材では、ドライ環境下において、摺動層が耐摩耗性の点で優れた摺動特性を発揮することができる。このため、これらの摺動部材を圧縮機の斜板等に採用すれば、より優れた圧縮機が得られることがわかる。 Therefore, in the sliding members of Examples 1 to 16, the sliding layer can exhibit excellent sliding characteristics in terms of wear resistance in a dry environment. For this reason, if these sliding members are employ | adopted for the swash plate of a compressor, it turns out that a more excellent compressor is obtained.
 超高分子量ポリエチレンはゲル分率が26%以上であることが好ましい。この場合も、実施例1~16の摺動部材は、ドライ環境下において、優れた耐摩耗性を発揮できる。この理由は、ゲル分率がこの範囲の超高分子量ポリエチレンは適度に架橋されているため、摺動層の摩擦係数が低く、摩耗量が少なく、かつ高温時に摺動層の表面から超高分子量ポリエチレンが溶出し難いからであると推察される。 The ultra high molecular weight polyethylene preferably has a gel fraction of 26% or more. Also in this case, the sliding members of Examples 1 to 16 can exhibit excellent wear resistance in a dry environment. The reason for this is that ultra high molecular weight polyethylene with a gel fraction in this range is moderately cross-linked, so the friction coefficient of the sliding layer is low, the amount of wear is small, and the ultra high molecular weight from the surface of the sliding layer at high temperatures. This is probably because polyethylene is difficult to elute.
 摺動層は、シランカップリング剤を含有していることが好ましい。この場合、発明者らの試験結果によれば、摺動層がシランカップリング剤を含有している方が、ドライ環境下だけでなく、油中環境下においても、耐摩耗性が好ましい傾向があることがわかる。より具体的には、シランカップリング剤を含む実施例1~10及び実施例14、15、16の摺動部材の内、実施例1~10の摺動部材は、シランカップリング剤を含まない実施例11~13の摺動部材に対し、油中環境において、優れた耐摩耗性を発揮している。つまり、表5、6からわかるように、試験2の結果において、実施例1~10の摺動部材は、膜摩滅または膜剥離までの耐久時間が106秒を超え、さらにその耐久時間が120秒を超えている。ここで、表5~7に示す「>120」は、膜摩滅または膜剥離までの耐久時間が120秒を超えていることを示している。一方、実施例11~13の摺動部材は、いずれも膜摩滅または膜剥離までの耐久時間が95秒以下である。この点から、摺動層は、シランカップリング剤を含んでいる方が油中環境において優れた耐摩耗性を有する傾向があると推察される。この理由は、シランカップリング剤が超高分子量ポリエチレン及び酸化チタンとバインダ樹脂とを強固に結合させるため、超高分子量ポリエチレンが高温時に摺動層の表面からより溶出、脱落し難いからであると推測される。また、実施例11~13の摺動部材は、シランカップリング剤を含んでいなくても、ドライ環境下において、優れた耐摩耗性を発揮できる。 The sliding layer preferably contains a silane coupling agent. In this case, according to the test results of the inventors, it is preferable that the sliding layer contains a silane coupling agent not only in a dry environment but also in an oil environment. I know that there is. More specifically, among the sliding members of Examples 1 to 10 and Examples 14, 15, and 16 containing the silane coupling agent, the sliding members of Examples 1 to 10 do not contain the silane coupling agent. The sliding members of Examples 11 to 13 exhibit excellent wear resistance in an oil environment. That is, as can be seen from Tables 5 and 6, in the results of Test 2, in the sliding members of Examples 1 to 10, the durability time until film abrasion or film peeling exceeded 106 seconds, and the durability time was 120 seconds. Is over. Here, “> 120” shown in Tables 5 to 7 indicates that the durability time until film abrasion or film peeling exceeds 120 seconds. On the other hand, the sliding members of Examples 11 to 13 all have a durability time of 95 seconds or less until film abrasion or film peeling. From this point, it is surmised that the sliding layer containing the silane coupling agent tends to have excellent wear resistance in an oil-in-water environment. The reason for this is that the silane coupling agent strongly binds the ultrahigh molecular weight polyethylene and titanium oxide to the binder resin, so that the ultra high molecular weight polyethylene is more difficult to elute from the surface of the sliding layer at high temperatures and to be removed. Guessed. Further, the sliding members of Examples 11 to 13 can exhibit excellent wear resistance in a dry environment even if they do not contain a silane coupling agent.
 摺動層は、超高分子量ポリエチレンが摺動層における全固体成分に対して10体積%以上、35体積%以下であることが好ましい。この場合、摺動層は、ドライ環境下において、耐摩耗性をより向上することができる。より具体的には、試験1の結果において、実施例1~16の摺動部材の比摩耗量が2.3(×10-6mm3/N・m)未満である。一方、比較例4、5の摺動部材の比摩耗量が2.3(×10-6mm3/N・m)を大きく上回っている。つまり、実施例1~16の摺動部材は、比較例4、5の摺動部材に対し、ドライ環境下において、優れた耐摩耗性を発揮できる。比較例4の摺動部材は、超高分子量ポリエチレンが摺動層における全固体成分に対して5体積%であるため、耐摩耗効果が十分に発揮されていないと推察される。また、比較例5の摺動部材は、超高分子量ポリエチレンが摺動層における全固体成分に対して50体積%であるため、摺動層の表面からUHPE粒子が溶出、脱落し易いからであると推察される。 In the sliding layer, it is preferable that ultra high molecular weight polyethylene is 10% by volume or more and 35% by volume or less with respect to all solid components in the sliding layer. In this case, the sliding layer can further improve the wear resistance in a dry environment. More specifically, in the result of Test 1, the specific wear amount of the sliding members of Examples 1 to 16 is less than 2.3 (× 10 −6 mm 3 / N · m). On the other hand, the specific wear amount of the sliding members of Comparative Examples 4 and 5 greatly exceeds 2.3 (× 10 −6 mm 3 / N · m). That is, the sliding members of Examples 1 to 16 can exhibit superior wear resistance in a dry environment as compared with the sliding members of Comparative Examples 4 and 5. In the sliding member of Comparative Example 4, since the ultra high molecular weight polyethylene is 5% by volume with respect to the total solid component in the sliding layer, it is presumed that the wear resistance effect is not sufficiently exhibited. Further, in the sliding member of Comparative Example 5, because ultra high molecular weight polyethylene is 50% by volume with respect to the total solid component in the sliding layer, UHPE particles are likely to be eluted and dropped from the surface of the sliding layer. It is guessed.
 摺動層は、シランカップリング剤を含有し、シランカップリング剤が摺動層における全固体成分に対して0.2体積%以上、8体積%以下であることが好ましい。この場合も、摺動層は、ドライ環境下において、耐摩耗性をさらに向上することができる。より具体的には、試験1の結果において、実施例1~10、実施例14~16の摺動部材の比摩耗量が2.3(×10-6mm3/N・m)未満である。 The sliding layer contains a silane coupling agent, and the silane coupling agent is preferably 0.2% by volume or more and 8% by volume or less with respect to all solid components in the sliding layer. Also in this case, the sliding layer can further improve the wear resistance in a dry environment. More specifically, in the results of Test 1, the specific wear amount of the sliding members of Examples 1 to 10 and Examples 14 to 16 is less than 2.3 (× 10 −6 mm 3 / N · m). .
 摺動層は、固体潤滑剤がバインダ樹脂に対して12.0体積%以上、29.0体積%以下であり、シランカップリング剤が摺動層における全固体成分に対して1体積%以上、5体積%以下であることが好ましい。この場合、摺動層は、ドライ環境下及び油中環境下において、耐摩耗性をさらに向上するができる。より具体的には、実施例1~10の摺動部材は、試験2の結果において、比較例2の摺動部材における膜摩滅または膜剥離までの耐久時間が106秒を超え、さらにその耐久時間が120秒を超えている。これより、実施例1~10の摺動部材は、油中環境下でおいても耐摩耗性をより確実に向上するができる。つまり、実施例1~10の各摺動部材は、ドライ環境下及び油中環境下において、耐摩耗性をさらに向上するができる。 In the sliding layer, the solid lubricant is 12.0% by volume or more and 29.0% by volume or less with respect to the binder resin, and the silane coupling agent is 1% by volume or more with respect to all solid components in the sliding layer, It is preferably 5% by volume or less. In this case, the sliding layer can further improve the wear resistance in a dry environment and an oil-in-water environment. More specifically, in the sliding members of Examples 1 to 10, in the result of Test 2, the durability time until film abrasion or film peeling in the sliding member of Comparative Example 2 exceeded 106 seconds, and the durability time was further increased. Exceeds 120 seconds. As a result, the sliding members of Examples 1 to 10 can more reliably improve the wear resistance even in an oil environment. That is, the sliding members of Examples 1 to 10 can further improve the wear resistance in a dry environment and an oil-in-water environment.
 以上において、本発明を実施例1~16に即して説明したが、本発明は上記実施例1~16に制限されるものではなく、その趣旨を逸脱しない範囲で適宜変更して適用できることはいうまでもない。 In the above, the present invention has been described with reference to the first to sixteenth embodiments. However, the present invention is not limited to the first to sixteenth embodiments, and can be appropriately modified and applied without departing from the spirit of the present invention. Needless to say.
 例えば、本発明において、母材と摺動層との密着性を高めるため、母材に対してアルカリ等を接触させる脱脂工程を行うことが可能である。また、母材と摺動層との密着性をさらに高めるため、脱脂工程後、リン酸亜鉛、リン酸マンガン等のリン酸塩からなる下地層を形成することも可能である。 For example, in the present invention, in order to improve the adhesion between the base material and the sliding layer, it is possible to perform a degreasing step in which an alkali or the like is brought into contact with the base material. In order to further improve the adhesion between the base material and the sliding layer, it is possible to form a base layer made of a phosphate such as zinc phosphate or manganese phosphate after the degreasing step.
 本発明は種々の摺動部材に利用可能である。 The present invention can be used for various sliding members.
 1、3…相手材(1…リング、3…ボール)
 10、20…母材
 10a、20a…摺動層
1, 3 ... Mating material (1 ... Ring, 3 ... Ball)
10, 20 ... Base material 10a, 20a ... Sliding layer

Claims (8)

  1.  母材と、前記母材上に形成され、バインダ樹脂と固体潤滑剤と無機充填剤とを含有する摺動層とを備え、前記摺動層が相手材と摺動する摺動部材であって、
     前記固体潤滑剤は、粒子状をなし、融点が126.4°C以上、132.0°C以下である超高分子量ポリエチレンであり、
     前記無機充填剤は、粒子状をなす酸化チタンであり、
     前記酸化チタンは、前記摺動層における全固体成分に対して、1体積%以上、8体積%以下であることを特徴とする摺動部材。
    A sliding member that is formed on the base material and includes a sliding layer that is formed on the base material and contains a binder resin, a solid lubricant, and an inorganic filler, and the sliding layer slides on a mating material; ,
    The solid lubricant is an ultra high molecular weight polyethylene having a particulate shape and a melting point of 126.4 ° C. or higher and 132.0 ° C. or lower.
    The inorganic filler is particulate titanium oxide,
    The said titanium oxide is 1 volume% or more and 8 volume% or less with respect to the total solid component in the said sliding layer, The sliding member characterized by the above-mentioned.
  2.  前記超高分子量ポリエチレンはゲル分率が26%以上である請求項1記載の摺動部材。 The sliding member according to claim 1, wherein the ultra high molecular weight polyethylene has a gel fraction of 26% or more.
  3.  前記摺動層は、さらにシランカップリング剤を含有する請求項1又は2記載の摺動部材。 The sliding member according to claim 1 or 2, wherein the sliding layer further contains a silane coupling agent.
  4.  前記摺動層は、前記超高分子量ポリエチレンが前記摺動層における全固体成分に対して10体積%以上、35体積%以下である請求項1乃至3のいずれか1項記載の摺動部材。 The sliding member according to any one of claims 1 to 3, wherein in the sliding layer, the ultra high molecular weight polyethylene is 10% by volume or more and 35% by volume or less with respect to all solid components in the sliding layer.
  5.  前記摺動層は、シランカップリング剤を含有し、
     前記シランカップリング剤が前記摺動層における全固体成分に対して0.2体積%以上、8体積%以下である請求項4記載の摺動部材。
    The sliding layer contains a silane coupling agent,
    The sliding member according to claim 4, wherein the silane coupling agent is 0.2% by volume or more and 8% by volume or less with respect to all solid components in the sliding layer.
  6.  前記摺動層は、前記固体潤滑剤が前記バインダ樹脂に対して12.0体積%以上、29.0体積%以下であり、
     前記摺動層は、前記シランカップリング剤が前記摺動層における全固体成分に対して1体積%以上、5体積%以下である請求項5記載の摺動部材。
    In the sliding layer, the solid lubricant is 12.0% by volume or more and 29.0% by volume or less with respect to the binder resin.
    The sliding member according to claim 5, wherein the sliding layer has the silane coupling agent in an amount of 1% by volume or more and 5% by volume or less with respect to all solid components in the sliding layer.
  7.  相手材と摺動する摺動部材を製造するための摺動部材の製造方法であって、
     粒子状の超高分子量ポリエチレンに対して密閉状態で放射線を照射し、前記超高分子量ポリエチレンを架橋する架橋工程と、
     前記架橋工程で架橋された前記超高分子量ポリエチレンを含む固体潤滑剤と、バインダ樹脂と、粒子状の酸化チタンである無機充填剤とを含有する摺動層用組成物を調製する組成物調製工程と、
     母材上に前記摺動層用組成物を設けて前記相手材と摺動する摺動層を形成し、摺動部材を得る摺動層形成工程とを備えていることを特徴とする摺動部材の製造方法。
    A manufacturing method of a sliding member for manufacturing a sliding member that slides with a counterpart material,
    A crosslinking step of irradiating the particulate ultrahigh molecular weight polyethylene in a sealed state to crosslink the ultrahigh molecular weight polyethylene;
    A composition preparation step for preparing a sliding layer composition comprising a solid lubricant containing the ultrahigh molecular weight polyethylene crosslinked in the crosslinking step, a binder resin, and an inorganic filler that is particulate titanium oxide. When,
    A sliding layer forming step of providing a sliding member by providing the sliding layer composition on a base material to form a sliding layer that slides with the counterpart material; Manufacturing method of member.
  8.  前記組成物調整工程は、さらにシランカップリング剤を含有する請求項7記載の摺動部材の製造方法。 The method for producing a sliding member according to claim 7, wherein the composition adjusting step further contains a silane coupling agent.
PCT/JP2018/044999 2018-04-19 2018-12-06 Sliding member and method for producing same WO2019202772A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018080502A JP7010128B2 (en) 2018-04-19 2018-04-19 Sliding member and its manufacturing method
JP2018-080502 2018-04-19

Publications (1)

Publication Number Publication Date
WO2019202772A1 true WO2019202772A1 (en) 2019-10-24

Family

ID=68240031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044999 WO2019202772A1 (en) 2018-04-19 2018-12-06 Sliding member and method for producing same

Country Status (2)

Country Link
JP (1) JP7010128B2 (en)
WO (1) WO2019202772A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000033117A (en) * 1998-06-10 2000-02-02 Depuy Orthopaedics Inc Crosslinked molded plastic bearing
JP2001061954A (en) * 1999-07-29 2001-03-13 Bristol Myers Squibb Co Method for making supporting surface of articulation used for implanting member for orthopedic surgery
JP2012111815A (en) * 2010-11-22 2012-06-14 Sumico Lubricant Co Ltd Resin composition for dry lubrication coat film formation
JP2016069508A (en) * 2014-09-30 2016-05-09 トヨタ自動車株式会社 Sliding member, piston ad coated composition
JP2018080650A (en) * 2016-11-17 2018-05-24 株式会社豊田自動織機 Swash plate compressor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008025727A (en) 2006-07-21 2008-02-07 Nsk Ltd Plastic molded product and rolling device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000033117A (en) * 1998-06-10 2000-02-02 Depuy Orthopaedics Inc Crosslinked molded plastic bearing
JP2001061954A (en) * 1999-07-29 2001-03-13 Bristol Myers Squibb Co Method for making supporting surface of articulation used for implanting member for orthopedic surgery
JP2012111815A (en) * 2010-11-22 2012-06-14 Sumico Lubricant Co Ltd Resin composition for dry lubrication coat film formation
JP2016069508A (en) * 2014-09-30 2016-05-09 トヨタ自動車株式会社 Sliding member, piston ad coated composition
JP2018080650A (en) * 2016-11-17 2018-05-24 株式会社豊田自動織機 Swash plate compressor

Also Published As

Publication number Publication date
JP7010128B2 (en) 2022-03-04
JP2019189679A (en) 2019-10-31

Similar Documents

Publication Publication Date Title
US9243204B2 (en) Wear resistant lubricious composite
US6376062B1 (en) Overlay material and composite multilayer material
US6305847B1 (en) Sliding bearing
JPS61266451A (en) Composition for sliding member
US10472586B2 (en) Lubricating coating composition and compressor including the same
WO2006075481A1 (en) Multilayer sliding member
JP7083044B2 (en) Compositions for sliding members and sliding members
JP6863176B2 (en) Manufacturing method of sliding member
JP7010127B2 (en) Sliding member and its manufacturing method
WO2019202772A1 (en) Sliding member and method for producing same
KR102400422B1 (en) Sliding member and manufacturing method thereof
JP2007031501A (en) Composition for slide member
JP2001012542A (en) Supporting device for base isolation
JPH08208930A (en) Sliding composition and sliding member made thereof
JPH06122887A (en) Composition for sliding member
KR101837116B1 (en) A solid lubricant for bush
JP2005321057A (en) Multiple layer slide member
JP2009062935A (en) Sliding material composition for swash plate of swash plate type compressor and sliding material
JP4543742B2 (en) Solid lubricant and sliding member
JP2007231941A (en) Swash plate of swash plate compressor, and swash plate compressor
JP6318463B2 (en) Solid particles, solid lubricants and metal parts
WO2024161674A1 (en) Sliding member and bearing
WO2005118730A1 (en) Aqueous coating material for sliding member and sliding member
JP2004156650A (en) Multi-layer resin bearing
JPH10226752A (en) Production of sliding material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18915244

Country of ref document: EP

Kind code of ref document: A1