WO2019202758A1 - Cylindrical linear motor - Google Patents

Cylindrical linear motor Download PDF

Info

Publication number
WO2019202758A1
WO2019202758A1 PCT/JP2018/039470 JP2018039470W WO2019202758A1 WO 2019202758 A1 WO2019202758 A1 WO 2019202758A1 JP 2018039470 W JP2018039470 W JP 2018039470W WO 2019202758 A1 WO2019202758 A1 WO 2019202758A1
Authority
WO
WIPO (PCT)
Prior art keywords
linear motor
rod
armature
cylindrical linear
cores
Prior art date
Application number
PCT/JP2018/039470
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 浩介
隆司 柿内
Original Assignee
Kyb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyb株式会社 filed Critical Kyb株式会社
Priority to JP2020514897A priority Critical patent/JP7025533B2/en
Publication of WO2019202758A1 publication Critical patent/WO2019202758A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors

Definitions

  • the present invention relates to a cylindrical linear motor.
  • a cylindrical linear motor includes a base that extends in a linear direction, and a plurality of cylindrical linear motors that are attached so that S poles and N poles are alternately arranged in the linear direction with respect to the base. And an armature provided so as to be movable in the linear direction with respect to the field.
  • a conventional cylindrical linear motor includes a field magnet including a cylindrical center yoke and a plurality of annular permanent magnets mounted on the outer periphery of the center yoke, a cylindrical core, and an inner portion of the core. It has a coil housed in a plurality of slots provided in the periphery, and an armature into which the field is inserted on the inner periphery side (see, for example, Patent Document 1).
  • an object of the present invention is to provide a cylindrical linear motor that can prevent the eccentricity of the armature with respect to the field and can stably generate thrust.
  • the cylindrical linear motor of the present invention is cylindrical and is disposed on the inner periphery of the field, in which N poles and S poles are alternately arranged in the axial direction.
  • a non-magnetic inner tube a rod that is movably inserted into the inner tube, an armature that is mounted on the rod, and is provided on the rod and slidably contacts the inner circumference of the inner tube to prevent the armature field.
  • a slider for guiding the movement In the cylindrical linear motor configured as described above, a non-magnetic inner tube is disposed between the field and the armature, and the slider provided on the rod is in sliding contact with the inner periphery of the inner tube. The movement of the armature in the thrust direction is guided and the radial eccentricity with respect to the field is suppressed.
  • FIG. 1 is a longitudinal sectional view of a cylindrical linear motor in the first embodiment.
  • FIG. 2A is a side view of the inner tube of the cylindrical linear motor in the first embodiment.
  • FIG. 2B is a perspective view of the inner tube of the cylindrical linear motor in the first embodiment.
  • FIG. 3 is a longitudinal sectional view of a tooth portion of the cylindrical linear motor according to the first embodiment.
  • FIG. 4 is a diagram showing a waveform of a single cogging thrust of the core.
  • FIG. 5 is a diagram showing a waveform of a single cogging thrust of the core.
  • FIG. 6 is a diagram showing a waveform of a single cogging thrust of the core.
  • FIG. 7 is a diagram showing a waveform of a single cogging thrust of the core.
  • FIG. 8 is a diagram for explaining a change in the width of the end teeth and a change in the cogging thrust.
  • FIG. 9 is a longitudinal sectional view of a cylindrical linear motor according to a first modification of the first embodiment.
  • FIG. 10 is a longitudinal sectional view of a cylindrical linear motor in a second modification of the first embodiment.
  • FIG. 11A is a side view of the inner tube of the cylindrical linear motor in the second modification of the first embodiment.
  • FIG. 11B is a perspective view of the inner tube of the cylindrical linear motor in the second modification of the first embodiment.
  • FIG. 12 is a longitudinal sectional view of a cylindrical linear motor according to a third modification of the first embodiment.
  • FIG. 13 is a longitudinal sectional view of a cylindrical linear motor in the second embodiment.
  • the cylindrical linear motor M ⁇ b> 1 in the first embodiment is a cylindrical field 6 in which N poles and S poles are alternately arranged in the axial direction, A non-magnetic inner tube 9 disposed on the inner periphery, a rod 11 movably inserted into the inner tube 9, an armature A attached to the rod 11, and an inner tube 9 provided on the rod 11 And sliders 12 and 13 for guiding the movement of the armature A with respect to the field 6.
  • the armature A that is a mover will be described.
  • the armature A includes two cores 2A and 2B in the present embodiment.
  • the cores 2 ⁇ / b> A and 2 ⁇ / b> B have the same shape, and are configured to include a cylindrical yoke 3 and a plurality of teeth 4 a and 4 b that are annular and provided on the outer periphery of the yoke 3. It is mounted side by side in the axial direction and is a mover. That is, in the cylindrical linear motor M1, the armature A is driven as a mover, and the axial direction of the cores 2A and 2B is the thrust generation direction.
  • the yoke 3 in each of the cores 2A and 2B has a cylindrical shape, and a plurality of teeth 4a and 4b provided at intervals in the axial direction are provided on the outer periphery thereof.
  • ten teeth 4a and 4b are arranged on the outer periphery of the yoke 3 at equal intervals in the axial direction, and between the teeth 4a and 4b and between the teeth 4b and 4b.
  • a slot 18 is formed which is a gap in which the winding 5 is mounted.
  • the teeth 4a and 4b are composed of two end teeth 4a and 4a provided to be arranged at both ends of the yoke 3, and eight intermediate teeth 4b provided to be provided between the end teeth 4a and 4a.
  • the end teeth 4a and 4a are provided at both ends in the axial direction as the moving direction of the core 2A (2B) with respect to one core 2A (2B), and the intermediate teeth 4b are provided between the end teeth 4a and 4a.
  • the end teeth 4a and the intermediate teeth 4b are annular.
  • the intermediate teeth 4b are formed in an isosceles trapezoidal shape in which the width y at the outer peripheral end is narrower than the width yi at the inner peripheral end in the axial direction. Is a tapered surface inclined at an equal angle with respect to the outer peripheral end. And in the cross section which cut
  • the end teeth 4a have a side surface on the intermediate teeth side that has the same shape as the side surface of the intermediate teeth 4b and a side surface on the anti-intermediate teeth side that is perpendicular to the axis J with respect to the cores 2A and 2B. It has a trapezoidal shape. That is, the side surface of the end teeth 4a on the side of the intermediate teeth is a tapered surface, and the internal angle ⁇ formed by this side surface with the orthogonal surface O orthogonal to the axis J of the cores 2A and 2B is the side surface of the intermediate tooth 4b. It is equal to the internal angle ⁇ formed with O. Further, the side surface on the anti-intermediate teeth side of the end tooth 4a is a surface orthogonal to the axis J of the cores 2A and 2B, and the angle formed between the side surface and the outer peripheral end is 90 degrees.
  • the gaps between the adjacent teeth 4a and 4b in FIG. 1 in each of the cores 2A and 2B that is, between the end teeth 4a and the intermediate teeth 4b and between the intermediate teeth 4b and 4b.
  • a total of 18 slots 18 are provided.
  • the windings 5 are wound around all the slots 18 and attached.
  • the winding 5 is a U-phase, V-phase, and W-phase three-phase winding.
  • the W phase, the W phase, the W phase and the V phase, the V phase, the V phase, the V phase, the U phase, and the U phase are sequentially arranged from the left side in FIG. , U phase, U phase and W phase, W phase and V phase, V phase, V phase and U phase, U phase, U phase and W phase, W phase, W phase winding 5 It is installed.
  • the cores 2A and 2B configured as described above are mounted on the outer periphery of the rod 11 formed of a nonmagnetic material that is an output shaft.
  • the cores 2 ⁇ / b> A and 2 ⁇ / b> B are fixed to the rod 11 by being sandwiched between annular sliders 12 and 13 that are fixed to the outer periphery of the rod 11.
  • Wear rings 12 a and 13 a are mounted on the outer circumferences of the sliders 12 and 13.
  • a spacer 14 made of a non-magnetic material fixed to the outer periphery of the rod 11 is interposed between the cores 2A and 2B.
  • the core 2A and the core 2B are fixed to the rod 11 with an interval K therebetween. Has been.
  • the outer diameters of the sliders 12 and 13 and the spacer 14 are set larger than the outer diameters of the cores 2A and 2B.
  • the armature A thus configured is inserted into the cylindrical field 6 so as to be movable in the axial direction, which is the thrust direction.
  • the spacer 14 provides a magnetic gap with an interval K between the core 2A and the core 2B.
  • the relative rotation around the rod 11 is restricted by the pin 24 fitted to both the left core 2A and the left slider 12 as well as the left slider 12.
  • the relative rotation around the rod 11 is restricted by the pin 25 fitted to both the right core 2B and the right core 2B in FIG.
  • relative rotation around the rod 11 is restricted by the pin 26 fitted to both the core 2A and the spacer 14, and the rod 11 is fitted to the core 2B and the spacer 14 by the pin 27 fitted to both.
  • the relative rotation around is restricted.
  • the rotation restricting portions that restrict the relative rotation of the sliders 12 and 13 and the armature A around the rod 11 are the pins 24 and 25.
  • the restricting portion may employ a rotation prevention mechanism such as a key, a key groove, a spline, and a serration.
  • a rotation prevention mechanism such as a key, a key groove, a spline, and a serration.
  • the rotation restricting portion and the spacer rotation restricting portion may function as a circumferential detent of the sliders 12 and 13, the cores 2 ⁇ / b> A and 2 ⁇ / b> B, and the spacer 14 with respect to the rod 11.
  • a regulating member 28 having a protrusion protruding in the radial direction from the outer periphery of the slider 13 when the rod 11 is viewed from the axial direction is attached to the slider 13 on the right side in FIG.
  • the restricting member 28 may be inserted into a notch 9a of the inner tube 9 to be described later and may not interfere with the permanent magnets 10a and 10b, and may be fixedly attached to the rod 11. Therefore, it may be directly attached to the rod 11 without using the slider 13, and various methods such as screw fastening and welding can be adopted for the attachment.
  • the stator S includes an outer tube 7 formed of a cylindrical nonmagnetic material, and a back yoke 8 formed of a cylindrical soft magnetic material inserted into the outer tube 7.
  • the field magnet 6 includes a ring-shaped main magnetic pole permanent magnet 10a and a ring-shaped sub-magnetic pole permanent magnet 10b inserted into the back yoke 8 alternately in the axial direction.
  • a nonmagnetic inner tube 9 is provided on the inner periphery of the permanent magnets 10a and 10b of the field 6. That is, the permanent magnets 10 a and 10 b are accommodated in an annular gap between the back yoke 8 and the inner tube 9.
  • the triangular marks on the main magnetic pole permanent magnet 10a and the sub magnetic pole permanent magnet 10b indicate the magnetization direction, and the magnetization direction of the main magnetic pole permanent magnet 10a is the radial direction.
  • the magnetization direction of the secondary magnetic pole permanent magnet 10b is the axial direction.
  • the permanent magnet 10a of the main magnetic pole and the permanent magnet 10b of the sub magnetic pole are arranged in a Halbach array, and are arranged on the inner peripheral side of the field magnet 6 so that S poles and N poles appear alternately in the axial direction. .
  • the axial length L1 of the main magnetic pole permanent magnet 10a is longer than the axial length L2 of the auxiliary magnetic pole permanent magnet 10b. In this embodiment, 0.2 ⁇ L2 / L1 ⁇ 0. .5, the axial length L1 of the main magnetic pole permanent magnet 10a and the axial length L2 of the auxiliary magnetic pole permanent magnet 10b are set. If the axial length L1 of the main pole permanent magnet 10a is increased, the magnetic resistance between the main pole permanent magnet 10a and the core 2A, 2B can be reduced, and the magnetic field applied to the core 2A, 2B can be increased. Therefore, the thrust of the cylindrical linear motor M1 can be improved.
  • the back yoke 8 is provided on the outer periphery of the permanent magnets 10a and 10b.
  • the back yoke 8 is provided, a magnetic path having a low magnetic resistance can be secured even if the axial length L2 of the secondary magnetic pole permanent magnet 10b is shortened. Therefore, when the axial length L1 of the main magnetic pole permanent magnet 10a is increased. The thrust of the cylindrical linear motor M1 can be effectively improved.
  • the back yoke 8 is provided on the outer periphery of the permanent magnets 10a and 10b, a magnetic path having a low magnetic resistance can be secured, so that an increase in the magnetic resistance due to the shortening of the axial length L2 of the permanent magnet 10b of the auxiliary magnetic pole. Is suppressed. Therefore, when the axial length L1 of the permanent magnet 10a of the main magnetic pole is made longer than the axial length L2 of the permanent magnet 10b of the auxiliary magnetic pole, and the cylindrical back yoke 8 is provided on the outer periphery of the permanent magnets 10a, 10b, the cylinder The thrust of the mold linear motor M1 can be greatly improved.
  • the thickness of the back yoke 8 may be set to a thickness suitable for suppressing an increase in the external magnetic resistance of the main magnet permanent magnet 10a. Although the increase in magnetic resistance can be suppressed by providing the back yoke 8, the back yoke 8 can be omitted.
  • the sub-magnetic pole permanent magnet 10b is a permanent magnet having a higher coercive force than the main magnetic pole permanent magnet 10a.
  • the residual magnetic flux density and coercive force of a permanent magnet are closely related to each other. Generally, increasing the residual magnetic flux density decreases the coercive force, and increasing the coercive force decreases the residual magnetic flux density. There is a relationship. In the Halbach array, since a large magnetic field is applied in the demagnetization direction to the secondary magnetic pole permanent magnet 10b, the coercive force of the secondary magnetic pole permanent magnet 10b is increased to suppress the demagnetization, and the large magnetic field is applied to the cores 2A and 2B. To be able to act on.
  • the strength of the magnetic field acting on the cores 2A and 2B depends on the number of lines of magnetic force of the permanent magnet 10a of the main magnetic pole. Therefore, a large magnetic field is applied to the cores 2A and 2B by using a permanent magnet having a high residual magnetic flux density for the permanent magnet 10a of the main magnetic pole.
  • the material of the secondary magnetic pole permanent magnet 10b is made to be more coercive than the material of the main magnetic pole permanent magnet 10a. There are high materials. Therefore, the combination of the main magnetic pole permanent magnet 10a and the auxiliary magnetic pole permanent magnet 10b can be easily realized by selecting the material.
  • the main magnetic pole permanent magnet 10a is made of a material having a high residual magnetic flux density mainly composed of neodymium, iron, and boron
  • the auxiliary magnetic pole permanent magnet 10b is made of dysprosium or terbium. It is made up of magnets that are hard to demagnetize with increased amounts of heavy rare earth elements such as.
  • an armature A is inserted on the inner peripheral side of the stator S, and the field 6 causes a magnetic field to act on the armature A.
  • the field 6 should just apply a magnetic field with respect to the movable range of the armature A, what is necessary is just to determine the installation range of permanent magnet 10a, 10b according to the movable range of the armature A. Therefore, it is not necessary to install the permanent magnets 10a and 10b in the range where the armature A cannot be opposed to the annular gap between the outer tube 7 and the inner tube 9.
  • the length of the back yoke 8 is equal to the length of the permanent magnets 10a and 10b stacked, and the permanent magnets 10a and 10b cause a magnetic force to act outside the stroke range of the cores 2A and 2B, thereby reducing thrust. It is considered not to invite.
  • the head cap 16 has an inner diameter larger than the outer diameter of the rod 11, and includes a dust seal 16 a on the inner periphery, and the rod 11 is inserted through the inner periphery.
  • sticker 16a is slidably contacted with the outer periphery of the rod 11 inserted in the inner periphery of the head cap 16, and seals the outer periphery of the rod 11.
  • the inner tube 9 includes a notch 9a that opens from the right end in the drawing and is provided along the axial direction. Further, on the inner periphery of the inner tube 9, an armature A, sliders 12, 13 and a spacer 14 mounted on the outer periphery of the rod 11 and the rod 11 are inserted so as to be movable in the axial direction. Further, a protrusion on the regulating member 28 is inserted into the notch 9 a of the inner tube 9. As described above, when the armature A is inserted into the field 6, the cores 2A and 2B face the eight magnetic poles in the field 6, so that the cylindrical linear motor M1 is an eight-pole nine-slot linear motor. ing.
  • sliders 12 and 13 having wear rings 12 a and 13 a are in sliding contact with the inner peripheral surface of the inner tube 9, and the armature A is eccentric with respect to the field 6 together with the rod 11 by the sliders 12 and 13. Without moving smoothly in the axial direction.
  • the lead-in chamfers 12c and 13c are formed by chamfering the outer peripheries at both ends in the axial direction of the sliders 12 and 13, respectively.
  • the sliders 12 and 13 are provided with the lead in chamfers 12 c and 13 c at both ends in the axial direction as described above, the sliders 12 and 13 are inclined with respect to the inner tube 9 due to external moment and lateral force acting on the rod 11.
  • the restricting member 28 Since the restricting member 28 is inserted into the notch 9a provided in the inner tube 9 along the axial direction, the armature A moves in the axial direction while restricting the rotation of the armature A in the circumferential direction. I can't interfere.
  • the width of the protrusion inserted into the notch 9a of the restricting member 28 is slightly smaller than the circumferential width of the notch 9a, so that the restricting member 28 can move smoothly within the notch 9a, and the resistance of movement of the armature A It is considered not to become.
  • the total length of the notch 9a provided in the inner tube 9 is such that the regulating member 28 does not collide with the inner wall of the end portion of the notch 9a of the inner tube 9 even when the armature A strokes the maximum in the inner tube 9. ing.
  • the inner tube 9 forms a gap between the outer periphery of the armature A and the inner periphery of the permanent magnets 10a and 10b, and cooperates with the sliders 12 and 13 to guide the axial movement of the armature A. Plays.
  • the spacer 14 is not slidably contacted with the inner periphery of the inner tube 9.
  • the core 2A, 2B Prior to contact with the inner tube 9. Therefore, interference with the inner tube 9 of the cores 2A and 2B is prevented, and the armature A can be protected.
  • the inner tube 9 only needs to be formed of a non-magnetic material, but if formed of synthetic resin, the effect of improving the thrust density of the cylindrical linear motor M1 is enhanced.
  • the inner tube 9 is made of a non-magnetic metal, an eddy current is generated in the inner tube 9 when the armature A moves in the axial direction, and a force that hinders the movement of the armature A is generated.
  • the inner tube 9 is made of synthetic resin, no eddy current is generated, so that the thrust of the cylindrical linear motor M1 can be improved more effectively and the mass of the cylindrical linear motor M1 can be reduced.
  • the inner tube 9 When the inner tube 9 is made of synthetic resin, friction and wear between the sliders 12 and 13 and the wear rings 12a and 13a can be reduced if the inner tube 9 is made of fluororesin. Further, the inner tube 9 may be formed of another synthetic resin, and the inner periphery of the inner tube 9 formed of another synthetic resin may be coated with a fluororesin so as to reduce friction and wear.
  • the sliders 12 and 13 provided at both ends of the armature A are slidably contacted with the inner tube 9 as described above, the armature A is prevented from being eccentric with respect to the field 6 and the axial direction of the armature A (thrust direction). ) Is ensured, and the cylindrical linear motor M1 can stably generate thrust. Further, since the cylindrical linear motor M1 includes a non-magnetic inner tube 9 on the inner periphery of the field 6, the armature is inserted when the armature A is inserted into the field 6 of the cylindrical linear motor M1. It is possible to prevent A from being attracted and stuck to the permanent magnets 10a and 10b.
  • the sliders 12 and 13 are slidably contacted with the inner tube 9 to guide the prevention and movement of the armature A with respect to the field 6, but the spacer 14 is slidably contacted with the inner tube 9.
  • the eccentricity and movement of the armature A may be guided together with the sliders 12 and 13.
  • a cylindrical bearing that is in sliding contact with the outer periphery of the rod 11 may be provided on the inner periphery of the head cap 16 to guide the prevention and movement of the armature A together with the sliders 12 and 13.
  • the axial lengths of the outer tube 7, the back yoke 8, and the inner tube 9 are longer than the axial length of the armature A, and the armature A is within the range of the axial length in the field 6. Stroke from left to right.
  • the cap 15 is provided with a connector 15a for connecting the cable C connected to the winding 5 to an external power supply (not shown) so that the winding 5 can be energized from the external power source.
  • the winding 5 is a U-phase, V-phase, and W-phase three-phase winding as described above and is mounted in the slot 18 of the cores 2A and 2B as described above.
  • the windings 5 of each phase are connected via a lead wire 5b.
  • the windings 5 having the same phase mounted in the slots 18 provided in the same cores 2A and 2B are connected to each other by a jumper 5a.
  • the connecting wire 5a of the core 2A is disposed so as to cross the outer periphery of the core 2B in the axial direction through the through hole 14a penetrating the spacer 14 in the axial direction. Further, the connecting wire 5a from each phase winding 5 attached to the core 2A and the connecting wire 5a from each phase winding 5 attached to the core 2B are taken out through the through holes 13b of the slider 13, respectively. Are connected.
  • the U-phase, V-phase and W-phase windings 5 of the cores 2A and 2B are each Y-connected, and the connection point is a neutral point. That is, the in-phase windings 5 of the core 2A are connected in series for each phase by the connecting wire 5a, and the in-phase windings 5 of the core 2B are connected in series for each phase by the connecting wire 5a.
  • the winding 5 of the core 2B is connected in parallel to the external power supply.
  • the winding 5 of the core 2A and the winding 5 of the core 2B are connected in parallel to the external power supply, so that a voltage can be efficiently applied to the windings 5 of the cores 2A and 2B and a large current can be supplied.
  • the thrust of the cylindrical linear motor 1 can be improved.
  • each phase of the cores 2A and 2B may be connected in series with the same phase.
  • the windings 5 of each phase attached to the core 2A and the windings 5 of each phase attached to the core 2B are connected to the lead wire 5b connected to the external cable C through the through hole 12b of the slider 12. The Therefore, power can be supplied from the external power supply to the winding 5 of each phase via the cable C.
  • the crossover 5 a extends from the left side of the slider 12 to the right side of the slider 13.
  • the lead wire 5b connected to the winding 5 of the core 2B is disposed so as to cross the outer periphery of the core 2A.
  • the energization phase is switched based on the electrical angle, and the current amount of each winding 5 is controlled by PWM control, the cylindrical linear motor M1.
  • the moving direction of the armature A can be controlled.
  • the above-described control method is an example and is not limited to this.
  • the armature A is a mover, and the field 6 behaves as a stator.
  • a thrust that suppresses the relative displacement by energizing the winding 5 or an induced electromotive force generated in the winding 5.
  • the basic length of the cores 2A and 2B is set to 8 times the magnetic pole pitch P of the field 6.
  • the magnetic pole pitch P is set as shown in FIG.
  • the cogging thrust due to the end effect of the cores 2A and 2B changes. If the value of x is 0, that is, if the cores 2A and 2B are the basic length, the cogging thrust with respect to the position (deg) of the cores 2A and 2B with respect to the field 6 is not a clean sine wave, as shown in FIG. In this manner, the unit 2A, 2B has a waveform in which a unit wave that is disturbed for two periods appears in a range from 0 degrees to 360 degrees (corresponding to two magnetic pole pitches). Since the end effect appears at the left and right end teeth 4a of the cores 2A and 2B, the cogging thrust of the cores 2A and 2B is a combination of the end effect cogging thrusts of the left and right end teeth 4a.
  • the unit wave in the cogging thrust waveform gradually changes so as to approach a sine wave, and the cogging thrust waveform becomes a substantially clean sine waveform at a certain value x1.
  • the waveform of the cogging thrust is a waveform in which the sine wave appears for two cycles when the positions of the cores 2A and 2B are in the range from 0 degrees to 360 degrees.
  • the waveform of the cogging thrust is disturbed and does not become a sine wave, and as shown in FIG. 6, the positions of the cores 2A and 2B are 4 in the range from 0 degrees to 360 degrees. It becomes a waveform in which a unit wave that is disturbed for a period appears.
  • the cogging thrust waveform gradually changes so as to approach a sine waveform, and a substantially clean sine waveform is obtained at a certain value x2.
  • the cogging thrust waveform is a waveform in which a sine wave appears for four cycles.
  • the cogging thrust waveform of each of the cores 2A and 2B changes depending on the value of x, and there is a value of x where the waveform of the cogging thrust becomes a sine wave.
  • the position of the cores 2A and 2B increases as the value of x increases. In the range from 0 degrees to 360 degrees, the number of cogging thrust waveforms increases.
  • the cogging thrust waveform of each core 2A, 2B is a clean sine wave. Therefore, if the interval between the core 2A and the core 2B is adjusted so that the sine waveform of the cogging thrust of the core 2B has an opposite phase to the sine waveform of the cogging thrust of the core 2A, the cogging thrust of the core 2A can be reduced. The overall cogging thrust of the armature A can be minimized by canceling with the cogging thrust of 2B.
  • the core 2A can be canceled by canceling the cogging thrust of the core 2A with the cogging thrust of the core 2B.
  • the core 2B may be separated by 90 degrees or 270 degrees in the axial direction.
  • the value z May be set to a length that causes a shift of (90 + 180n) degrees.
  • 90 degrees is a length corresponding to P / 2 when the magnetic pole pitch is P
  • the core 2A can be canceled by canceling the cogging thrust of the core 2A with the cogging thrust of the core 2B.
  • the width W of the end teeth 4a is set with the value of x being x1 or x2, the value of z is obtained based on the value of x, and the interval K between the core 2A and the core 2B is set from the value z.
  • the cogging thrust of the armature A can be minimized.
  • FIG. 8 shows the overall cogging thrust of the armature A relative to the change in the value of x with reference to the cogging thrust of the entire armature A when the width W of the outer peripheral end of the end tooth 4a is y / 2. It is the graph which showed how it changed.
  • the cogging thrust of the cylindrical linear motor M1 is lowered. Therefore, if the axial width W of the outer peripheral end of the end tooth 4a is set so as to satisfy W> y / 2, the cogging thrust of the cylindrical linear motor M1 can be reduced. Further, as shown in FIG. 8, when the vertical axis is cogging thrust and the value of x is taken on the horizontal axis, the cogging thrust is a value x1, x2 at which the waveform of the single cogging thrust of the cores 2A and 2B becomes a sine wave. It changes to take the minimum value periodically.
  • the single cogging thrust waveform of the cores 2A and 2B varies from 0 degree to 360 degrees depending on the value of x. Since it can be understood how many unit waves appear in the range of degrees, the entire cogging thrust of the armature A can be reduced by optimizing the interval K based on the value of x. Further, if the value of x is optimized and the waveform of the single cogging thrust of the cores 2A and 2B is a sine wave, the cogging thrust of the armature A can be minimized.
  • the basic length, which is the axial length of the cores 2A and 2B, is set to an integral multiple of the magnetic pole pitch P
  • the width W of the end teeth 4a is set as the cogging thrust.
  • the cogging thrust can be reduced by setting the width to be suitable for reduction and appropriately setting the interval K between the cores 2A and 2B based on the value of x.
  • the cores 2A and 2B may be fixed to the outer periphery of the rod 11 while being separated from each other in the axial direction by a distance K.
  • the value x is optimal if it is set to x1 and x2 that minimize the cogging thrust.
  • the cogging thrust is 50 with respect to the cogging thrust when the width W is y / 2.
  • % May be set so as to obtain a value within a range of% or less.
  • the cogging thrust of the cylindrical linear motor M1 is halved from the cogging thrust when the width W of the end teeth 4a is set to y / 2, so that a sufficient cogging thrust reduction effect can be obtained.
  • the cogging thrust when the value of x is in the range ⁇ 1 or in the range ⁇ 2, the cogging thrust is 50% with respect to the cogging thrust when the width W is y / 2. (Line shown by a broken line in FIG. 8) or less, the value of x may be set to a value in the range ⁇ 1 or ⁇ 2.
  • the cogging thrust takes a minimum value periodically when the width W of the outer peripheral end of the end teeth 4a changes. Therefore, the cogging thrust is 50% or less with respect to the cogging thrust when the width W is y / 2. It may be set so as to obtain a value within a certain range.
  • the armature A includes the two cores 2A and 2B.
  • the following may be performed.
  • spacers 14A and 14B are provided between the cores 2A and 2B and between the cores 2B and 2C, so that there is a magnetic gap with a gap K between the cores 2A and 2B and between the cores 2B and 2C.
  • the spacers 14A and 14B have outer diameters larger than the outer diameters of the cores 2A, 2B and 2C. Therefore, the spacers 14A and 14B, like the spacer 14, perform the function of providing a magnetic gap between the cores 2A and 2B and between the cores 2B and 2C, and also the inner tube even if the rod 11 is bent by an excessive external force. 9 and the core 2A, 2B, 2C function to block interference.
  • the spacers 14 ⁇ / b> A and 14 ⁇ / b> B may always be in sliding contact with the inner periphery of the inner tube 9 and guide the movement of the armature A in the thrust direction together with the sliders 12 and 13.
  • the value of x is x2 and the waveform of cogging thrust is a waveform in which four sine waves appear in the range of the positions of the cores 2A, 2B, and 2C from 0 degree to 360 degrees
  • the three cores 2A, 2B, and 2C are provided.
  • the width W of the end teeth 4a is set with the value of x as x1 or x2, and the value of z is obtained based on the value of x, and between the cores 2A and 2B and between the cores 2B and 2C from the value z.
  • the interval K is set, the cogging thrust of the armature A can be minimized.
  • the single cogging thrust waveform of the cores 2A and 2B varies from 0 degree to 360 degrees depending on the value of x. Since it can be understood how many unit waves appear in the range of degrees, the entire cogging thrust of the armature A can be reduced by optimizing the interval K based on the value of x. Further, if the value of x is optimized and the waveform of the single cogging thrust of the cores 2A and 2B is a sine wave, the cogging thrust of the armature A can be minimized.
  • the cylindrical linear motor M1 has a cylindrical shape in which the N pole and the S pole are alternately arranged in the axial direction, and the inner periphery of the field 6 A non-magnetic inner tube 9 disposed in the inner tube 9, a rod 11 movably inserted into the inner tube 9, an armature A attached to the rod 11, and an inner tube 9 provided in the rod 11.
  • Sliders 12 and 13 are provided which slide around the circumference and guide the movement of the armature A relative to the field 6.
  • a non-magnetic inner tube 9 is disposed between the field 6 and the armature A, and the sliders 12 and 13 provided on the rod 11 include the inner tube 9. Since the movement of the armature A in the thrust direction is guided, the radial eccentricity with respect to the field 6 is suppressed. Therefore, according to the cylindrical linear motor M1 of the present invention, the eccentricity of the armature A with respect to the field 6 is prevented, and thrust can be generated stably. Further, in the cylindrical linear motor M1, the field 6 includes the non-magnetic inner tube 9 provided on the inner circumference of the permanent magnets 10a and 10b, so that an electric machine is provided in the field 6 of the cylindrical linear motor M1.
  • the armature A includes the two cores 2A and 2B.
  • the armature A may have a structure including only one core.
  • the eccentricity of the child A can be suppressed.
  • one of the slider 12 and the slider 13 can be omitted, and the eccentricity of the armature A can be suppressed.
  • a cylindrical linear motor is provided by providing a bearing in sliding contact with the outer periphery of the rod 11 on the inner periphery of the head cap 16 to suppress the eccentricity of the armature A with respect to the field 6.
  • the thrust in M1 may be stabilized.
  • the armature A has two cores 2A and 2B, the position where the spacer 14 is arranged in FIG. 1, that is, between the cores 2A and 2B.
  • a slider may be installed.
  • the sliders 12 and 13 are provided on both sides of the armature A in the axial direction, so that the bending of the rod 11 can be suppressed, so that the field 6 of the armature A can be prevented. Eccentricity can be effectively suppressed.
  • the sliders 12 and 13 are adjacent to the armature A, the effect of suppressing eccentricity becomes higher.
  • the sliders 12 and 13 in the cylindrical linear motor M1 of the present embodiment are provided with lead in chamfers 12c and 13c on the outer circumferences at both ends in the axial direction, moment and lateral force are applied to the rod 11 from the outside.
  • the cylindrical linear motor M1 of the present embodiment can be extended and contracted smoothly over a long period of time.
  • the relative rotation of the sliders 12 and 13 and the spacer 14 and the cores 2A and 2B around the rod 11 is restricted, so that the windings mounted in the slots 18 of the cores 2A and 2B are restricted. It is possible to prevent a load such as a tension from being applied to the connecting wire 5a and the lead wire 5b connecting the wire 5 and the cable C.
  • the cylindrical linear motor M1 configured in this way, it is possible to prevent occurrence of a situation in which the disconnection of the connecting wire 5a and the lead wire 5b is prevented and the coil 5 cannot be energized.
  • the armature A includes three cores 2A, 2B, and 2C, and the spacers 14A and 14B are provided between the cores 2A and 2B and between the cores 2B and 2C, respectively, the spacers 14A and 14B and the cores 2A, 2B, What is necessary is just to protect the crossover 5a and the leader line 5b by providing the spacer rotation control part which controls mutual relative rotation with 2C.
  • the through-hole 13b is provided in the slider 13 so that the U phase and V phase are provided.
  • the W-phase connecting wire 5a is drawn through the through hole 13b and connected to the outside. Therefore, the relative rotation between the slider 13 and the armature A is restricted.
  • the connecting wire 5a is connected to the cable C on the left side in FIG. 1 of the slider 12, the connecting wire 5a does not cross the slider 13. Therefore, the rotation restricting portion that restricts the relative rotation between the slider 13 and the armature A can be eliminated.
  • the cylindrical linear motor M1 thus configured prevents the armature A, which is a mover, from rotating in the circumferential direction with respect to the field 6, which is a stator, so that even if the armature A is driven, The cable C connecting the winding 5 in the armature A is not twisted, and the cable C can be prevented from being disconnected. Therefore, according to the cylindrical linear motor M1 of the present invention, disconnection can be prevented even when the armature A side is used as a mover, and thrust can be stably generated over a long period of time.
  • the regulating member 28 may be attached to the slider 12, or when the armature A includes a plurality of cores 2A and 2B and the spacer 14 is provided between the cores 2A and 2B as in the present embodiment, the spacer 14 may be provided with a regulating member 28.
  • a notch 9a may be provided in the middle of the inner tube 9, and the regulating member 29 may be screwed to the spacer 14. More specifically, as shown in FIG. 11, the inner tube 9 includes a notch 9a formed along the axial direction, and the regulating member 29 is inserted into the notch 9a.
  • the notch 9a is not in the range where the sliders 12 and 13 face each other. It can be installed in. Therefore, deterioration of the wear rings 12a and 13a of the sliders 12 and 13 can be suppressed.
  • the inner tube 9 is inserted after the armature A is inserted into the inner tube 9.
  • the restricting member 29 may be screwed into the spacer 14 from the outside.
  • the spacer 14 is provided with a hole that opens in the radial direction from the outer periphery, and a pin and an elastic body that urges the pin to protrude from the hole are inserted into the hole.
  • You may comprise a control member. In this way, when the armature A, the regulating member and the rod 11 are assembled and inserted into the inner tube 9 up to a position facing the notch 9a, the pin projects into the notch 9a and the field of the armature A 6 is restricted.
  • the sliders 12 and 13 are provided on both sides in the axial direction of the armature A, and the spacer 14 is provided between the cores 2A and 2B.
  • the armature A includes the plurality of cores 2A and 2B
  • an excessive external force in the radial direction acts on the rod 11 and the rod 11 Even if it bends, it contacts the inner tube 9 prior to the cores 2A and 2B. Therefore, according to the cylindrical linear motor M1 configured in this manner, the armature A can be protected by preventing the cores 2A and 2B from interfering with the inner tube 9.
  • the cylindrical linear motor M1 includes a cylindrical yoke 3 and a plurality of teeth 4a and 4b that are annular and are provided on the outer periphery of the yoke 3 with an interval in the axial direction.
  • An armature A having a plurality of cores 2A and 2B arranged side by side in the axial direction, and a winding 5 mounted in a slot 18 between the teeth 4a and 4b of each core 2A and 2B;
  • a child A is inserted inward in the axial direction so as to be movable, and includes a field 6 in which N poles and S poles are alternately arranged in the axial direction, and is arranged at both ends with respect to the cores 2A and 2B.
  • Each tooth is a terminal tooth 4a, a tooth other than the terminal tooth 4a is an intermediate tooth 4b, the width of the outer peripheral end of the terminal tooth 4a is W, the width of the outer peripheral end of the intermediate tooth 4b is y, and x is a positive value.
  • the width W of the outer peripheral end of the end tooth 4a is set to a width that can reduce the cogging thrust, and the overall cogging thrust of the armature A is reduced.
  • the cylindrical linear motor M1 of the present embodiment since the axial length condition with respect to the magnetic pole pitch of the cores 2A and 2B is not fixed, such as 5 times the magnetic pole pitch, the design freedom of the armature A is improved. Therefore, according to the cylindrical linear motor M1 of the present embodiment, the cogging thrust can be reduced while improving the design freedom. This also applies to the cylindrical linear motor M2 having three cores 2A, 2B, and 2C. According to the cylindrical linear motor M2 of the present invention, cogging is achieved while improving the degree of freedom in design. Thrust can be reduced.
  • the single cogging thrust waveform of the cores 2A and 2B is a sine wave for two cycles.
  • Z is (1 + 2n) P / 2
  • the entire cogging thrust of the armature A can be minimized.
  • the number of cores 2A and 2B is two, and the core 2A and 2B position is in the range from 0 degrees to 360 degrees, and the cogging thrust waveform of the cores 2A and 2B is a sine wave for four cycles. In some cases, if z is (1 + 2n) P / 2, the entire cogging thrust of the armature A can be minimized.
  • the number of cores 2A, 2B, and 2C is three, and the cores 2A, 2B, and 2C have a single cogging thrust waveform in the range from 0 degrees to 360 degrees. In the case of a sine wave for a period, if the value z is (1 + 3n) P / 3, the entire cogging thrust of the armature A can be minimized.
  • the single cogging thrust waveform of the cores 2A, 2B, and 2C is for four cycles.
  • the value z is (1 + 3n) P / 6
  • the value x is set so that the waveform of the cogging thrust for the axial movement of the cores 2A, 2B, and 2C with respect to the field 6 is a sine wave, the cogging thrusts of the cores 2A, 2B, and 2C are effectively canceled with each other. Therefore, the cogging thrust of the cylindrical linear motors M1 and M2 can be minimized.
  • the width W of the outer peripheral end of the end tooth 4a is set to satisfy y / 2 + 0.01y ⁇ W ⁇ y / 2 + S, cogging is not caused without causing an unnecessary increase in mass of the cores 2A, 2B, and 2C. Thrust can be reduced. And since the unnecessary mass increase of core 2A, 2B, 2C is not caused, the mass thrust density of cylindrical linear motor M1 improves.
  • the mass thrust density is a numerical value obtained by dividing the maximum thrust of the cylindrical linear motor M1 having the above-described configuration by the mass, and the thrust does not increase even if the mass of the end teeth 4a increases.
  • the mass thrust density is improved by reducing the mass of 4a. Therefore, according to the cylindrical linear motor M1 configured in this way, the thrust per mass is increased, so that a small and large thrust can be obtained.
  • the intermediate teeth 4b are formed in an isosceles trapezoidal shape in which the width y of the outer peripheral end is narrower than the width yi of the inner peripheral end, and the end teeth 4a are the intermediate teeth.
  • the side surface on the side has the same shape as the side surface of the intermediate teeth 4b, and the side surface on the anti-intermediate teeth side has a trapezoidal shape with a surface orthogonal to the axis J of the cores 2A and 2B.
  • the axial width Wi of the inner peripheral end is larger than the axial width W of the outer peripheral end of the end teeth 4a as shown in FIG. Is big.
  • the end tooth 4a has a trapezoidal cross section. This increases the cross-sectional area of the magnetic path at the inner peripheral end.
  • a comparison between the case where the shape of the intermediate teeth 4b is the isosceles trapezoidal shape as described above and the case where the cross-section of the intermediate teeth 4b is rectangular with the same axial width y at the outer peripheral end is as follows.
  • the cross section is an isosceles trapezoid
  • the magnetic path cross-sectional area at the inner peripheral end becomes larger. Therefore, in the cylindrical linear motor M1 configured in this way, it becomes easy to secure a large magnetic path cross-sectional area, magnetic saturation when the winding 5 is energized can be suppressed, and a larger magnetic field can be generated, resulting in a larger thrust. Can be generated.
  • the cross-sectional shapes of the end teeth 4a and the intermediate teeth 4b are preferably trapezoidal. However, since there is no effect on the reduction of cogging thrust, the cross-sectional shapes of the end teeth 4a and the intermediate teeth 4b are rectangular. Alternatively, other shapes may be used.
  • the cores 2A and 2B are provided on the core body 21 on which the yoke 3, the end teeth 4a and the intermediate teeth 4b are provided, and on both ends of the core body 21, respectively.
  • the annular plates 22 and 22 have the same axial width and are made of the same material as that of the core body 21, and function as a part of the end teeth 4a when mounted on both ends of the core body 21, respectively.
  • the function of adjusting the axial width W at the outer peripheral end of the end tooth 4a is exhibited. That is, the annular plate 22 is also responsible for adjusting the cogging thrust reduction.
  • the effect of reducing the cogging thrust can be improved by mounting the annular plates 22 and 22.
  • annular plates 22 having different widths may be prepared, and the annular plate 22 having the optimum width may be selected and mounted on the core body 21, or a plurality of thin annular plates may be stacked on the core body 21. You may make it wear.
  • a screw hole is provided in the core body 21 and a hole is provided in the annular plate 22, and the annular plate 22 is fixed to the core body 21 using a screw.
  • other fixing methods may be adopted.
  • the cylindrical linear motor M5 in the second embodiment has a cylindrical shape and a field 36 in which N poles and S poles are alternately arranged in the axial direction.
  • a non-magnetic inner tube 39 disposed on the inner periphery, a cylindrical rod 41 movably inserted into the inner tube 39, an armature A1 attached to the rod 41, and the rod 41 are provided.
  • the armature A1 includes a core 33 and a winding 35.
  • the core 33 includes a cylindrical core body 33a and a plurality of teeth 33b that are annular and are provided on the outer periphery of the core body 33a at intervals in the axial direction.
  • the core 33 has the same shape as the core 2A of the cylindrical linear motor M1 of the first embodiment, and has a cylindrical shape.
  • Ten teeth 33b are provided side by side, and a slot 34 is formed between the teeth 33b and 33b.
  • the windings 35 attached to the slots 34 are U-phase, V-phase, and W-phase three-phase windings, and the winding 5 is attached in the same manner as the slot 18 of the first embodiment. Are installed in the slot 34 in the same order as described above.
  • the armature A1 configured in this way is mounted on the outer periphery of a rod 41 formed of a nonmagnetic material that is an output shaft.
  • the rod 41 includes a cylindrical first rod 50 and a second rod 51 that is cylindrical and has a core 33 attached to the outer periphery thereof and screwed to the inner periphery of the first rod 50.
  • a stroke sensor L is accommodated in the rod 41.
  • the first rod 50 is cylindrical and has a rod body 52 having screw portions 52a and 52b on the left outer periphery in FIG. 13 and the right inner periphery in FIG. 13, and a bracket 53a for attaching the cylindrical linear motor M5 to the device.
  • the rod main body 52 is provided with an end cap 53 that is screwed into a screw portion 52 a at the left end in FIG. 13 and closes the left end of the rod main body 52.
  • An annular slider 55 is fitted on the outer periphery of the right end of the rod body 52 in FIG.
  • a flange 55 a is provided on the inner periphery of the right end of the slider 55.
  • the inner diameter of the flange 55a is equal to or larger than the inner diameter of the rod main body 52 and smaller than the outer diameter of the rod main body 52. Abut. Further, a cylindrical cover 47 that covers the outer periphery of the rod 41 by being fitted to a flange 48 provided on the left end side of the rod 41 in FIG. 13 and the slider 55 is provided, and between the cover 47 and the rod 41. An annular space is formed in.
  • the second rod 51 includes a cylindrical core holding cylinder 51a on which the core 33 is mounted on the outer periphery, and an annular slider 51b provided on the outer periphery of the tip which is the right end in FIG. 13 of the core holding cylinder 51a. Further, a screw portion 51c is provided on the outer periphery of the base end that is the left end in FIG. 13 of the core holding cylinder 51a, and the inner diameter of the core holding cylinder 51a is larger in the inner diameter than other parts on the inner periphery of the base end side A large diameter portion 51d is provided.
  • the rod 41 includes the first rod 50 and the second rod 51, and the sensor body 60 in the stroke sensor L is accommodated in the first rod 50.
  • the core 33 is fitted and attached to the outer periphery of the core holding cylinder 51a of the second rod 51. Since the outer diameter of the core holding cylinder 51a is smaller than the outer diameter of the rod body 52 in the first rod 50, the second rod 51 with the armature A1 attached to the first rod 50 with the slider 55 attached. When connected as described above, the armature A1 and the slider 55 are sandwiched and fixed between the right end of the first rod 50 in FIG. 13 and the slider 51b of the second rod 51. When the armature A1 is mounted on the rod 41 in this way, the core 33 is fixed to the rod 41 in such a manner as to be sandwiched between the slider 51b and the slider 55.
  • the stator S includes an outer tube 37 formed of a cylindrical nonmagnetic material, and a back yoke 38 formed of a cylindrical soft magnetic material inserted into the outer tube 37.
  • the field magnet 36 includes an annular main magnetic pole permanent magnet 40 a and an annular sub magnetic pole permanent magnet 40 b that are alternately stacked in the axial direction in the back yoke 38.
  • a non-magnetic inner tube 39 is provided on the inner periphery of the permanent magnets 40a and 40b of the field magnet 36. That is, the permanent magnets 40 a and 40 b are accommodated in the annular gap between the back yoke 38 and the inner tube 39.
  • the field magnet 36 is composed of a main magnetic pole permanent magnet 40a and an annular sub magnetic pole permanent magnet 40b arranged in a Halbach array. A magnetic field in which S poles and N poles appear alternately in the axial direction of the circumference is applied.
  • the axial length of the permanent magnet 40a of the main magnetic pole is set to the permanent magnet 40b of the sub magnetic pole as in the cylindrical linear motor M1 of the first embodiment.
  • the axial length of the permanent magnets 40a and 40b can be arbitrarily changed.
  • the axial length of the permanent magnets 40a and 40b can be arbitrarily changed.
  • the field magnet 36 may be composed of permanent magnets arranged in an arrangement other than the Halbach arrangement.
  • the back yoke 38 when the back yoke 38 is provided, a magnetic path with a low magnetic resistance can be secured, so that an increase in the magnetic resistance due to the shortening of the axial length of the permanent magnet 40b of the sub magnetic pole is suppressed, and the cylindrical linear motor M5 The thrust can be greatly improved as in the cylindrical linear motor M1 of the first embodiment.
  • the axial length of the back yoke 38 is longer than the axial length of the field magnet 36, and the field magnet 36 is always provided even if there is a dimensional error in the axial length of the permanent magnets 40a and 40b. Consideration is made so as to oppose the back yoke 38, and leakage of magnetic flux of the permanent magnet at the end of the field 36 is prevented to prevent a decrease in thrust of the cylindrical linear motor M5.
  • the left ends of the outer tube 37, the back yoke 38 and the inner tube 39 in FIG. 13 are closed by an annular head cap 45 into which the rod 41 is inserted on the inner periphery.
  • the outer tube 37 is reduced in diameter on the right end side in FIG. 13 and is provided with a bottom portion 37a.
  • the outer tube 37 includes a bracket 37b at the right end of the bottom portion 37a that allows the cylindrical linear motor M5 to be attached to a device.
  • the head cap 45 is annular and has a rod 41 inserted through the inner periphery thereof.
  • the head cap 45 is attached to the outer tube 37 by being screwed to the inner periphery of the open end of the outer tube 37 at the left end in FIG.
  • a mounting method other than screw fastening such as welding or pipe end crimping may be employed.
  • the head cap 45 and the inner tube 39 are made of a non-magnetic material and are integrally molded, and the inner tube 39 projects rightward from the right end of the head cap 45 in FIG. .
  • a field 36 is mounted on the outer periphery of the inner tube 39 so as not to move in the axial direction.
  • annular spacer 65, a field magnet 36, and an annular stopper 66 are sequentially fitted from the left in FIG. 13 to the outer periphery of the inner tube 39, and when the head cap 45 is screwed to the outer tube 37, The spacer 65, the field magnet 36, and the stopper 66 are sandwiched between the head cap 45 and the bottom portion 37 a of the outer tube 37, and the field magnet 36 is fixed to the outer periphery of the inner tube 39.
  • the back yoke 38 attached to the outer periphery of the field magnet 36 is restrained by the field magnet 36 by the magnetic force of the field magnet 36, and therefore does not move within the outer tube 37.
  • annular seal member 58 is provided on the inner periphery of the head cap 45 so as to be in sliding contact with the outer periphery of the cover 47 covering the outer periphery of the first rod 50, so that dust, water, etc. into the cylindrical linear motor M5 are provided. Intrusion is prevented.
  • the rod 41 with the armature A1 attached is inserted into the inner tube 39 so as to be movable in the axial direction, and the sliders 51b and 55 are slidably contacted with the inner periphery of the inner tube 39, so that the axial direction of the armature A1 is increased. Movement is guided.
  • the inner tube 39 forms a gap between the outer periphery of the core 33 and the inner periphery of each permanent magnet 40a, 40b, and plays a role of guiding the axial movement of the core 33 in cooperation with the sliders 51b, 55.
  • the electric element A1 includes only a single core 33.
  • a slider that slides on the inner periphery of the inner tube 39 may also be provided between 33.
  • the inner tube 39 forms a gap between the outer periphery of the core 33 and the inner periphery of each permanent magnet 40a, 40b, and plays a role of guiding the axial movement of the core 33 in cooperation with the sliders 51b, 55. Yes.
  • chamfered and lead in chamfers are provided on the outer circumferences of both ends in the axial direction of the sliders 51 b and 55, and the sliders 51 b and 55 are provided even if the rod 41 is inclined with respect to the inner tube 39. However, care is taken so that the inner peripheral surface of the inner tube 39 is not scratched.
  • the sliders 51 b and 55 are in sliding contact with the inner periphery of the inner tube 39, and the guide rod 46 is in sliding contact with the inner periphery of the rod 41. On the other hand, it can move smoothly in the axial direction without being eccentric.
  • the sensor body 60 When the sensor body 60 is inserted into the first rod 50 in advance, the slider 55 is fitted to the end of the first rod 50, and the second rod 51 is screwed to the first rod 50, the sensor body 60 is The second rod 51 is clamped by a step formed at the right end of the inner diameter large diameter portion 51 d and the end cap 53 of the first rod 50 and fixed in the first rod 50.
  • the sensor main body 60 is accommodated in the first rod 50 where the armature A1 is not mounted on the outer periphery, and is accommodated in a range that does not face the armature A1 in the radial direction of the rod 41.
  • the probe 62 in the stroke sensor L is rod-shaped and attached to the tip of the guide portion 46b in the guide rod 46. Therefore, the sensor core 61 as the detection element is fixedly connected to the field magnet 36 via the probe 62, the guide rod 46 and the outer tube 7. As described above, the probe 62 includes the sensor core 61 at the distal end, and the distal end side is inserted into the sensor main body 60. Therefore, as the armature A1 moves in the axial direction relative to the field magnet 36, the probe 62 moves relative to the sensor main body 60 in the axial direction, and the sensor core 61 moves in the sensor main body 60. .
  • the cable C connected to the winding 35 is accommodated in a space between the rod 41 and the cylindrical cover 47 covering the outer periphery of the rod 41, and is drawn out of the cylindrical linear motor M5. It is connected to a drive circuit (not shown) controlled by the controller. Therefore, the winding 35 can be energized from an external drive circuit.
  • the controller (not shown) senses the electrical angle of the winding 35 with respect to the field 36 with the stroke sensor L, switches the energization phase based on the electrical angle, and controls the current amount of each winding 35 by PWM control. Then, the thrust in the cylindrical linear motor M5 and the moving direction of the armature 2 are controlled.
  • the control method in the above-mentioned controller is an example, and is not restricted to this.
  • the armature A1 is a mover and the field 36 behaves as the stator S.
  • the thrust that suppresses the relative displacement by energizing the winding 35 or the induced electromotive force generated in the winding 35 can be generated to cause the cylindrical linear motor M5 to dampen the vibration and movement of the device due to the external force, and energy regeneration that generates electric power from the external force is also possible.
  • the cylindrical linear motor M5 has a cylindrical field 36 in which N poles and S poles are alternately arranged in the axial direction, and the inner periphery of the field magnet 36.
  • Sliders 51b and 55 are provided which slide around the circumference and guide the movement of the armature A1 relative to the field 36.
  • a non-magnetic inner tube 39 is disposed between the field magnet 36 and the armature A1, and sliders 51b and 55 provided on the rod 41 are connected to the inner tube 39.
  • the cylindrical linear motor M5 of the second embodiment can prevent the eccentricity of the armature A1 with respect to the field magnet 36 and generate a stable thrust, similarly to the cylindrical linear motor M1 of the first embodiment. it can.
  • the cylindrical linear motor M5 includes a non-magnetic inner tube 39 provided on the inner periphery of the permanent magnets 40a and 40b. Therefore, when the armature A1 is inserted into the field magnet 36, the armature A1 is inserted. Can be prevented from being attracted and stuck to the permanent magnets 40a and 40b, and the assembly work can be facilitated.
  • the sliders 51b and 55 are provided on both sides in the axial direction of the armature A1, so that the bending of the rod 41 can be suppressed, so that the field 36 of the armature A1 is prevented. Eccentricity can be effectively suppressed.
  • the cylindrical linear motor M5 has an outer tube 37 provided on the outer periphery of the field magnet 36, and an annular shape that is attached to the opening end of the outer tube 37 and the rod 41 is inserted into the inner periphery.
  • the head cap 45 is provided, and the inner tube 39 is provided integrally with the head cap 45.
  • the inner tube 39 that guides the axial movement of the armature A1 to prevent the eccentricity of the armature A1 with respect to the field 36 is integrated with the head cap 45. Therefore, the inner tube 39 and the head cap 45 are hardly distorted, and the sliders 51b and 55 can smoothly slide on the inner periphery of the inner tube 39, and can smoothly expand and contract.
  • the field magnet 36 in the cylindrical linear motor M5 according to the second embodiment is mounted on the outer periphery of the inner tube 39 while being restricted from moving in the axial direction.
  • the axial load received by the field 36 from the armature A1 is always transmitted to the outer tube 37 through the head cap 45.
  • the load path (load transmission path) of the cylindrical linear motor M5 is only one passing through the head cap 45, the strength design is facilitated.
  • the rod 41 in the cylindrical linear motor M5 of the second embodiment is cylindrical and includes a guide rod 46 that is connected to the outer tube 37 and is slidably inserted into the rod 41.
  • the inner tube 39 and the sliders 51b and 55 guide the movement of the rod 41 relative to the field 36, and the guide rod 46 and the rod 41 can Since the movement of the rod 41 with respect to the field 36 is guided also from the bottom 37a side of the tube 37, the eccentricity of the armature A1 with respect to the field 36 is more effectively prevented.
  • the sliders 51b and 55 in the cylindrical linear motor M5 of the second embodiment have lead in chamfers on the outer circumferences at both ends in the axial direction, and the sliders 51b and 55 are arranged on the inner circumferential surface of the inner tube 39. Since it is possible to prevent galling, the cylindrical linear motor M5 of the present embodiment can smoothly extend and contract over a long period of time.
  • the cylindrical linear motor M5 of the second embodiment includes a stroke sensor L that is inserted into the rod 41 and detects the position of the rod 41 with respect to the field magnet 36.
  • the stroke sensor L is connected to the field magnet 36.
  • the sensor core 61 is fixed to the rod 41 and inserted into the rod 41, and the sensor body 60 is housed in the rod 41 and detects the position of the sensor core 61.
  • the stroke sensor L is accommodated in the rod 41 having the armature A1 on the outer periphery.
  • the stroke sensor L is not directly exposed. Therefore, the stroke sensor L is protected from the heat of the armature A1 and is not exposed to the magnetic field of the field 36, so that the detected position of the armature A1 can be accurately detected.
  • the reliability of the detected position of the armature A1 can be improved.
  • the sensor body 60 is accommodated in a range that does not face the armature A1 in the rod 41 in the radial direction. According to the cylindrical linear motor M5 configured in this way, the sensor body 60 and the armature A1 do not overlap in the radial direction during the stroke of the cylindrical linear motor M5. It becomes difficult to be influenced, and the reliability of the detected position of the armature 2 can be improved more effectively.
  • the cylindrical linear motor M5 of the present embodiment includes a guide rod 46 that is connected to the field magnet 36 and is slidably inserted into the rod 41, and the sensor core 61 is attached to the guide rod 46. Yes.
  • the sensor core 61 that moves relative to the sensor body 60 is mounted on the guide rod 46 that guides the movement of the rod 41 in the axial direction.
  • the eccentricity of the sensor core 61 with respect to the main body 60 is prevented, and the stroke sensor L can accurately detect the position of the armature A1.
  • the rod 41 in the cylindrical linear motor M5 of the present embodiment has a cylindrical first rod 50 and a cylindrical shape with the core 33 mounted on the outer periphery and screwed into the inner periphery of the first rod 50.
  • the sensor body 60 is sandwiched between the first rod 50 and the second rod 51 and fixed in the rod 41. According to the cylindrical linear motor M5 configured in this way, it is very easy to fix the stroke sensor L in the rod 41 and to attach the armature A1 to the rod 41, so that a good assembling property is obtained. It is done.
  • the stroke sensor L may be a magnetostrictive stroke sensor instead of the linear variable differential transformer, or may be a linear potentiometer. In any case, the stroke sensor L is fixed to the field magnet 36. What is necessary is just to make it detect with the sensor main body fixed to the rod 41 side.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Linear Motors (AREA)

Abstract

This cylindrical linear motor (M1) is provided with: a cylindrical field (6) in which N poles and S poles are axially arranged alternately; an inner tube (9) disposed on the inner periphery of the field (6) and made from a non-magnetic material; a rod (11) movably inserted in the inner tube (9); an armature (A) mounted on the rod (11); and sliders (12, 13) provided to the rod (11) and in sliding contact with the inner periphery of the inner tube (9) to guide the movement of the armature (A) relative to the field (6).

Description

筒型リニアモータCylindrical linear motor
 本発明は、筒型リニアモータに関する。 The present invention relates to a cylindrical linear motor.
 筒型リニアモータは、たとえば、JP2009-213192Aに開示されているように、直線方向に伸びるベースと、ベースに対して前記直線方向にS極とN極とが交互に並ぶように取付けられた複数の永久磁石とでなる界磁と、前記界磁に対して前記直線方向に移動可能に設けられた電機子とを備えている。 For example, as disclosed in JP2009-213192A, a cylindrical linear motor includes a base that extends in a linear direction, and a plurality of cylindrical linear motors that are attached so that S poles and N poles are alternately arranged in the linear direction with respect to the base. And an armature provided so as to be movable in the linear direction with respect to the field.
 具体的には、従来の筒型リニアモータは、筒状のセンターヨークとセンターヨークの外周に装着される複数の環状の永久磁石とを備えた界磁と、筒状のコアと前記コアの内周に設けた複数のスロットに収容される巻線とを備えて内周側に前記界磁が挿入される電機子とを備えている(たとえば、特許文献1参照)。 Specifically, a conventional cylindrical linear motor includes a field magnet including a cylindrical center yoke and a plurality of annular permanent magnets mounted on the outer periphery of the center yoke, a cylindrical core, and an inner portion of the core. It has a coil housed in a plurality of slots provided in the periphery, and an armature into which the field is inserted on the inner periphery side (see, for example, Patent Document 1).
 従来の筒型リニアモータでは、推力を向上させるために界磁の磁力を大きくすると、コアと永久磁石との間に発生する吸着力によってセンターヨークが撓んで、コアに対して永久磁石が偏心して推力が低下してしまう可能性がある。 In the conventional cylindrical linear motor, when the magnetic field is increased to improve the thrust, the center yoke is bent by the attractive force generated between the core and the permanent magnet, and the permanent magnet is eccentric with respect to the core. The thrust may be reduced.
 そこで、本発明は、界磁に対する電機子の偏心を防止して安定して推力を発生できる筒型リニアモータの提供を目的とする。 Therefore, an object of the present invention is to provide a cylindrical linear motor that can prevent the eccentricity of the armature with respect to the field and can stably generate thrust.
 上記の目的を達成するため、本発明の筒型リニアモータは、筒状であって軸方向にN極とS極とが交互に配置される界磁と、界磁の内周に配置される非磁性体のインナーチューブと、インナーチューブ内に移動自在に挿入されるロッドと、ロッドに装着される電機子と、ロッドに設けられるとともにインナーチューブの内周に摺接して電機子の界磁に対する移動を案内するスライダとを備えている。このように構成された筒型リニアモータは、界磁と電機子との間に非磁性体のインナーチューブが配置されており、ロッドに設けたスライダがインナーチューブの内周に摺接しているので、電機子の推力方向の移動が案内されるとともに界磁に対する径方向の偏心が抑制される。 In order to achieve the above object, the cylindrical linear motor of the present invention is cylindrical and is disposed on the inner periphery of the field, in which N poles and S poles are alternately arranged in the axial direction. A non-magnetic inner tube, a rod that is movably inserted into the inner tube, an armature that is mounted on the rod, and is provided on the rod and slidably contacts the inner circumference of the inner tube to prevent the armature field. And a slider for guiding the movement. In the cylindrical linear motor configured as described above, a non-magnetic inner tube is disposed between the field and the armature, and the slider provided on the rod is in sliding contact with the inner periphery of the inner tube. The movement of the armature in the thrust direction is guided and the radial eccentricity with respect to the field is suppressed.
図1は、第一の実施の形態における筒型リニアモータの縦断面図である。FIG. 1 is a longitudinal sectional view of a cylindrical linear motor in the first embodiment. 図2(A)は、第一の実施の形態における筒型リニアモータのインナーチューブの側面図である。図2(B)は、第一の実施の形態における筒型リニアモータのインナーチューブの斜視図である。FIG. 2A is a side view of the inner tube of the cylindrical linear motor in the first embodiment. FIG. 2B is a perspective view of the inner tube of the cylindrical linear motor in the first embodiment. 図3は、第一の実施の形態の筒型リニアモータのティース部分の縦断面図である。FIG. 3 is a longitudinal sectional view of a tooth portion of the cylindrical linear motor according to the first embodiment. 図4は、コアの単独のコギング推力の波形を示した図である。FIG. 4 is a diagram showing a waveform of a single cogging thrust of the core. 図5は、コアの単独のコギング推力の波形を示した図である。FIG. 5 is a diagram showing a waveform of a single cogging thrust of the core. 図6は、コアの単独のコギング推力の波形を示した図である。FIG. 6 is a diagram showing a waveform of a single cogging thrust of the core. 図7は、コアの単独のコギング推力の波形を示した図である。FIG. 7 is a diagram showing a waveform of a single cogging thrust of the core. 図8は、末端ティースの幅の変化とコギング推力の変化を説明する図である。FIG. 8 is a diagram for explaining a change in the width of the end teeth and a change in the cogging thrust. 図9は、第一の実施の形態の第一変形例における筒型リニアモータの縦断面図である。FIG. 9 is a longitudinal sectional view of a cylindrical linear motor according to a first modification of the first embodiment. 図10は、第一の実施の形態の第二変形例における筒型リニアモータの縦断面図である。FIG. 10 is a longitudinal sectional view of a cylindrical linear motor in a second modification of the first embodiment. 図11(A)は、第一の実施の形態の第二変形例における筒型リニアモータのインナーチューブの側面図である。図11(B)は、第一の実施の形態の第二変形例における筒型リニアモータのインナーチューブの斜視図である。FIG. 11A is a side view of the inner tube of the cylindrical linear motor in the second modification of the first embodiment. FIG. 11B is a perspective view of the inner tube of the cylindrical linear motor in the second modification of the first embodiment. 図12は、第一の実施の形態の第三変形例における筒型リニアモータの縦断面図である。FIG. 12 is a longitudinal sectional view of a cylindrical linear motor according to a third modification of the first embodiment. 図13は、第二の実施の形態における筒型リニアモータの縦断面図である。FIG. 13 is a longitudinal sectional view of a cylindrical linear motor in the second embodiment.
 以下、図に示した実施の形態に基づき、本発明を説明する。なお、以下に説明する各実施の形態の筒型リニアモータM1,M2,M3,M4,M5において共通する構成については同じ符号を付し、説明の重複を避けるために、一の実施の形態の筒型リニアモータM1の説明において説明した構成については他の実施の形態の筒型リニアモータM2,M3,M4,M5における説明では詳細な説明を省略する。 Hereinafter, the present invention will be described based on the embodiments shown in the drawings. In addition, the same code | symbol is attached | subjected about the structure which is common in the cylindrical linear motor M1, M2, M3, M4, M5 of each embodiment demonstrated below, and in order to avoid duplication of description of one embodiment. A detailed description of the configuration described in the description of the cylindrical linear motor M1 will be omitted in the description of the cylindrical linear motors M2, M3, M4, and M5 of the other embodiments.
 <第一の実施の形態>
 第一の実施の形態における筒型リニアモータM1は、図1に示すように、筒状であって軸方向にN極とS極とが交互に配置される界磁6と、界磁6の内周に配置される非磁性体のインナーチューブ9と、インナーチューブ9内に移動自在に挿入されるロッド11と、ロッド11に装着される電機子Aと、ロッド11に設けられるとともにインナーチューブ9の内周に摺接して電機子Aの界磁6に対する移動を案内するスライダ12,13とを備えている。
<First embodiment>
As shown in FIG. 1, the cylindrical linear motor M <b> 1 in the first embodiment is a cylindrical field 6 in which N poles and S poles are alternately arranged in the axial direction, A non-magnetic inner tube 9 disposed on the inner periphery, a rod 11 movably inserted into the inner tube 9, an armature A attached to the rod 11, and an inner tube 9 provided on the rod 11 And sliders 12 and 13 for guiding the movement of the armature A with respect to the field 6.
 以下、筒型リニアモータM1の各部について詳細に説明する。まず、可動子である電機子Aについて説明する。電機子Aは、本実施の形態では、二つのコア2A,2Bを備えている。コア2A,2Bは、ともに同形状とされており、円筒状のヨーク3と、環状であってヨーク3の外周に設けた複数のティース4a,4bとを備えて構成されてロッド11の外周に軸方向に並べて装着されており、可動子とされている。つまり、筒型リニアモータM1は、電機子Aが可動子として駆動され、コア2A,2Bの軸方向を推力発生方向としている。 Hereinafter, each part of the cylindrical linear motor M1 will be described in detail. First, the armature A that is a mover will be described. The armature A includes two cores 2A and 2B in the present embodiment. The cores 2 </ b> A and 2 </ b> B have the same shape, and are configured to include a cylindrical yoke 3 and a plurality of teeth 4 a and 4 b that are annular and provided on the outer periphery of the yoke 3. It is mounted side by side in the axial direction and is a mover. That is, in the cylindrical linear motor M1, the armature A is driven as a mover, and the axial direction of the cores 2A and 2B is the thrust generation direction.
 各コア2A,2Bにおけるヨーク3は、図1に示すように、円筒状であって、その外周には、軸方向に間隔を空けて設けられる複数のティース4a,4bが設けられている。本実施の形態では、図1に示すように、ヨーク3の外周に10個のティース4a,4bが、軸方向に等間隔に並べて設けられており、ティース4a,4b間およびティース4b,4b間に巻線5が装着される空隙でなるスロット18が形成されている。 As shown in FIG. 1, the yoke 3 in each of the cores 2A and 2B has a cylindrical shape, and a plurality of teeth 4a and 4b provided at intervals in the axial direction are provided on the outer periphery thereof. In the present embodiment, as shown in FIG. 1, ten teeth 4a and 4b are arranged on the outer periphery of the yoke 3 at equal intervals in the axial direction, and between the teeth 4a and 4b and between the teeth 4b and 4b. A slot 18 is formed which is a gap in which the winding 5 is mounted.
 また、ティース4a,4bは、ヨーク3の両端にそれぞれ配置されて設けられた二つの末端ティース4a,4aと、末端ティース4a,4a間に配置されて設けられた8つの中間ティース4bとで構成されている。つまり、一つのコア2A(2B)に対してコア2A(2B)の移動方向となる軸方向の両端に末端ティース4a,4aが設けられ、末端ティース4a,4a間に各中間ティース4bが設けられている。また、本実施の形態では、末端ティース4a及び中間ティース4bは、環状とされている。 The teeth 4a and 4b are composed of two end teeth 4a and 4a provided to be arranged at both ends of the yoke 3, and eight intermediate teeth 4b provided to be provided between the end teeth 4a and 4a. Has been. That is, the end teeth 4a and 4a are provided at both ends in the axial direction as the moving direction of the core 2A (2B) with respect to one core 2A (2B), and the intermediate teeth 4b are provided between the end teeth 4a and 4a. ing. In the present embodiment, the end teeth 4a and the intermediate teeth 4b are annular.
 中間ティース4bは、本実施の形態では、図3に示すように、軸方向において内周端の幅yiより外周端の幅yが狭い等脚台形状とされており、軸方向で両側の側面が外周端に対して等角度で傾斜するテーパ面とされている。そして、中間ティース4bをコア2A,2Bの軸線Jを含む面で切断した断面において、中間ティース4bの側面がコア2A,2Bの軸線Jに直交する直交面Oとでなす内角θは、6度から12度の範囲となる角度に設定されている。 In the present embodiment, as shown in FIG. 3, the intermediate teeth 4b are formed in an isosceles trapezoidal shape in which the width y at the outer peripheral end is narrower than the width yi at the inner peripheral end in the axial direction. Is a tapered surface inclined at an equal angle with respect to the outer peripheral end. And in the cross section which cut | disconnected the intermediate teeth 4b in the surface containing the axis line J of the cores 2A and 2B, the internal angle (theta) which the side surface of the intermediate teeth 4b makes with the orthogonal surface O orthogonal to the axis line J of the cores 2A and 2B is 6 degrees. Is set to an angle within a range of 12 degrees.
 また、末端ティース4aは、図3に示すように、中間ティース側の側面が中間ティース4bの側面と同形状とされるとともに反中間ティース側の側面がコア2A,2Bに軸線Jに直交する面を持つ台形状とされている。つまり、末端ティース4aにおける中間ティース側の側面はテーパ面となっており、この側面がコア2A,2Bの軸線Jに直交する直交面Oとでなす内角θが中間ティース4bの側面が前記直交面Oとでなす内角θと等しくなっている。また、末端ティース4aの反中間ティース側の側面は、コア2A,2Bの軸線Jに直交する面とされており、側面と外周端とでなす角度は90度になっている。 Further, as shown in FIG. 3, the end teeth 4a have a side surface on the intermediate teeth side that has the same shape as the side surface of the intermediate teeth 4b and a side surface on the anti-intermediate teeth side that is perpendicular to the axis J with respect to the cores 2A and 2B. It has a trapezoidal shape. That is, the side surface of the end teeth 4a on the side of the intermediate teeth is a tapered surface, and the internal angle θ formed by this side surface with the orthogonal surface O orthogonal to the axis J of the cores 2A and 2B is the side surface of the intermediate tooth 4b. It is equal to the internal angle θ formed with O. Further, the side surface on the anti-intermediate teeth side of the end tooth 4a is a surface orthogonal to the axis J of the cores 2A and 2B, and the angle formed between the side surface and the outer peripheral end is 90 degrees.
 また、本実施の形態では、各コア2A,2Bにおける図1中で隣り合うティース4a,4bの間、つまり、末端ティース4aと中間ティース4bとの間および中間ティース4b,4b間には、空隙でなるスロット18が合計で18個設けられている。そして、全スロット18には、巻線5が巻き回されて装着されている。巻線5は、U相、V相およびW相の三相巻線とされている。各コア2A,2Bの全18個のスロット18には、それぞれ、図1中左側から順に、W相、W相、W相およびV相、V相、V相、V相よびU相、U相、U相、U相およびW相、W相およびV相、V相、V相、V相およびU相、U相、U相、U相およびW相、W相、W相の巻線5が装着されている。 Further, in the present embodiment, the gaps between the adjacent teeth 4a and 4b in FIG. 1 in each of the cores 2A and 2B, that is, between the end teeth 4a and the intermediate teeth 4b and between the intermediate teeth 4b and 4b. A total of 18 slots 18 are provided. The windings 5 are wound around all the slots 18 and attached. The winding 5 is a U-phase, V-phase, and W-phase three-phase winding. In each of the 18 slots 18 of each of the cores 2A and 2B, the W phase, the W phase, the W phase and the V phase, the V phase, the V phase, the V phase, the U phase, and the U phase are sequentially arranged from the left side in FIG. , U phase, U phase and W phase, W phase and V phase, V phase, V phase, V phase and U phase, U phase, U phase, U phase and W phase, W phase, W phase winding 5 It is installed.
 そして、このように構成されたコア2A,2Bは、出力軸である非磁性体で形成されたロッド11の外周に装着されている。具体的には、コア2A,2Bは、ロッド11の外周に固定される環状のスライダ12,13とで挟持されてロッド11に固定されている。スライダ12,13の外周には、ウェアリング12a,13aが装着されている。また、コア2A,2B間には、ロッド11の外周に固定される非磁性体で形成されるスペーサ14が介装されており、コア2Aとコア2Bは、間隔Kを空けてロッド11に固定されている。また、スライダ12,13およびスペーサ14の外径は、コア2A,2Bの外径よりも大径に設定されている。そして、このように構成された電機子Aは、筒状の界磁6内に推力方向である軸方向へ移動自在に挿入される。本実施の形態の場合、スペーサ14によってコア2Aとコア2Bとの間に間隔Kの磁気的なギャップが設けられている。 The cores 2A and 2B configured as described above are mounted on the outer periphery of the rod 11 formed of a nonmagnetic material that is an output shaft. Specifically, the cores 2 </ b> A and 2 </ b> B are fixed to the rod 11 by being sandwiched between annular sliders 12 and 13 that are fixed to the outer periphery of the rod 11. Wear rings 12 a and 13 a are mounted on the outer circumferences of the sliders 12 and 13. In addition, a spacer 14 made of a non-magnetic material fixed to the outer periphery of the rod 11 is interposed between the cores 2A and 2B. The core 2A and the core 2B are fixed to the rod 11 with an interval K therebetween. Has been. Further, the outer diameters of the sliders 12 and 13 and the spacer 14 are set larger than the outer diameters of the cores 2A and 2B. The armature A thus configured is inserted into the cylindrical field 6 so as to be movable in the axial direction, which is the thrust direction. In the case of the present embodiment, the spacer 14 provides a magnetic gap with an interval K between the core 2A and the core 2B.
 図1中で左側のスライダ12と同じく左側のコア2Aとは、この両方に嵌合するピン24によって、ロッド11回りの相対回転が規制されている。また、図1中で右側のスライダ13と同じく右側のコア2Bとは、この両方に嵌合するピン25によって、ロッド11回りの相対回転が規制されている。さらに、コア2Aとスペーサ14とは、この両方に嵌合するピン26によって、ロッド11回りの相対回転が規制され、コア2Bとスペーサ14とは、この両方に嵌合するピン27によって、ロッド11回りの相対回転が規制される。本実施の形態では、スライダ12,13と電機子Aとのロッド11回りの相対回転を規制する回転規制部は、前記ピン24,25とされている。また、スペーサ14とコア2A,2Bとのロッド11回りの相対回転を規制するスペーサ回転規制部は、ピン26,27とされている。なお、回転規制部およびスペーサ回転規制部は、ピン24,25,26,27に限られず、前記相対回転の規制が可能であれば構造は限定されない。よって、たとえば、ロッド11に対してスライダ12,13、コア2A,2Bおよびスペーサ14を回り止めして、スライダ12,13、コア2A,2Bおよびスペーサ14の互いの相対回転を規制する場合、回転規制部は、キーとキー溝、スプライン、セレーションといった回転防止機構を採用してもよい。このように、回転規制部およびスペーサ回転規制部は、ロッド11に対してもスライダ12,13、コア2A,2Bおよびスペーサ14の周方向の回り止めとして機能してもよい。 In FIG. 1, the relative rotation around the rod 11 is restricted by the pin 24 fitted to both the left core 2A and the left slider 12 as well as the left slider 12. In addition, the relative rotation around the rod 11 is restricted by the pin 25 fitted to both the right core 2B and the right core 2B in FIG. Furthermore, relative rotation around the rod 11 is restricted by the pin 26 fitted to both the core 2A and the spacer 14, and the rod 11 is fitted to the core 2B and the spacer 14 by the pin 27 fitted to both. The relative rotation around is restricted. In the present embodiment, the rotation restricting portions that restrict the relative rotation of the sliders 12 and 13 and the armature A around the rod 11 are the pins 24 and 25. The spacer rotation restricting portions for restricting the relative rotation of the spacer 14 and the cores 2A, 2B around the rod 11 are pins 26, 27. The rotation restricting portion and the spacer rotation restricting portion are not limited to the pins 24, 25, 26, and 27, and the structure is not limited as long as the relative rotation can be restricted. Therefore, for example, when the sliders 12 and 13, the cores 2 </ b> A and 2 </ b> B and the spacer 14 are prevented from rotating with respect to the rod 11, the relative rotation of the sliders 12 and 13, the cores 2 </ b> A and 2 </ b> B and the spacer 14 is restricted. The restricting portion may employ a rotation prevention mechanism such as a key, a key groove, a spline, and a serration. As described above, the rotation restricting portion and the spacer rotation restricting portion may function as a circumferential detent of the sliders 12 and 13, the cores 2 </ b> A and 2 </ b> B, and the spacer 14 with respect to the rod 11.
 さらに、図1中右方のスライダ13には、ロッド11を軸方向から見てスライダ13の外周よりも径方向へ突出する突起を備えた規制部材28が取り付けられている。なお、規制部材28は、後述するインナーチューブ9の切欠9a内に挿入可能であって永久磁石10a,10bに干渉しないようになっていればよく、ロッド11に不動に取付けられていればよい。よって、スライダ13を介さずに直接ロッド11に取付けられてもよく、取り付け方についても螺子締結、溶接等、種々の方法を採用できる。 Further, a regulating member 28 having a protrusion protruding in the radial direction from the outer periphery of the slider 13 when the rod 11 is viewed from the axial direction is attached to the slider 13 on the right side in FIG. The restricting member 28 may be inserted into a notch 9a of the inner tube 9 to be described later and may not interfere with the permanent magnets 10a and 10b, and may be fixedly attached to the rod 11. Therefore, it may be directly attached to the rod 11 without using the slider 13, and various methods such as screw fastening and welding can be adopted for the attachment.
 他方、固定子Sは、本実施の形態では、円筒状の非磁性体で形成されるアウターチューブ7と、アウターチューブ7内に挿入される円筒状の軟磁性体で形成されるバックヨーク8と、バックヨーク8内に軸方向に交互に積層されて挿入される環状の主磁極の永久磁石10aと環状の副磁極の永久磁石10bとを備えた界磁6とで構成されている。そして、この界磁6の永久磁石10a,10bの内周には、非磁性体のインナーチューブ9が設けられている。つまり、永久磁石10a,10bは、バックヨーク8とインナーチューブ9の間の環状隙間に収容されている。 On the other hand, in this embodiment, the stator S includes an outer tube 7 formed of a cylindrical nonmagnetic material, and a back yoke 8 formed of a cylindrical soft magnetic material inserted into the outer tube 7. The field magnet 6 includes a ring-shaped main magnetic pole permanent magnet 10a and a ring-shaped sub-magnetic pole permanent magnet 10b inserted into the back yoke 8 alternately in the axial direction. A nonmagnetic inner tube 9 is provided on the inner periphery of the permanent magnets 10a and 10b of the field 6. That is, the permanent magnets 10 a and 10 b are accommodated in an annular gap between the back yoke 8 and the inner tube 9.
 なお、図1中で主磁極の永久磁石10aと副磁極の永久磁石10bに記載されている三角の印は、着磁方向を示しており、主磁極の永久磁石10aの着磁方向は径方向となっており、副磁極の永久磁石10bの着磁方向は軸方向となっている。主磁極の永久磁石10aと副磁極の永久磁石10bは、ハルバッハ配列で配置されており、界磁6の内周側では、軸方向にS極とN極が交互に現れるように配置されている。 In FIG. 1, the triangular marks on the main magnetic pole permanent magnet 10a and the sub magnetic pole permanent magnet 10b indicate the magnetization direction, and the magnetization direction of the main magnetic pole permanent magnet 10a is the radial direction. Thus, the magnetization direction of the secondary magnetic pole permanent magnet 10b is the axial direction. The permanent magnet 10a of the main magnetic pole and the permanent magnet 10b of the sub magnetic pole are arranged in a Halbach array, and are arranged on the inner peripheral side of the field magnet 6 so that S poles and N poles appear alternately in the axial direction. .
 また、主磁極の永久磁石10aの軸方向長さL1は、副磁極の永久磁石10bの軸方向長さL2よりも長くなっており、本実施の形態では、0.2≦L2/L1≦0.5を満たすように、主磁極の永久磁石10aの軸方向長さL1と副磁極の永久磁石10bの軸方向長さL2が設定されている。主磁極の永久磁石10aの軸方向長さL1を長くすればコア2A,2Bとの間の主磁極の永久磁石10aとの間の磁気抵抗を小さくできコア2A,2Bへ作用させる磁界を大きくできるので筒型リニアモータM1の推力を向上できる。また、本実施の形態の筒型リニアモータM1では、主磁極の永久磁石10aの軸方向長さを副磁極の永久磁石10bの軸方向長さよりも長くして筒型リニアモータM1の推力の向上を図っているが、永久磁石10a,10bの軸方向長さは任意に変更できる。また、界磁6は、ハルバッハ配列以外の配列で配置される永久磁石で構成されてもよい。 The axial length L1 of the main magnetic pole permanent magnet 10a is longer than the axial length L2 of the auxiliary magnetic pole permanent magnet 10b. In this embodiment, 0.2 ≦ L2 / L1 ≦ 0. .5, the axial length L1 of the main magnetic pole permanent magnet 10a and the axial length L2 of the auxiliary magnetic pole permanent magnet 10b are set. If the axial length L1 of the main pole permanent magnet 10a is increased, the magnetic resistance between the main pole permanent magnet 10a and the core 2A, 2B can be reduced, and the magnetic field applied to the core 2A, 2B can be increased. Therefore, the thrust of the cylindrical linear motor M1 can be improved. Further, in the cylindrical linear motor M1 of the present embodiment, the axial length of the permanent magnet 10a of the main magnetic pole is made longer than the axial length of the permanent magnet 10b of the auxiliary magnetic pole, thereby improving the thrust of the cylindrical linear motor M1. However, the axial lengths of the permanent magnets 10a and 10b can be arbitrarily changed. Moreover, the field 6 may be comprised with the permanent magnet arrange | positioned by arrangement | sequences other than Halbach arrangement | sequence.
 また、本発明の筒型リニアモータM1では、永久磁石10a,10bの外周にバックヨーク8を設けている。バックヨーク8を設けると副磁極の永久磁石10bの軸方向長さL2を短くしても磁気抵抗の低い磁路を確保できるため、主磁極の永久磁石10aの軸方向長さL1を長くする際の筒型リニアモータM1の推力を効果的に向上できる。より詳しくは、永久磁石10a,10bの外周にバックヨーク8を設けると、磁気抵抗の低い磁路を確保できるので副磁極の永久磁石10bの軸方向長さL2の短縮に起因する磁気抵抗の増大が抑制される。よって、主磁極の永久磁石10aの軸方向長さL1を副磁極の永久磁石10bの軸方向長さL2よりも長くするとともに永久磁石10a,10bの外周に筒状のバックヨーク8を設けると筒型リニアモータM1の推力を大きく向上させ得る。バックヨーク8の肉厚は、主磁極の永久磁石10aの外部磁気抵抗の増大を抑制に適する肉厚に設定されればよい。なお、バックヨーク8を設けると磁気抵抗の増大を抑制できるが、バックヨーク8の省略も可能である。 Further, in the cylindrical linear motor M1 of the present invention, the back yoke 8 is provided on the outer periphery of the permanent magnets 10a and 10b. When the back yoke 8 is provided, a magnetic path having a low magnetic resistance can be secured even if the axial length L2 of the secondary magnetic pole permanent magnet 10b is shortened. Therefore, when the axial length L1 of the main magnetic pole permanent magnet 10a is increased. The thrust of the cylindrical linear motor M1 can be effectively improved. More specifically, if the back yoke 8 is provided on the outer periphery of the permanent magnets 10a and 10b, a magnetic path having a low magnetic resistance can be secured, so that an increase in the magnetic resistance due to the shortening of the axial length L2 of the permanent magnet 10b of the auxiliary magnetic pole. Is suppressed. Therefore, when the axial length L1 of the permanent magnet 10a of the main magnetic pole is made longer than the axial length L2 of the permanent magnet 10b of the auxiliary magnetic pole, and the cylindrical back yoke 8 is provided on the outer periphery of the permanent magnets 10a, 10b, the cylinder The thrust of the mold linear motor M1 can be greatly improved. The thickness of the back yoke 8 may be set to a thickness suitable for suppressing an increase in the external magnetic resistance of the main magnet permanent magnet 10a. Although the increase in magnetic resistance can be suppressed by providing the back yoke 8, the back yoke 8 can be omitted.
 なお、副磁極の永久磁石10bは、主磁極の永久磁石10aより高い保磁力を有する永久磁石とされている。永久磁石における残留磁束密度と保磁力は、互いに密接に関係しており、一般的に残留磁束密度を高めると保磁力は低くなり、保磁力を高めると残留磁束密度が低くなるという、互いに背反する関係にある。ハルバッハ配列では、副磁極の永久磁石10bには減磁方向に大きな磁界が印加されるため、副磁極の永久磁石10bの保磁力を高くして減磁を抑制し、大きな磁界をコア2A,2Bに作用させ得るようにしている。対して、コア2A,2Bに対して作用する磁界の強さは、主磁極の永久磁石10aの磁力線数に左右される。そのため、主磁極の永久磁石10aに高い残留磁束密度の永久磁石を使用して大きな磁界をコア2A,2Bに作用させるようにしている。本実施の形態では、副磁極の永久磁石10bを主磁極の永久磁石10aよりも保磁力を高くするのに際して、副磁極の永久磁石10bの材料を主磁極の永久磁石10aの材料よりも保磁力が高い材料としている。よって、材料の選定によって、主磁極の永久磁石10aと副磁極の永久磁石10bの組合せを簡単に実現できる。なお、本実施の形態では、主磁極の永久磁石10aは、ネオジム、鉄、ボロンを主成分とする残留磁束密度が高い材料で構成され、副磁極の永久磁石10bは、前記材料にジスプロシウムやテリビウム等の重希土類元素の添加量を増やした減磁しにくい磁石で構成されている。 The sub-magnetic pole permanent magnet 10b is a permanent magnet having a higher coercive force than the main magnetic pole permanent magnet 10a. The residual magnetic flux density and coercive force of a permanent magnet are closely related to each other. Generally, increasing the residual magnetic flux density decreases the coercive force, and increasing the coercive force decreases the residual magnetic flux density. There is a relationship. In the Halbach array, since a large magnetic field is applied in the demagnetization direction to the secondary magnetic pole permanent magnet 10b, the coercive force of the secondary magnetic pole permanent magnet 10b is increased to suppress the demagnetization, and the large magnetic field is applied to the cores 2A and 2B. To be able to act on. On the other hand, the strength of the magnetic field acting on the cores 2A and 2B depends on the number of lines of magnetic force of the permanent magnet 10a of the main magnetic pole. Therefore, a large magnetic field is applied to the cores 2A and 2B by using a permanent magnet having a high residual magnetic flux density for the permanent magnet 10a of the main magnetic pole. In this embodiment, when the coercive force of the secondary magnetic pole permanent magnet 10b is made higher than that of the main magnetic pole permanent magnet 10a, the material of the secondary magnetic pole permanent magnet 10b is made to be more coercive than the material of the main magnetic pole permanent magnet 10a. There are high materials. Therefore, the combination of the main magnetic pole permanent magnet 10a and the auxiliary magnetic pole permanent magnet 10b can be easily realized by selecting the material. In the present embodiment, the main magnetic pole permanent magnet 10a is made of a material having a high residual magnetic flux density mainly composed of neodymium, iron, and boron, and the auxiliary magnetic pole permanent magnet 10b is made of dysprosium or terbium. It is made up of magnets that are hard to demagnetize with increased amounts of heavy rare earth elements such as.
 また、固定子Sの内周側には、電機子Aが挿入されており、界磁6は、電機子Aに磁界を作用させている。なお、界磁6は、電機子Aの可動範囲に対して磁界を作用させればよいので、電機子Aの可動範囲に応じて永久磁石10a,10bの設置範囲を決定すればよい。したがって、アウターチューブ7とインナーチューブ9との環状隙間のうち、電機子Aに対向し得ない範囲には、永久磁石10a,10bを設置しなくともよい。なお、バックヨーク8の長さは、永久磁石10a,10bを積層した長さと等しい長さとされており、永久磁石10a,10bがコア2A,2Bのストローク範囲外に磁界を作用させて推力低下を招かないように配慮されている。 Further, an armature A is inserted on the inner peripheral side of the stator S, and the field 6 causes a magnetic field to act on the armature A. In addition, since the field 6 should just apply a magnetic field with respect to the movable range of the armature A, what is necessary is just to determine the installation range of permanent magnet 10a, 10b according to the movable range of the armature A. Therefore, it is not necessary to install the permanent magnets 10a and 10b in the range where the armature A cannot be opposed to the annular gap between the outer tube 7 and the inner tube 9. The length of the back yoke 8 is equal to the length of the permanent magnets 10a and 10b stacked, and the permanent magnets 10a and 10b cause a magnetic force to act outside the stroke range of the cores 2A and 2B, thereby reducing thrust. It is considered not to invite.
 また、アウターチューブ7、バックヨーク8およびインナーチューブ9の図1中左端はキャップ15によって閉塞されており、アウターチューブ7、バックヨーク8およびインナーチューブ9の図1中右端は環状のヘッドキャップ16によって閉塞されている。ヘッドキャップ16は、内径がロッド11の外径よりも大径であって、内周にダストシール16aを備えており、内周にロッド11が挿通されている。そして、ダストシール16aは、ヘッドキャップ16の内周に移動自在に挿入されるロッド11の外周に摺接してロッド11の外周をシールしている。 Further, the left end in FIG. 1 of the outer tube 7, the back yoke 8 and the inner tube 9 is closed by a cap 15, and the right end in FIG. 1 of the outer tube 7, the back yoke 8 and the inner tube 9 is closed by an annular head cap 16. It is blocked. The head cap 16 has an inner diameter larger than the outer diameter of the rod 11, and includes a dust seal 16 a on the inner periphery, and the rod 11 is inserted through the inner periphery. And the dust seal | sticker 16a is slidably contacted with the outer periphery of the rod 11 inserted in the inner periphery of the head cap 16, and seals the outer periphery of the rod 11. FIG.
 インナーチューブ9は、図1および図2に示すように、図中で右端から開口して軸方向に沿って設けられる切欠9aを備えている。また、インナーチューブ9の内周には、ロッド11とロッド11の外周に装着された電機子A、スライダ12,13およびスペーサ14が軸方向へ移動可能に挿入されている。また、インナーチューブ9の切欠9a内には、規制部材28における突起が挿入される。このように電機子Aが界磁6内に挿入されると各コア2A,2Bが界磁6における8つ磁極に対向するので、筒型リニアモータM1は、8極9スロットのリニアモータとされている。 As shown in FIGS. 1 and 2, the inner tube 9 includes a notch 9a that opens from the right end in the drawing and is provided along the axial direction. Further, on the inner periphery of the inner tube 9, an armature A, sliders 12, 13 and a spacer 14 mounted on the outer periphery of the rod 11 and the rod 11 are inserted so as to be movable in the axial direction. Further, a protrusion on the regulating member 28 is inserted into the notch 9 a of the inner tube 9. As described above, when the armature A is inserted into the field 6, the cores 2A and 2B face the eight magnetic poles in the field 6, so that the cylindrical linear motor M1 is an eight-pole nine-slot linear motor. ing.
 また、インナーチューブ9の内周面には、ウェアリング12a,13aを装着したスライダ12,13が摺接しており、スライダ12,13によって電機子Aはロッド11とともに界磁6に対して偏心せずに軸方向へスムーズに移動できる。 Further, sliders 12 and 13 having wear rings 12 a and 13 a are in sliding contact with the inner peripheral surface of the inner tube 9, and the armature A is eccentric with respect to the field 6 together with the rod 11 by the sliders 12 and 13. Without moving smoothly in the axial direction.
 スライダ12,13の軸方向の両端における外周にはそれぞれ面取りが施されてリードインチャンファ12c,13cが形成されている。このようにスライダ12、13が軸方向の両端にリードインチャンファ12c,13cを備えていると、ロッド11に外部からモーメントや横力が作用してインナーチューブ9に対してスライダ12,13が傾いてもインナーチューブ9の内周面をスライダ12,13がかじってインナーチューブ9の内周面を荒らしてしまうのを防止できる。よって、筒型リニアモータM1は、長期間にわたりスムーズに伸縮作動できる。 The lead-in chamfers 12c and 13c are formed by chamfering the outer peripheries at both ends in the axial direction of the sliders 12 and 13, respectively. When the sliders 12 and 13 are provided with the lead in chamfers 12 c and 13 c at both ends in the axial direction as described above, the sliders 12 and 13 are inclined with respect to the inner tube 9 due to external moment and lateral force acting on the rod 11. However, it is possible to prevent the sliders 12 and 13 from rubbing the inner peripheral surface of the inner tube 9 and roughening the inner peripheral surface of the inner tube 9. Therefore, the cylindrical linear motor M1 can be smoothly expanded and contracted over a long period of time.
 なお、規制部材28がインナーチューブ9に軸方向に沿って設けられる切欠9a内に挿入されているので、電機子Aの周方向への回転を規制しつつも電機子Aの軸方向へ移動は妨げられない。規制部材28の切欠9a内に挿入される突起の幅は、切欠9aの周方向幅よりも若干小さくなっており、規制部材28が切欠9a内で円滑に移動でき、電機子Aの移動の抵抗とならないように配慮されている。インナーチューブ9に設けられた切欠9aの全長は、インナーチューブ9内で電機子Aが最大にストロークしても規制部材28がインナーチューブ9の切欠9aの端部の内壁に衝合しないようになっている。 Since the restricting member 28 is inserted into the notch 9a provided in the inner tube 9 along the axial direction, the armature A moves in the axial direction while restricting the rotation of the armature A in the circumferential direction. I can't interfere. The width of the protrusion inserted into the notch 9a of the restricting member 28 is slightly smaller than the circumferential width of the notch 9a, so that the restricting member 28 can move smoothly within the notch 9a, and the resistance of movement of the armature A It is considered not to become. The total length of the notch 9a provided in the inner tube 9 is such that the regulating member 28 does not collide with the inner wall of the end portion of the notch 9a of the inner tube 9 even when the armature A strokes the maximum in the inner tube 9. ing.
 インナーチューブ9は、電機子Aの外周と各永久磁石10a,10bの内周との間にギャップを形成するとともに、スライダ12,13と協働して電機子Aの軸方向移動を案内する役割を果たしている。このように、界磁6に対して電機子Aの偏心が防止されるので、電機子Aの偏心による推力低下も阻止され、筒型リニアモータM1は安定して推力を発生できる。なお、スペーサ14は、本実施の形態では、インナーチューブ9の内周に摺接してはいないが、ロッド11に過大な径方向の外力が作用してロッド11が撓んでもコア2A,2Bに先立ってインナーチューブ9に当接する。よって、コア2A,2Bのインナーチューブ9への干渉が阻止され、電機子Aを保護できる。 The inner tube 9 forms a gap between the outer periphery of the armature A and the inner periphery of the permanent magnets 10a and 10b, and cooperates with the sliders 12 and 13 to guide the axial movement of the armature A. Plays. Thus, since the eccentricity of the armature A is prevented with respect to the field 6, the thrust drop due to the eccentricity of the armature A is also prevented, and the cylindrical linear motor M1 can stably generate the thrust. In this embodiment, the spacer 14 is not slidably contacted with the inner periphery of the inner tube 9. However, even if the rod 11 bends due to an excessive external force acting on the rod 11, the core 2A, 2B Prior to contact with the inner tube 9. Therefore, interference with the inner tube 9 of the cores 2A and 2B is prevented, and the armature A can be protected.
 なお、インナーチューブ9は、非磁性体で形成されればよいが、合成樹脂で形成されると筒型リニアモータM1の推力密度向上効果が高くなる。インナーチューブ9を非磁性体の金属で製造すると、電機子Aが軸方向へ移動する際にインナーチューブ9の内部に渦電流が生じて、電機子Aの移動を妨げる力が発生してしまう。これに対して、インナーチューブ9を合成樹脂とすれば渦電流が生じないので筒型リニアモータM1の推力をより効果的に向上できるとともに、筒型リニアモータM1の質量を低減できる。インナーチューブ9を合成樹脂とする場合、フッ素樹脂で製造すればスライダ12,13のウェアリング12a,13aとの間の摩擦および摩耗を低減できる。また、インナーチューブ9を他の合成樹脂で形成してもよく、また、摩擦および摩耗を低減するべく他の合成樹脂で形成されたインナーチューブ9の内周をフッ素樹脂でコーティングしてもよい。 The inner tube 9 only needs to be formed of a non-magnetic material, but if formed of synthetic resin, the effect of improving the thrust density of the cylindrical linear motor M1 is enhanced. When the inner tube 9 is made of a non-magnetic metal, an eddy current is generated in the inner tube 9 when the armature A moves in the axial direction, and a force that hinders the movement of the armature A is generated. On the other hand, if the inner tube 9 is made of synthetic resin, no eddy current is generated, so that the thrust of the cylindrical linear motor M1 can be improved more effectively and the mass of the cylindrical linear motor M1 can be reduced. When the inner tube 9 is made of synthetic resin, friction and wear between the sliders 12 and 13 and the wear rings 12a and 13a can be reduced if the inner tube 9 is made of fluororesin. Further, the inner tube 9 may be formed of another synthetic resin, and the inner periphery of the inner tube 9 formed of another synthetic resin may be coated with a fluororesin so as to reduce friction and wear.
 前述のように電機子Aの両端に設けられたスライダ12,13をインナーチューブ9に摺接させているので、電機子Aの界磁6に対する偏心の防止と電機子Aの軸方向(推力方向)の円滑な移動が保証され、筒型リニアモータM1は、安定して推力を発生できる。また、筒型リニアモータM1は、界磁6の内周に非磁性体のインナーチューブ9を備えているので、筒型リニアモータM1の界磁6内に電機子Aを挿入する際に電機子Aが永久磁石10a,10bに吸引されて貼り付いてしまうのを防止できる。よって、インナーチューブ9を設けると、電機子Aが永久磁石10a,10bに吸引されて貼り付いてしまって筒型リニアモータM1の組立が不能となってしまう事態が回避され、筒型リニアモータM1の組立作業も容易となる。 Since the sliders 12 and 13 provided at both ends of the armature A are slidably contacted with the inner tube 9 as described above, the armature A is prevented from being eccentric with respect to the field 6 and the axial direction of the armature A (thrust direction). ) Is ensured, and the cylindrical linear motor M1 can stably generate thrust. Further, since the cylindrical linear motor M1 includes a non-magnetic inner tube 9 on the inner periphery of the field 6, the armature is inserted when the armature A is inserted into the field 6 of the cylindrical linear motor M1. It is possible to prevent A from being attracted and stuck to the permanent magnets 10a and 10b. Therefore, when the inner tube 9 is provided, the situation in which the armature A is attracted and stuck to the permanent magnets 10a and 10b and the assembly of the cylindrical linear motor M1 becomes impossible is avoided, and the cylindrical linear motor M1 is avoided. Assembling work becomes easy.
 本実施の形態では、スライダ12,13をインナーチューブ9に摺接させて電機子Aの界磁6に対する偏心の防止と移動を案内しているが、スペーサ14をインナーチューブ9に摺接させて、スライダ12,13と共に電機子Aの偏心と移動を案内してもよい。また、ヘッドキャップ16の内周にロッド11の外周に摺接する筒状の軸受を設けて、スライダ12,13と共に電機子Aの偏心の防止と移動を案内してもよい。 In the present embodiment, the sliders 12 and 13 are slidably contacted with the inner tube 9 to guide the prevention and movement of the armature A with respect to the field 6, but the spacer 14 is slidably contacted with the inner tube 9. The eccentricity and movement of the armature A may be guided together with the sliders 12 and 13. In addition, a cylindrical bearing that is in sliding contact with the outer periphery of the rod 11 may be provided on the inner periphery of the head cap 16 to guide the prevention and movement of the armature A together with the sliders 12 and 13.
 なお、アウターチューブ7、バックヨーク8およびインナーチューブ9の軸方向長さは、電機子Aの軸方向長さよりも長く、電機子Aは、界磁6内の軸方向長さの範囲で図1中左右へストロークできる。 The axial lengths of the outer tube 7, the back yoke 8, and the inner tube 9 are longer than the axial length of the armature A, and the armature A is within the range of the axial length in the field 6. Stroke from left to right.
 また、キャップ15には、巻線5に接続されるケーブルCを外部の図示しない電源に接続するコネクタ15aを備えており、外部電源から巻線5へ通電できるようになっている。具体的には、巻線5は、前述のようにU相、V相およびW相の三相巻線とされて前述の如くコア2A,2Bのスロット18に装着されているので、ケーブルCと各相の巻線5とが引出線5bを介して接続される。 Further, the cap 15 is provided with a connector 15a for connecting the cable C connected to the winding 5 to an external power supply (not shown) so that the winding 5 can be energized from the external power source. Specifically, the winding 5 is a U-phase, V-phase, and W-phase three-phase winding as described above and is mounted in the slot 18 of the cores 2A and 2B as described above. The windings 5 of each phase are connected via a lead wire 5b.
 同一のコア2A,2Bに設けられたスロット18に装着される同相の巻線5同士は渡り線5aによって接続される。コア2Aの渡り線5aは、スペーサ14を軸方向に貫通する通孔14a内を通してコア2Bの外周を軸方向に横断するように配置される。また、コア2Aに装着される各相の巻線5からの渡り線5aとコア2Bに装着される各相の巻線5の渡り線5aは、それぞれスライダ13の通孔13bを通して外部へ取り出されて結線されている。 The windings 5 having the same phase mounted in the slots 18 provided in the same cores 2A and 2B are connected to each other by a jumper 5a. The connecting wire 5a of the core 2A is disposed so as to cross the outer periphery of the core 2B in the axial direction through the through hole 14a penetrating the spacer 14 in the axial direction. Further, the connecting wire 5a from each phase winding 5 attached to the core 2A and the connecting wire 5a from each phase winding 5 attached to the core 2B are taken out through the through holes 13b of the slider 13, respectively. Are connected.
 このように、コア2A,2BのU相、V相およびW相の各巻線5は、それぞれY結線されており、結線箇所が中立点とされている。つまり、コア2Aの同相の巻線5同士は渡り線5aによって各相毎に直列に接続され、コア2Bの同相の巻線5同士は渡り線5aによって各相毎に直列に接続され、コア2Aとコア2Bの巻線5は、外部電源に対して並列に接続されている。このようにコア2Aの巻線5とコア2Bの巻線5は、外部電源に対して並列接続されているので、各コア2A,2Bの巻線5に効率よく電圧を印加でき大きな電流を供給でき、筒型リニアモータ1の推力を向上できる。なお、コア2A,2Bの各相も巻線を同相で直列に接続するようにしてもよい。 Thus, the U-phase, V-phase and W-phase windings 5 of the cores 2A and 2B are each Y-connected, and the connection point is a neutral point. That is, the in-phase windings 5 of the core 2A are connected in series for each phase by the connecting wire 5a, and the in-phase windings 5 of the core 2B are connected in series for each phase by the connecting wire 5a. The winding 5 of the core 2B is connected in parallel to the external power supply. As described above, the winding 5 of the core 2A and the winding 5 of the core 2B are connected in parallel to the external power supply, so that a voltage can be efficiently applied to the windings 5 of the cores 2A and 2B and a large current can be supplied. The thrust of the cylindrical linear motor 1 can be improved. In addition, each phase of the cores 2A and 2B may be connected in series with the same phase.
 さらに、コア2Aに装着される各相の巻線5とコア2Bに装着される各相の巻線5は、スライダ12の通孔12bを通して外部のケーブルCに接続される引出線5bに接続される。よって、ケーブルCを介して外部の電源から各相の巻線5へ電力供給が可能となっている。このように、渡り線5aは、スライダ12の左方からスライダ13の右方へ延びている。また、コア2Bの巻線5へ接続される引出線5bは、コア2Aの外周を横断するように配置される。スライダ12,13、スペーサ14およびコア2A,2Bが相対回転すると、渡り線5aおよび引出線5bに引張などの負荷が作用するが、スライダ12,13、スペーサ14およびコア2A,2Bがピン24,25,26,27によってロッド11回りの相対回転が規制されるので、渡り線5aおよび引出線5bに前記引張などの負荷が作用しないので、渡り線5aおよび引出線5bの断線が防止され巻線5への通電が不能となる事態の発生を防止できる。 Further, the windings 5 of each phase attached to the core 2A and the windings 5 of each phase attached to the core 2B are connected to the lead wire 5b connected to the external cable C through the through hole 12b of the slider 12. The Therefore, power can be supplied from the external power supply to the winding 5 of each phase via the cable C. As described above, the crossover 5 a extends from the left side of the slider 12 to the right side of the slider 13. In addition, the lead wire 5b connected to the winding 5 of the core 2B is disposed so as to cross the outer periphery of the core 2A. When the sliders 12 and 13 and the spacer 14 and the cores 2A and 2B rotate relative to each other, a load such as a tension acts on the connecting wire 5a and the lead wire 5b. However, the sliders 12 and 13 and the spacer 14 and the cores 2A and 2B are connected to Since the relative rotation around the rod 11 is restricted by the rods 25, 26 and 27, the load such as the tension does not act on the connecting wire 5a and the lead wire 5b, so that the connecting wire 5a and the lead wire 5b are prevented from being disconnected. Occurrence of a situation in which the power supply to 5 becomes impossible can be prevented.
 また、電機子Aがインナーチューブ9に設けた切欠9aと規制部材28とで、インナーチューブ9に対して周方向への回転が規制されるので、ケーブルCが捩じれて断線する心配もない。 Also, since the armature A is restricted from rotating in the circumferential direction with respect to the inner tube 9 by the notch 9a provided in the inner tube 9 and the regulating member 28, there is no fear that the cable C is twisted and disconnected.
 そして、たとえば、巻線5の界磁6に対する電気角をセンシングし、前記電気角に基づいて通電位相切換を行うとともにPWM制御により、各巻線5の電流量を制御すれば、筒型リニアモータM1における推力と電機子Aの移動方向とを制御できる。なお、前述の制御方法は、一例でありこれに限られない。このように、本実施の形態の筒型リニアモータM1では、電機子Aが可動子であり、界磁6は固定子として振る舞う。また、電機子Aと界磁6とを軸方向に相対変位させる外力が作用する場合、巻線5への通電、あるいは、巻線5に発生する誘導起電力によって、前記相対変位を抑制する推力を発生させて筒型リニアモータM1に前記外力による機器の振動や運動をダンピングさせ得るし、外力から電力を生むエネルギ回生も可能である。 For example, if the electrical angle of the winding 5 with respect to the field 6 is sensed, the energization phase is switched based on the electrical angle, and the current amount of each winding 5 is controlled by PWM control, the cylindrical linear motor M1. And the moving direction of the armature A can be controlled. The above-described control method is an example and is not limited to this. Thus, in the cylindrical linear motor M1 of the present embodiment, the armature A is a mover, and the field 6 behaves as a stator. Further, when an external force that relatively displaces the armature A and the field 6 acts in the axial direction, a thrust that suppresses the relative displacement by energizing the winding 5 or an induced electromotive force generated in the winding 5. Can be generated to cause the cylindrical linear motor M1 to dampen the vibration and movement of the device due to the external force, and energy regeneration that generates electric power from the external force is also possible.
 ここで、図3において末端ティース4aの外周端の軸方向の幅をWとし、中間ティース4bの外周端の軸方向の幅をyとし、xを正の値とすると、末端ティース4aの外周端の軸方向の幅Wは、W=(y/2)+xとしている。つまり、末端ティース4aの幅Wは、y/2以上とされている。中間ティース4bの外周端の幅をyとしているので、末端ティース4aの外周端の幅Wは、磁路断面積の観点からy/2以上の長さが必要である。そして、xを0とした場合、つまり、末端ティース4aの幅Wをy/2とした場合のコア2A,2Bの軸方向長さをコア2A,2Bの基本長とすると、コア2A,2Bの基本長は、界磁6の磁極ピッチPの8倍の長さに設定されている。ここで、磁極ピッチPは、図1に示すように設定されている。 Here, in FIG. 3, when the axial width of the outer peripheral end of the end teeth 4a is W, the axial width of the outer peripheral end of the intermediate teeth 4b is y, and x is a positive value, the outer end of the end teeth 4a The width W in the axial direction is W = (y / 2) + x. That is, the width W of the end teeth 4a is set to y / 2 or more. Since the width of the outer peripheral end of the intermediate tooth 4b is y, the width W of the outer peripheral end of the end tooth 4a needs to be y / 2 or more from the viewpoint of the magnetic path cross-sectional area. When x is 0, that is, when the axial length of the cores 2A and 2B when the width W of the end teeth 4a is y / 2, the basic length of the cores 2A and 2B, The basic length is set to 8 times the magnetic pole pitch P of the field 6. Here, the magnetic pole pitch P is set as shown in FIG.
 そして、末端ティース4aの外周端の幅Wを、前述の通り、W=y/2+xとして、xを変化させると、それぞれのコア2A,2Bの端効果によるコギング推力は変化する。xの値を0とすると、つまり、コア2A,2Bを基本長とすると、界磁6に対するコア2A,2Bの位置(deg)に対するコギング推力は、綺麗な正弦波とならず、図4に示すように、コア2A,2Bの位置が0度から360度(2磁極ピッチ相当)までの範囲で2周期分の乱れた単位波が現れる波形となっている。コア2A,2Bの左右の末端ティース4aにて端効果が現れるので、コア2A,2Bのコギング推力は、左右の末端ティース4aの端効果のコギング推力を合成したものとなる。 When the width W of the outer peripheral edge of the end tooth 4a is set to W = y / 2 + x as described above and x is changed, the cogging thrust due to the end effect of the cores 2A and 2B changes. If the value of x is 0, that is, if the cores 2A and 2B are the basic length, the cogging thrust with respect to the position (deg) of the cores 2A and 2B with respect to the field 6 is not a clean sine wave, as shown in FIG. In this manner, the unit 2A, 2B has a waveform in which a unit wave that is disturbed for two periods appears in a range from 0 degrees to 360 degrees (corresponding to two magnetic pole pitches). Since the end effect appears at the left and right end teeth 4a of the cores 2A and 2B, the cogging thrust of the cores 2A and 2B is a combination of the end effect cogging thrusts of the left and right end teeth 4a.
 そして、xの値を増加させていくと徐々にコギング推力の波形における単位波が正弦波に近づくように変化し、コギング推力の波形は或る値x1で略綺麗な正弦波形となる。この或る値x1では、図5に示すように、コア2A,2Bの位置が0度から360度までの範囲でコギング推力の波形は、正弦波が2周期分現れる波形となる。 Then, as the value of x is increased, the unit wave in the cogging thrust waveform gradually changes so as to approach a sine wave, and the cogging thrust waveform becomes a substantially clean sine waveform at a certain value x1. At this certain value x1, as shown in FIG. 5, the waveform of the cogging thrust is a waveform in which the sine wave appears for two cycles when the positions of the cores 2A and 2B are in the range from 0 degrees to 360 degrees.
 xの値をx1からさらに増加させていくとコギング推力の波形は乱れて正弦波とはならず、図6に示すように、コア2A,2Bの位置が0度から360度までの範囲で4周期分の乱れた単位波が現れる波形となる。そして、xの値をさらに増加させていくと徐々にコギング推力の波形は正弦波形に近づくように変化し、或る値x2で略綺麗な正弦波形となる。この或る値x2では、図7に示すように、コア2A,2Bの位置が0度から360度の範囲でコギング推力の波形は、正弦波が4周期分現れる波形となる。 When the value of x is further increased from x1, the waveform of the cogging thrust is disturbed and does not become a sine wave, and as shown in FIG. 6, the positions of the cores 2A and 2B are 4 in the range from 0 degrees to 360 degrees. It becomes a waveform in which a unit wave that is disturbed for a period appears. As the value of x is further increased, the cogging thrust waveform gradually changes so as to approach a sine waveform, and a substantially clean sine waveform is obtained at a certain value x2. At this certain value x2, as shown in FIG. 7, when the positions of the cores 2A and 2B are in the range of 0 to 360 degrees, the cogging thrust waveform is a waveform in which a sine wave appears for four cycles.
 xの値をx2からさらに増加させていくとコギング推力の波形は乱れて正弦波とはならず、コア2A,2Bの位置が0度から360度までの範囲で8周期分の乱れた単位波が現れる波形となるが、やがては略綺麗な正弦波が8周期分が現れる波形となる。 When the value of x is further increased from x2, the waveform of the cogging thrust is disturbed and does not become a sine wave, and the unit wave that is disturbed for 8 periods in the range of the positions of the cores 2A and 2B from 0 degree to 360 degrees. Will eventually appear, but eventually a nearly clean sine wave will appear for 8 cycles.
 このようにxの値によって各コア2A,2Bのコギング推力の波形は変化し、コギング推力の波形が正弦波となるxの値があるが、xの値が大きくなるにつれてコア2A,2Bの位置が0度から360度までの範囲でコギング推力の波形の波の数は多くなっていく。 As described above, the cogging thrust waveform of each of the cores 2A and 2B changes depending on the value of x, and there is a value of x where the waveform of the cogging thrust becomes a sine wave. The position of the cores 2A and 2B increases as the value of x increases. In the range from 0 degrees to 360 degrees, the number of cogging thrust waveforms increases.
 そして、xの値がx1或いはx2となる場合、各コア2A,2Bのコギング推力の波形がきれいな正弦波となる。よって、コア2Aのコギング推力の正弦波形に対してコア2Bのコギング推力の正弦波形が逆位相となるように、コア2Aとコア2Bの間の間隔を調節すれば、コア2Aのコギング推力をコア2Bのコギング推力で打ち消して電機子Aの全体のコギング推力を極小さくできる。 When the value of x is x1 or x2, the cogging thrust waveform of each core 2A, 2B is a clean sine wave. Therefore, if the interval between the core 2A and the core 2B is adjusted so that the sine waveform of the cogging thrust of the core 2B has an opposite phase to the sine waveform of the cogging thrust of the core 2A, the cogging thrust of the core 2A can be reduced. The overall cogging thrust of the armature A can be minimized by canceling with the cogging thrust of 2B.
 コギング推力の波形がコア2A,2Bの位置が0度から360度までの範囲で正弦波が二つ現れる波形の場合、コア2Aのコギング推力をコア2Bのコギング推力で打ち消すには、コア2Aに対してコア2Bを軸方向に90度或いは270度離間させればよい。一般化すれば、コア2Aに対してコア2Bを90+180n(ただし、n=0、1、2・・・)を演算して求めた度数だけ離間させればよい。コア2A,2Bの末端ティース4aの幅Wのうち、長さxは電気角に影響を与えない。よって、コア2Aに対してコア2Bを軸方向に(90+180n)度離間させるには、コア2Aとコア2Bとの間の間隔の長さをKとし、K=z-2xとするとき、値zが(90+180n)度分のずれを生じさせる長さに設定されればよい。90度は、磁極ピッチをPとすると、P/2に相当する長さとなり、270度は、3P/2に相当する長さとなる。よって、値zが(1+2n)P/2(ただし、n=0、1、2・・・)を満たす値となればよい。 When the waveform of the cogging thrust is a waveform in which two sine waves appear when the positions of the cores 2A and 2B are in the range of 0 degrees to 360 degrees, the core 2A can be canceled by canceling the cogging thrust of the core 2A with the cogging thrust of the core 2B. On the other hand, the core 2B may be separated by 90 degrees or 270 degrees in the axial direction. Generally speaking, the core 2B may be separated from the core 2A by the frequency obtained by calculating 90 + 180n (where n = 0, 1, 2,...). Of the width W of the end teeth 4a of the cores 2A and 2B, the length x does not affect the electrical angle. Therefore, to separate the core 2B from the core 2A in the axial direction by (90 + 180n) degrees, when the length of the interval between the core 2A and the core 2B is K, and K = z−2x, the value z May be set to a length that causes a shift of (90 + 180n) degrees. 90 degrees is a length corresponding to P / 2 when the magnetic pole pitch is P, and 270 degrees is a length corresponding to 3P / 2. Therefore, the value z may be a value that satisfies (1 + 2n) P / 2 (where n = 0, 1, 2,...).
 また、コギング推力の波形がコア2A,2Bの位置が0度から360度までの範囲で正弦波が4つ現れる波形の場合、コア2Aのコギング推力をコア2Bのコギング推力で打ち消すには、コア2Aに対してコア2Bを軸方向に45度、135度、225度或いは315度離間させればよい。一般化すれば、コア2Aに対してコア2Bを45+90n(ただし、n=0、1、2・・・)を演算して求めた度数だけ離間させればよい。コア2A,2Bの基本長が磁極ピッチPの整数倍に設定されているので、コア2Aに対してコア2Bを軸方向に(45+90n)度離間させるには、コア2Aとコア2Bとの間の間隔の長さをKとし、K=z-2xとするとき、値zが(45+90n)度分のずれを生じさせる長さに設定されればよい。たとえば、45度は、磁極ピッチをPとすると、P/4に相当する長さとなり、135度は、3P/4に相当する長さとなる。よって、値zが(1+2n)P/4(ただし、n=0、1、2・・・)を満たす値となればよい。 When the waveform of the cogging thrust is a waveform in which four sine waves appear when the positions of the cores 2A and 2B are in the range from 0 degrees to 360 degrees, the core 2A can be canceled by canceling the cogging thrust of the core 2A with the cogging thrust of the core 2B. The core 2B may be separated by 45 degrees, 135 degrees, 225 degrees, or 315 degrees in the axial direction with respect to 2A. Generally speaking, the core 2B may be separated from the core 2A by the frequency obtained by calculating 45 + 90n (where n = 0, 1, 2,...). Since the basic lengths of the cores 2A and 2B are set to an integral multiple of the magnetic pole pitch P, the core 2B can be separated from the core 2A in the axial direction by (45 + 90n) degrees between the core 2A and the core 2B. When the length of the interval is K and K = z−2x, the value z may be set to a length that causes a shift of (45 + 90n) degrees. For example, 45 degrees is a length corresponding to P / 4 when the magnetic pole pitch is P, and 135 degrees is a length corresponding to 3P / 4. Therefore, the value z may be a value satisfying (1 + 2n) P / 4 (where n = 0, 1, 2,...).
 このように、xの値をx1或いはx2として末端ティース4aの幅Wを設定し、xの値に基づいてzの値を求め、値zからコア2Aとコア2Bの間の間隔Kを設定すれば、電機子Aのコギング推力を極小さくできる。なお、電機子Aのコギング推力を低減するには、xの値をコア2A,2Bの単独コギング推力の波形を正弦波とする値に設定するほうがよいが、xの値がそのような値に設定されなくとも電機子A全体のコギング推力を低減できる。 In this way, the width W of the end teeth 4a is set with the value of x being x1 or x2, the value of z is obtained based on the value of x, and the interval K between the core 2A and the core 2B is set from the value z. For example, the cogging thrust of the armature A can be minimized. In order to reduce the cogging thrust of the armature A, it is better to set the value of x to a value in which the waveform of the single cogging thrust of the cores 2A and 2B is a sine wave. Even if it is not set, the cogging thrust of the entire armature A can be reduced.
 xの値に応じて適宜間隔Kをコギング推力を低減できるように設定するのを条件として、xの値に応じて電機子Aの全体のコギング推力がどのように変化するかを調べた結果を図8に示す。図8は、末端ティース4aの外周端の幅Wをy/2とした場合の電機子A全体のコギング推力を基準として、xの値の変化に対して電機子Aの全体のコギング推力がどのように変化するかを示したグラフである。なお、図8のグラフは、xの値がx2未満である場合、値zを(1+2n)P/2(ただし、n=0、1、2・・・)とし、xの値がx2以上である場合、値zを(1+2n)P/4(ただし、n=0、1、2・・・)とした結果を表している。 The result of examining how the entire cogging thrust of the armature A changes according to the value of x on the condition that the interval K is appropriately set according to the value of x so that the cogging thrust can be reduced. As shown in FIG. FIG. 8 shows the overall cogging thrust of the armature A relative to the change in the value of x with reference to the cogging thrust of the entire armature A when the width W of the outer peripheral end of the end tooth 4a is y / 2. It is the graph which showed how it changed. In the graph of FIG. 8, when the value of x is less than x2, the value z is (1 + 2n) P / 2 (where n = 0, 1, 2,...), And the value of x is greater than or equal to x2. In some cases, the value z is expressed as (1 + 2n) P / 4 (where n = 0, 1, 2,...).
 図8から理解できるように、末端ティース4aの外周端の幅Wは、y/2より大きくすれば、筒型リニアモータM1のコギング推力は低下する。よって、末端ティース4aの外周端の軸方向の幅Wは、W>y/2を満たすように設定すれば、筒型リニアモータM1のコギング推力を低減できる。また、図8に示すように、縦軸をコギング推力とし、xの値を横軸に採ると、コギング推力は、コア2A,2Bの単独のコギング推力の波形が正弦波となる値x1,x2で周期的に最小値を採るように推移する。 As can be understood from FIG. 8, if the width W of the outer peripheral end of the end tooth 4a is larger than y / 2, the cogging thrust of the cylindrical linear motor M1 is lowered. Therefore, if the axial width W of the outer peripheral end of the end tooth 4a is set so as to satisfy W> y / 2, the cogging thrust of the cylindrical linear motor M1 can be reduced. Further, as shown in FIG. 8, when the vertical axis is cogging thrust and the value of x is taken on the horizontal axis, the cogging thrust is a value x1, x2 at which the waveform of the single cogging thrust of the cores 2A and 2B becomes a sine wave. It changes to take the minimum value periodically.
 前述したように、コア2A,2Bの末端ティース4aの幅Wをy/2+xとすると、xの値によってコア2A,2Bの単独のコギング推力の波形がコア2A,2Bの位置が0度から360度の範囲で何周期分の単位波が現れるのかが分かるので、xの値に基づいて間隔Kを最適化すれば電機子Aの全体のコギング推力を低減できる。また、xの値を最適化してコア2A,2Bの単独のコギング推力の波形が正弦波とすれば、電機子Aのコギング推力を最小化できる。 As described above, when the width W of the end teeth 4a of the cores 2A and 2B is y / 2 + x, the single cogging thrust waveform of the cores 2A and 2B varies from 0 degree to 360 degrees depending on the value of x. Since it can be understood how many unit waves appear in the range of degrees, the entire cogging thrust of the armature A can be reduced by optimizing the interval K based on the value of x. Further, if the value of x is optimized and the waveform of the single cogging thrust of the cores 2A and 2B is a sine wave, the cogging thrust of the armature A can be minimized.
 よって、末端ティース4aの幅WをW=y/2とした場合のコア2A,2Bの軸方向長さである基本長を磁極ピッチPの整数倍とし、末端ティース4aの幅Wをコギング推力の低減に適するよう幅に設定し、xの値に基づいてコア2A,2B間の間隔Kを適宜設定すればコギング推力を低減できる。 Therefore, when the width W of the end teeth 4a is W = y / 2, the basic length, which is the axial length of the cores 2A and 2B, is set to an integral multiple of the magnetic pole pitch P, and the width W of the end teeth 4a is set as the cogging thrust. The cogging thrust can be reduced by setting the width to be suitable for reduction and appropriately setting the interval K between the cores 2A and 2B based on the value of x.
 本実施の形態の場合、スペーサ14によってコア2Aとコア2Bとの間に磁気的に間隔Kの隙間を設けており、スペーサ14の軸方向の幅を間隔Kに設定している。よって、xの値に基づいてzの値を求めて、K=z-2xを演算して、スペーサ14の軸方向の幅を決定すればよい。また、スペーサ14を省略する場合には、ロッド11の外周にコア2A,2Bを間隔Kだけ軸方向に離して固定するようにしてもよい。 In the case of the present embodiment, a gap 14 is magnetically provided between the core 2A and the core 2B by the spacer 14, and the axial width of the spacer 14 is set to the gap K. Therefore, the value of z may be obtained based on the value of x, and K = z-2x may be calculated to determine the width of the spacer 14 in the axial direction. When the spacer 14 is omitted, the cores 2A and 2B may be fixed to the outer periphery of the rod 11 while being separated from each other in the axial direction by a distance K.
 前述の通り、値xは、コギング推力を最小にするx1,x2に設定されれば最適となるが、たとえば、前記幅Wがy/2とされた場合のコギング推力に対してコギング推力が50%以下となる範囲内の値を得られるように設定されてもよい。このように設定しても、筒型リニアモータM1のコギング推力は、末端ティース4aの幅Wをy/2に設定した際のコギング推力よりも半減するので十分なコギング推力低減効果が得られる。なお、図8に示した例では、xの値が範囲β1内にあるか、或いは範囲β2にある場合に前記幅Wがy/2とされた場合のコギング推力に対してコギング推力が50%(図8中破線で示したライン)以下となるので、xの値を範囲β1或いは範囲β2の値に設定してもよい。なお、コギング推力は、末端ティース4aの外周端の幅Wが変化すると周期的に最小値を採るので、幅Wがy/2とされた場合のコギング推力に対してコギング推力が50%以下となる範囲内の値を得られるように設定されればよい。ただし、コア2A,2Bの質量は、末端ティース4aの幅が大きくなると増加するので、コギング推力を低減できるxの値の範囲はいくつも存在するが、図8に示したように、xの値がなるべく小さい値となるようにするとよい。そこで、値xが中間ティース4bの外周端の幅yの1%からスロットピッチの長さの間の値を採るように設定されると、コア2A,2Bの無用な質量増加を招かずにコギング推力の低減を図れる。つまり、前記末端ティース4aの外周端の幅Wは、スロットピッチ長さをSとすると、y/2+0.01y≦W≦y/2+Sを満たすように設定されると、コア2A,2Bの無用な質量増加を招かずにコギング推力の低減を図れる。幅Wは、磁路断面積の観点からy/2以上の長さが必要であり、最小限必要な幅であるy/2の値にスロットピッチ長さSを加えると幅Wをy/2とした場合と同じ状態となる。よって、y/2+0.01y≦W≦y/2+Sを満たすように設定されると、コア2A,2Bの無用な質量増加を招かない。 As described above, the value x is optimal if it is set to x1 and x2 that minimize the cogging thrust. For example, the cogging thrust is 50 with respect to the cogging thrust when the width W is y / 2. % May be set so as to obtain a value within a range of% or less. Even with this setting, the cogging thrust of the cylindrical linear motor M1 is halved from the cogging thrust when the width W of the end teeth 4a is set to y / 2, so that a sufficient cogging thrust reduction effect can be obtained. In the example shown in FIG. 8, when the value of x is in the range β1 or in the range β2, the cogging thrust is 50% with respect to the cogging thrust when the width W is y / 2. (Line shown by a broken line in FIG. 8) or less, the value of x may be set to a value in the range β1 or β2. The cogging thrust takes a minimum value periodically when the width W of the outer peripheral end of the end teeth 4a changes. Therefore, the cogging thrust is 50% or less with respect to the cogging thrust when the width W is y / 2. It may be set so as to obtain a value within a certain range. However, since the masses of the cores 2A and 2B increase as the width of the end teeth 4a increases, there are various ranges of the value of x that can reduce the cogging thrust. However, as shown in FIG. Should be as small as possible. Therefore, when the value x is set to take a value between 1% of the width y of the outer peripheral edge of the intermediate teeth 4b and the length of the slot pitch, cogging is not caused without causing an unnecessary increase in the mass of the cores 2A and 2B. Thrust can be reduced. In other words, the width W of the outer peripheral end of the end teeth 4a is set to satisfy y / 2 + 0.01y ≦ W ≦ y / 2 + S, where S is the slot pitch length, and the cores 2A and 2B are useless. The cogging thrust can be reduced without increasing the mass. The width W needs to be y / 2 or more from the viewpoint of the magnetic path cross-sectional area, and when the slot pitch length S is added to the value of y / 2, which is the minimum necessary width, the width W becomes y / 2. It becomes the same state as the case. Therefore, if it is set to satisfy y / 2 + 0.01y ≦ W ≦ y / 2 + S, unnecessary mass increase of the cores 2A and 2B is not caused.
 また、前述したところでは、電機子Aが二つのコア2A,2Bを備えているが、図9に示した第一の実施の形態の第一変形例の筒型リニアモータM2のように、電機子Aが三つのコア2A,2B,2Cを備える場合には、以下のようにすればよい。この場合、コア2A,2B間とコア2B,2C間にスペーサ14A,14Bを設けて、コア2Aとコア2Bとの間と、コア2Bとコア2Cとの間に間隔Kの磁気的なギャップが設けられる。 In addition, as described above, the armature A includes the two cores 2A and 2B. However, like the cylindrical linear motor M2 of the first modification of the first embodiment shown in FIG. When the child A includes the three cores 2A, 2B, and 2C, the following may be performed. In this case, spacers 14A and 14B are provided between the cores 2A and 2B and between the cores 2B and 2C, so that there is a magnetic gap with a gap K between the cores 2A and 2B and between the cores 2B and 2C. Provided.
 スペーサ14A,14Bは、コア2A,2B,2Cの外径よりも大きな外径を有している。よって、スペーサ14A,14Bは、スペーサ14と同様に、コア2A,2B間およびコア2B,2C間に磁気的なギャップを設ける機能を発揮する他、ロッド11が過大な外力により撓んでもインナーチューブ9とコア2A,2B,2Cの干渉を阻止する機能を発揮する。なお、スペーサ14A,14Bは、インナーチューブ9の内周に常時摺接してスライダ12,13とともに電機子Aの推力方向への移動を案内してもよい。 The spacers 14A and 14B have outer diameters larger than the outer diameters of the cores 2A, 2B and 2C. Therefore, the spacers 14A and 14B, like the spacer 14, perform the function of providing a magnetic gap between the cores 2A and 2B and between the cores 2B and 2C, and also the inner tube even if the rod 11 is bent by an excessive external force. 9 and the core 2A, 2B, 2C function to block interference. The spacers 14 </ b> A and 14 </ b> B may always be in sliding contact with the inner periphery of the inner tube 9 and guide the movement of the armature A in the thrust direction together with the sliders 12 and 13.
 xの値をx1として各コア2A,2B,2Cの位置が0度から360度の範囲でコギング推力の波形を2周期分の正弦波となるようにすると、コア2A,2B,2Cを三つにする場合では、値zを60+180n(ただし、n=0、1、2・・・)度分のずれを生じさせる長さに設定すれば、コア2A,2B,2Cのコギング推力が打ち消しあって電機子Aのコギング推力を極小さくできる。つまり、値zを(1+3n)P/3(ただし、n=0、1、2・・・)を満たす値に設定すればよい。 If the value of x is x1 and the position of each core 2A, 2B, 2C is in the range of 0 to 360 degrees and the waveform of the cogging thrust is a sine wave for two cycles, three cores 2A, 2B, 2C are provided. If the value z is set to a length that causes a deviation of 60 + 180n (where n = 0, 1, 2,...) Degrees, the cogging thrusts of the cores 2A, 2B, and 2C cancel each other. The cogging thrust of the armature A can be minimized. That is, the value z may be set to a value that satisfies (1 + 3n) P / 3 (where n = 0, 1, 2,...).
 また、xの値をx2としてコギング推力の波形がコア2A,2B,2Cの位置が0度から360度までの範囲で正弦波が四つ現れる波形とすると、コア2A,2B,2Cを三つにする場合では、値zを30+90n(ただし、n=0、1、2・・・)度分のずれを生じさせる長さに設定すれば、コア2A,2B,2Cのコギング推力が打ち消しあって電機子Aのコギング推力を極小さくできる。つまり、値zを(1+3n)P/6(ただし、n=0、1、2・・・)を満たす値に設定すればよい。 Further, assuming that the value of x is x2 and the waveform of cogging thrust is a waveform in which four sine waves appear in the range of the positions of the cores 2A, 2B, and 2C from 0 degree to 360 degrees, the three cores 2A, 2B, and 2C are provided. If the value z is set to a length that causes a deviation of 30 + 90n (where n = 0, 1, 2,...) Degrees, the cogging thrusts of the cores 2A, 2B, and 2C cancel each other. The cogging thrust of the armature A can be minimized. That is, the value z may be set to a value that satisfies (1 + 3n) P / 6 (where n = 0, 1, 2,...).
 このように、xの値をx1或いはx2として末端ティース4aの幅Wを設定し、xの値に基づいてzの値を求め、値zからコア2A、2B間とコア2B,2Cの間の間隔Kを設定すれば、電機子Aのコギング推力を極小さくできる。なお、電機子Aのコギング推力を低減するには、xの値をコア2A,2B,2Cの単独コギング推力の波形を正弦波とする値に設定するほうがよいが、xの値がそのような値に設定されなくとも電機子A全体のコギング推力を低減できる。 In this way, the width W of the end teeth 4a is set with the value of x as x1 or x2, and the value of z is obtained based on the value of x, and between the cores 2A and 2B and between the cores 2B and 2C from the value z. If the interval K is set, the cogging thrust of the armature A can be minimized. In order to reduce the cogging thrust of the armature A, it is better to set the value of x to a value in which the waveform of the single cogging thrust of the cores 2A, 2B, and 2C is a sine wave. Even if the value is not set, the cogging thrust of the entire armature A can be reduced.
 前述したように、コア2A,2Bの末端ティース4aの幅Wをy/2+xとすると、xの値によってコア2A,2Bの単独のコギング推力の波形がコア2A,2Bの位置が0度から360度の範囲で何周期分の単位波が現れるのかが分かるので、xの値に基づいて間隔Kを最適化すれば電機子Aの全体のコギング推力を低減できる。また、xの値を最適化してコア2A,2Bの単独のコギング推力の波形が正弦波とすれば、電機子Aのコギング推力を最小化できる。 As described above, when the width W of the end teeth 4a of the cores 2A and 2B is y / 2 + x, the single cogging thrust waveform of the cores 2A and 2B varies from 0 degree to 360 degrees depending on the value of x. Since it can be understood how many unit waves appear in the range of degrees, the entire cogging thrust of the armature A can be reduced by optimizing the interval K based on the value of x. Further, if the value of x is optimized and the waveform of the single cogging thrust of the cores 2A and 2B is a sine wave, the cogging thrust of the armature A can be minimized.
 以上のように、第一の実施の形態の筒型リニアモータM1は、筒状であって軸方向にN極とS極とが交互に配置される界磁6と、界磁6の内周に配置される非磁性体のインナーチューブ9と、インナーチューブ9内に移動自在に挿入されるロッド11と、ロッド11に装着される電機子Aと、ロッド11に設けられるとともにインナーチューブ9の内周に摺接して電機子Aの界磁6に対する移動を案内するスライダ12,13とを備えている。 As described above, the cylindrical linear motor M1 according to the first embodiment has a cylindrical shape in which the N pole and the S pole are alternately arranged in the axial direction, and the inner periphery of the field 6 A non-magnetic inner tube 9 disposed in the inner tube 9, a rod 11 movably inserted into the inner tube 9, an armature A attached to the rod 11, and an inner tube 9 provided in the rod 11. Sliders 12 and 13 are provided which slide around the circumference and guide the movement of the armature A relative to the field 6.
 このように構成された筒型リニアモータM1は、界磁6と電機子Aとの間に非磁性体のインナーチューブ9が配置されており、ロッド11に設けたスライダ12,13がインナーチューブ9の内周に摺接しているので、電機子Aの推力方向の移動が案内されるとともに界磁6に対する径方向の偏心が抑制される。よって、本発明の筒型リニアモータM1によれば、界磁6に対する電機子Aの偏心が防止されて安定して推力を発生できる。また、この筒型リニアモータM1では、界磁6が永久磁石10a,10bの内周に設けた非磁性体のインナーチューブ9を備えているので、筒型リニアモータM1の界磁6内に電機子Aを挿入する際に電機子Aが永久磁石10a,10bに吸引されて貼り付いてしまうのを防止できる。よって、インナーチューブ9を設けると、電機子Aが永久磁石10a,10bに吸引されて貼り付いてしまって筒型リニアモータM1の組立が不能となってしまう事態が回避され、筒型リニアモータM1の組立作業も容易となる。 In the cylindrical linear motor M1 configured as described above, a non-magnetic inner tube 9 is disposed between the field 6 and the armature A, and the sliders 12 and 13 provided on the rod 11 include the inner tube 9. Since the movement of the armature A in the thrust direction is guided, the radial eccentricity with respect to the field 6 is suppressed. Therefore, according to the cylindrical linear motor M1 of the present invention, the eccentricity of the armature A with respect to the field 6 is prevented, and thrust can be generated stably. Further, in the cylindrical linear motor M1, the field 6 includes the non-magnetic inner tube 9 provided on the inner circumference of the permanent magnets 10a and 10b, so that an electric machine is provided in the field 6 of the cylindrical linear motor M1. When inserting the child A, the armature A can be prevented from being attracted and stuck to the permanent magnets 10a, 10b. Therefore, when the inner tube 9 is provided, the situation in which the armature A is attracted and stuck to the permanent magnets 10a and 10b and the assembly of the cylindrical linear motor M1 becomes impossible is avoided, and the cylindrical linear motor M1 is avoided. Assembling work becomes easy.
 なお、前述したところでは、電機子Aが二つのコア2A,2Bを備えているが、電機子Aが一つのコアのみを有する構造であってもよく、この場合にもスライダ12,13によって電機子Aの偏心を抑制できる。また、スライダ12或いはスライダ13の一方の省略も可能であり電機子Aの偏心を抑制できる。このようにスライダ12,13の一方を省略する場合、ヘッドキャップ16の内周にロッド11の外周に摺接する軸受を設けて、電機子Aの界磁6に対する偏心を抑制して筒型リニアモータM1における推力の安定を図ってもよい。また、スライダ12,13に一方を省略する場合、電機子Aが二つのコア2A,2Bを備えているのであれば、図1中でスペーサ14を配置した位置、つまり、コア2A,2B間にスライダを設置してもよい。 As described above, the armature A includes the two cores 2A and 2B. However, the armature A may have a structure including only one core. The eccentricity of the child A can be suppressed. Further, one of the slider 12 and the slider 13 can be omitted, and the eccentricity of the armature A can be suppressed. Thus, when one of the sliders 12 and 13 is omitted, a cylindrical linear motor is provided by providing a bearing in sliding contact with the outer periphery of the rod 11 on the inner periphery of the head cap 16 to suppress the eccentricity of the armature A with respect to the field 6. The thrust in M1 may be stabilized. If one of the sliders 12 and 13 is omitted, if the armature A has two cores 2A and 2B, the position where the spacer 14 is arranged in FIG. 1, that is, between the cores 2A and 2B. A slider may be installed.
 また、本実施の形態の筒型リニアモータM1では、電機子Aの軸方向の両側にそれぞれスライダ12,13を備えているので、ロッド11の撓みも抑制できるから電機子Aの界磁6に対する偏心を効果的に抑制できる。スライダ12,13は、電機子Aと隣接させるとより偏心抑制効果が高くなる。 Further, in the cylindrical linear motor M1 of the present embodiment, since the sliders 12 and 13 are provided on both sides of the armature A in the axial direction, the bending of the rod 11 can be suppressed, so that the field 6 of the armature A can be prevented. Eccentricity can be effectively suppressed. When the sliders 12 and 13 are adjacent to the armature A, the effect of suppressing eccentricity becomes higher.
 そして、本実施の形態の筒型リニアモータM1におけるスライダ12,13は、軸方向の両端の外周にリードインチャンファ12c,13cを備えているので、ロッド11に外部からモーメントや横力が作用してインナーチューブ9に対してスライダ12,13が傾いてもインナーチューブ9の内周面をスライダ12,13がかじってインナーチューブ9の内周面を荒らしてしまうのを防止できる。よって、本実施の形態の筒型リニアモータM1は、長期間にわたりスムーズに伸縮作動できる。 Since the sliders 12 and 13 in the cylindrical linear motor M1 of the present embodiment are provided with lead in chamfers 12c and 13c on the outer circumferences at both ends in the axial direction, moment and lateral force are applied to the rod 11 from the outside. Thus, even if the sliders 12 and 13 are inclined with respect to the inner tube 9, it is possible to prevent the sliders 12 and 13 from biting the inner peripheral surface of the inner tube 9 and roughening the inner peripheral surface of the inner tube 9. Therefore, the cylindrical linear motor M1 of the present embodiment can be extended and contracted smoothly over a long period of time.
 さらに、本実施の形態では、スライダ12,13と電機子Aとのロッド11回りの相対回転を規制するピン(回転規制部)24,25と、スペーサ14とコア2A,2Bとのロッド11回りの相対回転を規制するおよびピン(スペーサ回転規制部)26,27を備えている。このように構成された筒型リニアモータM1では、スライダ12,13、スペーサ14およびコア2A,2Bのロッド11回りの相対回転が規制されるので各コア2A,2Bのスロット18に装着された巻線5とケーブルCとを接続する渡り線5aおよび引出線5bに引張等の負荷がかかるのを防止できる。よって、このように構成された筒型リニアモータM1では、渡り線5aおよび引出線5bの断線が防止され巻線5への通電が不能となる事態の発生を防止できる。なお、電機子Aが三つのコア2A,2B,2Cを備えており、コア2A,2B間およびコア2B,2C間にそれぞれスペーサ14A,14Bを設ける場合、スペーサ14A,14Bとコア2A,2B,2Cとの互いの相対回転を規制するスペーサ回転規制部を設けて渡り線5aおよび引出線5bを保護すればよい。 Further, in the present embodiment, pins (rotation restricting portions) 24 and 25 for restricting relative rotation around the rod 11 between the sliders 12 and 13 and the armature A, and the rod 11 around the spacer 14 and the cores 2A and 2B. And the pins (spacer rotation restricting portions) 26 and 27 are provided. In the cylindrical linear motor M1 configured as described above, the relative rotation of the sliders 12 and 13 and the spacer 14 and the cores 2A and 2B around the rod 11 is restricted, so that the windings mounted in the slots 18 of the cores 2A and 2B are restricted. It is possible to prevent a load such as a tension from being applied to the connecting wire 5a and the lead wire 5b connecting the wire 5 and the cable C. Therefore, in the cylindrical linear motor M1 configured in this way, it is possible to prevent occurrence of a situation in which the disconnection of the connecting wire 5a and the lead wire 5b is prevented and the coil 5 cannot be energized. When the armature A includes three cores 2A, 2B, and 2C, and the spacers 14A and 14B are provided between the cores 2A and 2B and between the cores 2B and 2C, respectively, the spacers 14A and 14B and the cores 2A, 2B, What is necessary is just to protect the crossover 5a and the leader line 5b by providing the spacer rotation control part which controls mutual relative rotation with 2C.
 また、本実施の形態では、電機子Aが二つのコア2A,2Bを備えており、コア2A,2B間にスペーサ14が設けられているので、渡り線5aおよび引出線5bの保護のためにスペーサ14とコア2A,2Bの互いの相対回転を規制するスペーサ回転規制部を設けている。これに対して、電機子Aが単一のコアのみを有してスペーサを設けない場合、スライダと電機子Aの相対回転を規制する回転規制部だけを設ければ渡り線5aおよび引出線5bを保護できる。また、本実施の形態では、各相の巻線5の結線をケーブルC側ではなく図1中でスライダ13の右側で行っており、スライダ13に通孔13bを設けて、U相、V相、W相の渡り線5aを通孔13bに通して外部へ引き出して結線している。そのため、スライダ13と電機子Aとの相対回転を規制しているが、渡り線5aの結線をスライダ12の図1中左方のケーブルC側で行う場合、渡り線5aがスライダ13を横切らないのでスライダ13と電機子Aとの相対回転を規制する回転規制部を廃止できる。 In the present embodiment, the armature A includes the two cores 2A and 2B, and the spacer 14 is provided between the cores 2A and 2B, so that the connecting wire 5a and the lead wire 5b are protected. A spacer rotation restricting portion for restricting the relative rotation of the spacer 14 and the cores 2A and 2B is provided. On the other hand, when the armature A has only a single core and no spacer is provided, if only the rotation restricting portion that restricts the relative rotation of the slider and the armature A is provided, the connecting wire 5a and the lead wire 5b are provided. Can be protected. Further, in the present embodiment, the windings 5 of each phase are connected not on the cable C side but on the right side of the slider 13 in FIG. 1, and the through-hole 13b is provided in the slider 13 so that the U phase and V phase are provided. The W-phase connecting wire 5a is drawn through the through hole 13b and connected to the outside. Therefore, the relative rotation between the slider 13 and the armature A is restricted. However, when the connecting wire 5a is connected to the cable C on the left side in FIG. 1 of the slider 12, the connecting wire 5a does not cross the slider 13. Therefore, the rotation restricting portion that restricts the relative rotation between the slider 13 and the armature A can be eliminated.
 また、本実施の形態の筒型リニアモータM1は、筒状であって軸方向にN極とS極とが交互に配置される界磁6と、界磁6の内周に配置されるとともに軸方向に沿って設けられる切欠9aを有する非磁性体のインナーチューブ9と、インナーチューブ9内に移動自在に挿入されるロッド11と、ロッド11に装着される電機子Aと、ロッド11に対して不動であって切欠9a内に挿入されて界磁6に対する電機子Aのロッド回りの回転を規制する規制部材28とを備えている。 The cylindrical linear motor M1 of the present embodiment is cylindrical and has a field 6 in which N poles and S poles are alternately arranged in the axial direction, and an inner periphery of the field 6. A nonmagnetic inner tube 9 having a notch 9 a provided along the axial direction, a rod 11 movably inserted into the inner tube 9, an armature A attached to the rod 11, and the rod 11 And a regulating member 28 that is inserted into the notch 9a and regulates the rotation of the armature A around the rod with respect to the field 6.
 このように構成された筒型リニアモータM1は、可動子である電機子Aが固定子である界磁6に対する周方向の回転が防止されるので、電機子Aが駆動されても外部電源と電機子Aにおける巻線5とを接続するケーブルCが捩じれず、ケーブルCの断線を防止できる。よって、本発明の筒型リニアモータM1によれば、電機子A側を可動子としても断線を防止でき、長期間に亘り安定的に推力を発生できる。 The cylindrical linear motor M1 thus configured prevents the armature A, which is a mover, from rotating in the circumferential direction with respect to the field 6, which is a stator, so that even if the armature A is driven, The cable C connecting the winding 5 in the armature A is not twisted, and the cable C can be prevented from being disconnected. Therefore, according to the cylindrical linear motor M1 of the present invention, disconnection can be prevented even when the armature A side is used as a mover, and thrust can be stably generated over a long period of time.
 また、規制部材28は、スライダ12に取付けてもよいし、電機子Aが本実施の形態のように複数のコア2A,2Bを備えてコア2A,2B間にスペーサ14が設けられる場合、スペーサ14に規制部材28を設けてもよい。 In addition, the regulating member 28 may be attached to the slider 12, or when the armature A includes a plurality of cores 2A and 2B and the spacer 14 is provided between the cores 2A and 2B as in the present embodiment, the spacer 14 may be provided with a regulating member 28.
 なお、図10に示した筒型リニアモータM3のように、インナーチューブ9の中間に切欠9aを設けてスペーサ14に規制部材29を螺着するようにしてもよい。より詳細には、インナーチューブ9は、図11に示すように、軸方向に沿って形成される切欠9aを備えており、この切欠9a内に規制部材29が挿入される。このようにすると、インナーチューブ9の内周にスライダ12,13を摺接させるようにした場合に、電機子Aの全長とストローク範囲を最適化すると、切欠9aをスライダ12,13が対向しない範囲に設置できるようになる。よって、スライダ12,13のウェアリング12a,13aの劣化を抑制できる。なお、このようにインナーチューブ9の中間に切欠9aを設けて、切欠9aがインナーチューブ9の端部に開口しないようにする場合、電機子Aをインナーチューブ9内に挿入した後に、インナーチューブ9の外方からスペーサ14に規制部材29を捩じ込むようにすればよい。また、この場合、スペーサ14に外周から径方向に向けて開口する孔を設けておき、孔内にピンとピンを孔から突出するように附勢する弾性体とを挿入し、ピンと弾性体とで規制部材を構成してもよい。このようにすると、電機子A、規制部材およびロッド11をアッセンブリ化してインナーチューブ9内に前記ピンが切欠9aに対向する位置まで挿入すると、ピンが切欠9a内に突出して電機子Aの界磁6に対する回転が規制される。 Note that, as in the cylindrical linear motor M3 shown in FIG. 10, a notch 9a may be provided in the middle of the inner tube 9, and the regulating member 29 may be screwed to the spacer 14. More specifically, as shown in FIG. 11, the inner tube 9 includes a notch 9a formed along the axial direction, and the regulating member 29 is inserted into the notch 9a. Thus, when the sliders 12 and 13 are slidably contacted with the inner periphery of the inner tube 9 and the overall length and stroke range of the armature A are optimized, the notch 9a is not in the range where the sliders 12 and 13 face each other. It can be installed in. Therefore, deterioration of the wear rings 12a and 13a of the sliders 12 and 13 can be suppressed. When the notch 9a is provided in the middle of the inner tube 9 so that the notch 9a does not open at the end of the inner tube 9, the inner tube 9 is inserted after the armature A is inserted into the inner tube 9. The restricting member 29 may be screwed into the spacer 14 from the outside. In this case, the spacer 14 is provided with a hole that opens in the radial direction from the outer periphery, and a pin and an elastic body that urges the pin to protrude from the hole are inserted into the hole. You may comprise a control member. In this way, when the armature A, the regulating member and the rod 11 are assembled and inserted into the inner tube 9 up to a position facing the notch 9a, the pin projects into the notch 9a and the field of the armature A 6 is restricted.
 また、本実施の形態の筒型リニアモータM1では、電機子Aの軸方向の両側にスライダ12,13を設ける他、コア2A,2B間にスペーサ14を設けている。このように電機子Aが複数のコア2A,2Bを備えている場合には、コア2A,2B間にスペーサ14を設けるようにすると、ロッド11に過大な径方向の外力が作用してロッド11が撓んでもコア2A,2Bに先立ってインナーチューブ9に当接する。よって、このように構成された筒型リニアモータM1によれば、コア2A,2Bのインナーチューブ9への干渉が阻止されて電機子Aを保護できる。 Further, in the cylindrical linear motor M1 of the present embodiment, the sliders 12 and 13 are provided on both sides in the axial direction of the armature A, and the spacer 14 is provided between the cores 2A and 2B. As described above, when the armature A includes the plurality of cores 2A and 2B, if the spacer 14 is provided between the cores 2A and 2B, an excessive external force in the radial direction acts on the rod 11 and the rod 11 Even if it bends, it contacts the inner tube 9 prior to the cores 2A and 2B. Therefore, according to the cylindrical linear motor M1 configured in this manner, the armature A can be protected by preventing the cores 2A and 2B from interfering with the inner tube 9.
 なお、本実施の形態の筒型リニアモータM1は、筒状のヨーク3と環状であってヨーク3の外周に軸方向に間隔を空けて設けられて複数のティース4a,4bとを有して軸方向に並べて配置される複数のコア2A,2Bと、各コア2A,2Bのティース4a,4b間のスロット18に装着される巻線5とを有する電機子Aと、筒状であって電機子Aが内方に軸方向に移動自在に挿入されて軸方向にN極とS極とが交互に配置される界磁6とを備え、各コア2A,2Bに対して両端に配置された各ティースを末端ティース4aとし、末端ティース4a以外のティースを中間ティース4bとし、末端ティース4aの外周端の幅をWとし、中間ティース4bの外周端の幅をyとし、xを正の値とし、末端ティース4aの外周端の幅WをW=y/2+xとし、隣り合うコア2A,2B同子の間隔Kがxの値に基づいて設定されている。このように構成された筒型リニアモータM1では、末端ティース4aの外周端の幅Wをコギング推力を低減できる幅に設定して、電機子Aの全体のコギング推力の低減を図るので、コア2A,2Bの軸方向長さが磁極ピッチPの整数倍に固定化されない。このようにコア2A,2Bの磁極ピッチに対する軸方向の長さ条件は磁極ピッチの5倍などと固定化されないので、電機子Aの設計自由度が向上する。よって、本実施の形態の筒型リニアモータM1によれば、設計自由度を向上しつつもコギング推力を低減できる。なお、このことは、三つのコア2A,2B,2Cを持つ筒型リニアモータM2にあっても同様であり、本発明の筒型リニアモータM2によれば、設計自由度を向上しつつもコギング推力を低減できる。 The cylindrical linear motor M1 according to the present embodiment includes a cylindrical yoke 3 and a plurality of teeth 4a and 4b that are annular and are provided on the outer periphery of the yoke 3 with an interval in the axial direction. An armature A having a plurality of cores 2A and 2B arranged side by side in the axial direction, and a winding 5 mounted in a slot 18 between the teeth 4a and 4b of each core 2A and 2B; A child A is inserted inward in the axial direction so as to be movable, and includes a field 6 in which N poles and S poles are alternately arranged in the axial direction, and is arranged at both ends with respect to the cores 2A and 2B. Each tooth is a terminal tooth 4a, a tooth other than the terminal tooth 4a is an intermediate tooth 4b, the width of the outer peripheral end of the terminal tooth 4a is W, the width of the outer peripheral end of the intermediate tooth 4b is y, and x is a positive value. , The width W of the outer peripheral edge of the end teeth 4a is W = y / 2 And x, adjacent core 2A, the interval K of 2B Doko is set based on the value of x. In the cylindrical linear motor M1 configured in this way, the width W of the outer peripheral end of the end tooth 4a is set to a width that can reduce the cogging thrust, and the overall cogging thrust of the armature A is reduced. , 2B is not fixed to an integral multiple of the magnetic pole pitch P. As described above, since the axial length condition with respect to the magnetic pole pitch of the cores 2A and 2B is not fixed, such as 5 times the magnetic pole pitch, the design freedom of the armature A is improved. Therefore, according to the cylindrical linear motor M1 of the present embodiment, the cogging thrust can be reduced while improving the design freedom. This also applies to the cylindrical linear motor M2 having three cores 2A, 2B, and 2C. According to the cylindrical linear motor M2 of the present invention, cogging is achieved while improving the degree of freedom in design. Thrust can be reduced.
 コア2A,2Bの数が2つであって、コア2A,2Bの位置が0度から360度までの範囲でコア2A,2Bの単体のコギング推力の波形が2周期分の正弦波である場合、zを(1+2n)P/2とすると電機子Aの全体のコギング推力を極小さくできる。また、コア2A,2Bの数が2つであって、コア2A,2Bの位置が0度から360度までの範囲でコア2A,2Bの単体のコギング推力の波形が4周期分の正弦波である場合、zを(1+2n)P/2とすると電機子Aの全体のコギング推力を極小さくできる。よって、コア2A,2Bの数が2であり、間隔KをK=z-2xとするとき、界磁6の磁極ピッチをPとし、nを0以上の整数とすると、値zは、値xに基づいて(1+2n)P/2或いは(1+2n)P/4のいずれかに設定されるとよい。 When the number of cores 2A and 2B is two and the positions of the cores 2A and 2B are in the range from 0 degrees to 360 degrees, the single cogging thrust waveform of the cores 2A and 2B is a sine wave for two cycles. , Z is (1 + 2n) P / 2, the entire cogging thrust of the armature A can be minimized. In addition, the number of cores 2A and 2B is two, and the core 2A and 2B position is in the range from 0 degrees to 360 degrees, and the cogging thrust waveform of the cores 2A and 2B is a sine wave for four cycles. In some cases, if z is (1 + 2n) P / 2, the entire cogging thrust of the armature A can be minimized. Therefore, when the number of cores 2A and 2B is 2, and the interval K is K = z−2x, if the magnetic pole pitch of the field 6 is P and n is an integer greater than or equal to 0, the value z is the value x (1 + 2n) P / 2 or (1 + 2n) P / 4.
 また、コア2A,2B,2Cの数が3つであって、コア2A,2B,2Cの位置が0度から360度までの範囲でコア2A,2B,2Cの単体のコギング推力の波形が2周期分の正弦波である場合、値zを(1+3n)P/3とすると電機子Aの全体のコギング推力を極小さくできる。コア2A,2B,2Cの数が3つであって、コア2A,2B,2Cの位置が0度から360度までの範囲でコア2A,2B,2Cの単体のコギング推力の波形が4周期分の正弦波である場合、値zを(1+3n)P/6とすると電機子Aの全体のコギング推力を極小さくできる。よって、コア2A,2B,2Cの数が3であり、間隔KをK=z-2xとするとき、界磁6の磁極ピッチをPとし、nを0以上の整数とすると、値zは、値xに基づいて(1+3n)P/3或いは(1+3n)P/6のいずれかに設定されるとよい。 The number of cores 2A, 2B, and 2C is three, and the cores 2A, 2B, and 2C have a single cogging thrust waveform in the range from 0 degrees to 360 degrees. In the case of a sine wave for a period, if the value z is (1 + 3n) P / 3, the entire cogging thrust of the armature A can be minimized. When the number of cores 2A, 2B, and 2C is three and the positions of the cores 2A, 2B, and 2C are in the range of 0 degrees to 360 degrees, the single cogging thrust waveform of the cores 2A, 2B, and 2C is for four cycles. If the value z is (1 + 3n) P / 6, the entire cogging thrust of the armature A can be minimized. Therefore, when the number of cores 2A, 2B, 2C is 3, and the interval K is K = z-2x, if the magnetic pole pitch of the field 6 is P and n is an integer greater than or equal to 0, the value z is Based on the value x, it may be set to either (1 + 3n) P / 3 or (1 + 3n) P / 6.
 さらに、値xが界磁6に対するコア2A,2B,2Cの軸方向移動に対するコギング推力の波形が正弦波となるように設定されると、コア2A,2B,2Cのコギング推力を互いに効率よく打ち消しあえるので、筒型リニアモータM1,M2のコギング推力を極小さくできる。 Further, when the value x is set so that the waveform of the cogging thrust for the axial movement of the cores 2A, 2B, and 2C with respect to the field 6 is a sine wave, the cogging thrusts of the cores 2A, 2B, and 2C are effectively canceled with each other. Therefore, the cogging thrust of the cylindrical linear motors M1 and M2 can be minimized.
 また、末端ティース4aの外周端の幅Wがy/2+0.01y≦W≦y/2+Sを満たすように設定される場合には、コア2A,2B,2Cの無用な質量増加を招かずにコギング推力の低減を図れる。そして、コア2A,2B,2Cの無用な質量増加を招かないから、筒型リニアモータM1の質量推力密度が向上する。ここで、質量推力密度とは、前述の構成の筒型リニアモータM1の最大推力を質量で割った数値であり、末端ティース4aの質量が増えても推力が増加するわけではないので、末端ティース4aの質量を軽量とするほうが質量推力密度が向上する。よって、このように構成された筒型リニアモータM1によれば、質量当たりの推力が大きくなるので小型で大きな推力が得られる。 Further, when the width W of the outer peripheral end of the end tooth 4a is set to satisfy y / 2 + 0.01y ≦ W ≦ y / 2 + S, cogging is not caused without causing an unnecessary increase in mass of the cores 2A, 2B, and 2C. Thrust can be reduced. And since the unnecessary mass increase of core 2A, 2B, 2C is not caused, the mass thrust density of cylindrical linear motor M1 improves. Here, the mass thrust density is a numerical value obtained by dividing the maximum thrust of the cylindrical linear motor M1 having the above-described configuration by the mass, and the thrust does not increase even if the mass of the end teeth 4a increases. The mass thrust density is improved by reducing the mass of 4a. Therefore, according to the cylindrical linear motor M1 configured in this way, the thrust per mass is increased, so that a small and large thrust can be obtained.
 さらに、本実施の形態の筒型リニアモータM1にあっては、中間ティース4bが内周端の幅yiより外周端の幅yが狭い等脚台形状とされており、末端ティース4aが中間ティース側の側面が中間ティース4bの側面と同形状とされるとともに反中間ティース側の側面がコア2A,2Bの軸線Jに直交する面を持つ台形状とされている。 Further, in the cylindrical linear motor M1 of the present embodiment, the intermediate teeth 4b are formed in an isosceles trapezoidal shape in which the width y of the outer peripheral end is narrower than the width yi of the inner peripheral end, and the end teeth 4a are the intermediate teeth. The side surface on the side has the same shape as the side surface of the intermediate teeth 4b, and the side surface on the anti-intermediate teeth side has a trapezoidal shape with a surface orthogonal to the axis J of the cores 2A and 2B.
 このように末端ティース4aの形状を前述のような台形状とすると、図3に示すように、末端ティース4aの外周端の軸方向の幅Wよりも内周端の軸方向の幅Wiの方が大きい。末端ティース4aの形状を前述のようにする場合と、外周端の軸方向の幅Wを同じにして末端ティース4aの断面を矩形とする場合とで比較すると、末端ティース4aの断面を台形状とするほうが内周端における磁路断面積は広くなる。また、中間ティース4bの形状を前述のように設定すると、図3に示すように、中間ティース4bの外周端の軸方向の幅yよりも内周端の軸方向の幅yiの方が大きい。中間ティース4bの形状を前述のような等脚台形状とする場合と、外周端の軸方向の幅yを同じにして中間ティース4bの断面を矩形とする場合とで比較すると、中間ティース4bの断面を等脚台形状とするほうが内周端における磁路断面積は広くなる。よって、このように構成された筒型リニアモータM1では、大きな磁路断面積を確保しやすくなり、巻線5を通電した際の磁気飽和を抑制でき、より大きな磁場を発生できるからより大きな推力を発生できる。なお、推力の向上のためには、末端ティース4aと中間ティース4bの断面形状を台形とするとよいが、コギング推力の低減には影響がないので末端ティース4aと中間ティース4bの断面形状を矩形としてもよいし、他の形状としてもよい。 If the shape of the end teeth 4a is trapezoidal as described above, the axial width Wi of the inner peripheral end is larger than the axial width W of the outer peripheral end of the end teeth 4a as shown in FIG. Is big. When comparing the shape of the end tooth 4a as described above and the case where the axial width W of the outer peripheral end is the same and the end tooth 4a has a rectangular cross section, the end tooth 4a has a trapezoidal cross section. This increases the cross-sectional area of the magnetic path at the inner peripheral end. When the shape of the intermediate teeth 4b is set as described above, the axial width yi at the inner peripheral end is larger than the axial width y at the outer peripheral end of the intermediate teeth 4b as shown in FIG. A comparison between the case where the shape of the intermediate teeth 4b is the isosceles trapezoidal shape as described above and the case where the cross-section of the intermediate teeth 4b is rectangular with the same axial width y at the outer peripheral end is as follows. When the cross section is an isosceles trapezoid, the magnetic path cross-sectional area at the inner peripheral end becomes larger. Therefore, in the cylindrical linear motor M1 configured in this way, it becomes easy to secure a large magnetic path cross-sectional area, magnetic saturation when the winding 5 is energized can be suppressed, and a larger magnetic field can be generated, resulting in a larger thrust. Can be generated. In order to improve thrust, the cross-sectional shapes of the end teeth 4a and the intermediate teeth 4b are preferably trapezoidal. However, since there is no effect on the reduction of cogging thrust, the cross-sectional shapes of the end teeth 4a and the intermediate teeth 4b are rectangular. Alternatively, other shapes may be used.
 なお、発明者らの研究によって、末端ティース4aおよび中間ティース4bの断面における側面と直交面Oとでなす内角θが6度から12度の範囲にあると、良好な質量推力密度が得られることが分かった。以上より、末端ティース4aおよび中間ティース4bの断面を台形状とする場合、前記内角θを6度から12度の範囲の角度とすると、筒型リニアモータM1の質量当たりの推力が大きくなるので小型で大きな推力が得られる。 According to the inventors' research, when the internal angle θ formed by the side surface and the orthogonal surface O in the cross section of the end tooth 4a and the intermediate tooth 4b is in the range of 6 degrees to 12 degrees, a good mass thrust density can be obtained. I understood. From the above, when the cross section of the end teeth 4a and the intermediate teeth 4b is trapezoidal, the thrust per mass of the cylindrical linear motor M1 becomes large when the internal angle θ is an angle in the range of 6 degrees to 12 degrees. A big thrust can be obtained.
 また、図12に示した筒型リニアモータM4のように、コア2A,2Bが、ヨーク3と、末端ティース4aおよび中間ティース4bとが設けられるコア本体21と、コア本体21の両端のそれぞれに着脱可能に装着される環状プレート22,22とで構成されてもよい。この環状プレート22,22は、共に軸方向の幅が等しく、コア本体21と同一の材料で作られており、コア本体21の両端にそれぞれ装着されると末端ティース4aの一部として機能し、末端ティース4aの外周端における軸方向の幅Wを調整する機能を発揮する。つまり、環状プレート22は、コギング推力の低減の調整をも担っている。コア2A,2B或いは末端ティース4aの寸法公差等によって、コア本体21のみではコギング推力の低減効果が少ない場合、環状プレート22,22の装着によって、コギング推力の低減効果を向上できる。なお、異なる幅の環状プレート22を用意しておき、コア本体21に最適な幅の環状プレート22を選択して装着してもよいし、幅が薄い環状プレートを複数枚重ねてコア本体21に装着するようにしてもよい。また、環状プレート22のコア本体21への装着に際しては、たとえば、コア本体21に螺子孔を設けるとともに環状プレート22に孔を設けて、螺子を用いてコア本体21に環状プレート22を固定してもよいし、他の固定方法を採用してもよい。 Further, like the cylindrical linear motor M4 shown in FIG. 12, the cores 2A and 2B are provided on the core body 21 on which the yoke 3, the end teeth 4a and the intermediate teeth 4b are provided, and on both ends of the core body 21, respectively. You may comprise by the annular plates 22 and 22 mounted | worn so that attachment or detachment is possible. The annular plates 22 and 22 have the same axial width and are made of the same material as that of the core body 21, and function as a part of the end teeth 4a when mounted on both ends of the core body 21, respectively. The function of adjusting the axial width W at the outer peripheral end of the end tooth 4a is exhibited. That is, the annular plate 22 is also responsible for adjusting the cogging thrust reduction. If the effect of reducing the cogging thrust is small with only the core body 21 due to the dimensional tolerance of the cores 2A and 2B or the end teeth 4a, the effect of reducing the cogging thrust can be improved by mounting the annular plates 22 and 22. Alternatively, annular plates 22 having different widths may be prepared, and the annular plate 22 having the optimum width may be selected and mounted on the core body 21, or a plurality of thin annular plates may be stacked on the core body 21. You may make it wear. When the annular plate 22 is attached to the core body 21, for example, a screw hole is provided in the core body 21 and a hole is provided in the annular plate 22, and the annular plate 22 is fixed to the core body 21 using a screw. Alternatively, other fixing methods may be adopted.
 <第二の実施の形態>
 つづいて、第二の実施の形態における筒型リニアモータM5について説明する。第二の実施の形態の筒型リニアモータM5は、図13に示すように、筒状であって軸方向にN極とS極とが交互に配置される界磁36と、界磁36の内周に配置される非磁性体のインナーチューブ39と、インナーチューブ39内に移動自在に挿入される筒状のロッド41と、ロッド41に装着される電機子A1と、ロッド41に設けられるとともにインナーチューブ39の内周に摺接して電機子A1の界磁36に対する移動を案内するスライダ51b,55と、アウターチューブ37と、界磁36の外周に設けられるアウターチューブ37と、アウターチューブ37の開口端部に装着されるとともにロッド41が内周に挿通される環状のヘッドキャップ45とを備えて構成されている。
<Second Embodiment>
Next, the cylindrical linear motor M5 in the second embodiment will be described. As shown in FIG. 13, the cylindrical linear motor M5 of the second embodiment has a cylindrical shape and a field 36 in which N poles and S poles are alternately arranged in the axial direction. A non-magnetic inner tube 39 disposed on the inner periphery, a cylindrical rod 41 movably inserted into the inner tube 39, an armature A1 attached to the rod 41, and the rod 41 are provided. Sliders 51b and 55 that slide in contact with the inner periphery of the inner tube 39 to guide the movement of the armature A1 relative to the field 36, the outer tube 37, the outer tube 37 provided on the outer periphery of the field magnet 36, and the outer tube 37 An annular head cap 45 that is attached to the opening end and into which the rod 41 is inserted is provided.
 以下、筒型リニアモータM5の各部について詳細に説明する。電機子A1は、コア33と巻線35とを備えて構成されている。コア33は、円筒状のコア本体33aと、環状であってコア本体33aの外周に軸方向に間隔を空けて設けられる複数のティース33bとを備えて構成されて可動子とされている。 Hereinafter, each part of the cylindrical linear motor M5 will be described in detail. The armature A1 includes a core 33 and a winding 35. The core 33 includes a cylindrical core body 33a and a plurality of teeth 33b that are annular and are provided on the outer periphery of the core body 33a at intervals in the axial direction.
 コア33は、図13に示すように、第一の実施の形態の筒型リニアモータM1のコア2Aと同形状とされていて、筒状であって、コア本体33aの外周に軸方向に等間隔に並べて設けられた10個のティース33bを備えており、ティース33b,33b間には、巻線35が装着される空隙でなるスロット34が形成されている。また、各スロット34に装着される巻線35は、U相、V相およびW相の三相巻線とされていて、第一の実施の形態のスロット18と同様に装着される巻線5と同様の順に前記スロット34に装着されている。 As shown in FIG. 13, the core 33 has the same shape as the core 2A of the cylindrical linear motor M1 of the first embodiment, and has a cylindrical shape. Ten teeth 33b are provided side by side, and a slot 34 is formed between the teeth 33b and 33b. The windings 35 attached to the slots 34 are U-phase, V-phase, and W-phase three-phase windings, and the winding 5 is attached in the same manner as the slot 18 of the first embodiment. Are installed in the slot 34 in the same order as described above.
 そして、このように構成された電機子A1は、出力軸である非磁性体で形成されたロッド41の外周に装着されている。ロッド41は、筒状の第一ロッド50と、筒状であって外周にコア33が装着されるとともに第一ロッド50の内周に螺合される第二ロッド51とを備えている。また、ロッド41内には、ストロークセンサLが収容されている。 The armature A1 configured in this way is mounted on the outer periphery of a rod 41 formed of a nonmagnetic material that is an output shaft. The rod 41 includes a cylindrical first rod 50 and a second rod 51 that is cylindrical and has a core 33 attached to the outer periphery thereof and screwed to the inner periphery of the first rod 50. A stroke sensor L is accommodated in the rod 41.
 第一ロッド50は、筒状であって図13中左端外周と図13中右端内周にそれぞれ螺子部52a,52bを有するロッド本体52と、筒型リニアモータM5を機器へ取り付けるブラケット53aを有してロッド本体52の図13中左端の螺子部52aに螺着されてロッド本体52の左端を閉塞するエンドキャップ53とを備えている。また、ロッド本体52の図13中右端外周には、環状のスライダ55が嵌合されている。スライダ55の右端内周には、フランジ55aが設けられている。フランジ55aの内径は、ロッド本体52の内径以上であってロッド本体52の外径以下となっており、スライダ55をロッド本体52に嵌合するとフランジ55aがロッド本体52の図13中右端面に当接する。また、ロッド41の図13中左端側に設けられたフランジ48とスライダ55とに嵌合してロッド41の外周を覆う筒状のカバー47が設けられており、カバー47とロッド41との間には環状の空間が形成されている。 The first rod 50 is cylindrical and has a rod body 52 having screw portions 52a and 52b on the left outer periphery in FIG. 13 and the right inner periphery in FIG. 13, and a bracket 53a for attaching the cylindrical linear motor M5 to the device. The rod main body 52 is provided with an end cap 53 that is screwed into a screw portion 52 a at the left end in FIG. 13 and closes the left end of the rod main body 52. An annular slider 55 is fitted on the outer periphery of the right end of the rod body 52 in FIG. A flange 55 a is provided on the inner periphery of the right end of the slider 55. The inner diameter of the flange 55a is equal to or larger than the inner diameter of the rod main body 52 and smaller than the outer diameter of the rod main body 52. Abut. Further, a cylindrical cover 47 that covers the outer periphery of the rod 41 by being fitted to a flange 48 provided on the left end side of the rod 41 in FIG. 13 and the slider 55 is provided, and between the cover 47 and the rod 41. An annular space is formed in.
 第二ロッド51は、外周にコア33が装着される筒状のコア保持筒51aと、コア保持筒51aの図13中右端となる先端の外周に設けられる環状のスライダ51bとを備えている。また、コア保持筒51aの図13中左端となる基端の外周には、螺子部51cが設けられており、コア保持筒51aの基端側内周には内径が他の部位よりも大きな内径大径部51dが設けられている。そして、コア保持筒51aの基端を第一ロッド50におけるロッド本体52の図13中右端の内周に挿入しつつ螺子部51cを螺子部52bに捩じ込むと、第一ロッド50と第二ロッド51とが連結される。 The second rod 51 includes a cylindrical core holding cylinder 51a on which the core 33 is mounted on the outer periphery, and an annular slider 51b provided on the outer periphery of the tip which is the right end in FIG. 13 of the core holding cylinder 51a. Further, a screw portion 51c is provided on the outer periphery of the base end that is the left end in FIG. 13 of the core holding cylinder 51a, and the inner diameter of the core holding cylinder 51a is larger in the inner diameter than other parts on the inner periphery of the base end side A large diameter portion 51d is provided. Then, when the screw portion 51c is screwed into the screw portion 52b while the proximal end of the core holding cylinder 51a is inserted into the inner periphery of the rod body 52 of the first rod 50 at the right end in FIG. The rod 51 is connected.
 このようにロッド41は、第一ロッド50と第二ロッド51とで構成されており、第一ロッド50内には、ストロークセンサLにおけるセンサ本体60が収容される。 Thus, the rod 41 includes the first rod 50 and the second rod 51, and the sensor body 60 in the stroke sensor L is accommodated in the first rod 50.
 また、第二ロッド51におけるコア保持筒51aの外周には、コア33が嵌合されて装着されている。コア保持筒51aの外径は、第一ロッド50におけるロッド本体52の外径よりも小径となっているので、スライダ55を装着した第一ロッド50に電機子A1を装着した第二ロッド51を前記した要領で連結すると、電機子A1およびスライダ55が第一ロッド50の図13中右端と第二ロッド51のスライダ51bとで挟み込まれて固定される。このようにロッド41に電機子A1を装着すると、コア33がスライダ51bおよびスライダ55に挟まれる格好でロッド41に固定される。 The core 33 is fitted and attached to the outer periphery of the core holding cylinder 51a of the second rod 51. Since the outer diameter of the core holding cylinder 51a is smaller than the outer diameter of the rod body 52 in the first rod 50, the second rod 51 with the armature A1 attached to the first rod 50 with the slider 55 attached. When connected as described above, the armature A1 and the slider 55 are sandwiched and fixed between the right end of the first rod 50 in FIG. 13 and the slider 51b of the second rod 51. When the armature A1 is mounted on the rod 41 in this way, the core 33 is fixed to the rod 41 in such a manner as to be sandwiched between the slider 51b and the slider 55.
 他方、固定子Sは、本実施の形態では、円筒状の非磁性体で形成されるアウターチューブ37と、アウターチューブ37内に挿入される円筒状の軟磁性体で形成されるバックヨーク38と、バックヨーク38内に軸方向に交互に積層されて挿入される環状の主磁極の永久磁石40aと環状の副磁極の永久磁石40bとを備えた界磁36とで構成されている。そして、この界磁36の永久磁石40a,40bの内周には、非磁性体のインナーチューブ39が設けられている。つまり、永久磁石40a,40bは、バックヨーク38とインナーチューブ39の間の環状隙間に収容されている。界磁36は、第一の実施の形態の筒型リニアモータM1と同様に、ハルバッハ配列で配置された主磁極の永久磁石40aと環状の副磁極の永久磁石40bとで構成されており、内周側の軸方向にS極とN極が交互に現れる磁界を作用させている。また、本実施の形態の筒型リニアモータM5にあっても第一の実施の形態の筒型リニアモータM1等同様に、主磁極の永久磁石40aの軸方向長さを副磁極の永久磁石40bの軸方向長さよりも長くして筒型リニアモータM5の推力の向上を図っているが、永久磁石40a,40bの軸方向長さは任意に変更できる。また、界磁36は、ハルバッハ配列以外の配列で配置される永久磁石で構成されてもよい。 On the other hand, in the present embodiment, the stator S includes an outer tube 37 formed of a cylindrical nonmagnetic material, and a back yoke 38 formed of a cylindrical soft magnetic material inserted into the outer tube 37. The field magnet 36 includes an annular main magnetic pole permanent magnet 40 a and an annular sub magnetic pole permanent magnet 40 b that are alternately stacked in the axial direction in the back yoke 38. A non-magnetic inner tube 39 is provided on the inner periphery of the permanent magnets 40a and 40b of the field magnet 36. That is, the permanent magnets 40 a and 40 b are accommodated in the annular gap between the back yoke 38 and the inner tube 39. Similarly to the cylindrical linear motor M1 of the first embodiment, the field magnet 36 is composed of a main magnetic pole permanent magnet 40a and an annular sub magnetic pole permanent magnet 40b arranged in a Halbach array. A magnetic field in which S poles and N poles appear alternately in the axial direction of the circumference is applied. In addition, even in the cylindrical linear motor M5 of the present embodiment, the axial length of the permanent magnet 40a of the main magnetic pole is set to the permanent magnet 40b of the sub magnetic pole as in the cylindrical linear motor M1 of the first embodiment. The axial length of the permanent magnets 40a and 40b can be arbitrarily changed. However, the axial length of the permanent magnets 40a and 40b can be arbitrarily changed. Further, the field magnet 36 may be composed of permanent magnets arranged in an arrangement other than the Halbach arrangement.
 また、バックヨーク38を設けると、磁気抵抗の低い磁路を確保できるので副磁極の永久磁石40bの軸方向長さの短縮に起因する磁気抵抗の増大が抑制されて、筒型リニアモータM5の推力を大きく向上させ得るのは、第一の実施の形態の筒型リニアモータM1と同様である。 Further, when the back yoke 38 is provided, a magnetic path with a low magnetic resistance can be secured, so that an increase in the magnetic resistance due to the shortening of the axial length of the permanent magnet 40b of the sub magnetic pole is suppressed, and the cylindrical linear motor M5 The thrust can be greatly improved as in the cylindrical linear motor M1 of the first embodiment.
 なお、本実施の形態では、界磁36の軸方向長さよりもバックヨーク38の軸方向長さが長く、永久磁石40a,40bの軸方向長さに寸法誤差があっても界磁36が必ずバックヨーク38に対向するように配慮されており、界磁36の末端の永久磁石の磁束漏れを防いで筒型リニアモータM5の推力低下を防止している。 In the present embodiment, the axial length of the back yoke 38 is longer than the axial length of the field magnet 36, and the field magnet 36 is always provided even if there is a dimensional error in the axial length of the permanent magnets 40a and 40b. Consideration is made so as to oppose the back yoke 38, and leakage of magnetic flux of the permanent magnet at the end of the field 36 is prevented to prevent a decrease in thrust of the cylindrical linear motor M5.
 また、アウターチューブ37、バックヨーク38およびインナーチューブ39の図13中左端は内周にロッド41が挿入される環状のヘッドキャップ45によって閉塞されている。アウターチューブ37は、図13中右端側が縮径されていて底部37aが設けられており、底部37aの右端に筒型リニアモータM5の機器への取り付けを可能とするブラケット37bを備えている。 Further, the left ends of the outer tube 37, the back yoke 38 and the inner tube 39 in FIG. 13 are closed by an annular head cap 45 into which the rod 41 is inserted on the inner periphery. The outer tube 37 is reduced in diameter on the right end side in FIG. 13 and is provided with a bottom portion 37a. The outer tube 37 includes a bracket 37b at the right end of the bottom portion 37a that allows the cylindrical linear motor M5 to be attached to a device.
 ヘッドキャップ45は、環状であって内周にロッド41が挿通されており、アウターチューブ37の図13中左端の開口端の内周に螺子締結されてアウターチューブ37に装着されている。なお、ヘッドキャップ45のアウターチューブ37への装着は、たとえば、溶接、管端加締等といった螺子締結以外の装着方法を採用してもよい。また、ヘッドキャップ45とインナーチューブ39とは、図13に示すように、非磁性体であって一体成型されており、ヘッドキャップ45の図13中右端からインナーチューブ39が右方へ突出している。そして、インナーチューブ39の外周に界磁36が軸方向移動不能に装着されている。具体的には、インナーチューブ39の外周には図13中左から環状のスペーサ65、界磁36、環状のストッパ66が順に嵌合されていて、ヘッドキャップ45をアウターチューブ37に螺子締結すると、スペーサ65、界磁36およびストッパ66がヘッドキャップ45とアウターチューブ37の底部37aとで挟持され、界磁36がインナーチューブ39の外周に固定される。なお、界磁36の外周に装着されるバックヨーク38は、界磁36の磁力によって界磁36に拘束されるのでアウターチューブ37内で移動しない。 The head cap 45 is annular and has a rod 41 inserted through the inner periphery thereof. The head cap 45 is attached to the outer tube 37 by being screwed to the inner periphery of the open end of the outer tube 37 at the left end in FIG. For mounting the head cap 45 to the outer tube 37, for example, a mounting method other than screw fastening such as welding or pipe end crimping may be employed. Further, as shown in FIG. 13, the head cap 45 and the inner tube 39 are made of a non-magnetic material and are integrally molded, and the inner tube 39 projects rightward from the right end of the head cap 45 in FIG. . A field 36 is mounted on the outer periphery of the inner tube 39 so as not to move in the axial direction. Specifically, an annular spacer 65, a field magnet 36, and an annular stopper 66 are sequentially fitted from the left in FIG. 13 to the outer periphery of the inner tube 39, and when the head cap 45 is screwed to the outer tube 37, The spacer 65, the field magnet 36, and the stopper 66 are sandwiched between the head cap 45 and the bottom portion 37 a of the outer tube 37, and the field magnet 36 is fixed to the outer periphery of the inner tube 39. Note that the back yoke 38 attached to the outer periphery of the field magnet 36 is restrained by the field magnet 36 by the magnetic force of the field magnet 36, and therefore does not move within the outer tube 37.
 また、ヘッドキャップ45の内周には、第一ロッド50の外周を覆うカバー47の外周に摺接する環状のシール部材58が設けられており、筒型リニアモータM5内への塵や水などの侵入が防止されている。 In addition, an annular seal member 58 is provided on the inner periphery of the head cap 45 so as to be in sliding contact with the outer periphery of the cover 47 covering the outer periphery of the first rod 50, so that dust, water, etc. into the cylindrical linear motor M5 are provided. Intrusion is prevented.
 そして、インナーチューブ39内には、電機子A1が装着されたロッド41が軸方向移動自在に挿入され、インナーチューブ39の内周にスライダ51b,55が摺接して、電機子A1の軸方向の移動が案内される。 Then, the rod 41 with the armature A1 attached is inserted into the inner tube 39 so as to be movable in the axial direction, and the sliders 51b and 55 are slidably contacted with the inner periphery of the inner tube 39, so that the axial direction of the armature A1 is increased. Movement is guided.
 インナーチューブ39は、コア33の外周と各永久磁石40a,40bの内周との間のギャップを形成するとともに、スライダ51b,55と協働してコア33の軸方向移動を案内する役割を果たしている。なお、本実施の形態では、電気子A1は、単一のコア33のみを有して構成されているが、複数のコア33を持つ場合、電気子A1の軸方向両端だけでなくコア33,33間にもインナーチューブ39の内周に摺接するスライダを設けてもよい。 The inner tube 39 forms a gap between the outer periphery of the core 33 and the inner periphery of each permanent magnet 40a, 40b, and plays a role of guiding the axial movement of the core 33 in cooperation with the sliders 51b, 55. Yes. In the present embodiment, the electric element A1 includes only a single core 33. However, in the case where the electric element A1 has a plurality of cores 33, not only the axial ends of the electric element A1 but also the cores 33, A slider that slides on the inner periphery of the inner tube 39 may also be provided between 33.
 インナーチューブ39は、コア33の外周と各永久磁石40a,40bの内周との間のギャップを形成するとともに、スライダ51b,55と協働してコア33の軸方向移動を案内する役割を果たしている。なお、スライダ51b,55の軸方向両端の外周には、符示はしないが面取りが施されてリードインチャンファが設けられており、ロッド41がインナーチューブ39に対して傾いてもスライダ51b,55がインナーチューブ39の内周面をかじって傷つけないように配慮されている。 The inner tube 39 forms a gap between the outer periphery of the core 33 and the inner periphery of each permanent magnet 40a, 40b, and plays a role of guiding the axial movement of the core 33 in cooperation with the sliders 51b, 55. Yes. Although not shown, chamfered and lead in chamfers are provided on the outer circumferences of both ends in the axial direction of the sliders 51 b and 55, and the sliders 51 b and 55 are provided even if the rod 41 is inclined with respect to the inner tube 39. However, care is taken so that the inner peripheral surface of the inner tube 39 is not scratched.
 さらに、アウターチューブ37の底部37aの内周には、ガイドロッド46が取り付けられている。ガイドロッド46は、底部37aの内周に固定される基端部46aと、基端部46aからロッド41側へ延びてロッド41内に摺動自在に挿入されるガイド部46bとを備えている。より詳細には、ガイドロッド46のガイド部46bは、第二ロッド51の内径大径部51dよりも先端側に摺動自在に挿入されており、筒型リニアモータM5が伸縮しても常にロッド41の内周に摺接している。 Furthermore, a guide rod 46 is attached to the inner periphery of the bottom 37a of the outer tube 37. The guide rod 46 includes a base end portion 46a that is fixed to the inner periphery of the bottom portion 37a, and a guide portion 46b that extends from the base end portion 46a toward the rod 41 and is slidably inserted into the rod 41. . More specifically, the guide portion 46b of the guide rod 46 is slidably inserted on the distal end side with respect to the inner diameter large diameter portion 51d of the second rod 51, so that the rod is always maintained even when the cylindrical linear motor M5 expands and contracts. 41 is in sliding contact with the inner circumference.
 このように、インナーチューブ39の内周には、スライダ51b,55が摺接しており、ガイドロッド46がロッド41の内周に摺接しているので、電機子A1はロッド41とともに界磁36に対して偏心せずに軸方向へスムーズに移動できる。 As described above, the sliders 51 b and 55 are in sliding contact with the inner periphery of the inner tube 39, and the guide rod 46 is in sliding contact with the inner periphery of the rod 41. On the other hand, it can move smoothly in the axial direction without being eccentric.
 つづいて、ストロークセンサLは、本実施の形態では、線形可変差動変圧器とされており、詳しくは図示しないが、プライマリコイルと二つのセカンダリコイルとを収容した筒状のセンサ本体60と、センサ本体60内に軸方向へ移動可能に挿入されるとともに先端に被検出子であるセンサ用コア61を有するプローブ62とを備えて構成されている。なお、線形可変差動変圧器は、プライマリコイルへ交流電圧を印加した際に誘導さえる二つのセカンダリコイルの誘導電圧の差からセンサ用コア61の位置を検知する。 Subsequently, the stroke sensor L is a linear variable differential transformer in the present embodiment, and although not shown in detail, a cylindrical sensor body 60 containing a primary coil and two secondary coils, A probe 62 is inserted into the sensor main body 60 so as to be movable in the axial direction, and has a sensor core 61 as a detection element at the tip. The linear variable differential transformer detects the position of the sensor core 61 from the difference between the induced voltages of the two secondary coils that are induced when an AC voltage is applied to the primary coil.
 センサ本体60を予め第一ロッド50内に挿入しておき、スライダ55を第一ロッド50の端部に嵌合して、第二ロッド51を第一ロッド50に螺着すると、センサ本体60は、第二ロッド51における内径大径部51dの右端に形成される段部と第一ロッド50のエンドキャップ53とで挟持されて第一ロッド50内に固定される。このように、センサ本体60は、外周に電機子A1が装着されない第一ロッド50内に収容されており、ロッド41の径方向で電機子A1と対向しない範囲に収容されている。 When the sensor body 60 is inserted into the first rod 50 in advance, the slider 55 is fitted to the end of the first rod 50, and the second rod 51 is screwed to the first rod 50, the sensor body 60 is The second rod 51 is clamped by a step formed at the right end of the inner diameter large diameter portion 51 d and the end cap 53 of the first rod 50 and fixed in the first rod 50. Thus, the sensor main body 60 is accommodated in the first rod 50 where the armature A1 is not mounted on the outer periphery, and is accommodated in a range that does not face the armature A1 in the radial direction of the rod 41.
 また、ストロークセンサLにおけるプローブ62は、ロッド状であってガイドロッド46におけるガイド部46bの先端に取り付けられている。よって、被検出子としてのセンサ用コア61は、プローブ62、ガイドロッド46およびアウターチューブ7を介して界磁36に対して固定的に連結されている。プローブ62は、前述したとおり、先端にセンサ用コア61を備えていて、先端側をセンサ本体60内に挿入している。よって、電機子A1が界磁36に対して軸方向へ移動するのに伴ってプローブ62がセンサ本体60に対して軸方向へ相対移動して、センサ用コア61がセンサ本体60内で移動する。 Further, the probe 62 in the stroke sensor L is rod-shaped and attached to the tip of the guide portion 46b in the guide rod 46. Therefore, the sensor core 61 as the detection element is fixedly connected to the field magnet 36 via the probe 62, the guide rod 46 and the outer tube 7. As described above, the probe 62 includes the sensor core 61 at the distal end, and the distal end side is inserted into the sensor main body 60. Therefore, as the armature A1 moves in the axial direction relative to the field magnet 36, the probe 62 moves relative to the sensor main body 60 in the axial direction, and the sensor core 61 moves in the sensor main body 60. .
 センサ本体60を収容するロッド41内にはプローブ62を保持するガイドロッド46が摺動自在に挿入されているので、センサ本体60に対するセンサ用コア61の径方向への偏心が防止される。なお、センサ本体60のプライマリコイルへの通電用の配線およびセカンダリコイルに接続される配線60aは、エンドキャップ53に設けた孔53bから外部へ引き出されて図外のコントローラに接続される。 Since the guide rod 46 that holds the probe 62 is slidably inserted into the rod 41 that accommodates the sensor main body 60, eccentricity of the sensor core 61 in the radial direction with respect to the sensor main body 60 is prevented. Note that the energization wiring to the primary coil of the sensor body 60 and the wiring 60a connected to the secondary coil are drawn out from the hole 53b provided in the end cap 53 and connected to a controller (not shown).
 巻線35に接続されるケーブルCは、ロッド41とロッド41の外周を覆う筒状のカバー47との間の空間に収容されて、筒型リニアモータM5の外方へ引き出されており、前記コントローラによって制御される図外の駆動回路に接続されている。よって、外部の駆動回路から巻線35へ通電できるようになっている。 The cable C connected to the winding 35 is accommodated in a space between the rod 41 and the cylindrical cover 47 covering the outer periphery of the rod 41, and is drawn out of the cylindrical linear motor M5. It is connected to a drive circuit (not shown) controlled by the controller. Therefore, the winding 35 can be energized from an external drive circuit.
 そして、図外のコントローラは、巻線35の界磁36に対する電気角をストロークセンサLでセンシングし、前記電気角に基づいて通電位相切換を行うとともにPWM制御により、各巻線35の電流量を制御して、筒型リニアモータM5における推力と電機子2の移動方向とを制御する。なお、前述のコントローラにおける制御方法は、一例でありこれに限られない。このように、本実施の形態の筒型リニアモータM5では、電機子A1が可動子であり、界磁36は固定子Sとして振る舞う。また、電機子A1と界磁36とを軸方向に相対変位させる外力が作用する場合、巻線35への通電、あるいは、巻線35に発生する誘導起電力によって、前記相対変位を抑制する推力を発生させて筒型リニアモータM5に前記外力による機器の振動や運動をダンピングさせ得るし、外力から電力を生むエネルギ回生も可能である。 The controller (not shown) senses the electrical angle of the winding 35 with respect to the field 36 with the stroke sensor L, switches the energization phase based on the electrical angle, and controls the current amount of each winding 35 by PWM control. Then, the thrust in the cylindrical linear motor M5 and the moving direction of the armature 2 are controlled. In addition, the control method in the above-mentioned controller is an example, and is not restricted to this. Thus, in the cylindrical linear motor M5 of the present embodiment, the armature A1 is a mover and the field 36 behaves as the stator S. In addition, when an external force that relatively displaces the armature A1 and the field magnet 36 in the axial direction acts, the thrust that suppresses the relative displacement by energizing the winding 35 or the induced electromotive force generated in the winding 35. Can be generated to cause the cylindrical linear motor M5 to dampen the vibration and movement of the device due to the external force, and energy regeneration that generates electric power from the external force is also possible.
 以上のように、第二の実施の形態の筒型リニアモータM5は、筒状であって軸方向にN極とS極とが交互に配置される界磁36と、界磁36の内周に配置される非磁性体のインナーチューブ39と、インナーチューブ39内に移動自在に挿入されるロッド41と、ロッド41に装着される電機子A1と、ロッド41に設けられるとともにインナーチューブ39の内周に摺接して電機子A1の界磁36に対する移動を案内するスライダ51b,55とを備えている。このように構成された筒型リニアモータM5は、界磁36と電機子A1との間に非磁性体のインナーチューブ39が配置されており、ロッド41に設けたスライダ51b,55がインナーチューブ39の内周に摺接しているので、電機子A1の推力方向の移動が案内されるとともに界磁36に対する径方向の偏心が抑制される。よって、第二の実施の形態の筒型リニアモータM5は、第一の実施の形態の筒型リニアモータM1と同様に、界磁36に対する電機子A1の偏心を防止でき、安定した推力を発生できる。また、この筒型リニアモータM5は、永久磁石40a,40bの内周に設けた非磁性体のインナーチューブ39を備えているので、界磁36内に電機子A1を挿入する際に電機子A1が永久磁石40a,40bに吸引されて貼り付いてしまうのを防止でき、組立作業も容易となる。また、本実施の形態の筒型リニアモータM5では、電機子A1の軸方向の両側にそれぞれスライダ51b,55を備えているので、ロッド41の撓みも抑制できるから電機子A1の界磁36に対する偏心を効果的に抑制できる。 As described above, the cylindrical linear motor M5 according to the second embodiment has a cylindrical field 36 in which N poles and S poles are alternately arranged in the axial direction, and the inner periphery of the field magnet 36. A non-magnetic inner tube 39, a rod 41 movably inserted into the inner tube 39, an armature A1 attached to the rod 41, and an inner tube 39 provided on the rod 41. Sliders 51b and 55 are provided which slide around the circumference and guide the movement of the armature A1 relative to the field 36. In the cylindrical linear motor M5 configured as described above, a non-magnetic inner tube 39 is disposed between the field magnet 36 and the armature A1, and sliders 51b and 55 provided on the rod 41 are connected to the inner tube 39. Since the armature A1 is guided to move in the thrust direction, radial eccentricity with respect to the field 36 is suppressed. Therefore, the cylindrical linear motor M5 of the second embodiment can prevent the eccentricity of the armature A1 with respect to the field magnet 36 and generate a stable thrust, similarly to the cylindrical linear motor M1 of the first embodiment. it can. The cylindrical linear motor M5 includes a non-magnetic inner tube 39 provided on the inner periphery of the permanent magnets 40a and 40b. Therefore, when the armature A1 is inserted into the field magnet 36, the armature A1 is inserted. Can be prevented from being attracted and stuck to the permanent magnets 40a and 40b, and the assembly work can be facilitated. Further, in the cylindrical linear motor M5 of the present embodiment, since the sliders 51b and 55 are provided on both sides in the axial direction of the armature A1, the bending of the rod 41 can be suppressed, so that the field 36 of the armature A1 is prevented. Eccentricity can be effectively suppressed.
 さらに、第二の実施の形態の筒型リニアモータM5は、界磁36の外周に設けられるアウターチューブ37と、アウターチューブ37の開口端に装着されるとともにロッド41が内周に挿通される環状のヘッドキャップ45とを備え、インナーチューブ39がヘッドキャップ45と一体に設けられている。このように構成された筒型リニアモータM5では、電機子A1の軸方向移動をガイドして界磁36に対する電機子A1の偏心を防止するインナーチューブ39がヘッドキャップ45と一体構造になっているので、インナーチューブ39とヘッドキャップ45に歪が生じにくくスライダ51b,55がインナーチューブ39の内周を滑らかに摺動でき、スムーズに伸縮できる。 Furthermore, the cylindrical linear motor M5 according to the second embodiment has an outer tube 37 provided on the outer periphery of the field magnet 36, and an annular shape that is attached to the opening end of the outer tube 37 and the rod 41 is inserted into the inner periphery. The head cap 45 is provided, and the inner tube 39 is provided integrally with the head cap 45. In the cylindrical linear motor M5 configured as described above, the inner tube 39 that guides the axial movement of the armature A1 to prevent the eccentricity of the armature A1 with respect to the field 36 is integrated with the head cap 45. Therefore, the inner tube 39 and the head cap 45 are hardly distorted, and the sliders 51b and 55 can smoothly slide on the inner periphery of the inner tube 39, and can smoothly expand and contract.
 また、第二の実施の形態の筒型リニアモータM5における界磁36がインナーチューブ39の外周に軸方向への移動が規制されて装着されている。このように構成された筒型リニアモータM5では、電機子A1から界磁36が受ける軸方向の荷重が必ずヘッドキャップ45を通ってアウターチューブ37へ伝達される。このように筒型リニアモータM5のロードパス(荷重伝達経路)は、ヘッドキャップ45を通る1つのみとなるので、強度設計が容易になる。 Further, the field magnet 36 in the cylindrical linear motor M5 according to the second embodiment is mounted on the outer periphery of the inner tube 39 while being restricted from moving in the axial direction. In the cylindrical linear motor M5 configured as described above, the axial load received by the field 36 from the armature A1 is always transmitted to the outer tube 37 through the head cap 45. As described above, since the load path (load transmission path) of the cylindrical linear motor M5 is only one passing through the head cap 45, the strength design is facilitated.
 さらに、第二の実施の形態の筒型リニアモータM5におけるロッド41は、筒状であって、アウターチューブ37に連結されてロッド41内に摺動自在に挿入されるガイドロッド46を備えている。このように構成された筒型リニアモータM5によれば、インナーチューブ39とスライダ51b,55とでロッド41の界磁36に対する移動が案内される他にも、ガイドロッド46とロッド41とでアウターチューブ37の底部37a側からもロッド41の界磁36に対する移動が案内されるので、電機子A1の界磁36に対する偏心がより効果的に防止される。 Furthermore, the rod 41 in the cylindrical linear motor M5 of the second embodiment is cylindrical and includes a guide rod 46 that is connected to the outer tube 37 and is slidably inserted into the rod 41. . According to the cylindrical linear motor M5 configured as described above, the inner tube 39 and the sliders 51b and 55 guide the movement of the rod 41 relative to the field 36, and the guide rod 46 and the rod 41 can Since the movement of the rod 41 with respect to the field 36 is guided also from the bottom 37a side of the tube 37, the eccentricity of the armature A1 with respect to the field 36 is more effectively prevented.
 また、第二の実施の形態の筒型リニアモータM5におけるスライダ51b,55は、軸方向の両端の外周にリードインチャンファを有しており、インナーチューブ39の内周面をスライダ51b,55がかじるのを防止できるから、本実施の形態の筒型リニアモータM5は、長期間にわたりスムーズに伸縮作動できる。 Further, the sliders 51b and 55 in the cylindrical linear motor M5 of the second embodiment have lead in chamfers on the outer circumferences at both ends in the axial direction, and the sliders 51b and 55 are arranged on the inner circumferential surface of the inner tube 39. Since it is possible to prevent galling, the cylindrical linear motor M5 of the present embodiment can smoothly extend and contract over a long period of time.
 なお、第二の実施の形態の筒型リニアモータM5は、ロッド41内に挿通されて界磁36に対するロッド41の位置を検知するストロークセンサLとを備え、ストロークセンサLは、界磁36に対して固定されてロッド41内に挿入されるセンサ用コア61と、ロッド41内に収容されてセンサ用コア61の位置を検知するセンサ本体60とを有している。このように構成された筒型リニアモータM5では、電機子A1を外周に備えるロッド41内にストロークセンサLが収容されており、通電によって発熱する電機子A1および磁界を発生する界磁36に対してストロークセンサLが直接曝露されていない。したがって、ストロークセンサLは、電機子A1の熱から保護されるとともに、界磁36の磁界にも曝されないので、検知した電機子A1の位置を精度よく検知できる。以上より、本実施の形態の筒型リニアモータM5によれば、検知した電機子A1の位置の信頼性を向上できる。 The cylindrical linear motor M5 of the second embodiment includes a stroke sensor L that is inserted into the rod 41 and detects the position of the rod 41 with respect to the field magnet 36. The stroke sensor L is connected to the field magnet 36. The sensor core 61 is fixed to the rod 41 and inserted into the rod 41, and the sensor body 60 is housed in the rod 41 and detects the position of the sensor core 61. In the cylindrical linear motor M5 configured as described above, the stroke sensor L is accommodated in the rod 41 having the armature A1 on the outer periphery. The stroke sensor L is not directly exposed. Therefore, the stroke sensor L is protected from the heat of the armature A1 and is not exposed to the magnetic field of the field 36, so that the detected position of the armature A1 can be accurately detected. As described above, according to the cylindrical linear motor M5 of the present embodiment, the reliability of the detected position of the armature A1 can be improved.
 さらに、本実施の形態の筒型リニアモータM5では、センサ本体60がロッド41内の電機子A1と径方向で対向しない範囲に収容されている。このように構成された筒型リニアモータM5によれば、センサ本体60と電機子A1とが筒型リニアモータM5のストローク中に径方向へ重なることが無いので、より、電機子A1の熱の影響を受け辛くなり、検知した電機子2の位置の信頼性をより効果的に向上できる。 Furthermore, in the cylindrical linear motor M5 of the present embodiment, the sensor body 60 is accommodated in a range that does not face the armature A1 in the rod 41 in the radial direction. According to the cylindrical linear motor M5 configured in this way, the sensor body 60 and the armature A1 do not overlap in the radial direction during the stroke of the cylindrical linear motor M5. It becomes difficult to be influenced, and the reliability of the detected position of the armature 2 can be improved more effectively.
 また、本実施の形態の筒型リニアモータM5は、界磁36に連結されてロッド41内に摺動自在に挿入されるガイドロッド46を備え、センサ用コア61がガイドロッド46に装着されている。このように構成された筒型リニアモータM5によれば、センサ本体60に対して移動するセンサ用コア61がロッド41の軸方向への移動を案内するガイドロッド46に装着されているので、センサ本体60に対するセンサ用コア61の偏心が防止されて、ストロークセンサLは精度よく電機子A1の位置を検知できる。 The cylindrical linear motor M5 of the present embodiment includes a guide rod 46 that is connected to the field magnet 36 and is slidably inserted into the rod 41, and the sensor core 61 is attached to the guide rod 46. Yes. According to the cylindrical linear motor M5 configured as described above, the sensor core 61 that moves relative to the sensor body 60 is mounted on the guide rod 46 that guides the movement of the rod 41 in the axial direction. The eccentricity of the sensor core 61 with respect to the main body 60 is prevented, and the stroke sensor L can accurately detect the position of the armature A1.
 さらに、本実施の形態の筒型リニアモータM5におけるロッド41は、筒状の第一ロッド50と、筒状であって外周にコア33が装着されるとともに第一ロッド50の内周に螺合される第二ロッド51とを有し、センサ本体60が第一ロッド50と第二ロッド51とで挟持されてロッド41内に固定されている。このように構成された筒型リニアモータM5によれば、ストロークセンサLをロッド41内への固定と電機子A1のロッド41への装着が非常に容易となるので、良好な組付性が得られる。 Furthermore, the rod 41 in the cylindrical linear motor M5 of the present embodiment has a cylindrical first rod 50 and a cylindrical shape with the core 33 mounted on the outer periphery and screwed into the inner periphery of the first rod 50. The sensor body 60 is sandwiched between the first rod 50 and the second rod 51 and fixed in the rod 41. According to the cylindrical linear motor M5 configured in this way, it is very easy to fix the stroke sensor L in the rod 41 and to attach the armature A1 to the rod 41, so that a good assembling property is obtained. It is done.
 なお、ストロークセンサLは、線形可変差動変圧器に代えて、磁歪式のストロークセンサとされてもよいし、リニア型のポテンショメーターとされてもよく、いずれにしても、界磁36に固定される被検出子の位置をロッド41側に固定されるセンサ本体で検知するようにすればよい。 The stroke sensor L may be a magnetostrictive stroke sensor instead of the linear variable differential transformer, or may be a linear potentiometer. In any case, the stroke sensor L is fixed to the field magnet 36. What is necessary is just to make it detect with the sensor main body fixed to the rod 41 side.
 以上、本発明の好ましい実施の形態を詳細に説明したが、特許請求の範囲から逸脱しない限り、改造、変形、および変更が可能である。 The preferred embodiments of the present invention have been described in detail above, but modifications, changes, and changes can be made without departing from the scope of the claims.
 本願は、2018年4月17日に日本国特許庁に出願された特願2018-079340に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2018-079340 filed with the Japan Patent Office on April 17, 2018, the entire contents of which are incorporated herein by reference.

Claims (9)

  1.  筒型リニアモータであって、
     筒状であって軸方向にN極とS極とが交互に配置される界磁と、
     前記界磁の内周に配置される非磁性体のインナーチューブと、
     前記インナーチューブ内に移動自在に挿入されるロッドと、
     前記ロッドに装着される電機子と、
     前記ロッドに設けられるとともに前記インナーチューブの内周に摺接して前記電機子の前記界磁に対する移動を案内するスライダとを備えた
     筒型リニアモータ。
    A cylindrical linear motor,
    A cylindrical magnetic field in which N and S poles are alternately arranged in the axial direction;
    A non-magnetic inner tube disposed on the inner periphery of the field;
    A rod movably inserted into the inner tube;
    An armature attached to the rod;
    A cylindrical linear motor comprising: a slider provided on the rod and slidably contacting the inner periphery of the inner tube to guide the movement of the armature relative to the field.
  2.  請求項1に記載の筒型リニアモータであって、
     前記スライダと前記電機子との前記ロッド回りの相対回転を規制する回転規制部を備えた
     筒型リニアモータ。
    The cylindrical linear motor according to claim 1,
    A cylindrical linear motor comprising a rotation restricting portion that restricts relative rotation of the slider and the armature around the rod.
  3.  請求項1に記載の筒型リニアモータであって、
     前記スライダは、前記ロッドに対して前記電機子の軸方向の両側にそれぞれ設けられている
     筒型リニアモータ。
    The cylindrical linear motor according to claim 1,
    The said slider is each provided in the both sides of the axial direction of the said armature with respect to the said rod. Cylindrical linear motor.
  4.  請求項1に記載の筒型リニアモータであって、
     前記電機子は、筒状であって外周に巻線が装着される複数のスロットを有する複数のコアを有し、
     前記ロッドに設けられるとともに前記コア間に配置されるスペーサを備えた
     筒型リニアモータ。
    The cylindrical linear motor according to claim 1,
    The armature has a plurality of cores having a plurality of slots that are cylindrical and have windings mounted on the outer periphery;
    A cylindrical linear motor including a spacer provided on the rod and disposed between the cores.
  5.  請求項4に記載の筒型リニアモータであって、
     前記スペーサと前記各コアとの前記ロッド回りの相対回転を規制するスペーサ回転規制部を備えた
     筒型リニアモータ。
    The cylindrical linear motor according to claim 4,
    A cylindrical linear motor comprising a spacer rotation restricting portion that restricts relative rotation of the spacer and each core around the rod.
  6.  請求項1に記載の筒型リニアモータであって、
     前記界磁の外周に設けられるアウターチューブと、
     前記アウターチューブの開口端に装着されるとともに前記ロッドが内周に挿通される環状のヘッドキャップとを備え、
     前記インナーチューブは、前記ヘッドキャップと一体に設けられている
     筒型リニアモータ。
    The cylindrical linear motor according to claim 1,
    An outer tube provided on the outer periphery of the field;
    An annular head cap that is attached to the open end of the outer tube and through which the rod is inserted into the inner periphery;
    The inner tube is provided integrally with the head cap. A cylindrical linear motor.
  7.  請求項6に記載の筒型リニアモータであって、
     前記界磁は、前記インナーチューブの外周に軸方向への移動が規制されて装着されている
     筒型リニアモータ。
    The cylindrical linear motor according to claim 6,
    The field magnet is mounted on the outer periphery of the inner tube while being restricted from moving in the axial direction.
  8.  請求項6に記載の筒型リニアモータであって、
     前記ロッドは、筒状であって、
     前記アウターチューブに連結されて前記ロッド内に摺動自在に挿入されるガイドロッドを備えた
     筒型リニアモータ。
    The cylindrical linear motor according to claim 6,
    The rod is cylindrical,
    A cylindrical linear motor comprising a guide rod connected to the outer tube and slidably inserted into the rod.
  9.  請求項1に記載の筒型リニアモータであって、
     前記スライダは、軸方向の両端の外周にリードインチャンファを有する
     筒型リニアモータ。
    The cylindrical linear motor according to claim 1,
    The said slider has a lead in chamfer on the outer periphery of the both ends of an axial direction.
PCT/JP2018/039470 2018-04-17 2018-10-24 Cylindrical linear motor WO2019202758A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020514897A JP7025533B2 (en) 2018-04-17 2018-10-24 Cylindrical linear motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018079340 2018-04-17
JP2018-079340 2018-04-17

Publications (1)

Publication Number Publication Date
WO2019202758A1 true WO2019202758A1 (en) 2019-10-24

Family

ID=68238864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/039470 WO2019202758A1 (en) 2018-04-17 2018-10-24 Cylindrical linear motor

Country Status (2)

Country Link
JP (1) JP7025533B2 (en)
WO (1) WO2019202758A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02280656A (en) * 1989-04-21 1990-11-16 Fuji Electric Co Ltd Linear pulse motor
JP2002291220A (en) * 2001-01-17 2002-10-04 Kuronofangu Kk Linear motor
JP2008236832A (en) * 2007-03-16 2008-10-02 Hitachi Ltd Tubular linear motor
US20140252889A1 (en) * 2013-03-08 2014-09-11 Mts Sensor Technologie Gmbh & Co. Kg Tubular linear motor with magnetostrictive sensor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004221322A (en) * 2003-01-15 2004-08-05 Sharp Corp Electromagnetic linear actuator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02280656A (en) * 1989-04-21 1990-11-16 Fuji Electric Co Ltd Linear pulse motor
JP2002291220A (en) * 2001-01-17 2002-10-04 Kuronofangu Kk Linear motor
JP2008236832A (en) * 2007-03-16 2008-10-02 Hitachi Ltd Tubular linear motor
US20140252889A1 (en) * 2013-03-08 2014-09-11 Mts Sensor Technologie Gmbh & Co. Kg Tubular linear motor with magnetostrictive sensor

Also Published As

Publication number Publication date
JP7025533B2 (en) 2022-02-24
JPWO2019202758A1 (en) 2020-10-22

Similar Documents

Publication Publication Date Title
WO2019202919A1 (en) Cylindrical linear motor
JP2006296033A (en) Brushless motor
WO2019202758A1 (en) Cylindrical linear motor
JP2019187210A (en) Cylindrical linear motor
JP2007221955A (en) Permanent magnet field brushless motor
JP7482480B2 (en) Cylindrical Linear Motor
JP2019187215A (en) Cylindrical linear motor
JP6990143B2 (en) Cylindrical linear motor
JP2022007249A (en) Tubular linear motor
JP2019187218A (en) Cylindrical linear motor
JP2019187226A (en) Cylindrical linear motor
JP2023121183A (en) Cylindrical linear motor
JP2020068625A (en) Cylindrical linear motor
JP7252834B2 (en) Cylindrical linear motor
JP7274852B2 (en) Cylindrical linear motor
US11245321B2 (en) Cylindrical linear motor
WO2019202765A1 (en) Cylindrical linear motor
JP7036317B2 (en) Cylindrical linear motor
JP2023119627A (en) Cylindrical linear motor
JP2023069885A (en) Cylindrical type liner motor
JP2005269795A (en) Brushless motor
JP2019187212A (en) Cylindrical linear motor
KR20240055210A (en) Stator of motor
JP2019187216A (en) Cylindrical linear motor
JP2023122350A (en) Tubular linear motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915484

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020514897

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18915484

Country of ref document: EP

Kind code of ref document: A1