WO2019202649A1 - User device and base station - Google Patents

User device and base station Download PDF

Info

Publication number
WO2019202649A1
WO2019202649A1 PCT/JP2018/015771 JP2018015771W WO2019202649A1 WO 2019202649 A1 WO2019202649 A1 WO 2019202649A1 JP 2018015771 W JP2018015771 W JP 2018015771W WO 2019202649 A1 WO2019202649 A1 WO 2019202649A1
Authority
WO
WIPO (PCT)
Prior art keywords
user apparatus
power class
maximum transmission
base station
power
Prior art date
Application number
PCT/JP2018/015771
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 秀明
大將 梅田
洋介 佐野
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2018/015771 priority Critical patent/WO2019202649A1/en
Publication of WO2019202649A1 publication Critical patent/WO2019202649A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/3827Portable transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC

Definitions

  • the present invention relates to a user apparatus and a base station.
  • Non-Patent Document 1 when a frequency band is a TDD (Time Division Division Duplex) band and 50% or more slots in a radio frame are uplink transmissions, the user apparatus has a maximum transmission power. A higher high power class cannot be used.
  • TDD Time Division Division Duplex
  • the frequency band is a TDD band and 50% or more slots in the radio frame are uplink transmissions, for example, the frequency band, the specific absorption rate of the user equipment, the country, High power class may be available depending on the region.
  • Embodiments of the present invention have been made in view of the above problems, and in a frequency band having a default power class lower than the high power class supported by the user apparatus, the high power class supported by the user apparatus is determined. Make it available more efficiently.
  • a user apparatus includes a transmission unit that supports a first power class in a certain frequency band, a reception unit that receives a radio signal transmitted by a base station, and In the frequency band having a second power class lower than one power class as a default power class, the receiving unit receives the radio signal including information indicating a specific absorption rate condition to be satisfied by the user apparatus And a control unit that determines a maximum transmission power of the transmission unit so as to satisfy a specific absorption rate that should be satisfied by the user apparatus.
  • the high power class supported by the user apparatus can be used more efficiently in a frequency band having a default power class lower than the high power class supported by the user apparatus.
  • FIG. 1 is a schematic diagram illustrating a wireless communication system according to one embodiment. It is a block diagram which shows the function structure of the user apparatus by one Example. It is a block diagram which shows the function structure of the base station by one Example. It is a flowchart which shows the example of the determination process of the maximum transmission power by one Example. It is a figure for demonstrating RequiredSAR by one Example. It is a sequence diagram which shows the example of the initial access process by one Example. It is a sequence diagram which shows the example of the hand-over process by one Example. It is a figure which shows the example (1) of the specification change by one Example. It is a figure which shows the example (2) of the specification change by one Example. It is a figure which shows the example (3) of the specification change by one Example. It is a block diagram which shows the hardware constitutions of the user apparatus and base station by one Example.
  • FIG. 1 is a schematic diagram illustrating a wireless communication system according to an embodiment of the present invention.
  • the wireless communication system 10 includes a user device 100 and a base station 200.
  • the wireless communication system 10 may typically be a wireless communication system compliant with a standard by 3GPP (Third Generation Partnership Project) such as LTE system, LTE-Advanced system, or 5G system.
  • the radio communication system 10 is not limited to this, and may be, for example, UMTS (Universal Mobile Telecommunications System), UMTS enhancement, LTE single-cluster, LTE multi-cluster, UL inter- It may be a variation of the LTE system, such as band CA, UL intra-band contiguous CA, UL intra-band non-continuous CA, Dual Connectivity.
  • only one base station 200 is shown, but a number of base stations 200 are arranged to cover the service area of the wireless communication system 10.
  • the user apparatus 100 performs wireless communication with the base station 200 via a cell or a frequency band provided by the base station 200 according to 3GPP standards such as LTE, LTE-Advanced and / or 5G.
  • the user apparatus 100 may be any appropriate information processing apparatus having a wireless communication function such as a smartphone, a mobile phone, a tablet, a mobile router, and a wearable terminal as illustrated.
  • the base station 200 is wirelessly connected to the user apparatus 100 via a cell or a frequency band according to 3GPP standards such as LTE, LTE-Advanced and / or 5G, and is connected to a higher level connected to a core network (not shown).
  • 3GPP standards such as LTE, LTE-Advanced and / or 5G
  • the downlink (DL) packet received from the station and / or the server is transmitted to the user apparatus 100
  • the uplink (UL) packet received from the user apparatus 100 is transmitted to the server.
  • the base station 200 sets a power class (hereinafter referred to as a second power class) lower than a high power class (hereinafter referred to as a first power class) supported by the user apparatus 100 as a default power class.
  • System information is transmitted in the frequency band possessed as Further, the system information transmitted by the base station 200 indicates “P-Max”, which is information indicating the maximum transmission power applied to the frequency band, and a specific absorption rate (SAR) condition to be satisfied by the user apparatus.
  • P-Max is information indicating the maximum transmission power applied to the frequency band
  • SAR specific absorption rate
  • SAR Specific Absorption Rate
  • the user apparatus 100 When receiving the system information including the above-described P-Max and Required SAR from the base station 200, the user apparatus 100 performs maximum transmission so as to satisfy the SAR conditions indicated by the Required SAR when accessing the base station 200. Determine the power.
  • the user apparatus 100 receives from the base station 200 system information including P-Max indicating the maximum transmission power of the first power class and Required SAR indicating the SAR conditions to be satisfied by the user apparatus. To do.
  • the user device 100 stores the SAR characteristics (capability) for each frequency band of the user device 100 in advance in the storage unit as a part of the terminal capability information, for example.
  • the user apparatus 100 determines whether or not the SAR characteristic of the user apparatus 100 in the frequency band satisfies the SAR condition indicated by the Required SAR included in the information in the received system. Further, when the SAR characteristic of the user apparatus 100 satisfies the SAR condition indicated by the Required SAR, the user apparatus 100 performs the maximum transmission of the first power class according to the transmission regulations of the first power class in the frequency band. The power is determined as the maximum transmission power of the user apparatus 100.
  • the user apparatus 100 sets the maximum transmission power of the default power class according to the transmission rule of the default power class in the frequency band. A maximum transmission power of 100 is determined.
  • the user apparatus 100 defines transmission specifications for the first power class in the frequency band. Accordingly, the maximum transmission power of the first power class is determined as the maximum transmission power of the user apparatus 100.
  • the transmission regulations for each power class of the frequency band include, for example, adjacent channel leakage power ratio (ACLR: AdjacentjaChannel Ratio), adjacent channel sensitivity (ACS: Adjacent Channel Selectivity), and reference sensitivity power level (REFSENS: Reference). Sensitivity (Power Level), spectrum emission mask (SEM: Spectrum Emission Mask), maximum power reduction value (MPR: Maximum Power Reduction), maximum transmission power, etc. are included (Non-patent Document 1).
  • ACLR AdjacentjaChannel Ratio
  • ACS Adjacent Channel Selectivity
  • REFSENS Reference sensitivity power level
  • Sensitivity Power Level
  • SEM Spectrum Emission Mask
  • MPR Maximum Power Reduction
  • maximum transmission power etc.
  • the user apparatus 100 can satisfy the requirement for Required SAR even when the frequency band is a TDD band and 50% or more slots in a radio frame are uplink transmissions.
  • a first power class can be utilized.
  • the high power class supported by the user apparatus 100 can be used more efficiently in a frequency band having a default power class lower than the high power class supported by the user apparatus 100.
  • FIG. 2 is a block diagram illustrating a functional configuration of a user apparatus according to an embodiment of the present invention.
  • the user device 100 includes a transmission unit 110, a reception unit 120, a control unit 130, a storage unit 140, and the like.
  • the transmission unit 110 transmits a radio signal to the base station 200.
  • the transmission unit 110 transmits various radio signals such as an uplink control channel and an uplink data channel to the base station 200.
  • the transmission unit 110 supports a first power class having a maximum transmission power larger than a default power class (second power class) in a certain frequency band.
  • the receiving unit 120 receives a radio signal transmitted from the base station 200.
  • the receiving unit 120 receives various radio signals such as a downlink control channel and a downlink data channel transmitted from the base station 200.
  • control unit 130 When the control unit 130 receives system information including the above-described P-Max and Required SAR from the base station 200 in the frequency band supporting the above-described first power class, the control unit 130 indicates the SAR indicated by Required SAR.
  • the maximum transmission power of the transmission unit 110 is determined so as to satisfy the condition.
  • the control unit 130 determines whether or not the SAR characteristics of the user apparatus 100 in the frequency band stored in advance in the storage unit 140 satisfy the condition indicated by the Required SAR. In addition, when the SAR characteristic of the user apparatus 100 satisfies the SAR condition indicated by the Required SAR, the control unit 130 increases the maximum transmission power of the first power class according to the transmission rule of the first power class in the frequency band. The maximum transmission power of the user apparatus 100 is determined.
  • the control unit 130 determines the maximum transmission power of the default power class according to the transmission rule of the default power class in the frequency band. A maximum transmission power of 100 is determined.
  • the control unit 130 defines transmission specifications for the first power class in the frequency band. Accordingly, the maximum transmission power of the first power class is determined as the maximum transmission power of the user apparatus 100. An example of a specific process performed by the control unit 130 will be described in detail later.
  • the storage unit 140 stores in advance information such as the power class supported by the user apparatus 100 in each frequency band, the SAR characteristics in each frequency band, and the like.
  • FIG. 3 is a block diagram showing a functional configuration of the base station according to one embodiment of the present invention.
  • the base station 200 includes an information transmission unit 210, a connection control unit 220, and the like.
  • the information transmission unit 210 transmits system information, for example.
  • This system information includes, for example, P-Max, which is information indicating the maximum transmission power applied in the frequency band provided by the base station 200, Required SAR, which is information indicating the SAR conditions that the user apparatus 100 should satisfy.
  • P-Max which is information indicating the maximum transmission power applied in the frequency band provided by the base station 200
  • Required SAR which is information indicating the SAR conditions that the user apparatus 100 should satisfy.
  • SIB1 SystemInformationBlockType1
  • the connection control unit 220 controls wireless connection with the user device 100. For example, when the RA preamble is received from the user apparatus 100, the connection control unit 220 transmits an RA response to the user apparatus 100 and establishes a wireless connection or RRC connection with the user apparatus 100. After establishing the wireless connection, the connection control unit 220 manages the wireless connection with the user apparatus 100 such as mobility control, and also transmits information such as P-Max and Required SAR applied in the frequency band to the user apparatus 100 by individual signaling. Notice.
  • the user apparatus 100 transmits the transmission power when accessing the base station 200 according to the maximum transmission power (P-Max) notified from the base station 200 and the SAR conditions (Required SAR) that the user apparatus 100 should satisfy. To control.
  • P-Max maximum transmission power
  • SAR Required SAR
  • FIG. 4 is a flowchart illustrating an example of the maximum transmission power determination process according to an embodiment. This process shows an example of the maximum transmission power determination process executed by the user apparatus 100 in the frequency band having the second power class lower than the first power class supported by the user apparatus 100 as the default power class. Yes. This process is executed, for example, when the user apparatus 100 transitions from the idle state to the connected state, or when a handover is performed.
  • step S1 the control unit 130 of the user apparatus 100 determines whether or not P-Max is provided from the base station 200. For example, the control unit 130 determines that the P-Max is provided from the base station 200 when the system information (SIB1) received by the receiving unit 120 or the P-MAX is included in the handover instruction or the like.
  • SIB1 system information
  • step S3 When P-Max is provided from the base station 200, the control unit 130 shifts the process to step S3. On the other hand, if P-Max is not provided from the base station 200, the process proceeds to step S2.
  • control unit 130 of the user apparatus 100 determines the maximum transmission power of the default power class in the frequency band as the maximum transmission power of the user apparatus 100.
  • step S3 the control unit 130 of the user apparatus 100 determines whether or not the provided P-Max is set to a value higher than the maximum transmission power of the default power class.
  • control unit 130 shifts the process to step S4.
  • P-Max is not set to a value higher than the maximum transmission power of the default power class
  • the control unit 130 shifts the process to step S2.
  • the control unit 130 of the user apparatus 100 determines whether or not the Required SAR is provided from the base station 200. For example, the control unit 130 determines that the required SAR is provided from the base station 200 when the required SAR is included in the system information (SIB1) received by the receiving unit 120, the handover instruction, or the like.
  • SIB1 system information
  • RequiredSAR is represented by an index (Index in IE RequiredSAR) as shown in FIG.
  • FIG. 5 is a diagram for explaining RequiredSAR according to an embodiment.
  • the index “1” is specified for the Required SAR in the band X
  • the SAR condition to be satisfied by the user apparatus 100 is “60% for 1.6 W / kg”.
  • the index “2” is specified for the Required SAR in the band X
  • the SAR condition to be satisfied by the user apparatus 100 is “80% for 1.6 W / kg”.
  • different required SARs can be notified to the user apparatus 100 even in the same frequency band (for example, band X).
  • the maximum transmission power can be controlled based on different standards depending on the country, the region, and the like.
  • Non-Patent Document 1 uses the user apparatus 100 as the first The power class cannot be used.
  • the user apparatus 100 can utilize the first power class.
  • the SAR condition that the user apparatus 100 should satisfy is “80% for 2 W / kg”. Yes.
  • step S4 when Required SAR is provided from the base station 200, the control unit 130 of the user apparatus 100 shifts the processing to step S5. On the other hand, when the Required SAR is not provided from the base station 200, the control unit 130 of the user apparatus 100 shifts the process to step S6.
  • step S5 the control unit 130 of the user apparatus 100 determines whether the SAR characteristics of the user apparatus 100 in the frequency band satisfy the SAR condition indicated by the Required SAR provided from the base station 200. To do.
  • the storage unit 140 of the user device 100 stores the SAR characteristics in each frequency band of the user device 100 in advance. Therefore, the control unit 130 acquires, from the storage unit 140, the SAR characteristic of the user apparatus 100 corresponding to the frequency band, and compares the SAR condition indicated by the Required SAR with the SAR condition indicated by the Required SAR. Can be determined.
  • control unit 130 shifts the process to step S6.
  • the control unit 130 shifts the process to step S2.
  • control unit 130 of the user apparatus 100 determines the maximum transmission power of the first power class in the frequency band as the maximum transmission power of the user apparatus 100.
  • control unit 130 of the user apparatus 100 can determine the maximum transmission power in the frequency band according to the P-Max provided from the base station 200 and the Required SAR.
  • the user apparatus 100 satisfies the requirement for Required SAR as long as the first power class is satisfied. Can be used.
  • the maximum transmission power determination process shown in FIG. 4 is an example.
  • the control unit 130 sets the default power class.
  • the maximum transmission power may be determined as the maximum transmission power of the user apparatus 100.
  • FIG. 6 is a sequence diagram illustrating an example of initial access processing according to an embodiment. This process is executed, for example, when the user apparatus 100 transitions from the idle state to the connected state.
  • step S101 it is assumed that the user apparatus 100 supports 26 dBm of PC2 in the band X having 23 dBm of PC3 as a default power class.
  • step S102 the user apparatus 100 tries to be in the band X cell.
  • the receiving unit 120 of the user apparatus 100 receives SIB1 (SystemInformationBlockType1), which is system information broadcast from the base station 200.
  • the information element (IE: IEInformation Element) of SIB1 includes P-Max indicating the maximum transmission power, Required SAR indicating the SAR conditions to be satisfied by the user apparatus 100, and the like.
  • step S104 the control unit 130 of the user apparatus 100 determines the maximum transmission power of the user apparatus 100 by the maximum transmission power determination process illustrated in FIG.
  • P-Max is set to the maximum transmission power of 26 dBm of PC2 higher than the maximum transmission power of the default power class (PC3), and the SAR characteristics of the user apparatus 100 satisfy the Required SAR.
  • the user apparatus 100 control unit 130 determines the maximum transmission power 26 dBm of the PC 2 as the maximum transmission power of the user apparatus 100.
  • P-Max is set to a maximum transmission power of 26 dBm of PC2 higher than the default power class (PC3), and the SAR characteristics of the user apparatus 100 do not satisfy the Required SAR.
  • the control unit 130 determines the maximum transmission power 23 dBm of the default power class (PC3) as the maximum transmission power of the user apparatus 100.
  • control unit 130 sets the maximum transmission power of PC2 to 26 dBm. A maximum transmission power of 100 is determined.
  • step S ⁇ b> 105 the transmission unit 110 of the user apparatus 100 transmits a random access request (RA preamble) to the base station 200 according to the power class transmission rule determined by the control unit 130 and the maximum transmission power.
  • step S106 the base station 200 returns an RA response to the RA request, and establishes an RRC connection with the user apparatus 100 in step S107.
  • step S108 the connection control unit 220 of the base station 200 transmits UE capability Enquiry to request capability information from the user apparatus 100.
  • step S ⁇ b> 109 the control unit 130 of the user apparatus 100 notifies the UE capability information indicating the terminal capability information of the user apparatus 100 to the base station 200 via the transmission unit 110.
  • the UE capability information includes information such as the power class supported by the user apparatus 100 and the SAR characteristics of the user apparatus 100 in the band X, for example.
  • the system information (SIB1) transmitted by the base station 200 may include a plurality of Required SARs for one cell.
  • the plurality of Required SARs are arranged in descending order of priority.
  • the maximum transmission is performed so as to satisfy the SAR condition indicated by the Required SAR having the highest priority among the SAR conditions supported by the user apparatus 100. Determine the power.
  • FIG. 7 is a sequence diagram illustrating an example of a handover process according to an embodiment. This process is executed, for example, when the user apparatus 100 performs a handover.
  • step S201 it is assumed that the user apparatus 100 supports the PC2 of 26 dBm in the band X having the PC3 of 23 dBm as the default power class.
  • step S202 the user apparatus 100 receives a handover instruction (RRCConnectionReconfiguration with mobilityControlInfo) from the cell # 1 of the source base station (base station A) to the cell # 1 of the target base station (base station B).
  • the handover instruction includes P-Max, Required SAR, and the like.
  • step S203 the control unit 130 of the user apparatus 100 determines the maximum transmission power of the user apparatus 100 by the maximum transmission power determination process illustrated in FIG.
  • step S ⁇ b> 204 the transmission unit 110 of the user apparatus 100 transmits a random access request (RA preamble) to the base station 200 in accordance with the power class transmission rule determined by the control unit 130 and the maximum transmission power.
  • step S205 the base station 200 returns an RA response to the RA request.
  • step S206 the user apparatus 100 transmits a handover completion notification (RRCConnectionReconfigurationComplete) indicating establishment of RRC connection with the base station 200. .
  • RRCConnectionReconfigurationComplete handover completion notification
  • the base station A may determine the required SAR index to be notified to the user apparatus 100 with reference to the terminal capability information received in step S109 of FIG. Accordingly, it is possible to reduce the notification to the user apparatus 100 of the requirement SAR not supported by the user apparatus 100 in step S202 of FIG.
  • FIG. 8 shows a modification of section 6.2.1 of 3GPP TS 38.101-1, shown in Non-Patent Document 1.
  • a description 801 related to the processing of steps S4 and S5 in FIG. 4 is added, and a table 802 that defines the Required SAR described in FIG. 5 is added.
  • the restriction 803 when the frequency band is the TDD band and 50% or more of the slots in the radio frame are uplink transmissions is deleted, and the high power class supported by the user apparatus 100 is made more efficient. It becomes available.
  • FIG. 9 shows a modification example of the FrequencyUL information element 900 transmitted by the base station 200.
  • the FrequencyUL information element 900 is an information element for providing the user apparatus 100 with basic parameters related to the uplink carrier and its transmission.
  • requiredSAR 902 is added to FrequencyUL information element 900.
  • the base station 200 provides the user equipment 100 with the FrequencyUL information element 900 including the required SAR 902 and the frequencyBandList 901.
  • the information element representing RequiredSAR is defined as shown in FIG. 10, for example.
  • each functional block may be realized by one device in which a plurality of elements are physically and / or logically combined, or two or more devices physically and / or logically separated may be directly and directly. It may be realized by a plurality of these devices connected indirectly (for example, wired and / or wirelessly).
  • both the user apparatus 100 and the base station 200 in an embodiment of the present invention may function as a computer that performs processing according to the present embodiment.
  • FIG. 11 is a diagram illustrating an example of a hardware configuration of the user apparatus 100 and the base station 200 according to the present embodiment.
  • Each of the above-described user apparatus 100 and base station 200 may be physically configured as a computer apparatus including a processor 1001, a memory 1002, a storage 1003, a communication apparatus 1004, an input apparatus 1005, an output apparatus 1006, a bus 1007, and the like. Good.
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the hardware configurations of the user apparatus 100 and the base station 200 may be configured to include one or a plurality of apparatuses indicated by 1001 to 1006 shown in the figure, or may be configured not to include some apparatuses. May be.
  • Each function in the user apparatus 100 and the base station 200 is performed by causing the processor 1001 to perform calculation by reading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, communication by the communication apparatus 1004, and memory 1002. This is realized by controlling reading and / or writing of data in the storage 1003.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the processor 1001 reads a program (program code), software module, or data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
  • a program program that causes a computer to execute at least a part of the operations described in the above embodiments is used.
  • the transmission unit 110, the reception unit 120, the control unit 130, and the storage unit 140 of the user device 100 illustrated in FIG. 2 may be realized by a control program stored in the memory 1002 and operating on the processor 1001.
  • the information transmission unit 210 and the connection control unit 220 of the base station 200 illustrated in FIG. 3 may be realized by a control program stored in the memory 1002 and operating on the processor 1001.
  • processor 1001 may be executed simultaneously or sequentially by two or more processors 1001.
  • the processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunication line.
  • the memory 1002 is a computer-readable recording medium, and includes, for example, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), and the like. May be.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, and the like that can be executed to perform the processing according to the embodiment of the present invention.
  • the storage 1003 is a computer-readable recording medium such as an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu-ray). (Registered trademark) disk, smart card, flash memory (for example, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • the storage 1003 may be called an auxiliary storage device.
  • the storage medium described above may be, for example, a database, server, or other suitable medium including the memory 1002 and / or the storage 1003.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
  • the transmission unit 110 and the reception unit 120 of the user device 100 may be realized by the communication device 1004.
  • the information transmission unit 210 of the base station 200 may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured with a single bus or may be configured with different buses between apparatuses.
  • the user apparatus 100 and the base station 200 are respectively a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a programmable logic device (FPD), an ASIC (Application Logic Integrated Circuit), a PLD (Programmable Logic Device), an AFP It may be configured including hardware, and a part or all of each functional block may be realized by the hardware.
  • the processor 1001 may be implemented by at least one of these hardware.
  • the operations of a plurality of functional units may be physically performed by one component, or the operations of one functional unit may be physically performed by a plurality of components.
  • the processing order may be changed as long as there is no contradiction.
  • the user apparatus 100 and the base station 200 have been described using functional block diagrams, but such an apparatus may be realized by hardware, software, or a combination thereof.
  • the software operated by the processor of the user apparatus 100 according to the embodiment of the present invention and the software operated by the processor of the base station 200 according to the embodiment of the present invention are random access memory (RAM), flash memory, and read-only, respectively. It may be stored in any appropriate storage medium such as a memory (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server or the like.
  • the notification of information is not limited to the aspect / embodiment described in the present specification, and may be performed by other methods.
  • the notification of information includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (MediumCong) It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof, and RRC signaling may be referred to as an RRC message, for example, RRC Connection setup (RRC Con ection Setup) message, RRC connection reconfiguration (it may be a RRC Connection Reconfiguration) message.
  • RRC message for example, RRC Connection setup (RRC Con ection Setup) message, RRC connection reconfiguration (it may be a RRC Connection Reconfiguration) message.
  • Each aspect / embodiment described in this specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Fure Radio Access), and W-CDMA.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 5G
  • FRA Full Radio Access
  • W-CDMA Wideband
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB User Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • IEEE 802.20 UWB (Ultra-WideBand
  • the present invention may be applied to a Bluetooth (registered trademark), a system using another appropriate system, and / or a next generation system extended based on the system.
  • the specific operation assumed to be performed by the base station 200 in this specification may be performed by the upper node (upper node) in some cases.
  • various operations performed for communication with the user apparatus 100 may be performed by the base station 200 and / or other than the base station 200.
  • a network node for example, but not limited to MME or S-GW.
  • MME and S-GW network nodes
  • User equipment 100 can be used by those skilled in the art to a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, It may also be referred to as a wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other appropriate terminology.
  • Base station 200 may also be referred to by those skilled in the art as NB (Node B), eNB (enhanced Node B), base station (Base Station), gNB, or some other appropriate terminology.
  • NB Node B
  • eNB enhanced Node B
  • Base Station Base Station
  • gNB Base Station
  • determining may encompass a wide variety of actions.
  • “Judgment” and “determination” are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (investigation), investigation (investigating), search (loking up) (for example, table , Searching in a database or another data structure), considering ascertaining “determining”, “determining”, and the like.
  • “determination” and “determination” are reception (for example, receiving information), transmission (for example, transmitting information), input (input), output (output), and access. (Accessing) (for example, accessing data in a memory) may be considered as “determining” or “determining”.
  • determination and “determination” means that “resolving”, selection (selecting), selection (choosing), establishment (establishing), comparison (comparing), etc. are regarded as “determination” and “determination”. May be included. In other words, “determination” and “determination” may include considering some operation as “determination” and “determination”.
  • the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A user device having: a transmission unit that supports a first power class in a given frequency band; a reception unit for receiving a wireless signal transmitted by a base station; and a control unit that, when the reception unit has received a wireless signal including information that indicates a condition for a specific absorption rate to be satisfied by the user device in a frequency band having a second power class lower than the first power class as a default power class, determines the maximum transmitted power of the transmission unit so as to satisfy the specific absorption rate to be satisfied by the user device.

Description

ユーザ装置及び基地局User equipment and base station
 本発明は、ユーザ装置及び基地局に関する。 The present invention relates to a user apparatus and a base station.
 3GPP(Third Generation Partnership Project)において、デフォルトで規定されている電力クラスより、最大送信電力が高い電力クラスをサポートするユーザ装置における送信電力の制御方法に関する仕様化が進められている(例えば、非特許文献1参照)。 In 3GPP (Third Generation Partnership Project), specifications regarding a transmission power control method in a user apparatus that supports a power class having a higher maximum transmission power than the power class defined by default are being promoted (for example, non-patent) Reference 1).
 非特許文献1に開示された技術では、周波数帯がTDD(Time Division Duplex)帯域であり、無線フレーム内の50%以上のスロットがアップリンクの送信である場合、ユーザ装置は、最大送信電力がより高い高電力クラスを利用することができない。 In the technology disclosed in Non-Patent Document 1, when a frequency band is a TDD (Time Division Division Duplex) band and 50% or more slots in a radio frame are uplink transmissions, the user apparatus has a maximum transmission power. A higher high power class cannot be used.
 しかし、実際には、周波数帯がTDD帯域であり、無線フレーム内の50%以上のスロットがアップリンクの送信である場合であっても、例えば、周波数帯、ユーザ装置の比吸収率、国、地域等によって、高電力クラスが利用できる可能性がある。 However, actually, even when the frequency band is a TDD band and 50% or more slots in the radio frame are uplink transmissions, for example, the frequency band, the specific absorption rate of the user equipment, the country, High power class may be available depending on the region.
 このように、従来の技術では、ユーザ装置がサポートする高電力クラスより低いデフォルトの電力クラスを有する周波数帯において、ユーザ装置がサポートする高電力クラスを効率的に利用できない場合がある。 As described above, in the conventional technology, there is a case where the high power class supported by the user apparatus cannot be efficiently used in a frequency band having a default power class lower than the high power class supported by the user apparatus.
 本発明の実施形態は、上記の問題点に鑑みてなされたものであって、ユーザ装置がサポートする高電力クラスより低いデフォルトの電力クラスを有する周波数帯において、ユーザ装置がサポートする高電力クラスをより効率的に利用できるようにする。 Embodiments of the present invention have been made in view of the above problems, and in a frequency band having a default power class lower than the high power class supported by the user apparatus, the high power class supported by the user apparatus is determined. Make it available more efficiently.
 上記課題を解決するため、本発明の一態様に係るユーザ装置は、ある周波数帯において第1の電力クラスをサポートする送信部と、基地局が送信する無線信号を受信する受信部と、前記第1の電力クラスより低い第2の電力クラスをデフォルトの電力クラスとして有する前記周波数帯において、前記受信部が、ユーザ装置が満たすべき比吸収率の条件を示す情報を含む前記無線信号を受信した場合、前記ユーザ装置が満たすべき比吸収率の条件を満たすように前記送信部の最大送信電力を決定する制御部と、を有する。 In order to solve the above problem, a user apparatus according to an aspect of the present invention includes a transmission unit that supports a first power class in a certain frequency band, a reception unit that receives a radio signal transmitted by a base station, and In the frequency band having a second power class lower than one power class as a default power class, the receiving unit receives the radio signal including information indicating a specific absorption rate condition to be satisfied by the user apparatus And a control unit that determines a maximum transmission power of the transmission unit so as to satisfy a specific absorption rate that should be satisfied by the user apparatus.
 本発明の実施形態によれば、ユーザ装置がサポートする高電力クラスより低いデフォルトの電力クラスを有する周波数帯において、ユーザ装置がサポートする高電力クラスをより効率的に利用できるようになる。 According to the embodiment of the present invention, the high power class supported by the user apparatus can be used more efficiently in a frequency band having a default power class lower than the high power class supported by the user apparatus.
一実施例による無線通信システムを示す概略図である。1 is a schematic diagram illustrating a wireless communication system according to one embodiment. 一実施例によるユーザ装置の機能構成を示すブロック図である。It is a block diagram which shows the function structure of the user apparatus by one Example. 一実施例による基地局の機能構成を示すブロック図である。It is a block diagram which shows the function structure of the base station by one Example. 一実施例による最大送信電力の決定処理の例を示すフローチャートである。It is a flowchart which shows the example of the determination process of the maximum transmission power by one Example. 一実施例によるRequiredSARについて説明するための図である。It is a figure for demonstrating RequiredSAR by one Example. 一実施例によるイニシャルアクセス処理の例を示すシーケンス図である。It is a sequence diagram which shows the example of the initial access process by one Example. 一実施例によるハンドオーバ処理の例を示すシーケンス図である。It is a sequence diagram which shows the example of the hand-over process by one Example. 一実施例による仕様変更の例(1)を示す図である。It is a figure which shows the example (1) of the specification change by one Example. 一実施例による仕様変更の例(2)を示す図である。It is a figure which shows the example (2) of the specification change by one Example. 一実施例による仕様変更の例(3)を示す図である。It is a figure which shows the example (3) of the specification change by one Example. 一実施例によるユーザ装置及び基地局のハードウェア構成を示すブロック図である。It is a block diagram which shows the hardware constitutions of the user apparatus and base station by one Example.
 以下、図面に基づいて本発明の実施の形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 <システム構成>
 初めに、図1を参照して、本発明の一実施例による無線通信システムを説明する。図1は、本発明の一実施例による無線通信システムを示す概略図である。図1に示されるように、無線通信システム10は、ユーザ装置100及び基地局200を有する。
<System configuration>
First, a radio communication system according to an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic diagram illustrating a wireless communication system according to an embodiment of the present invention. As illustrated in FIG. 1, the wireless communication system 10 includes a user device 100 and a base station 200.
 無線通信システム10は、典型的には、LTEシステム、LTE-Advancedシステム又は5Gシステムなどの3GPP(Third Generation Partnership Project)による規格に準拠した無線通信システムであってもよい。しかしながら、本発明による無線通信システム10は、これに限定されず、例えば、UMTS(Universal Mobile Telecommunications System))、UMTS enhancementであってもよいし、LTE single-cluster、LTE multi-cluster、UL inter-band CA、UL intra-band contiguous CA、UL intra-band non-contiguous CA、Dual ConnectivityなどのLTEシステムのバリエーションであってもよい。また、図示された実施例では、1つの基地局200しか示されていないが、無線通信システム10のサービスエリアをカバーするよう多数の基地局200が配置される。 The wireless communication system 10 may typically be a wireless communication system compliant with a standard by 3GPP (Third Generation Partnership Project) such as LTE system, LTE-Advanced system, or 5G system. However, the radio communication system 10 according to the present invention is not limited to this, and may be, for example, UMTS (Universal Mobile Telecommunications System), UMTS enhancement, LTE single-cluster, LTE multi-cluster, UL inter- It may be a variation of the LTE system, such as band CA, UL intra-band contiguous CA, UL intra-band non-continuous CA, Dual Connectivity. In the illustrated embodiment, only one base station 200 is shown, but a number of base stations 200 are arranged to cover the service area of the wireless communication system 10.
 ユーザ装置100は、LTE、LTE-Advanced及び/又は5Gなどの3GPP規格に従って、基地局200により提供されるセル又は周波数帯を介し基地局200と無線通信を実行する。典型的には、ユーザ装置100は、図示されるように、スマートフォン、携帯電話、タブレット、モバイルルータ、ウェアラブル端末などの無線通信機能を備えた、いずれか適切な情報処理装置であってもよい。 The user apparatus 100 performs wireless communication with the base station 200 via a cell or a frequency band provided by the base station 200 according to 3GPP standards such as LTE, LTE-Advanced and / or 5G. Typically, the user apparatus 100 may be any appropriate information processing apparatus having a wireless communication function such as a smartphone, a mobile phone, a tablet, a mobile router, and a wearable terminal as illustrated.
 基地局200は、LTE、LTE-Advanced及び/又は5Gなどの3GPP規格に従って、セル又は周波数帯を介しユーザ装置100と無線接続することによって、コアネットワーク(図示せず)上に通信接続された上位局及び/又はサーバから受信したダウンリンク(DL)パケットをユーザ装置100に送信すると共に、ユーザ装置100から受信したアップリンク(UL)パケットをサーバに送信する。 The base station 200 is wirelessly connected to the user apparatus 100 via a cell or a frequency band according to 3GPP standards such as LTE, LTE-Advanced and / or 5G, and is connected to a higher level connected to a core network (not shown). The downlink (DL) packet received from the station and / or the server is transmitted to the user apparatus 100, and the uplink (UL) packet received from the user apparatus 100 is transmitted to the server.
 上記の構成において、基地局200は、ユーザ装置100がサポートする高電力クラス(以下、第1の電力クラスと呼ぶ)より低い電力クラス(以下、第2の電力クラスと呼ぶ)をデフォルトの電力クラスとして有する周波数帯において、システム情報を送信する。また、基地局200が送信するシステム情報には、当該周波数帯に適用される最大送信電力を示す情報である「P-Max」と、ユーザ装置が満たすべき比吸収率(SAR)の条件を示す情報である「RequiredSAR」とが含まれる。 In the above configuration, the base station 200 sets a power class (hereinafter referred to as a second power class) lower than a high power class (hereinafter referred to as a first power class) supported by the user apparatus 100 as a default power class. System information is transmitted in the frequency band possessed as Further, the system information transmitted by the base station 200 indicates “P-Max”, which is information indicating the maximum transmission power applied to the frequency band, and a specific absorption rate (SAR) condition to be satisfied by the user apparatus. Information “Required SAR” is included.
 比吸収率(SAR: Specific Absorption Rate)は、人体が電波にさらされることによって単位質量の組織に単位時間に吸収されるエネルギー量である。ユーザ装置100に関する比吸収率(以下、SARと呼ぶ)の基準は、例えば、局所SARが用いられ、その基準値が規定されている。 Specific Absorption Rate (SAR) is the amount of energy absorbed per unit time by a tissue of unit mass when a human body is exposed to radio waves. As a standard of the specific absorption rate (hereinafter referred to as SAR) regarding the user apparatus 100, for example, a local SAR is used, and the standard value is defined.
 ユーザ装置100は、基地局200から、前述したP-Maxと、RequiredSARとを含むシステム情報を受信した場合、基地局200にアクセスする際に、RequiredSARで示されるSARの条件を満たすように最大送信電力を決定する。 When receiving the system information including the above-described P-Max and Required SAR from the base station 200, the user apparatus 100 performs maximum transmission so as to satisfy the SAR conditions indicated by the Required SAR when accessing the base station 200. Determine the power.
 例えば、ユーザ装置100は、第1の電力クラスの最大送信電力を示すP-Maxと、ユーザ装置が満たすべきSARの条件を示すRequiredSARを含むシステム情報を、基地局200から受信しているものとする。また、ユーザ装置100は、ユーザ装置100が有する周波数帯毎のSARの特性(能力)を、例えば、端末能力情報の一部として、記憶部に予め記憶しているものとする。 For example, the user apparatus 100 receives from the base station 200 system information including P-Max indicating the maximum transmission power of the first power class and Required SAR indicating the SAR conditions to be satisfied by the user apparatus. To do. In addition, it is assumed that the user device 100 stores the SAR characteristics (capability) for each frequency band of the user device 100 in advance in the storage unit as a part of the terminal capability information, for example.
 このとき、ユーザ装置100は、当該周波数帯におけるユーザ装置100のSARの特性が、受信したシステムに情報に含まれるRequiredSARが示すSARの条件を満たしているか否かを判断する。また、ユーザ装置100は、ユーザ装置100のSARの特性が、RequiredSARが示すSARの条件を満たしている場合、当該周波数帯における第1の電力クラスの送信規定に従って、第1の電力クラスの最大送信電力をユーザ装置100の最大送信電力に決定する。 At this time, the user apparatus 100 determines whether or not the SAR characteristic of the user apparatus 100 in the frequency band satisfies the SAR condition indicated by the Required SAR included in the information in the received system. Further, when the SAR characteristic of the user apparatus 100 satisfies the SAR condition indicated by the Required SAR, the user apparatus 100 performs the maximum transmission of the first power class according to the transmission regulations of the first power class in the frequency band. The power is determined as the maximum transmission power of the user apparatus 100.
 一方、ユーザ装置100は、ユーザ装置100のSARの特性が、RequiredSARが示す条件を満たしていない場合、当該周波数帯におけるデフォルトの電力クラスの送信規定に従って、デフォルトの電力クラスの最大送信電力をユーザ装置100の最大送信電力に決定する。 On the other hand, when the SAR characteristic of the user apparatus 100 does not satisfy the condition indicated by the Required SAR, the user apparatus 100 sets the maximum transmission power of the default power class according to the transmission rule of the default power class in the frequency band. A maximum transmission power of 100 is determined.
 また、ユーザ装置100は、受信したシステム情報に、第1の電力クラスの最大送信電力を示すP-Maxが含まれ、RequiredSARが含まれない場合、当該周波数帯における第1の電力クラスの送信規定に従って、第1の電力クラスの最大送信電力をユーザ装置100の最大送信電力に決定する。 In addition, when the received system information includes P-Max indicating the maximum transmission power of the first power class and does not include Required SAR, the user apparatus 100 defines transmission specifications for the first power class in the frequency band. Accordingly, the maximum transmission power of the first power class is determined as the maximum transmission power of the user apparatus 100.
 なお、当該周波数帯の電力クラス毎の送信規定には、例えば、隣接チャネル漏洩電力比(ACLR:Adjacent Channel Leakage Ratio)、隣接チャネル感度(ACS:Adjacent Channel Selectivity)、参照感度パワーレベル(REFSENS:Reference Sensitivity Power Level)、スペクトラムエミッションマスク(SEM:Spectrum Emission Mask)、最大電力低減値(MPR:Maximum Power Reduction)、最大送信電力等が含まれる(非特許文献1)。 The transmission regulations for each power class of the frequency band include, for example, adjacent channel leakage power ratio (ACLR: AdjacentjaChannel Ratio), adjacent channel sensitivity (ACS: Adjacent Channel Selectivity), and reference sensitivity power level (REFSENS: Reference). Sensitivity (Power Level), spectrum emission mask (SEM: Spectrum Emission Mask), maximum power reduction value (MPR: Maximum Power Reduction), maximum transmission power, etc. are included (Non-patent Document 1).
 上記の処理により、ユーザ装置100は、例えば、当該周波数帯がTDD帯域であり、無線フレーム内の50%以上のスロットがアップリンクの送信である場合であっても、RequiredSARの条件を満たせば、第1の電力クラスを利用することができる。 With the above processing, for example, the user apparatus 100 can satisfy the requirement for Required SAR even when the frequency band is a TDD band and 50% or more slots in a radio frame are uplink transmissions. A first power class can be utilized.
 したがって、本実施形態によれば、ユーザ装置100がサポートする高電力クラスより低いデフォルトの電力クラスを有する周波数帯において、ユーザ装置100がサポートする高電力クラスをより効率的に利用できるようになる。 Therefore, according to the present embodiment, the high power class supported by the user apparatus 100 can be used more efficiently in a frequency band having a default power class lower than the high power class supported by the user apparatus 100.
 <機能構成>
 続いて、本発明の一実施例によるユーザ装置100、及び基地局200の機能構成について説明する。
<Functional configuration>
Subsequently, functional configurations of the user apparatus 100 and the base station 200 according to an embodiment of the present invention will be described.
 (ユーザ装置の機能構成)
 図2は、本発明の一実施例によるユーザ装置の機能構成を示すブロック図である。図2に示されるように、ユーザ装置100は、送信部110、受信部120、制御部130、及び記憶部140等を有する。
(Functional configuration of user equipment)
FIG. 2 is a block diagram illustrating a functional configuration of a user apparatus according to an embodiment of the present invention. As illustrated in FIG. 2, the user device 100 includes a transmission unit 110, a reception unit 120, a control unit 130, a storage unit 140, and the like.
 送信部110は、基地局200に無線信号を送信する。例えば、送信部110は、基地局200にアップリンク制御チャネル、アップリンクデータチャネルなどの各種無線信号を送信する。また、送信部110は、ある周波数帯において、デフォルトの電力クラス(第2の電力クラス)より最大送信電力が大きい第1の電力クラスをサポートしている。 The transmission unit 110 transmits a radio signal to the base station 200. For example, the transmission unit 110 transmits various radio signals such as an uplink control channel and an uplink data channel to the base station 200. In addition, the transmission unit 110 supports a first power class having a maximum transmission power larger than a default power class (second power class) in a certain frequency band.
 受信部120は、基地局200が送信する無線信号を受信する。例えば、受信部120は、基地局200が送信するダウンリンク制御チャネル、ダウンリンクデータチャネルなどの各種無線信号を受信する。 The receiving unit 120 receives a radio signal transmitted from the base station 200. For example, the receiving unit 120 receives various radio signals such as a downlink control channel and a downlink data channel transmitted from the base station 200.
 制御部130は、前述した第1の電力クラスをサポートしている周波数帯において、基地局200から、前述したP-Maxと、RequiredSARとを含むシステム情報を受信した場合、RequiredSARで示されるSARの条件を満たすように、送信部110の最大送信電力を決定する。 When the control unit 130 receives system information including the above-described P-Max and Required SAR from the base station 200 in the frequency band supporting the above-described first power class, the control unit 130 indicates the SAR indicated by Required SAR. The maximum transmission power of the transmission unit 110 is determined so as to satisfy the condition.
 例えば、受信部120が、第1の電力クラスより低い第2の電力クラスをデフォルトの電力クラスとして有する周波数帯において、第1の電力クラスの最大送信電力を示すP-Maxと、RequiredSARを含むシステム情報を受信しているものとする。 For example, in a frequency band in which the receiving unit 120 has a second power class lower than the first power class as a default power class, a system including P-Max indicating the maximum transmission power of the first power class and RequiredSAR Assume that information is received.
 このとき、制御部130は、記憶部140に予め記憶した、当該周波数帯におけるユーザ装置100のSAR特性が、RequiredSARが示す条件を満たしているか否かを判断する。また、制御部130は、ユーザ装置100のSAR特性が、RequiredSARが示すSARの条件を満たしている場合、当該周波数帯における第1の電力クラスの送信規定に従って第1の電力クラスの最大送信電力をユーザ装置100の最大送信電力に決定する。 At this time, the control unit 130 determines whether or not the SAR characteristics of the user apparatus 100 in the frequency band stored in advance in the storage unit 140 satisfy the condition indicated by the Required SAR. In addition, when the SAR characteristic of the user apparatus 100 satisfies the SAR condition indicated by the Required SAR, the control unit 130 increases the maximum transmission power of the first power class according to the transmission rule of the first power class in the frequency band. The maximum transmission power of the user apparatus 100 is determined.
 一方、制御部130は、ユーザ装置100のSAR特性が、RequiredSARが示すSARの条件を満たしていない場合、当該周波数帯におけるデフォルトの電力クラスの送信規定に従ってデフォルトの電力クラスの最大送信電力をユーザ装置100の最大送信電力に決定する。 On the other hand, when the SAR characteristic of the user apparatus 100 does not satisfy the SAR conditions indicated by the Required SAR, the control unit 130 determines the maximum transmission power of the default power class according to the transmission rule of the default power class in the frequency band. A maximum transmission power of 100 is determined.
 また、制御部130は、受信したシステム情報に、第1の電力クラスの最大送信電力を示すP-Maxが含まれ、RequiredSARが含まれない場合、当該周波数帯における第1の電力クラスの送信規定に従って、第1の電力クラスの最大送信電力をユーザ装置100の最大送信電力に決定する。なお、制御部130の具体的な処理の例については、以降においてより詳細に説明する。 In addition, when the received system information includes P-Max indicating the maximum transmission power of the first power class and does not include Required SAR, the control unit 130 defines transmission specifications for the first power class in the frequency band. Accordingly, the maximum transmission power of the first power class is determined as the maximum transmission power of the user apparatus 100. An example of a specific process performed by the control unit 130 will be described in detail later.
 記憶部140は、例えば、ユーザ装置100が各周波数帯においてサポートしている電力クラス、各周波数帯におけるSARの特性等の情報を予め記憶している。 The storage unit 140 stores in advance information such as the power class supported by the user apparatus 100 in each frequency band, the SAR characteristics in each frequency band, and the like.
 (基地局の機能構成)
 図3は、本発明の一実施例による基地局の機能構成を示すブロック図である。図3に示されるように、基地局200は、情報送信部210及び接続制御部220等を有する。
(Functional configuration of base station)
FIG. 3 is a block diagram showing a functional configuration of the base station according to one embodiment of the present invention. As illustrated in FIG. 3, the base station 200 includes an information transmission unit 210, a connection control unit 220, and the like.
 情報送信部210は、例えば、システム情報を送信する。このシステム情報は、例えば、基地局200により提供される周波数帯において適用される最大送信電力を示す情報であるP-Max、ユーザ装置100が満たすべきSARの条件を示す情報であるRequiredSARなどを含む。例えば、情報送信部210は、当該周波数帯において適用されるP-Max、及びRequiredSARの値をSystemInformationBlockType1(以下、SIB1と呼ぶ)により定期的にブロードキャスト送信する。 The information transmission unit 210 transmits system information, for example. This system information includes, for example, P-Max, which is information indicating the maximum transmission power applied in the frequency band provided by the base station 200, Required SAR, which is information indicating the SAR conditions that the user apparatus 100 should satisfy. . For example, the information transmission unit 210 periodically broadcasts P-Max and RequiredSAR values applied in the frequency band using SystemInformationBlockType1 (hereinafter referred to as SIB1).
 接続制御部220は、ユーザ装置100との無線接続を制御する。例えば、ユーザ装置100からRAプリアンブルを受信すると、接続制御部220は、RAレスポンスをユーザ装置100に送信し、ユーザ装置100との無線接続又はRRC connectionを確立する。無線接続の確立後、接続制御部220は、モビリティ制御などユーザ装置100との無線接続を管理すると共に、当該周波数帯において適用されるP-Max、RequiredSARなどの情報を個別シグナリングによりユーザ装置100に通知する。 The connection control unit 220 controls wireless connection with the user device 100. For example, when the RA preamble is received from the user apparatus 100, the connection control unit 220 transmits an RA response to the user apparatus 100 and establishes a wireless connection or RRC connection with the user apparatus 100. After establishing the wireless connection, the connection control unit 220 manages the wireless connection with the user apparatus 100 such as mobility control, and also transmits information such as P-Max and Required SAR applied in the frequency band to the user apparatus 100 by individual signaling. Notice.
 <処理の流れ>
 続いて、本発明の一実施例による処理の流れについて説明する。前述したように、ユーザ装置100は、基地局200から通知された最大送信電力(P-Max)及びユーザ装置100が満たすべきSARの条件(RequiredSAR)に従って、基地局200にアクセスする際の送信電力を制御する。
<Process flow>
Next, the flow of processing according to an embodiment of the present invention will be described. As described above, the user apparatus 100 transmits the transmission power when accessing the base station 200 according to the maximum transmission power (P-Max) notified from the base station 200 and the SAR conditions (Required SAR) that the user apparatus 100 should satisfy. To control.
 初めに、図4を用いて、ユーザ装置100による最大送信電力の決定処理について説明する。 First, the determination process of the maximum transmission power by the user apparatus 100 will be described with reference to FIG.
 (最大送信電力の決定処理)
 図4は、一実施例による最大送信電力の決定処理の例を示すフローチャートである。この処理は、ユーザ装置100がサポートする第1の電力クラスより低い第2の電力クラスをデフォルトの電力クラスとして有する周波数帯において、ユーザ装置100が実行する最大送信電力の決定処理の一例を示している。この処理は、例えば、ユーザ装置100がアイドル状態から接続状態に遷移するとき、又はハンドオーバを行うとき等に実行される。
(Maximum transmission power determination process)
FIG. 4 is a flowchart illustrating an example of the maximum transmission power determination process according to an embodiment. This process shows an example of the maximum transmission power determination process executed by the user apparatus 100 in the frequency band having the second power class lower than the first power class supported by the user apparatus 100 as the default power class. Yes. This process is executed, for example, when the user apparatus 100 transitions from the idle state to the connected state, or when a handover is performed.
 ステップS1において、ユーザ装置100の制御部130は、基地局200からP-Maxが提供されているか否かを判断する。例えば、制御部130は、受信部120が受信したシステム情報(SIB1)、又はハンドオーバ指示等にP-MAXが含まれている場合、基地局200からP-Maxが提供されていると判断する。 In step S1, the control unit 130 of the user apparatus 100 determines whether or not P-Max is provided from the base station 200. For example, the control unit 130 determines that the P-Max is provided from the base station 200 when the system information (SIB1) received by the receiving unit 120 or the P-MAX is included in the handover instruction or the like.
 基地局200からP-Maxが提供されている場合、制御部130は、処理をステップS3に移行させる。一方、基地局200からP-Maxが提供されていない場合、処理をステップS2に移行させる。 When P-Max is provided from the base station 200, the control unit 130 shifts the process to step S3. On the other hand, if P-Max is not provided from the base station 200, the process proceeds to step S2.
 ステップS2に移行すると、ユーザ装置100の制御部130は、当該周波数帯におけるデフォルトの電力クラスの最大送信電力を、ユーザ装置100の最大送信電力に決定する。 When the process proceeds to step S2, the control unit 130 of the user apparatus 100 determines the maximum transmission power of the default power class in the frequency band as the maximum transmission power of the user apparatus 100.
 ステップS3に移行すると、ユーザ装置100の制御部130は、提供されているP-Maxが、デフォルトの電力クラスの最大送信電力より高い値に設定されているか否かを判断する。 In step S3, the control unit 130 of the user apparatus 100 determines whether or not the provided P-Max is set to a value higher than the maximum transmission power of the default power class.
 P-Maxがデフォルトの電力クラスの最大送信電力より高い値に設定されている場合、制御部130は、処理をステップS4に移行させる。一方、P-Maxがデフォルトの電力クラスの最大送信電力より高い値に設定されていない場合、制御部130は、処理をステップS2に移行させる。 When P-Max is set to a value higher than the maximum transmission power of the default power class, the control unit 130 shifts the process to step S4. On the other hand, when P-Max is not set to a value higher than the maximum transmission power of the default power class, the control unit 130 shifts the process to step S2.
 ステップS4に移行すると、ユーザ装置100の制御部130は、基地局200からRequiredSARが提供されているか否かを判断する。例えば、制御部130は、受信部120が受信したシステム情報(SIB1)、又はハンドオーバ指示等にRequiredSARが含まれている場合、基地局200からRequiredSARが提供されていると判断する。 When the process proceeds to step S4, the control unit 130 of the user apparatus 100 determines whether or not the Required SAR is provided from the base station 200. For example, the control unit 130 determines that the required SAR is provided from the base station 200 when the required SAR is included in the system information (SIB1) received by the receiving unit 120, the handover instruction, or the like.
 なお、RequiredSARは、一例として、図5に示すように、インデックス(Index in IE RequiredSAR)で表される。 As an example, RequiredSAR is represented by an index (Index in IE RequiredSAR) as shown in FIG.
 図5は、一実施例によるRequiredSARについて説明するための図である。図5の例では、バンドXにおけるRequiredSARにインデックス「1」が指定されている場合、ユーザ装置100が満たすべきSARの条件は、「60% for 1.6W/kg」であることが示されている。一方、バンドXにおけるRequiredSARにインデックス「2」が指定されている場合、ユーザ装置100が満たすべきSARの条件は、「80% for 1.6W/kg」であることが示されている。このように、本実施形態では、同じ周波数帯(例えば、バンドX)であっても、ユーザ装置100に、異なるRequiredSARを通知することができる。これにより、例えば、国、地域等に応じて、互いに異なる基準で最大送信電力を制御することができる。 FIG. 5 is a diagram for explaining RequiredSAR according to an embodiment. In the example of FIG. 5, when the index “1” is specified for the Required SAR in the band X, it is indicated that the SAR condition to be satisfied by the user apparatus 100 is “60% for 1.6 W / kg”. Yes. On the other hand, when the index “2” is specified for the Required SAR in the band X, it is indicated that the SAR condition to be satisfied by the user apparatus 100 is “80% for 1.6 W / kg”. Thus, in the present embodiment, different required SARs can be notified to the user apparatus 100 even in the same frequency band (for example, band X). Thereby, for example, the maximum transmission power can be controlled based on different standards depending on the country, the region, and the like.
 例えば、バンドXがTDD帯域であり、ある地域Aにおいて無線フレーム内の60%のスロットがアップリンクで運用されている場合、非特許文献1に開示された技術では、ユーザ装置100は第1の電力クラスを利用することができない。 For example, when band X is a TDD band and 60% of slots in a radio frame are operated in uplink in a certain area A, the technology disclosed in Non-Patent Document 1 uses the user apparatus 100 as the first The power class cannot be used.
 一方、本実施形態では、地域Aにおいて、バンドXにおけるRequiredSARにインデックス「1」が指定され、ユーザ装置100が「60% for 1.6W/kg」以上のSAR特性を有している場合、ユーザ装置100は、第1の電力クラスを利用することができる。 On the other hand, in this embodiment, when the index “1” is specified for the Required SAR in the band X in the region A and the user apparatus 100 has the SAR characteristic of “60% for 1.6 W / kg” or more, the user The apparatus 100 can utilize the first power class.
 また、図5の例では、バンドYにおけるRequiredSARにインデックス「1」が指定されている場合、ユーザ装置100が満たすべきSARの条件は、「80% for 2W/kg」であることが示されている。このように、本実施形態では、ユーザ装置100に、周波数帯毎に異なるRequiredSARを通知することができる。 Further, in the example of FIG. 5, when the index “1” is specified in the Required SAR in the band Y, the SAR condition that the user apparatus 100 should satisfy is “80% for 2 W / kg”. Yes. As described above, in the present embodiment, it is possible to notify the user apparatus 100 of a different required SAR for each frequency band.
 ここで、図4に戻り、フローチャートの説明を続ける。 Here, it returns to FIG. 4 and continues description of a flowchart.
 ステップS4において、基地局200からRequiredSARが提供されている場合、ユーザ装置100の制御部130は、処理をステップS5に移行させる。一方、基地局200からRequiredSARが提供されていない場合、ユーザ装置100の制御部130は、処理をステップS6に移行させる。 In step S4, when Required SAR is provided from the base station 200, the control unit 130 of the user apparatus 100 shifts the processing to step S5. On the other hand, when the Required SAR is not provided from the base station 200, the control unit 130 of the user apparatus 100 shifts the process to step S6.
 ステップS5に移行すると、ユーザ装置100の制御部130は、当該周波数帯におけるユーザ装置100のSARの特性が、基地局200から提供されているRequiredSARが示すSARの条件を満たしているか否かを判断する。 When the process proceeds to step S5, the control unit 130 of the user apparatus 100 determines whether the SAR characteristics of the user apparatus 100 in the frequency band satisfy the SAR condition indicated by the Required SAR provided from the base station 200. To do.
 前述したように、ユーザ装置100の記憶部140には、ユーザ装置100の各周波数帯におけるSARの特性が予め記憶されている。したがって、制御部130は、当該周波数帯に対応するユーザ装置100のSAR特性を記憶部140から取得し、RequiredSARが示すSARの条件と比較することにより、RequiredSARが示すSARの条件を満たしているか否かを判断できる。 As described above, the storage unit 140 of the user device 100 stores the SAR characteristics in each frequency band of the user device 100 in advance. Therefore, the control unit 130 acquires, from the storage unit 140, the SAR characteristic of the user apparatus 100 corresponding to the frequency band, and compares the SAR condition indicated by the Required SAR with the SAR condition indicated by the Required SAR. Can be determined.
 ユーザ装置100のSARの特性が、基地局200から提供されているRequiredSARが示すSARの条件を満たしている場合、制御部130は、処理をステップS6に移行させる。一方、ユーザ装置100のSARの特性が、基地局200から提供されているRequiredSARが示すSARの条件を満たしていない場合、制御部130は、処理をステップS2に移行させる。 When the SAR characteristic of the user apparatus 100 satisfies the SAR condition indicated by the Required SAR provided from the base station 200, the control unit 130 shifts the process to step S6. On the other hand, when the SAR characteristic of the user apparatus 100 does not satisfy the SAR condition indicated by the Required SAR provided from the base station 200, the control unit 130 shifts the process to step S2.
 ステップS6に移行すると、ユーザ装置100の制御部130は、当該周波数帯における第1の電力クラスの最大送信電力を、ユーザ装置100の最大送信電力に決定する。 When the process proceeds to step S6, the control unit 130 of the user apparatus 100 determines the maximum transmission power of the first power class in the frequency band as the maximum transmission power of the user apparatus 100.
 上記の処理により、ユーザ装置100の制御部130は、基地局200から提供されるP-Maxと、RequiredSARとに従って、当該周波数帯における最大送信電力を決定することができる。 Through the above processing, the control unit 130 of the user apparatus 100 can determine the maximum transmission power in the frequency band according to the P-Max provided from the base station 200 and the Required SAR.
 また、ユーザ装置100は、当該周波数帯がTDD帯域であり、無線フレーム内の50%以上のスロットがアップリンクの送信である場合であっても、RequiredSARの条件を満たせば、第1の電力クラスを利用することができるようになる。 Further, even when the frequency band is the TDD band and 50% or more of the slots in the radio frame are uplink transmissions, the user apparatus 100 satisfies the requirement for Required SAR as long as the first power class is satisfied. Can be used.
 なお、図4に示す最大送信電力の決定処理は一例である。例えば、周波数帯がTDD帯域であり、無線フレーム内の50%以上のスロットがアップリンクの送信である場合、ステップS4において、RequiredSARが提供されていないとき、制御部130は、デフォルトの電力クラスの最大送信電力を、ユーザ装置100の最大送信電力に決定しても良い。 Note that the maximum transmission power determination process shown in FIG. 4 is an example. For example, when the frequency band is a TDD band and 50% or more slots in the radio frame are uplink transmissions, when the Required SAR is not provided in step S4, the control unit 130 sets the default power class. The maximum transmission power may be determined as the maximum transmission power of the user apparatus 100.
 (イニシャルアクセス処理)
 図6は、一実施例によるイニシャルアクセス処理の例を示すシーケンス図である。この処理は、例えば、ユーザ装置100が、アイドル状態から接続状態に遷移するとき等に実行される。
(Initial access processing)
FIG. 6 is a sequence diagram illustrating an example of initial access processing according to an embodiment. This process is executed, for example, when the user apparatus 100 transitions from the idle state to the connected state.
 ステップS101において、ユーザ装置100は、23dBmのPC3をデフォルト電力クラスとして有するバンドXにおいて26dBmのPC2をサポートしているものとする。ステップS102において、ユーザ装置100は、バンドXのセルへの在圏を試みる。 In step S101, it is assumed that the user apparatus 100 supports 26 dBm of PC2 in the band X having 23 dBm of PC3 as a default power class. In step S102, the user apparatus 100 tries to be in the band X cell.
 ステップS103において、ユーザ装置100の受信部120は、基地局200からブロードキャスト送信されたシステム情報であるSIB1(SystemInformationBlockType1)を受信する。このSIB1の情報要素(IE: Information Element)には、最大送信電力を示すP-Max、ユーザ装置100が満たすべきSARの条件を示すRequiredSAR等が含まれる。 In step S103, the receiving unit 120 of the user apparatus 100 receives SIB1 (SystemInformationBlockType1), which is system information broadcast from the base station 200. The information element (IE: IEInformation Element) of SIB1 includes P-Max indicating the maximum transmission power, Required SAR indicating the SAR conditions to be satisfied by the user apparatus 100, and the like.
 ステップS104において、ユーザ装置100の制御部130は、図4に示す最大送信電力の決定処理により、ユーザ装置100の最大送信電力を決定する。 In step S104, the control unit 130 of the user apparatus 100 determines the maximum transmission power of the user apparatus 100 by the maximum transmission power determination process illustrated in FIG.
 例えば、P-Maxがデフォルトの電力クラス(PC3)の最大送信電力より高いPC2の最大送信電力26dBmに設定され、ユーザ装置100のSAR特性がRequiredSARを満たしているものとする。この場合、ユーザ装置100制御部130は、PC2の最大送信電力26dBmを、ユーザ装置100の最大送信電力に決定する。 For example, it is assumed that P-Max is set to the maximum transmission power of 26 dBm of PC2 higher than the maximum transmission power of the default power class (PC3), and the SAR characteristics of the user apparatus 100 satisfy the Required SAR. In this case, the user apparatus 100 control unit 130 determines the maximum transmission power 26 dBm of the PC 2 as the maximum transmission power of the user apparatus 100.
 また、例えば、P-Maxがデフォルトの電力クラス(PC3)より高いPC2の最大送信電力26dBmに設定され、ユーザ装置100のSAR特性がRequiredSARを満たしていないものとする。この場合、制御部130は、デフォルトの電力クラス(PC3)の最大送信電力23dBmを、ユーザ装置100の最大送信電力に決定する。 Also, for example, it is assumed that P-Max is set to a maximum transmission power of 26 dBm of PC2 higher than the default power class (PC3), and the SAR characteristics of the user apparatus 100 do not satisfy the Required SAR. In this case, the control unit 130 determines the maximum transmission power 23 dBm of the default power class (PC3) as the maximum transmission power of the user apparatus 100.
 さらに、例えば、P-Maxがデフォルトの電力クラス(PC2)より高いPC3の最大送信電力26dBmに設定され、RequiredSARが提供されていない場合、制御部130は、PC2の最大送信電力26dBmを、ユーザ装置100の最大送信電力に決定する。 Further, for example, when P-Max is set to the maximum transmission power of 26 dBm of PC3 higher than the default power class (PC2) and the Required SAR is not provided, the control unit 130 sets the maximum transmission power of PC2 to 26 dBm. A maximum transmission power of 100 is determined.
 ステップS105において、ユーザ装置100の送信部110は、制御部130によって決定された電力クラスの送信規定と、最大送信電力とに従って、ランダムアクセスリクエスト(RA preamble)を基地局200に送信する。ステップS106において、基地局200は、当該RAリクエストに対してRAレスポンスを返信し、ステップS107において、ユーザ装置100とのRRC connectionを確立する。 In step S <b> 105, the transmission unit 110 of the user apparatus 100 transmits a random access request (RA preamble) to the base station 200 according to the power class transmission rule determined by the control unit 130 and the maximum transmission power. In step S106, the base station 200 returns an RA response to the RA request, and establishes an RRC connection with the user apparatus 100 in step S107.
 その後、ステップS108において、基地局200の接続制御部220は、ユーザ装置100に対して能力情報を要求するためUE capability Enquiryを送信する。ステップS109において、ユーザ装置100の制御部130は、送信部110を介して、ユーザ装置100の端末能力情報を示すUE capability Informationを、基地局200に通知する。このUE capability Informationには、例えば、バンドXにおいて、ユーザ装置100がサポートしている電力クラス、及びユーザ装置100が有するSAR特性等の情報が含まれる。 Thereafter, in step S108, the connection control unit 220 of the base station 200 transmits UE capability Enquiry to request capability information from the user apparatus 100. In step S <b> 109, the control unit 130 of the user apparatus 100 notifies the UE capability information indicating the terminal capability information of the user apparatus 100 to the base station 200 via the transmission unit 110. The UE capability information includes information such as the power class supported by the user apparatus 100 and the SAR characteristics of the user apparatus 100 in the band X, for example.
 なお、図4に示すイニシャルアクセス処理は一例である。例えば、図4のステップS103において、基地局200が送信するシステム情報(SIB1)には、1つのセルに対して、複数のRequiredSARが含まれていてもよい。 Note that the initial access process shown in FIG. 4 is an example. For example, in step S103 of FIG. 4, the system information (SIB1) transmitted by the base station 200 may include a plurality of Required SARs for one cell.
 好ましくは、システム情報(SIB1)に複数のRequiredSARが含まれる場合、複数のRequiredSARは、優先度が高い順に並べられる。 Preferably, when a plurality of Required SARs are included in the system information (SIB1), the plurality of Required SARs are arranged in descending order of priority.
 好ましくは、ユーザ装置100は、複数のRequiredSARを含むシステム情報を受信すると、ユーザ装置100が対応しているSAR条件の中から、優先度が最も高いRequiredSARが示すSAR条件を満たすように、最大送信電力を決定する。 Preferably, when the user apparatus 100 receives system information including a plurality of Required SARs, the maximum transmission is performed so as to satisfy the SAR condition indicated by the Required SAR having the highest priority among the SAR conditions supported by the user apparatus 100. Determine the power.
 (ハンドオーバ処理)
 図7は、一実施例によるハンドオーバ処理の例を示すシーケンス図である。この処理は、例えば、ユーザ装置100が、ハンドオーバを行うとき等に実行される。
(Handover processing)
FIG. 7 is a sequence diagram illustrating an example of a handover process according to an embodiment. This process is executed, for example, when the user apparatus 100 performs a handover.
 ステップS201において、ユーザ装置100は、23dBmのPC3をデフォルト電力クラスとして有するバンドXにおいて26dBmのPC2をサポートしているものとする。ステップS202において、ユーザ装置100は、ソース基地局(基地局A)のセル#1からターゲット基地局(基地局B)のセル#1へのハンドオーバ指示(RRCConnectionReconfiguration with mobilityControlInfo)を受信する。ここで、当該ハンドオーバ指示には、P-Max、RequiredSAR等が含まれる。 In step S201, it is assumed that the user apparatus 100 supports the PC2 of 26 dBm in the band X having the PC3 of 23 dBm as the default power class. In step S202, the user apparatus 100 receives a handover instruction (RRCConnectionReconfiguration with mobilityControlInfo) from the cell # 1 of the source base station (base station A) to the cell # 1 of the target base station (base station B). Here, the handover instruction includes P-Max, Required SAR, and the like.
 ステップS203において、ユーザ装置100の制御部130は、図4に示す最大送信電力の決定処理により、ユーザ装置100の最大送信電力を決定する。 In step S203, the control unit 130 of the user apparatus 100 determines the maximum transmission power of the user apparatus 100 by the maximum transmission power determination process illustrated in FIG.
 ステップS204において、ユーザ装置100の送信部110は、制御部130によって決定された電力クラスの送信規定と、最大送信電力とに従って、ランダムアクセスリクエスト(RA preamble)を基地局200に送信する。ステップS205において、基地局200は、当該RAリクエストに対してRAレスポンスを返信し、ステップS206において、ユーザ装置100は、基地局200とのRRC connectionの確立を示すハンドオーバ完了通知(RRCConnectionReconfigurationComplete)を送信する。 In step S <b> 204, the transmission unit 110 of the user apparatus 100 transmits a random access request (RA preamble) to the base station 200 in accordance with the power class transmission rule determined by the control unit 130 and the maximum transmission power. In step S205, the base station 200 returns an RA response to the RA request. In step S206, the user apparatus 100 transmits a handover completion notification (RRCConnectionReconfigurationComplete) indicating establishment of RRC connection with the base station 200. .
 なお、図7に示すハンドオーバ処理は一例である。例えば、図7のステップS202において、基地局Aは、図6のステップS109で受信した端末能力情報を参照して、ユーザ装置100に通知するRequiredSARのインデックスを決定してもよい。これにより、図7のステップS202において、ユーザ装置100が対応していないRequirementSARが、ユーザ装置100に通知されることを低減させることができる。 Note that the handover process shown in FIG. 7 is an example. For example, in step S202 of FIG. 7, the base station A may determine the required SAR index to be notified to the user apparatus 100 with reference to the terminal capability information received in step S109 of FIG. Accordingly, it is possible to reduce the notification to the user apparatus 100 of the requirement SAR not supported by the user apparatus 100 in step S202 of FIG.
 <仕様変更の例>
 図8~10を用いて、上記の実施例に係る仕様変更の例について説明する。図8は、非特許文献1に示した、3GPP TS 38.101-1のセクション6.2.1の変更例を示している。図8に示すように、図4のステップS4、S5の処理に関する記述801を追加すると共に、図5で説明したRequiredSARを定義するテーブル802を追加する。
<Example of specification change>
An example of a specification change according to the above embodiment will be described with reference to FIGS. FIG. 8 shows a modification of section 6.2.1 of 3GPP TS 38.101-1, shown in Non-Patent Document 1. As shown in FIG. 8, a description 801 related to the processing of steps S4 and S5 in FIG. 4 is added, and a table 802 that defines the Required SAR described in FIG. 5 is added.
 これにより、周波数帯がTDD帯域であり、無線フレーム内の50%以上のスロットがアップリンクの送信である場合の制限803を削除して、ユーザ装置100がサポートする高電力クラスをより効率的に利用できるようになる。 As a result, the restriction 803 when the frequency band is the TDD band and 50% or more of the slots in the radio frame are uplink transmissions is deleted, and the high power class supported by the user apparatus 100 is made more efficient. It becomes available.
 図9は、基地局200が送信するFrequencyUL information element900の変更例を示している。FrequencyUL information element900は、アップリンクキャリアとその送信に関する基本的なパラメータを、ユーザ装置100に提供するための情報要素である。 FIG. 9 shows a modification example of the FrequencyUL information element 900 transmitted by the base station 200. The FrequencyUL information element 900 is an information element for providing the user apparatus 100 with basic parameters related to the uplink carrier and its transmission.
 図9の例では、FrequencyUL information element900に、requiredSAR902が追加されている。このように、基地局200は、requiredSAR902と、frequencyBandList901とを含むFrequencyUL information element900を、ユーザ装置100に提供する。なお、RequiredSARを表す情報要素は、例えば、図10に示すように定義される。 In the example of FIG. 9, requiredSAR 902 is added to FrequencyUL information element 900. As described above, the base station 200 provides the user equipment 100 with the FrequencyUL information element 900 including the required SAR 902 and the frequencyBandList 901. Note that the information element representing RequiredSAR is defined as shown in FIG. 10, for example.
 <ハードウェア構成>
 上記実施の形態の説明に用いたブロック図(図2~図3)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に複数要素が結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。
<Hardware configuration>
The block diagrams (FIGS. 2 to 3) used in the description of the above-described embodiment show functional unit blocks. These functional blocks (components) are realized by any combination of hardware and / or software. Further, the means for realizing each functional block is not particularly limited. That is, each functional block may be realized by one device in which a plurality of elements are physically and / or logically combined, or two or more devices physically and / or logically separated may be directly and directly. It may be realized by a plurality of these devices connected indirectly (for example, wired and / or wirelessly).
 また、例えば、本発明の一実施の形態におけるユーザ装置100と基地局200はいずれも、本実施の形態に係る処理を行うコンピュータとして機能してもよい。図11は、本実施の形態に係るユーザ装置100と基地局200のハードウェア構成の一例を示す図である。上述のユーザ装置100と基地局200はそれぞれ、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 Also, for example, both the user apparatus 100 and the base station 200 in an embodiment of the present invention may function as a computer that performs processing according to the present embodiment. FIG. 11 is a diagram illustrating an example of a hardware configuration of the user apparatus 100 and the base station 200 according to the present embodiment. Each of the above-described user apparatus 100 and base station 200 may be physically configured as a computer apparatus including a processor 1001, a memory 1002, a storage 1003, a communication apparatus 1004, an input apparatus 1005, an output apparatus 1006, a bus 1007, and the like. Good.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。ユーザ装置100と基地局200のハードウェア構成は、図に示した1001~1006で示される各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following description, the term “apparatus” can be read as a circuit, a device, a unit, or the like. The hardware configurations of the user apparatus 100 and the base station 200 may be configured to include one or a plurality of apparatuses indicated by 1001 to 1006 shown in the figure, or may be configured not to include some apparatuses. May be.
 ユーザ装置100と基地局200における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御することで実現される。 Each function in the user apparatus 100 and the base station 200 is performed by causing the processor 1001 to perform calculation by reading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, communication by the communication apparatus 1004, and memory 1002. This is realized by controlling reading and / or writing of data in the storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。 The processor 1001 controls the entire computer by operating an operating system, for example. The processor 1001 may be configured by a central processing unit (CPU) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、図2に示したユーザ装置100の送信部110、受信部120、制御部130、記憶部140は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。また、例えば、図3に示した基地局200の情報送信部210と、接続制御部220は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001で実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップで実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されても良い。 Further, the processor 1001 reads a program (program code), software module, or data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above embodiments is used. For example, the transmission unit 110, the reception unit 120, the control unit 130, and the storage unit 140 of the user device 100 illustrated in FIG. 2 may be realized by a control program stored in the memory 1002 and operating on the processor 1001. For example, the information transmission unit 210 and the connection control unit 220 of the base station 200 illustrated in FIG. 3 may be realized by a control program stored in the memory 1002 and operating on the processor 1001. Although the above-described various processes have been described as being executed by one processor 1001, they may be executed simultaneously or sequentially by two or more processors 1001. The processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunication line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施の形態に係る処理を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, and includes, for example, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), and the like. May be. The memory 1002 may be called a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, and the like that can be executed to perform the processing according to the embodiment of the present invention.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ1002及び/又はストレージ1003を含むデータベース、サーバその他の適切な媒体であってもよい。 The storage 1003 is a computer-readable recording medium such as an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu-ray). (Registered trademark) disk, smart card, flash memory (for example, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like. The storage 1003 may be called an auxiliary storage device. The storage medium described above may be, for example, a database, server, or other suitable medium including the memory 1002 and / or the storage 1003.
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。例えば、ユーザ装置100の送信部110及び受信部120は、通信装置1004で実現されてもよい。また、基地局200の情報送信部210は、通信装置1004で実現されてもよい。 The communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like. For example, the transmission unit 110 and the reception unit 120 of the user device 100 may be realized by the communication device 1004. Further, the information transmission unit 210 of the base station 200 may be realized by the communication device 1004.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。 Also, each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured with a single bus or may be configured with different buses between apparatuses.
 また、ユーザ装置100と基地局200はそれぞれ、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。 In addition, the user apparatus 100 and the base station 200 are respectively a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a programmable logic device (FPD), an ASIC (Application Logic Integrated Circuit), a PLD (Programmable Logic Device), an AFP It may be configured including hardware, and a part or all of each functional block may be realized by the hardware. For example, the processor 1001 may be implemented by at least one of these hardware.
 <補足>
 以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、ユーザ装置100と基地局200は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従ってユーザ装置100が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従って基地局200が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
<Supplement>
Although the embodiments of the present invention have been described above, the disclosed invention is not limited to such embodiments, and those skilled in the art will understand various variations, modifications, alternatives, substitutions, and the like. I will. Although specific numerical examples have been described in order to facilitate understanding of the invention, these numerical values are merely examples and any appropriate values may be used unless otherwise specified. The classification of items in the above description is not essential to the present invention, and the items described in two or more items may be used in combination as necessary, or the items described in one item may be used in different items. It may be applied to the matters described in (if not inconsistent). The boundaries between functional units or processing units in the functional block diagram do not necessarily correspond to physical component boundaries. The operations of a plurality of functional units may be physically performed by one component, or the operations of one functional unit may be physically performed by a plurality of components. About the processing procedure described in the embodiment, the processing order may be changed as long as there is no contradiction. For convenience of description of the processing, the user apparatus 100 and the base station 200 have been described using functional block diagrams, but such an apparatus may be realized by hardware, software, or a combination thereof. The software operated by the processor of the user apparatus 100 according to the embodiment of the present invention and the software operated by the processor of the base station 200 according to the embodiment of the present invention are random access memory (RAM), flash memory, and read-only, respectively. It may be stored in any appropriate storage medium such as a memory (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server or the like.
 また、情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、ブロードキャスト情報(MIB(Master Information Block)、SIB(System Information Block))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。 Further, the notification of information is not limited to the aspect / embodiment described in the present specification, and may be performed by other methods. For example, the notification of information includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (MediumCong) It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof, and RRC signaling may be referred to as an RRC message, for example, RRC Connection setup (RRC Con ection Setup) message, RRC connection reconfiguration (it may be a RRC Connection Reconfiguration) message.
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G、5G、FRA(Future Radio Access)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。 Each aspect / embodiment described in this specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Fureure Radio Access), and W-CDMA. (Registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, UWB (Ultra-WideBand), The present invention may be applied to a Bluetooth (registered trademark), a system using another appropriate system, and / or a next generation system extended based on the system.
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The processing procedures, sequences, flowcharts and the like of each aspect / embodiment described in this specification may be switched in order as long as there is no contradiction. For example, the methods described herein present the elements of the various steps in an exemplary order and are not limited to the specific order presented.
 本明細書において基地局200によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局200を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、ユーザ装置100との通信のために行われる様々な動作は、基地局200および/または基地局200以外の他のネットワークノード(例えば、MMEまたはS-GWなどが考えられるが、これらに限られない)によって行われ得ることは明らかである。上記において基地局200以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MMEおよびS-GW)であってもよい。 The specific operation assumed to be performed by the base station 200 in this specification may be performed by the upper node (upper node) in some cases. In a network including one or a plurality of network nodes having the base station 200, various operations performed for communication with the user apparatus 100 may be performed by the base station 200 and / or other than the base station 200. Obviously, it can be done by a network node (for example, but not limited to MME or S-GW). Although the case where there is one network node other than the base station 200 in the above is illustrated, a combination of a plurality of other network nodes (for example, MME and S-GW) may be used.
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。 Each aspect / embodiment described in this specification may be used alone, in combination, or may be switched according to execution.
 ユーザ装置100は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。 User equipment 100 can be used by those skilled in the art to a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, It may also be referred to as a wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other appropriate terminology.
 基地局200は、当業者によって、NB(NodeB)、eNB(enhanced NodeB)、ベースステーション(Base Station)、gNB、またはいくつかの他の適切な用語で呼ばれる場合もある。 Base station 200 may also be referred to by those skilled in the art as NB (Node B), eNB (enhanced Node B), base station (Base Station), gNB, or some other appropriate terminology.
 本明細書で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベースまたは別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。 As used herein, the terms “determining” and “determining” may encompass a wide variety of actions. “Judgment” and “determination” are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (investigation), investigation (investigating), search (loking up) (for example, table , Searching in a database or another data structure), considering ascertaining “determining”, “determining”, and the like. Further, “determination” and “determination” are reception (for example, receiving information), transmission (for example, transmitting information), input (input), output (output), and access. (Accessing) (for example, accessing data in a memory) may be considered as “determining” or “determining”. In addition, “determination” and “determination” means that “resolving”, selection (selecting), selection (choosing), establishment (establishing), comparison (comparing), etc. are regarded as “determination” and “determination”. May be included. In other words, “determination” and “determination” may include considering some operation as “determination” and “determination”.
 本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 As used herein, the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
 「含む(include)」、「含んでいる(including)」、およびそれらの変形が、本明細書あるいは特許請求の範囲で使用されている限り、これら用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本明細書あるいは特許請求の範囲において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。 As long as the terms “including”, “including”, and variations thereof are used herein or in the claims, these terms are similar to the term “comprising”. It is intended to be comprehensive. Furthermore, the term “or” as used herein or in the claims is not intended to be an exclusive OR.
 本開示の全体において、例えば、英語でのa,an,及びtheのように、翻訳により冠詞が追加された場合、これらの冠詞は、文脈から明らかにそうではないことが示されていなければ、複数のものを含み得る。 Throughout this disclosure, if articles are added by translation, for example, a, an, and the in English, these articles are not clearly indicated otherwise from the context, Multiple can be included.
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。 Although the present invention has been described in detail above, it will be apparent to those skilled in the art that the present invention is not limited to the embodiments described herein. The present invention can be implemented as modified and changed modes without departing from the spirit and scope of the present invention defined by the description of the scope of claims. Therefore, the description of the present specification is for illustrative purposes and does not have any limiting meaning to the present invention.
10   無線通信システム
100  ユーザ装置
110  送信部
120  受信部
130  制御部
200  基地局
210  情報送信部
220  接続制御部
DESCRIPTION OF SYMBOLS 10 Radio | wireless communications system 100 User apparatus 110 Transmission part 120 Reception part 130 Control part 200 Base station 210 Information transmission part 220 Connection control part

Claims (5)

  1.  ある周波数帯において第1の電力クラスをサポートする送信部と、
     基地局が送信する無線信号を受信する受信部と、
     前記第1の電力クラスより低い第2の電力クラスをデフォルトの電力クラスとして有する前記周波数帯において、前記受信部が、ユーザ装置が満たすべき比吸収率の条件を示す情報を含む前記無線信号を受信した場合、前記ユーザ装置が満たすべき比吸収率の条件を満たすように前記送信部の最大送信電力を決定する制御部と、
     を有する、ユーザ装置。
    A transmitter that supports a first power class in a frequency band;
    A receiver for receiving a radio signal transmitted by the base station;
    In the frequency band having a second power class lower than the first power class as a default power class, the reception unit receives the radio signal including information indicating a specific absorption rate condition to be satisfied by the user apparatus. A control unit that determines a maximum transmission power of the transmission unit so as to satisfy a specific absorption rate that the user apparatus should satisfy,
    A user equipment.
  2.  前記制御部は、
     前記受信部が、前記第1の電力クラスの最大送信電力を示す情報と、前記ユーザ装置が満たすべき比吸収率の条件を示す情報とを含む前記無線信号を受信し、かつ前記ユーザ装置が、前記ユーザ装置が満たすべき比吸収率の条件を満たしている場合、
     前記周波数帯における前記第1の電力クラスの規定に従って、前記第1の電力クラスの最大送信電力を前記送信部の最大送信電力に決定する、請求項1に記載のユーザ装置。
    The controller is
    The reception unit receives the radio signal including information indicating the maximum transmission power of the first power class and information indicating a condition of a specific absorption rate to be satisfied by the user apparatus, and the user apparatus includes: If the user equipment satisfies the specific absorption rate condition to be satisfied,
    The user apparatus according to claim 1, wherein the maximum transmission power of the first power class is determined as the maximum transmission power of the transmission unit in accordance with the definition of the first power class in the frequency band.
  3.  前記制御部は、
     前記受信部が、前記第1の電力クラスの最大送信電力を示す情報と、前記ユーザ装置が満たすべき比吸収率の条件を示す情報とを含む前記無線信号を受信し、かつ前記ユーザ装置が、前記ユーザ装置が満たすべき比吸収率の条件を満たしていない場合、
     前記周波数帯における前記デフォルトの電力クラスの規定に従って、前記デフォルトの電力クラスの最大送信電力を前記送信部の最大送信電力に決定する、請求項1又は2に記載のユーザ装置。
    The controller is
    The reception unit receives the radio signal including information indicating the maximum transmission power of the first power class and information indicating a condition of a specific absorption rate to be satisfied by the user apparatus, and the user apparatus includes: If the user equipment does not meet the specific absorption rate condition to be satisfied,
    The user apparatus according to claim 1 or 2, wherein the maximum transmission power of the default power class is determined as the maximum transmission power of the transmission unit in accordance with the definition of the default power class in the frequency band.
  4.  前記制御部は、
     前記受信部が、前記第1の電力クラスの最大送信電力を示す情報を含む前記無線信号を受信し、かつ前記無線信号に前記ユーザ装置が満たすべき比吸収率の条件を示す情報が含まれない場合、
     前記周波数帯における前記第1の電力クラスの規定に従って、前記第1の電力クラスの最大送信電力を前記送信部の最大送信電力に決定する、請求項1乃至3のいずれか一項に記載のユーザ装置。
    The controller is
    The reception unit receives the radio signal including information indicating the maximum transmission power of the first power class, and the radio signal does not include information indicating a specific absorption rate condition that the user apparatus should satisfy If
    The user according to any one of claims 1 to 3, wherein the maximum transmission power of the first power class is determined as the maximum transmission power of the transmission unit in accordance with the definition of the first power class in the frequency band. apparatus.
  5.  ユーザ装置との無線接続を制御する接続制御部と、
     第1の電力クラスより低い第2の電力クラスをデフォルトの電力クラスとして有する周波数帯において、前記周波数帯に適用される最大送信電力の情報と、前記ユーザ装置が満たすべき比吸収率の条件を示す情報とを含むシステム情報を送信する情報送信部と、
     を有する、基地局。
    A connection control unit for controlling wireless connection with the user device;
    In a frequency band having a second power class lower than the first power class as a default power class, information on maximum transmission power applied to the frequency band and a condition of a specific absorption rate that the user apparatus should satisfy An information transmission unit for transmitting system information including information;
    Having a base station.
PCT/JP2018/015771 2018-04-16 2018-04-16 User device and base station WO2019202649A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/015771 WO2019202649A1 (en) 2018-04-16 2018-04-16 User device and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/015771 WO2019202649A1 (en) 2018-04-16 2018-04-16 User device and base station

Publications (1)

Publication Number Publication Date
WO2019202649A1 true WO2019202649A1 (en) 2019-10-24

Family

ID=68239589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015771 WO2019202649A1 (en) 2018-04-16 2018-04-16 User device and base station

Country Status (1)

Country Link
WO (1) WO2019202649A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021082993A1 (en) * 2019-10-30 2021-05-06 中兴通讯股份有限公司 Frequency band switching method, base station and readable storage medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012216970A (en) * 2011-03-31 2012-11-08 Ntt Docomo Inc Mobile station and method used in wireless communication system
JP2014501080A (en) * 2010-11-16 2014-01-16 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Dynamic SAR release control to minimize RF exposure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014501080A (en) * 2010-11-16 2014-01-16 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Dynamic SAR release control to minimize RF exposure
JP2012216970A (en) * 2011-03-31 2012-11-08 Ntt Docomo Inc Mobile station and method used in wireless communication system

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"NR UE configured Tx power for both range 1 and range 2", 3GPP TSG RAN WG4 NR #2 MEETING R4-1706574, 19 June 2017 (2017-06-19), XP051308361, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/TSG_RAN/WG4_Radio/TSGR4_AHs/TSGR4_NR_Jun2017/Docs/R4-1706574.zip> [retrieved on 20180613] *
"Power Class Definition for Sub-6GHz NR", 3GPP TSG-RAN WG4 MEETING #83 R4-1705509, 6 May 2017 (2017-05-06), XP051267133, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/TSG_RAN/WG4_Radio/TSGR4_83/Docs/R4-1705509.zip> [retrieved on 20180613] *
"User Equipment (UE) radio transmission and reception; Part 1: Range 1 Standalone (Release 15)", 3GPP TS 38. 101-1, March 2018 (2018-03-01), XP055649775, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/Specs/archive/38_series/38.101-1/38101-1-f10.zip> [retrieved on 20180613] *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021082993A1 (en) * 2019-10-30 2021-05-06 中兴通讯股份有限公司 Frequency band switching method, base station and readable storage medium

Similar Documents

Publication Publication Date Title
WO2017195471A1 (en) User device and base station
US8295245B2 (en) Inter-radio access technology measurement system and method
WO2019098236A1 (en) User device and base station device
CN109804677B (en) User device and base station
JP7066751B2 (en) Terminals and base stations
WO2018203417A1 (en) Base station device, user device and communication method
CN110574422B (en) User device, base station, and random access method
JP2018056857A (en) User device, base station, and core network
CN112534945A (en) User device and base station device
JP2019036869A (en) User device and access control method
WO2018030545A1 (en) Core network and base station
JPWO2017188453A1 (en) User apparatus, base station, and communication method
WO2019069750A1 (en) User device and base station device
WO2019202649A1 (en) User device and base station
JP7221970B2 (en) Terminal, transmission power control method, base station and communication system
WO2019138559A1 (en) User device and uplink transmission timing adjustment method
WO2019225602A1 (en) Base station
JP2020014173A (en) Base station and communication method
KR102638200B1 (en) User device and base station device
KR102411093B1 (en) user device
JP2019047291A (en) Base station and carrier selection method
WO2022097290A1 (en) Terminal and communication system
WO2021005759A1 (en) Terminal and communication method
WO2019211913A1 (en) User device and base station device
JP2019129387A (en) User device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915136

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18915136

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP