WO2019201312A1 - Apparatus and method for providing measurement information - Google Patents
Apparatus and method for providing measurement information Download PDFInfo
- Publication number
- WO2019201312A1 WO2019201312A1 PCT/CN2019/083287 CN2019083287W WO2019201312A1 WO 2019201312 A1 WO2019201312 A1 WO 2019201312A1 CN 2019083287 W CN2019083287 W CN 2019083287W WO 2019201312 A1 WO2019201312 A1 WO 2019201312A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- duration
- measurement
- duty cycle
- network node
- uplink duty
- Prior art date
Links
- 238000005259 measurement Methods 0.000 title claims abstract description 96
- 238000000034 method Methods 0.000 title claims abstract description 52
- 230000011664 signaling Effects 0.000 claims description 18
- 238000004590 computer program Methods 0.000 claims description 10
- 238000004891 communication Methods 0.000 description 11
- 230000006870 function Effects 0.000 description 10
- 230000008569 process Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/10—Scheduling measurement reports ; Arrangements for measurement reports
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/10—Monitoring; Testing of transmitters
- H04B17/101—Monitoring; Testing of transmitters for measurement of specific parameters of the transmitter or components thereof
- H04B17/104—Monitoring; Testing of transmitters for measurement of specific parameters of the transmitter or components thereof of other parameters, e.g. DC offset, delay or propagation times
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/10—Monitoring; Testing of transmitters
- H04B17/101—Monitoring; Testing of transmitters for measurement of specific parameters of the transmitter or components thereof
- H04B17/102—Power radiated at antenna
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0446—Resources in time domain, e.g. slots or frames
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/21—Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/30—Resource management for broadcast services
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/002—Transmission of channel access control information
- H04W74/004—Transmission of channel access control information in the uplink, i.e. towards network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/20—Manipulation of established connections
- H04W76/27—Transitions between radio resource control [RRC] states
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/309—Measuring or estimating channel quality parameters
Definitions
- the present disclosure relates to the field of communication systems, and more particularly, to an apparatus and a method for providing measurement information.
- NR new radio
- UL uplink
- DL downlink
- SAR absorption rate
- LTE long term evolution
- FDD frequency division duplexing
- TDD time division duplexing
- An object of the present disclosure is to propose an apparatus and a method for providing measurement information capable of providing high reliability.
- a user equipment (UE) for providing measurement information includes a memory, a transceiver, and a processor coupled to the memory and the transceiver.
- the processor is configured to measure an uplink duty cycle percentage within a measurement duration, wherein the measurement duration is one of a configuration duration form a network node, a default duration, and a pre-defined duration.
- the processor is configured to control the transceiver to report a maximum uplink duty cycle percentage according to a measured uplink duty cycle percentage within the measurement duration.
- a method for providing measurement information of a user equipment includes measuring an uplink duty cycle percentage within a measurement duration, wherein the measurement duration is one of a configuration duration form a network node, a default duration, and a pre-defined duration, and reporting a maximum uplink duty cycle percentage according to a measured uplink duty cycle percentage within the measurement duration.
- a network node for providing measurement information includes a memory, a transceiver, and a processor coupled to the memory and the transceiver.
- the processor is configured to configure, to a user equipment (UE) , a measurement indication, wherein the measurement indication indicates the UE to measure an uplink duty cycle percentage within a measurement duration, and the measurement duration is a configuration duration by the processor.
- the processor is configured to control the transceiver to receive a maximum uplink duty cycle percentage from the UE, wherein the maximum uplink duty cycle percentage is according to a measured uplink duty cycle percentage within the measurement duration.
- a method for providing measurement information of a network node includes configuring, to a user equipment (UE) , a measurement indication, wherein the measurement indication indicates the UE to measure an uplink duty cycle percentage within a measurement duration, and the measurement duration is a configuration duration by the network node, and receiving a maximum uplink duty cycle percentage from the UE, wherein the maximum uplink duty cycle percentage is according to a measured uplink duty cycle percentage within the measurement duration.
- UE user equipment
- a non-transitory machine-readable storage medium has stored thereon instructions that, when executed by a computer, cause the computer to perform the above method.
- a terminal device includes a processor and a memory configured to store a computer program.
- the processor is configured to execute the computer program stored in the memory to perform the above method.
- a network node includes a processor and a memory configured to store a computer program.
- the processor is configured to execute the computer program stored in the memory to perform the above method.
- FIG. 1 is a block diagram of a user equipment and a network node for providing measurement information according to an embodiment of the present disclosure.
- FIG. 2 is a flowchart illustrating a method for providing measurement information of a user equipment according to an embodiment of the present disclosure.
- FIG. 3 is a flowchart illustrating a method for providing measurement information of a network node according to an embodiment of the present disclosure.
- FIG. 4 is a block diagram of a system for wireless communication according to an embodiment of the present disclosure.
- FIG. 1 illustrates that, in some embodiments, a user equipment (UE) 10 and a network node 20 for providing measurement information according to an embodiment of the present disclosure are provided.
- the UE 10 may include a processor 11, a memory 12, and a transceiver 13.
- the network node 20 may include a processor 21, a memory 22 and a transceiver 23.
- the processor 11 or 21 may be configured to implement proposed functions, procedures and/or methods described in this description. Layers of radio interface protocol may be implemented in the processor 11 or 21.
- the memory 12 or 22 is operatively coupled with the processor 11 or 21 and stores a variety of information to operate the processor 11 or 21.
- the transceiver 13 or 23 is operatively coupled with the processor 11 or 21, and the transceiver 13 or 23 transmits and/or receives a radio signal.
- the processor 11 or 21 may include an application-specific integrated circuit (ASIC) , other chipsets, logic circuit and/or data processing devices.
- the memory 12 or 22 may include a read-only memory (ROM) , a random access memory (RAM) , a flash memory, a memory card, a storage medium and/or other storage devices.
- the transceiver 13 or 23 may include baseband circuitry to process radio frequency signals.
- modules e.g., procedures, functions, and so on
- the modules can be stored in the memory 12 or 22 and executed by the processor 11 or 21.
- the memory 12 or 22 can be implemented within the processor 11 or 21 or external to the processor 11 or 21, in which those can be communicatively coupled to the processor 11 or 21 via various means are known in the art.
- the communication between UEs relates to vehicle-to-everything (V2X) communication including vehicle-to-vehicle (V2V) , vehicle-to-pedestrian (V2P) , and vehicle-to-infrastructure/network (V2I/N) according to a sidelink technology developed under 3rd generation partnership project (3GPP) release 14, 15, and beyond.
- UEs communicate with each other directly via a sidelink interface such as a PC5 interface.
- the processor 11 is configured to measure an uplink duty cycle percentage within a measurement duration.
- the measurement duration is one of a configuration duration form the network node 20, a default duration, and a pre-defined duration.
- the processor 11 is configured to control the transceiver 13 to report a maximum uplink duty cycle percentage according to a measured uplink duty cycle percentage within the measurement duration.
- the measuring further includes determining whether an actual uplink duty cycle exceeds an ability value or a value the transceiver 13 reports.
- the ability value can be a default value, such as 50 percent.
- the measurement duration is in a unit of ms, slot, or symbol.
- the measurement duration can be 0.5 ms, 1 ms, 5 ms, 10 ms, more than 10 ms, 1 slot, 10 slots, more than 10 slots, 7 symbols, 70 symbols, or more than 70 symbols.
- the configuration duration is a cell specific duration or a UE specific duration.
- the processor 11 uses the same configuration duration with another UE in a cell.
- RRC radio resource control
- the processor 21 is configured to configure, to the user equipment (UE) 10, a measurement indication.
- the measurement indication indicates the UE 10 to measure an uplink duty cycle percentage within a measurement duration, and the measurement duration is a configuration duration by the processor 21.
- the processor 21 is configured to control the transceiver 23 to receive a maximum uplink duty cycle percentage from the UE 10. The maximum uplink duty cycle percentage is according to a measured uplink duty cycle percentage within the measurement duration.
- the measuring further includes determining whether an actual uplink duty cycle exceeds an ability value or a value the UE 10 reports.
- the ability value can be a default value, such as 50 percent.
- the measurement duration is in a unit of ms, slot, or symbol.
- the measurement duration can be 0.5 ms, 1 ms, 5 ms, 10 ms, more than 10 ms, 1 slot, 10 slots, more than 10 slots, 7 symbols, 70 symbols, or more than 70 symbols.
- the configuration duration is a cell specific duration or a UE specific duration.
- the processor 21 is configured to use a broadcasting signaling to configure, to all UEs in a cell, the same configuration duration.
- the processor 21 is configured to use a radio resource control (RRC) signaling to configure, to different UEs in a cell, different configuration durations.
- RRC radio resource control
- FIG. 2 illustrates a method 200 for providing measurement information of a user equipment according to an embodiment of the present disclosure.
- the method 200 includes: a block 202, measuring an uplink duty cycle percentage within a measurement duration, wherein the measurement duration is one of a configuration duration form a network node, a default duration, and a pre-defined duration, and a block 204, reporting a maximum uplink duty cycle percentage according to a measured uplink duty cycle percentage within the measurement duration.
- the measuring further includes determining whether an actual uplink duty cycle exceeds an ability value or a value the UE 10 reports.
- the ability value can be a default value, such as 50 percent.
- the measurement duration is in a unit of ms, slot, or symbol.
- the measurement duration can be 0.5 ms, 1 ms, 5 ms, 10 ms, more than 10 ms, 1 slot, 10 slots, more than 10 slots, 7 symbols, 70 symbols, or more than 70 symbols.
- the configuration duration is a cell specific duration or a UE specific duration.
- the UE 10 when the UE 10 receives a broadcasting signaling indicating the cell specific duration from the network node 20, the UE 10 uses the same configuration duration with another UE in a cell.
- the UE 10 when the UE 10 receives a radio resource control (RRC) signaling indicating the UE specific duration from the network node 20, the UE 10 uses a different configuration duration from another UE in a cell.
- RRC radio resource control
- FIG. 3 illustrates a method 300 for providing measurement information of a network node according to an embodiment of the present disclosure.
- the method 300 includes: a block 302, configuring, to a user equipment (UE) , a measurement indication, wherein the measurement indication indicates the UE to measure an uplink duty cycle percentage within a measurement duration, and the measurement duration is a configuration duration by the network node, and a block 304, receiving a maximum uplink duty cycle percentage from the UE, wherein the maximum uplink duty cycle percentage is according to a measured uplink duty cycle percentage within the measurement duration.
- UE user equipment
- the measuring further includes determining whether an actual uplink duty cycle exceeds an ability value or a value the UE 10 reports.
- the ability value can be a default value, such as 50 percent.
- the measurement duration is in a unit of ms, slot, or symbol.
- the measurement duration can be 0.5 ms, 1 ms, 5 ms, 10 ms, more than 10 ms, 1 slot, 10 slots, more than 10 slots, 7 symbols, 70 symbols, or more than 70 symbols.
- the configuration duration is a cell specific duration or a UE specific duration.
- the method 300 further includes using a broadcasting signaling to configure, to all UEs in a cell, the same configuration duration.
- the method 300 further includes using a radio resource control (RRC) signaling to configure, to different UEs in a cell, different configuration durations.
- RRC radio resource control
- a solution of the embodiment enables the UE 10 to report the maximum uplink (UL) duty cycle percentage that the UE 10 can accept. With this report, the UE 10 is required to measure the UL duty cycle percentage within the above the measurement duration.
- UL uplink
- the networks configures an exact measurement duration within which the UE 10 (e.g., high power user equipment (HPUE) ) measures if the actual UL duty cycle exceeds its ability (default value, 50%for example) or a value the UE 10 reports.
- the configured duration can be in the unit of ms, for example 0.5ms, 1 ms, 5ms, 10ms, or longer. It can also be the unit of slot or symbol. For example, it can be 1 slot, 10 slots, or more slots, and it can also be 7 symbols, 70 symbols, or more symbols.
- the network node 20 can configure the measurement duration in a cell specific way, i.e., the network node 20 uses broadcast signaling to configure all HPUEs in a cell using the same value.
- the network node 20 can also configure the measurement duration in a UE specific way, i.e., different HPUEs in a cell can be configured with different measurement duration, such as using RRC signaling.
- the network node 20 if the network node 20 does not configure the measurement duration, there can be a default value or vale pre-defined in a 3GPP specification.
- the network node 20 can configure such measurement duration, there could be a flexibility for the network node 20. For example, if the network node 20 does not change a slot format frequently, the network node 20 can configure a short duration for the HPUE, such as 1 ms, which is easy for UE side buffering smaller information about scheduling. If the network node 20 changes the slot format frequently, especially if the network node 20 changes the percentage of UL duty cycle dramatically, the network node 20 can configure a longer duration, such as 100ms or even longer, this can give more scheduling flexibility for the network node 20.
- FIG. 4 is a block diagram of an example system 700 for wireless communication according to an embodiment of the present disclosure. Embodiments described herein may be implemented into the system using any suitably configured hardware and/or software.
- FIG. 4 illustrates the system 700 including a radio frequency (RF) circuitry 710, a baseband circuitry 720, an application circuitry 730, a memory/storage 740, a display 750, a camera 760, a sensor 770, and an input/output (I/O) interface 780, coupled with each other at least as illustrated.
- RF radio frequency
- the application circuitry 730 may include a circuitry, such as, but not limited to, one or more single-core or multi-core processors.
- the processors may include any combinations of general-purpose processors and dedicated processors, such as graphics processors and application processors.
- the processors may be coupled with the memory/storage and configured to execute instructions stored in the memory/storage to enable various applications and/or operating systems running on the system.
- the baseband circuitry 720 may include a circuitry, such as, but not limited to, one or more single-core or multi-core processors.
- the processors may include a baseband processor.
- the baseband circuitry may handle various radio control functions that enable communication with one or more radio networks via the RF circuitry.
- the radio control functions may include, but are not limited to, signal modulation, encoding, decoding, radio frequency shifting, etc.
- the baseband circuitry may provide for communication compatible with one or more radio technologies.
- the baseband circuitry may support communication with an evolved universal terrestrial radio access network (EUTRAN) and/or other wireless metropolitan area networks (WMAN) , a wireless local area network (WLAN) , a wireless personal area network (WPAN) .
- EUTRAN evolved universal terrestrial radio access network
- WMAN wireless metropolitan area networks
- WLAN wireless local area network
- WPAN wireless personal area network
- multi-mode baseband circuitry Embodiments in which the baseband circuitry is configured to support radio communications of more than one wireless protocol.
- the baseband circuitry 720 may include circuitry to operate with signals that are not strictly considered as being in a baseband frequency.
- baseband circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
- the RF circuitry 710 may enable communication with wireless networks using modulated electromagnetic radiation through a non-solid medium.
- the RF circuitry may include switches, filters, amplifiers, etc. to facilitate the communication with the wireless network.
- the RF circuitry 710 may include circuitry to operate with signals that are not strictly considered as being in a radio frequency.
- RF circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
- the transmitter circuitry, control circuitry, or receiver circuitry discussed above with respect to the user equipment, eNB, or gNB may be embodied in whole or in part in one or more of the RF circuitry, the baseband circuitry, and/or the application circuitry.
- “circuitry” may refer to, be part of, or include an Application Specific Integrated Circuit (ASIC) , an electronic circuit, a processor (shared, dedicated, or group) , and/or a memory (shared, dedicated, or group) that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable hardware components that provide the described functionality.
- ASIC Application Specific Integrated Circuit
- the electronic device circuitry may be implemented in, or functions associated with the circuitry may be implemented by, one or more software or firmware modules.
- some or all of the constituent components of the baseband circuitry, the application circuitry, and/or the memory/storage may be implemented together on a system on a chip (SOC) .
- SOC system on a chip
- the memory/storage 740 may be used to load and store data and/or instructions, for example, for systems.
- the memory/storage for one embodiment may include any combination of suitable volatile memory, such as dynamic random access memory (DRAM) ) , and/or non-volatile memory, such as flash memory.
- DRAM dynamic random access memory
- flash memory non-volatile memory
- the I/O interface 780 may include one or more user interfaces designed to enable user interaction with the system and/or peripheral component interfaces designed to enable peripheral component interaction with the system.
- User interfaces may include, but are not limited to a physical keyboard or keypad, a touchpad, a speaker, a microphone, etc.
- Peripheral component interfaces may include, but are not limited to, a non-volatile memory port, a universal serial bus (USB) port, an audio jack, and a power supply interface.
- USB universal serial bus
- the sensor 770 may include one or more sensing devices to determine environmental conditions and/or location information related to the system.
- the sensors may include, but are not limited to, a gyro sensor, an accelerometer, a proximity sensor, an ambient light sensor, and a positioning unit.
- the positioning unit may also be part of, or interact with, the baseband circuitry and/or RF circuitry to communicate with components of a positioning network, e.g., a global positioning system (GPS) satellite.
- GPS global positioning system
- the display 750 may include a display, such as a liquid crystal display and a touch screen display.
- the system 700 may be a mobile computing device such as, but not limited to, a laptop computing device, a tablet computing device, a netbook, an ultrabook, a smartphone, etc.
- system may have more or less components, and/or different architectures.
- methods described herein may be implemented as a computer program.
- the computer program may be stored on a storage medium, such as a non-transitory storage medium.
- an apparatus and a method for providing measurement information capable of providing high reliability are provided.
- the embodiment of the present disclosure is a combination of techniques/processes that can be adopted in 3GPP specification to create an end product.
- the units as separating components for explanation are or are not physically separated.
- the units for display are or are not physical units, that is, located in one place or distributed on a plurality of network units. Some or all of the units are used according to the purposes of the embodiments.
- each of the functional units in each of the embodiments can be integrated in one processing unit, physically independent, or integrated in one processing unit with two or more than two units.
- the software function unit is realized and used and sold as a product, it can be stored in a readable storage medium in a computer.
- the technical plan proposed by the present disclosure can be essentially or partially realized as the form of a software product.
- one part of the technical plan beneficial to the conventional technology can be realized as the form of a software product.
- the software product in the computer is stored in a storage medium, including a plurality of commands for a computational device (such as a personal computer, a server, or a network device) to run all or some of the steps disclosed by the embodiments of the present disclosure.
- the storage medium includes a USB disk, a mobile hard disk, a read-only memory (ROM) , a random access memory (RAM) , a floppy disk, or other kinds of media capable of storing program codes.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
Claims (35)
- A user equipment (UE) for providing measurement information, comprising:a memory;a transceiver; anda processor coupled to the memory and the transceiver,wherein the processor is configured to:measure an uplink duty cycle percentage within a measurement duration, wherein the measurement duration is one of a configuration duration form a network node, a default duration, and a pre-defined duration; andcontrol the transceiver to report a maximum uplink duty cycle percentage according to a measured uplink duty cycle percentage within the measurement duration.
- The UE of claim 1, wherein the measuring further comprises determining whether an actual uplink duty cycle exceeds an ability value or a value the transceiver reports.
- The UE of claim 2, wherein the ability value is a default value.
- The UE of any one of claims 1 to 3, wherein the measurement duration is in a unit of ms, slot, or symbol.
- The UE of claim 4, wherein the measurement duration is 0.5 ms, 1 ms, 5 ms, 10 ms, more than 10 ms, 1 slot, 10 slots, more than 10 slots, 7 symbols, 70 symbols, or more than 70 symbols.
- The UE of any one of claims 1 to 5, wherein the configuration duration is a cell specific duration or a UE specific duration.
- The UE of claim 6, wherein when the transceiver receives a broadcasting signaling indicating the cell specific duration from the network node, the processor uses the same configuration duration with another UE in a cell.
- The UE of claim 6, wherein when the transceiver receives a radio resource control (RRC) signaling indicating the UE specific duration from the network node, the processor uses a different configuration duration from another UE in a cell.
- A method for providing measurement information of a user equipment (UE) , comprising:measuring an uplink duty cycle percentage within a measurement duration, wherein the measurement duration is one of a configuration duration form a network node, a default duration, and a pre-defined duration; andreporting a maximum uplink duty cycle percentage according to a measured uplink duty cycle percentage within the measurement duration.
- The method of claim 9, wherein the measuring further comprises determining whether an actual uplink duty cycle exceeds an ability value or a value the UE reports.
- The method of claim 10, wherein the ability value is a default value.
- The method of any one of claims 9 to 11, wherein the measurement duration is in a unit of ms, slot, or symbol.
- The method of claim 12, wherein the measurement duration is 0.5 ms, 1 ms, 5 ms, 10 ms, more than 10 ms, 1 slot, 10 slots, more than 10 slots, 7 symbols, 70 symbols, or more than 70 symbols.
- The method of any one of claims 9 to 13, wherein the configuration duration is a cell specific duration or a UE specific duration.
- The method of claim 14, wherein when the UE receives a broadcasting signaling indicating the cell specific duration from the network node, the UE uses the same configuration duration with another UE in a cell.
- The method of claim 14, wherein when the UE receives a radio resource control (RRC) signaling indicating the UE specific duration from the network node, the UE uses a different configuration duration from another UE in a cell.
- A network node for providing measurement information, comprising:a memory;a transceiver; anda processor coupled to the memory and the transceiver,wherein the processor is configured to:configure, to a user equipment (UE) , a measurement indication, wherein the measurement indication indicates the UE to measure an uplink duty cycle percentage within a measurement duration, and the measurement duration is a configuration duration by the processor; andcontrol the transceiver to receive a maximum uplink duty cycle percentage from the UE, wherein the maximum uplink duty cycle percentage is according to a measured uplink duty cycle percentage within the measurement duration.
- The network node of claim 17, wherein the measuring further comprises determining whether an actual uplink duty cycle exceeds an ability value or a value the UE reports.
- The network node of claim 18, wherein the ability value is a default value.
- The network node of any one of claims 17 to 19, wherein the measurement duration is in a unit of ms, slot, or symbol.
- The network node of claim 20, wherein the measurement duration is 0.5 ms, 1 ms, 5 ms, 10 ms, more than 10 ms, 1 slot, 10 slots, more than 10 slots, 7 symbols, 70 symbols, or more than 70 symbols.
- The network node of any one of claims 17 to 21, wherein the configuration duration is a cell specific duration or a UE specific duration.
- The network node of claim 22, wherein the processor is configured to use a broadcasting signaling to configure, to all UEs in a cell, the same configuration duration.
- The network node of claim 22, wherein the processor is configured to use a radio resource control (RRC) signaling to configure, to different UEs in a cell, different configuration durations.
- A method for providing measurement information of a network node, comprising: configuring, to a user equipment (UE) , a measurement indication, wherein the measurement indication indicates the UE to measure an uplink duty cycle percentage within a measurement duration, and the measurement duration is a configuration duration by the network node; andreceiving a maximum uplink duty cycle percentage from the UE, wherein the maximum uplink duty cycle percentage is according to a measured uplink duty cycle percentage within the measurement duration.
- The method of claim 25, wherein the measuring further comprises determining whether an actual uplink duty cycle exceeds an ability value or a value the UE reports.
- The method of claim 26, wherein the ability value is a default value.
- The method of any one of claims 25 to 27, wherein the measurement duration is in a unit of ms, slot, or symbol.
- The method of claim 28, wherein the measurement duration is 0.5 ms, 1 ms, 5 ms, 10 ms, more than 10 ms, 1 slot, 10 slots, more than 10 slots, 7 symbols, 70 symbols, or more than 70 symbols.
- The method of any one of claims 25 to 29, wherein the configuration duration is a cell specific duration or a UE specific duration.
- The method of claim 30, further comprising using a broadcasting signaling to configure, to all UEs in a cell, the same configuration duration.
- The method of claim 30, further comprising using a radio resource control (RRC) signaling to configure, to different UEs in a cell, different configuration durations.
- A non-transitory machine-readable storage medium having stored thereon instructions that, when executed by a computer, cause the computer to perform the method of any one of claims 9 to 16 and 25 to 32.
- A terminal device, comprising: a processor and a memory configured to store a computer program, the processor configured to execute the computer program stored in the memory to perform the method of any one of claims 9 to 16.
- A network node, comprising: a processor and a memory configured to store a computer program, the processor configured to execute the computer program stored in the memory to perform the method of any one of claims 25 to 32.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020207033091A KR20200142579A (en) | 2018-04-20 | 2019-04-18 | Apparatus and method for providing measurement information |
AU2019254003A AU2019254003A1 (en) | 2018-04-20 | 2019-04-18 | Apparatus and method for providing measurement information |
CN201980025679.0A CN111971911A (en) | 2018-04-20 | 2019-04-18 | Apparatus and method for providing measurement information |
JP2020558014A JP2021522708A (en) | 2018-04-20 | 2019-04-18 | Equipment and methods for providing measurement information |
EP19787887.9A EP3776927A4 (en) | 2018-04-20 | 2019-04-18 | Apparatus and method for providing measurement information |
US17/071,944 US11546791B2 (en) | 2018-04-20 | 2020-10-15 | Method for providing maximum uplink duty cycle percentage, user equipment and network node |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862660335P | 2018-04-20 | 2018-04-20 | |
US62/660,335 | 2018-04-20 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/071,944 Continuation US11546791B2 (en) | 2018-04-20 | 2020-10-15 | Method for providing maximum uplink duty cycle percentage, user equipment and network node |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019201312A1 true WO2019201312A1 (en) | 2019-10-24 |
Family
ID=68240543
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/083287 WO2019201312A1 (en) | 2018-04-20 | 2019-04-18 | Apparatus and method for providing measurement information |
Country Status (7)
Country | Link |
---|---|
US (1) | US11546791B2 (en) |
EP (1) | EP3776927A4 (en) |
JP (1) | JP2021522708A (en) |
KR (1) | KR20200142579A (en) |
CN (1) | CN111971911A (en) |
AU (1) | AU2019254003A1 (en) |
WO (1) | WO2019201312A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021088052A1 (en) * | 2019-11-08 | 2021-05-14 | Oppo广东移动通信有限公司 | Method and device for information processing, storage medium, and chip |
CN113573415A (en) * | 2020-04-29 | 2021-10-29 | 中国移动通信有限公司研究院 | Reporting method and updating method of sending parameters, terminal and network side equipment |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017197096A1 (en) * | 2016-05-13 | 2017-11-16 | Qualcomm Incorporated | Managing specific absorption rate for user equipments |
CN107528957A (en) * | 2016-06-21 | 2017-12-29 | 江苏省产品质量监督检验研究院 | A kind of method of test TD LTE mobile phone specific absorption rates |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8588090B2 (en) * | 2010-08-17 | 2013-11-19 | Telefonaktiebolaget L M Ericsson (Publ) | Method and apparatus for scheduling users in a frequency division duplex wireless system with duty cycle limitation |
US10064164B2 (en) * | 2014-08-18 | 2018-08-28 | Apple Inc. | Radio access technology with non-continuous and periodic PUSCH transmission |
US10349293B2 (en) * | 2015-04-17 | 2019-07-09 | Qualcomm Incorporated | Control of UE clear channel assessment by an eNB |
US10070388B2 (en) * | 2015-05-04 | 2018-09-04 | Telefonaktiebolaget Lm Ericsson (Publ) | Coordinated duty cycle assignment in mesh networks |
US10271283B2 (en) * | 2015-05-13 | 2019-04-23 | Apple Inc. | Apparatus, systems and methods for power management in mobile devices |
WO2018141457A1 (en) * | 2017-02-03 | 2018-08-09 | Telefonaktiebolaget Lm Ericsson (Publ) | Maximum communication distance range adaptation |
-
2019
- 2019-04-18 EP EP19787887.9A patent/EP3776927A4/en not_active Withdrawn
- 2019-04-18 AU AU2019254003A patent/AU2019254003A1/en not_active Abandoned
- 2019-04-18 KR KR1020207033091A patent/KR20200142579A/en not_active Application Discontinuation
- 2019-04-18 CN CN201980025679.0A patent/CN111971911A/en active Pending
- 2019-04-18 WO PCT/CN2019/083287 patent/WO2019201312A1/en unknown
- 2019-04-18 JP JP2020558014A patent/JP2021522708A/en not_active Withdrawn
-
2020
- 2020-10-15 US US17/071,944 patent/US11546791B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017197096A1 (en) * | 2016-05-13 | 2017-11-16 | Qualcomm Incorporated | Managing specific absorption rate for user equipments |
CN107528957A (en) * | 2016-06-21 | 2017-12-29 | 江苏省产品质量监督检验研究院 | A kind of method of test TD LTE mobile phone specific absorption rates |
Non-Patent Citations (5)
Title |
---|
"R4-1804016, 3RD GENERATION PARTNERSHIP PROJECT (3GPP", vol. RAN WG4, MOBILE, article "Discussion on solutions to satisfy SAR requirements for NR HPUE, 3GPP DRAFT" |
CMCC: "Discussion on solutions to satisfy SAR requirements for NR HPUE", 3GPP TSG-RAN WG4 MEETING #86BIS, R4-1804016, 5 April 2018 (2018-04-05), XP051417576 * |
OPPO: "Further discussion on UL/DL configurations for NR HPUE", 3GPP TSG-RAN WG4 MEETING #86BIS, R4-1803659, 6 April 2018 (2018-04-06), XP051417612 * |
See also references of EP3776927A4 |
VIVO: "Discussion on NR TDD UL/DL configurations and HPUE behaviour", 3GPP TSG-RAN WG4 ADHOC 1801, R4-1800414, 26 January 2018 (2018-01-26), XP051388047 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021088052A1 (en) * | 2019-11-08 | 2021-05-14 | Oppo广东移动通信有限公司 | Method and device for information processing, storage medium, and chip |
CN115802510A (en) * | 2019-11-08 | 2023-03-14 | Oppo广东移动通信有限公司 | Information processing method and device, storage medium and chip |
CN113573415A (en) * | 2020-04-29 | 2021-10-29 | 中国移动通信有限公司研究院 | Reporting method and updating method of sending parameters, terminal and network side equipment |
Also Published As
Publication number | Publication date |
---|---|
EP3776927A4 (en) | 2021-05-26 |
US11546791B2 (en) | 2023-01-03 |
AU2019254003A1 (en) | 2020-12-03 |
EP3776927A1 (en) | 2021-02-17 |
US20210029574A1 (en) | 2021-01-28 |
KR20200142579A (en) | 2020-12-22 |
CN111971911A (en) | 2020-11-20 |
JP2021522708A (en) | 2021-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3189693B1 (en) | Generating, broadcasting and receiving system information blocks | |
US11343821B2 (en) | Method and apparatus for performing resource scheduling and delivering control information in vehicle-to-everything communication system | |
US20210212081A1 (en) | Apparatus and method for scheduling resource allocation of same | |
US11546791B2 (en) | Method for providing maximum uplink duty cycle percentage, user equipment and network node | |
US11310867B2 (en) | Method and apparatus of controlling secondary cell | |
WO2020199903A1 (en) | Apparatus and method for transmission power control of same | |
WO2019105430A1 (en) | Method and apparatus for identifying interference in a wireless communication system | |
WO2020192227A1 (en) | User equipment and method for dual connectivity operation during wireless communication handover of same | |
AU2019230823B2 (en) | User equipment and method for controlling transmission of same in a wireless communication system | |
WO2019105472A1 (en) | Method and user equipment operable for bandwidth part timer configuration | |
US20210006384A1 (en) | Method and apparatus for controlling a deactivation timer of at least one secondary cell in a wireless communication system | |
WO2024120406A1 (en) | Apparatus and method of pdcch order rach for mobility | |
WO2021185152A1 (en) | Apparatus and method of wireless communication | |
WO2024061322A1 (en) | Wireless communication method and relevant apparatus | |
WO2024033670A1 (en) | Apparatus and method of wireless communication | |
WO2024165883A1 (en) | Apparatus and method of wireless communication | |
WO2023247985A1 (en) | Apparatus and method of wireless communication | |
CN115943579A (en) | Wireless communication apparatus and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19787887 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020558014 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019787887 Country of ref document: EP Effective date: 20201109 |
|
ENP | Entry into the national phase |
Ref document number: 20207033091 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2019254003 Country of ref document: AU Date of ref document: 20190418 Kind code of ref document: A |