WO2019200999A1 - 一种基于反射光的可见光通信盲区覆盖及越区切换方法 - Google Patents

一种基于反射光的可见光通信盲区覆盖及越区切换方法 Download PDF

Info

Publication number
WO2019200999A1
WO2019200999A1 PCT/CN2019/073515 CN2019073515W WO2019200999A1 WO 2019200999 A1 WO2019200999 A1 WO 2019200999A1 CN 2019073515 W CN2019073515 W CN 2019073515W WO 2019200999 A1 WO2019200999 A1 WO 2019200999A1
Authority
WO
WIPO (PCT)
Prior art keywords
smart device
mirror
mobile smart
communication
received signal
Prior art date
Application number
PCT/CN2019/073515
Other languages
English (en)
French (fr)
Other versions
WO2019200999A9 (zh
Inventor
伍楷舜
王璐
何灵利
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2019200999A1 publication Critical patent/WO2019200999A1/zh
Publication of WO2019200999A9 publication Critical patent/WO2019200999A9/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/116Visible light communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0094Definition of hand-off measurement parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/18Performing reselection for specific purposes for allowing seamless reselection, e.g. soft reselection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/33Services specially adapted for particular environments, situations or purposes for indoor environments, e.g. buildings

Definitions

  • the present invention relates to a visible light communication overlay method, and more particularly to a visible light communication blind zone coverage and handover method based on reflected light.
  • This method provides a passive handover execution method, which means that the mobile terminal turns on the handover before disconnecting from the LED lighting cell. Before leaving the LED lighting community, the mobile terminal can know if it will find a new, adjacent spotlight cell, which can be done by doing a strength test.
  • Another solution is that the LED lights that can be used for communication in the entire room are supervised by a server, and the moving direction of the mobile terminal is predicted by the positioning method and the machine learning method, thereby performing pre-switching on the server side; It is managed by the server and is highly efficient.
  • the room is large, more information needs to be stored in advance, and the processing and computing power of the computer is in great demand.
  • the technical problem to be solved by the present invention is to provide a visible light communication blind zone coverage and handover method capable of automatically implementing coverage of a communication blind zone, thereby solving the problem of visible light illumination blind zone, thereby realizing handoff of blind zone communication.
  • the present invention provides a visible light communication blind zone coverage and handover method based on reflected light, including the following steps:
  • Step SI the mobile smart device receives the reflected light signal from the side of the LED light for communication
  • step S2 the mobile smart device controls the mirror disposed beside the LED lamp to rotate through the mobile network, so that the reflected light signal of the mirror can be irradiated to the mobile smart device in real time;
  • Step S3 After receiving the reflected light signal, the mobile smart device performs seamless handoff communication when moving through the blind zone, and switches to a new LED light irradiation area.
  • a further improvement of the present invention is that, in the step S1, the LED lamp is a smart LED lamp including a communication module and a lighting module, and the smart LED lamp is a transmitting end of the reflected light signal; A mirror for effecting reflection is provided, the mirror following the rotation in real time according to the movement of the mobile smart device; the mobile smart device includes one or more of a photoelectric sensor, an accelerometer sensor, and a direction sensor.
  • a further improvement of the present invention is that the mirror comprises a mirror body, a rotating component and a control end, the mirror body is mounted on the rotating component, the rotating component is connected with a control end, and the mobile smart device is Connected to the control terminal through a WIFI module.
  • step S2 comprises the following sub-steps:
  • Step S21 establishing a three-dimensional coordinate axis of the mirror, and establishing a mathematical model between the mobile smart device and the mirror;
  • Step S22 Obtain sensor data of the mobile smart device by using the mobile smart device, and calculate a left and right angle oc and an up and down angle of the mirror to be rotated according to the mathematical model obtained in step S21.
  • Step S23 the mobile smart device sends the calculated left and right angle oc and the up and down angle (3) to the control end of the mirror through the mobile network, thereby controlling the mirror to rotate in real time following the movement of the mobile smart device.
  • step S22 includes the following sub-steps:
  • Step S221 acquiring, by the mobile smart device, direction sensing data thereof;
  • Step S222 converting the direction sensing data into angle data of a plane coordinate system, to obtain a left and right angle oc of the mirror to be rotated;
  • Step S223 the acceleration sensing data and the motion speed data are acquired by the mobile smart device, and then the up and down angle of the mirror to be rotated is calculated (3).
  • a further improvement of the present invention is that, in the step S223, the motion speed data is obtained by accumulating the displacement of the mobile smart device, and then the instantaneous movement of the mobile smart device can be calculated by the time corresponding to the displacement. The speed, in turn, gives the upper and lower angles at which the mirror needs to be rotated (3. [0023]
  • the step S3 comprises the following sub-steps:
  • Step S31 the mobile smart device normally receives the optical signal emitted by the LED lamp, and calculates the received signal strength RSI;
  • Step S32 the mobile smart device compares the calculated received signal strength RSI with a preset received signal strength threshold, and further determines whether the mobile smart device moves to a service area boundary of the LED light;
  • Step S33 When the mobile smart device moves to a service area boundary of the LED light, the mobile smart device controls the mirror to rotate, so that the reflected light signal of the mirror covers the communication dead zone;
  • Step S34 the mobile smart device calculates a new received signal strength RSI in the reflected optical signal of the communication dead zone, and determines whether the new received signal strength RSI reaches the received signal strength threshold, thereby determining whether to switch. To the new communication service area.
  • a further improvement of the present invention is that, in the step S32, the process of determining whether the mobile smart device moves to the boundary of the service area of the LED lamp is: comparing the received signal strength RSI with a preset received signal strength threshold. Determining that the mobile smart device has moved to a service boundary of the LED light when the received signal strength RSI is less than the received signal strength threshold and excluding the interference condition; the removing the interference condition refers to determining the time domain Whether the received signal strength RSI is a continuous change, if otherwise determined as interference.
  • a further improvement of the present invention is that, in the step S33, when the mobile smart device moves to the boundary of the service area of the LED lamp, the mobile smart device rotates the left and right angle oc and the up and down angle of the mirror to be rotated. (3) sent to the control end of the mirror, thereby controlling the mirror to follow the left and right angle oc and the up and down angle in real time (3; the mobile smart device receives the reflected light signal of the rotated mirror to realize the specular reflection light of the communication dead zone Communication.
  • a further improvement of the present invention is: in the step S34, the process of determining whether to switch to the new communication service area is: determining whether the new received signal strength RSI is greater than the received signal strength threshold and is a continuous signal, If yes, it is determined that the new communication service area has been switched; the step S34 also feeds back the determination result to the LED lamp, thereby implementing the transfer of the communication control sovereignty to the new communication service area.
  • the beneficial effects of the present invention are: wireless implementation based on visible light in an indoor environment Communication, and a mirror that can be rotated along with the movement of the mobile intelligent device is arranged next to the LED lamp, and the original communication blind zone can be effectively covered without modifying the original route and lighting device in the room, and the implementation method of the invention is simple, effective, convenient and economical.
  • the present invention utilizes the side light of the LED lamp to reflect the light to the blind spot of the original LED lamp by adjusting the angle of the mirror, thereby enabling the blind spot of the original LED lamp to be covered.
  • the blind zone handoff protocol can be further defined, so that the handover of the communication service area can be seamlessly implemented in the mobile communication scenario to ensure continuity and reliability of communication.
  • the mirror can also be rotated along with the movement of the mobile smart device. Therefore, the present invention can solve the blind spot problem and the blind zone handoff problem in the visible light communication, and is important to the visible light communication system. significance.
  • FIG. 2 is a schematic view showing the structure of an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a system workflow of an embodiment of the present invention.
  • FIG. 4 is a schematic flow chart showing the implementation of the reflected light signal covering the visible light blind zone and the cross-region communication switching according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of an implementation process of a handover protocol according to an embodiment of the present invention.
  • the present embodiment provides a method for covering and handoff of a visible light communication blind spot based on reflected light, which includes the following steps:
  • Step SI the mobile smart device receives the reflected light signal from the side of the LED light for communication
  • Step S2 the mobile smart device controls the mirror disposed beside the LED light to rotate through the mobile network, so that the reflected light signal of the mirror can be irradiated to the mobile smart device in real time, and the mobile network is preferably WIFI.
  • the internet
  • Step S3 After receiving the reflected light signal, the mobile smart device performs seamless handoff communication when moving through the blind zone, and switches to a new LED light irradiation area.
  • the new LED lighting area is actually A new communication service area for visible light.
  • step S3 is used to implement seamless handover control.
  • Lm lamps Due to the rapid development of solid LH lamps, Lm) lamps have long life, energy saving and environmental protection, high safety performance and a large amount of unlicensed bandwidth, so that LED lights can be used for communication and illumination at the same time.
  • the lamp communicates wirelessly, and the communication speed can reach more than ten Gbit/s.
  • the indoor wireless visible light communication may soon occupy an important position. Studies have shown that visible light can be used for indoor positioning, positioning accuracy can reach millimeter level, which is a big breakthrough, because the lights are everywhere, and no additional cost and manpower to deploy additional equipment, using off-the-shelf LED bulbs Indoor positioning can be achieved. Different ways of using LED bulbs to achieve indoor positioning have different methods.
  • the common method is to embed the unique sign of the LED light in the LED light, and then broadcast the unique sign of the LED light through the optical signal without interruption.
  • the camera or the photoelectric sensor can recognize and decode the LED light mark to achieve the purpose of positioning.
  • the LED lamp has a certain illumination range, that is, the visible light communication has a blind spot, in other words, the light is not irradiated, or the light to be irradiated is very weak, and the weakness does not reach the communication requirement.
  • this example firstly proposes a light and flexible rotating mirror disposed beside the LED lamp, and the side light of the LED lamp is used to adjust the angle of the mirror to achieve coverage of the blind zone. Since the type of L ED lamp is also very numerous, this example uses a circular LED lamp with a lampshade as a preferred example, so that the additional mirror can be used as a lamp cover, which does not affect the illumination area of the original LED lamp, and can also be rotated by rotating the mirror. , Reflecting light into the blind area of the LED light.
  • the technical solution proposed in this example is economical, convenient, simple, and practical.
  • the solution proposed in this example is equivalent to a visible light blind area covering method and a mobile handoff system, as shown in FIG. 2
  • the hardware part is divided into a transmitting end and a receiving end.
  • the transmitting end includes an adjustable intelligent LED light and a mirror.
  • the WIFI receiving chip can be embedded in the LED light, and can exist independently. If it exists independently, a total is needed. Control node to control the communication process.
  • the wireless light signal emitted by the LED light is received and demodulated by the photoelectric sensor of the receiving end through the indoor wireless free space, and the receiving end is a mobile intelligent device, such as a smart phone, a tablet, a smart watch, etc., for calculating The received signal strength RSI and the mirror rotation angle are fed back to the transmitting end by the WIFI network transmitter, thereby achieving normal communication.
  • a mobile intelligent device such as a smart phone, a tablet, a smart watch, etc.
  • the mobile terminal receives the reflected light signal from the mirror passing through the LED lamp, and the transmitting end is preferably a smart LED lamp integrating communication and illumination; beside the smart LED lamp that can be used for communication A suitably sized mirror controlled by a machine is provided; the smart mobile device is an external USB photoelectric sensor (PD) type or a smart mobile device that is an embedded photoelectric sensor.
  • PD USB photoelectric sensor
  • the LH) lamp on the transmitting end is embedded in the chip of the Linux system, and the chip can be used to modulate the transmitted visible light signal.
  • the smart light bulb can be used for both life lighting and signal transmission for communication.
  • This example proposes to attach a rotatable mirror next to the LED light. By adjusting the angle of the mirror, the light reflected by the mirror can cover the blind spot. In terms of implementation, this example only needs to add a portable mechanical rudder, and the mirror rotation can be controlled by sending a control command at the receiving end.
  • the receiving end can be a USB pluggable photoelectric sensor (PD) or a photoelectric sensor embedded in the smart removable device chip.
  • the photoelectric sensor (PD) can receive communication data by receiving an optical signal, converting it into an electrical signal, and then modulating and decoding the received signal.
  • step S2 of the present example the moving smart device controls the mirror rotation beside the LED light based on obtaining data from an acceleration sensor and a direction sensor on a mobile smart device such as a smart phone, thereby calculating a rotation angle thereof, thereby controlling the mirror. Rotate. Therefore, mobile smart devices need to be smart devices that embed acceleration and direction sensors.
  • the LED lamp is a smart LED lamp including a communication module and a lighting module, and the smart LED lamp is a transmitting end of the reflected light signal;
  • the mirror follows the rotation in real time according to the movement of the mobile smart device;
  • the mobile smart device includes one or more of a photoelectric sensor, an accelerometer sensor, and a direction sensor.
  • the mirror of the present example comprises a mirror body, a rotating component and a control end, the mirror body is mounted on the rotating component, the rotating component is connected with a control end, and the mobile intelligent device passes through a WIFI module.
  • the control terminals are connected, so that the control terminal receives the WIFI control signal to control the rotating component to realize the rotation of the mirror body.
  • Step S2 described in this example includes the following sub-steps:
  • step S21 establishing a three-dimensional coordinate axis of the mirror, and establishing a mathematical model between the mobile smart device and the mirror;
  • Step S22 Obtain sensor data of the mobile smart device by using the mobile smart device, and calculate a left and right angle oc and an up and down angle of the mirror to be rotated according to the mathematical model obtained in the step S21.
  • Step S23 the mobile smart device sends the calculated left and right angle oc and the up and down angle (3) to the control end of the mirror through the mobile network, thereby controlling the mirror to rotate in real time following the movement of the mobile smart device.
  • Step S22 described in this example includes the following sub-steps:
  • Step S221 Acquire, by the mobile smart device, direction sensing data thereof;
  • Step S222 converting the direction sensing data into angle data of a plane coordinate system, to obtain a left and right angle oc of the mirror to be rotated;
  • Step S223 the acceleration sensing data and the motion speed data are acquired by the mobile smart device, and then the upper and lower angles at which the mirror needs to be rotated are calculated (3).
  • step S223 the motion speed data is obtained by accumulating the displacement of the mobile smart device, and then the instantaneous moving speed of the mobile smart device can be calculated by the time corresponding to the displacement, thereby obtaining the The upper and lower angles of the mirror need to be rotated (3.
  • this example abstracts the model of the LED side mirror into a three-dimensional coordinate axis, thereby establishing a geometric model (mathematical model) between the mobile smart device and the transmitting end (LED lamp and mirror), the geometric model (mathematical model) It is also possible to add the parameter of the mirror reflected light signal.
  • the left and right rotation angle oc of the mirror can be obtained by a built-in direction sensor of the smart phone, specifically: Since the data obtained by the direction sensor is an azimuth angle, the azimuth angle needs to be converted into a plane coordinate system.
  • the mirror up and down angle (3, this example through mathematical modeling to know the up and down angle (3 is related to the speed of the mobile smart device, and the speed of the mobile smart device can pass the wisdom
  • the data in the accelerometer built in the mobile phone can be calculated; and the method for calculating the speed used in this example is preferably obtained by accumulating the displacement of the mobile smart device, and then obtaining the time of the mobile smart device.
  • the instantaneous moving speed, and then the mathematical model calculation previously established, can obtain the up and down angle of the mirror that needs to be rotated up and down (3.
  • the mobile smart device in this example will calculate the left and right angle oc and up and down through the W IFI communication (3 is transmitted to the control end of the control mirror rotation, thereby realizing the mirror to rotate in real time with the movement of the mobile smart device.
  • Step S3 described in this example includes the following sub-steps:
  • Step S31 the mobile smart device normally receives the optical signal emitted by the LED lamp, and calculates its received signal strength RSI;
  • Step S32 The mobile smart device compares the calculated received signal strength RSI with a preset received signal strength threshold, and further determines whether the mobile smart device moves to a service area boundary of the LED light.
  • Step S33 when the mobile smart device moves to the boundary of the service area of the LED light, the mobile smart device controls the mirror to rotate, so that the reflected light signal of the mirror covers the communication blind zone;
  • Step S34 the mobile smart device calculates a new received signal strength RSI in the reflected optical signal of the communication dead zone, and determines whether the new received signal strength RSI reaches the received signal strength threshold, thereby determining whether to switch. To the new communication service area.
  • step S32 of this example the process of determining whether the mobile smart device moves to the boundary of the service area of the LED light is: comparing the received signal strength RSI with a preset received signal strength threshold, when receiving the signal strength If the RSI is smaller than the received signal strength threshold and the interference condition is excluded, it is determined that the mobile smart device has moved to a service boundary of the LED light; and the excluded interference condition refers to determining the received signal strength RSI from a time domain. Whether it is continuous change, otherwise it is judged as interference.
  • step S33 in the step S33, when the mobile smart device moves to the boundary of the service area of the LED light, the mobile smart device sends the left and right angle oc and the up and down angle (3) to which the mirror needs to be rotated. The control end of the mirror, and then the mirror is controlled to follow the left and right angle oc and the up and down angle in real time (3; the mobile smart device receives the reflected light signal of the rotated mirror to realize the specular light communication of the communication dead zone
  • step S34 of this example the process of determining whether to switch to the new communication service area is: determining the new Whether the received signal strength RSI is greater than the received signal strength threshold and is a continuous signal, if yes, it is determined that the new communication service area has been switched; the step S34 also feeds back the determination result to the LED light, thereby implementing communication Control sovereignty is transferred to the new communication service area.
  • This example proposes to solve the problem of visible light blind area coverage by specularly reflecting light.
  • the LED service area in this example is also called LED service area or communication service area;
  • the method provided in this example can move the mobile terminal to the blind spot or even move from the current LED service area to the new one.
  • LED service area communication is not interrupted.
  • the mobile smart device starts moving from the currently available LED service area, and calculates a real-time received signal strength RSI.
  • the received signal strength RSI is smaller than the received signal strength threshold provided in advance, it may indicate that the mobile end moves to
  • the boundary of the LED service area may also be disturbed or hindered, and it can be judged by whether it is a sudden decrease or a continuous decrease.
  • the mobile terminal When the received signal strength RSI is smaller than the received signal strength threshold because the mobile terminal moves to the boundary, it will enter the communication blind zone, and the mobile terminal will switch the signal, the left and right angle oc and the up and down angle (3 - the same through the WIFI to the transmitting end, by the transmitting end Execute the switching command and control the mirror rotation, that is, the mobile terminal receives the specular reflection communication at this time, avoiding the occurrence of the communication interruption to the blind spot communication.
  • the received signal strength RSI When the received signal strength RSI is enhanced again, it indicates that the new LED service area is entered. The switching signal is transmitted and the communication process is handed over to the control end of the new LED service area.
  • the present example further includes the step S34 further including a feasibility judgment of the reflected optical communication, and determining a predetermined received signal strength threshold.
  • a wireless network signal transmission technology based on specular reflection of light provides a visible light communication blind zone coverage and handover system using the reflected light-based visible light communication blind zone coverage and handover method.
  • a specular reflection communication channel model establishing module configured to receive, by the receiving end, a reflected light signal from the LED that is specularly reflected;
  • a modulation mode selection module configured to adjust the received LED reflected light signal to achieve visible light communication, because suitable communication is required to be determined
  • a received signal strength threshold determining module determining a characteristic of the reflected channel according to the channel model, and obtaining a received signal strength threshold of the boundary of the LED service area according to the bit error rate; [0077] The handover module implements switching between the communication dead zone and the new LED communication service area according to the received signal strength threshold.
  • the modulation mode of the selection module of the modulation mode in the example includes: modulation mode selection, due to the particularity of the optical transmission, 5 the modulation mode is light intensity/direct modulation, so the light intensity is also taken in this example. /Direct modulation; Light intensity / direct modulation includes switching modulation (OOK), and pulse modulation (PPM, PAM, PWM, etc.).
  • the determination of the received signal strength threshold in this example includes: determining, by step S34, a channel and a modulation method of the reflective communication, according to which the bit error rate BER of the channel is calculated, thereby determining the LED communication service area according to the bit error rate BER.
  • Receive signal strength threshold determining, by step S34, a channel and a modulation method of the reflective communication, according to which the bit error rate BER of the channel is calculated, thereby determining the LED communication service area according to the bit error rate BER.
  • step S11 the communication light and set in one of the intelligent information and LED light modulating transmission information carried by the light world I p.
  • Step S12 adding a single-sided mirror next to the LED light, and the light information carrying the information of the LED light can be reflected and communicated by the mirror;
  • Step S21 establishing a three-dimensional coordinate axis of the mirror, and establishing a mathematical model between the mobile smart device and the mirror, so as to control the rotation of the mirror according to the movement of the mobile smart device;
  • step S31 the mobile smart device is configured with a photoelectric sensor (PD), which can sense the optical signal through the photoelectric sensor (PD) and convert it into an electrical signal; the mobile smart device receives the light information from the LED light, and Demodulating the original information; the mobile intelligent device calculates the received signal strength (RSI);
  • PD photoelectric sensor
  • RSI received signal strength
  • Step S32 The mobile smart device compares the calculated received signal strength RSI with the received signal strength threshold.
  • Step S33 the mobile smart device can confirm whether the mobile smart device is in the LED light domain according to the determination result, if yes, go to step S22, otherwise return to step S31;
  • Step S22 the mobile smart device acquires data of the accelerometer sensor and the direction sensor, and calculates a left and right angle oc and an up and down angle (3;
  • Step S23 the mobile intelligent device returns the received signal strength by the WIFI, the RSI determination result, the left and right angle a, and the up and down angle (3;
  • Step S34 the sending end receives the WIFI signal, controls the handoff and the mirror rotation, and determines whether to cut Switch to the new communication service area;
  • steps S2 and S3 in this example are not exactly a sequential step, and cross and jump in the actual working process. More specifically, the handover protocol design used in the handover in step S34 in this example is as shown in FIG. 5, and includes the following steps:
  • the mobile smart device calculates the received signal strength RSI according to the received information
  • the mobile smart device compares the calculated received signal strength RSI with a predetermined predetermined received signal strength threshold. If the calculated received signal strength RSI is less than or equal to the received signal strength threshold, the fourth step is performed. Return to the second step;
  • the fourth step is to determine whether it is other interference, such as a sudden block of light, etc., if the determination is negative, perform the fifth step, otherwise return to the second step;
  • the mobile smart device acquires data of the accelerometer sensor and the direction sensor, and calculates a left and right angle a and an up and down angle (3 ;
  • the mobile smart device calculates the left and right angles a and the upper and lower angles (3) to the transmitting end through the WIFI;
  • the transmitting end receives the WIFI signal, obtains the left and right angles a and the up and down angles (3, and sends them to the control end that controls the rotation of the mirror, so that the mirror reflects the light to the mobile smart device, and calculates the communication.
  • Received signal strength RSI Received signal strength
  • the mobile smart device compares the received signal strength RSI calculated in the reflective communication with the received signal strength threshold. If the received signal strength threshold is greater than or equal to the received signal strength threshold, the ninth step is performed, otherwise the process returns to the seventh step;
  • step 7 determining whether it is other interference, such as sudden exposure of other light, etc., if the determination is negative, executing the tenth step, otherwise returning to step 7;
  • the handover protocol ends, and the mobile smart device communicates with the LED lights of the new communication service area.
  • this example implements wireless communication based on visible light in an indoor environment, and configures one side of the LED light.
  • the mirror that can rotate following the movement of the mobile smart device can effectively cover the original communication blind zone without modifying the original route and lighting device in the room, and the implementation method of the invention is simple, effective, convenient and economical.
  • the present invention utilizes the side light of the LED lamp to reflect the light to the blind spot of the original LED lamp by adjusting the angle of the mirror, thereby enabling the blind spot of the original LED lamp to be covered.
  • the blind zone handoff protocol can be further defined, so that the handover of the communication service area can be seamlessly implemented in the mobile communication scenario to ensure continuity and reliability of communication.
  • the mirror can also be rotated along with the movement of the mobile smart device. Therefore, the present example can solve the blind zone problem and the blind zone handoff problem in the visible light communication, and is important to the visible light communication system. significance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

本发明提供一种基于反射光的可见光通信盲区覆盖及越区切换方法,包括以下步骤:步骤S1,移动智能设备接收来自LED灯旁边的反射光信号来进行通信;步骤S2,所述移动智能设备通过移动网络控制设置于所述LED灯旁的镜子进行旋转,使得镜子的反射光信号能够实时照射到所述移动智能设备;步骤S3,所述移动智能设备接收到反射光信号后,在移动经过盲区时进行无缝越区切换通信,切换至新的LED灯照射区域。本发明基于室内环境下的可见光实现无线通信,并在LED灯旁边配置一面能够跟随移动智能设备运动而转动的镜子,不需要修改室内原本的路线和照明装置,就能够有效覆盖原本的通信盲区,实现方式简单有效且方便经济。

Description

说明书 发明名称:一种基于反射光的可见光通信盲区覆盖及越区切换方法 技术领域
[0001] 本发明涉及一种可见光通信覆盖方法, 尤其涉及一种基于反射光的可见光通信 盲区覆盖及越区切换方法。
背景技术
[0002] “智慧家庭”的兴起, 计算机, 智能设备的迅速普及, 使得移动数字终端的范畴 发生革命性的变化, 给传统接入网技术带来了巨大的考验。 光纤到户“最后一公 里路”的困境、 无线接入网频谱资源紧张、 光载无线通信的不成熟和电磁辐射都 制约这个瓶颈的突破; 当今世上正在演绎一场“随时随地”的接入方式的深刻变革 , 社会也呼唤一种拓宽频谱资源、 绿色节能以及可移动的接入方式。 由此, 可 见光通信应运而生。
[0003] 可见光通信于 2000年横空出世, 其利用发光二极管 (LED灯) 作为光源, 在 LE D灯照明的同时还可以高速地通信。 白光 LED灯现已经被广泛应用于信号发射、 显示、 照明灯领域; 与其他光源相比, 白光具有更高的调制带宽, 还具有调制 性能好和响应灵敏度高的优点, 利用这些特性, 可以将信号调制到 LED灯发出的 可见光上进行传输。
[0004] 可见光的频谱不仅丰富, 而且无需要授权, 并具有安全性高和保密性好等众多 优点, 所以可见光通信备受学术界和工业界关注; 在可见光通信技术迅猛发展 的同时, 可见光也被认为极具有吸引力的室内定位技术的解决方案; 又因为室 内可见光通信的逐渐成熟, 也被用于室内动作识别; 由于其安全保密还可以用 于医院和飞机等电磁波干扰较大的场景中的无线通信。
[0005] 但是, 由于 LED灯的光传播特性是直线传播, 并且有一定的传播范围以及容易 被物体阻隔, 所以在地下车库或者较空旷的室内等地方会出现光线照射不到的 区域, 即存在可见光照射盲区。 当在移动通信的场景下 (移动通信、 室内定位 、 室内导航和室内识别等) , 接收端移动到盲区的时候, 会出现通信中断的情 况。 所以在移动场景下, 从一个光源经过盲区再到另一个光源之间的越区切换 是个很大的问题。 一种解决方法依赖于终端缓冲区的增大, 当终端离开 LED灯光 小区的时候, 根据存储一定的比特数, 这是移动终端在找到新的射灯小区前, 将会损失的最少比特数。 这种方法提供了被动型的切换执行方法, 这意味着移 动终端在断开与 LED灯光小区的连接之前就开启切换。 在离开 LED灯光小区之前 , 移动终端可以知道它是否会找到一个新的、 邻近的射灯小区, 这通过做一个 强度测试即可。
[0006] 当移动终端接近 LED灯光小区的边界时, 它会通过任意一个接受信号强度来判 断是否有其他射灯小区的存在。 一旦接收光服务小区的接受信号强度 (Received Signal Intensity.RSl) 低于原先设定的阈值, 若周围没有照射小区, 则移动终端 的缓冲区会增大, 已存储更多的比特数。 这种解决方案的优点是, 只需要在接 收端增加缓冲区即可, 简单方便, 但是当盲区较大所需要的缓冲区较大, 对于 移动设备, 此法会增加内存消耗, 而且用户体验因为时延的原因会受到影响。 另一种解决方案是, 整个房间的可用于通信的 LED灯都由一个服务器监管, 通过 定位的方法和机器学习的方法预测移动终端的移动方向, 从而在服务器端进行 提前预切换; 这种方法由服务器统一管理, 高效规整, 但是如果房间较大, 所 需要提前存储的信息较多, 对计算机的处理和计算能力需求较大。
发明概述
技术问题
问题的解决方案
技术解决方案
[0007] 本发明所要解决的技术问题是需要提供一种能够自动实现通信盲区的覆盖, 进 而解决可见光照射盲区问题, 从而实现盲区通信的越区切换的可见光通信盲区 覆盖及越区切换方法。
[0008] 对此, 本发明提供一种基于反射光的可见光通信盲区覆盖及越区切换方法, 包 括以下步骤:
[0009] 步骤 SI, 移动智能设备接收来自 LED灯旁边的反射光信号来进行通信;
[0010] 步骤 S2, 所述移动智能设备通过移动网络控制设置于所述 LED灯旁的镜子进行 旋转, 使得镜子的反射光信号能够实时照射到所述移动智能设备; [0011] 步骤 S3, 所述移动智能设备接收到反射光信号后, 在移动经过盲区时进行无缝 越区切换通信, 切换至新的 LED灯照射区域。
[0012] 本发明的进一步改进在于, 所述步骤 S1中, 所述 LED灯为包括通信模块和照明 模块的智能 LED灯, 所述智能 LED灯为反射光信号的发射端; 所述 LED灯旁边设 置有用于实现反射的镜子, 所述镜子根据所述移动智能设备的运动而实时跟随 转动; 所述移动智能设备包括光电感应器、 加速度计传感器以及方向传感器中 的一种或几种。
[0013] 本发明的进一步改进在于, 所述镜子包括镜子本体、 转动组件和控制端, 所述 镜子本体安装于所述转动组件上, 所述转动组件和控制端相连接, 所述移动智 能设备通过 WIFI模块与所述控制端相连接。
[0014] 本发明的进一步改进在于, 所述步骤 S2包括以下子步骤:
[0015] 步骤 S21, 建立所述镜子的三维坐标轴, 并建立移动智能设备与所述镜子之间 的数学模型;
[0016] 步骤 S22, 通过移动智能设备中获得所述移动智能设备的传感数据, 并根据所 述步骤 S21中得到的数学模型, 计算所述镜子需要转动的左右角度 oc和上下角度(3
[0017] 步骤 S23 , 移动智能设备将计算得到的左右角度 oc和上下角度(3通过移动网络发 送给所述镜子的控制端, 从而控制所述镜子跟随所述移动智能设备的运动而实 时转动。
[0018] 本发明的进一步改进在于, 所述步骤 S22包括以下子步骤:
[0019] 步骤 S221, 通过所述移动智能设备获取其方向传感数据;
[0020] 步骤 S222, 将所述方向传感数据转换成平面坐标系的角度数据, 得到所述镜子 需要转动的左右角度 oc;
[0021] 步骤 S223, 通过所述移动智能设备获取其加速度传感数据和运动速度数据, 进 而计算得到所述镜子需要转动的上下角度(3。
[0022] 本发明的进一步改进在于, 所述步骤 S223中, 通过累计所述移动智能设备的位 移得到其运动速度数据, 然后通过位移所对应的时间, 可以计算得到所述移动 智能设备的瞬时移动速度, 进而得到所述镜子需要转动的上下角度(3。 [0023] 本发明的进一步改进在于, 所述步骤 S3包括以下子步骤:
[0024] 步骤 S31、 移动智能设备正常接收 LED灯发出的光信号, 并计算其接收信号强 度 RSI;
[0025] 步骤 S32, 移动智能设备通过比较计算所得的接收信号强度 RSI与预设的接收信 号强度阈值, 进而判断所述移动智能设备是否移动到 LED灯的服务区域边界; [0026] 步骤 S33 , 当所述移动智能设备移动到 LED灯的服务区域边界时, 所述移动智 能设备控制所述镜子转动, 使得所述镜子的反射光信号得以覆盖通信盲区;
[0027] 步骤 S34, 所述移动智能设备在通信盲区的反射光信号中, 计算新的接收信号 强度 RSI, 判断该新的接收信号强度 RSI是否达到所述接收信号强度阈值, 以此 判断是否切换至新的通信服务区。
[0028] 本发明的进一步改进在于, 所述步骤 S32中, 判断所述移动智能设备是否移动 到 LED灯的服务区域边界的过程为, 对接收信号强度 RSI与预设的接收信号强度 阈值进行比较, 当接收信号强度 RSI小于所述接收信号强度阈值且排除干扰情况 , 则判断所述移动智能设备已移动到所述 LED灯的服务边界; 所述排除干扰情况 指的是从时间域上判断所述接收信号强度 RSI是否为连续变化, 若否则判断为干 扰。
[0029] 本发明的进一步改进在于, 所述步骤 S33中, 当所述移动智能设备移动到 LED 灯的服务区域边界时, 所述移动智能设备将所述镜子需要转动的左右角度 oc和上 下角度(3发送至所述镜子的控制端, 进而控制所述镜子实时跟随转动左右角度 oc 和上下角度(3; 所述移动智能设备接收转动后的镜子的反射光信号, 实现通信盲 区的镜面反射光通信。
[0030] 本发明的进一步改进在于, 所述步骤 S34中, 判断是否切换至新的通信服务区 的过程为: 判断该新的接收信号强度 RSI是否大于所述接收信号强度阈值且为连 续信号, 若是则判断为已切换至新的通信服务区; 所述步骤 S34还将判断结果反 馈至所述 LED灯中, 进而实现将通信控制主权转交至新的通信服务区。
发明的有益效果
有益效果
[0031] 与现有技术相比, 本发明的有益效果在于: 基于室内环境下的可见光实现无线 通信, 并在 LED灯旁边配置一面能够跟随移动智能设备运动而转动的镜子, 不需 要修改室内原本的路线和照明装置, 就能够有效覆盖原本的通信盲区, 本发明 实现方式简单有效且方便经济。
[0032] 更为具体的, 本发明是利用所述 LED灯的侧面光线, 通过调整镜子的角度将光 线反射到原本 LED灯的照射盲区, 进而使得原本的 LED灯盲区也实现了覆盖, 在 此基础上, 还能够进一步限定盲区越区切换协议, 从而实现在移动通信的场景 下, 无缝实现通信服务区的切换, 以保证通信的连续性和可靠性。
[0033] 并且在此过程中还涉及到镜子可以随着移动智能设备的运动而旋转, 因此, 本 发明能够解决可见光通信中的盲区问题和盲区越区切换问题, 对可见光通信系 统有着很重要的意义。
对附图的简要说明
附图说明
[0034] 图 2是本发明一种实施例的结构原理示意图;
[0035] 图 3是本发明一种实施例的系统工作流程简图;
[0036] 图 4为本发明的一种实施例的反射光信号覆盖可见光盲区及越区通信切换的实 现流程示意图;
[0037] 图 5为本发明的一种实施例的越区切换协议的实现过程示意图。
发明实施例
本发明的实施方式
[0038] 下面结合附图, 对本发明的较优的实施例作进一步的详细说明。
[0039] 如图 1至图 3所示, 本例提供一种基于反射光的可见光通信盲区覆盖及越区切换 方法, 包括以下步骤:
[0040] 步骤 SI, 移动智能设备接收来自 LED灯旁边的反射光信号来进行通信;
[0041] 步骤 S2, 所述移动智能设备通过移动网络控制设置于所述 LED灯旁的镜子进行 旋转, 使得镜子的反射光信号能够实时照射到所述移动智能设备, 所述移动网 络优选为 WIFI网络;
[0042] 步骤 S3, 所述移动智能设备接收到反射光信号后, 在移动经过盲区时进行无缝 越区切换通信, 切换至新的 LED灯照射区域。 新的 LED灯照射区域, 实际上就是 可见光的新的通信服务区。
[0043] 也就是说, 本例通过在 LED灯旁配置一面单面镜子并利用其反射光来覆盖 LED 灯的通信盲区。 图 3中, 反射通道对应的是步骤 S1, 总结起来就是步骤 S1用于建 立反射通道; 镜子转动对应的是步骤 S2, 总结起来就是步骤 S2用于实现镜子的 实时跟随转动; 越区切换对应的是步骤 S3 , 总结起来就是步骤 S3用于实现无缝 越区切换控制。
[0044] 由于固状 LH)灯的迅猛发展, 又因 Lm)灯寿命长、 节能环保、 安全性能高和大 量无需授权的带宽, 使得 LED灯可以同时用于通信和照明, 有研究表明用 LED灯 进行无线通信, 通信速度可以达到十几 G bit/s。 随着 LED灯产业的进一步发展以 及用 LED灯进行无线通信的研究也逐步发展成熟, 室内无线可见光通信在不久将 来可能会占据重要地位。 有研究表明可用可见光来实现室内定位, 定位精度可 以达到毫米级, 这是一个很大的突破, 因为灯无处不在, 又不需要额外的成本 和人力去部署额外的设备, 利用现成的 LED灯泡就可以实现室内定位。 利用 LED 灯泡来实现室内定位的方法不同研究人员有不同的方法, 常见的方法就是在 LED 灯中嵌入 LED灯的唯一标志, 然后通过光信号将 LED灯的唯一标志进行不间断的 广播, 用手机摄像头或者光电感应器都可以识别解码出 LED灯标志, 从而达到定 位的目的。 还有研究人员利用可见光通信来做人的手势识别, 原理就是 LED灯正 常照射, 在地面部署光电感应器, 然后通过识别人的手势动作的影子来达到识 别的目的。 当然还有很多有关可见光通信其它方面的研究。 但是由于 LED灯有一 定的照射范围, 也即可见光通信存在照射盲区, 换句话说, 即光线照射不到, 或者照射的光线非常弱小, 弱小到达不到通信的要求。
[0045] 所以为解决这个问题, 本例首次提出在 LED灯旁配置一面轻便灵活可旋转的镜 子, 利用 LED灯的侧面光线, 通过调整镜子的角度, 来实现盲区的覆盖。 由于 L ED灯的类型也非常繁多, 本例以圆形带有灯罩的 LED灯为优选例子, 这样便可 以使得附加的镜子当灯罩, 既不影响原本 LED灯的光照区域, 又能通过旋转镜子 , 将光线反射到 LED灯的光照盲区。 本例提出的技术方案经济实惠, 方便简单, 有实用的价值。
[0046] 本例提出的方案相当于是可见光盲区覆盖方法及移动越区切换系统, 如图 2所 示, 其硬件部分分为发送端和接收端, 发送端包括一个可调整的智能 LED灯和一 个镜子, WIFI接收芯片可嵌入至 LED灯中, 亦可独立存在, 若是独立存在, 则 需要一个总控节点, 来控制通信收发过程。 由 LED灯发出的无线光信号, 通过室 内无线自由空间, 再由接收端的光电感应器接收和解调, 所述接收端为移动智 能设备, 比如智能手机、 平板以及智能手表等, 用于计算其接收信号强度 RSI和 镜子转动角度, 再由 WIFI网络发送器反馈到发送端, 从而实现正常的通信。
[0047] 具体地, 所述步骤 S1移动端接收来自通过 LED灯旁镜子的反射光信号中, 所述 发送端优选为集通信和照明于一体的智能 LED灯; 可用于通信的智能 LED灯旁边 设置有由机械控制的合适大小的镜子; 所述智能移动设备为外接 USB光电感应器 (PD) 型或者为嵌入式光电感应器的智能移动设备。
[0048] 发送端的 LH)灯嵌入 Linux系统的芯片, 此芯片可用于调制编码发送的可见光 信号, 这种智能灯泡既可以用于生活照明, 又可以用于传输信号从而实现通信 。 本例提出在 LED灯旁边附加一面可旋转的镜子, 通过调整镜子的角度使得经过 镜子反射的光线能覆盖到照射盲区。 在实现上, 本例只需要加一个轻便的机械 总舵, 便可以通过接收端发送控制指令即可控制镜子旋转。 接收端可以是 USB可 拔插的光电感应器 (PD) , 亦可以是嵌入智能可移动设备芯片中光电感应器。 光电感应器 (PD) 通过接收到光信号, 再将其转换为电信号, 然后再调制解码 收到的信号, 便可以接收通信数据。
[0049] 本例所述步骤 S2中, 所述移动智能设备控制 LED灯旁的镜子旋转是基于从智能 手机等移动智能设备上加速度传感器和方向传感器获得数据, 进而计算其转动 角度, 从而控制镜子旋转。 因此, 移动智能设备需要为嵌入加速度传感器和方 向传感器的智能设备。
[0050] 综上, 本例所述步骤 S1中, 所述 LED灯为包括通信模块和照明模块的智能 LED 灯, 所述智能 LED灯为反射光信号的发射端; 所述 LED灯旁边设置有用于实现反 射的镜子, 所述镜子根据所述移动智能设备的运动而实时跟随转动; 所述移动 智能设备包括光电感应器、 加速度计传感器以及方向传感器中的一种或几种。
[0051] 本例所述镜子包括镜子本体、 转动组件和控制端, 所述镜子本体安装于所述转 动组件上, 所述转动组件和控制端相连接, 所述移动智能设备通过 WIFI模块与 所述控制端相连接, 进而使得所述控制端接收 WIFI控制信号控制转动组件实现 镜子本体的转动。
[0052] 本例所述步骤 S2包括以下子步骤:
[0053] 步骤 S21, 建立所述镜子的三维坐标轴, 并建立移动智能设备与所述镜子之间 的数学模型;
[0054] 步骤 S22, 通过移动智能设备中获得所述移动智能设备的传感数据, 并根据所 述步骤 S21中得到的数学模型, 计算所述镜子需要转动的左右角度 oc和上下角度(3
[0055] 步骤 S23 , 移动智能设备将计算得到的左右角度 oc和上下角度(3通过移动网络发 送给所述镜子的控制端, 从而控制所述镜子跟随所述移动智能设备的运动而实 时转动。
[0056] 本例所述步骤 S22包括以下子步骤:
[0057] 步骤 S221, 通过所述移动智能设备获取其方向传感数据;
[0058] 步骤 S222, 将所述方向传感数据转换成平面坐标系的角度数据, 得到所述镜子 需要转动的左右角度 oc;
[0059] 步骤 S223, 通过所述移动智能设备获取其加速度传感数据和运动速度数据, 进 而计算得到所述镜子需要转动的上下角度(3。
[0060] 本例所述步骤 S223中, 通过累计所述移动智能设备的位移得到其运动速度数据 , 然后通过位移所对应的时间, 可以计算得到所述移动智能设备的瞬时移动速 度, 进而得到所述镜子需要转动的上下角度(3。
[0061] 优先地, 本例将 LED旁边镜子的模型抽象成三维坐标轴, 从而建立移动智能设 备和发送端 (LED灯和镜子) 之间的几何模型 (数学模型) , 该几何模型 (数学 模型) 还可以将镜子反射光信号这一参数加进去。 从抽象出的几何模型中, 所 述镜子左右转动角度 oc可以通过智能手机内置的方向传感器获取, 具体为: 由于 方向传感器获得的数据是方位角度, 此处还需要将方位角度转换成平面坐标系 的角度; 当移动智能设备左右移动时, 镜子也应该移动同样大小的角度, 因为 镜子需要随移动智能设备的移动而转动。 而镜子上下角度(3 , 本例通过数学建模 得知上下角度(3与移动智能设备的速度有关, 而移动智能设备的速度可以通过智 能手机内置的加速度传感器中的数据进行计算得到; 而本例所采用的计算速度 的方法, 优选通过累计移动智能设备移动的位移, 然后再比上所花费的时间, 即可得到移动智能设备的瞬时移动速度, 进而通过之前建立的数学模型计算便 能够得到镜子需要上下转动的上下角度(3。 本例就不对如何计算这两个角度进行 展开描述, 通过现在的建模和数学运算即可实现。 本例所述移动智能设备通过 W IFI通信将计算得到左右角度 oc和上下(3传送到控制镜子转动的控制端, 从而实现 镜子随移动智能设备的移动而实时转动。
[0062] 本例所述步骤 S3包括以下子步骤:
[0063] 步骤 S31、 移动智能设备正常接收 LED灯发出的光信号, 并计算其接收信号强 度 RSI;
[0064] 步骤 S32, 移动智能设备通过比较计算所得的接收信号强度 RSI与预设的接收信 号强度阈值, 进而判断所述移动智能设备是否移动到 LED灯的服务区域边界;
[0065] 步骤 S33 , 当所述移动智能设备移动到 LED灯的服务区域边界时, 所述移动智 能设备控制所述镜子转动, 使得所述镜子的反射光信号得以覆盖通信盲区;
[0066] 步骤 S34, 所述移动智能设备在通信盲区的反射光信号中, 计算新的接收信号 强度 RSI, 判断该新的接收信号强度 RSI是否达到所述接收信号强度阈值, 以此 判断是否切换至新的通信服务区。
[0067] 本例所述步骤 S32中, 判断所述移动智能设备是否移动到 LED灯的服务区域边 界的过程为, 对接收信号强度 RSI与预设的接收信号强度阈值进行比较, 当接收 信号强度 RSI小于所述接收信号强度阈值且排除干扰情况, 则判断所述移动智能 设备已移动到所述 LED灯的服务边界; 所述排除干扰情况指的是从时间域上判断 所述接收信号强度 RSI是否为连续变化, 若否则判断为干扰。
[0068] 本例所述步骤 S33中, 当所述移动智能设备移动到 LED灯的服务区域边界时, 所述移动智能设备将所述镜子需要转动的左右角度 oc和上下角度(3发送至所述镜 子的控制端, 进而控制所述镜子实时跟随转动左右角度 oc和上下角度(3; 所述移 动智能设备接收转动后的镜子的反射光信号, 实现通信盲区的镜面反射光通信
[0069] 本例所述步骤 S34中, 判断是否切换至新的通信服务区的过程为: 判断该新的 接收信号强度 RSI是否大于所述接收信号强度阈值且为连续信号, 若是则判断为 已切换至新的通信服务区; 所述步骤 S34还将判断结果反馈至所述 LED灯中, 进 而实现将通信控制主权转交至新的通信服务区。
[0070] 本例提出用镜面反射光来解决可见光盲区覆盖的问题, 当移动智能设备从一个 LED服务区域移动经过一段盲区之后再到另外一个 LED服务区域, 本例所述 LED 服务区域也称为 LED服务区或通信服务区; 此场景下, 移动端移动到盲区时, 会 导致通信的中断, 而本例提供的方法, 可以使得移动端移动到盲区乃至一直从 当前 LED服务区移动到新的 LED服务区通信不中断。
[0071] 所述移动智能设备从当前能通信的 LED服务区开始移动, 并计算实时的接收信 号强度 RSI, 当接收信号强度 RSI小于提前提供的接收信号强度阈值时, 有可能 表示移动端移动到 LED服务区域的边界, 也可能受到干扰或者阻碍, 此处可以通 过是否为突然降低还是连续降低来判断。 当接收信号强度 RSI小于接收信号强度 阈值是由于移动端移动到边界时, 即将进入通信盲区, 移动端将切换信号、 左 右角度 oc和上下角度(3—同通过 WIFI传递给发送端, 由发送端执行切换命令和控 制镜子转动, 也即, 此时移动端通过接收镜面反射通信, 避免了移动到盲区通 信中断的发生。 当接收信号强度 RSI再次增强的时候, 说明进入新的 LED服务区 域, 此时传递切换信号, 将通信过程交由新的 LED服务区域的控制端。
[0072] 本本例还包括所述步骤 S34中还包括了反射光通信的可行性判断, 以及确定预 定的接收信号强度阈值。
[0073] 本例基于光的镜面反射的无线网络信号传输技术, 提供了一种应用了所述基于 反射光的可见光通信盲区覆盖及越区切换方法的可见光通信盲区覆盖及越区切 换系统, 具体包括:
[0074] 镜面反射通信信道模型建立模块, 用于接收端接收来自通过镜面反射的 LED反 射光信号;
[0075] 调制方式的选择模块, 用于对接收的 LED反射光信号进行调整以实现可见光通 信, 因为要能够实现正常的通信, 合适的调制方式是需要确定的;
[0076] 接收信号强度阈值确定模块, 根据通道模型确定反射信道的特性, 根据比特错 误率得到 LED服务区域边界的接收信号强度阈值; [0077] 越区切换模块, 根据接收信号强度阈值实现通信盲区和新的 LED通信服务区之 间的切换。
[0078] 其中, 本例所述调制方式的选择模块中调制方式包括: 调制方式选择, 由于光 传输的特殊性, 5见有的调制方式为光强 /直接调制, 所以本例同样采取光强 /直接 调制; 光强 /直接调制又包含开关调制 (OOK) , 以及脉冲调制 (PPM, PAM , PWM等) 。
[0079] 本例所述接收信号强度阈值的确定包括: 由步骤 S34可以确定反射通信的信道 和调制方法, 根据此, 计算通道的比特错误率 BER,从而根据比特错误率 BER确 定 LED通信服务区的接收信号强度阈值。
[0080] 更为具体的, 如附图 4所示, 在实际工作中, 本例的详细工作流程包括:
[0081] 步骤 S11, 集光照和通信于一体的智能 LED灯调制传输信息并将信息由灯光携 世 Ip.
友送;
[0082] 步骤 S12, LED灯旁添加一面单面镜子, LED灯携带信息的光信息可由镜子反 射通信;
[0083] 步骤 S21, 建立所述镜子的三维坐标轴, 并建立移动智能设备与所述镜子之间 的数学模型, 便于根据移动智能设备的移动而控制镜子的转动;
[0084] 步骤 S31, 移动智能设备配置了光电感应器 (PD) , 通过光电感应器 (PD) 能 够感应光信号, 并将其转换为电信号; 移动智能设备接收来自 LED灯的灯光信息 , 并且解调出原始信息; 移动智能设备计算接收信号强度(RSI);
[0085] 步骤 S32, 移动智能设备将计算所得的接收信号强度 RSI与接收信号强度阈值进 行对比判断;
[0086] 步骤 S33, 移动智能设备根据判断结果可确认移动智能设备是否在 LED光域内 若是, 执行步骤 S22, 否则返回步骤 S31 ;
[0087] 步骤 S22, 移动智能设备获取加速度计传感器和方向传感器的数据, 根据建立 的数学模型计算出控制镜子需要转动的左右角度 oc和上下角度(3;
[0088] 步骤 S23, 移动智能设备用 WIFI回传接收信号强度 RSI判断结果、 左右角度 a和 上下角度(3;
[0089] 步骤 S34, 发送端接接收 WIFI信号, 控制越区切换和镜子转动, 并判断是否切 换至新的通信服务区;
[0090] 由此可见, 本例所述步骤 S2和步骤 S3其实不完全是一个顺序步骤, 在实际工作 过程中是相互交叉和跳转的。 更为具体的, 本例所述步骤 S34中的越区切换所采 用的切换协议设计如图 5所示, 包括以下步骤:
[0091] 第一步, 流程开始;
[0092] 第二步, 移动智能设备根据接收到的信息计算接收信号强度 RSI;
[0093] 第三步, 移动智能设备将计算得到接收信号强度 RSI与提前预定的接收信号强 度阈值作对比, 若计算得到的接收信号强度 RSI小于等于接收信号强度阈值, 则 执行第四步, 否则返回第二步;
[0094] 第四步, 判断是否为其它干扰, 比如光线突然阻隔等, 判断为否定时, 执行第 五步, 否则返回第二步;
[0095] 第五步, 移动智能设备获取加速度计传感器和方向传感器的数据, 根据建立的 数学模型计算出控制镜子需要转动的左右角度 a和上下角度(3;
[0096] 第六步, 移动智能设备将计算所得的左右角度 a和上下角度(3通过 WIFI反馈给 发送端;
[0097] 第七步, 发送端接收到 WIFI信号, 获取左右角度 a和上下角度(3, 并将其发送 到控制镜子转动的控制端, 使得镜子将光线反射至移动智能设备处, 并计算通 信中的接收信号强度 RSI;
[0098] 第八步, 将移动智能设备将反射通信中计算所得的接收信号强度 RSI与接收信 号强度阈值进行比较, 若大于等于接收信号强度阈值, 执行第九步, 否则返回 到第七步;
[0099] 第九步, 判断是否为其它干扰, 比如其它光线突然照射等, 判断为否定时, 执 行第十步, 否则返回第 7步;
[0100] 第十步, 计算所得接收信号强度 RSI是否大于等于接收信号强度阈值, 若是则 说明进入另一个通信区域, 则通过 WIFI反馈判断结果, 使得发送端将通信主权 交进行转交;
[0101] 第十一步, 切换协议结束, 移动智能设备与新通信服务区的 LED灯进行通信。
[0102] 综上, 本例基于室内环境下的可见光实现无线通信, 并在 LED灯旁边配置一面 能够跟随移动智能设备运动而转动的镜子, 不需要修改室内原本的路线和照明 装置, 就能够有效覆盖原本的通信盲区, 本发明实现方式简单有效且方便经济
[0103] 更为具体的, 本发明是利用所述 LED灯的侧面光线, 通过调整镜子的角度将光 线反射到原本 LED灯的照射盲区, 进而使得原本的 LED灯盲区也实现了覆盖, 在 此基础上, 还能够进一步限定盲区越区切换协议, 从而实现在移动通信的场景 下, 无缝实现通信服务区的切换, 以保证通信的连续性和可靠性。
[0104] 并且在此过程中还涉及到镜子可以随着移动智能设备的运动而旋转, 因此, 本 例能够解决可见光通信中的盲区问题和盲区越区切换问题, 对可见光通信系统 有着很重要的意义。
[0105] 以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明, 不能认 定本发明的具体实施只局限于这些说明。 对于本发明所属技术领域的普通技术 人员来说, 在不脱离本发明构思的前提下, 还可以做出若干简单推演或替换, 都应当视为属于本发明的保护范围。

Claims

权利要求书
[权利要求 1] 一种基于反射光的可见光通信盲区覆盖及越区切换方法, 其特征在于 , 包括以下步骤:
步骤 SI, 移动智能设备接收来自 LED灯旁边的反射光信号来进行通信 步骤 S2, 所述移动智能设备通过移动网络控制设置于所述 LED灯旁的 镜子进行旋转, 使得镜子的反射光信号能够实时照射到所述移动智能 设备;
步骤 S3 , 所述移动智能设备接收到反射光信号后, 在移动经过盲区时 进行无缝越区切换通信, 切换至新的 LED灯照射区域。
[权利要求 2] 根据权利要求 1所述的基于反射光的可见光通信盲区覆盖及越区切换 方法, 其特征在于, 所述步骤 S1中, 所述 LED灯为包括通信模块和照 明模块的智能 LED灯, 所述智能 LED灯为反射光信号的发射端; 所述 LED灯旁边设置有用于实现反射的镜子, 所述镜子根据所述移动智能 设备的运动而实时跟随转动; 所述移动智能设备包括光电感应器、 加 速度计传感器以及方向传感器中的一种或几种。
[权利要求 3] 根据权利要求 1所述的基于反射光的可见光通信盲区覆盖及越区切换 方法, 其特征在于, 所述镜子包括镜子本体、 转动组件和控制端, 所 述镜子本体安装于所述转动组件上, 所述转动组件和控制端相连接, 所述移动智能设备通过 WIFI模块与所述控制端相连接。
[权利要求 4] 根据权利要求 1至 3任意一项所述的基于反射光的可见光通信盲区覆盖 及越区切换方法, 其特征在于, 所述步骤 S2包括以下子步骤: 步骤 S21, 建立所述镜子的三维坐标轴, 并建立移动智能设备与所述 镜子之间的数学模型;
步骤 S22, 通过移动智能设备中获得所述移动智能设备的传感数据, 并根据所述步骤 S21中得到的数学模型, 计算所述镜子需要转动的左 右角度 oc和上下角度(3;
步骤 S23 , 移动智能设备将计算得到的左右角度 oc和上下角度(3通过移 动网络发送给所述镜子的控制端, 从而控制所述镜子跟随所述移动智 能设备的运动而实时转动。
[权利要求 5] 根据权利要求 4所述的基于反射光的可见光通信盲区覆盖及越区切换 方法, 其特征在于, 所述步骤 S22包括以下子步骤: 步骤 S221, 通过所述移动智能设备获取其方向传感数据;
步骤 S222, 将所述方向传感数据转换成平面坐标系的角度数据, 得到 所述镜子需要转动的左右角度 oc ;
步骤 S223, 通过所述移动智能设备获取其加速度传感数据和运动速度 数据, 进而计算得到所述镜子需要转动的上下角度(3。
[权利要求 6] 根据权利要求 5所述的基于反射光的可见光通信盲区覆盖及越区切换 方法, 其特征在于, 所述步骤 S223中, 通过累计所述移动智能设备的 位移得到其运动速度数据, 然后通过位移所对应的时间, 可以计算得 到所述移动智能设备的瞬时移动速度, 进而得到所述镜子需要转动的 上下角度(3。
[权利要求 7] 根据权利要求 4所述的基于反射光的可见光通信盲区覆盖及越区切换 方法, 其特征在于, 所述步骤 S3包括以下子步骤: 步骤 S31、 移动智能设备正常接收 LED灯发出的光信号, 并计算其接 收信号强度 RSI;
步骤 S32, 移动智能设备通过比较计算所得的接收信号强度 RSI与预 设的接收信号强度阈值, 进而判断所述移动智能设备是否移动到 LED 灯的服务区域边界;
步骤 S33 , 当所述移动智能设备移动到 LED灯的服务区域边界时, 所 述移动智能设备控制所述镜子转动, 使得所述镜子的反射光信号得以 覆盖通信盲区;
步骤 S34, 所述移动智能设备在通信盲区的反射光信号中, 计算新的 接收信号强度 RSI, 判断该新的接收信号强度 RSI是否达到所述接收 信号强度阈值, 以此判断是否切换至新的通信服务区。
[权利要求 8] 根据权利要求 7所述的基于反射光的可见光通信盲区覆盖及越区切换 方法, 其特征在于, 所述步骤 S32中, 判断所述移动智能设备是否移 动到 LED灯的服务区域边界的过程为, 对接收信号强度 RSI与预设的 接收信号强度阈值进行比较, 当接收信号强度 RSI小于所述接收信号 强度阈值且排除干扰情况, 则判断所述移动智能设备已移动到所述 L ED灯的服务边界; 所述排除干扰情况指的是从时间域上判断所述接 收信号强度 RSI是否为连续变化, 若否则判断为干扰。
[权利要求 9] 根据权利要求 7所述的基于反射光的可见光通信盲区覆盖及越区切换 方法, 其特征在于, 所述步骤 S33中, 当所述移动智能设备移动到 LE D灯的服务区域边界时, 所述移动智能设备将所述镜子需要转动的左 右角度 oc和上下角度(3发送至所述镜子的控制端, 进而控制所述镜子 实时跟随转动左右角度 oc和上下角度(3; 所述移动智能设备接收转动 后的镜子的反射光信号, 实现通信盲区的镜面反射光通信。
[权利要求 10] 根据权利要求 7所述的基于反射光的可见光通信盲区覆盖及越区切换 方法, 其特征在于, 所述步骤 S34中, 判断是否切换至新的通信服务 区的过程为: 判断该新的接收信号强度 RSI是否大于所述接收信号强 度阈值且为连续信号, 若是则判断为已切换至新的通信服务区; 所述 步骤 S34还将判断结果反馈至所述 LED灯中, 进而实现将通信控制主 权转交至新的通信服务区。
PCT/CN2019/073515 2018-04-16 2019-01-28 一种基于反射光的可见光通信盲区覆盖及越区切换方法 WO2019200999A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810337999.7A CN108736970B (zh) 2018-04-16 2018-04-16 一种基于反射光的可见光通信盲区覆盖及越区切换方法
CN201810337999.7 2018-04-16

Publications (2)

Publication Number Publication Date
WO2019200999A1 true WO2019200999A1 (zh) 2019-10-24
WO2019200999A9 WO2019200999A9 (zh) 2019-12-19

Family

ID=63938933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073515 WO2019200999A1 (zh) 2018-04-16 2019-01-28 一种基于反射光的可见光通信盲区覆盖及越区切换方法

Country Status (2)

Country Link
CN (1) CN108736970B (zh)
WO (1) WO2019200999A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108736970B (zh) * 2018-04-16 2019-11-26 深圳大学 一种基于反射光的可见光通信盲区覆盖及越区切换方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102957479A (zh) * 2011-08-31 2013-03-06 深圳光启高等理工研究院 Led可见光通信系统及光接收天线
CN105162519A (zh) * 2015-09-29 2015-12-16 北京邮电大学 一种室内微蜂窝可见光通信网络中基于卡尔曼滤波的定位与越区切换方法
CN106301559A (zh) * 2015-06-18 2017-01-04 北京智谷睿拓技术服务有限公司 发射控制方法、信息发射方法、及其装置
CN108736970A (zh) * 2018-04-16 2018-11-02 深圳大学 一种基于反射光的可见光通信盲区覆盖及越区切换方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100690778B1 (ko) * 2005-04-19 2007-03-09 엘지전자 주식회사 셀룰라 이동통신시스템의 아이들 핸드오프 방법
CN101986578A (zh) * 2009-07-29 2011-03-16 中国科学院空间科学与应用研究中心 一种自由大气的紫外光通信系统
CN104185190A (zh) * 2013-05-28 2014-12-03 中兴通讯股份有限公司 一种提示有信号区域的方法及系统
CN105509734A (zh) * 2015-11-30 2016-04-20 上海航天测控通信研究所 基于可见光的室内定位方法及系统
CN105897336A (zh) * 2016-06-06 2016-08-24 中国人民解放军信息工程大学 一种无线通信系统、方法、vlc控制芯片及用户设备
CN106375006A (zh) * 2016-08-26 2017-02-01 深圳大学 使用移动终端的rgb环境光传感器来进行近场通讯的方法
CN106993264B (zh) * 2017-03-30 2020-11-10 湖南索菱汽车电子科技有限公司 导航装置及方法
CN106982095B (zh) * 2017-06-01 2019-03-12 东南大学 一种室内可见光oam组播通信系统发射端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102957479A (zh) * 2011-08-31 2013-03-06 深圳光启高等理工研究院 Led可见光通信系统及光接收天线
CN106301559A (zh) * 2015-06-18 2017-01-04 北京智谷睿拓技术服务有限公司 发射控制方法、信息发射方法、及其装置
CN105162519A (zh) * 2015-09-29 2015-12-16 北京邮电大学 一种室内微蜂窝可见光通信网络中基于卡尔曼滤波的定位与越区切换方法
CN108736970A (zh) * 2018-04-16 2018-11-02 深圳大学 一种基于反射光的可见光通信盲区覆盖及越区切换方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIAO ET AL.: "Technology of optical communication line auto-switch based on program controlling", no. 1, 3 April 2008 (2008-04-03) *

Also Published As

Publication number Publication date
CN108736970B (zh) 2019-11-26
CN108736970A (zh) 2018-11-02
WO2019200999A9 (zh) 2019-12-19

Similar Documents

Publication Publication Date Title
CN102523665A (zh) 一种具有通讯功能led路灯及其智能控制系统
CN106413218A (zh) 一种基于nb‑iot协议的舞台灯具及其控制系统
CN104482469A (zh) 一种适用于智慧城市建设的多功能智慧灯塔组建方法
CN103608215A (zh) 用于在使用交通密度的情况下控制车辆的至少一个前照灯的方法和控制设备
CN104936336A (zh) 一种智慧路灯控制系统与实现方法
TWI622322B (zh) 具資料橋接功能之電能供應裝置及無線照明控制系統
CN104470152A (zh) Led定位灯及基于led定位灯的智能照明系统和控制方法
CN104486886A (zh) 基于移动智能终端的智慧照明远程控制系统及方法
CN106293081A (zh) 可穿戴设备
WO2019200999A1 (zh) 一种基于反射光的可见光通信盲区覆盖及越区切换方法
CN107517517B (zh) 多功能智慧灯、控制方法及驱动方法
CN202514108U (zh) 一种具有分层级网络控制的led路灯智能控制系统
WO2019129001A1 (en) Network mode configuration method and device, and led lighting device
CN106231752A (zh) 一种路灯智能控制系统
CN204634110U (zh) 一种无线智能照明控制系统
CN109217927A (zh) 室内光通信系统中基于预判信息的链接切换方法
LU101017B1 (en) Multimodal Communication Method And Devices
CN207621820U (zh) 一种无人机探照装置及系统
CN202514110U (zh) 一种led路灯智能控制系统
Zhu et al. Handover method in visible light communication between the moving vehicle and multiple LED streetlights
CN204377211U (zh) 一种采用多类传感器的led路灯控制装置
CN203501060U (zh) 可调节发散角的日盲紫外led灯
CN104080233B (zh) 信息广播方法、系统及其照明设备和连接控制装置
CN105276422B (zh) 一种微波雷达智能感应灯具及感应方法
CN104902624A (zh) 大功率调光控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19789207

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/01/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19789207

Country of ref document: EP

Kind code of ref document: A1