WO2019200911A1 - 可穿戴设备、电子系统及设备、触感反馈方法及存储介质 - Google Patents

可穿戴设备、电子系统及设备、触感反馈方法及存储介质 Download PDF

Info

Publication number
WO2019200911A1
WO2019200911A1 PCT/CN2018/116501 CN2018116501W WO2019200911A1 WO 2019200911 A1 WO2019200911 A1 WO 2019200911A1 CN 2018116501 W CN2018116501 W CN 2018116501W WO 2019200911 A1 WO2019200911 A1 WO 2019200911A1
Authority
WO
WIPO (PCT)
Prior art keywords
wearable device
electromagnetic coil
coil
electromagnetic
current
Prior art date
Application number
PCT/CN2018/116501
Other languages
English (en)
French (fr)
Inventor
郭子强
孙剑
刘新建
王亚坤
林琳
唐贞
雷雨
楚明磊
孙建康
苗京花
闫桂新
訾峰
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/474,397 priority Critical patent/US11537206B2/en
Publication of WO2019200911A1 publication Critical patent/WO2019200911A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/20Electromagnets; Actuators including electromagnets without armatures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/014Hand-worn input/output arrangements, e.g. data gloves
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/066Electromagnets with movable winding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/081Magnetic constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication

Definitions

  • Embodiments of the present disclosure relate to a wearable device, an electronic system, an electronic device, a tactile feedback method, and a storage medium.
  • Wearable devices are an emerging category in the consumer electronics field. They are not only a hardware device, but also an intelligent device that can implement various functions through software support, data interaction, and cloud interaction. With the development of technology, wearable devices have become more and more widely used in various fields and application scenarios.
  • Virtual reality technology is a computer simulation system that can create and experience a virtual world. It uses a computer to generate a simulation environment. It is a multi-source information fusion, interactive 3D dynamic vision and system simulation of physical behavior. Immerse users into the environment. Applying wearable devices to virtual reality technology can provide a variety of functions and enrich the user experience.
  • At least one embodiment of the present disclosure provides a wearable device having haptic feedback, including: an electromagnetic coil group, a driving circuit, and a control circuit; the driving circuit is coupled to the electromagnetic coil group; the control circuit is configured to be configured according to Controlling a command to control the drive circuit to output a coil current corresponding to the electromagnetic coil group to the electromagnetic coil group; and the electromagnetic coil group is configured to receive the coil current and generate haptic feedback based on the coil current .
  • the electromagnetic coil group includes a plurality of electromagnetic coils, and coil currents of the plurality of electromagnetic coils are different from each other.
  • a coil current of at least two of the plurality of electromagnetic coils has a different magnitude and direction of the coil current
  • the coil currents of the at least two electromagnetic coils are the same in magnitude and in different directions; or
  • the coil currents of the at least two electromagnetic coils have the same direction and different sizes.
  • the electromagnetic coil group is configured to generate a plurality of magnetic fields under the action of the coil current, the haptic feedback including mutual exclusion according to the plurality of magnetic fields Feedback of the repulsive force generated by the action, feedback of the attractive force generated according to the mutual attraction of the plurality of magnetic fields, or repulsive force generated according to the mutual repulsion of a part of the plurality of magnetic fields and the Feedback of a combination of attractive forces resulting from mutual attraction of another portion of the plurality of magnetic fields.
  • the wearable device is a hand wearable device, and the hand wearable device includes a plurality of finger regions corresponding to a finger pad of a finger of the hand and a palm region corresponding to an intermediate portion of the palm of the hand, the electromagnetic coil group includes an electromagnetic coil, and the electromagnetic coil is located in a finger region or the palm region of the plurality of finger regions; or the electromagnetic The coil group includes a plurality of electromagnetic coils, and the plurality of electromagnetic coils are respectively located in at least two finger regions of the plurality of finger regions, or the plurality of electromagnetic coils are respectively located at at least one finger of the plurality of finger regions Area and the palm area.
  • the control command includes a direction and a current value of each of the coil currents, a current value that increases part or all of the coil current, and a reduction in part or all of the A current value of the coil current, re-supplying some or all of the coil current, and turning off at least one of some or all of the coil current.
  • a wearable device provided in some embodiments of the present disclosure includes a power source, the drive circuit and the control circuit are coupled to the power source, and the power source is configured to provide power to the drive circuit and the control circuit .
  • the power source includes a flexible battery.
  • the power source is integrated with the driving circuit.
  • a wearable device provided in some embodiments of the present disclosure includes a first communication module configured to communicate with a command device, and receive the control command from the command device, and Control commands are sent to the control circuit.
  • At least one embodiment of the present disclosure also provides an electronic system comprising a command device and a wearable device according to any of the embodiments of the present disclosure, wherein the command device is configured to generate the control command and the control command Sent to the wearable device.
  • the command device includes a second communication module configured to communicate with the wearable device.
  • the wearable device includes a first communication module configured to communicate with the first communication module.
  • At least one embodiment of the present disclosure further provides a tactile feedback method applied to the wearable device according to any one of the embodiments of the present disclosure, comprising: receiving a control command; generating and outputting the electromagnetic coil group according to the control command A corresponding coil current is applied to the set of electromagnetic coils; the set of electromagnetic coils is configured to generate haptic feedback based on the coil current.
  • At least one embodiment of the present disclosure also provides a storage medium for storing computer instructions, wherein one or more of the tactile feedback methods of any of the embodiments of the present disclosure may be executed when the computer instructions are executed by a processor step.
  • At least one embodiment of the present disclosure also provides an electronic device including one or more processors configured to execute computer instructions to perform one or more of the tactile feedback methods of any of the embodiments of the present disclosure. step.
  • FIG. 1 is a schematic block diagram of a wearable device with tactile feedback according to some embodiments of the present disclosure
  • FIG. 2A is a schematic diagram of a wearable device with tactile feedback according to some embodiments of the present disclosure
  • FIG. 2B is a schematic diagram of another wearable device with tactile feedback according to some embodiments of the present disclosure.
  • FIG. 2C is a schematic diagram of still another wearable device with tactile feedback according to some embodiments of the present disclosure.
  • FIG. 4A and FIG. 4B are schematic diagrams showing the principle of electromagnetic coil interaction through a magnetic field
  • FIG. 5 is a schematic diagram of a tactile sensation generating principle of a wearable device with tactile feedback according to some embodiments of the present disclosure
  • FIG. 6 is a schematic diagram of a wearable device with tactile feedback according to some embodiments of the present disclosure.
  • FIG. 7 is a schematic diagram of another wearable device with tactile feedback according to some embodiments of the present disclosure.
  • FIG. 8 is a schematic diagram of still another wearable device with tactile feedback according to some embodiments of the present disclosure.
  • FIG. 9 is a schematic block diagram of an electronic system according to some embodiments of the present disclosure.
  • FIG. 10 is a schematic block diagram of another electronic system according to some embodiments of the present disclosure.
  • FIG. 11 is a flowchart of a tactile feedback method applied to a wearable device according to some embodiments of the present disclosure.
  • virtual reality devices have realized various immersive solutions, such as head attitude tracking based on six-axis/nine-axis sensors, limited range of spatial position tracking, gesture recognition and tracking, etc. .
  • tactile sensation is a missing link.
  • the current virtual reality device cannot provide effective tactile feedback, which affects the user experience.
  • touch is a very important way of sensing, and the lack of touch reduces the user's immersion.
  • At least one embodiment of the present disclosure provides a wearable device, an electronic system and device, a tactile feedback method, and a storage medium.
  • a wearable device By using a electromagnetic coil to generate a magnetic field and each magnetic field interacting to generate haptic feedback, applying the wearable device to a virtual reality scene can increase physical touch, improve immersion, and enhance the use experience.
  • the wearable device can include a hand wearable device (eg, a glove, a watch, a ring, a wristband, etc.), an arm wearable device (eg, an armband), a foot wearable device (eg, a footwear), a leg Wearable devices (eg, knee pads), head wearable devices (eg, glasses, earrings, hats, etc.), neck wearable devices (eg, necklaces), and torso wearable devices (eg, smart belts, school bags, etc.) )Wait.
  • a hand wearable device eg, a glove, a watch, a ring, a wristband, etc.
  • an arm wearable device eg, an armband
  • a foot wearable device eg, a footwear
  • leg Wearable devices eg, knee pads
  • head wearable devices eg, glasses, earrings, hats, etc.
  • neck wearable devices eg, necklaces
  • torso wearable devices eg, smart belts
  • At least one embodiment of the present disclosure provides a wearable device having haptic feedback, the wearable device including a plurality of electromagnetic coils, a drive circuit, and a control circuit.
  • the driving circuit is coupled to the plurality of electromagnetic coils.
  • the control circuit is configured to control the drive circuit to generate and output a coil current corresponding to the electromagnetic coil to the plurality of electromagnetic coils according to a control command; and the plurality of electromagnetic coils are configured to receive the coil Current and generating haptic feedback based on the coil current.
  • FIG. 1 is a schematic block diagram of a wearable device with tactile feedback according to some embodiments of the present disclosure.
  • the wearable device 100 includes a solenoid coil set 110, a drive circuit 120, and a control circuit 130.
  • the number of electromagnetic coils in the electromagnetic coil assembly 110 can be set as needed.
  • the number of electromagnetic coils in the electromagnetic coil assembly 110 can be six, which is not limited in the embodiment of the present disclosure.
  • control circuit 130 and the driving circuit 120 are coupled (eg, electrically connected), and the driving circuit 120 and the electromagnetic coil group 110 are coupled (eg, electrically connected).
  • control circuit 130 is configured to control drive circuit 120 to generate a coil current corresponding to solenoid set 110 in accordance with a control command.
  • the control commands may be received from the external device in real time/non-real time, or may be pre-stored in the control circuit 130 or other components of the wearable device 100.
  • the current values and directions of the plurality of coil currents may be the same or different from each other, and may be determined according to actual needs.
  • the drive circuit 120 is also configured to output coil current to the electromagnetic coil assembly 110.
  • drive circuit 120 can include a current output chip or other suitable device.
  • the solenoid coil set 110 is configured to receive coil current and generate haptic feedback based on the coil current.
  • the electromagnetic coil group 110 generates a magnetic field after receiving the coil current.
  • the electromagnetic coil group 110 may include a plurality of electromagnetic coils, and the control circuit 130 controls the driving circuit 120 to generate a plurality of coil currents in one-to-one correspondence with the plurality of electromagnetic coils in the electromagnetic coil group 110 according to the control command.
  • the coil assembly 110 generates magnetic induction forces based on magnetic field interactions generated by the coil currents (eg, mutually repulsive or mutual attraction), thereby generating tactile feedback for the user to produce a tactile sensation when gripping or touching the object.
  • control circuit 130 controls the drive circuit 120 to generate a coil current corresponding to one of the electromagnetic coil groups 110 according to the control command, and the electromagnetic coil that receives the coil current generates a magnetic field and is separately provided.
  • the magnetic components interact to create a magnetic induction force.
  • FIG. 2A is a schematic diagram of a wearable device with tactile feedback according to some embodiments of the present disclosure
  • FIG. 2B is a schematic diagram of another wearable device with tactile feedback according to some embodiments of the present disclosure
  • FIG. 2C is a disclosure of the present disclosure.
  • Yet another embodiment provides a schematic of a wearable device with tactile feedback.
  • the wearable device 100 is a hand wearable device (eg, a glove).
  • the wearable device 100 includes a solenoid coil set 110, a drive circuit 120, and a control circuit 130.
  • the hand wearable device includes a plurality of finger regions corresponding to the fingertips of the fingers of the hand and a palm region corresponding to the intermediate portion of the palm of the hand.
  • the plurality of finger regions may include a thumb region corresponding to the thumb of the hand, an index finger region corresponding to the index finger of the hand, a middle finger region corresponding to the middle finger of the hand, a ring finger region corresponding to the ring finger of the hand, and a little finger region corresponding to the little finger of the hand.
  • the palm area may, for example, represent an area corresponding to the palm of the palm.
  • the electromagnetic coil assembly 110 includes only one electromagnetic coil, and the electromagnetic coil is located in one finger region or palm region of the plurality of finger regions.
  • the electromagnetic coil assembly 110 includes only one sixth electromagnetic coil 116, and the sixth electromagnetic coil 116 is located in the palm region; with reference to FIG. 2C, in other examples, the electromagnetic coil assembly 110 is only A second electromagnetic coil 112 is included, and the second electromagnetic coil 112 is located in one of a plurality of finger regions (eg, an index finger region).
  • the electromagnetic coil assembly 110 includes a plurality of electromagnetic coils, and the plurality of electromagnetic coils are respectively located in at least two finger regions of the plurality of finger regions, or the plurality of electromagnetic coils are respectively located in the plurality of finger regions. At least one finger area and the palm area.
  • the electromagnetic coil group 110 includes a first electromagnetic coil 111, a second electromagnetic coil 112, a third electromagnetic coil 113, a fourth electromagnetic coil 114, a fifth electromagnetic coil 115, and a sixth electromagnetic coil 116.
  • each of the electromagnetic coils described above is located in a palm region of the hand wearable device corresponding to a plurality of finger regions corresponding to the fingertips of the finger and an intermediate position of the palm.
  • the first electromagnetic coil 111 is located in the thumb region
  • the second electromagnetic coil 112 is located in the index finger region
  • the third electromagnetic coil 113 is located in the middle finger region
  • the fourth electromagnetic coil 114 is located in the ring finger region
  • the fifth electromagnetic coil 115 is located in the little finger region.
  • Six solenoids 116 are located in the palm area.
  • the number of electromagnetic coils in the electromagnetic coil group 110 is not limited.
  • the electromagnetic coil assembly 110 may also include only the first electromagnetic coil 111, the second electromagnetic coil 112, the third electromagnetic coil 113, and the sixth electromagnetic coil 116 to provide tactile feedback for the thumb, forefinger, and middle finger, This approach simplifies the structure and reduces costs while providing tactile feedback.
  • the size of the electromagnetic coil in the electromagnetic coil group 110 is not limited and may be determined according to the specific structure of the hand wearable device and the required tactile strength.
  • the electromagnetic coils in the electromagnetic coil assembly 110 can be disposed on the hand wearable device by any means such as bonding, snapping, or the like.
  • the electromagnetic coil in the electromagnetic coil group 110 may be spirally wound with a wire coated with an insulating varnish.
  • the winding direction of the electromagnetic coil in the electromagnetic coil group 110 is not limited, and may be, for example, a clockwise direction or a counterclockwise direction.
  • the number of turns of the electromagnetic coil in the electromagnetic coil group 110 is not limited and may be determined according to actual needs.
  • the electromagnetic coil group 110 including a plurality of electromagnetic coils as an example.
  • the driving circuit 120 is coupled to each of the electromagnetic coils 110.
  • the drive circuit 120 is electrically coupled to the respective electromagnetic coils via electrical leads 140.
  • the drive circuit 120 is configured to output coil current to the electromagnetic coil assembly 110.
  • the number of drive circuits 120 is not limited.
  • the drive circuit 120 is one, and the drive circuit 120 is electrically coupled to each of the electromagnetic coils 110.
  • there are a plurality of driving circuits 120 and each driving circuit 120 is electrically connected in one-to-one correspondence with each electromagnetic coil in the electromagnetic coil group 110, and each driving circuit 120 is configured to output a coil to a corresponding electromagnetic coil. Current.
  • each of the driving circuits 120 may be electrically connected to a part of the electromagnetic coils in the electromagnetic coil group 110, so that the number of the driving circuits 120 can be flexibly set.
  • the driver circuit 120 can include digital or analog circuitry, and can also include current output chips or other suitable devices.
  • the driving circuit 120 can be implemented by a conventional circuit structure, which will not be described in detail herein.
  • the installation position of the drive circuit 120 is not limited and may be determined according to the specific structure of the hand wearable device.
  • the drive circuit 120 can include a current generation module and an output module, for example, the current generation module is configured to receive a control command transmitted by the control circuit 130, and generate a coil current according to the control command, the output module configured to output the coil current To the electromagnetic coil group 110.
  • the output module may be a switching element
  • the control command may include a switch control signal for controlling the switching element
  • the control circuit 130 may control the switching element to turn the current generating module and the electromagnetic coil group 110 on or off according to the switch control signal, when the current When the generating module and the electromagnetic coil group 110 are turned on, the coil current generated by the current generating module can be transmitted to the electromagnetic coil group 110.
  • drive electrode 120 can also include a power source, and the power source is configured to provide power to the current generation module and the output module.
  • control circuit 130 is electrically coupled to drive circuit 120 via electrical leads 140.
  • the control circuit 130 is configured to control the drive circuit 120 to generate a coil current corresponding to each of the electromagnetic coils in the electromagnetic coil group 110 in accordance with a control command.
  • control circuit 130 can include a Microcontroller Unit (MCU).
  • MCU Microcontroller Unit
  • the control circuit 130 may also include a Field Programmable Gate Array (FPGA), a Complex Programmable Logic Device (CPLD), or other suitable device.
  • FPGA Field Programmable Gate Array
  • CPLD Complex Programmable Logic Device
  • the setting position of the control circuit 130 is not limited and may be determined according to the specific structure of the hand wearable device.
  • control circuit 130 controls drive circuit 120 using a serial or parallel communication protocol.
  • the serial communication protocol may be an Inter-Integrated Circuit (IIC or I2C), a Serial Peripheral Interface (SPI), or other suitable communication. protocol.
  • IIC Inter-Integrated Circuit
  • SPI Serial Peripheral Interface
  • the serial communication protocol simplifies the circuit structure, reduces the cost, and has good noise immunity.
  • the parallel communication protocol can improve communication speed, high efficiency and good real-time performance.
  • the wearable device 100 may further include more components, such as a force sensor, a distance sensor, etc., to provide a more abundant function, which is not limited by the embodiments of the present disclosure.
  • the electromagnetic coil group may include a plurality of electromagnetic coils, and coil currents of the plurality of electromagnetic coils are different from each other.
  • the magnitude and direction of the coil currents of at least two of the plurality of electromagnetic coils are different; or the coil currents of at least two of the electromagnetic coils have the same magnitude and direction; or, the coils of at least two electromagnetic coils
  • the currents are in the same direction and of different sizes.
  • the number of coils of the plurality of electromagnetic coils may be the same; or, the number of coils of at least two of the plurality of electromagnetic coils may be different.
  • FIGS. 3, 4A and 4B are schematic diagrams showing the principle of electromagnetic coil interaction through a magnetic field. The principle of the electromagnetic coil interacting with the magnetic field will be described below with reference to FIGS. 3, 4A and 4B.
  • the first electromagnetic coil 111 and the sixth electromagnetic coil 116 in Fig. 2A are shown in Fig. 3.
  • the number of coils of the first electromagnetic coil 111 and the number of coils of the sixth electromagnetic coil 116 may be the same.
  • the first electromagnetic coil 111 and the sixth electromagnetic coil 116 are respectively wound in the direction shown in FIG. 3, and the first coil current I1 and the sixth electromagnetic coil 116 are respectively supplied to the first electromagnetic coil 111 to provide the second coil current.
  • I2 the direction of the first coil current I1 and the second coil current I2 is in the direction indicated by the dotted arrow in FIG.
  • the current direction of the first coil current I1 is counterclockwise, the second coil current I2 is clockwise; and the second direction
  • the current direction of the first coil current I1 is clockwise
  • the current direction of the second coil current I2 is counterclockwise, that is, the directions of the first coil current I1 and the second coil current I2 are opposite.
  • the Ampere's rule ie, the right-handed screw rule
  • a magnetic field in the first direction is generated in the first electromagnetic coil 111
  • a magnetic field in the second direction is generated in the sixth electromagnetic coil 116.
  • the first direction and the second direction are parallel to each other and opposite in direction.
  • the north pole N of the magnetic field generated by the first electromagnetic coil 111 and the north pole N of the magnetic field generated by the sixth electromagnetic coil 116 repel each other, thereby generating the first magnetic induction force F1 and the second.
  • the magnetic induction force F2, the first magnetic induction force F1 and the second magnetic induction force F2 are a pair of interaction forces, for example, the first magnetic induction force F1 can be a force, and the force direction of the first magnetic induction force F1 can be the first direction;
  • the second magnetic induction force F2 is a reaction force, and the force direction of the second magnetic induction force F2 may be the second direction. Therefore, the mutual repulsion of the first electromagnetic coil 111 and the sixth electromagnetic coil 116 generates a repulsive force, and the repulsive force acts between the finger and the palm, which generates tactile feedback, thereby causing the user to feel tactile.
  • the first electromagnetic coil 111 and the third electromagnetic coil 113 repel each other to generate a repulsive force, and the repulsive force acts between a plurality of fingers (for example, a thumb and a middle finger).
  • the current value of the first coil current I1 and the current value of the second coil current I2 may be equal.
  • the present disclosure is not limited to the fact that the current value of the first coil current I1 and the current value of the second coil current I2 may also be unequal, for example, the current value of the first coil current I1 is greater than the current value of the second coil current I2.
  • the first coil current I1' When the first coil current I1' is supplied to the first electromagnetic coil 111 and the second coil current I2' is supplied, the first coil current I1' and the second coil current I2' are as indicated by the dotted arrows in FIG. 4A.
  • the current direction of the first coil current I1' In the direction, for the first electromagnetic coil 111 and the sixth electromagnetic coil 116, viewed in the first direction, the current direction of the first coil current I1' is counterclockwise, and the current direction of the second coil current I2' is also reversed.
  • the current direction of the first coil current I1' When viewed in the second direction, the current direction of the first coil current I1' is clockwise, and the current direction of the second coil current I2' is also clockwise, that is, the first coil current
  • the direction of I1' and the second coil current I2' are the same.
  • the magnetic field in the first direction is generated in both the first electromagnetic coil 111 and the sixth electromagnetic coil 116.
  • the north pole N of the magnetic field generated by the first electromagnetic coil 111 and the south pole S of the magnetic field generated by the sixth electromagnetic coil 116 attract each other, thereby generating the third magnetic induction force F3 and the fourth.
  • the magnetic induction force F4, the third magnetic induction force F3 and the fourth magnetic induction force F4 are a pair of interaction forces.
  • the third magnetic induction force F3 may be a force, and the force direction of the third magnetic induction force F3 may be a second direction;
  • the fourth magnetic induction force F4 is a reaction force, and the force direction of the fourth magnetic induction force F4 may be the first direction. Therefore, the mutual attraction of the first electromagnetic coil 111 and the sixth electromagnetic coil 116 generates an attractive force, and when the attraction force is applied between the finger and the palm, tactile feedback is generated, thereby causing the user to feel tactile.
  • the first electromagnetic coil 111 and the third electromagnetic coil 113 attract each other to generate an attractive force, and the attraction force acts between a plurality of fingers (for example, a thumb and a middle finger).
  • the directions of the magnetic fields generated by the first electromagnetic coil 111 and the sixth electromagnetic coil 116 may be parallel to each other or may have an included angle.
  • the first electromagnetic coil 111 and the sixth electromagnetic coil 116 still Mutual repulsion or mutual attraction is generated, at this time, the force direction is opposite to the midpoint of the end of the first electromagnetic coil 111 (for example, the Q1 point shown in FIG. 4B) and the midpoint of the end of the sixth electromagnetic coil 116.
  • the direction (for example, the Q2 point shown in FIG. 4B) which is connected to each other (for example, the first direction as shown in FIG. 4B) is parallel.
  • control commands include direction and current values of respective coil currents, current values that increase some or all of the coil current, current values that reduce some or all of the coil current, re-supply some or all of the coil current, and turn off some or all of the coil current. At least one of them.
  • control command may also include other applicable content to be applicable to diverse virtual reality scenarios.
  • FIG. 5 is a schematic diagram of a tactile sensation generating principle of a wearable device with tactile feedback according to some embodiments of the present disclosure. Referring to FIG. 5, when a user makes a gesture of grasping or touching an object, between the fingers, between the finger and the palm, it is necessary to mutually repel each other.
  • the control command may include a plurality of electromagnetic coils (for example, the first electromagnetic coil 111, The current value and direction of the coil current of the third electromagnetic coil 113, the fourth electromagnetic coil 114, the fifth electromagnetic coil 115, and the sixth electromagnetic coil 116), for example, the current values of the coil currents of the plurality of electromagnetic coils may be the same, in the vertical In the direction of the palm of the hand, that is, in the direction of the palm of the hand, the direction of the coil current of the plurality of electromagnetic coils may be the same, for example, all in a clockwise direction.
  • a plurality of electromagnetic coils for example, the first electromagnetic coil 111, The current value and direction of the coil current of the third electromagnetic coil 113, the fourth electromagnetic coil 114, the fifth electromagnetic coil 115, and the sixth electromagnetic coil 116
  • the control circuit 130 can control, for example, the current generating module in the driving circuit 120 to generate a coil current corresponding to the plurality of electromagnetic coils in the electromagnetic coil group 110 according to the control command, and output the corresponding coil current to the electromagnetic coil group 110 respectively.
  • the electromagnetic coils are such that the plurality of electromagnetic coils generate a plurality of magnetic fields under the action of the coil current, that is, generate a plurality of magnetic fields in different parts of the hand. Multiple magnetic fields interact. When any two of the plurality of electromagnetic coils are close to each other, the two electromagnetic coils repel each other.
  • the first electromagnetic coil 111, the third electromagnetic coil 113, the fourth electromagnetic coil 114, and the fifth electromagnetic coil 115 and the sixth electromagnetic coil 116 respectively repel each other, thereby causing the user's fingers and palms to be repulsive to generate repulsive Haptic feedback, which gives the user a tactile sensation.
  • the control command may include a plurality of electromagnetic coils (for example, the first electromagnetic coil 111, the third electromagnetic coil 113, the fourth electromagnetic coil 114, and the fifth electromagnetic coil).
  • the current value and direction of the coil current of 115 and the sixth electromagnetic coil 116 may be the same, in a direction perpendicular to the palm of the palm, that is, in the direction of the palm of the palm,
  • the directions of the coil currents of the first electromagnetic coil 111, the third electromagnetic coil 113, the fourth electromagnetic coil 114, and the fifth electromagnetic coil 115 may be the same, for example, both clockwise directions, and the direction of the coil current of the sixth electromagnetic coil 116
  • the direction of the coil current with the first electromagnetic coil 111 may be opposite, for example, the direction of the coil current of the sixth electromagnetic coil 116 is counterclockwise.
  • the control circuit 130 can control, for example, the current generating module in the driving circuit 120 to generate a coil current corresponding to the plurality of electromagnetic coils in the electromagnetic coil group 110 according to the control command, and output the corresponding coil current to the electromagnetic coil group 110 respectively.
  • the electromagnetic coils are such that the plurality of electromagnetic coils generate a plurality of magnetic fields under the action of the coil current, that is, generate a plurality of magnetic fields in different parts of the hand.
  • the electromagnetic coil and the sixth electromagnetic coil 116 are mutually Attraction, that is, thereby exposing the user's fingers and palms to generate an attractive tactile feedback, thereby causing the user to feel tactile.
  • the interaction between the plurality of electromagnetic coils in the electromagnetic coil group 110 may be mutually exclusive, or may be mutually attracted, or a part of the coils may repel each other and the other part of the coils
  • the embodiments of the present disclosure are not limited, and may be determined according to specific application scenarios.
  • the tactile feedback generated by the interaction of the plurality of magnetic fields may include: feedback of the repulsive force generated according to the mutual repulsion of the plurality of magnetic fields, feedback of the attractive force generated according to the mutual attraction of the plurality of magnetic fields, or according to The feedback of the combination of the repulsive force generated by the mutual repulsion of a part of the magnetic fields and the attraction of the other part of the plurality of magnetic fields.
  • the directions and current values of the coil currents respectively supplied to the plurality of electromagnetic coils in the electromagnetic coil group 110 may be identical to each other or different from each other.
  • the direction and current value of the coil current respectively supplied to the plurality of electromagnetic coils in the electromagnetic coil group 110 may be according to a specific gesture (relative positional relationship of a plurality of electromagnetic coils in the electromagnetic coil group 110), an application scenario, and the electromagnetic coil group 110 Depending on how the multiple solenoids are placed.
  • the wearable device 100 when the wearable device 100 is applied in a virtual reality scene, the virtual reality device captures a gesture of the user, and generates a control command according to the gesture and the specific virtual scene.
  • the wearable device 100 receives the control command, and the control circuit 130 controls the drive circuit 120 to output a plurality of coil currents corresponding to the electromagnetic coil group 110 to the electromagnetic coil group 110 according to the control command.
  • the plurality of electromagnetic coils in the electromagnetic coil assembly 110 generate a plurality of magnetic fields based on the plurality of coil currents described above, and the plurality of magnetic fields interact to generate tactile feedback.
  • This method can realize real-time feedback, making the user's feeling more realistic, helping to improve the user's immersion in the virtual reality scene and improving the user experience.
  • the control commands are pre-stored in the control circuit 130 or other components of the wearable device 100.
  • the control commands may be based on the time and manner in which the haptic feedback needs to be generated in the virtual reality scene.
  • the control circuit 130 controls the drive circuit 120 to output a coil current to the electromagnetic coil group 110 in a predetermined manner at a predetermined time according to a control command stored in advance, thereby causing the respective electromagnetic coils in the electromagnetic coil group 110 to interact to generate tactile feedback. This method can reduce the number of parts, simplify the structure of the equipment, and reduce production costs.
  • FIG. 6 is a schematic diagram of a wearable device with tactile feedback according to some embodiments of the present disclosure.
  • the wearable device 100 includes a glove 001, and the electromagnetic coil group 110, the drive circuit 120, and the control circuit 130 are all integrated on the glove 001.
  • the first to fifth electromagnetic coils 111-115 are integrated on the glove 001 corresponding to the position of the finger pad
  • the sixth electromagnetic coil 116 is integrated on the glove 001 corresponding to the position of the middle of the palm (for example, the palm of the palm).
  • the drive circuit 120 and the control circuit 130 are integrated on the glove 001 corresponding to the position of the wrist.
  • electrical leads 140 are also integrated on the handle 001 to enable electrical connection between the various components.
  • the various components may be integrated into the glove 001 by any suitable means such as bonding, sewing, or the like. It should be noted that, in various embodiments of the present disclosure, the position of each component on the glove 001 is not limited, and may be determined according to actual needs. For example, in other examples, drive circuit 120 and control circuit 130 may be integrated into the glove 001 corresponding to the position of the back of the hand to take advantage of space and reduce the size of glove 001.
  • the use of the glove 001 as a carrier for each component can provide sufficient support and is convenient for the user to wear and is convenient to use.
  • the embodiment of the present disclosure is not limited thereto, and the wearable device 100 may be any form of device as long as it can be worn on the hand.
  • the wearable device 100 is embodied as six annular sleeves, wherein five annular sleeves can be worn on five fingers, and the other annular sleeve can be worn on the palm, six annular sleeves. Work with each other to achieve tactile feedback.
  • FIG. 7 is a schematic diagram of another wearable device with tactile feedback according to some embodiments of the present disclosure.
  • the wearable device 100 further includes a power source 150
  • the wearable device 100 in this embodiment is similar to the wearable device 100 described in FIG. 2, and the repeated portions are not described herein again.
  • wearable device 100 also includes a power source 150.
  • the power source 150 is configured to provide power to devices such as the driver circuit 120 and the control circuit 130 in the wearable device 100.
  • power source 150 is coupled (eg, electrically coupled) to drive circuit 120 and control circuit 130 to provide electrical energy.
  • the installation position of the power source 150 is not limited and may be determined according to the specific structure of the wearable device 100.
  • the power source 150 can be a battery or a power adapter.
  • the power source 150 may be a rechargeable battery or a disposable battery (primary battery).
  • the power source 150 when the power source 150 is a disposable battery, it can be detachably mounted to facilitate replacement when the battery is exhausted.
  • the power source 150 may be a flexible battery that may be bent as the user's gesture changes, such that the set position of the power source 150 is not affected by the user's gesture, and the user's experience can be improved.
  • power supply 150 and drive circuit 120 are integrated, that is, integrated into current output module 160, which may be a dedicated or general purpose module or circuit. This way you can reduce the number of parts and increase the integration of the equipment.
  • the power supply mode of the wearable device 100 is not limited, and may be powered by the power source 150 or by other applicable components.
  • FIG. 8 is a schematic diagram of still another wearable device with tactile feedback according to some embodiments of the present disclosure.
  • the wearable device 100 further includes the first communication module 170
  • the wearable device 100 in this embodiment is similar to the wearable device 100 described in FIG. 2, and the repeated portions are not described herein again.
  • the wearable device 100 further includes a first communication module 170.
  • the first communication module 170 is electrically connected to the control circuit 130.
  • the first communication module 170 is configured to communicate with the command device, receive a control command from the command device, and send the control command to the control circuit 130.
  • the command device can be any external device capable of transmitting control commands to the wearable device 100.
  • the first communication module 170 may be a wireless communication module to reduce the connection cable of the wearable device 100 with other external devices, thereby improving the convenience of use. More specifically, for example, the first communication module 170 may be a Bluetooth Low Energy (BLE) module to reduce power consumption and may increase the connection speed with a device that transmits a control command. Of course, the first communication module 170 may also be any applicable communication module such as an infrared communication module or a ZigBee module.
  • BLE Bluetooth Low Energy
  • the first communication module 170 may also be any applicable communication module such as an infrared communication module or a ZigBee module.
  • the first communication module 170 may be a wireless communication module or a wired communication module, which is not limited by the embodiments of the present disclosure.
  • the first communication module 170 may be a wired communication module, such as a serial/parallel communication module, an optical transceiver, etc., which can improve the security of the transmitted signal and facilitate the operation with diverse external devices. match.
  • At least one embodiment of the present disclosure also provides an electronic system including a command device and a wearable device according to any of the embodiments of the present disclosure.
  • the command device is configured to generate the control command and send the control command to the wearable device.
  • the electronic system can provide tactile feedback, and the application of the electronic system to a virtual reality scene can increase physical touch, improve immersion, and enhance the use experience.
  • FIG. 9 is a schematic block diagram of an electronic system according to some embodiments of the present disclosure.
  • the electronic system includes a wearable device 100 and a command device 200.
  • the wearable device 100 is a wearable device according to any of the embodiments of the present disclosure.
  • the command device 200 is configured to generate a control command and send the control command to the wearable device 100.
  • the command device 200 can transmit control commands by wire or wirelessly.
  • the command device 200 may also be configured to receive feedback information from the wearable device 100 to obtain information such as status parameters of the wearable device 100.
  • the command device 200 can be a separate device or integrated with other devices.
  • the electronic system is applied to a virtual reality scenario, and the command device 200 can be integrated with the virtual reality device to improve integration of the entire application system.
  • the command device 200 may be an electronic computer or any applicable device, or may be software or an executable program integrated into other devices, which is not limited by the embodiments of the present disclosure.
  • FIG. 10 is a schematic block diagram of another electronic system according to some embodiments of the present disclosure.
  • the command device 200 includes a second communication module 210.
  • the second communication module 210 is configured to communicate with the first communication module 170 in the wearable device 100 to transmit control commands.
  • the second communication module 210 may also be a low power Bluetooth module to implement communication with each other.
  • the embodiment of the present disclosure is not limited thereto, and the second communication module 210 may be a module adopting any communication protocol or communication mode, and only needs to be able to communicate with the first communication module 170.
  • At least one embodiment of the present disclosure also provides a tactile feedback method applied to the wearable device of any of the embodiments of the present disclosure.
  • the haptic feedback method includes: receiving a control command; generating and outputting a coil current corresponding to the electromagnetic coil group to the electromagnetic coil group according to the control command.
  • the set of electromagnetic coils is configured to generate haptic feedback based on the coil current.
  • FIG. 11 is a flowchart of a tactile feedback method applied to a wearable device according to some embodiments of the present disclosure.
  • the tactile feedback method includes the following steps:
  • Step S410 Receive a control command.
  • Step S420 Generate and output a coil current corresponding to the electromagnetic coil group to the electromagnetic coil group according to the control command.
  • the set of electromagnetic coils is configured to generate haptic feedback based on the coil current.
  • the electromagnetic coil group may include a plurality of electromagnetic coils, and current values and directions of coil currents of the plurality of electromagnetic coils may be the same; or, coil currents of at least two of the plurality of electromagnetic coils may have different magnitudes and directions
  • the coil currents of at least two of the plurality of electromagnetic coils have the same magnitude and different directions; or the coil currents of at least two of the plurality of electromagnetic coils have the same direction and different sizes.
  • the steps of the tactile feedback method may be embodied by software, hardware, firmware, or any combination thereof.
  • the flow of the tactile feedback method may include more or fewer operations that may be performed sequentially or in parallel.
  • the flow of the tactile feedback method described above includes a plurality of operations occurring in a specific order, it should be clearly understood that the order of the plurality of operations is not limited.
  • At least one embodiment of the present disclosure also provides a storage medium for storing computer instructions, wherein one or more of the tactile feedback methods of any of the embodiments of the present disclosure may be executed when the computer instructions are executed by a processor step.
  • the storage medium can be a computer readable storage medium of various forms, and the computer instructions can be non-transitory computer readable instructions.
  • the storage medium is not limited, and may be an optical disc, a floppy disk, a hard disk, a flash memory, a USB flash drive, a CF card, an SD card, an MMC card, an SM card, a Memory Stick, an xD card, or the like. , can also be other suitable storage media.
  • At least one embodiment of the present disclosure also provides an electronic device including one or more processors configured to execute computer instructions to perform one or more of the tactile feedback methods of any of the embodiments of the present disclosure. step.
  • the electronic device can be any suitable device such as a computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Electromagnetism (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

一种可穿戴设备(100)、电子系统及设备、触感反馈方法及存储介质,所述可穿戴设备(100)包括电磁线圈组(110)、驱动电路(120)和控制电路(130)。所述驱动电路(120)与所述电磁线圈组(110)耦接。所述控制电路(130)被配置为根据控制命令,控制所述驱动电路(120)生成并输出与所述电磁线圈组(110)对应的线圈电流至所述电磁线圈组(110);以及所述电磁线圈组(110)被配置为接收所述线圈电流,并基于所述线圈电流生成触觉反馈。该可穿戴设备(100)可以提供触觉反馈,将其应用于虚拟现实场景中可以增加物理触感,提高沉浸感,提升使用体验。

Description

可穿戴设备、电子系统及设备、触感反馈方法及存储介质
本申请要求于2018年04月16日递交的中国专利申请第201810339539.8号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及一种可穿戴设备、电子系统、电子设备、触感反馈方法及存储介质。
背景技术
可穿戴设备是消费电子领域的一个新兴类别,它不仅是一种硬件设备,更是一种可以通过软件支持以及数据交互、云端交互等方式来实现各种功能的智能化设备。随着技术的发展,可穿戴设备得到了越来越广泛的应用,涉及多种领域和应用场景。
近年来,虚拟现实技术得到了快速发展。虚拟现实技术是一种可以创建和体验虚拟世界的计算机仿真系统,它利用计算机生成一种模拟环境,是一种多源信息融合的、交互式的三维动态视景和实体行为的系统仿真,从而使用户沉浸到该环境中。将可穿戴设备应用于虚拟现实技术中,可以提供多样化的功能,丰富用户的使用体验。
发明内容
本公开至少一个实施例提供一种具有触觉反馈的可穿戴设备,包括:电磁线圈组、驱动电路和控制电路;所述驱动电路与所述电磁线圈组耦接;所述控制电路被配置为根据控制命令,控制所述驱动电路输出与所述电磁线圈组对应的线圈电流至所述电磁线圈组;以及所述电磁线圈组被配置为接收所述线圈电流,并基于所述线圈电流生成触觉反馈。
例如,在本公开一些实施例提供的可穿戴设备中,所述电磁线圈组包括多个电磁线圈,所述多个电磁线圈的线圈电流彼此不相同。
例如,在本公开一些实施例提供的可穿戴设备中,所述多个电磁线圈中的至少两个电磁线圈的线圈电流的大小和方向不相同;或者
所述至少两个电磁线圈的线圈电流的大小相同且方向不相同;或者
所述至少两个电磁线圈的线圈电流的方向相同且大小不相同。
例如,在本公开一些实施例提供的可穿戴设备中,所述电磁线圈组被配置为在所述线圈电流的作用下产生多个磁场,所述触觉反馈包括根据所述多个磁场的相互排斥作用而产生的排斥力的反馈、根据所述多个磁场的相互吸引作用而产生的吸引力的反馈、或者根据所述多个磁场中的一部分磁场的相互排斥作用而产生的排斥力和所述多个磁场中的另一部分磁场的相互吸引作用而产生的吸引力的结合的反馈。
例如,在本公开一些实施例提供的可穿戴设备中,所述可穿戴设备为手部可穿戴设备,所述手部可穿戴设备包括与手的手指的指腹对应的多个手指区域和与所述手的手掌的中间部位对应的手掌区域,所述电磁线圈组包括一个电磁线圈,且所述电磁线圈位于所述多个手指区域的一个手指区域或所述手掌区域;或者,所述电磁线圈组包括多个电磁线圈,且所述多个电磁线圈分别位于所述多个手指区域的至少两个手指区域,或者,所述多个电磁线圈分别位于所述多个手指区域的至少一个手指区域和所述手掌区域。
例如,在本公开一些实施例提供的可穿戴设备中,所述控制命令包括各所述线圈电流的方向和电流值、增加部分或全部所述线圈电流的电流值、减小部分或全部所述线圈电流的电流值、重新提供部分或全部所述线圈电流以及关断部分或全部所述线圈电流中的至少之一。
例如,在本公开一些实施例提供的可穿戴设备包括电源,所述驱动电路和所述控制电路与所述电源耦接,所述电源被配置为对所述驱动电路和所述控制电路提供电能。
例如,在本公开一些实施例提供的可穿戴设备中,所述电源包括柔性电池。
例如,在本公开一些实施例提供的可穿戴设备中,所述电源与所述驱动电路集成为一体。
例如,在本公开一些实施例提供的可穿戴设备包括第一通信模块,所述第一通信模块被配置为与命令设备进行通信,以及从所述命令设备接收所述控制命令,并将所述控制命令发送至所述控制电路。
本公开至少一个实施例还提供一种电子系统,包括命令设备和本公开任一实施例所述的可穿戴设备,其中,所述命令设备被配置为生成所述控制命令并将所述控制命令发送至所述可穿戴设备。
例如,在本公开一些实施例提供的电子系统中,所述命令设备包括第二通信模块,所述第二通信模块被配置为与所述可穿戴设备进行通信。
例如,在本公开一些实施例提供的电子系统中,所述可穿戴设备包括第一通信模块,所述第二通信模块被配置为与所述第一通信模块进行通信。
本公开至少一个实施例还提供一种应用于本公开任一实施例所述的可穿戴设备的触感反馈方法,包括:接收控制命令;根据所述控制命令,产生并输出与所述电磁线圈组对应的线圈电流至所述电磁线圈组;所述电磁线圈组被配置为基于所述线圈电流生成触觉反馈。
本公开至少一个实施例还提供一种存储介质,用于存储计算机指令,其中,当所述计算机指令被处理器运行时可以执行本公开任一实施例所述的触感反馈方法的一个或多个步骤。
本公开至少一个实施例还提供一种电子设备,包括一个或多个处理器,所述处理器被配置为运行计算机指令以执行本公开任一实施例所述的触感反馈方法的一个或多个步骤。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为本公开一些实施例提供的一种具有触觉反馈的可穿戴设备的示意框图;
图2A为本公开一些实施例提供的一种具有触觉反馈的可穿戴设备的示意图;
图2B为本公开一些实施例提供的另一种具有触觉反馈的可穿戴设备的示意图;
图2C为本公开一些实施例提供的又一种具有触觉反馈的可穿戴设备的示意图;
图3、图4A和图4B为电磁线圈通过磁场相互作用的原理示意图;
图5为本公开一些实施例提供的一种具有触觉反馈的可穿戴设备的触感产生原理示意图;
图6为本公开一些实施例提供的一种具有触觉反馈的可穿戴设备的示意 图;
图7为本公开一些实施例提供的另一种具有触觉反馈的可穿戴设备的示意图;
图8为本公开一些实施例提供的又一种具有触觉反馈的可穿戴设备的示意图;
图9为本公开一些实施例提供的一种电子系统的示意框图;
图10为本公开一些实施例提供的另一种电子系统的示意框图;以及
图11为本公开一些实施例提供的一种应用于可穿戴设备的触感反馈方法的流程图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
随着虚拟现实相关技术的逐渐完善,虚拟现实设备中实现了多种提高沉浸感的方案,例如基于六轴/九轴传感器的头部姿态追踪、有限范围的空间位置追踪以及手势识别与追踪等。但是,在虚拟现实设备使用过程中,触感是其中缺失的一个环节,目前的虚拟现实设备无法提供有效的触觉反馈,影响了用户的使用体验。尤其是在对物体进行抓取、触摸等虚拟场景里,触感是一个非常重 要的感知方式,触感的缺失降低了用户的沉浸感。
本公开至少一个实施例提供一种可穿戴设备、电子系统及设备、触感反馈方法及存储介质。通过利用电磁线圈产生磁场且各个磁场相互作用,从而生成触觉反馈,将该可穿戴设备应用于虚拟现实场景中可以增加物理触感,提高沉浸感,提升使用体验。
本公开的实施例对可穿戴设备的具体形态不作限定。例如,可穿戴设备可以包括手部可穿戴设备(例如,手套、手表、戒指、腕带等)、臂部可穿戴设备(例如,臂章)、足部可穿戴设备(例如,鞋袜)、腿部可穿戴设备(例如,护膝带)、头部可穿戴设备(例如,眼镜、耳环、帽子等)、颈部可穿戴设备(例如,项链)以及躯干可穿戴设备(例如,智能腰带、书包等)等。
下面,将参考附图详细地说明本公开的实施例。应当注意的是,不同的附图中相同的附图标记将用于指代已描述的相同的元件。
本公开至少一个实施例提供一种具有触觉反馈的可穿戴设备,该可穿戴设备包括多个电磁线圈、驱动电路和控制电路。所述驱动电路与所述多个电磁线圈耦接。所述控制电路被配置为根据控制命令,控制所述驱动电路产生并输出与所述电磁线圈对应的线圈电流至所述多个电磁线圈;以及所述多个电磁线圈被配置为接收所述线圈电流,并基于所述线圈电流生成触觉反馈。
图1为本公开一些实施例提供的一种具有触觉反馈的可穿戴设备的示意框图。参考图1,可穿戴设备100包括电磁线圈组110、驱动电路120和控制电路130。电磁线圈组110中的电磁线圈的数量可以根据需要而设定,例如,电磁线圈组110中的电磁线圈的数量可以为6,本公开的实施例对此不作限制。
例如,控制电路130和驱动电路120耦接(例如,电连接),驱动电路120和电磁线圈组110耦接(例如,电连接)。
例如,在一些实施例中,控制电路130被配置为根据控制命令控制驱动电路120生成与电磁线圈组110对应的线圈电流。例如,控制命令可以从外部设备实时/非实时接收,也可以预先存储在控制电路130或该可穿戴设备100的其他部件中。多个线圈电流的电流值和方向可以彼此相同或不同,可以根据实际需求而定。驱动电路120还被配置为输出线圈电流至电磁线圈组110。例如,驱动电路120可以包括电流输出芯片或其他适用的器件。电磁线圈组110被配置为接收线圈电流,并基于线圈电流生成触觉反馈。电磁线圈组110接收线圈电流后会产生磁场。例如,在一个示例中,电磁线圈组110可以包括多个电磁 线圈,控制电路130根据控制命令控制驱动电路120生成与电磁线圈组110中的多个电磁线圈一一对应的多个线圈电流,电磁线圈组110基于线圈电流产生的磁场相互作用(例如,相互排斥或相互吸引)而产生磁感应力,从而生成触觉反馈,用于使用户产生抓握或触摸物体时的触感。例如,在另一个示例中,控制电路130根据控制命令控制驱动电路120生成与电磁线圈组110中的一个电磁线圈对应的线圈电流,该接收到线圈电流的电磁线圈产生磁场,并与另行设置的磁性部件相互作用,以产生磁感应力。
图2A为本公开一些实施例提供的一种具有触觉反馈的可穿戴设备的示意图,图2B为本公开一些实施例提供的另一种具有触觉反馈的可穿戴设备的示意图,图2C为本公开一些实施例提供的又一种具有触觉反馈的可穿戴设备的示意图。参考图2A、图2B和图2C,该可穿戴设备100为手部可穿戴设备(例如,手套)。可穿戴设备100包括电磁线圈组110、驱动电路120和控制电路130。
例如,手部可穿戴设备包括与手的手指的指腹对应的多个手指区域和与手的手掌的中间部位对应的手掌区域。多个手指区域可以包括与手的拇指对应的拇指区域、与手的食指对应的食指区域、与手的中指对应的中指区域、与手的无名指对应的无名指区域、与手的小指对应的小指区域。手掌区域例如可以表示与手掌的掌心对应对应的区域。
例如,在一些实施例中,电磁线圈组110仅包括一个电磁线圈,且电磁线圈位于多个手指区域的一个手指区域或手掌区域。例如,参考图2B,在一些示例中,电磁线圈组110仅包括一个第六电磁线圈116,且该第六电磁线圈116位于手掌区域;参考图2C,在另一些示例中,电磁线圈组110仅包括一个第二电磁线圈112,且该第二电磁线圈112位于多个手指区域中的一个手指区域(例如,食指区域)。
例如,在另一些实施例中,电磁线圈组110包括多个电磁线圈,且多个电磁线圈分别位于多个手指区域的至少两个手指区域,或者,多个电磁线圈分别位于多个手指区域的至少一个手指区域和所述手掌区域。例如,参考图2A,电磁线圈组110包括第一电磁线圈111、第二电磁线圈112、第三电磁线圈113、第四电磁线圈114、第五电磁线圈115和第六电磁线圈116。例如,上述各电磁线圈分别位于该手部可穿戴设备的与手指的指腹处对应的多个手指区域和手掌的中间位置对应的手掌区域。参考图2A,第一电磁线圈111位于拇指区 域,第二电磁线圈112位于食指区域,第三电磁线圈113位于中指区域,第四电磁线圈114位于无名指区域,第五电磁线圈115位于小指区域,第六电磁线圈116位于手掌区域。
需要说明的是,本公开的各实施例中,电磁线圈组110中的电磁线圈的数量不受限制。例如,在其他示例中,电磁线圈组110也可以仅包括第一电磁线圈111、第二电磁线圈112、第三电磁线圈113和第六电磁线圈116,从而为拇指、食指和中指提供触觉反馈,这种方式可以在提供触觉反馈的同时简化结构,降低成本。电磁线圈组110中的电磁线圈的尺寸大小不受限制,可以根据手部可穿戴设备的具体结构以及所需要的触感强度而定。例如,电磁线圈组110中的电磁线圈可以通过粘接、卡接等任意方式设置在该手部可穿戴设备上。例如,电磁线圈组110中的电磁线圈可以采用表面裹有绝缘漆的导线以螺旋形绕制而成。电磁线圈组110中的电磁线圈的绕制方向不受限制,例如,可以为顺时针方向也可以为逆时针方向。电磁线圈组110中的电磁线圈的匝数不受限制,可以根据实际需求而定。
下面以电磁线圈组110包括多个电磁线圈为例详细描述本公开的实施例。
驱动电路120与电磁线圈组110中的各个电磁线圈耦接。例如,驱动电路120通过电导线140与各个电磁线圈电连接。驱动电路120被配置为输出线圈电流至电磁线圈组110。驱动电路120的数量不受限制。例如,在一个示例中,驱动电路120为一个,驱动电路120与电磁线圈组110中的各个电磁线圈均电连接。例如,在另一个示例中,驱动电路120为多个,各个驱动电路120与电磁线圈组110中的各个电磁线圈一一对应电连接,每个驱动电路120被配置为向对应的电磁线圈输出线圈电流。当然,本公开的实施例不限于此,每个驱动电路120也可以与电磁线圈组110中的部分电磁线圈电连接,以使驱动电路120的数量可以灵活设置。
例如,驱动电路120可以包括数字电路或模拟电路,也可以包括电流输出芯片或其他适用的器件。当然,驱动电路120可以采用常规的电路结构实现,此处不再详述。驱动电路120的设置位置不受限制,可以根据手部可穿戴设备的具体结构而定。
例如,驱动电路120可以包括电流生成模块和输出模块,例如,电流生成模块被配置为接收控制电路130传输的控制命令,并根据该控制命令产生线圈电流,输出模块被配置为将该线圈电流输出至电磁线圈组110。例如,输出模 块可以为开关元件,控制命令可以包括控制该开关元件的开关控制信号,控制电路130可以根据开关控制信号控制开关元件将电流生成模块和电磁线圈组110导通或断开,当电流生成模块和电磁线圈组110导通时,电流生成模块生成的线圈电流可以被传输至电磁线圈组110。
例如,在一些示例中,驱动电极120还可以包括电源,且电源被配置为给电流生成模块和输出模块提供电力。
例如,在一些实施例中,控制电路130通过电导线140与驱动电路120电连接。控制电路130被配置为根据控制命令控制驱动电路120生成与电磁线圈组110中的各电磁线圈对应的线圈电流。例如,控制电路130可以包括微控制单元(Microcontroller Unit,MCU)。当然,不限于此,控制电路130也可以包括现场可编程门阵列(Field Programmable Gate Array,FPGA)、复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)或其他适用的器件。控制电路130的设置位置不受限制,可以根据手部可穿戴设备的具体结构而定。
例如,控制电路130采用串行或并行通信协议对驱动电路120进行控制。例如,当采用串行通信协议时,该串行通信协议可以为集成电路总线协议(Inter-Integrated Circuit,IIC或I2C)、串行外设接口协议(Serial Peripheral Interface,SPI)或其他适用的通信协议。采用串行通信协议,可以简化电路结构,降低成本,并且具有很好的抗噪性。采用并行通信协议,可以提高通信速度,效率高,实时性好。
需要说明的是,本公开的各实施例中,可穿戴设备100还可以包括更多的部件,例如力传感器、距离传感器等,以提供更加丰富的功能,本公开的实施例对此不作限制。
例如,电磁线圈组可以包括多个电磁线圈,多个电磁线圈的线圈电流彼此不相同。例如,多个电磁线圈中的至少两个电磁线圈的线圈电流的大小和方向不相同;或者,至少两个电磁线圈的线圈电流的大小相同且方向不相同;或者,至少两个电磁线圈的线圈电流的方向相同且大小不相同。
例如,多个电磁线圈的线圈数量可以均相同;或者,多个电磁线圈中的至少两个电磁线圈的线圈数量可以不相同。
图3、图4A和图4B为电磁线圈通过磁场相互作用的原理示意图。下面结合图3、图4A和图4B,对电磁线圈通过磁场相互作用的原理进行说明。
图3中示出了图2A中的第一电磁线圈111和第六电磁线圈116。例如, 第一电磁线圈111的线圈的数量和第六电磁线圈116的线圈的数量可以相同。例如,第一电磁线圈111和第六电磁线圈116分别按照图3中所示的方向绕制,并且分别向第一电磁线圈111提供第一线圈电流I1和第六电磁线圈116提供第二线圈电流I2,第一线圈电流I1和第二线圈电流I2的方向图3中虚线箭头所示方向。对于第一电磁线圈111和第六电磁线圈116,迎着第一方向观看,该第一线圈电流I1的电流方向为逆时针方向,第二线圈电流I2为顺时针方向;而迎着第二方向观看,则该第一线圈电流I1的电流方向为顺时针方向,第二线圈电流I2的电流方向为逆时针方向,也就是说,第一线圈电流I1和第二线圈电流I2的方向相反。根据安培定则(即右手螺旋定则)可知,第一电磁线圈111中会产生沿第一方向的磁场,第六电磁线圈116中会产生沿第二方向的磁场。例如,第一方向和第二方向彼此平行且方向相反。例如,根据同性相斥、异性相吸的原理,第一电磁线圈111产生的磁场的北极N和第六电磁线圈116产生的磁场的北极N会相互排斥,从而产生第一磁感应力F1和第二磁感应力F2,第一磁感应力F1和第二磁感应力F2为一对互相作用力,例如,第一磁感应力F1可以为作用力,且第一磁感应力F1的受力方向可以为第一方向;而第二磁感应力F2为反作用力,且第二磁感应力F2的受力方向可以为第二方向。因此,第一电磁线圈111和第六电磁线圈116的相互排斥作用而产生了排斥力,将该排斥力作用于手指与手掌之间,则会生成触觉反馈,从而使用户产生触感。
又例如,当两个电磁线圈按照图3所示的方向放置时,若迎着同一个方向观看,若第一电磁线圈111上的电流的方向和第三电磁线圈113上的电流的方向相反(例如,迎着同一个方向观看,第一电磁线圈111上的电流的方向为逆时针方向,而第三电磁线圈113上的电流的方向为顺时针方向),则第一电磁线圈111和第三电磁线圈113会相互排斥而产生了排斥力,且该排斥力作用于多个手指(例如,大拇指和中指)之间。
例如,第一线圈电流I1的电流值和第二线圈电流I2的电流值可以相等。但本公开不限于,第一线圈电流I1的电流值和第二线圈电流I2的电流值也可以不相等,例如,第一线圈电流I1的电流值大于第二线圈电流I2的电流值。
当向第一电磁线圈111提供第一线圈电流I1'和第六电磁线圈116提供第二线圈电流I2',且第一线圈电流I1'和第二线圈电流I2'如图4A中虚线箭头所示方向时,对于第一电磁线圈111和第六电磁线圈116,迎着第一方向观看,该第一线圈电流I1'的电流方向为逆时针方向,第二线圈电流I2'的电流方向也为 逆时针方向;而迎着第二方向观看,则该第一线圈电流I1'的电流方向为顺时针方向,第二线圈电流I2'的电流方向也为顺时针方向,也就是说,第一线圈电流I1'和第二线圈电流I2'的方向相同。根据安培定则可知,第一电磁线圈111和第六电磁线圈116中均会产生沿第一方向的磁场。例如,根据同性相斥、异性相吸的原理,第一电磁线圈111产生的磁场的北极N和第六电磁线圈116产生的磁场的南极S会相互吸引,从而产生第三磁感应力F3和第四磁感应力F4,第三磁感应力F3和第四磁感应力F4为一对相互作用力,例如,第三磁感应力F3可以为作用力,且第三磁感应力F3的受力方向可以为第二方向;而第四磁感应力F4为反作用力,且第四磁感应力F4的受力方向可以为第一方向。因此,第一电磁线圈111和第六电磁线圈116的相互吸引作用而产生了吸引力,将该吸引力作用于手指与手掌之间,则会生成触觉反馈,从而使用户产生触感。
又例如,当两个电磁线圈按照图4A所示的方向放置时,若迎着同一个方向观看,若第一电磁线圈111上的电流的方向和第三电磁线圈113上的电流的方向相同(例如,迎着同一个方向观看,第一电磁线圈111上的电流的方向为逆时针方向,而第三电磁线圈113上的电流的方向为逆时针方向),则第一电磁线圈111和第三电磁线圈113会相互吸引而产生了吸引力,且该吸引力作用于多个手指(例如,大拇指和中指)之间。
需要说明的是,第一电磁线圈111和第六电磁线圈116各自产生的磁场方向可以彼此平行,也可以具有夹角。例如,在一个示例中,如图4B所示,当第一电磁线圈111和第六电磁线圈116各自产生的磁场方向具有夹角时,第一电磁线圈111和第六电磁线圈116之间仍然会产生相互排斥作用或相互吸引作用,此时,受力方向与第一电磁线圈111的端部的中点(例如,图4B所示的Q1点)和第六电磁线圈116的端部的中点(例如,图4B所示的Q2点)彼此连线的方向(例如,如图4B所示的第一方向)平行。
例如,控制命令包括各个线圈电流的方向和电流值、增加部分或全部线圈电流的电流值、减小部分或全部线圈电流的电流值、重新提供部分或全部线圈电流以及关断部分或全部线圈电流中的至少之一。当然,不限于此,控制命令还可以包括其他适用的内容,以适用于多样化的虚拟现实场景。
图5为本公开一些实施例提供的一种具有触觉反馈的可穿戴设备的触感产生原理示意图。参考图5,当用户做出抓握或触摸物体的手势时,手指之间、手指和手掌之间需要互相排斥,此时,控制命令可以包括多个电磁线圈(例如, 第一电磁线圈111、第三电磁线圈113、第四电磁线圈114、第五电磁线圈115和第六电磁线圈116)的线圈电流的电流值和方向,例如,多个电磁线圈的线圈电流的电流值可以相同,在垂直于手掌掌心的方向上,即迎着手掌掌心的方向观看,多个电磁线圈的线圈电流的方向可以相同,例如,均为顺时针方向。控制电路130可以根据该控制命令控制驱动电路120中的例如电流生成模块产生电磁线圈组110中多个电磁线圈对应的线圈电流,并将该对应的线圈电流分别输出向电磁线圈组110中的多个电磁线圈,从而使多个电磁线圈在线圈电流的作用下产生多个磁场,即在手的不同部位产生多个磁场。多个磁场相互作用。当多个电磁线圈中的任意两个电磁线圈彼此靠近时,则该两个电磁线圈会相互排斥。例如,第一电磁线圈111、第三电磁线圈113、第四电磁线圈114、第五电磁线圈115分别和第六电磁线圈116相互排斥,从而使用户的手指和手掌受到排斥力,以生成排斥的触觉反馈,从而使用户产生触感。
又例如,当手指和手掌之间需要互相吸引时,此时,控制命令可以包括多个电磁线圈(例如,第一电磁线圈111、第三电磁线圈113、第四电磁线圈114、第五电磁线圈115和第六电磁线圈116)的线圈电流的电流值和方向,例如,多个电磁线圈的线圈电流的电流值可以相同,在垂直于手掌掌心的方向上,即迎着手掌掌心的方向观看,第一电磁线圈111、第三电磁线圈113、第四电磁线圈114、第五电磁线圈115的线圈电流的方向可以相同,例如,均为顺时针方向,而第六电磁线圈116的线圈电流的方向与第一电磁线圈111的线圈电流的方向可以相反,例如,第六电磁线圈116的线圈电流的方向为逆时针方向。控制电路130可以根据该控制命令控制驱动电路120中的例如电流生成模块产生电磁线圈组110中多个电磁线圈对应的线圈电流,并将该对应的线圈电流分别输出向电磁线圈组110中的多个电磁线圈,从而使多个电磁线圈在线圈电流的作用下产生多个磁场,即在手的不同部位产生多个磁场。当第一电磁线圈111、第三电磁线圈113、第四电磁线圈114、第五电磁线圈115中的任意一个电磁线圈靠近第六电磁线圈116时,则该电磁线圈和第六电磁线圈116会相互吸引,即从而使用户的手指和手掌受到吸引力,以生成吸引的触觉反馈,从而使用户产生触感。
需要说明的是,本公开的各实施例中,电磁线圈组110中的多个电磁线圈之间的相互作用可以是相互排斥,也可以是相互吸引,还可以是一部分线圈相互排斥而另一部分线圈相互吸引,本公开的实施例对此不作限制,这可以根据 具体的应用场景而定。
例如,多个磁场相互作用而产生的触觉反馈可以包括:根据多个磁场的相互排斥作用而产生的排斥力的反馈、根据多个磁场的相互吸引作用而产生的吸引力的反馈、或者根据多个磁场中的一部分磁场的相互排斥作用而产生的排斥力和多个磁场中的另一部分磁场的相互吸引作用而产生的吸引力的结合的反馈。
例如,向电磁线圈组110中的多个电磁线圈分别提供的线圈电流的方向及电流值可以彼此相同也可以彼此不同。向电磁线圈组110中的多个电磁线圈分别提供的线圈电流的方向和电流值可以根据具体的手势(电磁线圈组110中的多个电磁线圈的相对位置关系)、应用场景以及电磁线圈组110中的多个电磁线圈的设置方式而定。
例如,在一个示例中,将该可穿戴设备100应用于虚拟现实场景中时,虚拟现实设备捕捉用户的手势,根据手势和具体的虚拟场景而产生控制命令。该可穿戴设备100接收控制命令,控制电路130根据控制命令控制驱动电路120输出与电磁线圈组110一一对应的多个线圈电流至电磁线圈组110。电磁线圈组110中的多个电磁线圈基于上述多个线圈电流产生多个磁场,多个磁场相互作用从而生成触觉反馈。这种方式可以实现实时反馈,使用户的感觉更加真实,有助于提高用户在虚拟现实场景中的沉浸感,提升使用体验。
例如,在另一个示例中,将该可穿戴设备100应用于虚拟现实场景中时,将控制命令预先存储在控制电路130或该可穿戴设备100的其他部件中。例如,控制命令可以根据虚拟现实场景中需要产生触觉反馈的时间和方式而定。控制电路130根据预先存储的控制命令,在预定的时间以预定的方式控制驱动电路120向电磁线圈组110输出线圈电流,从而使电磁线圈组110中的各电磁线圈相互作用而生成触觉反馈。这种方式可以减少部件数量,简化设备结构,降低生产成本。
图6为本公开一些实施例提供的一种具有触觉反馈的可穿戴设备的示意图。参考图6,该可穿戴设备100包括手套001,电磁线圈组110、驱动电路120和控制电路130均集成在手套001上。例如,第一至第五电磁线圈111-115集成在手套001上对应于手指指腹的位置,第六电磁线圈116集成在手套001上对应于手掌中间(例如,手掌的掌心)的位置。例如,驱动电路120和控制电路130集成在手套001上对应于手腕的位置。例如,电导线140也集成在手 套001上,以实现各个部件之间的电连接。
例如,各个部件可以通过粘接、缝制等任意适用的方式集成到手套001上。需要说明的是,本公开的各实施例中,各个部件在手套001上的设置位置不受限制,可以根据实际需求而定。例如,在其他示例中,驱动电路120和控制电路130可以集成到手套001上对应于手背的位置,以充分利用空间,减小手套001的尺寸。
例如,采用手套001作为各个部件的载体,可以提供足够的支撑,并且便于用户穿戴,使用方便。当然,本公开的实施例不限于此,可穿戴设备100可以为任意形式的设备,只要能够穿戴于手部即可。例如,在其他示例中,可穿戴设备100具体实现为六个环状套,其中五个环状套可佩戴于五个手指上,另一个环状套可佩戴于手掌上,六个环状套彼此配合工作,从而实现触觉反馈。
图7为本公开一些实施例提供的另一种具有触觉反馈的可穿戴设备的示意图。参考图7,除了可穿戴设备100还进一步包括电源150外,该实施例中的可穿戴设备100与图2中描述的可穿戴设备100相类似,重复之处在此不再赘述。在该实施例中,可穿戴设备100还包括电源150。电源150被配置为对可穿戴设备100中的驱动电路120和控制电路130等器件提供电能。
例如,电源150与驱动电路120和控制电路130耦接(例如,电连接),以提供电能。电源150的设置位置不受限制,可以根据可穿戴设备100的具体结构而定。
例如,电源150可以为电池或电源适配器。例如,电源150可以为可充电电池,也可以为一次性电池(原电池)。例如,当电源150为一次性电池时,可以将其以可拆卸的方式安装,以便于在电量耗尽时更换。例如,电源150可以为柔性电池,柔性电池可以随着用户手势的变化而弯曲,这样使得电源150的设置位置不受用户手势的影响,并且可以提高用户的使用体验。例如,在一个示例中,电源150和驱动电路120集成为一体,即集成为电流输出模块160,电流输出模块160可以为专用或通用的模块或电路。这种方式可以减少部件数量,提高设备的集成度。
需要说明的是,本公开的各实施例中,可穿戴设备100的供电方式不受限制,可以通过电源150供电,也可以通过其他适用的部件供电。
图8为本公开一些实施例提供的又一种具有触觉反馈的可穿戴设备的示意图。参考图8,除了可穿戴设备100还进一步包括第一通信模块170外,该实 施例中的可穿戴设备100与图2中描述的可穿戴设备100相类似,重复之处在此不再赘述。在该实施例中,可穿戴设备100还包括第一通信模块170。第一通信模块170与控制电路130电连接。第一通信模块170被配置为与命令设备进行通信,从命令设备接收控制命令,并将控制命令发送至控制电路130。例如,命令设备可以为能够向可穿戴设备100发送控制命令的任意外部设备。
例如,第一通信模块170可以为无线通信模块,以减少可穿戴设备100与其他外部设备的连接线缆,提高使用的便利性。更具体地,例如,第一通信模块170可以为低功耗蓝牙(Bluetooth Low Energy,BLE)模块,以降低功耗,并且可以提高与发送控制命令的设备的连接速度。当然,不限于此,第一通信模块170也可以为红外通信模块、ZigBee模块等任意适用的通信模块。
需要说明的是,本公开的各实施例中,第一通信模块170可以为无线通信模块,也可以为有线通信模块,本公开的实施例对此不作限制。例如,在其他示例中,第一通信模块170可以为有线通信模块,例如串行/并行通信模块、光收发器等,这种方式可以提高传输信号的安全性,并且便于与多样化的外部设备匹配。
本公开至少一个实施例还提供一种电子系统,该电子系统包括命令设备和本公开任一实施例所述的可穿戴设备。所述命令设备被配置为生成所述控制命令并将所述控制命令发送至所述可穿戴设备。该电子系统可以提供触觉反馈,将该电子系统应用于虚拟现实场景中可以增加物理触感,提高沉浸感,提升使用体验。
图9为本公开一些实施例提供的一种电子系统的示意框图。参考图9,该电子系统包括可穿戴设备100和命令设备200。可穿戴设备100为本公开任一实施例所述的可穿戴设备。命令设备200被配置为生成控制命令并将控制命令发送至可穿戴设备100。命令设备200可以通过有线或无线的方式发送控制命令。例如,命令设备200还可以被配置为接收来自可穿戴设备100的反馈信息,以获取可穿戴设备100的状态参数等信息。
例如,命令设备200可以为单独的设备,也可以与其他设备集成为一体。例如,在一个示例中,该电子系统应用于虚拟现实场景中,命令设备200可以与虚拟现实设备集成为一体,从而提高整个应用系统的集成度。例如,命令设备200可以为电子计算机或任意适用的设备,也可以为集成到其他设备中的软件或可执行程序,本公开的实施例对此不作限制。
图10为本公开一些实施例提供的另一种电子系统的示意框图。参考图10,命令设备200包括第二通信模块210。第二通信模块210被配置为与可穿戴设备100中的第一通信模块170进行通信,以传输控制命令。
例如,当第一通信模块170为低功耗蓝牙模块时,第二通信模块210也可以为低功耗蓝牙模块,以实现彼此通信。当然,本公开的实施例不限于此,第二通信模块210可以为采用任意通信协议或通信方式的模块,只需能够实现与第一通信模块170通信即可。
本公开至少一个实施例还提供一种应用于本公开任一实施例所述的可穿戴设备的触感反馈方法。该触感反馈方法包括:接收控制命令;根据所述控制命令,产生并输出与所述电磁线圈组对应的线圈电流至所述电磁线圈组。所述电磁线圈组被配置为基于所述线圈电流生成触觉反馈。利用该触感反馈方法,可以提供触觉反馈,增加物理触感,从而提高沉浸感,提升使用体验。
图11为本公开一些实施例提供的一种应用于可穿戴设备的触感反馈方法的流程图。参考图11,该触感反馈方法包括以下步骤:
步骤S410:接收控制命令;
步骤S420:根据控制命令,产生并输出与电磁线圈组对应的线圈电流至电磁线圈组。
例如,电磁线圈组被配置为基于线圈电流生成触觉反馈。
例如,电磁线圈组可以包括多个电磁线圈,且多个电磁线圈的线圈电流的电流值和方向可以相同;或者,多个电磁线圈中的至少两个电磁线圈的线圈电流的大小和方向不相同;多个电磁线圈中的至少两个电磁线圈的线圈电流的大小相同且方向不相同;或者多个电磁线圈中的至少两个电磁线圈的线圈电流的方向相同且大小不相同。
需要说明的是,本公开的各实施例中,该触感反馈方法至少部分步骤可以通过软件、硬件、固件或它们的任意组合的方式体现。同样,该触感反馈方法的流程可以包括更多或更少的操作,这些操作可以顺序执行或并行执行。虽然上文描述的触感反馈方法的流程包括以特定顺序出现的多个操作,但是应该清楚了解,多个操作的顺序并不受限制。关于该触感反馈方法的详细描述可以参考本公开的实施例中对于可穿戴设备100的工作原理的描述,这里不再赘述。
本公开至少一个实施例还提供一种存储介质,用于存储计算机指令,其中,当所述计算机指令被处理器运行时可以执行本公开任一实施例所述的触感反 馈方法的一个或多个步骤。
例如,该存储介质可以为各种形式的计算机可读存储介质,计算机指令可以为非暂时性计算机可读指令。
例如,该存储介质中非暂时性存储有计算机指令。当存储介质由计算机读取时,计算机可以执行存储介质中存储的计算机指令,执行本公开任一实施例提供的触感反馈方法的一个或多个步骤。在本公开的各实施例中,存储介质不受限制,可以为光盘、软盘、硬盘、闪存、U盘、CF卡、SD卡、MMC卡、SM卡、记忆棒(Memory Stick)、xD卡等,也可以为其他适用的存储介质。
本公开至少一个实施例还提供一种电子设备,包括一个或多个处理器,所述处理器被配置为运行计算机指令以执行本公开任一实施例所述的触感反馈方法的一个或多个步骤。
例如,该电子设备可以为计算机等任意适用的设备。
有以下几点需要说明:
(1)本公开实施例附图只涉及到本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (16)

  1. 一种具有触觉反馈的可穿戴设备,包括:电磁线圈组、驱动电路和控制电路;其中,
    所述驱动电路与所述电磁线圈组耦接;
    所述控制电路被配置为根据控制命令,控制所述驱动电路产生并输出与所述电磁线圈组对应的线圈电流至所述电磁线圈组;以及
    所述电磁线圈组被配置为接收所述线圈电流,并基于所述线圈电流生成触觉反馈。
  2. 根据权利要求1所述的可穿戴设备,其中,所述电磁线圈组包括多个电磁线圈,所述多个电磁线圈的线圈电流彼此不相同。
  3. 根据权利要求2所述的可穿戴设备,其中,所述多个电磁线圈中的至少两个电磁线圈的线圈电流的大小和方向不相同;或者
    所述至少两个电磁线圈的线圈电流的大小相同且方向不相同;或者
    所述至少两个电磁线圈的线圈电流的方向相同且大小不相同。
  4. 根据权利要求1-3任一项所述的可穿戴设备,其中,所述电磁线圈组被配置为在所述线圈电流的作用下产生多个磁场,所述触觉反馈包括根据所述多个磁场的相互排斥作用而产生的排斥力的反馈、根据所述多个磁场的相互吸引作用而产生的吸引力的反馈、或者根据所述多个磁场中的一部分磁场的相互排斥作用而产生的排斥力和所述多个磁场中的另一部分磁场的相互吸引作用而产生的吸引力的结合的反馈。
  5. 根据权利要求1所述的可穿戴设备,其中,所述可穿戴设备为手部可穿戴设备,所述手部可穿戴设备包括与手的手指的指腹对应的多个手指区域和与所述手的手掌的中间部位对应的手掌区域,
    所述电磁线圈组包括一个电磁线圈,且所述电磁线圈位于所述多个手指区域的一个手指区域或所述手掌区域;或者,
    所述电磁线圈组包括多个电磁线圈,且所述多个电磁线圈分别位于所述多个手指区域的至少两个手指区域,或者,所述多个电磁线圈分别位于所述多个手指区域的至少一个手指区域和所述手掌区域。
  6. 根据权利要求1-5任一项所述的可穿戴设备,其中,所述控制命令包括各所述线圈电流的方向和电流值、增加部分或全部所述线圈电流的电流值、 减小部分或全部所述线圈电流的电流值、重新提供部分或全部所述线圈电流以及关断部分或全部所述线圈电流中的至少之一。
  7. 根据权利要求1-6任一项所述的可穿戴设备,还包括电源,
    其中,所述驱动电路和所述控制电路与所述电源耦接,所述电源被配置为对所述驱动电路和所述控制电路提供电能。
  8. 根据权利要求7所述的可穿戴设备,其中,所述电源包括柔性电池。
  9. 根据权利要求7或8所述的可穿戴设备,其中,所述电源与所述驱动电路集成为一体。
  10. 根据权利要求1-9任一项所述的可穿戴设备,还包括第一通信模块,
    其中,所述第一通信模块被配置为与命令设备进行通信,以及从所述命令设备接收所述控制命令,并将所述控制命令发送至所述控制电路。
  11. 一种电子系统,包括命令设备和如权利要求1-10任一项所述的可穿戴设备,
    其中,所述命令设备被配置为生成所述控制命令并将所述控制命令发送至所述可穿戴设备。
  12. 根据权利要求11所述的电子系统,其中,所述命令设备包括第二通信模块,所述第二通信模块被配置为与所述可穿戴设备进行通信。
  13. 根据权利要求12所述的电子系统,其中,所述可穿戴设备包括第一通信模块,所述第二通信模块被配置为与所述第一通信模块进行通信。
  14. 一种应用于权利要求1-10任一项所述的可穿戴设备的触感反馈方法,包括:
    接收控制命令;以及
    根据所述控制命令,产生并输出与所述电磁线圈组对应的线圈电流至所述电磁线圈组,
    其中,所述电磁线圈组被配置为基于所述线圈电流生成触觉反馈。
  15. 一种存储介质,用于存储计算机指令,其中,当所述计算机指令被处理器运行时可以执行如权利要求14所述的触感反馈方法的一个或多个步骤。
  16. 一种电子设备,包括一个或多个处理器,所述处理器被配置为运行计算机指令以执行如权利要求14所述的触感反馈方法的一个或多个步骤。
PCT/CN2018/116501 2018-04-16 2018-11-20 可穿戴设备、电子系统及设备、触感反馈方法及存储介质 WO2019200911A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/474,397 US11537206B2 (en) 2018-04-16 2018-11-20 Wearable device, electronic system and device, tactile feedback method and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810339539.8 2018-04-16
CN201810339539.8A CN108536300B (zh) 2018-04-16 2018-04-16 可穿戴设备、电子系统及设备、触感反馈方法及存储介质

Publications (1)

Publication Number Publication Date
WO2019200911A1 true WO2019200911A1 (zh) 2019-10-24

Family

ID=63480889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116501 WO2019200911A1 (zh) 2018-04-16 2018-11-20 可穿戴设备、电子系统及设备、触感反馈方法及存储介质

Country Status (3)

Country Link
US (1) US11537206B2 (zh)
CN (1) CN108536300B (zh)
WO (1) WO2019200911A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108536300B (zh) 2018-04-16 2020-07-24 京东方科技集团股份有限公司 可穿戴设备、电子系统及设备、触感反馈方法及存储介质
CN109633632B (zh) * 2018-12-26 2021-11-30 青岛小鸟看看科技有限公司 一种头戴显示设备,手柄及其定位追踪方法
CN109885175B (zh) * 2019-03-07 2021-01-26 京东方科技集团股份有限公司 触觉反馈装置、系统及方法
FR3116357B1 (fr) * 2020-11-17 2023-05-12 Commissariat A L’Energie Atomique Et Aux Energies Alternatives Interface homme-machine comportant un gant
CN113391700A (zh) * 2021-06-11 2021-09-14 幻境虚拟现实(广州)智能科技研究院有限公司 一种触感反馈的产生方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104598033A (zh) * 2015-02-05 2015-05-06 武汉大学 一种多线圈电磁式力触觉反馈装置及方法
CN106959755A (zh) * 2017-03-28 2017-07-18 苏州椒图电子有限公司 一种触控传感方法
EP3273327A1 (en) * 2016-07-20 2018-01-24 Vestel Elektronik Sanayi ve Ticaret A.S. Haptic feedback using variable surface friction of a touch screen display
CN108536300A (zh) * 2018-04-16 2018-09-14 京东方科技集团股份有限公司 可穿戴设备、电子系统及设备、触感反馈方法及存储介质

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5583478A (en) * 1995-03-01 1996-12-10 Renzi; Ronald Virtual environment tactile system
CN201239951Y (zh) * 2008-07-15 2009-05-20 东南大学 手部力觉感知器
US9445876B2 (en) * 2012-02-27 2016-09-20 Covidien Lp Glove with sensory elements incorporated therein for controlling at least one surgical instrument
KR101350776B1 (ko) * 2012-03-05 2014-01-16 연세대학교 산학협력단 장갑 기반의 인터페이스 장치, 그리고 이를 이용한 햅틱 시스템 및 방법
US8945328B2 (en) * 2012-09-11 2015-02-03 L.I.F.E. Corporation S.A. Methods of making garments having stretchable and conductive ink
CN103207673A (zh) * 2013-03-15 2013-07-17 江苏省电力公司 一种震动手套
US20170042760A1 (en) * 2014-04-16 2017-02-16 Christopher Chad Hamilton Stimulating devices
US9746984B2 (en) * 2014-08-19 2017-08-29 Sony Interactive Entertainment Inc. Systems and methods for providing feedback to a user while interacting with content
US10019059B2 (en) * 2014-08-22 2018-07-10 Sony Interactive Entertainment Inc. Glove interface object
WO2016205143A1 (en) * 2015-06-14 2016-12-22 Sony Interactive Entertainment Inc. Gloves that include haptic feedback for use with hmd systems
CN205318322U (zh) * 2015-08-10 2016-06-15 广州西麦科技股份有限公司 一种虚拟现实触感反馈装置
US10366583B2 (en) * 2015-08-25 2019-07-30 Immersion Corporation Bistable haptic feedback generator
US20170097680A1 (en) * 2015-10-02 2017-04-06 Oculus Vr, Llc Using anisotropic weaves of materials in input interfaces for a virtual reality system
US10025386B2 (en) * 2015-11-09 2018-07-17 Oculus Vr, Llc Providing tactile feedback to a user through actuators moving a portion of the user's skin
US10209775B2 (en) * 2015-11-09 2019-02-19 Facebook Technologies, Llc Using a magnetic actuation mechanism to provide tactile feedback to a user interacting with a virtual environment
US10585479B2 (en) * 2015-11-10 2020-03-10 Facebook Technologies, Llc Control for a virtual reality system including opposing portions for interacting with virtual objects and providing tactile feedback to a user
US20170165567A1 (en) * 2015-12-10 2017-06-15 Palm Laboratories Inc. Haptic mechanism for virtual reality and augmented reality interfaces
CN106227346B (zh) * 2016-07-25 2022-10-21 南京航空航天大学 基于电磁场控制的力觉和触觉融合再现装置和方法
US9911292B1 (en) * 2016-10-12 2018-03-06 Immersion Corporation Smart material for haptic feedback
US10381143B2 (en) * 2016-11-28 2019-08-13 Immersion Corporation Magneto-sensitive elastomers for haptic feedback
CN106708190B (zh) * 2016-12-13 2019-10-18 广东小天才科技有限公司 智能穿戴设备及其提醒方法
US10055949B2 (en) * 2017-01-05 2018-08-21 Immersion Corporation Adjustable haptic wearables
CN207100612U (zh) * 2017-08-17 2018-03-16 国网四川省电力公司技能培训中心 一种基于虚拟现实仿真模拟的数据手套装置
US10583359B2 (en) * 2017-12-28 2020-03-10 Immersion Corporation Systems and methods for providing haptic effects related to touching and grasping a virtual object

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104598033A (zh) * 2015-02-05 2015-05-06 武汉大学 一种多线圈电磁式力触觉反馈装置及方法
EP3273327A1 (en) * 2016-07-20 2018-01-24 Vestel Elektronik Sanayi ve Ticaret A.S. Haptic feedback using variable surface friction of a touch screen display
CN106959755A (zh) * 2017-03-28 2017-07-18 苏州椒图电子有限公司 一种触控传感方法
CN108536300A (zh) * 2018-04-16 2018-09-14 京东方科技集团股份有限公司 可穿戴设备、电子系统及设备、触感反馈方法及存储介质

Also Published As

Publication number Publication date
US11537206B2 (en) 2022-12-27
CN108536300A (zh) 2018-09-14
US20210333879A1 (en) 2021-10-28
CN108536300B (zh) 2020-07-24

Similar Documents

Publication Publication Date Title
WO2019200911A1 (zh) 可穿戴设备、电子系统及设备、触感反馈方法及存储介质
Bermejo et al. A survey on haptic technologies for mobile augmented reality
Sun et al. Augmented reality based educational design for children
Mazursky et al. MagnetIO: Passive yet interactive soft haptic patches anywhere
CN103052927B (zh) 提供三维触觉反馈的系统、设备和方法
KR20130101367A (ko) 장갑 기반의 인터페이스 장치, 그리고 이를 이용한 햅틱 시스템 및 방법
CN104991650A (zh) 一种手势控制器及一种虚拟现实系统
Leigh et al. Morphology extension kit: A modular robotic platform for physically reconfigurable wearables
CN109692471A (zh) 一种可穿戴设备以及交互方法
US20160098084A1 (en) Method, device, system and non-transitory computer-readable recording medium for providing user interface
US20240061513A1 (en) Multi-stage gestures detected based on neuromuscular-signal sensors of a wearable device to activate user-interface interactions with low-false positive rates, and systems and methods of use thereof
Prattichizzo et al. Wearable and hand-held haptics
JP2013011979A (ja) 動作指示装置、動作指示システム、動作指示方法、及びプログラム
Lu et al. Contactless haptic display through magnetic field control
CN105955488B (zh) 一种操控终端的方法和装置
JP2019102098A (ja) ハプティック効果を無線で伝達するシステム、デバイス、及び方法
CN204790857U (zh) 一种手势控制器及一种虚拟现实系统
CN111782034A (zh) 基于线性马达的新型电磁触觉模拟反馈装置及方法
Lee et al. Pseudo-haptic Feedback Design for Virtual Activities in Human Computer Interface
Zucco et al. Design guidelines for wearable pointing devices
US11669134B2 (en) First information processing device, second information processing device, information processing method, and information processing system
TWI761845B (zh) 基於虛擬現實的手套及智能系統
CN208176094U (zh) 一种vr热反馈手套
Jangale et al. Exploring the use of image target based virtual controller for mobile augmented reality
CN207822488U (zh) 一种智能游戏球

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915521

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/01/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18915521

Country of ref document: EP

Kind code of ref document: A1