WO2019200560A1 - 一种成像透镜前分离激光的共光路的测距瞄准器 - Google Patents

一种成像透镜前分离激光的共光路的测距瞄准器 Download PDF

Info

Publication number
WO2019200560A1
WO2019200560A1 PCT/CN2018/083530 CN2018083530W WO2019200560A1 WO 2019200560 A1 WO2019200560 A1 WO 2019200560A1 CN 2018083530 W CN2018083530 W CN 2018083530W WO 2019200560 A1 WO2019200560 A1 WO 2019200560A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
optical path
imaging lens
natural light
light
Prior art date
Application number
PCT/CN2018/083530
Other languages
English (en)
French (fr)
Inventor
付陆欣
刑志成
Original Assignee
深圳市瑞尔幸电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市瑞尔幸电子有限公司 filed Critical 深圳市瑞尔幸电子有限公司
Priority to PCT/CN2018/083530 priority Critical patent/WO2019200560A1/zh
Priority to DE212018000190.1U priority patent/DE212018000190U1/de
Priority to CN201880005212.5A priority patent/CN110199202B/zh
Priority to US16/432,925 priority patent/US11391839B2/en
Publication of WO2019200560A1 publication Critical patent/WO2019200560A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/46Indirect determination of position data
    • G01S17/48Active triangulation systems, i.e. using the transmission and reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver

Definitions

  • the present invention relates to the field of aiming device technology, and in particular to a distance measuring collimator for separating a common optical path of a laser before an imaging lens.
  • the common optical distance measuring sight is a relatively high-end product, and its product characteristics are that the laser emitting, receiving and imaging optical paths are mixed together, and the product has a neat appearance and a strong overall.
  • the structure is reliable.
  • the separation of the laser emission, reception and imaging natural light paths of such products is at the rear end of the imaging objective (the front end of the product close to the object being observed), such a structure causes the laser emitted from the transmitting end to
  • the illuminating light and the reflected light are formed in the optical path of the rear end through the imaging objective lens, and the light will reach the receiving end through the internal optical path before the reflected light of the actual ranging, forming a close-range high-intensity signal. It makes the distance measurement at close range impossible, and there is a problem that the short-range blind zone is large, and it is usually impossible to measure within 12 meters.
  • the object of the present invention is to provide a distance measuring collimator for separating a laser beam in front of an imaging lens, which aims to solve the problem that the common optical path scope in the prior art is separated by laser reflection, receiving and imaging natural light path at the rear end of the imaging objective lens.
  • the problem of large blind spots can increase the nearest ranging distance to 1 meter.
  • the technical solution of the present invention is to provide a distance measuring sight for a common light path separating lasers before an imaging lens, comprising: a housing, a control module, a laser emitter, a laser receiver,
  • the data display, the laser reflective natural light transmitting mirror, the concave imaging lens and the red light reflecting natural light transmitting mirror, the housing is provided with the object image hole and the observation hole, the housing is formed with the mounting cavity, the control module, the laser emitter, the laser receiver, the data
  • the display, the laser reflection natural light transmission mirror, the concave imaging lens, and the red light reflection natural light transmission mirror are all installed in the installation cavity, the object image hole, the laser reflection natural light transmission mirror, the concave imaging lens, the red light reflection natural light transmission mirror, and the observation hole are straight.
  • the laser emitter, the laser receiver, and the data display are electrically connected to the control module, and the data display emits red light for display, and the laser light emitted by the laser emitter is reflected by the laser reflection natural light transmission mirror and then irradiated
  • the control module Arranged in order to form a natural light observation optical path, the laser emitter, the laser receiver, and the data display are electrically connected to the control module, and the data display emits red light for display, and the laser light emitted by the laser emitter is reflected by the laser reflection natural light transmission mirror and then irradiated
  • the photographic object, the laser reflected by the object to be measured is naturally reflected by the laser After the reflection mirror is reflected, it is received by the laser receiver, and the red light emitted by the data display is reflected by the red light reflecting natural light transmission mirror and imaged on the concave imaging lens, and the laser light emitted by the laser emitter is reflected by the laser light and reflected by the natural light transmission mirror.
  • the laser light returned by the irradiated object is reflected by the laser-reflecting natural light transmission mirror to reach the receiving end and the natural light observation optical path is coaxially irradiated. Since the laser emits and receives the lens that reflects the natural light through only one laser after passing through the laser concentrating lens, and does not pass through the imaging objective lens, the optical path of internal refraction and reflection does not occur, and the problem of large blind spot is well avoided.
  • the distance measuring collimator of the common optical path separating the lasers before the imaging lens further comprises a laser reflecting mirror mounted in the mounting cavity, and the laser reflecting mirror is disposed opposite to the laser reflecting natural light transmitting mirror, and the laser emitted by the laser emitting device After being reflected by the laser mirror to the laser-reflecting natural light transmitting mirror and reflected, the object to be detected is irradiated, and the laser light reflected by the object to be detected is reflected by the laser-reflecting natural light transmitting mirror onto the laser reflecting mirror and reflected to the laser receiver for receiving.
  • the distance measuring collimator of the common optical path separating the lasers before the imaging lens further comprises a laser concentrating lens, the laser concentrating lens is mounted in the mounting cavity, and the laser concentrating lens is disposed on the laser reflecting natural light transmitting mirror and the laser reflecting mirror between.
  • the concave imaging lens is a concave imaging lens that transmits visible light and the concave surface reflects red light, and the concave imaging lens propagates the natural light observation optical path of the to-be-measured object and images 1:1.
  • the data display emits a reference point red light
  • the reference point red light is reflected by the red light reflecting natural light transmitting mirror and is imaged as a reference red dot at a center point of the concave imaging lens, and the observation axis of the natural light observation optical path passes through the reference red dot .
  • the distance measuring collimator of the common optical path separating the laser before the imaging lens further comprises a built-in optical path mounting bracket, the built-in optical path mounting bracket is mounted in the mounting cavity, the laser emitter, the laser receiver, the data display, the laser reflecting natural light transmitting mirror,
  • the concave imaging lens, the red light reflecting natural light transmitting mirror, the laser reflecting mirror and the laser concentrating lens are fixedly mounted on the built-in optical path mounting bracket, wherein the laser emitter, the laser mirror, the laser concentrating lens, and the laser reflecting natural light transmitting mirror are An independent laser emitting optical path is formed in the built-in optical path mounting bracket, and the laser reflecting natural light transmitting mirror, the laser collecting lens, the laser reflecting mirror and the laser receiver form an independent laser receiving optical path in the built-in optical path mounting bracket, and the data display and the red light reflect the natural light.
  • the transmission mirror and the concave imaging lens form an independent data imaging optical path in the built-in optical path mounting bracket, and the laser reflection natural light transmission mirror, the concave imaging lens, and the red light reflection natural light transmission mirror form an independent natural light observation optical path in the built-in optical path mounting bracket.
  • a first end of the built-in optical path mounting bracket is hingedly connected to the housing, and a lifting adjustment mechanism is disposed between the second end of the built-in optical path mounting bracket and the housing.
  • the lifting and lowering adjustment mechanism comprises an adjusting worm, an adjusting turbine and a matching screw, the adjusting worm and the adjusting turbine are both mounted on the casing, the adjusting worm meshes with the adjusting turbine, and the first end of the matching screw is fixed with the built-in optical path mounting bracket The connection is matched with the threaded connection between the second end of the screw and the adjustment turbine.
  • the second end of the built-in optical path mounting bracket is provided with a limited position elastic piece, the limiting elastic piece is pre-tightly assembled between the second end of the built-in optical path mounting bracket and the housing, and the built-in optical path mounting bracket is located at the lifting adjustment mechanism and the limit position. Between the shrapnel.
  • a horizontal adjustment mechanism is disposed between the second end of the built-in optical path mounting bracket and the housing.
  • the distance measuring collimator of the common optical path separating the laser light before the imaging lens further comprises a first waterproof glass and a second waterproof glass, the first waterproof glass is mounted on the object image hole, and the second waterproof glass is mounted on the observation hole.
  • the outer side of the housing is provided with a fitting groove for fitting with the assembly rail of the outer assembly.
  • the laser light emission and the laser light are not transmitted to the rear end of the laser light reflecting natural light transmitting mirror after being separated from the natural light by the laser reflecting natural light transmitting mirror, and the laser light is mixed into the visual aiming light path without passing through the imaging lens. Due to the set reflection angle, there is no mutual crosstalk between the transmitting and receiving optical paths of the laser, and the short-range blind zone of the common optical path measuring sight (the closest ranging distance of 1 meter) is greatly improved, which is very good.
  • FIG. 1 is a perspective view showing a three-dimensional structure of a distance measuring collimator of a common light path for separating laser light before an imaging lens according to an embodiment of the present invention
  • FIG. 2 is a front view of the distance measuring collimator of the common light path separating the laser light before the imaging lens of the embodiment of the present invention is assembled;
  • Figure 3 is a left side view of Figure 2;
  • Figure 4 is a cross-sectional view taken along line A-A of Figure 2;
  • Figure 5 is a cross-sectional view taken along line B-B of Figure 2;
  • Figure 6 is a cross-sectional view taken along line C-C of Figure 3;
  • FIG. 7 is a schematic view showing an arrangement structure of optical functional components in a distance measuring collimator of a common light path for separating laser light before an imaging lens according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram of a natural light observation optical path and a data imaging optical path of a distance measuring collimator of a common optical path separating laser light before an imaging lens according to an embodiment of the present invention
  • FIG. 9 is a schematic diagram of a laser emission optical path of a distance measuring collimator of a common optical path separating lasers before an imaging lens according to an embodiment of the present invention.
  • Fig. 10 is a schematic view showing the laser receiving optical path of the distance measuring collimator of the common optical path separating the laser light before the imaging lens according to the embodiment of the present invention.
  • the distance measuring collimator of the common optical path separating the laser light of the imaging lens of the present embodiment includes: a housing 10, a control module 20, a laser emitter 31, a laser receiver 32, a data display 33,
  • the laser light reflects the natural light transmitting mirror 41, the concave imaging lens 42, and the red light reflecting natural light transmitting mirror 43.
  • the housing 10 is provided with an object image hole and an observation hole.
  • the housing 10 is formed with a mounting cavity 11, a control module 20, a laser emitter 31, a laser receiver 32, a data display 33, a laser-reflecting natural light transmitting mirror 41, and a concave imaging lens 42.
  • the red light reflecting natural light transmitting mirrors 43 are all mounted in the mounting cavity 11, and the object image holes, the laser reflecting natural light transmitting mirror 41, the concave imaging lens 42, the red light reflecting natural light transmitting mirror 43, and the observation holes are arranged in a straight line to form Natural light observation light path.
  • the laser emitter 31, the laser receiver 32, and the data display 33 are all electrically connected to the control module 20.
  • the laser light emitted by the laser emitter 31 is reflected by the laser light reflecting natural light transmitting mirror 41 to illuminate the object to be measured, and the laser light reflected by the object to be detected is reflected by the laser light reflecting natural light transmitting mirror 41, and then received by the laser receiver 32, and the data display 33 emits red.
  • the light is displayed, the red light emitted by the data display 33 is reflected by the red light reflecting natural light transmitting mirror 43 and imaged on the concave imaging lens 42, and the laser light emitted by the laser emitter 31 is reflected by the laser light reflecting the natural light transmitting mirror 41 and the natural light. Observe the coaxial illumination of the optical path.
  • the distance measuring collimator of the common optical path separating the lasers before the imaging lens of the embodiment is used for the aiming and ranging operation, and the laser light emitted by the laser emitter 31 is reflected by the laser reflecting natural light transmitting mirror 41 and directly irradiated to the object to be measured, and the laser does not need to be used.
  • the illumination path of the object to be measured is formed, and then the laser is reflected by the object to be measured and then reflected by the laser light reflecting natural light transmitting mirror 41 to receive the laser light by the laser receiver 32, and the received reflected laser light does not need to be transmitted.
  • the lens is then received, thus maintaining the propagation efficiency of the laser and making the received laser more efficient.
  • the user visually observes the subject by natural light, and the natural light is sequentially transmitted through the laser reflecting natural light transmitting mirror 41, the concave imaging lens 42, and the red.
  • the light reflects the natural light transmitting mirror 43 and is directly observed by the user.
  • the light of the natural light observing the optical path does not need to pass through the prism, the lens, etc., and there is no reflection or reflection of the internal optical path to affect the close distance.
  • the problem of large dead zone occurs in the ranging, and the emitted laser or the laser reflected from the object to be measured is completely reflected by the laser-reflecting natural light transmitting mirror 41 to the laser receiver 32, thereby ensuring isolation between the receiving optical path and the transmitting optical path.
  • the data of the data display 33 is reflected by the red light reflecting natural light transmitting mirror 43 and imaged onto the concave imaging lens 42, thereby enabling the user to easily and quickly compare the object to be measured with the displayed data reference.
  • a simple and accurate alignment process allows the laser illumination and the observed natural light to remain coaxial during the observation process, avoiding the laser and visual center shift.
  • the emitted laser light is irradiated with the observation light rays coaxially after the laser reflection natural light transmitting mirror 41, and is visually illuminated during the user observation process. That is, the data benchmark is compared with the scene to be measured, so that the results of observation and ranging are more accurate.
  • the mounting volume of the mounting cavity 11 of the housing 10 is reasonably considered and laid out, thereby correspondingly The components are reasonably assembled and arranged within the mounting cavity 11.
  • the distance measuring collimator of the common optical path separating the laser light before the imaging lens further includes a laser reflecting mirror 44, and the laser reflecting mirror 44 is mounted in the mounting cavity 11.
  • the laser mirror 44 is disposed opposite to the laser-reflecting natural light transmitting mirror 41.
  • the laser light emitted by the laser emitter 31 is reflected by the laser mirror 44 onto the laser-reflecting natural light transmitting mirror 41 and reflected to illuminate the object to be measured, thereby causing laser emission.
  • the mounting arrangement of the device 31 can be arranged in parallel with the natural light observation optical path, that is, the emission direction of the laser light is parallel to the natural light propagation direction when visually observed.
  • the laser light reflected by the object to be measured is reflected by the laser reflection natural light transmitting mirror 41 onto the laser mirror 44 and reflected to the laser receiver 32 for reception. In this way, the layout of the components such as the laser emitter 31 and the laser receiver 32 in the mounting cavity 11 can be more rationally designed, thereby achieving a compact design of the distance measuring collimator for separating the laser light before the imaging lens. .
  • the power battery 81 is assembled in the mounting cavity 11, and the space arrangement optimization design of the mounting cavity 11 allows the power battery 81 to avoid the rest of the mounting cavity 11.
  • the assembly components are electrically connected to the control module 20 to achieve power supply.
  • the control module 20 in the ranging sight of the common optical path separating the lasers before the imaging lens uses an integrated circuit board to design corresponding control circuit units on the integrated circuit board corresponding to corresponding application functions, for example, for laser ranging Function, design and calculation control unit, can be assembled by central processing chip (MCU, PLC, etc.).
  • MCU central processing chip
  • PLC central processing chip
  • the distance measuring collimator of the common optical path separating the laser light in front of the imaging lens of the embodiment can be adapted to the aiming and ranging work under the environment of sufficient light, and can also be adapted to the aiming and ranging work under the dim light environment.
  • the light energy adjusting circuit unit is designed in the control module 20, and is adjusted correspondingly by the corresponding adjusting button. When the light is sufficient, the visual observation of the user can be clear, and the laser emitting light path and the laser reflecting light path have good propagation efficiency. The laser light energy can be turned down by adjusting the button, otherwise the laser light energy can be turned up.
  • an ambient temperature sensor is further disposed on the ranging sight of the common optical path separating the laser light before the imaging lens, so that the temperature of the environment is detected and displayed by the data display 33.
  • a display mode conversion circuit unit is designed on the integrated circuit board, and the display mode is switched by the mode switching key, that is, the display content of the data display 33 can be switched between the ranging data and the temperature data by the mode switching key.
  • the imaging is displayed on the concave imaging lens 42.
  • the distance measuring collimator of the common optical path separating the laser light of the imaging lens of the embodiment further includes a laser condensing lens 45 mounted in the mounting cavity 11, and the laser condensing lens 45 is disposed on the laser reflecting natural light transmitting mirror 41. Between the laser mirror 44 and the laser mirror 44.
  • the laser emitter 31 emits laser light, and after the laser light is irradiated onto the laser mirror 44, there is a certain degree of scattering due to the reflection process of the laser mirror 44. At this time, the scattered laser light is concentrated by the laser.
  • the lens 45 re-converges to form a concentrated parallel laser light to reach the laser-reflecting natural light transmitting mirror 41 and is again reflected and irradiated toward the object to be measured, so that the laser light can be concentrated to illuminate the object to be measured after being reflected twice.
  • the laser light reflected by the object to be measured also has a certain divergence, and similarly, the divergence phenomenon is reflected by the object to be measured.
  • the laser light is also collected by the laser condensing lens 45 and then reflected by the laser mirror 44 to the laser receiver 32 for reception.
  • the laser emitting light path and the receiving light path are absolutely physically separated before passing through the laser concentrating lens, and mutual interference is not formed. After passing through the laser concentrating lens, the object to be measured is irradiated only after being reflected by the natural laser light reflecting mirror.
  • the distance measuring collimator of the common optical path separating the laser before the imaging lens further includes a built-in optical path mounting bracket 60, and a built-in optical path.
  • the mounting bracket 60 is mounted in the mounting cavity 11, the laser emitter 31, the laser receiver 32, the data display 33, the laser reflective natural light transmitting mirror 41, the concave imaging lens 42, the red light reflecting natural light transmitting mirror 43, the laser reflecting mirror 44, and the laser
  • the condensing lens 45 is fixedly mounted on the built-in optical path mounting bracket 60, wherein the laser emitter 31, the laser mirror 44, the laser concentrating lens 45, and the laser reflecting natural light transmitting mirror 41 form an independent laser in the built-in optical path mounting bracket 60.
  • the emission light path, the laser reflection natural light transmission mirror 41, the laser condensing lens 45, the laser mirror 44, and the laser receiver 32 form an independent laser receiving optical path in the built-in optical path mounting bracket 60 (the reflected laser light is reflected by the laser light natural light transmitting mirror 41)
  • the receiving light path reflected to the laser receiver 32 is coaxial with the natural light observation optical path), data
  • the display 33, the red light reflecting natural light transmitting mirror 43, and the concave imaging lens 42 form an independent data imaging optical path in the built-in optical path mounting bracket 60.
  • the laser reflecting natural light transmitting mirror 41, the concave imaging lens 42, and the red light reflecting natural light transmitting mirror 43 are An independent natural light observation optical path is formed in the built-in optical path mounting bracket 60.
  • the concave imaging lens 42 of the present embodiment is a concave imaging lens whose visible light is transmitted and whose concave surface can reflect red light, and the concave imaging lens 42 propagates the natural light observation optical path of the to-be-measured object and is imaged by 1:1 (in this case, The image of the scene to be measured visually observed by the natural light observation light path of the distance measuring collimator of the common light path is consistent with the visual imaging when the user normally visually views the scene to be measured.
  • the data display 33 emits a reference point red light which is reflected by the red light reflecting natural light transmitting mirror 43 and is imaged as a reference red dot 100 at a center point of the concave imaging lens, and the observation axis of the natural light observation optical path passes through the reference Red dot 100 (the reference red dot 100 formed by the data display 33 is always imaged and displayed on the concave imaging lens 42 during the display mode switching).
  • the user visually observes the object through the natural light observation path.
  • the reference red dot 100 emitted by the activated data display 33 is imaged and displayed on the concave imaging lens 42, and the user only needs to
  • the reference red dot 100 is treating the scene object, and the coaxial proofreading between the laser emitting light path, the laser reflecting light path, the natural light observation light path, the object to be measured, and the user's eyes can be realized.
  • the outer side of the housing 10 is provided with a fitting groove 12 for fitting with the assembly rail of the outer assembly.
  • the mounting groove 12 Through the mounting groove 12, the user can conveniently and quickly erect the distance measuring sight of the common light path separating the laser light before the imaging lens, that is, using the corresponding supporting mounting bracket, and the mounting bracket 12 is disposed on the mounting bracket.
  • Cooperating assembly rails such that the user only needs to align the mounting slot 12 with the assembly rails, then embed the mounting slots 12 on the assembly rails, and then through the locking as shown in Figures 1-3
  • the screw 120 is locked with the assembly rail to complete the erection work.
  • the distance measuring collimator of the common optical path separating the lasers is assembled before the imaging lens is assembled, the distance measuring collimator of the common optical path separating the lasers before the imaging lens is used for the aiming distance measurement, and the laser is separated before the imaging lens
  • the finder of the collocation sight of the common light path is completed, the user visually views the object to be measured and performs reference proofreading with the reference red object 100 on the concave image forming lens 42 for imaging, and the laser is separated by the erecting of the imaging lens.
  • the difference in the angle between the ranging sight of the common light path and the scene to be measured causes the user to have a certain deviation from the reference proofreading between the different scenes to be measured and the reference red dot 100.
  • the built-in optical path mounting bracket 60 One end is hingedly connected to the casing 10, and a lifting adjustment mechanism 71 is disposed between the second end of the built-in optical path mounting bracket 60 and the casing 10.
  • the lift adjustment mechanism 71 includes an adjustment worm 711, an adjustment turbine 712, and a mating screw 713. Both the adjustment worm 711 and the adjustment turbine 712 are mounted on the housing 10, and the adjustment worm 711 is engaged with the adjustment turbine 712.
  • the first end is fixedly connected to the built-in optical path mounting bracket 60, and the second end of the screw 713 is screwed to the adjusting turbine 712.
  • the user when the user visually checks the scene to be measured and performs the benchmark proofreading between the reference red dot 100 and the scene to be tested, the user adjusts the rotation of the worm 711 by rotating the adjustment worm 711, and then drives the matching screw.
  • the 713 rises or falls, thereby driving the built-in optical path mounting bracket 60 to adjust the vertical angle of the whole with the first end as a fulcrum.
  • a horizontal adjustment mechanism 73 is provided between the second end of the built-in optical path mounting bracket 60 and the casing 10.
  • the level adjusting mechanism 73 includes an abutting adjusting screw 731, a compression spring 732, and an abutting block 733, and the abutting adjusting screw 731 and the compression spring 732 are respectively disposed on both sides of the built-in optical path mounting bracket 60 (can be installed in the built-in optical path)
  • a horizontal adjusting plate is extended on the bracket 60, and the top adjusting screw 731 and the compression spring 732 are respectively disposed on both sides of the horizontal adjusting plate, so that the first end of the compression spring 732 abuts the built-in optical path mounting bracket 60, and then
  • the abutting block 733 is fitted between the compression spring 732 and the housing 10 such that the second end of the compression spring 732 abuts against the abutting block 733 and causes the abutting block 733 to abut against the housing 10.
  • the user screws the abutting adjustment screw 731, and the end of the abutting adjustment screw 731 presses the built-in optical path mounting bracket 60, and then the built-in optical path mounting bracket 60 squeezes the compression spring.
  • the compression spring 732 is elongated and squeezes the built-in optical path mounting bracket 60, so that the built-in optical path mounting bracket 60 is horizontally adjusted to the right with its first end as a fulcrum.
  • the second end of the built-in optical path mounting bracket 60 of the ranging sight of the common optical path of the front lens of the separation lens of the laser is provided with a limited elastic piece 72, and the limiting elastic piece 72 is pre-tightly assembled to the second of the built-in optical path mounting bracket 60.
  • the end between the end and the casing 10, and the built-in optical path mounting bracket 60 is located between the lift adjusting mechanism 71 and the limiting elastic piece 72.
  • the limiting elastic piece 72 is always pre-compressed between the built-in optical path mounting bracket 60 and the housing 10, thereby the built-in optical path mounting bracket 60 relative to the housing 10.
  • the relative position of the built-in optical path mounting bracket 60 does not cause random offset misalignment during the up-and-down adjustment and horizontal adjustment, and the stability of the built-in optical path mounting bracket 60 is maintained.
  • the distance measuring collimator of the common optical path separating the laser light of the imaging lens of the present embodiment further includes a first waterproof glass 51 and a second waterproof glass 52 , A waterproof glass 51 is attached to the object image hole, and the second waterproof glass 52 is attached to the observation hole.
  • the first waterproof glass 51 and the second waterproof glass 52 are mounted on the object image hole and the observation hole of the casing 10 to achieve sealing and waterproofing, and the sealing waterproof design is also performed when the adjusting worm 711 and the adjusting screw 731 are designed and installed.
  • the first waterproof glass 51 and the second waterproof glass 52 can also be placed in the installation cavity 11 to prevent dust and debris from polluting the control module 20, the optical lens, and the like in the mounting cavity 11. The internal cleaning of the distance measuring collimator of the common light path separating the lasers before the imaging lens.
  • the wavelength band of the laser light emitted by the laser emitter 31 is 905 nm
  • the wavelength of the red light emitted by the data display 33 is 650 nm.
  • the natural light is transmitted through the first waterproof glass 51, the laser-reflecting natural light transmitting mirror 41, the concave imaging lens 42, the red-reflecting natural light transmitting mirror 43, and the second waterproof glass 52 to form a natural light observation optical path.
  • the red light having a wavelength of 650 nm emitted from the data display 33 is reflected by the red light reflecting natural light transmitting mirror 43 onto the concave imaging lens 42 for image display.
  • the laser light emitted from the laser emitter 31 is irradiated toward the laser mirror 44, and then laser light is collected by the laser emitting condensing lens 451 to form a parallel irradiation, and the laser beam is irradiated onto the laser-reflecting natural light transmitting mirror 41.
  • the laser light is reflected by the natural light transmitting mirror 41 and then irradiated to the object to be measured.
  • the laser light is reflected by the object to be measured onto the laser-reflecting natural light transmitting mirror 41, and the laser light reflected by the laser-reflecting natural light transmitting mirror 41 is reflected by the laser to receive the collecting lens.
  • the 452 is irradiated to the laser mirror 44 in the sinking (that is, the laser condensing lens 45 includes the laser emitting condensing lens 451 and the laser receiving condensing lens 452), thereby reflecting the laser light to the laser receiver 32 for laser reception.
  • the above four optical paths are combined, that is, the optical path of the actual working process in the ranging sight of the common optical path separating the lasers before the imaging lens.
  • the laser-reflecting natural light transmitting mirror 41 separates the natural light and the laser light when the natural light and the original state of the laser light are not changed, and the separated natural light enters the optical imaging system component of the rear end (ie, the concave imaging lens 42 and the red light reflection).

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Studio Devices (AREA)
  • Telescopes (AREA)

Abstract

一种成像透镜前分离激光的共光路测距瞄准器,包括壳体(10)、控制模块(20)、激光发射器(31)、激光接收器(32)、数据显示器(33)、激光反射自然光透射镜(41)、凹面成像透镜(42)和红光反射自然光透射镜(43),壳体(10)的物像孔、激光反射自然光透射镜(41)、凹面成像透镜(42)、红光反射自然光透射镜(43)、壳体(10)的观测孔呈直线依次排列以形成自然光观测光路,激光发射器(31)发射的激光经激光反射自然光透射镜(41)反射后照射待测景物,被反射的激光由激光反射自然光透射镜(41)反射至激光接收器(32)接收,数据显示器(33)发射的红光经红光反射自然光透射镜(43)反射并成像于凹面成像透镜(42),且激光发射器(31)发射的激光经激光反射自然光透射镜(41)反射后的激光光路与自然光观测光路同轴。该测距瞄准器在达到了测距瞄准镜成像观察光路、激光发射光路和激光接收光路共光路的同时解决了现有成像物镜后端共光路测距瞄准器由于激光发射光路通过成像物镜后的内光路折射、返射造成的最近测距距离远,盲区较大的问题。

Description

一种成像透镜前分离激光的共光路的测距瞄准器
本发明涉及瞄准设备技术领域,具体地,涉及一种成像透镜前分离激光的共光路的测距瞄准器。
在现有的激光测距瞄准镜中,共光路测距瞄准器属于比较高端的产品,其产品特性是激光发射、接收和成像光路是混合在一起的,这样的产品外观整洁,整体性强,结构可靠。
但是,这类产品其激光发射、接收和成像自然光光路的分离是在成像物镜的后端(产品的靠近被观察测距的物体的方向为前端),这样的结构造成发射端发出的激光会在透过成像物镜出射的同时在其后端光路内形成折射光和反射光,而这部分光会先于实际测距的反射光,通过内部光路到达接收端,形成一个近距离的高强度信号,使得近距离的测距无法实现,出现近程盲区大的问题,通常在12米内无法测距。
发明内容
本发明的目的在于提供一种成像透镜前分离激光的共光路的测距瞄准器,旨在解决现有技术中共光路瞄准镜由于在成像物镜后端分离激光反射、接收和成像自然光光路带来的近程盲区大的问题,可将最近测距距离提升到1米。
为解决上述技术问题,本发明的技术方案是:提供一种成像透镜前分离激光的共光路的测距瞄准器,其特征在于,包括:壳体、控制模块、激光发射器、激光接收器、数据显示器、激光反射自然光透射镜、凹面成像透镜和红光反射自然光透射镜,壳体设置有物像孔与观测孔,壳体形成有安装腔,控制模块、激光发射器、激光接收器、数据显示器、激光反射自然光透射镜、凹面成像透镜、红光反射自然光透射镜均安装于安装腔内,物像孔、激光反射自然光透射镜、凹面成像透镜、红光反射自然光透射镜、观测孔呈直线依次排列以形成自然光观测光路,激光发射器、激光接收器、数据显示器均与控制模块电连接,且数据显示器发射红光进行显示,激光发射器发射的激光经激光反射自然光透射镜反射后照射待测景物,待测景物反射的激光经激光反射自然光透射镜反射后由激光接收器接收,数据显示器发射的红光经红光反射自然光透射镜反射并成像于凹面成像透镜,且激光发射器发射的激光经激光反射自然光透射镜反射后的激光光路与被照射物体返回的激光经激光反射自然光透射镜反射到达接收端以及自然光观测光路共光路同轴照射。由于激光发射和接收在经过激光聚光透镜后只通过一片激光反射自然光透射的镜片,未通过成像物镜,不会出现内部折射和反射的光路,很好的避免了近程盲区大的问题。
进一步地,成像透镜前分离激光的共光路的测距瞄准器还包括激光反射镜,激光反射镜安装于安装腔内,且激光反射镜与激光反射自然光透射镜相对设置,激光发射器发射的激光经激光反射镜反射至激光反射自然光透射镜上并反射后照射待测景物,待测景物反射的激光经激光反射自然光透射镜反射至激光反射镜上并反射至激光接收器接收。
进一步地,成像透镜前分离激光的共光路的测距瞄准器还包括激光聚光透镜,激光聚光透镜安装于安装腔内,且激光聚光透镜设置于激光反射自然光透射镜与激光反射镜之间。
进一步地,凹面成像透镜为可见光透过、内凹面可反射红光的凹面成像透镜,且凹面成像透镜传播待测景物的自然光观测光路后以1:1成像。
进一步地,数据显示器发射基准点红光,该基准点红光经红光反射自然光透射镜反射并在凹面成像透镜的中心点成像为基准红点,且自然光观测光路的观测轴线穿过基准红点。
进一步地,成像透镜前分离激光的共光路的测距瞄准器还包括内置光路安装支架,内置光路安装支架安装于安装腔内,激光发射器、激光接收器、数据显示器、激光反射自然光透射镜、凹面成像透镜、红光反射自然光透射镜、激光反射镜、激光聚光透镜均固定安装于内置光路安装支架上,其中,激光发射器、激光反射镜、激光聚光透镜、激光反射自然光透射镜在内置光路安装支架内形成独立的激光发射光路,激光反射自然光透射镜、激光聚光透镜、激光反射镜、激光接收器在内置光路安装支架内形成独立的激光接收光路,数据显示器、红光反射自然光透射镜、凹面成像透镜在内置光路安装支架内形成独立的数据成像光路,激光反射自然光透射镜、凹面成像透镜、红光反射自然光透射镜在内置光路安装支架内形成独立的自然光观测光路。
进一步地,内置光路安装支架的第一端与壳体之间铰链连接,内置光路安装支架的第二端与壳体之间设置有升降调节机构。
进一步地,升降调节机构包括调节蜗杆、调节涡轮和配合螺杆,调节蜗杆、调节涡轮两者均装配于壳体上,调节蜗杆与调节涡轮相啮合,配合螺杆的第一端与内置光路安装支架固定连接,配合螺杆的第二端与调节涡轮之间螺纹连接。
进一步地,内置光路安装支架的第二端上设置有限位弹片,限位弹片预紧装配在内置光路安装支架的第二端与壳体之间,且内置光路安装支架位于升降调节机构与限位弹片之间。
进一步地,内置光路安装支架的第二端与壳体之间设置有水平调节机构。
进一步地,成像透镜前分离激光的共光路的测距瞄准器还包括第一防水玻璃和第二防水玻璃,第一防水玻璃安装于物像孔,第二防水玻璃安装于观测孔。
进一步地,壳体的外侧设置有装配槽,装配槽用于与外部装配物的装配滑轨配合安装。
本发明中,激光的发射、激光的接收在通过激光反射自然光透射镜与自然光分离后不再向激光反射自然光透射镜的后端传播,激光不会经过成像透镜而混合进入目视瞄准光路。由于设定好的反射角度,激光的发射和接收光路也不会存在互相的串扰,使共光路测距瞄准器的近程盲区(最近测距距离1米)得到极大的改善,很好的解决了现有的共光路测距瞄准器的成像物镜后端由于激光发射光路通过成像物镜后的内光路折射、反射造成的最近测距的限制大,盲区较大的问题(最近测距距离12米)。
附图说明
图1是本发明实施例的成像透镜前分离激光的共光路的测距瞄准器被装配完成后的立体结构示意图;
图2是本发明实施例的成像透镜前分离激光的共光路的测距瞄准器被装配完成后的主视图;
图3是图2的左视图;
图4是图2的A-A的剖视图;
图5是图2的B-B的剖视图;
图6是图3的C-C的剖视图;
图7是本发明实施例的成像透镜前分离激光的共光路的测距瞄准器中的光学功能构件的布置结构示意图;
图8是本发明实施例的成像透镜前分离激光的共光路的测距瞄准器在使用时的自然光观测光路与数据成像光路示意图;
图9是本发明实施例的成像透镜前分离激光的共光路的测距瞄准器在使用时的激光发射光路示意图;
图10是本发明实施例的成像透镜前分离激光的共光路的测距瞄准器在使用时的激光接收光路示意图。
在附图中:
10、壳体;11、安装腔;12、装配槽;120、锁紧螺钉;20、控制模块;31、激光发射器;32、激光接收器;33、数据显示器;41、激光反射自然光透射镜;42、凹面成像透镜;43、红光反射自然光透射镜;44、激光反射镜;45、激光聚光透镜;451、激光发射聚光透镜;452、激光接收聚光透镜;51、第一防水玻璃;52、第二防水玻璃;60、内置光路安装支架;71、升降调节机构;711、调节蜗杆;712、调节涡轮;713、配合螺杆;72、限位弹片;73、水平调节机构;731、抵顶调节螺钉;732、压缩弹簧;733、抵顶块;81、电源电池;100、基准红点。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为“连接于”另一个元件,它可以是直接连接到另一个元件或者间接连接至该另一个元件上。
还需要说明的是,本实施例中的左、右、上、下等方位用语,仅是互为相对概念或是以产品的正常使用状态为参考的,而不应该认为是具有限制性的。
如图1至图10所示,本实施例的成像透镜前分离激光的共光路的测距瞄准器包括:壳体10、控制模块20、激光发射器31、激光接收器32、数据显示器33、激光反射自然光透射镜41、凹面成像透镜42和红光反射自然光透射镜43。壳体10设置有物像孔与观测孔,壳体10形成有安装腔11,控制模块20、激光发射器31、激光接收器32、数据显示器33、激光反射自然光透射镜41、凹面成像透镜42、红光反射自然光透射镜43均安装于安装腔11内,并且,物像孔、激光反射自然光透射镜41、凹面成像透镜42、红光反射自然光透射镜43、观测孔呈直线依次排列以形成自然光观测光路。激光发射器31、激光接收器32、数据显示器33均与控制模块20电连接。其中,激光发射器31发射的激光经激光反射自然光透射镜41反射后照射待测景物,待测景物反射的激光经激光反射自然光透射镜41反射后由激光接收器32接收,数据显示器33发射红光进行显示,数据显示器33发射的红光经红光反射自然光透射镜43反射并成像于凹面成像透镜42,且激光发射器31发射的激光经激光反射自然光透射镜41反射后的激光光路与自然光观测光路同轴照射。
应用本实施例的成像透镜前分离激光的共光路的测距瞄准器进行瞄准测距工作,激光发射器31所发射的激光通过激光反射自然光透射镜41反射后直接照射向待测景物,激光无需透射多余的透镜后才形成对待测景物的照射光路,然后激光由待测景物进行反射后再次经过激光反射自然光透射镜41反射由激光接收器32进行激光接收,所接收的反射激光同样无需透射多余的透镜后才被接收,因而保持了激光的传播能效而使所接收到的激光的效能较高。并且,在该成像透镜前分离激光的共光路的测距瞄准器中,使用者利用自然光对待测景物进行目视观察的过程,自然光依次透射过激光反射自然光透射镜41、凹面成像透镜42、红光反射自然光透射镜43后直接被使用者观测到,相比于现有技术中的瞄准器,自然光观测光路的光线无需经过分光棱镜、透镜等,不存在内部光路的折射、反射而影响近距离测距出现盲区大的问题,并且发射的激光或由待测景物反射回来的激光被激光反射自然光透射镜41完全反射给激光接收器32,保证了接收光路与发射光路间的隔离。而且,数据显示器33的数据通过红光反射自然光透射镜43反射后成像与凹面成像透镜42上,从而使得使用者能够简便、快速地将待测景物与所显示的数据基准进行比对,以此进行简单且精准的比对过程,使得激光照射光线与观测的自然光能够在观测过程中始终保持同轴方向,避免造成激光与目视中心偏移。在该成像透镜前分离激光的共光路的测距瞄准器中,所发射的激光与观测光线在激光反射自然光透射镜41同轴汇合之后对待测景物进行照射,并直观地在使用者观测过程中即采取数据基准与待测景物进行比对,使得观测、测距的结果更加准确。
如图7至图10所示,为了制造小巧轻便的成像透镜前分离激光的共光路的测距瞄准器,因而合理考虑并布局了壳体10的安装腔11的形成安装容积,从而将相应的零部件合理地装配布置在安装腔11内。并且,在本实施例中,成像透镜前分离激光的共光路的测距瞄准器还包括激光反射镜44,激光反射镜44安装于安装腔11内。并且,激光反射镜44与激光反射自然光透射镜41相对设置,激光发射器31发射的激光经激光反射镜44反射至激光反射自然光透射镜41上并反射后照射待测景物,这就使得激光发射器31的安装布置方式能够与自然光观测光路平行布置,即激光光线的发射方向与目视时的自然光传播方向相平行。并且,待测景物反射的激光经激光反射自然光透射镜41反射至激光反射镜44上并反射至激光接收器32接收。这样,能够更加合理地设计激光发射器31、激光接收器32等零部件在安装腔11内的布置布局,从而更加紧凑地实现成像透镜前分离激光的共光路的测距瞄准器的小型化设计。
另外,在安装腔11的安装位置优化设计过程中,如图5所示,电源电池81装配在安装腔11中,通过安装腔11的空间布置优化设计使得电源电池81避开安装腔11内其余的装配部件,并且将电源电池81与控制模块20电连接以实现电能供应。
其中,该成像透镜前分离激光的共光路的测距瞄准器中的控制模块20使用集成电路板,在集成电路板上,对应相应的应用功能设计相应的控制电路单元,例如:针对激光测距功能,设计计算控制单元,可以采用中央处理芯片(MCU、PLC等)进行装配。实际上,控制模块20所使用的集成电路板为本领域中技术成熟的现有技术,因而在此不再赘述。
优化地,本实施例的成像透镜前分离激光的共光路的测距瞄准器能够适应光线充足的环境下进行瞄准测距工作,也能够适应光线昏暗的环境下进行瞄准测距工作,为此,在控制模块20中设计了光能调节电路单元,并通过相应的调节按键进行相应调节,当光线充足时,使用者目视观测能够清楚,并且激光发射光路、激光反射光路传播效率较好,则可以通过调节按键将激光光能调低,否则就将激光光能调高。此外,在该成像透镜前分离激光的共光路的测距瞄准器上还设置有环境温度传感器,从而针对所处环境的温度进行检测,并通过数据显示器33进行显示。对此,在集成电路板上设计了显示模式转换电路单元,并通过模式切换键进行显示模式切换,即通过模式切换键能够将数据显示器33的显示内容在测距数据与温度数据之间进行切换而成像显示与凹面成像透镜42上。
在本实施例中,为了将激光发射器31发射出的激光能够更加集中地照射向待测景物,也为了将待测景物反射回来的激光更加集中地被激光接收器32进行接收,因此,本实施例的成像透镜前分离激光的共光路的测距瞄准器还包括激光聚光透镜45,激光聚光透镜45安装于安装腔11内,且激光聚光透镜45设置于激光反射自然光透射镜41与激光反射镜44之间。这样,激光发射器31发射出激光光线,并且激光光线照射到激光反射镜44上之后,由于激光反射镜44的反射过程存在一定程度的散射情况,此时,被散射的激光光线被激光聚光透镜45重新汇聚形成集中的平行激光而到达激光反射自然光透射镜41并再次反射照射向待测景物,如此,激光光线经过两次反射之后也能够保持集中地照射待测景物。当激光光线照射在待测景物上,并且激光光线被待测景物所反射之后,而待测景物所反射的激光光线也存在一定的发散情况,同样地,被待测景物反射回来的产生发散现象的激光光线也会被激光聚光透镜45聚光后再由激光反射镜44反射至激光接收器32进行接收。如此,便能够保证激光发射传播与激光接收传播的激光光线之间得到了很好的隔离,不会出现相互间的串扰,从而避免了近程干扰的,达到抑制近程盲区的问题。而且,激光的发射光路和接收光路在通过激光聚光透镜前得到了绝对的物理隔离,不会形成相互干扰。在经过激光聚光透镜后,只是经过唯一的激光反射自然光透射镜进行反射后即照射待测景物。
为了在制造、装配过程中形成模块化装配过程,从而方便工作人员进行制造加工以及装配加工,因此,该成像透镜前分离激光的共光路的测距瞄准器还包括内置光路安装支架60,内置光路安装支架60安装于安装腔11内,激光发射器31、激光接收器32、数据显示器33、激光反射自然光透射镜41、凹面成像透镜42、红光反射自然光透射镜43、激光反射镜44、激光聚光透镜45均固定安装于内置光路安装支架60上,其中,激光发射器31、激光反射镜44、激光聚光透镜45、激光反射自然光透射镜41在内置光路安装支架60内形成独立的激光发射光路,激光反射自然光透射镜41、激光聚光透镜45、激光反射镜44、激光接收器32在内置光路安装支架60内形成独立的激光接收光路(反射回的激光由激光反射自然光透射镜41反射至激光接收器32的接收光路与自然光观测光路同轴),数据显示器33、红光反射自然光透射镜43、凹面成像透镜42在内置光路安装支架60内形成独立的数据成像光路,激光反射自然光透射镜41、凹面成像透镜42、红光反射自然光透射镜43在内置光路安装支架60内形成独立的自然光观测光路。
具体地,本实施例的凹面成像透镜42为可见光透过、内凹面可反射红光的凹面成像透镜,且凹面成像透镜42传播待测景物的自然光观测光路后以1:1成像(此时使用者通过该共光路的测距瞄准器的自然光观测光路所目视观察到的待测景物的成像与使用者正常目视待测景物时候的目视成像是一致的)。并且,数据显示器33发射基准点红光,该基准点红光经红光反射自然光透射镜43反射并在凹面成像透镜的中心点成像为基准红点100,且自然光观测光路的观测轴线穿过基准红点100(在进行显示模式切换过程中,数据显示器33形成的基准红点100始终成像显示在凹面成像透镜42上)。在进行瞄准测距的过程中,使用者通过自然光观测光路对待测景物进行目视,此时,启动的数据显示器33发射的基准红点100成像显示在凹面成像透镜42上,使用者只需将该基准红点100正对待测景物,即可实现激光发射光路、激光反射光路、自然光观测光路、待测景物、使用者眼睛五者之间的同轴校对。
在本实施例中,壳体10的外侧设置有装配槽12,装配槽12用于与外部装配物的装配滑轨配合安装。使用者通过该装配槽12能够方便、快捷地将该成像透镜前分离激光的共光路的测距瞄准器进行架设,即利用相应配套的架设支架,并在架设支架上设置有与该装配槽12相互配合的装配滑轨,这样,使用者只需将该装配槽12与装配滑轨对正,然后将装配槽12嵌在装配滑轨上,然后通过如图1至图3所示的锁紧螺钉120与装配滑轨锁紧,即可完成架设工作。
在装配完成该成像透镜前分离激光的共光路的测距瞄准器之后,应用该成像透镜前分离激光的共光路的测距瞄准器进行瞄准测距的过程中,在将该成像透镜前分离激光的共光路的测距瞄准器架设完成之后,使用者目视待测景物并利用凹面成像透镜42上成像显示的基准红点100与待测景物进行基准校对,由于架设的成像透镜前分离激光的共光路的测距瞄准器与待测景物之间的角度差异而引起使用者针对不同的待测景物与基准红点100之间的基准校对存在一定的偏差,因此,内置光路安装支架60的第一端与壳体10之间铰连接,内置光路安装支架60的第二端与壳体10之间设置有升降调节机构71。具体地,升降调节机构71包括调节蜗杆711、调节涡轮712和配合螺杆713,调节蜗杆711、调节涡轮712两者均装配于壳体10上,调节蜗杆711与调节涡轮712相啮合,配合螺杆713的第一端与内置光路安装支架60固定连接,配合螺杆713的第二端与调节涡轮712之间螺纹连接。这样,当使用者目视待测景物并利用基准红点100与待测景物之间进行基准校对的过程中,使用者通过旋转调节蜗杆711,调节蜗杆711带动调节涡轮712转动,然后带动配合螺杆713上升或者下降,从而带动内置光路安装支架60整体以其第一端为支点进行上下角度调整。并且,内置光路安装支架60的第二端与壳体10之间设置有水平调节机构73。具体地,水平调节机构73包括抵顶调节螺钉731、压缩弹簧732和抵顶块733,将抵顶调节螺钉731和压缩弹簧732分别设置于内置光路安装支架60的两侧(可以在内置光路安装支架60上延伸出一个水平调节板,将抵顶调节螺钉731和压缩弹簧732分别设置于该水平调节板的两侧),使得压缩弹簧732的第一端抵接住内置光路安装支架60,然后将抵顶块733装配在压缩弹簧732与壳体10之间,使得压缩弹簧732的第二端与抵顶块733抵接,并使得抵顶块733抵接在壳体10上。在使用者需要进行水平角度调节的时候,使用者对抵顶调节螺钉731进行旋进,则抵顶调节螺钉731的端部挤压内置光路安装支架60,然后内置光路安装支架60挤压压缩弹簧732,从而实现内置光路安装支架60以其第一端为支点水平向左调节;或者,使用者对抵顶调节螺钉731进行旋出,则抵顶调节螺钉731具有脱离内置光路安装支架60的趋势,此时压缩弹簧732伸长并挤压内置光路安装支架60,从而实现内置光路安装支架60以其第一端为支点水平向右调节。
优选地,该成像透镜前分离激光的共光路的测距瞄准器的内置光路安装支架60的第二端上设置有限位弹片72,限位弹片72预紧装配在内置光路安装支架60的第二端与壳体10之间,且内置光路安装支架60位于升降调节机构71与限位弹片72之间。这样,在对内置光路安装支架60进行上下角度调节的过程中,限位弹片72始终预紧压缩在内置光路安装支架60与壳体10之间,从而将内置光路安装支架60相对于壳体10的相对位置稳定住,使得内置光路安装支架60在上下调节、水平调节的过程中均不会发生随意偏移错位的问题,保持内置光路安装支架60的稳定性。
如图1、图2、图4、图7至图10所示,本实施例的成像透镜前分离激光的共光路的测距瞄准器还包括第一防水玻璃51和第二防水玻璃52,第一防水玻璃51安装于物像孔,第二防水玻璃52安装于观测孔。利用第一防水玻璃51、第二防水玻璃52安装在壳体10的物像孔和观测孔上以实现密封防水,并且在设计安装调节蜗杆711、抵顶调节螺钉731时候也进行密封防水设计,这样,当使用者在户外并处于阴雨天气时候,雨水无法进入壳体10内部对控制模块20造成损坏,使用者仍能够对待测景物进行瞄准测距工作。另外,第一防水玻璃51、第二防水玻璃52也能够放置灰尘杂物进入到安装腔11中,从而达到防止灰尘杂物对安装腔11内的控制模块20、光学镜片等造成污染,保证该成像透镜前分离激光的共光路的测距瞄准器的内部清洁。
具体地,激光发射器31所发射的激光的波段为905nm,数据显示器33发射的显示红光的波长为650nm。如图7和图8所示,自然光透过第一防水玻璃51、激光反射自然光透射镜41、凹面成像透镜42、红光反射自然光透射镜43、第二防水玻璃52形成自然光观测光路。启动该成像透镜前分离激光的共光路的测距瞄准器之后,数据显示器33发出的波长为650nm红光经红光反射自然光透射镜43反射至凹面成像透镜42上进行成像显示。如图7和图9所示,激光发射器31发射出的激光光线照射向激光反射镜44,然后通过激光发射聚光透镜451进行汇聚集中形成平行照射的激光照射至激光反射自然光透射镜41上,汇聚集中后的激光经激光反射自然光透射镜41反射后照射至待测景物。相应地,如图7和图10所示,激光经待测景物反射至激光反射自然光透射镜41上,激光反射自然光透射镜41反射的有待测景物反射回来的激光则通过激光接收聚光透镜452进行汇聚集中照射向激光反射镜44(即激光聚光透镜45包括激光发射聚光透镜451和激光接收聚光透镜452),从而将激光反射至激光接收器32进行激光接收。在该成像透镜前分离激光的共光路的测距瞄准器中,将上述四个光路进行复合,即为该成像透镜前分离激光的共光路的测距瞄准器中的实际工作过程的光路构成。
在本实施例中,激光反射自然光透射镜41在自然光和激光原始状态未发生改变时将自然光和激光分离,分离后的自然光进入后端的光学成像系统组成部分(即凹面成像透镜42、红光反射自然光透射镜43、第二防水玻璃52)。激光由于是通过反射光路,其收发能量都得到最大的保证,由于激光反射自然光透射镜41的镀膜特性使激光可以从自然光得到充分的分离,使光学仪器中激光的成分降到最低,从而保证使用者得到一个更安全的光学使用环境。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (12)

  1. 一种成像透镜前分离激光的共光路的测距瞄准器,其特征在于,包括:壳体(10)、控制模块(20)、激光发射器(31)、激光接收器(32)、数据显示器(33)、激光反射自然光透射镜(41)、凹面成像透镜(42)和红光反射自然光透射镜(43),所述壳体(10)设置有物像孔与观测孔,所述壳体(10)形成有安装腔(11),所述控制模块(20)、所述激光发射器(31)、所述激光接收器(32)、所述数据显示器(33)、所述激光反射自然光透射镜(41)、所述凹面成像透镜(42)、所述红光反射自然光透射镜(43)均安装于所述安装腔(11)内,所述物像孔、所述激光反射自然光透射镜(41)、所述凹面成像透镜(42)、所述红光反射自然光透射镜(43)、所述观测孔呈直线依次排列以形成自然光观测光路,所述激光发射器(31)、所述激光接收器(32)、所述数据显示器(33)均与所述控制模块(20)电连接,且所述数据显示器(33)发射红光进行显示,所述激光发射器(31)发射的激光经所述激光反射自然光透射镜(41)反射后照射待测景物,所述待测景物反射的激光经所述激光反射自然光透射镜(41)反射后由所述激光接收器(32)接收,所述数据显示器(33)发射的红光经所述红光反射自然光透射镜(43)反射并成像于所述凹面成像透镜(42),且所述激光发射器(31)发射的激光经所述激光反射自然光透射镜(41)反射后的激光光路与所述自然光观测光路同轴照射。
  2. 如权利要求1所述的成像透镜前分离激光的共光路的测距瞄准器,其特征在于,所述成像透镜前分离激光的共光路的测距瞄准器还包括激光反射镜(44),所述激光反射镜(44)安装于所述安装腔(11)内,且所述激光反射镜(44)与所述激光反射自然光透射镜(41)相对设置,所述激光发射器(31)发射的激光经所述激光反射镜(44)反射至所述激光反射自然光透射镜(41)上并反射后照射所述待测景物,所述待测景物反射的激光经所述激光反射自然光透射镜(41)反射至所述激光反射镜(44)上并反射至所述激光接收器(32)接收。
  3. 如权利要求2所述的成像透镜前分离激光的共光路的测距瞄准器,其特征在于,所述成像透镜前分离激光的共光路的测距瞄准器还包括激光聚光透镜(45),所述激光聚光透镜(45)安装于所述安装腔(11)内,且所述激光聚光透镜(45)设置于所述激光反射自然光透射镜(41)与所述激光反射镜(44)之间。
  4. 如权利要求1至3中任一项所述的成像透镜前分离激光的共光路的测距瞄准器,其特征在于,所述凹面成像透镜(42)为可见光透过、内凹面可反射红光的凹面成像透镜,且所述凹面成像透镜(42)传播所述待测景物的所述自然光观测光路后以1:1成像。
  5. 如权利要求4所述的成像透镜前分离激光的共光路的测距瞄准器,其特征在于,所述数据显示器(33)发射基准点红光,该基准点红光经所述红光反射自然光透射镜(43)反射并在所述凹面成像透镜的中心点成像为基准红点(100),且所述自然光观测光路的观测轴线穿过所述基准红点(100)。
  6. 如权利要求3所述的成像透镜前分离激光的共光路的测距瞄准器,其特征在于,所述成像透镜前分离激光的共光路的测距瞄准器还包括内置光路安装支架(60),所述内置光路安装支架(60)安装于所述安装腔(11)内,所述激光发射器(31)、所述激光接收器(32)、所述数据显示器(33)、所述激光反射自然光透射镜(41)、所述凹面成像透镜(42)、所述红光反射自然光透射镜(43)、所述激光反射镜(44)、所述激光聚光透镜(45)均固定安装于所述内置光路安装支架(60)上,其中,所述激光发射器(31)、所述激光反射镜(44)、所述激光聚光透镜(45)、所述激光反射自然光透射镜(41)在所述内置光路安装支架(60)内形成独立的激光发射光路,所述激光反射自然光透射镜(41)、所述激光聚光透镜(45)、所述激光反射镜(44)、所述激光接收器(32)在所述内置光路安装支架(60)内形成独立的激光接收光路,所述数据显示器(33)、所述红光反射自然光透射镜(43)、所述凹面成像透镜(42)在所述内置光路安装支架(60)内形成独立的数据成像光路,所述激光反射自然光透射镜(41)、所述凹面成像透镜(42)、所述红光反射自然光透射镜(43)在所述内置光路安装支架(60)内形成独立的所述自然光观测光路。
  7. 如权利要求6所述的成像透镜前分离激光的共光路的测距瞄准器,其特征在于,所述内置光路安装支架(60)的第一端与所述壳体(10)之间铰连接,所述内置光路安装支架(60)的第二端与所述壳体(10)之间设置有升降调节机构(71)。
  8. 如权利要求7所述的成像透镜前分离激光的共光路的测距瞄准器,其特征在于,所述升降调节机构(71)包括调节蜗杆(711)、调节涡轮(712)和配合螺杆(713),所述调节蜗杆(711)、所述调节涡轮(712)两者均装配于所述壳体(10)上,所述调节蜗杆(711)与所述调节涡轮(712)相啮合,所述配合螺杆(713)的第一端与所述内置光路安装支架(60)固定连接,所述配合螺杆(713)的第二端与所述调节涡轮(712)之间螺纹连接。
  9. 如权利要求8所述的成像透镜前分离激光的共光路的测距瞄准器,其特征在于,所述内置光路安装支架(60)的第二端上设置有限位弹片(72),所述限位弹片(72)预紧装配在所述内置光路安装支架(60)的第二端与所述壳体(10)之间,且所述内置光路安装支架(60)位于所述升降调节机构(71)与所述限位弹片(72)之间。
  10. 如权利要求7至9中任一项所述的成像透镜前分离激光的共光路的测距瞄准器,其特征在于,所述内置光路安装支架(60)的第二端与所述壳体(10)之间设置有水平调节机构(73)。
  11. 如权利要求10所述的成像透镜前分离激光的共光路的测距瞄准器,其特征在于,所述成像透镜前分离激光的共光路的测距瞄准器还包括第一防水玻璃(51)和第二防水玻璃(52),所述第一防水玻璃(51)安装于所述物像孔,所述第二防水玻璃(52)安装于所述观测孔。
  12. 如权利要求11所述的成像透镜前分离激光的共光路的测距瞄准器,其特征在于,所述壳体(10)的外侧设置有装配槽(12),所述装配槽(12)用于与外部装配物的装配滑轨配合安装。
PCT/CN2018/083530 2018-04-18 2018-04-18 一种成像透镜前分离激光的共光路的测距瞄准器 WO2019200560A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2018/083530 WO2019200560A1 (zh) 2018-04-18 2018-04-18 一种成像透镜前分离激光的共光路的测距瞄准器
DE212018000190.1U DE212018000190U1 (de) 2018-04-18 2018-04-18 Entfernungs- und Visiervorrichtung mit gemeinsamen Strahlengang mit einem Laser, wobei der Strahlengang vor der Abbildungslinse getrennt wird
CN201880005212.5A CN110199202B (zh) 2018-04-18 2018-04-18 一种成像透镜前分离激光的共光路的测距瞄准器
US16/432,925 US11391839B2 (en) 2018-04-18 2019-06-06 Ranging and sighting device having common optical path with laser separated in front of imaging lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/083530 WO2019200560A1 (zh) 2018-04-18 2018-04-18 一种成像透镜前分离激光的共光路的测距瞄准器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/432,925 Continuation US11391839B2 (en) 2018-04-18 2019-06-06 Ranging and sighting device having common optical path with laser separated in front of imaging lens

Publications (1)

Publication Number Publication Date
WO2019200560A1 true WO2019200560A1 (zh) 2019-10-24

Family

ID=67751431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083530 WO2019200560A1 (zh) 2018-04-18 2018-04-18 一种成像透镜前分离激光的共光路的测距瞄准器

Country Status (4)

Country Link
US (1) US11391839B2 (zh)
CN (1) CN110199202B (zh)
DE (1) DE212018000190U1 (zh)
WO (1) WO2019200560A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10948264B1 (en) * 2019-11-14 2021-03-16 Sig Sauer, Inc. Dual-emitter micro-dot sight
WO2021243517A1 (zh) * 2020-06-01 2021-12-09 深圳市瑞尔幸电子有限公司 成像设备、共光轴测距成像装置及其共光轴测距成像系统
CN115803581A (zh) * 2020-07-30 2023-03-14 深圳市瑞尔幸电子有限公司 射击设备、瞄准装置及其成像测距装置和调整方法
CN114719681B (zh) * 2021-01-05 2024-01-26 福州展旭电子有限公司 枪瞄反射镜的调节机构及其工作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19949800A1 (de) * 1999-10-15 2001-04-19 Asia Optical Co Vorrichtung zur Kompensation der ballistischen Flugbahn
US20090223107A1 (en) * 2008-03-10 2009-09-10 Asia Optical Co., Inc. Laser sight
CN102252563A (zh) * 2011-06-30 2011-11-23 重庆爱特光电有限公司 透射式oled枪瞄镜
WO2014130128A2 (en) * 2012-12-05 2014-08-28 Raytheon Company Direct view optical sight with integrated laser system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6204961B1 (en) * 1995-09-18 2001-03-20 Litton Systems, Inc. Day and night sighting system
CN203773047U (zh) * 2014-03-07 2014-08-13 中国人民解放军总装备部军械技术研究所 激光测距与瞄准共光路光学系统
CN105629481B (zh) * 2014-11-05 2018-05-18 北京航天计量测试技术研究所 一种高能激光、探测成像光及远距离测距激光共光路结构
CN105424178A (zh) * 2015-11-06 2016-03-23 中国科学院长春光学精密机械与物理研究所 反射式双波段微光成像仪
CN105353381B (zh) * 2015-12-05 2018-02-13 中国航空工业集团公司洛阳电光设备研究所 一种激光测距机
WO2018014276A1 (zh) * 2016-07-21 2018-01-25 左罗 高清紧凑型激光测距仪的光学装置
US11016182B2 (en) * 2016-10-04 2021-05-25 Laser Technology, Inc. Through-the-lens, co-aligned optical aiming system for a phase-type, laser-based distance measuring device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19949800A1 (de) * 1999-10-15 2001-04-19 Asia Optical Co Vorrichtung zur Kompensation der ballistischen Flugbahn
US20090223107A1 (en) * 2008-03-10 2009-09-10 Asia Optical Co., Inc. Laser sight
CN102252563A (zh) * 2011-06-30 2011-11-23 重庆爱特光电有限公司 透射式oled枪瞄镜
WO2014130128A2 (en) * 2012-12-05 2014-08-28 Raytheon Company Direct view optical sight with integrated laser system

Also Published As

Publication number Publication date
DE212018000190U1 (de) 2019-11-07
US11391839B2 (en) 2022-07-19
CN110199202A (zh) 2019-09-03
CN110199202B (zh) 2022-11-18
US20190324140A1 (en) 2019-10-24

Similar Documents

Publication Publication Date Title
WO2019200560A1 (zh) 一种成像透镜前分离激光的共光路的测距瞄准器
CN112327275B (zh) 一种激光雷达
JP4499261B2 (ja) タキメータ望遠鏡
US6292314B1 (en) Prism system for image inversion in a visual observation beam path
CN202189181U (zh) 一种红外测距望远镜
US8599482B2 (en) Telescopic sight
JP3074643U (ja) 測距双眼鏡
CN110094692A (zh) 集成LiDAR系统的照明装置及汽车
US7505120B2 (en) Laser riflescope with enhanced display brightness
US6903811B2 (en) Rangefinder binoculars
CN114994931B (zh) 前置瞄准装置及组合式瞄准系统
CN108181688A (zh) 用于收发一体光电设备的接收器对准系统及其应用
CN107238840B (zh) 脉冲激光高速测距光学系统
CN213600058U (zh) 激光测距设备及其激光测距仪
WO2018192068A1 (zh) 一种激光测距单眼望远镜
CN212341595U (zh) 激光发射、接收及显示耦合装置及直筒式双筒测距望远镜
CN219915935U (zh) 激光测距仪
JP3089101U (ja) 測距双眼鏡
CN218864900U (zh) 一种同轴观察显示的瞄具装置
CN220794216U (zh) 一种望远测距装置
CN211669454U (zh) 测距仪光路分合棱镜模块装置
CN220381373U (zh) 一种带测距功能的长焦距物镜镜头
WO2024055138A1 (zh) 组合式瞄准系统及其瞄准镜成像系统
CN202255359U (zh) 一种激光测距望远镜的投影显示装置
WO2024055930A1 (zh) 组合式瞄准系统及其光学系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915125

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18915125

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 03.03.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18915125

Country of ref document: EP

Kind code of ref document: A1