WO2019198916A1 - System for inspecting surface of hole in rock capable of measuring ground bearing capacity - Google Patents

System for inspecting surface of hole in rock capable of measuring ground bearing capacity Download PDF

Info

Publication number
WO2019198916A1
WO2019198916A1 PCT/KR2019/000766 KR2019000766W WO2019198916A1 WO 2019198916 A1 WO2019198916 A1 WO 2019198916A1 KR 2019000766 W KR2019000766 W KR 2019000766W WO 2019198916 A1 WO2019198916 A1 WO 2019198916A1
Authority
WO
WIPO (PCT)
Prior art keywords
rock hole
measuring
module
rock
sensor
Prior art date
Application number
PCT/KR2019/000766
Other languages
French (fr)
Korean (ko)
Inventor
이민희
Original Assignee
이민희
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180042678A external-priority patent/KR102073807B1/en
Priority claimed from KR1020180042667A external-priority patent/KR102073804B1/en
Application filed by 이민희 filed Critical 이민희
Publication of WO2019198916A1 publication Critical patent/WO2019198916A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B9/00Kinds or types of lifts in, or associated with, buildings or other structures
    • B66B9/16Mobile or transportable lifts specially adapted to be shifted from one part of a building or other structure to another part or to another building or structure
    • B66B9/187Mobile or transportable lifts specially adapted to be shifted from one part of a building or other structure to another part or to another building or structure with a liftway specially adapted for temporary connection to a building or other structure
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D13/00Accessories for placing or removing piles or bulkheads, e.g. noise attenuating chambers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/08Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids

Definitions

  • the present invention relates to a rock hole surface inspection system, and in particular, the rock hole that is inserted into the rock hole can accurately and quickly measure the surface roughness, as well as the ground support capacity of the rock hole hole tip perforated underwater can be made smoothly A surface inspection system.
  • Civil works for example bridges, are laid on the bottom of the ocean, river or river for its foundation.
  • the foundation construction penetrates the cover layer and drills holes until the rock appears and additionally forms rock holes in the rock.
  • the depth is about 100 to 200 meters, in order to prevent the penetration of water is inserted into the pipe on the surface of the water, and after completion of the drilling is generally installed in the rock hole to install the foundation pier.
  • the foundation pier has a characteristic that the stronger the binding force between the cast concrete and the rock hole is stronger, the support force increases, and the coupling characteristics of the rock hole and the concrete show a tendency to vary according to the surface characteristics of the rock hole.
  • the bonding force is increased due to the increase in the area to be combined with the concrete.
  • the surface layer state of the drilled hole after drilling the rock hole plays a very important role in the rigidity of the structure, so the technique of examining the rock hole surface is also one of the very important factors.
  • a method of inspecting the surface of a large object in a non-destructive manner may be a method using ultrasonic waves.
  • Japanese Patent Laid-Open No. 2008-111630 discloses a method for exploring cracks generated in concrete walls using ultrasonic waves. In the present invention, it is an example of a typical ultrasonic method by detecting the depth of crack generated by contacting the ultrasonic probe with the corresponding wall surface.
  • Korean Patent Laid-Open Publication No. 2009-22295 discloses a method of inspecting a defect of a coupling portion of a secondary barrier using ultrasonic waves.
  • a method of detecting a defect of a cargo (cargo) applied to the LNG carrier may be an example of a representative non-destructive inspection method.
  • the above methods are usually inspection methods performed in an external ground state, and separate apparatuses are required to be applied to inspection of a rock hole surface formed at several tens of meters.
  • the simplest method is to attach an ultrasonic sensor to the end of a single lynch and inspect the surface of the rock hole by adjusting the lynch length.
  • this method has the advantage of being relatively simple, but if the length is increased or the diameter is large, it is difficult to maintain a constant distance from the surface of the sensor and the rock hole, and the surface position of the rock rock is not known exactly. There was no ability to identify bearing characteristics. In addition, there was no function to measure the depth of slime remaining on the bottom of the rock hole.
  • the present invention has been proposed to solve the conventional problems as described above, the object of the present invention is to insert a rock hole to accurately and quickly measure the surface roughness, as well as the end of the rock hole hole perforated underwater
  • the present invention provides a rock hole surface inspection system for smooth soil measurement.
  • the rock hole surface inspection system includes a moving part for moving along a pipe inserted into a rock hole which is perforated underwater, and connecting the moving part with a cable from the ground. And a remote unit for controlling the position and operation of the moving unit and receiving the information collected by the moving unit while supporting the elevating unit, wherein the moving unit is fixed to the inner circumferential surface of the pipe or the wall surface of the rock hole while lifting by the cable.
  • the measuring module includes a loading actuator vertically installed downward to enable the retreat and a loading plate attached to the end of the operating portion of the loading actuator to contact the rock hole tip, thereby supporting ground support of the rock hole tip. It is characterized by the technical configuration that the loading device further measures.
  • the loading device may be installed in pairs at the center of the lower end of the measuring module and at a point spaced from the center point, respectively, to measure the ground bearing force along the circumferential direction of the rock hole tip.
  • the measuring module is further provided with a slime measuring device for measuring the slime thickness remaining at the tip of the rock hole, the slime measuring device, the main body fixed to the lower end of the measuring module, the slime while descending from the main body It is made up of the lifting portion to reach the end of the rock hole through the through, to determine whether to penetrate the slime by measuring the resistance while the lifting portion descends, the resistance measured when the lifting portion penetrates the slime is maintained It may be characterized by calculating the slime thickness by measuring the distance displaced by the lifting portion.
  • the measuring module may further include: a measuring frame coupled to the lower side of the fixed module so as to be lifted and lowered; A plurality of guide rollers installed on the side of the measuring frame to guide the lifting of the measuring frame while moving in contact with the wall surface of the rock hole; A sensor module comprising a roughness measuring sensor for measuring a surface roughness of a rock hole and a sensor actuator installed in the measuring frame to advance and move the roughness measuring sensor toward a rock hole wall surface; It may be characterized by including.
  • the roughness sensor may be characterized in that a plurality of radially installed so as to face the entire wall circumference of the rock hole.
  • the roughness measuring sensor in the measuring module may be provided as a sonar sensor for measuring the surface roughness of the rock hole while generating an ultrasonic wave.
  • the sonar sensor provided with the roughness measuring sensor to measure the distance to the rock hole wall surface may be characterized in that the control of the stroke of the sensor actuator based on the measured distance to the rock hole wall surface.
  • the roughness measuring sensor may be characterized by continuously measuring the surface roughness of the rock hole in 1mm increments while descending or rising along the rock hole with the measuring frame.
  • the guide roller may include a roller actuator fixed to the measuring frame, a roller body hinged to the operating part of the roller actuator, and a roller installed to be rotatable to the roller body.
  • the lower end of the measurement module may be further provided with a contact sensor which is formed to be extended downward to recognize the position of the rock hole tip while the lower end is in contact with the rock hole tip.
  • the fixed module and the measurement module may be further provided with a level sensor for recognizing the depth of the rock hole, respectively, the measurement module may be further provided with a pressure sensor for measuring the pressure.
  • the fixing module and a fixed frame connected to the cable;
  • a transfer unit positioned inside the fixed frame to lift the measurement module;
  • a hydraulic unit for controlling the generation and the path of the hydraulic pressure;
  • a plurality of pressing devices installed on the side of the fixing frame to fix the fixing module to the inner circumferential surface of the pipe or the wall surface of the rock hole;
  • a control unit for controlling the hydraulic unit and the transfer unit; It may be characterized by including.
  • the pressurizing device may include a pressurized actuator fixed on the fixed frame, a pressurizing plate mounted on the pressurizing actuator movable unit, and a pressurizing sensor attached to the pressurizing plate to detect a pressing force.
  • the rock hole surface inspection system according to the present invention can be precisely located in the rock hole by remote control, and precise surface inspection of the rock hole tip in a state where it is stably supported in a configuration corresponding to the diameter of the rock hole or the inserted pipe. And bearing capacity can be measured, which allows precise foundation construction.
  • the present invention can accurately measure the slime thickness measured only depending on the operator's sense in the field, it is possible to accurately measure the ground strength of the rock hole tip, whether to carry out the additional work to spread the slime to the ground This can be useful for determining such.
  • the present invention by using the seismic wave caused by the high frequency sound and the seismic wave caused by the excitation in consideration of the thickness of the slime remaining in the rock hole drilled in the water to increase the ground strength of the rock hole tip according to the situation It can be measured.
  • FIG. 1 is a block diagram showing the overall configuration of a rock hole surface inspection system according to an embodiment of the present invention
  • FIG. 2 is a block diagram of a fixing module in the rock hole surface inspection system according to an embodiment of the present invention
  • FIG. 3 is a block diagram of a depression in the rock hole surface inspection system according to an embodiment of the present invention
  • FIG. 5 is a configuration diagram of the hydraulic portion in the rock hole surface inspection system according to an embodiment of the present invention
  • FIG. 6 is a configuration diagram of the pressing device in the rock hole surface inspection system according to an embodiment of the present invention
  • FIG. 7 is a configuration diagram of the measurement module in the rock hole surface inspection system according to an embodiment of the present invention
  • FIG. 8 is a block diagram of a control unit in the rock hole surface inspection system according to an embodiment of the present invention
  • rock hole 2 moving part
  • transfer part 40 hydraulic part
  • measuring module 120 measuring frame
  • sensor module 170 ground strength measuring device
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • all terms used herein, including technical or scientific terms have the same meaning as commonly understood by one of ordinary skill in the art. Terms such as those defined in the commonly used dictionaries should be construed as having meanings consistent with the meanings in the context of the related art and shall not be construed in ideal or excessively formal meanings unless expressly defined in this application. Do not.
  • FIG. 1 is a block diagram showing the overall configuration of a rock hole surface inspection system according to an embodiment of the present invention.
  • the present invention relates to a rock hole surface inspection system that allows the surface of a rock hole to be inspected more accurately in consideration of the thickness of slime remaining in the pipe inserted into the rock hole drilled underwater.
  • the rock hole surface inspection system 100 is moved to inspect the rock hole (1) surface while moving inside the pipe inserted into the rock hole (1) perforated underwater Control the position and operation of the moving unit 2 and receive the information collected by the moving unit while supporting the unit 2 and the mobile unit 2 by a cable 4 in a fixed state on the ground It is composed of a remote part (3), so that the precise surface inspection of the tip of the rock hole (1), the ground strength and support force of the tip of the rock hole (1), and the remaining slime thickness can be effectively measured. It is configured to.
  • the moving part 2 includes a fixing module 10 and a measurement module 110 positioned at upper and lower portions, respectively, as shown in FIG. 2.
  • the fixed module 10 is a fixed frame 20 for supporting the entire fixed module 10 and the transfer unit 30 located in the fixed frame 20, the hydraulic unit 40 for generating hydraulic pressure, the hydraulic pressure It includes a pressurizing device 50 and the control unit 90 for fixing the fixing module 10 by using the hydraulic pressure generated in the unit 40.
  • the fixing frame 20 is composed of a fixed upper plate 21, a fixed lower plate 22, a fixed bar 23 for vertically connecting the fixed upper plate 21 and the fixed lower plate 22, the fixed bar 23 ) Is implemented with the strength to support various loads generated by hydraulic pressure.
  • a depression 24 is formed at the bottom of the fixed lower plate 22 to insert a portion of the measurement frame 120 belonging to the measurement module 110 when the measurement module 110 is raised. To have structural stability.
  • the transfer unit 30 is installed in the center of the fixed frame 20.
  • the transfer unit 30 is a transfer motor 31 attached to the fixed upper plate 21, the transfer motor 31 as shown in FIG.
  • the lead screw 32 is connected to the rotating shaft of the), and the upper side of the measuring frame 120 of the measuring module 110 is engaged with the lead screw 32.
  • the feed motor 31 rotates so that the lead screw 32 rotates together
  • the measurement frame 120 engaged with the lead screw 32 is lifted.
  • a plurality of transfer bars 26 are formed at the lower end of the fixed lower plate 22, and the measurement frame 120 is lifted in accordance with the rotation of the lead screw 32 while being penetrated by the transfer bars 26. Be guided.
  • the hydraulic part 40 is installed in the fixed frame 20 as shown in FIG. 5.
  • the hydraulic unit 40 includes a hydraulic tank 41, a hydraulic pump 42 and a hydraulic control unit 43, the hydraulic pump 42 and the hydraulic control unit 43 by the control unit 90 described later Controlled.
  • the hydraulic pump 42 serves to pressurize the hydraulic oil stored in the hydraulic tank 41
  • the hydraulic control unit 43 is composed of a plurality of valves the path of the hydraulic oil pressurized by the hydraulic pump 42 It serves to set up.
  • the valves are preferably provided as a solenoid valve.
  • the fixed frame 20 further includes a pressurizing device 50 as shown in FIG. 6, wherein the pressurizing device 50 is a pressurizing plate attached to a pressurizing actuator 51 and an operation end of the pressurizing actuator 51. (52).
  • the pressurizing actuator 51 and the pressing plate 52 may be installed in plural along the circumferential direction of the fixing frame 20, and may be installed in the upper and lower portions if necessary.
  • the pressurized actuator 51 is operated by the hydraulic oil guided by the hydraulic control unit 43.
  • the pressure plate 52 is attached to a plurality of pressure sensors 53 is configured to detect the pressing force or the deformation amount generated in the pressure plate 52.
  • the pressure sensor 53 is disposed to detect deformation in the vertical, horizontal, left and right directions, and detects the total deformation amount or the pressing force of the pressure plate 52.
  • the output of the pressure sensor 53 is transmitted to the control unit 90 to stop the operation of the pressure actuator 51 when a predetermined load or more is applied.
  • the controller 90 serves to control the operation of the transfer unit 30 and the hydraulic unit 40, and also receives and processes a signal from the pressure sensor 53.
  • the control unit 90 has a sealed structure inside, and if necessary, the remote unit 3 can continuously supply air pressure through a separate hose to the control unit 90 to prevent the ingress of water from the outside. .
  • a level sensor 92 is attached to a lower end of the fixed frame 20 to detect a current depth and transmit the current depth to the controller 90, and the controller 90 transmits the level sensor 92. After calculating the depth using the signal of), and transmits to the remote (3).
  • the measurement module 110 is adjusted by the operation of the transfer unit 30 belonging to the fixed module 10 while adjusting the relative distance with the fixed module 10, the support force and ground strength of the tip of the rock hole (1) It is configured in detail so that the thickness of the slime and the surface roughness of the wall of the rock hole 1 can be measured.
  • the measurement module 110 includes a measurement frame 120 that also supports the entire structure.
  • the measuring frame 120 includes a measuring upper plate 121, a measuring lower plate 122, and a measuring bar 123 vertically connecting the measuring upper plate 121 and the measuring lower plate 122.
  • the upper part of the measuring upper plate 121 is formed with a protrusion 123 is inserted into the depression 24 formed in the fixed lower plate 22 of the fixing module 10 when the measuring module 110 is raised, in particular the When the protrusion 123 is inserted into the depression 24, it is advantageous to configure the loads applied to the measurement frame 120 to be transmitted through the depression 24 in terms of overall structure.
  • the measuring upper plate 121 is engaged with the lead screw 32 and the transfer bar 26 is provided to pass through the measuring upper plate 121 to guide the lifting operation of the measuring frame 120.
  • the measurement module 110 includes a sound wave generator 171 for generating high frequency sound in the water inside the rock hole, an impact generator 172 having a rock hole tip, and the sound wave generator ( 171 and a ground provided at a position spaced apart from the impact generator 172 and made of a receiver 173 configured to receive acoustic waves transmitted through the rock hole tip surface layer by sound waves and excitation in contact with the rock hole tip.
  • the strength measuring device 170 is provided.
  • the control unit 90 can obtain the ground strength of the rock hole tip by the speed of the acoustic wave transmitted through the rock hole tip surface layer.
  • the sound wave generator 171 and the impact generator 172 can be selectively used according to the thickness of the slime remaining on the rock hole tip. That is, when the thickness of the slime remaining at the tip of the rock hole is less than a predetermined value through the measurement of the slime measuring device 180, the sound wave generator 171 generates a high frequency sound, and the high frequency sound is the surface layer of the rock hole front end. Although the receiver 173 receives the acoustic wave through the receiver, if the thickness of the slime remaining on the rock hole tip is greater than a predetermined value, the shock generator 172 has the rock hole tip and the rock hole tip is caused by the excitation.
  • the receiver 173 receives the acoustic wave transmitted through the surface layer.
  • the frequency can be freely selected so that the receiver 173 can receive a higher resolution acoustic wave. Therefore, the high-frequency sound generated by the sound wave generator 171 is transmitted through the underwater and rock hole tip surfaces, so that the method of receiving the elastic waves has a higher resolution than the impact generator 172 has the rock hole tip surface and receives the elastic waves. It is advantageous to receive the seismic wave of.
  • the slime thickness is accurately measured by the slime measuring device 180, and if possible, the method through the sound wave generator 171 can be used to more accurately measure the ground strength of the rock hole tip.
  • the frequency of the high frequency sound generated by the sound wave generator 171 is generally in the range of 500 to 1 khz, and the acoustic wave speed is controlled by the controller 90 in conjunction with the ground measuring device as shown in FIG. 8.
  • the measurement module 110 further includes a slime measuring device 180 for measuring the slime thickness remaining at the tip of the rock hole.
  • the slime measuring device 180, the main body 181 is fixed to the lower end of the measurement module 110, and the lifting portion which allows to reach the end of the rock hole through the slime while descending from the main body 181 It consists of 182.
  • the controller 90 determines whether the lifting unit 182 penetrates the slime by measuring the resistance while descending, and the resistance measured when the lifting unit 182 penetrates the slime is maintained.
  • the thickness of the slime is calculated by measuring the distance that the lifting unit 182 is displaced.
  • the measuring frame 120 is configured to include a loading device 130 is installed on the bottom of the measuring lower plate (122).
  • the loading device 130 serves to apply a load to the tip of the rock hole (1), and includes a hydraulic loading actuator 131 and a loading plate 132 attached to the end of the operation portion of the loading actuator 131. It is configured by.
  • the loading actuator 131 is also operated by the hydraulic control unit 43, it may be provided with a separate sensor for detecting the stroke of the loading plate 132.
  • the loading actuator 131 is disposed in the center of the measurement lower plate 122, it may be installed in addition to a predetermined distance apart position. In the case of configuring a plurality as described above, since the bearing force can be measured along the circumferential direction of the tip of the rock hole 1, there is an advantage that the level of the bearing force can be further increased.
  • the measurement lower plate 122 includes a contact sensor 161 for detecting the tip of the rock hole (1) to detect the tip contact of the measurement module 110.
  • the measurement module 110 is also provided with a level sensor 162, so that the current depth of the measurement module 110 can be detected.
  • a plurality of pressure sensors 163 are included to sense the pressure at the corresponding point.
  • the sensors 161, 162, and 163 also transmit measurement information to the controller 90, and the controller 90 uses the information measured by the sensors 161, 162, and 163 to position the end of the rock hole. And the depth and pressure at which the measurement module 110 is located are calculated.
  • the measuring module 110 includes a plurality of guide rollers 140 installed at the side of the measuring frame 120 to contact the wall surface of the rock hole to guide the lifting of the measuring frame.
  • the guide roller 140 includes a roller actuator 141 fixed to the measuring frame 120, a roller body 142 hinged to an operation part of the roller actuator 141, and on the roller body 142. It is comprised including the roller 143 rotatably installed.
  • the roller actuator 141 is preferably configured electrically, and preferably includes a sensor or a count for recognizing the stroke.
  • the driving of the roller actuator 141 is controlled by the control unit 90, the control unit 90 recognizes the stroke of the roller actuator 141 and whether the guide roller 140 is out of the pipe to enter the rock hole wall surface Judge the back.
  • the measurement module 110 has a sensor module 150 for detecting the roughness of the surface of the rock hole 10 at the lower end thereof.
  • the sensor module 150 includes a sensor actuator 151 moving in a radial direction and a roughness measuring sensor 152 attached to an end of the sensor actuator 151 to detect surface roughness.
  • the sensor actuator 151 and the roughness measuring sensor 152 are arranged in a plurality of radially with respect to the measuring frame 120, the arrangement interval is all overlapping the area detected by one roughness measuring sensor 152 in the surface circumferential direction Set so that information can be obtained. To this end, when the roughness measuring sensor 152 is installed in four directions, there is no great difficulty in performing a function toward the rock hole wall surface.
  • Such roughness measuring sensor 152 is preferably provided as a sonar sensor using ultrasonic waves.
  • the roughness measuring sensor measures the surface roughness of the rock hole wall surface and the distance to the rock hole wall surface while generating an ultrasonic wave. It is possible to do If the roughness measuring sensor 152 can measure the distance to the rock hole wall surface, it may be used to control the stroke of the sensor actuator 151.
  • the roughness measuring sensor 152 belongs to the measurement module 110 in the radially arranged in all directions to obtain accurate roughness information on the rock hole surface by continuously measuring in 1 mm increments while descending or rising along the rock hole.
  • the frequency used by the roughness measuring sensor 152 is about 2MHz.
  • the sensor module 150 is also linked with the control unit 90, and the detected result is also transmitted to the control unit 90, and the control unit 90 calculates and displays the surface roughness using the transmitted result. .
  • control unit 90 and the remote unit 3 will be described below.
  • the controller 90 controls the moving unit 2 as a whole, and the remote unit 3 stores and displays the information obtained through the controller 90.
  • An operation unit for driving the moving unit 2 is provided. That is, a user instructs operation of the moving unit 2 through the operation unit, and the control unit 90 controls various devices based on the information instructed through the operation unit.
  • the controller 90 receives pressure information through the pressure sensor 163 and calculates the depth of the rock hole 1 through the level sensors 92 and 162.
  • the control unit 90 controls the transfer unit 30, in which the control unit 90 drives the transfer motor 31 to adjust the distance between the measurement module 110 and the fixed module 10, in particular, In the case of a test, the measurement module 110 is operated to bond with the fixed module 10 so that the load generated during the loading test is absorbed by the fixed module 10.
  • control unit 90 controls the pressing device 50 to fix the fixing module 10 to the rock hole 1.
  • the pressurizing device 50 is operated by using the hydraulic pressure generated by the hydraulic unit 40, and further measures the pressing force detected by the pressure sensor 53 to remove the thread of the pipe inserted into the rock hole (1) Control to prevent.
  • the guide roller 140 When the control unit 90 controls the operation of the guide roller 140, the guide roller 140 is operated after the pressing device 50 is fixed to operate the operation of the transfer unit 30 to measure the measurement module 110 When it is separated from the fixing module 10 serves to guide accurately to the rock hole (1). At this time, the sensor module 150 also protrudes to the outside to measure the roughness of the inner surface of the rock hole (1), and ends when the transfer unit 30 is in the maximum stroke state.
  • the pressurizing device 50 is operated to fix the fixing module 10, and then the loading device 130 is operated to perform a loading test.
  • the operation of the loading device 130 is operated by adjusting the hydraulic unit 40, the hydraulic pressure is transmitted to the remote unit 3 through the control unit 90.
  • a separate loading device 130 is operated to perform a loading test in the circumferential direction of the tip. At this time, the remote part 3 performs the test intermittently while adjusting the cable 4 to rotate the moving part 2.
  • the controller 90 receives surface information of the rock hole 1 measured by the sensor module 150 and transmits it to the remote unit 3. At this time, the control unit 90 operates the pressurizing device 50 at the corresponding position to fix the fixing module 10. Subsequently, the roughness measuring sensor 152 is operated to approach the rock hole 1 by operating the sensor actuator 151, and then the conveying unit 30 is driven to transport the measuring module 110 downward. To control.
  • the roughness measuring sensor 152 transmits longitudinal roughness information on the surface of the rock hole 1 to the remote part 3.
  • the roughness measuring sensor 152 with water is radially installed in the measuring module 110 so as to obtain all the circumferential roughness information of the rock hole 1.
  • the controller 90 interlocks with the ground strength measuring device 170 to obtain a seismic velocity, and also interlocks with the slime measuring device 180 to obtain a slime thickness.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Civil Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

The present invention relates to a system for inspecting the surface of a hole in a rock, wherein the system can be inserted into a hole in a rock to measure the surface roughness precisely and swiftly, and ensures that measurement of the ground bearing capacity at the leading edge of a hole in a rock bored underwater is achieved smoothly. This system is characterized by comprising a loading device which is provided with a loading actuator installed vertically downward in a measurement module so as to be capable of advancing and retreating, and with a loading plate attached to an end of an operation part of the loading actuator to contact the leading edge of a hole in a rock, and which measures the ground bearing capacity at the leading edge of the hole in the rock.

Description

지반 지지력 측정이 가능한 암반 홀 표면 검사시스템Rock hole surface inspection system capable of measuring soil bearing capacity
본 발명은 암반 홀 표면 검사시스템에 관한 것으로, 특히 암반 홀에 투입되어 정밀하고 신속하게 표면 거칠기를 측정할 수 있는 것은 물론, 수중 천공된 암반 홀 선단의 지반 지지력 측정이 원활하게 이루어지도록 한 암반 홀 표면 검사시스템에 관한 것이다. The present invention relates to a rock hole surface inspection system, and in particular, the rock hole that is inserted into the rock hole can accurately and quickly measure the surface roughness, as well as the ground support capacity of the rock hole hole tip perforated underwater can be made smoothly A surface inspection system.
토목 구조물, 예를 들면 다리 등에는 그 기초를 위하여 바다, 강 또는 하천 바닥에 기초 시공을 한다. 통상 기초 시공은 복토 층을 관통하여 암반이 나타날 때까지 홀을 뚫고 추가적으로 암반에 암반 홀을 형성한다. 이때, 그 깊이는 100 내지 200미터 정도이며, 물의 침투를 방지하기 위하여 수면위에서 관을 삽입하여 천공하며, 천공이 완료된 후 상기 암반 홀에 콘크리트 등을 타설하여 기초 교각을 설치하는 것이 일반적이다.Civil works, for example bridges, are laid on the bottom of the ocean, river or river for its foundation. Typically, the foundation construction penetrates the cover layer and drills holes until the rock appears and additionally forms rock holes in the rock. At this time, the depth is about 100 to 200 meters, in order to prevent the penetration of water is inserted into the pipe on the surface of the water, and after completion of the drilling is generally installed in the rock hole to install the foundation pier.
이때 상기 기초 교각은 타설된 콘크리트와 상기 암반 홀의 결합력이 강하면 강할수록 지지력이 올라가는 특성이 있으며, 상기와 같은 암반 홀과 콘크리트의 결합 특성은 암반 홀의 표면 특성에 따라 달라지는 경향을 나타낸다. 또한, 상기 암반 홀의 표면이 적절한 거칠기로 구현되는 경우, 콘크리트와 결합되는 면적의 증가로 인하여 결합력이 증가하는 경향을 나타낸다.At this time, the foundation pier has a characteristic that the stronger the binding force between the cast concrete and the rock hole is stronger, the support force increases, and the coupling characteristics of the rock hole and the concrete show a tendency to vary according to the surface characteristics of the rock hole. In addition, when the surface of the rock hole is implemented with an appropriate roughness, the bonding force is increased due to the increase in the area to be combined with the concrete.
따라서, 암반 홀을 천공한 후 천공된 홀의 표층 상태는 구조물의 강성에 매우 중요한 역할을 하므로, 암반 홀 표면을 검사하는 기술 역시 매우 중요한 요소 중 하나이다.Therefore, the surface layer state of the drilled hole after drilling the rock hole plays a very important role in the rigidity of the structure, so the technique of examining the rock hole surface is also one of the very important factors.
특정 물질의 표면을 검사하는 장치는 매우 다양하게 제안되어 왔으나, 대형 물체의 표면의 특성을 비파괴 방식으로 검사하는 것으로는 초음파를 이용하는 방법을 들 수 있다. 예를 들면 공개 특허 제2008-111630호에는 초음파를 이용하여 콘크리트 벽에 발생된 크랙을 탐사는 방법이 개시되어 있다. 상기 발명에서는 초음파 탐촉자를 해당하는 벽면에 접촉시켜 발생된 크랙의 깊이를 감지하는 것으로 대표적인 초음파 방식의 예라 할 수 있다.A variety of devices for inspecting the surface of a specific material have been proposed, but a method of inspecting the surface of a large object in a non-destructive manner may be a method using ultrasonic waves. For example, Japanese Patent Laid-Open No. 2008-111630 discloses a method for exploring cracks generated in concrete walls using ultrasonic waves. In the present invention, it is an example of a typical ultrasonic method by detecting the depth of crack generated by contacting the ultrasonic probe with the corresponding wall surface.
또한, 한국공개특허 제2009-22295호에는 초음파를 이용하여 2차 방벽의 결합부의 결함을 검사하는 방법이 개시되어 있다. 상기 발명에서는 LNG선에 적용되는 화물창(cargo)의 결함을 검출하는 방법으로 대표적인 비파괴 검사 방법의 예라 할 수 있다.In addition, Korean Patent Laid-Open Publication No. 2009-22295 discloses a method of inspecting a defect of a coupling portion of a secondary barrier using ultrasonic waves. In the present invention, a method of detecting a defect of a cargo (cargo) applied to the LNG carrier may be an example of a representative non-destructive inspection method.
그러나 상기 방식들은 통상 외부 지상 상태에서 수행되는 검사 방법으로 수심 수십 미터 정도에 형성된 암반 홀의 표면의 검사에 적용하기 위해서는 별도의 장치들이 필요하다.However, the above methods are usually inspection methods performed in an external ground state, and separate apparatuses are required to be applied to inspection of a rock hole surface formed at several tens of meters.
가장 간단한 방법으로는 단일 린치의 끝단에 초음파 센서를 부착하고 린치 길이 조절을 통하여 암반 홀의 표면을 검사하는 방법을 들 수 있다. The simplest method is to attach an ultrasonic sensor to the end of a single lynch and inspect the surface of the rock hole by adjusting the lynch length.
그러나 이같은 방법의 경우 비교적 단순하다는 장점이 있으나 그 길이가 늘어나거나 직경이 커지는 경우 센서와 암반 홀의 표면과 일정한 거리를 유지하기 힘들고, 정확히 암반의 표면 위치를 알 수 없다는 단점이 있었으며, 암반 홀 바닥의 지지력 특성을 파악할 수 있는 기능도 없었다. 또한, 암반 홀 바닥에 잔존하는 슬라임을 깊이를 측정할 수 있는 기능도 없었다.However, this method has the advantage of being relatively simple, but if the length is increased or the diameter is large, it is difficult to maintain a constant distance from the surface of the sensor and the rock hole, and the surface position of the rock rock is not known exactly. There was no ability to identify bearing characteristics. In addition, there was no function to measure the depth of slime remaining on the bottom of the rock hole.
이에 본 발명은 상기와 같은 종래의 제반 문제점을 해소하기 위해 제안된 것으로, 본 발명의 목적은 암반 홀에 투입되어 정밀하고 신속하게 표면 거칠기를 측정할 수 있는 것은 물론, 수중 천공된 암반 홀 선단의 지반 지지력 측정이 원활하게 이루어지도록 한 암반 홀 표면 검사시스템을 제공하는 데 있다.Accordingly, the present invention has been proposed to solve the conventional problems as described above, the object of the present invention is to insert a rock hole to accurately and quickly measure the surface roughness, as well as the end of the rock hole hole perforated underwater The present invention provides a rock hole surface inspection system for smooth soil measurement.
상기와 같은 목적을 달성하기 위하여 본 발명의 기술적 사상에 의한 암반 홀 표면 검사시스템은, 수중 천공된 암반 홀까지 삽입된 배관 내부를 따라 이동할 수 있도록 한 이동부와, 지상에서 상기 이동부를 케이블로 연결하여 승강 가능하도록 지지하면서 상기 이동부의 위치 및 동작을 제어하고 상기 이동부에서 수집된 정보를 수신하는 원격부로 이루어지며, 상기 이동부는, 상기 케이블에 의해 승강하면서 상기 배관의 내주면 또는 암반 홀의 벽면에 고정되는 고정모듈과; 상기 고정모듈의 하측으로 승강 가능하도록 결합되어 암반 홀의 표면 거칠기를 측정하는 측정모듈을; 포함하며, 상기 측정모듈에는 하방으로 수직하게 설치되어 진퇴 가능하도록 한 재하액추에이터와, 상기 재하액추에이터의 작동부 끝단에 부착되어 암반 홀 선단에 접촉하도록 한 재하판을 구비하여 암반 홀 선단의 지반 지지력을 측정하는 재하장치가 더 포함된 것을 기술적 구성상의 특징으로 한다. In order to achieve the above object, the rock hole surface inspection system according to the technical concept of the present invention includes a moving part for moving along a pipe inserted into a rock hole which is perforated underwater, and connecting the moving part with a cable from the ground. And a remote unit for controlling the position and operation of the moving unit and receiving the information collected by the moving unit while supporting the elevating unit, wherein the moving unit is fixed to the inner circumferential surface of the pipe or the wall surface of the rock hole while lifting by the cable. Fixed module and; A measurement module coupled to the lower side of the fixed module to measure a surface roughness of the rock hole; The measuring module includes a loading actuator vertically installed downward to enable the retreat and a loading plate attached to the end of the operating portion of the loading actuator to contact the rock hole tip, thereby supporting ground support of the rock hole tip. It is characterized by the technical configuration that the loading device further measures.
여기서, 상기 재하장치는 상기 측정모듈의 하단부 중앙과, 그 중앙 지점으로부터 이격된 지점에 각각 쌍을 이루어 복수 설치되어 암반 홀 선단의 원주방향을 따라 지반 지지력을 측정할 수 있도록 한 것을 특징으로 할 수 있다. Here, the loading device may be installed in pairs at the center of the lower end of the measuring module and at a point spaced from the center point, respectively, to measure the ground bearing force along the circumferential direction of the rock hole tip. have.
또한, 상기 측정모듈에는 상기 암반 홀 선단에 잔존하는 슬라임 두께를 측정하는 슬라임 측정장치가 더 구비되며, 상기 슬라임 측정장치는, 측정모듈의 하단부에 고정된 본체부와, 상기 본체부로부터 하강하면서 슬라임을 관통하여 암반 홀 선단에 도달할 수 있도록 한 승강부로 이루어져, 상기 승강부가 하강하는 동안 저항을 측정하여 슬라임을 관통하는지 여부를 판단하고, 상기 승강부가 상기 슬라임을 관통할 때 측정되는 저항이 유지되는 동안 상기 승강부가 변위되는 거리를 측정함으로써 슬라임 두께를 산출하는 것을 특징으로 할 수 있다. In addition, the measuring module is further provided with a slime measuring device for measuring the slime thickness remaining at the tip of the rock hole, the slime measuring device, the main body fixed to the lower end of the measuring module, the slime while descending from the main body It is made up of the lifting portion to reach the end of the rock hole through the through, to determine whether to penetrate the slime by measuring the resistance while the lifting portion descends, the resistance measured when the lifting portion penetrates the slime is maintained It may be characterized by calculating the slime thickness by measuring the distance displaced by the lifting portion.
또한, 상기 측정모듈은, 상기 고정모듈의 하측에 승강 가능하도록 결합된 측정프레임과; 상기 측정프레임의 측면에 설치되어 암반 홀의 벽면을 접촉하여 이동하면서 상기 측정프레임의 승강을 안내하는 복수의 가이드 롤러와; 암반 홀의 표면 거칠기를 측정하는 거칠기 측정센서와, 상기 측정프레임에 설치되어 상기 거칠기 측정센서를 암반 홀 벽면을 향해 진퇴시켜주는 센서액추에이터로 이루어진 센서모듈을; 포함하는 것을 특징으로 할 수 있다. The measuring module may further include: a measuring frame coupled to the lower side of the fixed module so as to be lifted and lowered; A plurality of guide rollers installed on the side of the measuring frame to guide the lifting of the measuring frame while moving in contact with the wall surface of the rock hole; A sensor module comprising a roughness measuring sensor for measuring a surface roughness of a rock hole and a sensor actuator installed in the measuring frame to advance and move the roughness measuring sensor toward a rock hole wall surface; It may be characterized by including.
또한, 상기 거칠기 측정센서는 암반 홀의 벽면 둘레 전체를 향하도록 방사상으로 다수 설치된 것을 특징으로 할 수 있다. In addition, the roughness sensor may be characterized in that a plurality of radially installed so as to face the entire wall circumference of the rock hole.
또한, 상기 측정모듈에서 거칠기 측정센서는 초음파를 발생시키면서 암반 홀의 표면 거칠기를 측정하는 소나센서(sonar sensor)로 구비되는 것을 특징으로 할 수 있다. In addition, the roughness measuring sensor in the measuring module may be provided as a sonar sensor for measuring the surface roughness of the rock hole while generating an ultrasonic wave.
또한, 상기 거칠기 측정센서로 구비된 소나센서에 의해 암반 홀 벽면까지의 거리를 측정하고, 암반 홀 벽면까지의 측정 거리에 근거하여 상기 센서액추에이터의 스트로크를 제어하는 것을 특징으로 할 수 있다. In addition, the sonar sensor provided with the roughness measuring sensor to measure the distance to the rock hole wall surface, it may be characterized in that the control of the stroke of the sensor actuator based on the measured distance to the rock hole wall surface.
또한, 상기 거칠기 측정센서는 상기 측정프레임과 함께 암반 홀을 따라 하강 또는 상승하면서 암반 홀의 표면 거칠기를 1mm 단위로 연속 측정하는 것을 특징으로 할 수 있다. In addition, the roughness measuring sensor may be characterized by continuously measuring the surface roughness of the rock hole in 1mm increments while descending or rising along the rock hole with the measuring frame.
또한, 상기 가이드 롤러는, 상기 측정프레임에 고정되는 롤러액추에이터, 상기 롤러 액추에이터의 작동부와 힌지 결합하는 롤러체 및 상기 롤러체에 회전 가능하도록 설치되는 롤러를 포함하는 것을 특징으로 할 수 있다. The guide roller may include a roller actuator fixed to the measuring frame, a roller body hinged to the operating part of the roller actuator, and a roller installed to be rotatable to the roller body.
또한, 상기 측정모듈의 하단에는 하방으로 길게 형성되어 그 하단부가 암반 홀 선단과 접촉하면서 암반 홀 선단의 위치를 인식하도록 한 접촉센서가 더 구비된 것을 특징으로 할 수 있다. In addition, the lower end of the measurement module may be further provided with a contact sensor which is formed to be extended downward to recognize the position of the rock hole tip while the lower end is in contact with the rock hole tip.
또한, 상기 고정모듈과 측정모듈에는 각각 암반 홀의 깊이를 인식할 수 있는 레벨센서가 더 구비되며, 상기 측정모듈에는 압력을 측정하는 압력센서가 더 구비되는 것을 특징으로 할 수 있다. In addition, the fixed module and the measurement module may be further provided with a level sensor for recognizing the depth of the rock hole, respectively, the measurement module may be further provided with a pressure sensor for measuring the pressure.
또한, 상기 고정모듈은, 케이블과 연결된 고정프레임과; 상기 고정프레임 내부에 위치하여 상기 측정모듈을 승강시키는 이송부와; 유압의 발생 및 경로를 조절하는 유압부와; 상기 고정프레임의 측면에 설치되어 고정모듈을 배관의 내주면 또는 암반 홀의 벽면에 고정하는 복수의 가압장치와; 상기 유압부와 이송부를 제어하는 제어부를; 포함하는 것을 특징으로 할 수 있다. In addition, the fixing module, and a fixed frame connected to the cable; A transfer unit positioned inside the fixed frame to lift the measurement module; A hydraulic unit for controlling the generation and the path of the hydraulic pressure; A plurality of pressing devices installed on the side of the fixing frame to fix the fixing module to the inner circumferential surface of the pipe or the wall surface of the rock hole; A control unit for controlling the hydraulic unit and the transfer unit; It may be characterized by including.
또한, 상기 가압장치는, 상기 고정프레임 상에 고정되는 가압액추에이터와, 상기 가압액추에이터 가동부에 장착되는 가압판 및 상기 가압판에 부착되어 가압력을 감지하는 가압센서를 포함하는 것을 특징으로 할 수 있다. In addition, the pressurizing device may include a pressurized actuator fixed on the fixed frame, a pressurizing plate mounted on the pressurizing actuator movable unit, and a pressurizing sensor attached to the pressurizing plate to detect a pressing force.
본 발명에 의한 암반 홀 표면 검사시스템은, 원격 제어에 의하여 정확하게 암반 홀에 위치할 수 있으며, 암반 홀의 직경 또는 삽입된 배관에 대응하는 구성으로 안정되게 지지된 상태에서 암반 홀 선단에 대한 정교한 표면 검사와 지지력 측정이 가능하며, 이로써 정교한 기초 시공을 할 수 있게 된다. The rock hole surface inspection system according to the present invention can be precisely located in the rock hole by remote control, and precise surface inspection of the rock hole tip in a state where it is stably supported in a configuration corresponding to the diameter of the rock hole or the inserted pipe. And bearing capacity can be measured, which allows precise foundation construction.
또한, 본 발명은 현장에서 작업자의 감으로만 의존하여 측정하였던 슬라임 두께를 정확하게 측정할 수 있게 되어 암반 홀 선단의 지반강도를 정확히 측정할 수 있으며, 슬라임을 지상으로 퍼내는 추가 작업을 실시할지 여부 등을 결정하는데 유용하게 활용할 수 있다. In addition, the present invention can accurately measure the slime thickness measured only depending on the operator's sense in the field, it is possible to accurately measure the ground strength of the rock hole tip, whether to carry out the additional work to spread the slime to the ground This can be useful for determining such.
또한, 본 발명은 수중 천공된 암반 홀 내부에 잔존하는 슬라임의 두께를 고려하여 고주파 음에 의한 탄성파와 가진에 의한 탄성파 중 어느 하나를 선택적으로 이용할 수 있도록 함으로써 상황에 맞게 암반 홀 선단의 지반강도를 측정할 수 있다. In addition, the present invention by using the seismic wave caused by the high frequency sound and the seismic wave caused by the excitation in consideration of the thickness of the slime remaining in the rock hole drilled in the water to increase the ground strength of the rock hole tip according to the situation It can be measured.
도 1은 본 발명의 실시예에 의한 암반 홀 표면 검사시스템의 전체 구성을 나타내는 구성도1 is a block diagram showing the overall configuration of a rock hole surface inspection system according to an embodiment of the present invention
도 2는 본 발명의 실시예에 의한 암반 홀 표면 검사시스템에서 고정모듈의 구성도2 is a block diagram of a fixing module in the rock hole surface inspection system according to an embodiment of the present invention
도 3은 본 발명의 실시예에 의한 암반 홀 표면 검사시스템에서 함몰부의 구성도3 is a block diagram of a depression in the rock hole surface inspection system according to an embodiment of the present invention
도 4는 본 발명의 실시예에 의한 암반 홀 표면 검사시스템에서 이송부의 동작도4 is an operation of the transfer unit in the rock hole surface inspection system according to an embodiment of the present invention
도 5는 본 발명의 실시예에 의한 암반 홀 표면 검사시스템에서 유압부의 구성도5 is a configuration diagram of the hydraulic portion in the rock hole surface inspection system according to an embodiment of the present invention
도 6은 본 발명의 실시예에 의한 암반 홀 표면 검사시스템에서 가압장치의 구성도6 is a configuration diagram of the pressing device in the rock hole surface inspection system according to an embodiment of the present invention
도 7은 본 발명의 실시예에 의한 암반 홀 표면 검사시스템에서 측정모듈의 구성도7 is a configuration diagram of the measurement module in the rock hole surface inspection system according to an embodiment of the present invention
도 8은 본 발명의 실시예에 의한 암반 홀 표면 검사시스템에서 제어부의 구성도8 is a block diagram of a control unit in the rock hole surface inspection system according to an embodiment of the present invention
<부호의 설명><Description of the code>
1: 암반 홀 2: 이동부1: rock hole 2: moving part
3: 원격부 4: 지지케이블3: remote part 4: support cable
10: 고정모듈 20: 고정프레임10: fixed module 20: fixed frame
30: 이송부 40: 유압부30: transfer part 40: hydraulic part
50: 가압장치 90: 제어부50: pressure device 90: control unit
110: 측정모듈 120: 측정프레임110: measuring module 120: measuring frame
130: 재하장치 140: 가이드 롤러130: loading device 140: guide roller
150: 센서모듈 170 : 지반강도 측정장치150: sensor module 170: ground strength measuring device
180 : 슬라임 측정장치180: Slime measuring device
첨부한 도면을 참조하여 본 발명의 실시예들에 의한 암반 홀 표면 검사시스템에 대하여 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 기하기 위하여 실제보다 확대하거나, 개략적인 구성을 이해하기 위하여 실제보다 축소하여 도시한 것이다.With reference to the accompanying drawings will be described in detail a rock hole surface inspection system according to embodiments of the present invention. As the inventive concept allows for various changes and numerous modifications, particular embodiments will be illustrated in the drawings and described in detail in the text. However, this is not intended to limit the present invention to the specific form disclosed, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention. In describing the drawings, similar reference numerals are used for similar elements. In the accompanying drawings, the dimensions of the structure is shown to be larger than the actual size for clarity of the invention, or to reduce the actual size to understand the schematic configuration.
또한, 제1 및 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 한편, 다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.In addition, terms such as first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component. On the other hand, unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art. Terms such as those defined in the commonly used dictionaries should be construed as having meanings consistent with the meanings in the context of the related art and shall not be construed in ideal or excessively formal meanings unless expressly defined in this application. Do not.
도 1은 본 발명의 실시예에 의한 암반 홀 표면 검사시스템의 전체 구성을 나타내는 구성도이다. 수중 천공된 암반 홀에 삽입된 배관의 내부에서 잔존하는 슬라임의 두께를 고려하여 보다 정확하게 암반 홀의 표면을 검사할 수 있도록 한 한 암반 홀 표면 검사시스템에 관한 것이다. 1 is a block diagram showing the overall configuration of a rock hole surface inspection system according to an embodiment of the present invention. The present invention relates to a rock hole surface inspection system that allows the surface of a rock hole to be inspected more accurately in consideration of the thickness of slime remaining in the pipe inserted into the rock hole drilled underwater.
도시된 바와 같이, 본 발명의 실시예에 의한 암반 홀 표면 검사시스템(100)은 수중 천공된 암반 홀(1)에 삽입된 배관 내부에서 이동하면서 암반 홀(1) 표면을 검사할 수 있도록 한 이동부(2)와, 지상에 고정된 상태에서 상기 이동부(2)를 케이블(4)로 연결하여 지지하면서 상기 이동부(2)의 위치 및 동작을 제어하고 상기 이동부에서 수집된 정보를 수신하는 원격부(3)로 이루어지며, 정교한 기초시공이 가능하도록 암반 홀(1) 선단에 대한 정교한 표면 검사와, 암반 홀(1) 선단의 지반강도 및 지지력, 잔존하는 슬라임 두께를 효과적으로 측정할 수 있도록 구성된다. As shown, the rock hole surface inspection system 100 according to an embodiment of the present invention is moved to inspect the rock hole (1) surface while moving inside the pipe inserted into the rock hole (1) perforated underwater Control the position and operation of the moving unit 2 and receive the information collected by the moving unit while supporting the unit 2 and the mobile unit 2 by a cable 4 in a fixed state on the ground It is composed of a remote part (3), so that the precise surface inspection of the tip of the rock hole (1), the ground strength and support force of the tip of the rock hole (1), and the remaining slime thickness can be effectively measured. It is configured to.
이하, 본 발명의 실시예에 의한 암반 홀 표면 검사시스템에 대해 보다 상세히 설명한다. Hereinafter, a rock hole surface inspection system according to an embodiment of the present invention will be described in more detail.
본 발명의 실시예에 의한 암반 홀 표면 검사시스템에서 상기 이동부(2)는 도 2에 도시된 것처럼 상부와 하부에 각각 위치하는 고정모듈(10)과 측정모듈(110)로 이루어진다. In the rock hole surface inspection system according to an exemplary embodiment of the present invention, the moving part 2 includes a fixing module 10 and a measurement module 110 positioned at upper and lower portions, respectively, as shown in FIG. 2.
상기 고정모듈(10)은 고정모듈(10) 전체를 지지하기 위한 고정프레임(20)과 상기 고정프레임(20) 내부에 위치하는 이송부(30), 유압을 발생시키는 유압부(40), 상기 유압부(40)에서 발생하는 유압을 이용하여 상기 고정모듈(10)을 고정하는 가압장치(50) 및 제어부(90)를 포함한다. The fixed module 10 is a fixed frame 20 for supporting the entire fixed module 10 and the transfer unit 30 located in the fixed frame 20, the hydraulic unit 40 for generating hydraulic pressure, the hydraulic pressure It includes a pressurizing device 50 and the control unit 90 for fixing the fixing module 10 by using the hydraulic pressure generated in the unit 40.
상기 고정프레임(20)은 고정상판(21), 고정하판(22), 상기 고정상판(21)과 고정하판(22)을 수직으로 연결하는 고정바(23)로 이루어지며, 상기 고정바(23)의 경우 유압에 의하여 발생하는 다양한 하중을 지지할 수 있는 강도로 구현된다. 여기서 상기 고정하판(22) 하단에는 도 3에 도시된 것처럼 함몰부(24)가 형성되어 상기 측정모듈(110)이 상승하였을 때 측정모듈(110)에 속한 측정프레임(120)의 일부가 삽입되도록 하여 구조적 안정성을 갖도록 한다. The fixing frame 20 is composed of a fixed upper plate 21, a fixed lower plate 22, a fixed bar 23 for vertically connecting the fixed upper plate 21 and the fixed lower plate 22, the fixed bar 23 ) Is implemented with the strength to support various loads generated by hydraulic pressure. Here, a depression 24 is formed at the bottom of the fixed lower plate 22 to insert a portion of the measurement frame 120 belonging to the measurement module 110 when the measurement module 110 is raised. To have structural stability.
상기 고정프레임(20)의 중앙에는 이송부(30)가 설치되는데, 상기 이송부(30)는 도 4에 도시된 것처럼, 상기 고정상판(21)에 부착되는 이송모터(31), 상기 이송모터(31)의 회전축에 연결되는 리드스크루(32)를 포함하고 있으며, 상기 리드스크루(32)에는 상기 측정모듈(110)의 측정프레임(120) 상부가 치합된다. 이로써, 이송모터(31)가 회전하여 리드스크루(32)가 함께 회전하게 되면 상기 리드스크루(32)에 치합된 측정프레임(120)이 승강한다. 여기서, 상기 고정하판(22) 하단부에는 다수의 이송바(26)가 연장형성되고, 상기 측정프레임(120)은 상기 이송바(26)에 의해 관통된 상태에서 리드스크루(32) 회전에 따라 승강하도록 안내를 받는다. The transfer unit 30 is installed in the center of the fixed frame 20. The transfer unit 30 is a transfer motor 31 attached to the fixed upper plate 21, the transfer motor 31 as shown in FIG. The lead screw 32 is connected to the rotating shaft of the), and the upper side of the measuring frame 120 of the measuring module 110 is engaged with the lead screw 32. Thus, when the feed motor 31 rotates so that the lead screw 32 rotates together, the measurement frame 120 engaged with the lead screw 32 is lifted. Here, a plurality of transfer bars 26 are formed at the lower end of the fixed lower plate 22, and the measurement frame 120 is lifted in accordance with the rotation of the lead screw 32 while being penetrated by the transfer bars 26. Be guided.
상기 고정프레임(20)의 내부에는 도 5에 도시된 것처럼 유압부(40)가 설치된다. 상기 유압부(40)는 유압탱크(41), 유압펌프(42) 및 유압제어부(43)를 구비하며, 상기 유압펌프(42)와 유압제어부(43)는 차후에 설명되는 제어부(90)에 의해 제어된다. 여기서 상기 유압펌프(42)는 유압탱크(41)에 저장된 작동유를 가압하는 역할을 하고, 상기 유압제어부(43)는 다수의 밸브들로 구성되어 상기 유압펌프(42)에 의하여 가압된 작동유의 경로를 설정하는 역할을 한다. 상기 밸브들은 솔레노이드 밸브로 구비되는 것이 바람직하다.The hydraulic part 40 is installed in the fixed frame 20 as shown in FIG. 5. The hydraulic unit 40 includes a hydraulic tank 41, a hydraulic pump 42 and a hydraulic control unit 43, the hydraulic pump 42 and the hydraulic control unit 43 by the control unit 90 described later Controlled. The hydraulic pump 42 serves to pressurize the hydraulic oil stored in the hydraulic tank 41, the hydraulic control unit 43 is composed of a plurality of valves the path of the hydraulic oil pressurized by the hydraulic pump 42 It serves to set up. The valves are preferably provided as a solenoid valve.
상기 고정프레임(20)은 도 6에 도시된 것처럼 가압장치(50)를 더 포함하며, 상기 가압장치(50)는 가압액추에이터(51)와 상기 가압액추에이터(51)의 작동부 끝단에 부착되는 가압판(52)을 포함한다. 상기 가압액추에이터(51)와 가압판(52)은 고정프레임(20)의 원주방향을 따라 다수 설치되며, 필요한 경우에는 상부와 하부에 이중으로 설치될 수도 있다. 여기서 상기 가압액추에이터(51)는 유압제어부(43)에서 안내되는 작동유에 의하여 동작한다. 상기 가압판(52)에는 다수의 가압센서(53)가 부착되어 상기 가압판(52)에서 발생하는 가압력 또는 변형량을 감지할 수 있도록 구성된다. 그리고 상기 가압센서(53)는 상하 좌우 방향의 변형을 감지할 수 있도록 배치되어 상기 가압판(52)의 전체 변형량 또는 가압력을 감지한다. 상기 가압센서(53)의 출력은 상기 제어부(90)로 전송되어, 일정 하중 이상이 인가되는 경우, 상기 가압액추에이터(51)의 동작을 중지시킨다.The fixed frame 20 further includes a pressurizing device 50 as shown in FIG. 6, wherein the pressurizing device 50 is a pressurizing plate attached to a pressurizing actuator 51 and an operation end of the pressurizing actuator 51. (52). The pressurizing actuator 51 and the pressing plate 52 may be installed in plural along the circumferential direction of the fixing frame 20, and may be installed in the upper and lower portions if necessary. The pressurized actuator 51 is operated by the hydraulic oil guided by the hydraulic control unit 43. The pressure plate 52 is attached to a plurality of pressure sensors 53 is configured to detect the pressing force or the deformation amount generated in the pressure plate 52. In addition, the pressure sensor 53 is disposed to detect deformation in the vertical, horizontal, left and right directions, and detects the total deformation amount or the pressing force of the pressure plate 52. The output of the pressure sensor 53 is transmitted to the control unit 90 to stop the operation of the pressure actuator 51 when a predetermined load or more is applied.
상기 제어부(90)는 상기 이송부(30), 유압부(40)의 동작을 제어하는 역할을 하며, 상기 가압센서(53)의 신호를 수신하여 처리하는 역할도 한다. 상기 제어부(90)는 내부가 밀봉구조로 이루어지며, 필요한 경우 원격부(3)에서 제어부(90)로 별도의 호스를 통해 공압을 지속적으로 공급하여 외부로부터 물의 침투를 방지할 수 있도록 할 수 있다. The controller 90 serves to control the operation of the transfer unit 30 and the hydraulic unit 40, and also receives and processes a signal from the pressure sensor 53. The control unit 90 has a sealed structure inside, and if necessary, the remote unit 3 can continuously supply air pressure through a separate hose to the control unit 90 to prevent the ingress of water from the outside. .
한편, 상기 고정프레임(20) 하단부에는 도 4에 도시된 것처럼 레벨센서(92)가 부착되어 현재의 깊이를 감지하여 상기 제어부(90)로 전송하고, 상기 제어부(90)는 상기 레벨센서(92)의 신호를 이용하여 깊이를 산정한 후, 원격부(3)로 전송한다.Meanwhile, as shown in FIG. 4, a level sensor 92 is attached to a lower end of the fixed frame 20 to detect a current depth and transmit the current depth to the controller 90, and the controller 90 transmits the level sensor 92. After calculating the depth using the signal of), and transmits to the remote (3).
계속해서 본 발명의 실시예에 의한 암반 홀 표면 검사시스템에서 고정모듈(10)과 함께 이동부(2)를 이루고 있는 측정모듈(110)에 대하여 설명한다.Subsequently, the measurement module 110 forming the moving part 2 together with the fixing module 10 in the rock hole surface inspection system according to the embodiment of the present invention will be described.
상기 측정모듈(110)은 상기 고정모듈(10)에 속한 이송부(30)의 동작에 의하여 승강하면서 상기 고정모듈(10)과의 상대적인 거리가 조절되며, 암반 홀(1) 선단의 지지력 및 지반강도, 슬라임의 두께, 암반 홀(1) 벽면의 표면 거칠기를 측정할 수 있도록 세부적으로 구성된다. The measurement module 110 is adjusted by the operation of the transfer unit 30 belonging to the fixed module 10 while adjusting the relative distance with the fixed module 10, the support force and ground strength of the tip of the rock hole (1) It is configured in detail so that the thickness of the slime and the surface roughness of the wall of the rock hole 1 can be measured.
상기 측정모듈(110)은 도 7에 도시된 것처럼, 상기 측정모듈(110) 역시 전체 구조를 지지하는 측정프레임(120)을 포함하여 구성된다. 상기 측정프레임(120)은 측정상판(121), 측정하판(122) 및 상기 측정상판(121)과 측정하판(122)을 수직으로 연결하는 측정바(123)를 포함하여 구성된다. 여기서, 상기 측정상판(121) 상단에는 돌출부(123)가 형성되어 측정모듈(110)의 상승시 상기 고정모듈(10)의 고정하판(22)에 형성된 함몰부(24)에 삽입되며, 특히 상기 돌출부(123)가 상기 함몰부(24)에 삽입되는 경우에는 측정프레임(120)에 인가되는 하중들이 상기 함몰부(24)를 통하여 전달되도록 구성하는 것이 전체 구조적인 측면에서 유리한 장점이 있다. 또한 상기 측정상판(121)은 상기 리드스크루(32)와 치합되고 이송바(26)가 상기 측정상판(121)을 관통한 상태로 구비되어 측정프레임(120)의 승강동작을 안내하게 된다. As shown in FIG. 7, the measurement module 110 includes a measurement frame 120 that also supports the entire structure. The measuring frame 120 includes a measuring upper plate 121, a measuring lower plate 122, and a measuring bar 123 vertically connecting the measuring upper plate 121 and the measuring lower plate 122. Here, the upper part of the measuring upper plate 121 is formed with a protrusion 123 is inserted into the depression 24 formed in the fixed lower plate 22 of the fixing module 10 when the measuring module 110 is raised, in particular the When the protrusion 123 is inserted into the depression 24, it is advantageous to configure the loads applied to the measurement frame 120 to be transmitted through the depression 24 in terms of overall structure. In addition, the measuring upper plate 121 is engaged with the lead screw 32 and the transfer bar 26 is provided to pass through the measuring upper plate 121 to guide the lifting operation of the measuring frame 120.
상기 측정모듈(110)은 도 7에 도시된 것처럼, 상기 암반 홀 내부의 수중으로 고주파 음을 발생시키는 음파발생기(171)와, 암반 홀 선단을 가진하는 충격발생기(172)와, 상기 음파발생기(171)와 충격발생기(172)로부터 이격된 위치에 설치되어 상기 암반 홀 선단과 접촉한 상태로 음파 및 가진에 의해 상기 암반 홀 선단 표층을 통해 전달되는 탄성파를 수신하도록 한 수신기(173)로 이루어진 지반강도 측정장치(170)를 구비한다. 이로써, 도 8에 도시된 것처럼 제어부(90)가 암반 홀 선단 표층을 통해 전달되는 탄성파 속도에 의해 암반홀 선단의 지반강도를 구할 수 있게 된다. As illustrated in FIG. 7, the measurement module 110 includes a sound wave generator 171 for generating high frequency sound in the water inside the rock hole, an impact generator 172 having a rock hole tip, and the sound wave generator ( 171 and a ground provided at a position spaced apart from the impact generator 172 and made of a receiver 173 configured to receive acoustic waves transmitted through the rock hole tip surface layer by sound waves and excitation in contact with the rock hole tip. The strength measuring device 170 is provided. As a result, as shown in FIG. 8, the control unit 90 can obtain the ground strength of the rock hole tip by the speed of the acoustic wave transmitted through the rock hole tip surface layer.
이같은 지반강도 측정장치(170)에서 주목할 점은 암반 홀 선단에 잔존하는 슬라임의 두께에 따라 음파발생기(171)와 충격발생기(172)를 선택적으로 이용할 수 있도록 하였다는 점이다. 즉, 슬라임 측정장치(180)의 측정을 통해 암반 홀 선단에 잔존하는 슬라임의 두께가 일정 수치 미만인 경우, 상기 음파발생기(171)가 고주파 음을 발생시키도록 하고, 그 고주파 음이 암반 홀 선단 표층을 통해 전달되도록 하여 수신기(173)가 탄성파를 수신하지만, 암반 홀 선단에 잔존하는 슬라임의 두께가 일정 수치 이상이면 상기 충격발생기(172)가 암반 홀 선단을 가진하도록 하고, 가진으로 인해 암반 홀 선단 표층을 통해 전달되는 탄성파를 수신기(173)가 수신하도록 한다. 여기서 음파발생기(171)의 경우 주파수를 자유롭게 선택할 수 있기 때문에 수신기(173)가 보다 높은 해상도의 탄성파를 수신하도록 할 수 있다. 그러므로 음파발생기(171)에서 발생시킨 고주파 음이 수중 및 암반 홀 선단 표층을 통해 전달되도록 하여 탄성파를 수신하는 방법이 충격발생기(172)가 암반 홀 선단 표층을 가진하여 탄성파를 수신하는 방법보다 높은 해상도의 탄성파를 수신하는데 유리하다. 본 발명은 슬라임 측정장치(180)에 의해 슬라임 두께를 정확하게 측정하고 가능하다면 상기 음파발생기(171)를 통한 방법을 이용할 수 있도록 함으로써 암반 홀 선단의 지반강도를 보다 정확하게 측정할 수 있도록 한 것이다. 상기 음파발생기(171)가 발생시키는 고주파 음의 주파수는 통상 500 내지 1khz 범위이며 탄성파 속도는 도 8에 도시된 것처럼 지반 측정장치와 연동하여 제어부(90)가 담당한다. In the ground strength measuring apparatus 170, it is noted that the sound wave generator 171 and the impact generator 172 can be selectively used according to the thickness of the slime remaining on the rock hole tip. That is, when the thickness of the slime remaining at the tip of the rock hole is less than a predetermined value through the measurement of the slime measuring device 180, the sound wave generator 171 generates a high frequency sound, and the high frequency sound is the surface layer of the rock hole front end. Although the receiver 173 receives the acoustic wave through the receiver, if the thickness of the slime remaining on the rock hole tip is greater than a predetermined value, the shock generator 172 has the rock hole tip and the rock hole tip is caused by the excitation. The receiver 173 receives the acoustic wave transmitted through the surface layer. Here, in the case of the sound wave generator 171, the frequency can be freely selected so that the receiver 173 can receive a higher resolution acoustic wave. Therefore, the high-frequency sound generated by the sound wave generator 171 is transmitted through the underwater and rock hole tip surfaces, so that the method of receiving the elastic waves has a higher resolution than the impact generator 172 has the rock hole tip surface and receives the elastic waves. It is advantageous to receive the seismic wave of. According to the present invention, the slime thickness is accurately measured by the slime measuring device 180, and if possible, the method through the sound wave generator 171 can be used to more accurately measure the ground strength of the rock hole tip. The frequency of the high frequency sound generated by the sound wave generator 171 is generally in the range of 500 to 1 khz, and the acoustic wave speed is controlled by the controller 90 in conjunction with the ground measuring device as shown in FIG. 8.
상기 측정모듈(110)은 도 7에 도시된 것처럼, 상기 암반 홀 선단에 잔존하는 슬라임 두께를 측정하는 슬라임 측정장치(180)를 더 구비한다. 상기 슬라임 측정장치(180)는, 측정모듈(110)의 하단부에 고정된 본체부(181)와, 상기 본체부(181)로부터 하강하면서 슬라임을 관통하여 암반 홀 선단에 도달할 수 있도록 한 승강부(182)로 이루어진다. 이같은 구성에 따르면 상기 승강부(182)가 하강하는 동안 저항을 측정하여 슬라임을 관통하는지 여부를 제어부(90)가 판단하고, 상기 승강부(182)가 상기 슬라임을 관통할 때 측정되는 저항이 유지되는 동안 상기 승강부(182)가 변위되는 거리를 측정함으로써 슬라임 두께를 산출한다. 여기서 상기 승강부(182)가 수중을 경유할 때와 슬라임을 관통할 때의 저항의 차이와, 슬라임을 관통할 때와 암반 홀 선단에 접촉할 때의 저항의 차이는 확연하기 때문에 상기 승강부(182)가 수중에 있다가 슬라임에 최초 인입하는 순간부터 암반 홀 선단에 접촉하는 순간까지 변위 거리를 산출하는 어렵지 않게 이루어진다. As shown in FIG. 7, the measurement module 110 further includes a slime measuring device 180 for measuring the slime thickness remaining at the tip of the rock hole. The slime measuring device 180, the main body 181 is fixed to the lower end of the measurement module 110, and the lifting portion which allows to reach the end of the rock hole through the slime while descending from the main body 181 It consists of 182. According to this configuration, the controller 90 determines whether the lifting unit 182 penetrates the slime by measuring the resistance while descending, and the resistance measured when the lifting unit 182 penetrates the slime is maintained. The thickness of the slime is calculated by measuring the distance that the lifting unit 182 is displaced. Here, the difference between the resistance when the elevator 182 passes through the water and penetrates the slime, and the difference between the resistance when penetrating the slime and the tip of the rock hole is obvious. 182 is not difficult to calculate the displacement distance from the moment of initial entry into the slime to the moment of contact with the rock hole tip.
이같은 슬라임 측정장치(180)가 구비되면 종래에 작업자가 직접 철근을 줄에 메달아 지상으로부터 암반 홀 선단까지 내리는 방법에 의해 감각적으로 슬라임 두께를 판단하던 부정확한 방법을 개선하여 잔존하는 슬라임 두께를 보다 정확히 측정하고 슬라임을 지상으로 퍼내는 추가 작업을 실시할지 여부와 위 설명된 것처럼 지반강도 측정장치(170)를 사용하는 방법을 결정할 수 있게 된다. When such a slime measuring device 180 is provided, a conventional method in which a worker directly hangs reinforcing bars and lowers them from the ground to the tip of a rock hole improves an inaccurate method of judging the slime thickness, thereby improving the remaining slime thickness. It will be possible to determine whether to carry out the additional work of accurately measuring and slicing the slime and how to use the ground strength measuring device 170 as described above.
한편, 상기 측정프레임(120)은 상기 측정하판(122) 하단에 설치되는 재하장치(130)를 포함하여 구성된다. 상기 재하장치(130)는 암반 홀(1) 선단에 하중을 인가하는 역할을 하는 것으로, 유압식 재하액추에이터(131)와 상기 재하액추에이터(131)의 작동부 끝단에 부착되는 재하판(132)을 포함하여 구성된다.On the other hand, the measuring frame 120 is configured to include a loading device 130 is installed on the bottom of the measuring lower plate (122). The loading device 130 serves to apply a load to the tip of the rock hole (1), and includes a hydraulic loading actuator 131 and a loading plate 132 attached to the end of the operation portion of the loading actuator 131. It is configured by.
상기 재하액추에이터(131) 역시 유압제어부(43)에 의하여 동작하며, 재하판(132)의 스트로크를 감지하는 별도의 센서를 구비할 수 있다. 또한 상기 재하액추에이터(131)는 측정하판(122) 중앙에 배치되며, 일정거리 이격된 위치에 추가하여 설치될 수 있다. 상기와 같이 복수로 구성하는 경우, 암반 홀(1) 선단의 원주방향을 따라 지지력을 측정할 수 있으므로 지지력의 측정 수준을 보다 높일 수 있다는 장점이 있다. The loading actuator 131 is also operated by the hydraulic control unit 43, it may be provided with a separate sensor for detecting the stroke of the loading plate 132. In addition, the loading actuator 131 is disposed in the center of the measurement lower plate 122, it may be installed in addition to a predetermined distance apart position. In the case of configuring a plurality as described above, since the bearing force can be measured along the circumferential direction of the tip of the rock hole 1, there is an advantage that the level of the bearing force can be further increased.
이같은 구성에 따르면, 원주방향의 선단력을 일지점을 측정한 후, 전체 이동부(2)를 필요한 각도로 상기 원격부(3)에 의하여 회전한 후, 측정하는 순으로 진행된다. According to such a structure, after measuring the tip point of the circumferential direction and rotating the whole moving part 2 by the said remote part 3 to a required angle, it progresses in order of measuring.
또한 상기 측정하판(122)에는 암반 홀(1) 선단을 감지하는 접촉센서(161)를 포함하여 상기 측정모듈(110)의 선단 접촉을 감지한다. 상기 측정모듈(110)에도 레벨센서(162)가 설치되어 있어, 상기 측정모듈(110)의 현재 깊이를 감지할 수 있도록 한다. 또한 다수의 압력 센서(163)를 포함하여 해당 지점의 압력을 감지하도록 한다. In addition, the measurement lower plate 122 includes a contact sensor 161 for detecting the tip of the rock hole (1) to detect the tip contact of the measurement module 110. The measurement module 110 is also provided with a level sensor 162, so that the current depth of the measurement module 110 can be detected. In addition, a plurality of pressure sensors 163 are included to sense the pressure at the corresponding point.
상기 센서들(161, 162, 163) 역시 상기 제어부(90)로 측정정보를 송신하며, 상기 제어부(90)는 상기 센서(161, 162, 163)에서 측정한 정보를 이용하여 암반 홀 선단의 위치와 측정모듈(110)이 위치하는 깊이 그리고 압력을 산출하게 된다. The sensors 161, 162, and 163 also transmit measurement information to the controller 90, and the controller 90 uses the information measured by the sensors 161, 162, and 163 to position the end of the rock hole. And the depth and pressure at which the measurement module 110 is located are calculated.
상기 측정모듈(110)에는 측정프레임(120)의 측면에 설치되어 암반 홀의 벽면과 접촉하여 상기 측정프레임의 승강을 안내하도록 한 복수의 가이드 롤러(140)를 포함한다. 상기 가이드 롤러(140)는 상기 측정프레임(120)에 고정되는 롤러액추에이터(141), 상기 롤러액추에이터(141) 작동부에 힌지 결합하는 롤러체(142)를 포함하며, 상기 롤러체(142)에 회전 가능하게 설치되는 롤러(143)를 포함하여 구성된다. 여기서 상기 롤러액추에이터(141)는 전기식으로 구성되는 것이 바람직하며, 해당 스트로크를 인식하는 센서 또는 카운트를 포함하는 것이 바람직하다. 또한 상기 롤러액추에이터(141)의 구동은 상기 제어부(90)에 의하여 제어되며, 제어부(90)가 롤러액추에이터(141)의 스트로크를 인식하여 가이드 롤러(140)가 배관을 벗어나 암반 홀 벽면에 진입하였는지 등을 판단한다. The measuring module 110 includes a plurality of guide rollers 140 installed at the side of the measuring frame 120 to contact the wall surface of the rock hole to guide the lifting of the measuring frame. The guide roller 140 includes a roller actuator 141 fixed to the measuring frame 120, a roller body 142 hinged to an operation part of the roller actuator 141, and on the roller body 142. It is comprised including the roller 143 rotatably installed. In this case, the roller actuator 141 is preferably configured electrically, and preferably includes a sensor or a count for recognizing the stroke. In addition, the driving of the roller actuator 141 is controlled by the control unit 90, the control unit 90 recognizes the stroke of the roller actuator 141 and whether the guide roller 140 is out of the pipe to enter the rock hole wall surface Judge the back.
상기 측정모듈(110)은 그 하단부에 암반 홀(10) 표면의 거칠기를 감지하는 센서모듈(150)을 구비한다. 상기 센서모듈(150)은 반경 방향으로 이동하는 센서액추에이터(151)와 상기 센서액추에이터(151) 끝단에 부착되어 표면 거칠기를 감지하는 거칠기 측정센서(152)를 포함한다. 상기 센서액추에이터(151)와 거칠기 측정센서(152)는 측정프레임(120)에 대하여 방사형으로 복수개 배치되며, 배치 간격은 하나의 거칠기 측정센서(152)가 감지하는 영역이 일부 겹쳐서 표면 원주방향으로 모든 정보를 획득할 수 있을 정도로 설정한다. 이를 위해 상기 거칠기 측정센서(152)는 사방으로 4개 정도 설치되면 암반 홀 벽면을 향해 기능을 수행하는데 큰 어려움이 없다. The measurement module 110 has a sensor module 150 for detecting the roughness of the surface of the rock hole 10 at the lower end thereof. The sensor module 150 includes a sensor actuator 151 moving in a radial direction and a roughness measuring sensor 152 attached to an end of the sensor actuator 151 to detect surface roughness. The sensor actuator 151 and the roughness measuring sensor 152 are arranged in a plurality of radially with respect to the measuring frame 120, the arrangement interval is all overlapping the area detected by one roughness measuring sensor 152 in the surface circumferential direction Set so that information can be obtained. To this end, when the roughness measuring sensor 152 is installed in four directions, there is no great difficulty in performing a function toward the rock hole wall surface.
이같은 거칠기 측정센서(152)는 초음파를 이용하는 소나센서(sonar sensor)로 구비되는 것이 바람직한데, 이 경우 거칠기 측정센서는 초음파를 발생시키면서 암반 홀 벽면의 표면 거칠기와 더불어 암반 홀 벽면까지의 거리까지 측정하는 것이 가능하다. 상기 거칠기 측정센서(152)가 암반 홀 벽면까지의 거리 측정이 가능하면 상기 센서액추에이터(151)의 스트로크 제어에도 활용할 수 있는 장점이 있다. Such roughness measuring sensor 152 is preferably provided as a sonar sensor using ultrasonic waves. In this case, the roughness measuring sensor measures the surface roughness of the rock hole wall surface and the distance to the rock hole wall surface while generating an ultrasonic wave. It is possible to do If the roughness measuring sensor 152 can measure the distance to the rock hole wall surface, it may be used to control the stroke of the sensor actuator 151.
여기서 거칠기 측정센서(152)는 방사상으로 사방에 배치된 상태에서 측정모듈(110)에 속해서 암반 홀을 따라 하강 또는 상승하면서 1mm 단위로 연속 측정함으로써 암반 홀 표면에 대한 정밀한 거칠기 정보를 얻게 된다. 상기 거칠기 측정센서(152)가 사용하는 주파수는 2MHz 정도가 적당하다. Here, the roughness measuring sensor 152 belongs to the measurement module 110 in the radially arranged in all directions to obtain accurate roughness information on the rock hole surface by continuously measuring in 1 mm increments while descending or rising along the rock hole. The frequency used by the roughness measuring sensor 152 is about 2MHz.
상기 센서모듈(150) 역시 상기 제어부(90)와 연동되며, 감지된 결과 역시 상기 제어부(90)로 전송되고, 상기 제어부(90)는 전송된 결과를 이용하여 표면 거칠기를 산정하고, 디스플레이화한다.The sensor module 150 is also linked with the control unit 90, and the detected result is also transmitted to the control unit 90, and the control unit 90 calculates and displays the surface roughness using the transmitted result. .
계속해서 아래에서는 제어부(90)와 원격부(3)에 대해 설명하기로 한다. Subsequently, the control unit 90 and the remote unit 3 will be described below.
상기 제어부(90)는 도 8에 도시된 것처럼 이동부(2)를 전체적으로 제어하며, 상기 원격부(3)는 상기 제어부(90)를 통해 획득되는 정보를 저장하고 디스플레이하는 역할을 하며 사용자가 상기 이동부(2)의 운전을 위한 조작부를 구비한다. 즉, 사용자는 상기 조작부를 통하여 상기 이동부(2)를 동작을 지시하고, 상기 제어부(90)는 상기 조작부를 통하여 지시되는 정보를 기초로 각종 장치들을 제어한다.As shown in FIG. 8, the controller 90 controls the moving unit 2 as a whole, and the remote unit 3 stores and displays the information obtained through the controller 90. An operation unit for driving the moving unit 2 is provided. That is, a user instructs operation of the moving unit 2 through the operation unit, and the control unit 90 controls various devices based on the information instructed through the operation unit.
상기 제어부(90)는 도 8에 도시된 바와 같이, 압력센서(163)를 통하여 압력 정보를 입력받고, 또한 레벨센서(92, 162)를 통하여 암반 홀(1)의 깊이를 산정한다. 또한 상기 제어부(90)는 상기 이송부(30)를 제어하며, 이때 상기 제어부(90)는 이송모터(31)를 구동하여 측정모듈(110)과 고정모듈(10)의 거리를 조절하며, 특히 재하시험을 하는 경우에는 상기 측정모듈(110)이 고정모듈(10)과 접합하도록 동작시켜, 재하시험 시 발생하는 하중을 고정모듈(10)에서 흡수하도록 한다.As illustrated in FIG. 8, the controller 90 receives pressure information through the pressure sensor 163 and calculates the depth of the rock hole 1 through the level sensors 92 and 162. In addition, the control unit 90 controls the transfer unit 30, in which the control unit 90 drives the transfer motor 31 to adjust the distance between the measurement module 110 and the fixed module 10, in particular, In the case of a test, the measurement module 110 is operated to bond with the fixed module 10 so that the load generated during the loading test is absorbed by the fixed module 10.
상기 제어부(90)는 센서들의 통하여 입수되는 정보를 기초로 특정한 위치에 도달하는 경우, 상기 가압장치(50)를 제어하여 고정모듈(10)을 암반 홀(1)에 고정하도록 제어한다. 이때 상기 가압장치(50)는 상기 유압부(40)에서 생성된 유압을 이용하여 동작시키며, 추가하여 가압센서(53)에서 감지되는 가압력을 측정하여 암반 홀(1)에 삽입된 배관의 망실을 방지하도록 제어한다.When the control unit 90 reaches a specific position based on the information obtained through the sensors, the control unit 90 controls the pressing device 50 to fix the fixing module 10 to the rock hole 1. At this time, the pressurizing device 50 is operated by using the hydraulic pressure generated by the hydraulic unit 40, and further measures the pressing force detected by the pressure sensor 53 to remove the thread of the pipe inserted into the rock hole (1) Control to prevent.
상기 제어부(90)는 가이드 롤러(140)를 동작 제어하면, 상기 가이드 롤러(140)는 상기 가압장치(50)가 동작하여 고정된 후, 상기 이송부(30)를 동작하여 상기 측정모듈(110)이 상기 고정모듈(10)에 분리되는 경우 동작하여 암반 홀(1)에 정확히 가이드되도록 하는 역할을 한다. 이때는 상기 센서모듈(150) 역시 외부로 돌출시켜 암반 홀(1) 내면의 거칠기를 측정하며, 상기 이송부(30)가 최대 스트로크 상태인 경우 종료한다.When the control unit 90 controls the operation of the guide roller 140, the guide roller 140 is operated after the pressing device 50 is fixed to operate the operation of the transfer unit 30 to measure the measurement module 110 When it is separated from the fixing module 10 serves to guide accurately to the rock hole (1). At this time, the sensor module 150 also protrudes to the outside to measure the roughness of the inner surface of the rock hole (1), and ends when the transfer unit 30 is in the maximum stroke state.
한편, 재하시험의 경우에는 고정모듈(10)과 측정모듈(120)을 밀착결합한 후, 상기 원격부(3)를 조정하여 이동부(2)를 하강시키고, 접촉센서(161)를 통하여 암반 홀(1) 선단부와 접촉한 경우, 상기 가압장치(50)를 동작하여 고정모듈(10)을 고정시킨 후, 상기 재하장치(130)를 동작시켜 재하시험을 수행한다. 상기 재하장치(130)의 동작은 상기 유압부(40)를 조절하여 동작시키며, 상기 유압은 제어부(90)를 통하여 상기 원격부(3)로 전송된다. 필요한 경우, 별도의 재하장치(130)를 동작시켜 선단 원주 방향으로도 재하시험을 한다. 이때는 상기 원격부(3)가 상기 케이블(4)을 조절하여 상기 이동부(2)를 회전시키면서 간헐적으로 시험을 수행한다.In the loading test, the fixed module 10 and the measurement module 120 are tightly coupled to each other, and then the remote unit 3 is adjusted to lower the moving unit 2 and the rock hole through the contact sensor 161. (1) In contact with the tip, the pressurizing device 50 is operated to fix the fixing module 10, and then the loading device 130 is operated to perform a loading test. The operation of the loading device 130 is operated by adjusting the hydraulic unit 40, the hydraulic pressure is transmitted to the remote unit 3 through the control unit 90. If necessary, a separate loading device 130 is operated to perform a loading test in the circumferential direction of the tip. At this time, the remote part 3 performs the test intermittently while adjusting the cable 4 to rotate the moving part 2.
상기 제어부(90)는 상기 센서모듈(150)에 의하여 측정되는 암반 홀(1) 표면 정보를 수신하여 상기 원격부(3)로 전송한다. 이때 상기 제어부(90)는 해당 위치에서 가압장치(50)를 동작시켜 고정모듈(10)을 고정한다. 이후, 상기 센서액추에이터(151)를 작동하여 상기 거칠기 측정센서(152)가 암반 홀(1)에 근접하도록 동작한 후, 상기 이송부(30)를 구동하여 측정모듈(110)이 하방향으로 이송하도록 제어한다. The controller 90 receives surface information of the rock hole 1 measured by the sensor module 150 and transmits it to the remote unit 3. At this time, the control unit 90 operates the pressurizing device 50 at the corresponding position to fix the fixing module 10. Subsequently, the roughness measuring sensor 152 is operated to approach the rock hole 1 by operating the sensor actuator 151, and then the conveying unit 30 is driven to transport the measuring module 110 downward. To control.
이같은 제어에 따라 상기 거칠기 측정센서(152)는 암반 홀(1) 표면의 길이방향 거칠기 정보가 상기 원격부(3)로 전송된다. 물로 상기 거칠기 측정센서(152)는 암반 홀(1)의 원주방향 거칠기 정보를 모두 획득할 수 있도록 측정모듈(110)에 방사형으로 복수 설치된다.Under such control, the roughness measuring sensor 152 transmits longitudinal roughness information on the surface of the rock hole 1 to the remote part 3. The roughness measuring sensor 152 with water is radially installed in the measuring module 110 so as to obtain all the circumferential roughness information of the rock hole 1.
상기 제어부(90)는 지반강도 측정장치(170)와 연동하여 탄성파 속도를 구하며, 슬라임 측정장치(180)와도 연동하여 슬라임 두께를 구하는 역할도 함께 한다.The controller 90 interlocks with the ground strength measuring device 170 to obtain a seismic velocity, and also interlocks with the slime measuring device 180 to obtain a slime thickness.
이상에서 본 발명의 바람직한 실시예를 설명하였으나, 본 발명은 다양한 변화와 변경 및 균등물을 사용할 수 있다. 본 발명은 상기 실시예를 적절히 변형하여 동일하게 응용할 수 있음이 명확하다. 따라서 상기 기재 내용은 하기 특허청구범위의 한계에 의해 정해지는 본 발명의 범위를 한정하는 것이 아니다. Although the preferred embodiment of the present invention has been described above, the present invention may use various changes, modifications, and equivalents. It is clear that the present invention can be applied in the same manner by appropriately modifying the above embodiments. Accordingly, the above description does not limit the scope of the invention as defined by the limitations of the following claims.

Claims (14)

  1. 수중 천공된 암반 홀까지 삽입된 배관 내부를 따라 이동할 수 있도록 한 이동부와, 지상에서 상기 이동부를 케이블로 연결하여 승강 가능하도록 지지하면서 상기 이동부의 위치 및 동작을 제어하고 상기 이동부에서 수집된 정보를 수신하는 원격부로 이루어지며, The moving part which can move along the inside of the pipe inserted to the rock hole which was perforated underwater, and control the position and operation of the moving part while supporting the moving part by lifting and connecting by cable in the ground, and the information collected by the moving part Consists of a remote to receive the
    상기 이동부는, 상기 케이블에 의해 승강하면서 상기 배관의 내주면 또는 암반 홀의 벽면에 고정되는 고정모듈과; 상기 고정모듈의 하측으로 승강 가능하도록 결합되어 암반 홀의 표면 거칠기를 측정하는 측정모듈을; 포함하며, The moving unit, the fixed module fixed to the inner surface of the pipe or the wall surface of the rock hole while lifting by the cable; A measurement module coupled to the lower side of the fixed module to measure a surface roughness of the rock hole; Include,
    상기 측정모듈에는 하방으로 수직하게 설치되어 진퇴 가능하도록 한 재하액추에이터와, 상기 재하액추에이터의 작동부 끝단에 부착되어 암반 홀 선단에 접촉하도록 한 재하판을 구비하여 암반 홀 선단의 지반 지지력을 측정하는 재하장치가 더 포함된 것을 특징으로 하는 암반 홀 표면 검사시스템.The measuring module has a loading actuator installed vertically downward to enable the retreat, and a loading plate attached to the end of the operating portion of the loading actuator to contact the rock hole tip so that the ground bearing force of the rock hole tip is measured. Rock hole surface inspection system further comprises a device.
  2. 제2항에 있어서,The method of claim 2,
    상기 재하장치는 상기 측정모듈의 하단부 중앙과, 그 중앙 지점으로부터 이격된 지점에 각각 쌍을 이루어 복수 설치되어 암반 홀 선단의 원주방향을 따라 지반 지지력을 측정할 수 있도록 한 것을 특징으로 하는 암반 홀 표면 검사시스템.The loading device has a plurality of pairs installed in the center of the lower end of the measurement module, and a point spaced from the center point, respectively, so that the rock bearing surface can be measured along the circumferential direction of the rock hole tip. Inspection system.
  3. 제2항에 있어서,The method of claim 2,
    상기 측정모듈에는 상기 암반 홀 선단에 잔존하는 슬라임 두께를 측정하는 슬라임 측정장치가 더 구비되며,The measuring module is further provided with a slime measuring device for measuring the slime thickness remaining at the tip of the rock hole,
    상기 슬라임 측정장치는, 측정모듈의 하단부에 고정된 본체부와, 상기 본체부로부터 하강하면서 슬라임을 관통하여 암반 홀 선단에 도달할 수 있도록 한 승강부로 이루어져, 상기 승강부가 하강하는 동안 저항을 측정하여 슬라임을 관통하는지 여부를 판단하고, 상기 승강부가 상기 슬라임을 관통할 때 측정되는 저항이 유지되는 동안 상기 승강부가 변위되는 거리를 측정함으로써 슬라임 두께를 산출하는 것을 특징으로 하는 암반 홀 표면 검사시스템.The slime measuring device comprises a main body fixed to the lower end of the measuring module, and a lifting unit which allows to reach the end of the rock hole through the slime while descending from the main body, by measuring the resistance while the lifting unit descends A rock hole surface inspection system, comprising: determining whether or not a slime penetrates, and calculating a slime thickness by measuring a distance at which the elevator is displaced while the resistance measured when the elevator penetrates the slime is maintained.
  4. 제2항에 있어서, 상기 측정모듈은,The method of claim 2, wherein the measurement module,
    상기 고정모듈의 하측에 승강 가능하도록 결합된 측정프레임과;A measuring frame coupled to the lower side of the fixed module so as to be lifted and lowered;
    상기 측정프레임의 측면에 설치되어 암반 홀의 벽면을 접촉하여 이동하면서 상기 측정프레임의 승강을 안내하는 복수의 가이드 롤러와;A plurality of guide rollers installed on the side of the measuring frame to guide the lifting of the measuring frame while moving in contact with the wall surface of the rock hole;
    암반 홀의 표면 거칠기를 측정하는 거칠기 측정센서와, 상기 측정프레임에 설치되어 상기 거칠기 측정센서를 암반 홀 벽면을 향해 진퇴시켜주는 센서액추에이터로 이루어진 센서모듈을; 포함하는 것을 특징으로 하는 암반 홀 표면 검사시스템.A sensor module comprising a roughness measuring sensor for measuring a surface roughness of a rock hole and a sensor actuator installed in the measuring frame to advance and move the roughness measuring sensor toward a rock hole wall surface; Rock hole surface inspection system comprising a.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 거칠기 측정센서는 암반 홀의 벽면 둘레 전체를 향하도록 방사상으로 다수 설치된 것을 특징으로 하는 암반 홀 표면 검사시스템.The roughness sensor is a rock hole surface inspection system, characterized in that a plurality of radially installed so as to face the entire wall around the rock hole.
  6. 제5항에 있어서,The method of claim 5,
    상기 측정모듈에서 거칠기 측정센서는 초음파를 발생시키면서 암반 홀의 표면 거칠기를 측정하는 소나센서(sonar sensor)로 구비되는 것을 특징으로 하는 암반 홀 표면 검사시스템.The roughness measuring sensor in the measuring module is a rock hole surface inspection system, characterized in that it is provided with a sonar sensor (sonar sensor) for measuring the surface roughness of the rock hole while generating an ultrasonic wave.
  7. 제6항에 있어서,The method of claim 6,
    상기 거칠기 측정센서로 구비된 소나센서에 의해 암반 홀 벽면까지의 거리를 측정하고, 암반 홀 벽면까지의 측정 거리에 근거하여 상기 센서액추에이터의 스트로크를 제어하는 것을 특징으로 하는 암반 홀 표면 검사시스템.A rock hole surface inspection system, characterized in that for measuring the distance to the rock hole wall surface by the sonar sensor provided as the roughness sensor, and controlling the stroke of the sensor actuator based on the measured distance to the rock hole wall surface.
  8. 제5항에 있어서,The method of claim 5,
    상기 거칠기 측정센서는 상기 측정프레임과 함께 암반 홀을 따라 하강 또는 상승하면서 암반 홀의 표면 거칠기를 1mm 단위로 연속 측정하는 것을 특징으로 하는 암반 홀 표면 검사시스템.The roughness measuring sensor is a rock hole surface inspection system, characterized in that continuously measuring the surface roughness of the rock hole in units of 1mm while descending or rising along the rock hole with the measuring frame.
  9. 제4항에 있어서,The method of claim 4, wherein
    상기 가이드 롤러는, 상기 측정프레임에 고정되는 롤러액추에이터, 상기 롤러 액추에이터의 작동부와 힌지 결합하는 롤러체 및 상기 롤러체에 회전 가능하도록 설치되는 롤러를 포함하는 것을 특징으로 하는 암반 홀 표면 검사시스템.The guide roller may include a roller actuator fixed to the measuring frame, a roller body hinged to an operating part of the roller actuator, and a roller mounted on the roller body so as to be rotatable.
  10. 제9항에 있어서,The method of claim 9,
    상기 측정모듈에는, 상기 배관 내부의 수중으로 고주파 음을 발생시키는 음파발생기와, 암반 홀 선단을 가진하는 충격발생기와, 상기 음파발생기와 충격발생기로부터 이격된 위치에 설치되어 상기 암반 홀 선단과 접촉한 상태로 음파 및 가진에 의해 상기 암반 홀 선단 표층을 통해 전달되는 탄성파를 수신하도록 한 수신기가 구비되어, 상기 암반 홀 선단 표층을 통해 전달되는 탄성파 속도에 의해 암반 홀 선단의 지반강도를 구할 수 있도록 하되, The measuring module includes a sound wave generator for generating high frequency sound in the water inside the pipe, a shock generator having a rock hole tip, and a sound wave generator at a position spaced apart from the sound wave generator and the shock generator to contact the rock hole tip. A receiver is provided to receive the acoustic waves transmitted through the rock hole tip surface layer by sound waves and excitation, so that the ground strength of the rock hole tip can be obtained by the elastic wave velocity transmitted through the rock hole tip surface layer. ,
    상기 암반 홀 선단에 잔존하는 슬라임의 두께가 일정 수치 미만이면 상기 음파발생기가 고주파 음을 발생시키도록 하고, 상기 암반 홀 선단에 잔존하는 슬라임의 두께가 일정 수치 이상이면 상기 충격발생기가 암반 홀 선단을 가진하는 방법으로 탄성파를 발생시켜 상기 수신기가 탄성파를 수신하도록 하는 것을 특징으로 하는 암반 홀 표면 검사시스템.When the thickness of the slime remaining on the rock hole tip is less than a predetermined value, the sound wave generator generates a high frequency sound. When the thickness of the slime remaining on the rock hole tip is more than a predetermined value, the impact generator causes to break the rock hole tip. A rock hole surface inspection system, characterized in that for generating an acoustic wave in an excitation manner so that the receiver receives the acoustic wave.
  11. 제4항에 있어서, The method of claim 4, wherein
    상기 측정모듈의 하단에는 하방으로 길게 형성되어 그 하단부가 암반 홀 선단과 접촉하면서 암반 홀 선단의 위치를 인식하도록 한 접촉센서가 더 구비된 것을 특징으로 하는 암반 홀 표면 검사시스템.A rock hole surface inspection system further comprising a contact sensor formed at a lower end of the measuring module downwardly to recognize the position of the rock hole tip while the lower end thereof contacts the rock hole tip.
  12. 제4항에 있어서,The method of claim 4, wherein
    상기 고정모듈과 측정모듈에는 각각 암반 홀의 깊이를 인식할 수 있는 레벨센서가 더 구비되며, The fixed module and the measurement module are further provided with a level sensor for recognizing the depth of the rock hole, respectively,
    상기 측정모듈에는 압력을 측정하는 압력센서가 더 구비되는 것을 특징으로 하는 암반 홀 표면 검사시스템.The measuring module has a rock hole surface inspection system, characterized in that further provided with a pressure sensor for measuring the pressure.
  13. 제2항에 있어서, 상기 고정모듈은, The method of claim 2, wherein the fixing module,
    케이블과 연결된 고정프레임과;A fixed frame connected to the cable;
    상기 고정프레임 내부에 위치하여 상기 측정모듈을 승강시키는 이송부와;A transfer unit positioned inside the fixed frame to lift the measurement module;
    유압의 발생 및 경로를 조절하는 유압부와;A hydraulic unit for controlling the generation and the path of the hydraulic pressure;
    상기 고정프레임의 측면에 설치되어 고정모듈을 배관의 내주면 또는 암반 홀의 벽면에 고정하는 복수의 가압장치와; A plurality of pressing devices installed on the side of the fixing frame to fix the fixing module to the inner circumferential surface of the pipe or the wall surface of the rock hole;
    상기 유압부와 이송부를 제어하는 제어부를; 포함하는 것을 특징으로 하는 암반 홀 표면 검사시스템.A control unit for controlling the hydraulic unit and the transfer unit; Rock hole surface inspection system comprising a.
  14. 제13항에 있어서,The method of claim 13,
    상기 가압장치는, 상기 고정프레임 상에 고정되는 가압액추에이터와, 상기 가압액추에이터 가동부에 장착되는 가압판 및 상기 가압판에 부착되어 가압력을 감지하는 가압센서를 포함하는 것을 특징으로 하는 암반 홀 표면 검사시스템.The pressurizing device includes a pressure actuator fixed on the fixed frame, a pressure plate mounted on the pressure actuator movable part, and a pressure sensor attached to the pressure plate to detect a pressing force.
PCT/KR2019/000766 2018-04-12 2019-01-18 System for inspecting surface of hole in rock capable of measuring ground bearing capacity WO2019198916A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0042667 2018-04-12
KR1020180042678A KR102073807B1 (en) 2018-04-12 2018-04-12 Surface inspection system of rock hole capable of measuring earth supporting force
KR10-2018-0042678 2018-04-12
KR1020180042667A KR102073804B1 (en) 2018-04-12 2018-04-12 Surface inspection system of rock hole capable of measuring slime thickness

Publications (1)

Publication Number Publication Date
WO2019198916A1 true WO2019198916A1 (en) 2019-10-17

Family

ID=68164266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/000766 WO2019198916A1 (en) 2018-04-12 2019-01-18 System for inspecting surface of hole in rock capable of measuring ground bearing capacity

Country Status (1)

Country Link
WO (1) WO2019198916A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117627079A (en) * 2024-01-26 2024-03-01 山西省水利建筑工程局集团有限公司 Hydraulic engineering foundation bearing capacity detection device and detection method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140090510A (en) * 2013-01-09 2014-07-17 경성대학교 산학협력단 Apparatus for inspecting surface of hole in rock
JP2015214838A (en) * 2014-05-12 2015-12-03 前田建設工業株式会社 Method and device for ground improvement quality management
KR20170061217A (en) * 2015-11-25 2017-06-05 현대건설주식회사 Apparatus and method for measuring thickness of slime in drilled shaft hole
KR20180021970A (en) * 2016-08-22 2018-03-06 이민희 Apparatus for inspecting surface of hole in rock
KR20180021971A (en) * 2016-08-22 2018-03-06 이민희 Control apparatus for inspecting surface of hole in rock

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140090510A (en) * 2013-01-09 2014-07-17 경성대학교 산학협력단 Apparatus for inspecting surface of hole in rock
JP2015214838A (en) * 2014-05-12 2015-12-03 前田建設工業株式会社 Method and device for ground improvement quality management
KR20170061217A (en) * 2015-11-25 2017-06-05 현대건설주식회사 Apparatus and method for measuring thickness of slime in drilled shaft hole
KR20180021970A (en) * 2016-08-22 2018-03-06 이민희 Apparatus for inspecting surface of hole in rock
KR20180021971A (en) * 2016-08-22 2018-03-06 이민희 Control apparatus for inspecting surface of hole in rock

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117627079A (en) * 2024-01-26 2024-03-01 山西省水利建筑工程局集团有限公司 Hydraulic engineering foundation bearing capacity detection device and detection method thereof
CN117627079B (en) * 2024-01-26 2024-04-05 山西省水利建筑工程局集团有限公司 Hydraulic engineering foundation bearing capacity detection device and detection method thereof

Similar Documents

Publication Publication Date Title
WO2020228464A1 (en) Seabed static penetration device and penetration method based on marine observation probe rod
KR101851706B1 (en) Surface inspection system of rock hole
KR20180021213A (en) Borehole test equipment
WO2019198916A1 (en) System for inspecting surface of hole in rock capable of measuring ground bearing capacity
CN112255314B (en) Concrete conveying guide pipe position measuring device
AU2016372743A1 (en) Multi-rope cooperative control system testbed of ultradeep mine hoist
KR101876451B1 (en) Control apparatus for inspecting surface of hole in rock
CN106908033A (en) A kind of goaf top plate multi-point displacement synchronous measuring apparatus and its measuring method
CN104594395B (en) A kind of method utilizing railway in operation roadbed side Bored Pile Foundation detection structure to carry out pile measurement
KR101849969B1 (en) Apparatus for inspecting surface of hole in rock
CN210013694U (en) Bored concrete pile pore-forming quality detection device
CN211452254U (en) Concrete bored concrete pile bottom sediment thickness detection device
KR102073804B1 (en) Surface inspection system of rock hole capable of measuring slime thickness
WO2017099284A1 (en) Steel plate internal flaw detecting device and method using height-adjustable ultrasonic sensor
CN112323803B (en) Automatic lifting device and method for underwater concrete pouring guide pipe of cast-in-situ bored pile
KR101438523B1 (en) Apparatus for inspecting surface of hole in rock
CN109853644A (en) A kind of detection device of ground foundation engineering construction sediment thickness
KR101983285B1 (en) Surface inspection system of rock hole capable of measuring ground strength
CN105735379A (en) Detecting device for drilling pouring pile bottom sediment
CN111705852B (en) Static load detection method for rotary digging pile
CN107975076B (en) Parallel seismic wave method determines the detection device and its detection method of foundation pile length
CN112962687A (en) Device and method for detecting integrity of pile body of concrete foundation pile
KR102073807B1 (en) Surface inspection system of rock hole capable of measuring earth supporting force
CN107226413A (en) Deterioration diagnosis device for moving handrail, mobile handrail deterioration diagnosis method and its position used determine mark
CN207499005U (en) A kind of rotary digging stake drilling pile bottom Settled-material detection apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19784945

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19784945

Country of ref document: EP

Kind code of ref document: A1