WO2019198818A1 - Vehicle braking control device - Google Patents

Vehicle braking control device Download PDF

Info

Publication number
WO2019198818A1
WO2019198818A1 PCT/JP2019/015977 JP2019015977W WO2019198818A1 WO 2019198818 A1 WO2019198818 A1 WO 2019198818A1 JP 2019015977 W JP2019015977 W JP 2019015977W WO 2019198818 A1 WO2019198818 A1 WO 2019198818A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
braking
master
valve
fluid
Prior art date
Application number
PCT/JP2019/015977
Other languages
French (fr)
Japanese (ja)
Inventor
貴久 菱川
芳夫 増田
山本 貴之
Original Assignee
株式会社アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドヴィックス filed Critical 株式会社アドヴィックス
Publication of WO2019198818A1 publication Critical patent/WO2019198818A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/68Electrical control in fluid-pressure brake systems by electrically-controlled valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to a vehicle braking control device.
  • a mechanical type that sends out an output pressure from the output port according to the pilot pressure supplied to the pilot chamber based on the brake fluid pressure of the high pressure source”.
  • a regulator a switching unit connected to the pilot chamber, a first pilot pressure generator connected to the pilot chamber via the switching unit and supplying the first pilot pressure to the pilot chamber, and a pilot chamber via the switching unit
  • a switching unit comprising: a second pilot pressure generator connected to supply the second pilot pressure to the pilot chamber; and a wheel cylinder that generates a braking force based on an output pressure supplied from an output port of the mechanical regulator. Is configured to supply either one of the first pilot pressure and the second pilot pressure to the pilot chamber.
  • This device is composed of an “electric pump and an electromagnetic valve, and adjusts the brake fluid discharged from the electric pump to the adjusted hydraulic pressure by the electromagnetic valve, and introduces the adjusted hydraulic pressure into the rear wheel cylinder.
  • ”And“ A master chamber composed of a master cylinder and a master piston and connected to the front wheel cylinder, and a forward movement in which the adjustment hydraulic pressure is introduced and which opposes the reverse force applied to the master piston by the master chamber A master unit having a servo chamber for applying a force to the master piston.
  • the brake fluid discharged from the electric pump is adjusted to the adjusted hydraulic pressure by the electromagnetic valve and introduced into the servo chamber and the rear wheel wheel cylinder.
  • the electric pump is stopped during non-braking and is rotationally driven during braking.
  • the braking control device is a so-called on-demand type. For this reason, it is desired to improve the boosting response during sudden braking.
  • JP 2013-107561 A Japanese Patent Application No. 2017-184272
  • An object of the present invention is to provide a braking control device for an on-demand type vehicle in which the boosting response can be improved.
  • the brake control device SC pumps the brake fluid (BF) to the wheel cylinder (CW) of the vehicle wheel (WH) according to the operation amount (Ba) of the vehicle brake operation member (BP).
  • a braking torque is generated on the wheel (WH).
  • the brake controller SC includes a simulator (SS) that applies an operation force (Fp) corresponding to the operation amount (Ba) to the brake operation member (BP), a master cylinder (CM), and a master piston (PM).
  • a pressure regulating unit (YC) that adjusts the regulated fluid pressure (Pa, Pb, Pc) and introduces the regulated fluid pressure (Pa, Pb, Pc) into the servo chamber (Rs), and the braking operation member (BP) And an input chamber (Rn) connected to the simulator (SS) via a simulator fluid path (HS).
  • the input piston (PK) is coupled to the input cylinder (CN).
  • a regenerative cooperative unit (YK) in which a gap (Ks) between the master piston (PM) and the input piston (PK) is controlled by the adjustment hydraulic pressures (Pa, Pb, Pc) inside the chamber (Rn).
  • First closed A first on-off valve (VA) having a device, the electric pump (DC), the electromagnetic valves (UA, UB, UC), and a controller (ECU) for controlling the first on-off valve (VA).
  • the controller (ECU) determines whether or not the operation of the braking operation member (BP) is a sudden operation based on the operation amount (Ba), and When denying the sudden operation, the first on-off valve (VA) is driven to the first open position, and when affirming the sudden operation, the first on-off valve (VA) ) To the first closed position. For example, the controller (ECU) calculates an operation speed (dB) based on the operation amount (Ba), and when the operation speed (dB) is less than a predetermined speed (dx), the sudden operation is performed. If the operation speed (dB) is equal to or higher than the predetermined speed (dx), the sudden operation is affirmed.
  • the first opening / closing valve VA in the sudden operation state, the first opening / closing valve VA is brought into the closed position, whereby the input chamber Rn is brought into a fluid locked state. Therefore, the operating force Fp of the braking operation member BP operated by the driver is transmitted to the master piston PM via the input chamber Rn, and the boosting response of the master cylinder hydraulic pressure Pm (that is, the braking hydraulic pressure Pw). Is improved.
  • FIG. 1 is an overall configuration diagram for explaining a first embodiment of a vehicle braking control device SC according to the present invention. It is a control flow figure for explaining processing of pressure regulation control including regenerative cooperation control. It is a control flowchart for demonstrating the process at the time of sudden operation. It is a whole block diagram for demonstrating 2nd Embodiment of the braking control apparatus SC of the vehicle which concerns on this invention.
  • each of the four wheel cylinders are expressed as a right front wheel wheel cylinder CWi, a left front wheel wheel cylinder CWj, a right rear wheel wheel cylinder CWk, and a left rear wheel wheel cylinder CWl.
  • the suffixes “i” to “l” at the end of the symbol can be omitted.
  • each symbol represents a generic name of each of the four wheels. For example, “WH” represents each wheel, and “CW” represents each wheel cylinder.
  • a first embodiment of a braking control device SC according to the present invention will be described with reference to the overall configuration diagram of FIG.
  • the fluid path is a path for moving the brake fluid BF that is the working fluid of the brake control device SC, and corresponds to a brake pipe, a fluid unit flow path, a hose, and the like.
  • the inside of the fluid path is filled with the brake fluid BF.
  • a so-called front and rear type also referred to as “H type” is adopted as the two fluid paths.
  • the side close to the reservoir RV is called “upstream side” or “upper side”
  • the side close to the wheel cylinder CW is called “downstream”. Referred to as “side” or “bottom”.
  • the vehicle is provided with an electric motor GN for driving. That is, the vehicle is a hybrid vehicle or an electric vehicle.
  • the electric motor GN for driving also functions as a generator (generator) for energy regeneration.
  • the generator GN is provided in the front wheel WHf.
  • the electric motor / generator GN is controlled by a drive controller ECD.
  • a vehicle including the braking control device SC includes a braking operation member BP, a wheel cylinder CW, a reservoir RV, and a wheel speed sensor VW.
  • Brake operation member (for example, brake pedal) BP is a member that the driver operates to decelerate the vehicle.
  • the braking operation member BP By operating the braking operation member BP, the braking torque of the wheel WH is adjusted, and a braking force is generated on the wheel WH.
  • a rotating member for example, a brake disc
  • a brake caliper is disposed so as to sandwich the rotating member KT, and a wheel cylinder CW is provided there.
  • the friction member for example, a brake pad
  • the rotating member KT and the wheel WH are fixed so as to rotate integrally, a braking torque (resulting in friction braking force) is generated on the wheel WH by the frictional force generated at this time.
  • Reservoir (atmospheric pressure reservoir) RV is a tank for working fluid, in which braking fluid BF is stored.
  • the lower portion of the reservoir RV is partitioned by a partition plate SK into a master reservoir chamber Ru connected to the master cylinder chamber Rm and a pressure regulating reservoir chamber Rd connected to the pressure regulating unit YC.
  • the liquid level of the brake fluid BF is higher than the height of the partition plate SK.
  • the brake fluid BF can freely move between the master reservoir chamber Ru and the pressure regulation reservoir chamber Rd beyond the partition plate SK.
  • the master reservoir chamber Ru and the pressure regulating reservoir chamber Rd become independent reservoirs. .
  • Each wheel WH is provided with a wheel speed sensor VW so as to detect the wheel speed Vw.
  • the wheel speed Vw signal is used for independent braking control for each wheel, such as anti-skid control (control to suppress excessive deceleration slip of the wheel) and vehicle stabilization control (control to suppress excessive oversteer and understeer behavior). Is done.
  • a vehicle body speed Vx is calculated based on each wheel speed Vw detected by the wheel speed sensor VW.
  • the braking control device SC includes an upper fluid unit YU and a lower fluid unit YL.
  • the upper fluid unit YU is a fluid unit closer to the master cylinder CM
  • the lower fluid unit YL is a fluid unit closer to the wheel cylinder CW.
  • the inside of each fluid unit YU, YL is made liquid-tight by the brake fluid BF.
  • the upper fluid unit YU is controlled by the upper controller ECU
  • the lower fluid unit YL is controlled by the lower controller ECL.
  • the upper controller ECU and the lower controller ECL are connected via a communication bus BS so that each signal (sensor detection value, calculation value, etc.) is shared.
  • the upper fluid unit YU of the braking control device SC is composed of an operation amount sensor BA, an operation switch ST, a stroke simulator SS, a master unit YM, a pressure adjustment unit YC, and a regeneration coordination unit YK.
  • An operation amount sensor BA is provided so as to detect the operation amount Ba of the braking operation member (brake pedal) BP by the driver.
  • an operation displacement sensor SP for detecting an operation displacement Sp of the braking operation member BP is provided.
  • An operation force sensor FP is provided so as to detect the operation force Fp of the braking operation member BP.
  • a simulator hydraulic pressure sensor PS is provided as the operation amount sensor BA so as to detect the hydraulic pressure (simulator hydraulic pressure) Ps in the stroke simulator SS.
  • An input hydraulic pressure sensor PN is provided so as to detect a hydraulic pressure (input hydraulic pressure) Pn in the input chamber Rn of the regeneration cooperative unit YK.
  • the operation amount sensor BA is a general term for the above-described operation displacement sensor SP and the like, and as the braking operation amount Ba, at least one of the operation displacement Sp, the operation force Fp, the simulator hydraulic pressure Ps, and the input hydraulic pressure Pn is adopted. Is done.
  • the detected braking operation amount Ba is input to the upper controller ECU.
  • the brake operation member BP is provided with an operation switch ST so as to detect whether or not the driver has operated the brake operation member BP.
  • the brake operation switch ST When the brake operation member BP is not operated (that is, during non-braking), the brake operation switch ST outputs an off signal as the operation signal St.
  • an ON signal is output as the operation signal St.
  • the braking operation signal St is input to the controller ECU.
  • a stroke simulator (simply referred to as “simulator”) SS is provided to generate an operation force Fp on the braking operation member BP.
  • the simulator SS is connected between the reaction force chamber Ro and the first on-off valve VA in the simulator fluid path HS.
  • a simulator piston Es and an elastic body (for example, compression spring) Ds are provided inside the simulator SS.
  • the piston Es is pushed by the inflow brake fluid BF. Since force is applied to the piston in a direction to prevent the inflow of the brake fluid BF by the elastic body Ds, an operation force Fp when the brake operation member BP is operated is formed.
  • an orifice Os is provided at the inlet of the brake fluid BF. Due to the damping generated at the orifice Os, the operating characteristics of the braking operation member BP are improved.
  • the master unit YM adjusts the hydraulic pressure (front wheel braking hydraulic pressure) Pwf in the front wheel cylinder CWf via the master cylinder chamber Rm.
  • the master unit YM includes a master cylinder CM, a master piston PM, and a master elastic body SM.
  • the master cylinder CM is a cylinder member having a bottom.
  • the master piston PM is a piston member inserted into the master cylinder CM, and is movable in conjunction with the operation of the braking operation member BP.
  • the interior of the master cylinder CM is divided into three hydraulic chambers Rm, Rs, and Ro by the master piston PM.
  • a groove portion is formed in the first inner peripheral portion Mw of the master cylinder CM, and two seals SL are fitted into the groove portion.
  • the outer periphery (outer cylindrical surface) Mp of the master piston PM and the first inner peripheral portion (inner cylindrical surface) Mw of the master cylinder CM are sealed (sealed) by the two seals SL.
  • the master piston PM can move smoothly along the central axis Jm of the master cylinder CM.
  • the master cylinder chamber (also simply referred to as “master chamber”) Rm is defined by “the first inner peripheral portion Mw and the first bottom portion (bottom surface) Mu of the master cylinder CM” and the first end portion Mv of the master piston PM. It is a partitioned hydraulic chamber.
  • a master cylinder fluid path HM is connected to the master chamber Rm, and finally connected to the front wheel wheel cylinder CWf via the lower fluid unit YL.
  • the master piston PM is provided with a flange portion (flange) Tm.
  • the inside of the master cylinder CM is divided into a servo hydraulic chamber (simply referred to as “servo chamber”) Rs and a reaction force hydraulic chamber (simply referred to as “reaction force chamber”) Ro by the collar portion Tm. Yes.
  • a seal SL is provided on the outer peripheral portion of the collar portion Tm, and the collar portion Tm and the second inner peripheral portion Md of the master cylinder CM are sealed.
  • the servo chamber Rs is a hydraulic chamber partitioned by “the second inner peripheral portion Md and the second bottom portion (bottom surface) Mt of the master cylinder CM” and the first surface Ms of the flange portion Tm of the master piston PM. .
  • the master chamber Rm and the servo chamber Rs are arranged to face each other with the master piston PM (particularly, the collar portion Tm) interposed therebetween.
  • a front wheel pressure adjusting fluid path HF is connected to the servo chamber Rs, and the adjusted hydraulic pressure Pa is introduced from the pressure adjusting unit YC.
  • the reaction force chamber Ro is a hydraulic chamber defined by the second inner peripheral portion Md of the master cylinder CM, the stepped portion Mz, and the second surface Mo of the flange portion Tm of the master piston PM.
  • the reaction force chamber Ro is sandwiched between the master hydraulic pressure chamber Rm and the servo hydraulic pressure chamber Rs in the direction of the central axis Jm, and is positioned between them. Therefore, when the volume Vs of the servo chamber Rs is increased, the volume Vo of the reaction force chamber Ro is decreased. Conversely, when the servo chamber volume Vs is decreased, the reaction force chamber volume Vo is increased.
  • a simulator fluid path HS is connected to the reaction force chamber Ro. The amount of the brake fluid BF in the upper fluid unit YU is adjusted by the reaction force chamber Ro.
  • a depression Mx is provided at the first end Mv of the master piston PM.
  • a master elastic body (for example, a compression spring) SM is provided between the depression Mx and the first bottom Mu of the master cylinder CM.
  • the master elastic body SM presses the master piston PM against the second bottom Mt of the master cylinder CM in the direction of the central axis Jm of the master cylinder CM.
  • the stepped portion My of the master piston PM is in contact with the second bottom portion Mt of the master cylinder CM.
  • the position of the master piston PM in this state is referred to as “initial position of the master unit YM”.
  • the through hole Ac is provided in the master cylinder CM between two seals SL (for example, cup seal).
  • the through hole Ac is connected to the master reservoir chamber Ru via the replenishment fluid path HU.
  • a through hole Ap is provided in the vicinity of the first end Mv of the master piston PM.
  • the master chamber Rm has a biasing force Fb (referred to as “retreating force”) in the retreating direction Hb along the central axis Jm by its internal pressure (“master cylinder fluid pressure”, also referred to as “master fluid pressure”) Pm.
  • master cylinder fluid pressure also referred to as “master fluid pressure”
  • a master hydraulic pressure sensor PQ is provided so as to detect the master hydraulic pressure Pm.
  • the master hydraulic pressure sensor PQ can be provided in the master cylinder fluid path HM. Further, the master hydraulic pressure sensor PQ may be included in the lower fluid unit YL.
  • the pressure receiving area (namely, the pressure receiving area of the servo chamber Rs) rs of the first surface Ms of the collar portion Tm is equal to the pressure receiving area (namely, the pressure receiving area of the master chamber Rm) rm of the first end Mv of the master piston PM. It is set to be equal.
  • the hydraulic pressure Pa (resulting servo hydraulic pressure Pv) introduced into the servo chamber Rs and the hydraulic pressure Pm in the master chamber Rm are the same in a steady state.
  • the pressure adjusting unit YC adjusts the hydraulic pressures Pwf and Pwr of the front and rear wheel cylinders CWf and CWr on demand.
  • the pressure adjustment unit YC includes an electric pump DC, a check valve GC, a pressure adjustment valve UA, and an adjustment hydraulic pressure sensor PA.
  • the pressure adjustment unit YC is an on-demand type (a function that is necessary when it is necessary without being prepared in advance).
  • the electric pump DC is composed of a set of one electric motor MC and one fluid pump QC.
  • the electric motor MC and the fluid pump QC are fixed so that the electric motor MC and the fluid pump QC rotate together.
  • the electric pump DC (in particular, the electric motor MC) is a power source for increasing the brake fluid pressure Pw during control braking.
  • the electric motor MC is controlled by the controller ECU.
  • the suction port Qs of the fluid pump QC is connected to the reservoir RV (particularly the pressure regulating reservoir chamber Rd) via the first reservoir fluid path HV.
  • a pressure regulating fluid path HC is connected to the discharge port Qt of the fluid pump QC.
  • the brake fluid BF is sucked from the first reservoir fluid path HV through the suction port Qs and discharged from the discharge port Qt to the pressure regulating fluid path HC.
  • a gear pump is employed as the fluid pump QC.
  • a check valve GC (also referred to as “check valve”) is interposed in the pressure regulating fluid path HC.
  • the check valve GC allows the brake fluid BF to move from the first reservoir fluid path HV toward the pressure regulating fluid path HC, but to move from the pressure regulating fluid path HC toward the reservoir fluid path HV (ie, , Back flow of the brake fluid BF) is prevented. That is, the electric pump DC is rotated only in one direction.
  • An end Bv of the pressure regulating fluid path HC opposite to the discharge part Qt is connected to the first reservoir fluid path HV.
  • a pressure regulating valve UA is provided in the pressure regulating fluid path HC.
  • the pressure regulating valve UA is a linear solenoid valve (also referred to as “proportional valve” or “differential pressure valve”) whose valve opening amount (lift amount) is continuously controlled based on an energized state (for example, supply current). It is.
  • the pressure regulating valve UA is controlled by the controller ECU based on the drive signal Ua.
  • a normally open type electromagnetic valve is employed as the pressure regulating valve UA.
  • the brake fluid BF is pumped up from the first reservoir fluid passage HV through the suction port Qs of the fluid pump QC and discharged from the discharge port Qt. Then, the brake fluid BF passes through the check valve GC and the pressure regulating valve UA, and is returned to the reservoir fluid path HV.
  • the first reservoir fluid path HV and the pressure regulating fluid path HC form a reflux path (a fluid path in which the flow of the brake fluid BF returns to the original flow again),
  • a valve GC and a pressure regulating valve UA are interposed in series.
  • the brake fluid BF When the electric pump DC is operating, the brake fluid BF is recirculated in the order of “HV ⁇ QC (Qs ⁇ Qt) ⁇ GC ⁇ UA ⁇ HV” as indicated by the broken arrow (A). (Ie, a “reflux path” is formed).
  • the pressure regulating valve UA When the pressure regulating valve UA is in a fully opened state (because it is a normally open type and not energized), the hydraulic pressure (adjusted hydraulic pressure) Pa in the regulated fluid path HC is substantially “0 (atmospheric pressure)”.
  • the hydraulic pressure (adjusted hydraulic pressure) Pa between the fluid pump QC and the pressure regulating valve UA in the pressure regulating fluid path HC is “0. Is increased.
  • the pressure adjusting fluid path HC is provided with an adjustment hydraulic pressure sensor PA so as to detect the adjustment hydraulic pressure Pa.
  • the pressure regulating fluid path HC is branched into the front wheel and rear wheel regulating fluid paths HF and HR at a portion Bc between the fluid pump QC and the pressure regulating valve UA.
  • the front wheel pressure adjusting fluid path HF is connected to the servo chamber Rs of the master unit YM. Accordingly, the adjusted hydraulic pressure Pa adjusted by the pressure regulating valve UA is introduced (supplied) into the servo chamber Rs. Since the master cylinder CM is connected to the front wheel wheel cylinder CWf via the lower fluid unit YL, the adjustment hydraulic pressure Pa is indirectly introduced to the front wheel wheel cylinder CWf via the master cylinder CM. On the other hand, the rear wheel pressure adjusting fluid path HR is connected to the rear wheel wheel cylinder CWr via the lower fluid unit YL. Therefore, the adjustment hydraulic pressure Pa is directly introduced into the rear wheel hole cylinder CWr.
  • the pressure regulating unit YC is provided with a bypass fluid path HD that connects the reservoir RV and the servo chamber Rs in parallel with the pressure regulating fluid path HC.
  • a check valve GD is interposed in the bypass fluid path HD.
  • the check valve GD the flow of the brake fluid BF from the reservoir RV to the servo chamber Rs is allowed, but the reverse flow from the servo chamber Rs to the reservoir RV is blocked.
  • the master piston PM is moved in the forward direction Ha and the volume Vs of the servo chamber Rs is increased also by the driver's operation force. In this case, the amount of liquid corresponding to the volume increase of the servo chamber Rs caused by the operation of the driver is supplied via the bypass fluid path HD and the check valve GD.
  • the regenerative cooperative unit YK achieves cooperative control of friction braking and regenerative braking (referred to as “regenerative cooperative control”). For example, a state can be formed in which the braking operation member BP is operated by the regenerative coordination unit YK but the braking hydraulic pressure Pw is not generated.
  • the regeneration cooperative unit YK includes an input cylinder CN, an input piston PK, an input elastic body SN, a first on-off valve VA, a second on-off valve VB, a stroke simulator SS, a simulator hydraulic pressure sensor PS, and an input hydraulic pressure sensor PN. Composed.
  • the input cylinder CN is a cylinder member having a bottom portion fixed to the master cylinder CM.
  • the input piston PK is a piston member inserted into the input cylinder CN.
  • the input piston PK is mechanically connected to the braking operation member BP via a clevis (U-shaped link) so as to interlock with the braking operation member BP.
  • the input piston PK is provided with a flange portion (flange) Tn.
  • An input elastic body (for example, a compression spring) SN is provided between the attachment surface Ma of the input cylinder CN to the master cylinder CM and the flange portion Tn of the input piston PK.
  • the input elastic body SN presses the flange portion Tn of the input piston PK against the bottom Mb of the input cylinder CN in the direction of the central axis Jm.
  • the stepped portion My of the master piston PM is in contact with the second bottom portion Mt of the master cylinder CM, and the collar portion Tn of the input piston PK is in contact with the bottom portion Mb of the input cylinder CN.
  • the gap Ks between the master piston PM (particularly the end face Mq) and the input piston PK (particularly the end face Mg) is set to a predetermined distance ks (referred to as “initial gap”) inside the input cylinder CN. Yes.
  • the master piston PM and the input piston PK are separated by a predetermined distance ks.
  • the predetermined distance ks corresponds to the maximum value of the regeneration amount Rg.
  • the input piston PK is moved in the forward direction Ha from its initial position.
  • the adjustment hydraulic pressure Pa remains “0”
  • the master piston PM remains at the initial position, and therefore the gap Ks (the end surface Mg of the input piston PK and the master piston PM is increased as the input piston PK moves forward).
  • the distance between the end face Mq) gradually decreases.
  • the adjustment hydraulic pressure Pa is increased from “0”
  • the master piston PM is moved in the forward direction Ha from the initial position.
  • the gap Ks can be adjusted independently of the braking operation amount Ba within the range of “0 ⁇ Ks ⁇ ks” by the adjustment hydraulic pressure Pa. That is, by adjusting the adjustment hydraulic pressure Pa, the gap Ks between the master piston PM and the input piston PK is adjusted, and regenerative cooperative control is achieved.
  • the input chamber Rn of the regeneration coordination unit YK and the reaction force chamber Ro of the master unit YM are connected by the simulator fluid path HS.
  • a first on-off valve VA is provided in the simulator fluid path HS.
  • the first on-off valve VA is a normally closed electromagnetic valve having a first open position and a first closed position.
  • the reservoir fluid path HT is connected to a portion Bs between the first on-off valve VA and the reaction force chamber Ro of the simulator fluid path HS.
  • the reservoir fluid path HT is provided with a second on-off valve VB.
  • the second on-off valve VB is a normally open solenoid valve having a second open position and a second closed position.
  • the first and second on-off valves VA and VB are two-position solenoid valves (also referred to as “on / off valves”) having an open position (communication state) and a closed position (blocking state).
  • the first and second on-off valves VA and VB are controlled by the upper controller ECU based on the drive signals Va and Vb.
  • the simulator SS is connected to the simulator fluid path HS at a portion Bo between the first on-off valve VA and the reaction force chamber Ro.
  • the input chamber Rn of the regeneration coordination unit YK is connected to the simulator SS by the simulator fluid path HS.
  • the first on-off valve VA is set to the open position
  • the second on-off valve VB is set to the closed position. Since the second on-off valve VB is in the closed position, the flow path to the reservoir RV is blocked in the reservoir fluid path HT. Accordingly, the brake fluid BF is moved from the input chamber Rn of the input cylinder CN into the simulator SS.
  • the piston Es of the simulator SS is applied with a force that prevents the inflow of the brake fluid BF by the elastic body Ds, so that an operation force Fp when the brake operation member BP is operated is generated.
  • the second reservoir fluid path HT is connected to the reservoir RV (particularly the pressure regulating reservoir chamber Rd). A portion of the second reservoir fluid path HT can be shared with the first reservoir fluid path HV. However, it is desirable that the first reservoir fluid path HV and the second reservoir fluid path HT are separately connected to the reservoir RV.
  • the fluid pump QC sucks the brake fluid BF from the reservoir RV via the first reservoir fluid path HV. At this time, bubbles may be mixed in the first reservoir fluid path HV.
  • the second reservoir fluid path HT does not have a common part with the first reservoir fluid path HV and is separate from the first reservoir fluid path HV so as to avoid air bubbles from entering the input cylinder CN and the like. To the reservoir RV.
  • a simulator fluid pressure sensor PS is provided so as to detect the fluid pressure (referred to as “simulator fluid pressure”) Ps in the simulator SS.
  • an input hydraulic pressure sensor PN is provided in the simulator fluid path HS between the first on-off valve VA and the input chamber Rn so as to detect a hydraulic pressure (referred to as “input hydraulic pressure”) Pn in the input chamber Rn. It is done.
  • the simulator hydraulic pressure sensor PS and the input hydraulic pressure sensor PN are one of the braking operation amount sensors BA described above.
  • the detected hydraulic pressures Ps and Pn are input to the upper controller ECU as a braking operation amount Ba.
  • the upper controller ECU controls the electric motor MC and the electromagnetic valves VA, VB, and UA based on the braking operation amount Ba, the operation signal St, and the adjustment hydraulic pressure (detection value) Pa. Specifically, the upper controller ECU calculates drive signals Va, Vb, Ua for controlling various electromagnetic valves VA, VB, UA. Similarly, a drive signal Mc for controlling the electric motor MC is calculated. Then, based on the drive signals Va, Vb, Ua, Mc, the electromagnetic valves VA, VB, UA and the electric motor MC are driven.
  • the upper controller (electronic control unit) ECU is network-connected to the lower controller ECL and other system controllers (drive controller ECD, etc.) via the in-vehicle communication bus BS.
  • a regeneration amount (target value) Rg is transmitted from the upper controller ECU to the drive controller ECD through the communication bus BS so as to execute the regeneration cooperative control.
  • the lower fluid unit YL is a known fluid unit including a master hydraulic pressure sensor PQ, a plurality of solenoid valves, an electric pump, and a low pressure reservoir.
  • the lower fluid unit YL is controlled by the lower controller ECL.
  • Wheel speed Vw, yaw rate, steering angle, longitudinal acceleration, lateral acceleration, and the like are input to the lower controller ECL.
  • the vehicle body speed Vx is calculated based on the wheel speed Vw.
  • anti-skid control is executed so as to suppress excessive deceleration slip (for example, wheel lock) of the wheel WH.
  • the lower controller ECL performs vehicle stabilization control (so-called ESC) that suppresses unstable behavior (excessive oversteer behavior, understeer behavior) of the vehicle based on the yaw rate. That is, the brake fluid pressure Pw of each wheel WH is individually controlled by the lower fluid unit YL. The calculated vehicle speed Vx is input to the upper controller ECU through the communication bus BS.
  • ESC vehicle stabilization control
  • the energization of the pressure regulating valve UA and the electric motor MC is not performed.
  • the pistons PM and PN are pressed to their initial positions by the elastic bodies SM and SN, and the hydraulic chamber Rm of the master cylinder CM and the reservoir Ru of the reservoir RV are in communication with each other, and the master hydraulic pressure Pm Is “0 (atmospheric pressure)”.
  • the input piston PK is moved in the forward direction Ha.
  • the amount of the brake fluid BF flowing out from the input chamber Rn flows into the simulator SS, and the operation force Fp of the brake operation member BP is formed.
  • the input piston PK is moved in the forward direction Ha from its initial position.
  • the adjustment hydraulic pressure Pa remains “0”, so the master piston PM is not moved. . Therefore, as the input piston PK advances, the gap Ks (the distance between the end surface Mg of the input piston PK and the end surface Mq of the master piston PM) gradually decreases.
  • the controller ECU controls the pressure adjusting unit YC and the adjusted hydraulic pressure Pa is adjusted on demand.
  • the adjusted hydraulic pressure Pa is applied to the servo chamber Rs through the front wheel pressure adjusting fluid passage HF.
  • the master chamber Rm is blocked from the reservoir RV by the movement in the forward direction Ha.
  • the brake fluid BF is pumped from the master cylinder CM toward the front wheel cylinder CWf at the master hydraulic pressure Pm.
  • a force (retracting force) Fb in the retreating direction Hb is applied to the master piston PM by the master hydraulic pressure Pm.
  • the servo chamber Rs generates a force (forward force) Fa in the forward direction Ha by the adjustment hydraulic pressure Pa so as to oppose (oppose) the backward force Fb.
  • the master hydraulic pressure Pm is increased or decreased according to the increase or decrease of the adjustment hydraulic pressure Pa.
  • the adjustment hydraulic pressure Pa increases, the master piston PM is moved in the forward direction Ha from the initial position, but the gap Ks is set to a braking operation amount Ba within a range of “0 ⁇ Ks ⁇ ks” by the adjustment hydraulic pressure Pa.
  • the adjustment hydraulic pressure Pa is directly applied to the rear wheel wheel cylinder CWr through the rear wheel pressure adjusting fluid path HR and the lower fluid unit YL.
  • the first and second on-off valves VA and VB are not energized. Accordingly, the first on-off valve VA is in the closed position and the second on-off valve VB is in the open position.
  • the input chamber Rn is brought into a fluid lock state (sealed state) by the closed position of the first on-off valve VA so that the input piston PK and the master piston PM cannot be moved relative to each other.
  • the reaction force chamber Ro is connected to the reservoir RV through the second reservoir fluid path HT depending on the open position of the second on-off valve VB.
  • the volume Vo of the reaction force chamber Ro is reduced by the movement of the master piston PM in the forward direction Ha, but the liquid amount accompanying the volume reduction is discharged toward the reservoir RV.
  • Pressure adjustment control is drive control of the electric motor MC and the pressure adjustment valve UA for adjusting the adjustment hydraulic pressure Pa.
  • the control algorithm is programmed in the upper controller ECU.
  • step S110 the braking control device SC is initialized.
  • step S110 initial diagnosis of each component is executed.
  • step S120 energization is performed to the normally closed first open / close valve VA and the normally open second open / close valve VB. That is, when the start switch of the device is turned on, the first on-off valve VA is opened and the second on-off valve VB is closed. The on / off state of the first and second on-off valves VA and VB is not switched every time the braking operation is performed, but the first and second on-off valves VA and VB are always energized while the vehicle is running. Is called. Thereby, it is advantageous in terms of operating sound and the characteristics of the simulator SS can be stabilized.
  • step S130 the braking operation amount Ba, the operation signal St, the adjustment hydraulic pressure (detection value) Pa, and the vehicle body speed Vx are read.
  • the operation amount Ba is detected by an operation amount sensor BA (operation displacement sensor SP, input hydraulic pressure sensor PN, simulator hydraulic pressure sensor PS, etc.).
  • the operation signal St is detected by the operation switch ST.
  • the adjustment hydraulic pressure Pa is detected by an adjustment hydraulic pressure sensor PA provided in the pressure adjustment fluid path HC.
  • the vehicle body speed Vx is acquired from the lower controller ECL via the communication bus BS.
  • the vehicle body speed Vx may be calculated by the upper controller ECU based on the wheel speed Vw when the wheel speed Vw is input to the upper controller ECU.
  • step S140 based on at least one of the braking operation amount Ba and the braking operation signal St, it is determined whether or not braking is being performed. For example, when the operation amount Ba is larger than the predetermined value bo, step S140 is affirmed and the process proceeds to step S150. On the other hand, when the operation amount Ba is equal to or smaller than the predetermined value bo, Step S140 is denied and the process returns to Step S130.
  • the predetermined value bo is a preset constant corresponding to the play of the braking operation member BP.
  • step S150 as shown in block X150, the required braking force Fd is calculated based on the operation amount Ba.
  • the required braking force Fd is a target value of the total braking force F acting on the vehicle, and is a braking force obtained by combining the “friction braking force Fm by the braking controller SC” and the “regenerative braking force Fg by the generator GN”.
  • the required braking force Fd is determined to be “0” when the operation amount Ba is in the range from “0” to the predetermined value bo according to the calculation map Zfd.
  • the operation amount Ba increases. Accordingly, calculation is performed so as to monotonically increase from “0”.
  • the maximum value (referred to as “maximum regenerative force”) Fx of the regenerative braking force is calculated based on the vehicle body speed Vx and the calculation map Zfx.
  • the regeneration amount of the generator GN is limited by the rating of the power transistor (IGBT or the like) of the drive controller ECD and the battery charge acceptance.
  • the regeneration amount of the generator GN is controlled to a predetermined power (electric energy per unit time). Since the electric power (power) is constant, the regenerative torque around the wheel shaft by the generator GN is inversely proportional to the rotation speed of the wheel WH (that is, the vehicle body speed Vx). Further, when the rotational speed Ng of the generator GN decreases, the regeneration amount decreases. Furthermore, an upper limit is provided for the regeneration amount.
  • the maximum regenerative force Fx increases as the vehicle body speed Vx increases in the range where the vehicle body speed Vx is greater than or equal to “0” and less than the first predetermined speed vo. Is set as follows. Further, in the range where the vehicle body speed Vx is equal to or higher than the first predetermined speed vo and lower than the second predetermined speed vp, the maximum regenerative force Fx is determined as the upper limit value fx. When the vehicle body speed Vx is equal to or higher than the second predetermined speed vp, the maximum regenerative force Fx is set to decrease as the vehicle body speed Vx increases.
  • the relationship between the vehicle body speed Vx and the maximum regenerative force Fx is represented by a hyperbola (that is, the regenerative power is constant).
  • the predetermined values vo and vp are preset constants. Note that in the calculation map Zfx, the rotational speed Ng of the generator GN can be adopted instead of the vehicle body speed Vx.
  • step S170 based on the required braking force Fd and the maximum regenerative force Fx, it is determined whether or not the required brake force Fd is equal to or less than the maximum regenerative force Fx. That is, it is determined whether or not the braking force Fd requested by the driver can be achieved only by the regenerative braking force Fg. If “Fd ⁇ Fx” and step S170 is positive, the process proceeds to step S180. On the other hand, if “Fd> Fx” and step S170 is negative, the process proceeds to step S190.
  • step S180 the required braking force Fd is determined as the regenerative braking force Fg.
  • step S180 the target friction braking force Fm is calculated to be “0”.
  • the target friction braking force Fm is a target value of the braking force to be achieved by friction braking. In this case, friction braking is not employed for vehicle deceleration, and the required braking force Fd is achieved only by regenerative braking.
  • step S190 the regenerative braking force Fg is determined as the maximum regenerative force Fx.
  • the target friction braking force Fm is calculated based on the required braking force Fd and the maximum regenerative force Fx.
  • step S200 the regenerative amount Rg is calculated based on the regenerative braking force Fg.
  • the regeneration amount Rg is a target value for the regeneration amount of the generator GN.
  • the regeneration amount Rg is transmitted from the braking controller ECU to the drive controller ECD via the communication bus BS.
  • the target hydraulic pressure Pt is calculated based on the target value Fm of the friction braking force.
  • the target hydraulic pressure Pt is a target value for the adjusted hydraulic pressure Pa.
  • step S210 the target friction braking force Fm is converted into a hydraulic pressure, and the target hydraulic pressure Pt is determined.
  • step S220 it is determined whether or not an emergency operation process is necessary. If it is necessary, an emergency operation process is executed.
  • the sudden operation process is a process for improving the pressure increase response of the brake fluid pressure Pw. Details of the emergency operation processing will be described later.
  • step S230 the electric motor MC is driven to form a reflux of the brake fluid BF including the fluid pump QC.
  • step S240 the pressure regulating valve UA is servo-controlled based on the target hydraulic pressure Pt and the adjusted hydraulic pressure (detected value of the regulated hydraulic pressure sensor PA) Pa so that the adjusted hydraulic pressure Pa approaches the target hydraulic pressure Pt.
  • the In the servo control feedback control is performed so that the actual value Pa matches the target value Pt.
  • the “sudden operation process” is to improve the boosting response of the brake hydraulic pressure Pw when the braking operation member BP is suddenly operated by the driver (that is, during sudden braking).
  • the driver's operation is a “brake-by-wire” configuration separated from the brake fluid pressure Pw.
  • the driver's operation force operation power
  • This is used to improve the boosting response.
  • the operation speed dB is calculated based on the operation amount Ba.
  • the operation speed dB is calculated by differentiating the operation amount Ba with respect to time.
  • the operation amount Ba is a state amount representing the degree of operation of the braking operation member BP, and is based on at least one of the operation displacement Sp, the operation force Fp, the input hydraulic pressure Pn, and the simulator hydraulic pressure Ps. Determined.
  • the operation displacement Sp is adopted as the operation amount Ba
  • the operation speed dS (differential value of the operation displacement Sp) is calculated as the operation speed dB.
  • the operation of the brake operation member BP is dynamically propagated in the order of “Sp ⁇ Pn ⁇ Ps”, but the operation displacement Sp is a state quantity closest to the brake operation member BP and is detected early in time. Is based on the state quantity being made.
  • step S320 based on the operation speed dB, it is determined whether or not the operation of the braking operation member BP is a sudden operation. For example, the determination of the sudden operation is affirmed when the following two conditions (A1, A2) are both satisfied.
  • Condition A1 The operation speed dB is equal to or higher than the first predetermined speed dx.
  • the first predetermined speed dx is a preset constant (predetermined value).
  • Condition A2 The operation amount Ba is equal to or greater than the predetermined amount bx.
  • the predetermined amount bx is a preset constant (predetermined value). If “dB ⁇ dx and Ba ⁇ bx”, step S320 is positive, and the process proceeds to step S330. On the other hand, “dB ⁇ dx or Ba ⁇ bx” is satisfied, step S320 is denied, and the process returns to step S310.
  • step S330 the elapsed time Tz is calculated.
  • the elapsed time Tz is the elapsed time from the time when the determination in step S320 is affirmed for the first time in a series of braking operations (that is, operations from the start of braking to the end of braking).
  • the timer is activated and the elapsed time Tz is integrated in the calculation cycle in which the sudden operation is first determined.
  • step S340 it is determined whether or not the termination condition for the sudden operation process is satisfied.
  • the abrupt operation process is terminated when at least one of the following three conditions (B1 to B3) is satisfied.
  • Condition B1 The elapsed time Tz is equal to or longer than the predetermined time tz.
  • the predetermined time tz is a preset constant (predetermined value).
  • Condition B2 The sudden operation was weakened.
  • the operation speed dB is less than the second predetermined speed dy.
  • the second predetermined speed dy is a preset constant (predetermined value) smaller than the first predetermined speed dx (that is, “dy ⁇ dx”).
  • step S340 the process proceeds to step S350 and step S360, and the sudden operation process is executed.
  • the first on-off valve VA is closed at step S350.
  • step S360 the second on-off valve VB is set to the open position.
  • the input chamber Rn is put into a containment state (that is, the input chamber Rn is fluid-locked) by the closed position of the first on-off valve VA.
  • the master piston PM is moved in the forward movement direction Ha by the input piston PK connected to the braking operation member BP.
  • the volume Vo of the reaction force chamber Ro is reduced.
  • the brake fluid BF in the reaction force chamber Ro flows into the simulator SS.
  • the simulator SS is provided with an elastic body Ds for generating the operation force Fp, and an orifice Os is provided at the entrance for improving the operation characteristics.
  • the elastic body Ds and the orifice Os become a resistance against the inflow of the brake fluid BF.
  • the second on-off valve VB is opened, and the braking fluid BF in the reaction force chamber Ro is moved to the reservoir RV without resistance.
  • the master piston PM is moved in the forward direction Ha
  • the volume Vs of the servo chamber Rs is increased.
  • the servo chamber Rs needs to suck in the brake fluid BF.
  • the bypass fluid passage HD is provided so as to bypass the fluid pump QC, the bypass fluid passage HD and the check valve GD are provided.
  • the brake fluid BF can be sucked through without any resistance.
  • step S340 When step S340 is affirmed, the process proceeds to step S370 and step S380, the sudden operation process is terminated, and the normal state is restored. That is, the first on-off valve VA is set to the open position, the fluid lock state is canceled, and the input chamber Rn and the simulator SS are connected. In addition, the second on-off valve VB is closed, and the hydraulic chambers Rn, Ro and the reservoir RV are disconnected.
  • the operating force Fp of the braking operation member BP operated by the driver is transmitted to the master piston PM through the input chamber Rn by closing the first on-off valve VA. Is done.
  • the master piston PM is driven only by the adjustment hydraulic pressure Pa in the servo chamber Rs.
  • the master piston PM is pressed in the forward direction Ha by the adjustment hydraulic pressure Pa and the driver's operation force Fp. For this reason, in the increase of the master hydraulic pressure Pm, the responsiveness is improved.
  • the pressure adjusting unit YC is an on-demand type, the electric pump DC is stopped during non-braking. Accordingly, when the braking operation member BP is suddenly operated, the increase in the adjustment fluid pressure Pa cannot keep up with the increase in the operation force Fp (the rise in the adjustment fluid pressure Pa is in contrast to the rise in the operation force Fp). Can be delayed).
  • the brake fluid BF is supplied from the reservoir RV to the servo chamber Rs through the fluid pump QC, the fluid pump QC acts as a fluid resistance.
  • the bypass fluid passage HD is provided in parallel with the pressure regulation fluid passage HC including the pressure regulation valve UA.
  • the servo chamber Rs can suck the brake fluid BF from the bypass fluid passage HD, so that the pressure increase response of the master fluid pressure Pm can be ensured.
  • the bypass fluid path HD is provided with a check valve GD so as to prevent the movement of the brake fluid BF from the servo chamber Rs to the reservoir RV.
  • the simulator SS is provided with an elastic body Ds so as to generate an operating force Fp.
  • the simulator SS is provided with an orifice Os so as to improve the operation characteristics by a damping effect.
  • the master piston PM When the first and second on-off valves VA and VB are in the closed position, the master piston PM is moved in the forward direction Ha, and when the volume Vo of the reaction force chamber Ro is reduced, the corresponding braking fluid BF is It needs to be absorbed by the simulator SS.
  • the simulator SS is provided with the elastic body Ds and the orifice Os, these serve as inflow resistance of the brake fluid BF to the simulator SS.
  • the braking control device SC is also configured to include a master unit YM, a regeneration coordination unit YK, a pressure adjustment unit YC, and a controller ECU.
  • the master unit YM and the regeneration cooperative unit YK are the same as those in the first embodiment.
  • the pressure adjusting unit YC is configured by one pressure adjusting valve UA, and the same hydraulic pressure (adjusted hydraulic pressure) Pa is supplied to the servo chamber Rs and the rear wheel cylinder CWr.
  • the pressure regulating unit YC includes two pressure regulating valves UB and UC, and the controller ECU supplies the hydraulic pressure Pc supplied to the servo chamber Rs and the rear wheel wheel cylinder.
  • the supply hydraulic pressure Pb to CWr is controlled independently and individually.
  • the front wheel WHf is provided with a generator GN.
  • each symbol represents a generic name of each of the four wheels.
  • Subscripts “f” and “r” at the end of the symbol are general symbols indicating which of the front and rear wheels the two fluid paths (movement paths of the brake fluid BF) relate to.
  • the pressure adjustment unit YC includes an electric pump DC, a check valve GC, first and second pressure adjustment valves UB and UC, and first and second adjustment hydraulic pressure sensors PB and PC.
  • the pressure adjusting unit YC adjusts the hydraulic pressure Pwf of the front wheel cylinder CWf and the hydraulic pressure Pwr of the rear wheel cylinder CWr independently and individually. Specifically, the braking hydraulic pressure Pwf of the front wheel WHf provided with the generator GN is adjusted to be equal to or lower than the braking hydraulic pressure Pwr of the rear wheel WHr not provided with the generator GN.
  • the electric pump DC is constituted by one electric motor MC and one fluid pump QC, which rotate together.
  • the suction port Qs is connected to the first reservoir fluid path HV
  • the discharge port Qt is connected to one end of the pressure regulating fluid path HC.
  • a check valve GC is provided in the pressure regulating fluid path HC.
  • the other end Bv of the pressure regulating fluid path HC is connected to the reservoir fluid path HV.
  • the first and second pressure regulating valves UB and UC are linear solenoid valves whose valve opening amount (lift amount) is continuously controlled based on an energized state (for example, supply current). Proportional valve, differential pressure valve).
  • the first and second pressure regulating valves UB and UC are controlled by the controller ECU based on the drive signals Ub and Uc.
  • normally open solenoid valves are employed.
  • the second adjustment hydraulic pressure Pc adjusted by the second pressure regulating valve UC is the first adjustment hydraulic pressure Pb. It is as follows. In other words, the second adjustment hydraulic pressure Pc is adjusted to increase from “0 (atmospheric pressure)” by the second pressure adjustment valve UC, and the first adjustment hydraulic pressure Pb is adjusted to be the second by the first pressure adjustment valve UB. It adjusts so that it may increase from adjustment hydraulic pressure Pc.
  • first and second adjustment hydraulic pressure sensors PB and PC are provided in the pressure adjustment fluid path HC so as to detect the first and second adjustment hydraulic pressures Pb and Pc.
  • the pressure regulating fluid path HC is branched to the rear wheel regulating fluid path HR at a portion Bh between the fluid pump QC and the first pressure regulating valve UB.
  • the rear wheel pressure adjusting fluid path HR is connected to the rear wheel wheel cylinder CWr via the lower fluid unit YL. Accordingly, the first adjustment hydraulic pressure Pb is directly introduced (supplied) to the rear wheel hole cylinder CWr.
  • the pressure regulating fluid path HC is branched to the front wheel pressure regulating fluid path HF at a portion Bg between the first pressure regulating valve UB and the second pressure regulating valve UC.
  • the front wheel pressure adjusting fluid path HF is connected to the servo chamber Rs.
  • the second adjustment hydraulic pressure Pc is introduced (supplied) into the servo chamber Rs. Since the master cylinder CM is connected to the front wheel cylinder CWf via the lower fluid unit YL, the second adjustment hydraulic pressure Pc is indirectly introduced to the front wheel cylinder CWf via the master cylinder CM.
  • the pressure adjusting unit YC has a bypass fluid that connects the reservoir RV and the servo chamber Rs in parallel with the pressure adjusting fluid path HC so as to improve the pressure rising response at the time of sudden braking.
  • Road HD is provided.
  • a check valve GD is interposed in the bypass fluid path HD. In the check valve GD, the flow of the brake fluid BF from the reservoir RV to the servo chamber Rs is allowed, but the flow from the servo chamber Rs to the reservoir RV is blocked.
  • the first adjustment hydraulic pressure Pb and the second adjustment hydraulic pressure Pc are adjusted independently and separately within the range of “Pb ⁇ Pc”.
  • the regenerative cooperative control is executed in consideration of the front-rear distribution of the braking force, so that the deceleration and stability of the vehicle can be ensured and the regenerative energy can be maximized.
  • the required braking force Fd is a braking force for the entire vehicle, and is increased according to an increase in the operation amount Ba.
  • the operation amount Ba is increased and the regenerative braking force Fg exceeds the maximum regenerative force Fx (see block X160 in FIG. 2), the required braking force Fd cannot be achieved with the regenerative braking force Fg.
  • the friction braking force Fmr of the rear wheel WHr is increased by the first adjustment hydraulic pressure Pb corresponding to the shortage of the regenerative braking force Fg with respect to the required braking force Fd (that is, “Fd ⁇ Fx”).
  • Pb corresponding to the shortage of the regenerative braking force Fg with respect to the required braking force Fd (that is, “Fd ⁇ Fx”).
  • the ratio (front / rear distribution ratio) Hf of the front wheel braking force to the total braking force is gradually decreased from 100% when the friction braking force Fmr of the rear wheel WHr is sequentially increased.
  • the second adjustment hydraulic pressure Pc starts to increase from “0”.
  • the friction braking force Fmf of the front wheel WHf increases.
  • the front-rear distribution ratio Hf is maintained at the desired value hf while the regenerative braking force Fg maintains the maximum value Fx.
  • the front wheel hydraulic pressure Pwf and the rear wheel hydraulic pressure Pwr are individually adjusted by the first and second adjustment hydraulic pressures Pb and Pc. Specifically, as the operation amount Ba increases, “only the regenerative braking force Fg of the front wheel WHf by the generator GN” ⁇ “(regenerative braking force Fg of the front wheel WHf) + (friction of the rear wheel WHr by the first adjustment hydraulic pressure Pb).
  • Braking force Fmr ” ⁇ “ (regenerative braking force Fg of front wheel WHf) + (friction braking force Fmf of front wheel WHf due to second adjustment hydraulic pressure Pc) + (friction braking force Fmr of rear wheel WHr) ”
  • the occurrence state of is transitioned. As a result, sufficient energy that can be regenerated is ensured, and the front-rear distribution of the braking force is made appropriate, so that the deceleration and stability of the vehicle can be ensured.
  • the same effects as in the first embodiment are obtained. That is, when a sudden operation is determined, the master piston PM is driven by the operating force Fp by the driver in addition to the second adjustment hydraulic pressure Pc by closing the first on-off valve VA. . For this reason, the boost response of the master hydraulic pressure Pm is improved.
  • the brake fluid BF to the servo chamber Rs is supplied from the reservoir RV through the bypass fluid path HD. Since the fluid resistance is low in the movement of the brake fluid BF, the boosting response can be effectively improved.
  • the simulator SS includes resistance elements such as the elastic body Ds and the orifice Os.
  • the second on-off valve VB is opened, and the brake fluid BF from the reaction force chamber Ro is supplied to the fluid path. It is moved to the reservoir RV via HS and HT. The influence of the resistance element is avoided, and the boosting response can be improved efficiently.
  • a third embodiment of the braking control device SC will be described.
  • the first adjustment hydraulic pressure Pb is introduced into the rear wheel cylinder CWr, and the second adjustment hydraulic pressure Pc is supplied to the servo chamber Rs.
  • the third embodiment is applied to a vehicle including a generator GN on the rear wheel WHr, the first adjustment hydraulic pressure Pb is supplied to the servo chamber Rs, and the second adjustment hydraulic pressure Pc is supplied to the rear wheel wheel cylinder CWr.
  • the front wheel pressure regulating fluid path HF is connected to the part Bh
  • the rear wheel pressure regulating fluid path HR is connected to the part Bg.
  • the rear wheel hydraulic pressure Pwr and the front wheel hydraulic pressure Pwf are individually adjusted by the first and second adjustment hydraulic pressures Pb and Pc. Specifically, as the operation amount Ba increases, “only the regenerative braking force Fg of the rear wheel WHr by the generator GN” ⁇ “(friction braking force Fmf of the front wheel WHf by the first adjustment hydraulic pressure Pb) + (of the rear wheel WHr). Regenerative braking force Fg) " ⁇ " (friction braking force Fmf of front wheel WHf due to second adjustment hydraulic pressure Pc) + (regenerative braking force Fg of rear wheel WHr) + (friction braking force Fmr of rear wheel WHr) "in this order.
  • the generation state of the braking force is changed. As a result, sufficient energy that can be regenerated is ensured, and the front-rear distribution of the braking force is made appropriate, so that the deceleration and stability of the vehicle can be ensured. Further, in the response of the master hydraulic pressure Pm, the boost response of the master cylinder hydraulic pressure Pm (resulting in the brake hydraulic pressure Pw) is improved by driving the first and second on-off valves VA and VB.
  • the actions and effects of the braking control device SC according to the present invention will be summarized.
  • the braking control device SC pumps the braking fluid BF to the wheel cylinder CW provided in the wheel WH according to the operation amount Ba of the braking operation member BP. As a result, braking torque is generated in the wheel WH.
  • the braking control device SC includes a simulator SS, a master unit YM, a pressure adjustment unit YC, a regeneration coordination unit YK, a first on-off valve VA, and a controller ECU.
  • the simulator SS applies an operating force Fp according to the operation of the braking operation member BP to the braking operation member BP.
  • the master unit YM is composed of a master cylinder CM and a master piston PM.
  • the master unit YM includes a “master chamber Rm connected to the wheel cylinder CW” and a “servo chamber for applying a forward force Fa opposite to the reverse force Fb applied to the master piston PM by the master chamber Rm to the master piston PM. Rs "is provided.
  • the pressure adjustment unit YC includes an electric pump DC that sucks the brake fluid BF from the reservoir RV, and electromagnetic valves UA, UB, and UC.
  • the regenerative cooperative unit YK includes an input piston PK that is linked to the braking operation member BP and an input cylinder CN.
  • the regeneration coordination unit YK is provided with an input chamber Rn connected to the simulator SS via the simulator fluid path HS. Inside the input chamber Rn, the gap Ks between the master piston PM and the input piston PK is controlled by adjusting hydraulic pressures Pa, Pb, and Pc. In the input chamber Rn, the clearance Ks between the master piston PM and the input piston PK is controlled by the adjustment hydraulic pressures Pa, Pb, and Pc, thereby achieving regenerative cooperative control.
  • the first on-off valve VA is provided in the simulator fluid path HS.
  • the first on-off valve VA is a normally closed on / off solenoid valve having a first open position for communicating the input chamber Rn and the simulator SS and a first closed position for blocking the input chamber Rn and the simulator SS.
  • the controller ECU controls the electric pump DC, the electromagnetic valves UA, UB, UC, and the first on-off valve VA.
  • the controller ECU based on the operation amount Ba, “whether or not the operation of the braking operation member BP is a sudden operation” is determined. And when it is denied that it is sudden operation (namely, normal operation state), the 1st on-off valve VA is driven to the 1st open position.
  • the first on-off valve VA is driven to the first closed position.
  • the controller ECU calculates an operation speed dB (for example, a differential value dS of the operation displacement Sp) based on the operation amount Ba (in particular, the operation displacement Sp of the braking operation member BP), and the operation speed dB is less than the predetermined speed dx. If it is, it is denied that the operation is sudden, and if the operation speed dB is equal to or higher than the predetermined speed dx, it is affirmed that the operation is sudden. Note that a condition for the operation amount Ba can be added so as to improve the accuracy of determination.
  • the predetermined speed dx and the predetermined amount bx are preset constants.
  • the electric pump DC Since the electric pump DC is an on-demand type, the electric pump DC is not operated during non-braking (it is in a stopped state). In the sudden operation state, the input chamber Rn is brought into a fluid locked state by closing the first on-off valve VA. Thereby, the operating force Fp of the braking operation member BP operated by the driver is transmitted to the master piston PM via the input chamber Rn.
  • the master piston PM is pressed in the forward direction Ha by the adjustment hydraulic pressures Pa, Pb, Pc and the driver's operation force Fp. For this reason, the response is improved as the master cylinder hydraulic pressure Pm (that is, the braking hydraulic pressure Pw) increases.
  • the first on-off valve VA is closed, the input chamber Rn is in communication with the simulator SS and the reaction force chamber Ro, and the master piston PM is adjusted liquid in the servo chamber Rs. It is driven only by the pressures Pa, Pb, Pc.
  • the brake control device SC may be provided with a bypass fluid path HD and a check valve GD.
  • the bypass fluid path HD is a fluid path that connects the reservoir RV and the servo chamber Rs.
  • the check valve GD is provided in the bypass fluid path HD and allows the brake fluid BF to move from the reservoir RV to the servo chamber Rs, but prevents the brake fluid BF from moving from the servo chamber Rs to the reservoir RV.
  • a bypass fluid path HD is provided in parallel to the pressure regulating fluid path HC including the pressure regulating valves UA, UB, UC, and the reservoir RV and the servo chamber Rs are connected. Further, a check valve GD is provided in the bypass fluid path HD, and movement of “RV ⁇ Rs” is allowed in movement of the brake fluid BF, but movement of “Rs ⁇ RV” is prohibited.
  • the brake fluid BF can flow into the servo chamber Rs via the bypass fluid passage HD, so that the master cylinder fluid pressure Pm increases. Pressure responsiveness can be ensured.
  • the braking controller SC (in particular, the master unit YM) is provided with a reaction force chamber Ro in which the volume Vo decreases when the volume Vs of the servo chamber Rs increases.
  • the reaction force chamber Ro is connected to the simulator SS and the input chamber Rn via the simulator fluid path HS.
  • the reservoir fluid path HT is connected between the first on-off valve VA and the reaction force chamber Ro of the simulator fluid path HS, and finally connected to the reservoir RV.
  • the reservoir fluid path HT is provided with a second on-off valve VB.
  • the second on-off valve VB is a normally open electromagnetic valve having a second open position that allows the reaction force chamber Ro and the reservoir RV to communicate with each other and a second closed position that blocks the reaction force chamber Ro and the reservoir RV.
  • the second on-off valve VB is driven by the controller ECU to the second closed position when the sudden operation is denied, and to the second open position when the sudden operation is affirmed.
  • an elastic body Ds is provided so as to generate an operating force Fp.
  • an orifice Os is provided in the inflow hole of the brake fluid BF so as to maintain the operating characteristics favorably by the damping effect.
  • the linear pressure regulating valves UA, UB, and UC are used in which the valve opening amount is adjusted according to the energization amount.
  • the pressure regulating valves UA, UB, and UC are on / off valves, the opening and closing of the valves may be controlled by a duty ratio, and the hydraulic pressure may be linearly controlled.
  • the configuration of the disc type braking device (disc brake) is exemplified.
  • the friction member is a brake pad
  • the rotating member is a brake disk.
  • a drum type braking device drum brake
  • a brake drum is employed instead of the caliper.
  • the friction member is a brake shoe
  • the rotating member is a brake drum.
  • the pressure regulating fluid path HC is connected to the first reservoir fluid path HV at the site Bv to form a reflux path.
  • the pressure regulation fluid path HC is connected to the reservoir RV (particularly, the pressure regulation reservoir chamber Rd), and the reflux path may be formed including the reservoir RV (see the fluid path shown by the two-dot chain line in FIGS. 1 and 4). ). With this configuration, gas suction by the fluid pump QC can be suppressed.
  • the master cylinder CM is a single type having one master chamber Rm, and one of the front wheel cylinder CWf and the rear wheel cylinder CWr is connected to the master cylinder CM.
  • the other of the front wheel cylinder CWf and the rear wheel cylinder CWr was connected to the pressure regulating fluid path HC.
  • a tandem type is adopted as the master cylinder CM, one of the two hydraulic chambers of the master cylinder CM is connected to the front wheel cylinder CWf, and the other of the two hydraulic chambers of the master cylinder CM is the rear. It can be connected to a wheel wheel cylinder CWr.
  • a diagonal type A fluid path (also referred to as “X-type”) may be used.
  • a fluid path also referred to as “X-type”
  • the dimension of the longitudinal direction of the braking control device SC is shortened when the single master cylinder CM is adopted, it is preferable in terms of mountability on the vehicle.
  • the first on-off valve VA and the second on-off valve VB are energized while the start switch is on.
  • the first on-off valve VA may be set to the open position and the second on-off valve VB may be set to the closed position.
  • the determination during braking is performed based on at least one of the braking operation amount Ba and the operation signal St (see step S140 in FIG. 2).

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Regulating Braking Force (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Braking Systems And Boosters (AREA)

Abstract

This brake control device is provided with: a simulator which imparts an operating force to an operating member; a master unit including a master chamber connected to a wheel cylinder, and a servo chamber which imparts a forward force to a master piston; a pressure regulating unit which introduces a regulating hydraulic pressure into the servo chamber; a regenerative coordination unit which includes an input piston linked to the operating member, and which has an input chamber connected to the simulator by way of a simulator fluid path; a first open/closed valve which is provided in the simulator fluid path and which has an open position providing communication between the input chamber and the simulator, and a closed position isolating the input chamber and the simulator; and a controller which controls the first open/closed valve. The controller determines "whether or not an operation is sudden" on the basis of an operation amount, and when the sudden operation is denied, drives the first open/closed valve to the open position, and when the sudden operation is affirmed, drives the first open/closed valve to the closed position.

Description

車両の制動制御装置Brake control device for vehicle
 本発明は、車両の制動制御装置に関する。 The present invention relates to a vehicle braking control device.
 出願人は、特許文献1に記載されるような車両用の制動制御装置を開発している。該装置では、機械式レギュレータを簡素化、及び、小型化するため、「高圧源のブレーキ液圧に基づいて、パイロット室に供給されるパイロット圧に応じた出力圧力を出力ポートから送出する機械式レギュレータと、パイロット室に接続された切替部と、切替部を介してパイロット室に接続され、第1パイロット圧をパイロット室に供給する第1パイロット圧発生装置と、切替部を介してパイロット室に接続され、第2パイロット圧をパイロット室に供給する第2パイロット圧発生装置と、機械式レギュレータの出力ポートから供給される出力圧力に基づいたブレーキ力を発生させるホイールシリンダと、を備え、切替部は、第1パイロット圧及び第2パイロット圧の何れか一方をパイロット室に供給する」よう構成されている。 The applicant has developed a braking control device for a vehicle as described in Patent Document 1. In this apparatus, in order to simplify and reduce the size of the mechanical regulator, “a mechanical type that sends out an output pressure from the output port according to the pilot pressure supplied to the pilot chamber based on the brake fluid pressure of the high pressure source”. A regulator, a switching unit connected to the pilot chamber, a first pilot pressure generator connected to the pilot chamber via the switching unit and supplying the first pilot pressure to the pilot chamber, and a pilot chamber via the switching unit A switching unit comprising: a second pilot pressure generator connected to supply the second pilot pressure to the pilot chamber; and a wheel cylinder that generates a braking force based on an output pressure supplied from an output port of the mechanical regulator. Is configured to supply either one of the first pilot pressure and the second pilot pressure to the pilot chamber.
 出願人は、更なる改良を加え、特許文献2に記載されるような制動制御装置を開発している。該装置は、「電動ポンプ、及び、電磁弁にて構成され、電動ポンプが吐出する制動液を、電磁弁によって調整液圧に調節し、調整液圧を後輪ホイールシリンダに導入する調圧ユニット」、及び、「マスタシリンダ、及び、マスタピストンにて構成され、前輪ホイールシリンダに接続されたマスタ室、及び、調整液圧が導入され、マスタ室によってマスタピストンに加えられる後退力に対向する前進力をマスタピストンに付与するサーボ室を有するマスタユニット」を含んで構成される。 The applicant has developed a braking control device as described in Patent Document 2 with further improvements. This device is composed of an “electric pump and an electromagnetic valve, and adjusts the brake fluid discharged from the electric pump to the adjusted hydraulic pressure by the electromagnetic valve, and introduces the adjusted hydraulic pressure into the rear wheel cylinder. ”And“ A master chamber composed of a master cylinder and a master piston and connected to the front wheel cylinder, and a forward movement in which the adjustment hydraulic pressure is introduced and which opposes the reverse force applied to the master piston by the master chamber A master unit having a servo chamber for applying a force to the master piston.
 該装置では、電動ポンプが吐出する制動液が、電磁弁によって調整液圧に調節され、サーボ室、及び、後輪ホイールシリンダに導入される。該構成において、電動ポンプは、非制動時には停止され、制動時に回転駆動される。制動制御装置は、所謂、オンデマンド型である。このため、急制動時における昇圧応答性の向上が望まれている。 In this device, the brake fluid discharged from the electric pump is adjusted to the adjusted hydraulic pressure by the electromagnetic valve and introduced into the servo chamber and the rear wheel wheel cylinder. In this configuration, the electric pump is stopped during non-braking and is rotationally driven during braking. The braking control device is a so-called on-demand type. For this reason, it is desired to improve the boosting response during sudden braking.
特開2013-107561号公報JP 2013-107561 A 特願2017-184272号公報Japanese Patent Application No. 2017-184272
 本発明の目的は、オンデマンド型の車両の制動制御装置において、昇圧応答性が向上され得るものを提供することである。 An object of the present invention is to provide a braking control device for an on-demand type vehicle in which the boosting response can be improved.
 本発明に係る制動制御装置SCは、車両の制動操作部材(BP)の操作量(Ba)に応じて、前記車両の車輪(WH)のホイールシリンダ(CW)に制動液(BF)を圧送し、前記車輪(WH)に制動トルクを発生する。制動制御装置SCは、前記操作量(Ba)に応じた操作力(Fp)を前記制動操作部材(BP)に付与するシミュレータ(SS)と、マスタシリンダ(CM)、及び、マスタピストン(PM)にて構成され、「前記ホイールシリンダ(CW)に接続されたマスタ室(Rm)」、及び、「前記マスタ室(Rm)によって前記マスタピストン(PM)に加えられる後退力(Fb)に対向する前進力(Fa)を前記マスタピストン(PM)に付与するサーボ室(Rs)」を有するマスタユニット(YM)と、前記車両のリザーバ(RV)から前記制動液(BF)を吸入する電動ポンプ(DC)、及び、電磁弁(UA、UB、UC)にて構成され、前記電動ポンプ(DC)が吐出する前記制動液(BF)を、前記電磁弁(UA、UB、UC)によって調整液圧(Pa、Pb、Pc)に調節し、該調整液圧(Pa、Pb、Pc)を前記サーボ室(Rs)に導入する調圧ユニット(YC)と、前記制動操作部材(BP)に連動する入力ピストン(PK)、及び、入力シリンダ(CN)にて構成され、シミュレータ流体路(HS)を介して前記シミュレータ(SS)に接続された入力室(Rn)を有し、前記入力室(Rn)の内部で、前記マスタピストン(PM)と前記入力ピストン(PK)との隙間(Ks)が前記調整液圧(Pa、Pb、Pc)によって制御される回生協調ユニット(YK)と、前記シミュレータ流体路(HS)に設けられ、前記入力室(Rn)と前記シミュレータ(SS)とを連通する第1開位置、及び、前記入力室(Rn)と前記シミュレータ(SS)とを遮断する第1閉位置を有する第1開閉弁(VA)と、前記電動ポンプ(DC)、前記電磁弁(UA、UB、UC)、及び、前記第1開閉弁(VA)を制御するコントローラ(ECU)と、を備える。 The brake control device SC according to the present invention pumps the brake fluid (BF) to the wheel cylinder (CW) of the vehicle wheel (WH) according to the operation amount (Ba) of the vehicle brake operation member (BP). A braking torque is generated on the wheel (WH). The brake controller SC includes a simulator (SS) that applies an operation force (Fp) corresponding to the operation amount (Ba) to the brake operation member (BP), a master cylinder (CM), and a master piston (PM). The "master chamber (Rm) connected to the wheel cylinder (CW)" and "reverse force (Fb) applied to the master piston (PM) by the master chamber (Rm)" A master unit (YM) having a servo chamber (Rs) for applying a forward force (Fa) to the master piston (PM), and an electric pump for sucking the brake fluid (BF) from a reservoir (RV) of the vehicle DC) and electromagnetic valves (UA, UB, UC), and the brake fluid (BF) discharged from the electric pump (DC) is supplied by the electromagnetic valves (UA, UB, UC). A pressure regulating unit (YC) that adjusts the regulated fluid pressure (Pa, Pb, Pc) and introduces the regulated fluid pressure (Pa, Pb, Pc) into the servo chamber (Rs), and the braking operation member (BP) And an input chamber (Rn) connected to the simulator (SS) via a simulator fluid path (HS). The input piston (PK) is coupled to the input cylinder (CN). A regenerative cooperative unit (YK) in which a gap (Ks) between the master piston (PM) and the input piston (PK) is controlled by the adjustment hydraulic pressures (Pa, Pb, Pc) inside the chamber (Rn). A first open position provided in the simulator fluid path (HS) for communicating the input chamber (Rn) and the simulator (SS), and blocking the input chamber (Rn) and the simulator (SS) First closed A first on-off valve (VA) having a device, the electric pump (DC), the electromagnetic valves (UA, UB, UC), and a controller (ECU) for controlling the first on-off valve (VA). Prepare.
 本発明に係る制動制御装置SCでは、前記コントローラ(ECU)は、前記操作量(Ba)に基づいて、前記制動操作部材(BP)の操作が急操作であるか、否かを判定し、前記急操作であることを否定する場合には、前記第1開閉弁(VA)を前記第1開位置に駆動し、前記急操作であることを肯定する場合には、前記第1開閉弁(VA)を前記第1閉位置に駆動するよう構成されている。例えば、前記コントローラ(ECU)は、前記操作量(Ba)に基づいて操作速度(dB)を演算し、前記操作速度(dB)が所定速度(dx)未満である場合に前記急操作であることを否定し、前記操作速度(dB)が前記所定速度(dx)以上である場合に前記急操作であることを肯定する。 In the braking control device SC according to the present invention, the controller (ECU) determines whether or not the operation of the braking operation member (BP) is a sudden operation based on the operation amount (Ba), and When denying the sudden operation, the first on-off valve (VA) is driven to the first open position, and when affirming the sudden operation, the first on-off valve (VA) ) To the first closed position. For example, the controller (ECU) calculates an operation speed (dB) based on the operation amount (Ba), and when the operation speed (dB) is less than a predetermined speed (dx), the sudden operation is performed. If the operation speed (dB) is equal to or higher than the predetermined speed (dx), the sudden operation is affirmed.
 上記構成によれば、急操作状態には、第1開閉弁VAが閉位置にされることにより、入力室Rnが流体ロックの状態にされる。このため、運転者によって操作された制動操作部材BPの操作力Fpが、入力室Rnを介して、マスタピストンPMに伝達され、マスタシリンダ液圧Pm(つまり、制動液圧Pw)の昇圧応答性が向上される。 According to the above configuration, in the sudden operation state, the first opening / closing valve VA is brought into the closed position, whereby the input chamber Rn is brought into a fluid locked state. Therefore, the operating force Fp of the braking operation member BP operated by the driver is transmitted to the master piston PM via the input chamber Rn, and the boosting response of the master cylinder hydraulic pressure Pm (that is, the braking hydraulic pressure Pw). Is improved.
本発明に係る車両の制動制御装置SCの第1の実施形態を説明するための全体構成図である。1 is an overall configuration diagram for explaining a first embodiment of a vehicle braking control device SC according to the present invention. 回生協調制御を含む調圧制御の処理を説明するための制御フロー図である。It is a control flow figure for explaining processing of pressure regulation control including regenerative cooperation control. 急操作時の処理を説明するための制御フロー図である。It is a control flowchart for demonstrating the process at the time of sudden operation. 本発明に係る車両の制動制御装置SCの第2の実施形態を説明するための全体構成図である。It is a whole block diagram for demonstrating 2nd Embodiment of the braking control apparatus SC of the vehicle which concerns on this invention.
<構成部材等の記号、及び、記号末尾の添字>
 以下の説明において、「ECU」等の如く、同一記号を付された構成部材、演算処理、信号、特性、及び、値は、同一機能のものである。各車輪に係る記号末尾に付された添字「i」~「l」は、それが何れの車輪に関するものであるかを示す包括記号である。具体的には、「i」は右前輪、「j」は左前輪、「k」は右後輪、「l」は左後輪を示す。例えば、4つの各ホイールシリンダにおいて、右前輪ホイールシリンダCWi、左前輪ホイールシリンダCWj、右後輪ホイールシリンダCWk、及び、左後輪ホイールシリンダCWlと表記される。更に、記号末尾の添字「i」~「l」は、省略され得る。添字「i」~「l」が省略された場合には、各記号は、4つの各車輪の総称を表す。例えば、「WH」は各車輪、「CW」は各ホイールシリンダを表す。
<Symbols of components and subscripts at the end of the symbols>
In the following description, components, arithmetic processing, signals, characteristics, and values having the same symbol, such as “ECU”, have the same function. The suffixes “i” to “l” attached to the end of the symbol relating to each wheel are comprehensive symbols indicating which wheel the wheel is associated with. Specifically, “i” indicates a right front wheel, “j” indicates a left front wheel, “k” indicates a right rear wheel, and “l” indicates a left rear wheel. For example, in each of the four wheel cylinders, they are expressed as a right front wheel wheel cylinder CWi, a left front wheel wheel cylinder CWj, a right rear wheel wheel cylinder CWk, and a left rear wheel wheel cylinder CWl. Further, the suffixes “i” to “l” at the end of the symbol can be omitted. When the subscripts “i” to “l” are omitted, each symbol represents a generic name of each of the four wheels. For example, “WH” represents each wheel, and “CW” represents each wheel cylinder.
 2つの制動系統に係る記号の末尾に付された添字「f」、「r」は、それが前後輪の何れの系統に関するものであるかを示す包括記号である。具体的には、「f」は前輪系統、「r」は後輪系統を示す。例えば、各車輪のホイールシリンダCWにおいて、前輪ホイールシリンダCWf(=CWi、CWj)、及び、後輪ホイールシリンダCWr(=CWk、CWl)と表記される。更に、記号末尾の添字「f」、「r」は省略され得る。添字「f」、「r」が省略された場合には、各記号は、2つの各制動系統の総称を表す。例えば、「CW」は、前後の制動系統におけるホイールシリンダを表す。 The subscripts “f” and “r” attached to the end of the symbols related to the two braking systems are comprehensive symbols indicating which system of the front and rear wheels it is related to. Specifically, “f” indicates a front wheel system and “r” indicates a rear wheel system. For example, in the wheel cylinder CW of each wheel, they are expressed as a front wheel wheel cylinder CWf (= CWi, CWj) and a rear wheel wheel cylinder CWr (= CWk, CWl). Further, the suffixes “f” and “r” at the end of the symbol can be omitted. When the subscripts “f” and “r” are omitted, each symbol represents a generic name of the two braking systems. For example, “CW” represents a wheel cylinder in the front and rear braking systems.
<本発明に係る車両の制動制御装置の第1の実施形態>
 図1の全体構成図を参照して、本発明に係る制動制御装置SCの第1の実施形態について説明する。一般的な車両では、2系統の流体路が採用され、冗長性が確保されている。流体路は、制動制御装置SCの作動液体である制動液BFを移動するための経路であり、制動配管、流体ユニットの流路、ホース等が該当する。流体路の内部は、制動液BFが満たされている。制動制御装置SCでは、2系統の流体路として、所謂、前後型(「H型」ともいう)のものが採用される。前輪系統は、前輪ホイールシリンダCWf(=CWi、CWj)に接続され、後輪系統は、後輪ホイールシリンダCWr(=CWk、CWl)に接続される。流体路において、リザーバRVに近い側(ホイールシリンダCWから遠い側)が、「上流側」、又は、「上部」と称呼され、ホイールシリンダCWに近い側(リザーバRVから遠い側)が、「下流側」、又は、「下部」と称呼される。
<First Embodiment of Brake Control Device for Vehicle according to the Present Invention>
A first embodiment of a braking control device SC according to the present invention will be described with reference to the overall configuration diagram of FIG. In general vehicles, two fluid paths are employed to ensure redundancy. The fluid path is a path for moving the brake fluid BF that is the working fluid of the brake control device SC, and corresponds to a brake pipe, a fluid unit flow path, a hose, and the like. The inside of the fluid path is filled with the brake fluid BF. In the braking control device SC, a so-called front and rear type (also referred to as “H type”) is adopted as the two fluid paths. The front wheel system is connected to the front wheel cylinder CWf (= CWi, CWj), and the rear wheel system is connected to the rear wheel wheel cylinder CWr (= CWk, CWl). In the fluid path, the side close to the reservoir RV (the side far from the wheel cylinder CW) is called “upstream side” or “upper side”, and the side close to the wheel cylinder CW (the side far from the reservoir RV) is called “downstream”. Referred to as “side” or “bottom”.
 車両には、駆動用の電気モータGNが備えられる。つまり、車両は、ハイブリッド自動車、又は、電気自動車である。駆動用の電気モータGNは、エネルギ回生用のジェネレータ(発電機)としても機能する。例えば、ジェネレータGNは、前輪WHfに備えられる。電気モータ/ジェネレータGNは、駆動コントローラECDによって制御される。 The vehicle is provided with an electric motor GN for driving. That is, the vehicle is a hybrid vehicle or an electric vehicle. The electric motor GN for driving also functions as a generator (generator) for energy regeneration. For example, the generator GN is provided in the front wheel WHf. The electric motor / generator GN is controlled by a drive controller ECD.
 制動制御装置SCでは、所謂、回生協調制御(回生制動と摩擦制動との協調)が実行される。制動制御装置SCを備える車両には、制動操作部材BP、ホイールシリンダCW、リザーバRV、及び、車輪速度センサVWが備えられる。 In the braking control device SC, so-called regenerative cooperative control (cooperation between regenerative braking and friction braking) is performed. A vehicle including the braking control device SC includes a braking operation member BP, a wheel cylinder CW, a reservoir RV, and a wheel speed sensor VW.
 制動操作部材(例えば、ブレーキペダル)BPは、運転者が車両を減速するために操作する部材である。制動操作部材BPが操作されることによって、車輪WHの制動トルクが調整され、車輪WHに制動力が発生される。具体的には、車両の車輪WHには、回転部材(例えば、ブレーキディスク)KTが固定される。そして、回転部材KTを挟み込むようにブレーキキャリパが配置され、そこには、ホイールシリンダCWが設けられている。ホイールシリンダCW内の制動液BFの圧力(制動液圧)Pwが増加されることによって、摩擦部材(例えば、ブレーキパッド)が、回転部材KTに押し付けられる。回転部材KTと車輪WHとは、一体的に回転するよう固定されているため、このときに生じる摩擦力によって、車輪WHに制動トルク(結果、摩擦制動力)が発生される。 Brake operation member (for example, brake pedal) BP is a member that the driver operates to decelerate the vehicle. By operating the braking operation member BP, the braking torque of the wheel WH is adjusted, and a braking force is generated on the wheel WH. Specifically, a rotating member (for example, a brake disc) KT is fixed to the vehicle wheel WH. A brake caliper is disposed so as to sandwich the rotating member KT, and a wheel cylinder CW is provided there. By increasing the pressure (braking fluid pressure) Pw of the brake fluid BF in the wheel cylinder CW, the friction member (for example, a brake pad) is pressed against the rotating member KT. Since the rotating member KT and the wheel WH are fixed so as to rotate integrally, a braking torque (resulting in friction braking force) is generated on the wheel WH by the frictional force generated at this time.
 リザーバ(大気圧リザーバ)RVは、作動液体用のタンクであり、その内部に制動液BFが貯蔵されている。リザーバRVの下部は、仕切り板SKによって、マスタシリンダ室Rmに接続されたマスタリザーバ室Ruと、調圧ユニットYCに接続された調圧リザーバ室Rdとに区画されている。リザーバRV内に制動液BFが満たされた状態では、制動液BFの液面は、仕切り板SKの高さよりも上にある。このため、制動液BFは、仕切り板SKを超えて、マスタリザーバ室Ruと調圧リザーバ室Rdとの間を自由に移動することができる。一方、リザーバRV内の制動液BFの量が減少し、制動液BFの液面が仕切り板SKの高さよりも低くなると、マスタリザーバ室Ruと調圧リザーバ室Rdとは独立した液だめとなる。 Reservoir (atmospheric pressure reservoir) RV is a tank for working fluid, in which braking fluid BF is stored. The lower portion of the reservoir RV is partitioned by a partition plate SK into a master reservoir chamber Ru connected to the master cylinder chamber Rm and a pressure regulating reservoir chamber Rd connected to the pressure regulating unit YC. In a state where the brake fluid BF is filled in the reservoir RV, the liquid level of the brake fluid BF is higher than the height of the partition plate SK. For this reason, the brake fluid BF can freely move between the master reservoir chamber Ru and the pressure regulation reservoir chamber Rd beyond the partition plate SK. On the other hand, when the amount of the brake fluid BF in the reservoir RV decreases and the liquid level of the brake fluid BF becomes lower than the height of the partition plate SK, the master reservoir chamber Ru and the pressure regulating reservoir chamber Rd become independent reservoirs. .
 各車輪WHには、車輪速度Vwを検出するよう、車輪速度センサVWが備えられる。車輪速度Vwの信号は、アンチスキッド制御(車輪の過大な減速スリップを抑制する制御)、車両安定化制御(過大なオーバステア、アンダステア挙動を抑制する制御)、等の各輪独立の制動制御に利用される。車輪速度センサVWによって検出された各車輪速度Vwに基づいて、車体速度Vxが演算される。 Each wheel WH is provided with a wheel speed sensor VW so as to detect the wheel speed Vw. The wheel speed Vw signal is used for independent braking control for each wheel, such as anti-skid control (control to suppress excessive deceleration slip of the wheel) and vehicle stabilization control (control to suppress excessive oversteer and understeer behavior). Is done. A vehicle body speed Vx is calculated based on each wheel speed Vw detected by the wheel speed sensor VW.
≪制動制御装置SC≫
 制動制御装置SCは、上部流体ユニットYU、及び、下部流体ユニットYLを含んで構成される。ここで、上部流体ユニットYUはマスタシリンダCMに近い側の流体ユニットであり、下部流体ユニットYLはホイールシリンダCWに近い側の流体ユニットである。各流体ユニットYU、YLの内部は、制動液BFによって液密状態にされている。上部流体ユニットYUは上部コントローラECUによって制御され、下部流体ユニットYLは下部コントローラECLによって制御される。上部コントローラECUと下部コントローラECLとは、各信号(センサ検出値、演算値、等)が共有されるよう、通信バスBSを介して接続されている。
≪Brake control device SC≫
The braking control device SC includes an upper fluid unit YU and a lower fluid unit YL. Here, the upper fluid unit YU is a fluid unit closer to the master cylinder CM, and the lower fluid unit YL is a fluid unit closer to the wheel cylinder CW. The inside of each fluid unit YU, YL is made liquid-tight by the brake fluid BF. The upper fluid unit YU is controlled by the upper controller ECU, and the lower fluid unit YL is controlled by the lower controller ECL. The upper controller ECU and the lower controller ECL are connected via a communication bus BS so that each signal (sensor detection value, calculation value, etc.) is shared.
 制動制御装置SCの上部流体ユニットYUは、操作量センサBA、操作スイッチST、ストロークシミュレータSS、マスタユニットYM、調圧ユニットYC、及び、回生協調ユニットYKにて構成される。 The upper fluid unit YU of the braking control device SC is composed of an operation amount sensor BA, an operation switch ST, a stroke simulator SS, a master unit YM, a pressure adjustment unit YC, and a regeneration coordination unit YK.
 運転者による制動操作部材(ブレーキペダル)BPの操作量Baを検出するよう、操作量センサBAが設けられる。操作量センサBAとして、制動操作部材BPの操作変位Spを検出する操作変位センサSPが設けられる。制動操作部材BPの操作力Fpを検出するよう、操作力センサFPが設けられる。また、操作量センサBAとして、ストロークシミュレータSS内の液圧(シミュレータ液圧)Psを検出するよう、シミュレータ液圧センサPSが設けられる。回生協調ユニットYKの入力室Rn内の液圧(入力液圧)Pnを検出するよう、入力液圧センサPNが設けられる。操作量センサBAは、上述の操作変位センサSP等の総称であり、制動操作量Baとして、操作変位Sp、操作力Fp、シミュレータ液圧Ps、及び、入力液圧Pnのうちの少なくとも1つが採用される。検出された制動操作量Baは、上部コントローラECUに入力される。 An operation amount sensor BA is provided so as to detect the operation amount Ba of the braking operation member (brake pedal) BP by the driver. As the operation amount sensor BA, an operation displacement sensor SP for detecting an operation displacement Sp of the braking operation member BP is provided. An operation force sensor FP is provided so as to detect the operation force Fp of the braking operation member BP. Further, a simulator hydraulic pressure sensor PS is provided as the operation amount sensor BA so as to detect the hydraulic pressure (simulator hydraulic pressure) Ps in the stroke simulator SS. An input hydraulic pressure sensor PN is provided so as to detect a hydraulic pressure (input hydraulic pressure) Pn in the input chamber Rn of the regeneration cooperative unit YK. The operation amount sensor BA is a general term for the above-described operation displacement sensor SP and the like, and as the braking operation amount Ba, at least one of the operation displacement Sp, the operation force Fp, the simulator hydraulic pressure Ps, and the input hydraulic pressure Pn is adopted. Is done. The detected braking operation amount Ba is input to the upper controller ECU.
 制動操作部材BPには、運転者による制動操作部材BPの操作の有無を検出するよう、操作スイッチSTが設けられる。制動操作部材BPが操作されていない場合(即ち、非制動時)には、制動操作スイッチSTによって、操作信号Stとしてオフ信号が出力される。一方、制動操作部材BPが操作されている場合(即ち、制動時)には、操作信号Stとしてオン信号が出力される。制動操作信号Stは、コントローラECUに入力される。 The brake operation member BP is provided with an operation switch ST so as to detect whether or not the driver has operated the brake operation member BP. When the brake operation member BP is not operated (that is, during non-braking), the brake operation switch ST outputs an off signal as the operation signal St. On the other hand, when the braking operation member BP is operated (that is, during braking), an ON signal is output as the operation signal St. The braking operation signal St is input to the controller ECU.
 ストロークシミュレータ(単に、「シミュレータ」ともいう)SSが、制動操作部材BPに操作力Fpを発生させるために設けられる。シミュレータSSは、シミュレータ流体路HSにおいて、反力室Roと第1開閉弁VAとの間に接続される。シミュレータSSの内部には、シミュレータピストンEs、及び、弾性体(例えば、圧縮ばね)Dsが備えられる。制動液BFがシミュレータSS内に移動されると、流入する制動液BFによってピストンEsが押される。ピストンには、弾性体Dsによって制動液BFの流入を阻止する方向に力が加えられるため、制動操作部材BPが操作される場合の操作力Fpが形成される。シミュレータSSにおいて、制動液BFの流入口には、オリフィスOsが設けられる。オリフィスOsにて発生される減衰によって、制動操作部材BPの操作特性が向上される。 A stroke simulator (simply referred to as “simulator”) SS is provided to generate an operation force Fp on the braking operation member BP. The simulator SS is connected between the reaction force chamber Ro and the first on-off valve VA in the simulator fluid path HS. Inside the simulator SS, a simulator piston Es and an elastic body (for example, compression spring) Ds are provided. When the brake fluid BF is moved into the simulator SS, the piston Es is pushed by the inflow brake fluid BF. Since force is applied to the piston in a direction to prevent the inflow of the brake fluid BF by the elastic body Ds, an operation force Fp when the brake operation member BP is operated is formed. In the simulator SS, an orifice Os is provided at the inlet of the brake fluid BF. Due to the damping generated at the orifice Os, the operating characteristics of the braking operation member BP are improved.
[マスタユニットYM]
 マスタユニットYMによって、マスタシリンダ室Rmを介して、前輪ホイールシリンダCWf内の液圧(前輪制動液圧)Pwfが調整される。マスタユニットYMは、マスタシリンダCM、及び、マスタピストンPM、及び、マスタ弾性体SMを含んで構成される。
[Master unit YM]
The master unit YM adjusts the hydraulic pressure (front wheel braking hydraulic pressure) Pwf in the front wheel cylinder CWf via the master cylinder chamber Rm. The master unit YM includes a master cylinder CM, a master piston PM, and a master elastic body SM.
 マスタシリンダCMは、底部を有するシリンダ部材である。マスタピストンPMは、マスタシリンダCMの内部に挿入されたピストン部材であり、制動操作部材BPの操作に連動して移動可能である。マスタシリンダCMの内部は、マスタピストンPMによって、3つの液圧室Rm、Rs、Roに区画されている。 The master cylinder CM is a cylinder member having a bottom. The master piston PM is a piston member inserted into the master cylinder CM, and is movable in conjunction with the operation of the braking operation member BP. The interior of the master cylinder CM is divided into three hydraulic chambers Rm, Rs, and Ro by the master piston PM.
 マスタシリンダCMの第1内周部Mwには、溝部が形成され、該溝部に、2つのシールSLがはめ込まれる。2つのシールSLによって、マスタピストンPMの外周部(外周円筒面)Mpと、マスタシリンダCMの第1内周部(内周円筒面)Mwと、が封止(シール)されている。マスタピストンPMは、マスタシリンダCMの中心軸Jmに沿って、滑らかに移動可能である。 A groove portion is formed in the first inner peripheral portion Mw of the master cylinder CM, and two seals SL are fitted into the groove portion. The outer periphery (outer cylindrical surface) Mp of the master piston PM and the first inner peripheral portion (inner cylindrical surface) Mw of the master cylinder CM are sealed (sealed) by the two seals SL. The master piston PM can move smoothly along the central axis Jm of the master cylinder CM.
 マスタシリンダ室(単に、「マスタ室」ともいう)Rmは、「マスタシリンダCMの第1内周部Mw、第1底部(底面)Mu」と、マスタピストンPMの第1端部Mvと、によって区画された液圧室である。マスタ室Rmには、マスタシリンダ流体路HMが接続され、下部流体ユニットYLを介して、最終的には、前輪ホイールシリンダCWfに接続される。 The master cylinder chamber (also simply referred to as “master chamber”) Rm is defined by “the first inner peripheral portion Mw and the first bottom portion (bottom surface) Mu of the master cylinder CM” and the first end portion Mv of the master piston PM. It is a partitioned hydraulic chamber. A master cylinder fluid path HM is connected to the master chamber Rm, and finally connected to the front wheel wheel cylinder CWf via the lower fluid unit YL.
 マスタピストンPMには、つば部(フランジ)Tmが設けられる。つば部Tmによって、マスタシリンダCMの内部は、サーボ液圧室(単に、「サーボ室」ともいう)Rsと反力液圧室(単に、「反力室」ともいう)Roとに仕切られている。つば部Tmの外周部にはシールSLが設けられ、つば部TmとマスタシリンダCMの第2内周部Mdとが封止されている。サーボ室Rsは、「マスタシリンダCMの第2内周部Md、第2底部(底面)Mt」と、マスタピストンPMのつば部Tmの第1面Msと、によって区画された液圧室である。マスタ室Rmとサーボ室Rsとは、マスタピストンPM(特に、つば部Tm)を挟んで、相対するように配置される。サーボ室Rsには、前輪調圧流体路HFが接続され、調圧ユニットYCから調整液圧Paが導入される。 The master piston PM is provided with a flange portion (flange) Tm. The inside of the master cylinder CM is divided into a servo hydraulic chamber (simply referred to as “servo chamber”) Rs and a reaction force hydraulic chamber (simply referred to as “reaction force chamber”) Ro by the collar portion Tm. Yes. A seal SL is provided on the outer peripheral portion of the collar portion Tm, and the collar portion Tm and the second inner peripheral portion Md of the master cylinder CM are sealed. The servo chamber Rs is a hydraulic chamber partitioned by “the second inner peripheral portion Md and the second bottom portion (bottom surface) Mt of the master cylinder CM” and the first surface Ms of the flange portion Tm of the master piston PM. . The master chamber Rm and the servo chamber Rs are arranged to face each other with the master piston PM (particularly, the collar portion Tm) interposed therebetween. A front wheel pressure adjusting fluid path HF is connected to the servo chamber Rs, and the adjusted hydraulic pressure Pa is introduced from the pressure adjusting unit YC.
 反力室Roは、マスタシリンダCMの第2内周部Mdと、段付部Mzと、マスタピストンPMのつば部Tmの第2面Moと、によって区画された液圧室である。反力室Roは、中心軸Jmの方向において、マスタ液圧室Rmとサーボ液圧室Rsとに挟まれ、それらの間に位置する。従って、サーボ室Rsの体積Vsが増加される場合に、反力室Roの体積Voが減少される。逆に、サーボ室体積Vsが減少される場合には、反力室体積Voは増加される。反力室Roには、シミュレータ流体路HSが接続される。反力室Roによって、上部流体ユニットYU内の制動液BFの液量が調節される。 The reaction force chamber Ro is a hydraulic chamber defined by the second inner peripheral portion Md of the master cylinder CM, the stepped portion Mz, and the second surface Mo of the flange portion Tm of the master piston PM. The reaction force chamber Ro is sandwiched between the master hydraulic pressure chamber Rm and the servo hydraulic pressure chamber Rs in the direction of the central axis Jm, and is positioned between them. Therefore, when the volume Vs of the servo chamber Rs is increased, the volume Vo of the reaction force chamber Ro is decreased. Conversely, when the servo chamber volume Vs is decreased, the reaction force chamber volume Vo is increased. A simulator fluid path HS is connected to the reaction force chamber Ro. The amount of the brake fluid BF in the upper fluid unit YU is adjusted by the reaction force chamber Ro.
 マスタピストンPMの第1端部Mvには、窪み部Mxが設けられる。該窪み部Mxと、マスタシリンダCMの第1底部Muとの間には、マスタ弾性体(例えば、圧縮ばね)SMが設けられる。マスタ弾性体SMは、マスタシリンダCMの中心軸Jmの方向に、マスタピストンPMをマスタシリンダCMの第2底部Mtに対して押し付けている。非制動時には、マスタピストンPMの段付部MyとマスタシリンダCMの第2底部Mtとが当接している。この状態でのマスタピストンPMの位置が、「マスタユニットYMの初期位置」と称呼される。 A depression Mx is provided at the first end Mv of the master piston PM. A master elastic body (for example, a compression spring) SM is provided between the depression Mx and the first bottom Mu of the master cylinder CM. The master elastic body SM presses the master piston PM against the second bottom Mt of the master cylinder CM in the direction of the central axis Jm of the master cylinder CM. During non-braking, the stepped portion My of the master piston PM is in contact with the second bottom portion Mt of the master cylinder CM. The position of the master piston PM in this state is referred to as “initial position of the master unit YM”.
 2つのシールSL(例えば、カップシール)の間で、マスタシリンダCMには貫通孔Acが設けられる。貫通孔Acは、補給流体路HUを介して、マスタリザーバ室Ruに接続される。また、マスタピストンPMの第1端部Mvの近傍には、貫通孔Apが設けられる。マスタピストンPMが初期位置にある場合には、貫通孔Ac、Ap、及び、補給流体路HUを介して、マスタ室Rmは、リザーバRV(特に、マスタリザーバ室Ru)と連通状態にされる。 The through hole Ac is provided in the master cylinder CM between two seals SL (for example, cup seal). The through hole Ac is connected to the master reservoir chamber Ru via the replenishment fluid path HU. A through hole Ap is provided in the vicinity of the first end Mv of the master piston PM. When the master piston PM is in the initial position, the master chamber Rm is brought into communication with the reservoir RV (particularly, the master reservoir chamber Ru) through the through holes Ac and Ap and the supply fluid path HU.
 マスタ室Rmは、その内圧(「マスタシリンダ液圧」であり、「マスタ液圧」ともいう)Pmによって、中心軸Jmに沿った後退方向Hbの付勢力Fb(「後退力」という)を、マスタピストンPMに対して付与する。サーボ室Rsは、その内圧(即ち、導入された調整液圧Pa)によって、後退力Fbに対向する付勢力Fa(「前進力」という)を、マスタピストンPMに付与する。つまり、マスタピストンPMにおいて、サーボ室Rs内の液圧Pv(=Pa)による前進力Faとマスタ室Rm内の液圧(マスタ液圧)Pmによる後退力Fbとは、中心軸Jmの方向で互いに対抗し(向き合い)、静的には均衡している。マスタ液圧Pmを検出するよう、マスタ液圧センサPQが設けられる。例えば、マスタ液圧センサPQは、マスタシリンダ流体路HMに設けられ得る。また、マスタ液圧センサPQは、下部流体ユニットYLに含まれていてもよい。 The master chamber Rm has a biasing force Fb (referred to as “retreating force”) in the retreating direction Hb along the central axis Jm by its internal pressure (“master cylinder fluid pressure”, also referred to as “master fluid pressure”) Pm. Applies to the master piston PM. The servo chamber Rs applies an urging force Fa (referred to as “forward force”) opposite to the backward force Fb to the master piston PM by the internal pressure (that is, the introduced adjustment hydraulic pressure Pa). That is, in the master piston PM, the forward force Fa due to the hydraulic pressure Pv (= Pa) in the servo chamber Rs and the backward force Fb due to the hydraulic pressure (master hydraulic pressure) Pm in the master chamber Rm are in the direction of the central axis Jm. They face each other (facing) and are statically balanced. A master hydraulic pressure sensor PQ is provided so as to detect the master hydraulic pressure Pm. For example, the master hydraulic pressure sensor PQ can be provided in the master cylinder fluid path HM. Further, the master hydraulic pressure sensor PQ may be included in the lower fluid unit YL.
 例えば、つば部Tmの第1面Msの受圧面積(即ち、サーボ室Rsの受圧面積)rsは、マスタピストンPMの第1端部Mvの受圧面積(即ち、マスタ室Rmの受圧面積)rmと等しくなるように設定されている。この場合、サーボ室Rs内に導入された液圧Pa(結果、サーボ液圧Pv)と、マスタ室Rm内の液圧Pmとは、定常状態では同一である。このとき、前進力Fa(=Pa×rs)と、後退力Fb(=Pm×rm(+SMの弾性力))とは釣り合っている。 For example, the pressure receiving area (namely, the pressure receiving area of the servo chamber Rs) rs of the first surface Ms of the collar portion Tm is equal to the pressure receiving area (namely, the pressure receiving area of the master chamber Rm) rm of the first end Mv of the master piston PM. It is set to be equal. In this case, the hydraulic pressure Pa (resulting servo hydraulic pressure Pv) introduced into the servo chamber Rs and the hydraulic pressure Pm in the master chamber Rm are the same in a steady state. At this time, the forward force Fa (= Pa × rs) and the backward force Fb (= Pm × rm (+ SM elastic force)) are balanced.
[調圧ユニットYC]
 調圧ユニットYCによって、前輪、後輪ホイールシリンダCWf、CWrの液圧Pwf、Pwrが、オンデマンドで調節される。調圧ユニットYCは、電動ポンプDC、逆止弁GC、調圧弁UA、及び、調整液圧センサPAを備えている。調圧ユニットYCは、オンデマンド型(予め準備をしなくても必要なときに必要な機能が実行されるもの)である。
[Pressure adjustment unit YC]
The pressure adjusting unit YC adjusts the hydraulic pressures Pwf and Pwr of the front and rear wheel cylinders CWf and CWr on demand. The pressure adjustment unit YC includes an electric pump DC, a check valve GC, a pressure adjustment valve UA, and an adjustment hydraulic pressure sensor PA. The pressure adjustment unit YC is an on-demand type (a function that is necessary when it is necessary without being prepared in advance).
 電動ポンプDCは、1つの電気モータMC、及び、1つの流体ポンプQCの組によって構成される。電動ポンプDCでは、電気モータMCと流体ポンプQCとが一体となって回転するよう、電気モータMCと流体ポンプQCとが固定されている。電動ポンプDC(特に、電気モータMC)は、制御制動時に制動液圧Pwを増加するための動力源である。電気モータMCは、コントローラECUによって制御される。 The electric pump DC is composed of a set of one electric motor MC and one fluid pump QC. In the electric pump DC, the electric motor MC and the fluid pump QC are fixed so that the electric motor MC and the fluid pump QC rotate together. The electric pump DC (in particular, the electric motor MC) is a power source for increasing the brake fluid pressure Pw during control braking. The electric motor MC is controlled by the controller ECU.
 流体ポンプQCの吸込口Qsは、第1リザーバ流体路HVを介して、リザーバRV(特に、調圧リザーバ室Rd)に接続されている。流体ポンプQCの吐出口Qtには、調圧流体路HCが接続されている。電動ポンプDC(特に、流体ポンプQC)の駆動によって、制動液BFが、第1リザーバ流体路HVから、吸込口Qsを通して吸入され、吐出口Qtから調圧流体路HCに排出される。例えば、流体ポンプQCとしてギヤポンプが採用される。 The suction port Qs of the fluid pump QC is connected to the reservoir RV (particularly the pressure regulating reservoir chamber Rd) via the first reservoir fluid path HV. A pressure regulating fluid path HC is connected to the discharge port Qt of the fluid pump QC. By driving the electric pump DC (particularly, the fluid pump QC), the brake fluid BF is sucked from the first reservoir fluid path HV through the suction port Qs and discharged from the discharge port Qt to the pressure regulating fluid path HC. For example, a gear pump is employed as the fluid pump QC.
 調圧流体路HCには、逆止弁GC(「チェック弁」ともいう)が介装される。逆止弁GCによって、制動液BFは、第1リザーバ流体路HVから調圧流体路HCに向けては移動可能であるが、調圧流体路HCからリザーバ流体路HVに向けての移動(即ち、制動液BFの逆流)が阻止される。つまり、電動ポンプDCは、一方向に限って回転される。調圧流体路HCの吐出部Qtとは反対側の端部Bvは、第1リザーバ流体路HVに接続される。 A check valve GC (also referred to as “check valve”) is interposed in the pressure regulating fluid path HC. The check valve GC allows the brake fluid BF to move from the first reservoir fluid path HV toward the pressure regulating fluid path HC, but to move from the pressure regulating fluid path HC toward the reservoir fluid path HV (ie, , Back flow of the brake fluid BF) is prevented. That is, the electric pump DC is rotated only in one direction. An end Bv of the pressure regulating fluid path HC opposite to the discharge part Qt is connected to the first reservoir fluid path HV.
 調圧弁UAが、調圧流体路HCに設けられる。調圧弁UAは、通電状態(例えば、供給電流)に基づいて開弁量(リフト量)が連続的に制御されるリニア型の電磁弁(「比例弁」、又は、「差圧弁」ともいう)である。調圧弁UAは、駆動信号Uaに基づいて、コントローラECUによって制御される。調圧弁UAとして、常開型の電磁弁が採用される。 A pressure regulating valve UA is provided in the pressure regulating fluid path HC. The pressure regulating valve UA is a linear solenoid valve (also referred to as “proportional valve” or “differential pressure valve”) whose valve opening amount (lift amount) is continuously controlled based on an energized state (for example, supply current). It is. The pressure regulating valve UA is controlled by the controller ECU based on the drive signal Ua. As the pressure regulating valve UA, a normally open type electromagnetic valve is employed.
 制動液BFは、第1リザーバ流体路HVから、流体ポンプQCの吸込口Qsを通して汲み上げられ、吐出口Qtから排出される。そして、制動液BFは、逆止弁GC、調圧弁UAを通り、リザーバ流体路HVに戻される。換言すれば、第1リザーバ流体路HV、及び、調圧流体路HCによって、還流路(制動液BFの流れが、再び元の流れに戻る流体路)が形成され、この還流路に、逆止弁GC、及び、調圧弁UAが、直列に介装される。 The brake fluid BF is pumped up from the first reservoir fluid passage HV through the suction port Qs of the fluid pump QC and discharged from the discharge port Qt. Then, the brake fluid BF passes through the check valve GC and the pressure regulating valve UA, and is returned to the reservoir fluid path HV. In other words, the first reservoir fluid path HV and the pressure regulating fluid path HC form a reflux path (a fluid path in which the flow of the brake fluid BF returns to the original flow again), A valve GC and a pressure regulating valve UA are interposed in series.
 電動ポンプDCが作動している場合には、制動液BFは、破線矢印(A)で示すように、「HV→QC(Qs→Qt)→GC→UA→HV」の順で還流している(即ち、「還流路」が形成される)。調圧弁UAが全開状態にある場合(常開型であるため、非通電時)、調圧流体路HC内の液圧(調整液圧)Paは、略「0(大気圧)」である。調圧弁UAへの通電量が増加され、調圧弁UAによって還流路が絞られると、調圧流体路HCにおける流体ポンプQCと調圧弁UAと間の液圧(調整液圧)Paが、「0」から増加される。調圧流体路HCには、調整液圧Paを検出するよう、調整液圧センサPAが設けられる When the electric pump DC is operating, the brake fluid BF is recirculated in the order of “HV → QC (Qs → Qt) → GC → UA → HV” as indicated by the broken arrow (A). (Ie, a “reflux path” is formed). When the pressure regulating valve UA is in a fully opened state (because it is a normally open type and not energized), the hydraulic pressure (adjusted hydraulic pressure) Pa in the regulated fluid path HC is substantially “0 (atmospheric pressure)”. When the energization amount to the pressure regulating valve UA is increased and the return path is throttled by the pressure regulating valve UA, the hydraulic pressure (adjusted hydraulic pressure) Pa between the fluid pump QC and the pressure regulating valve UA in the pressure regulating fluid path HC is “0. Is increased. The pressure adjusting fluid path HC is provided with an adjustment hydraulic pressure sensor PA so as to detect the adjustment hydraulic pressure Pa.
 調圧流体路HCは、流体ポンプQCと調圧弁UAとの間の部位Bcにて、前輪、後輪調圧流体路HF、HRに分岐される。前輪調圧流体路HFは、マスタユニットYMのサーボ室Rsに接続される。従って、調圧弁UAによって調節された調整液圧Paは、サーボ室Rsに導入(供給)される。マスタシリンダCMは、下部流体ユニットYLを介して、前輪ホイールシリンダCWfに接続されているため、調整液圧Paが、マスタシリンダCMを介して、前輪ホイールシリンダCWfに、間接的に導入される。一方、後輪調圧流体路HRは、下部流体ユニットYLを介して、後輪ホイールシリンダCWrに接続される。従って、調整液圧Paは、後輪ホールシリンダCWrに、直接、導入される。 The pressure regulating fluid path HC is branched into the front wheel and rear wheel regulating fluid paths HF and HR at a portion Bc between the fluid pump QC and the pressure regulating valve UA. The front wheel pressure adjusting fluid path HF is connected to the servo chamber Rs of the master unit YM. Accordingly, the adjusted hydraulic pressure Pa adjusted by the pressure regulating valve UA is introduced (supplied) into the servo chamber Rs. Since the master cylinder CM is connected to the front wheel wheel cylinder CWf via the lower fluid unit YL, the adjustment hydraulic pressure Pa is indirectly introduced to the front wheel wheel cylinder CWf via the master cylinder CM. On the other hand, the rear wheel pressure adjusting fluid path HR is connected to the rear wheel wheel cylinder CWr via the lower fluid unit YL. Therefore, the adjustment hydraulic pressure Pa is directly introduced into the rear wheel hole cylinder CWr.
 調圧ユニットYCには、調圧流体路HCとは並列に、リザーバRVとサーボ室Rsとを接続するバイパス流体路HDが設けられる。バイパス流体路HDには、逆止弁GDが介装される。逆止弁GDでは、リザーバRVからサーボ室Rsへの制動液BFの流れは許容されるが、その逆の、サーボ室RsからリザーバRVへの流れは阻止される。制動操作部材BPが急操作された場合には、運転者の操作力によっても、マスタピストンPMは前進方向Haに移動され、サーボ室Rsの体積Vsは増加される。この場合、運転者の操作に起因するサーボ室Rsの体積増加分の液量は、バイパス流体路HD、及び、逆止弁GDを介して供給される。 The pressure regulating unit YC is provided with a bypass fluid path HD that connects the reservoir RV and the servo chamber Rs in parallel with the pressure regulating fluid path HC. A check valve GD is interposed in the bypass fluid path HD. In the check valve GD, the flow of the brake fluid BF from the reservoir RV to the servo chamber Rs is allowed, but the reverse flow from the servo chamber Rs to the reservoir RV is blocked. When the braking operation member BP is suddenly operated, the master piston PM is moved in the forward direction Ha and the volume Vs of the servo chamber Rs is increased also by the driver's operation force. In this case, the amount of liquid corresponding to the volume increase of the servo chamber Rs caused by the operation of the driver is supplied via the bypass fluid path HD and the check valve GD.
[回生協調ユニットYK]
 回生協調ユニットYKによって、摩擦制動と回生制動との協調制御(「回生協調制御」という)が達成される。例えば、回生協調ユニットYKによって、制動操作部材BPは操作されているが、制動液圧Pwが発生しない状態が形成され得る。回生協調ユニットYKは、入力シリンダCN、入力ピストンPK、入力弾性体SN、第1開閉弁VA、第2開閉弁VB、ストロークシミュレータSS、シミュレータ液圧センサPS、及び、入力液圧センサPNにて構成される。
[Regenerative cooperation unit YK]
The regenerative cooperative unit YK achieves cooperative control of friction braking and regenerative braking (referred to as “regenerative cooperative control”). For example, a state can be formed in which the braking operation member BP is operated by the regenerative coordination unit YK but the braking hydraulic pressure Pw is not generated. The regeneration cooperative unit YK includes an input cylinder CN, an input piston PK, an input elastic body SN, a first on-off valve VA, a second on-off valve VB, a stroke simulator SS, a simulator hydraulic pressure sensor PS, and an input hydraulic pressure sensor PN. Composed.
 入力シリンダCNは、マスタシリンダCMに固定された、底部を有するシリンダ部材である。入力ピストンPKは、入力シリンダCNの内部に挿入されたピストン部材である。入力ピストンPKは、制動操作部材BPに連動するよう、クレビス(U字リンク)を介して、制動操作部材BPに機械的に接続されている。入力ピストンPKには、つば部(フランジ)Tnが設けられる。入力シリンダCNのマスタシリンダCMへの取付面Maと、入力ピストンPKのつば部Tnとの間には、入力弾性体(例えば、圧縮ばね)SNが設けられる。入力弾性体SNは、中心軸Jmの方向に、入力ピストンPKのつば部Tnを入力シリンダCNの底部Mbに対して押し付けている。 The input cylinder CN is a cylinder member having a bottom portion fixed to the master cylinder CM. The input piston PK is a piston member inserted into the input cylinder CN. The input piston PK is mechanically connected to the braking operation member BP via a clevis (U-shaped link) so as to interlock with the braking operation member BP. The input piston PK is provided with a flange portion (flange) Tn. An input elastic body (for example, a compression spring) SN is provided between the attachment surface Ma of the input cylinder CN to the master cylinder CM and the flange portion Tn of the input piston PK. The input elastic body SN presses the flange portion Tn of the input piston PK against the bottom Mb of the input cylinder CN in the direction of the central axis Jm.
 非制動時には、マスタピストンPMの段付部MyがマスタシリンダCMの第2底部Mtに当接し、入力ピストンPKのつば部Tnが入力シリンダCNの底部Mbに当接している。非制動時には、入力シリンダCNの内部にて、マスタピストンPM(特に、端面Mq)と入力ピストンPK(特に、端面Mg)との隙間Ksは、所定距離ks(「初期隙間」という)にされている。即ち、ピストンPM、PKが最も後退方向Hbの位置(各ピストンの「初期位置」という)にある場合(即ち、非制動時)に、マスタピストンPMと入力ピストンPKとは、所定距離ksだけ離れている。ここで、所定距離ksは、回生量Rgの最大値に対応している。回生協調制御が実行される場合には、隙間(「離間変位」ともいう)Ksは、調整液圧Paによって制御(調節)される。 During non-braking, the stepped portion My of the master piston PM is in contact with the second bottom portion Mt of the master cylinder CM, and the collar portion Tn of the input piston PK is in contact with the bottom portion Mb of the input cylinder CN. During non-braking, the gap Ks between the master piston PM (particularly the end face Mq) and the input piston PK (particularly the end face Mg) is set to a predetermined distance ks (referred to as “initial gap”) inside the input cylinder CN. Yes. That is, when the pistons PM and PK are in the position of the most backward direction Hb (referred to as “initial position” of each piston) (that is, during non-braking), the master piston PM and the input piston PK are separated by a predetermined distance ks. ing. Here, the predetermined distance ks corresponds to the maximum value of the regeneration amount Rg. When the regeneration cooperative control is executed, the gap (also referred to as “separation displacement”) Ks is controlled (adjusted) by the adjustment hydraulic pressure Pa.
 制動操作部材BPが、「Ba=0」の状態から踏み込まれると、入力ピストンPKは、その初期位置から、前進方向Haに移動される。このとき、調整液圧Paが、「0」のままであれば、マスタピストンPMは初期位置のままなので、入力ピストンPKの前進に伴い、隙間Ks(入力ピストンPKの端面MgとマスタピストンPMの端面Mqとの間の距離)は、徐々に減少する。一方、調整液圧Paが「0」から増加されると、マスタピストンPMは、その初期位置から、前進方向Haに移動される。このため、隙間Ksは、調整液圧Paによって、「0≦Ks≦ks」の範囲で制動操作量Baとは独立して調整可能である。つまり、調整液圧Paが調整されることにより、マスタピストンPMと入力ピストンPKとの隙間Ksが調節され、回生協調制御が達成される。 When the braking operation member BP is stepped on from “Ba = 0”, the input piston PK is moved in the forward direction Ha from its initial position. At this time, if the adjustment hydraulic pressure Pa remains “0”, the master piston PM remains at the initial position, and therefore the gap Ks (the end surface Mg of the input piston PK and the master piston PM is increased as the input piston PK moves forward). The distance between the end face Mq) gradually decreases. On the other hand, when the adjustment hydraulic pressure Pa is increased from “0”, the master piston PM is moved in the forward direction Ha from the initial position. For this reason, the gap Ks can be adjusted independently of the braking operation amount Ba within the range of “0 ≦ Ks ≦ ks” by the adjustment hydraulic pressure Pa. That is, by adjusting the adjustment hydraulic pressure Pa, the gap Ks between the master piston PM and the input piston PK is adjusted, and regenerative cooperative control is achieved.
 回生協調ユニットYKの入力室Rnと、マスタユニットYMの反力室Roとが、シミュレータ流体路HSにて接続される。シミュレータ流体路HSには、第1開閉弁VAが設けられる。第1開閉弁VAは、第1開位置、及び、第1閉位置を有する常閉型電磁弁である。シミュレータ流体路HSの第1開閉弁VAと反力室Roとの間の部位Bsに、リザーバ流体路HTが接続される。リザーバ流体路HTには、第2開閉弁VBが設けられる。第2開閉弁VBは、第2開位置、及び、第2閉位置を有する常開型電磁弁である。第1、第2開閉弁VA、VBは、開位置(連通状態)と閉位置(遮断状態)とを有する2位置の電磁弁(「オン・オフ弁」ともいう)である。第1、第2開閉弁VA、VBは、駆動信号Va、Vbに基づいて、上部コントローラECUによって制御される。 The input chamber Rn of the regeneration coordination unit YK and the reaction force chamber Ro of the master unit YM are connected by the simulator fluid path HS. A first on-off valve VA is provided in the simulator fluid path HS. The first on-off valve VA is a normally closed electromagnetic valve having a first open position and a first closed position. The reservoir fluid path HT is connected to a portion Bs between the first on-off valve VA and the reaction force chamber Ro of the simulator fluid path HS. The reservoir fluid path HT is provided with a second on-off valve VB. The second on-off valve VB is a normally open solenoid valve having a second open position and a second closed position. The first and second on-off valves VA and VB are two-position solenoid valves (also referred to as “on / off valves”) having an open position (communication state) and a closed position (blocking state). The first and second on-off valves VA and VB are controlled by the upper controller ECU based on the drive signals Va and Vb.
 シミュレータSSが、第1開閉弁VAと反力室Roとの間の部位Boにて、シミュレータ流体路HSに接続される。換言すれば、回生協調ユニットYKの入力室Rnは、シミュレータ流体路HSによって、シミュレータSSに接続される。回生協調制御が実行される場合には、第1開閉弁VAが開位置、第2開閉弁VBが閉位置にされる。第2開閉弁VBが閉位置にされているため、リザーバ流体路HTにおいて、リザーバRVへの流路は遮断されている。従って、制動液BFが、入力シリンダCNの入力室RnからシミュレータSS内に移動される。シミュレータSSのピストンEsには、弾性体Dsにて、制動液BFの流入を阻止する力が加えられるため、制動操作部材BPが操作される場合の操作力Fpが発生される。 The simulator SS is connected to the simulator fluid path HS at a portion Bo between the first on-off valve VA and the reaction force chamber Ro. In other words, the input chamber Rn of the regeneration coordination unit YK is connected to the simulator SS by the simulator fluid path HS. When the regeneration cooperative control is executed, the first on-off valve VA is set to the open position, and the second on-off valve VB is set to the closed position. Since the second on-off valve VB is in the closed position, the flow path to the reservoir RV is blocked in the reservoir fluid path HT. Accordingly, the brake fluid BF is moved from the input chamber Rn of the input cylinder CN into the simulator SS. The piston Es of the simulator SS is applied with a force that prevents the inflow of the brake fluid BF by the elastic body Ds, so that an operation force Fp when the brake operation member BP is operated is generated.
 第2リザーバ流体路HTは、リザーバRV(特に、調圧リザーバ室Rd)に接続される。第2リザーバ流体路HTは、その一部を第1リザーバ流体路HVと共用することができる。しかし、第1リザーバ流体路HVと第2リザーバ流体路HTとは、別々にリザーバRVに接続されることが望ましい。流体ポンプQCは、第1リザーバ流体路HVを介して、リザーバRVから制動液BFを吸引するが、このとき、第1リザーバ流体路HVには、気泡が混じることが生じ得る。このため、入力シリンダCN等に、気泡が混入することを回避するよう、第2リザーバ流体路HTは、第1リザーバ流体路HVと共通部分を有さず、第1リザーバ流体路HVとは別個に、リザーバRVに接続される。 The second reservoir fluid path HT is connected to the reservoir RV (particularly the pressure regulating reservoir chamber Rd). A portion of the second reservoir fluid path HT can be shared with the first reservoir fluid path HV. However, it is desirable that the first reservoir fluid path HV and the second reservoir fluid path HT are separately connected to the reservoir RV. The fluid pump QC sucks the brake fluid BF from the reservoir RV via the first reservoir fluid path HV. At this time, bubbles may be mixed in the first reservoir fluid path HV. For this reason, the second reservoir fluid path HT does not have a common part with the first reservoir fluid path HV and is separate from the first reservoir fluid path HV so as to avoid air bubbles from entering the input cylinder CN and the like. To the reservoir RV.
 第1開閉弁VAと反力室Roとの間のシミュレータ流体路HSには、シミュレータSS内の液圧(「シミュレータ液圧」という)Psを検出するよう、シミュレータ液圧センサPSが設けられる。また、第1開閉弁VAと入力室Rnとの間のシミュレータ流体路HSには、入力室Rn内の液圧(「入力液圧」という)Pnを検出するよう、入力液圧センサPNが設けられる。シミュレータ液圧センサPS、及び、入力液圧センサPNは、上述した制動操作量センサBAの1つである。検出された液圧Ps、Pnは、制動操作量Baとして、上部コントローラECUに入力される。 In the simulator fluid path HS between the first on-off valve VA and the reaction force chamber Ro, a simulator fluid pressure sensor PS is provided so as to detect the fluid pressure (referred to as “simulator fluid pressure”) Ps in the simulator SS. Further, an input hydraulic pressure sensor PN is provided in the simulator fluid path HS between the first on-off valve VA and the input chamber Rn so as to detect a hydraulic pressure (referred to as “input hydraulic pressure”) Pn in the input chamber Rn. It is done. The simulator hydraulic pressure sensor PS and the input hydraulic pressure sensor PN are one of the braking operation amount sensors BA described above. The detected hydraulic pressures Ps and Pn are input to the upper controller ECU as a braking operation amount Ba.
[上部コントローラECU]
 上部コントローラECUによって、制動操作量Ba、操作信号St、及び、調整液圧(検出値)Paに基づいて、電気モータMC、及び、電磁弁VA、VB、UAが制御される。具体的には、上部コントローラECUでは、各種電磁弁VA、VB、UAを制御するための駆動信号Va、Vb、Uaが演算される。同様に、電気モータMCを制御するための駆動信号Mcが演算される。そして、駆動信号Va、Vb、Ua、Mcに基づいて、電磁弁VA、VB、UA、及び、電気モータMCが駆動される。
[Upper controller ECU]
The upper controller ECU controls the electric motor MC and the electromagnetic valves VA, VB, and UA based on the braking operation amount Ba, the operation signal St, and the adjustment hydraulic pressure (detection value) Pa. Specifically, the upper controller ECU calculates drive signals Va, Vb, Ua for controlling various electromagnetic valves VA, VB, UA. Similarly, a drive signal Mc for controlling the electric motor MC is calculated. Then, based on the drive signals Va, Vb, Ua, Mc, the electromagnetic valves VA, VB, UA and the electric motor MC are driven.
 上部コントローラ(電子制御ユニット)ECUは、車載通信バスBSを介して、下部コントローラECL、及び、他システムのコントローラ(駆動コントローラECD等)とネットワーク接続されている。回生協調制御を実行するよう、上部コントローラECUから駆動用のコントローラECDに回生量(目標値)Rgが、通信バスBSを通して送信される。 The upper controller (electronic control unit) ECU is network-connected to the lower controller ECL and other system controllers (drive controller ECD, etc.) via the in-vehicle communication bus BS. A regeneration amount (target value) Rg is transmitted from the upper controller ECU to the drive controller ECD through the communication bus BS so as to execute the regeneration cooperative control.
[下部流体ユニットYL]
 下部流体ユニットYLは、マスタ液圧センサPQ、複数の電磁弁、電動ポンプ、低圧リザーバを含む、公知の流体ユニットである。下部流体ユニットYLは、下部コントローラECLによって制御される。下部コントローラECLには、車輪速度Vw、ヨーレイト、操舵角、前後加速度、横加速度等が入力される。下部コントローラECLでは、車輪速度Vwに基づいて、車体速度Vxが演算される。そして、車体速度Vx、及び、車輪速度Vwに基づいて、車輪WHの過度の減速スリップ(例えば、車輪ロック)を抑制するよう、アンチスキッド制御が実行される。また、下部コントローラECLでは、ヨーレイトに基づいて、車両の不安定挙動(過度のオーバステア挙動、アンダステア挙動)を抑制する車両安定化制御(所謂、ESC)が行われる。つまり、下部流体ユニットYLによって、各車輪WHの制動液圧Pwが、個別に制御される。なお、演算された車体速度Vxは、通信バスBSを通して、上部コントローラECUに入力される。
[Lower fluid unit YL]
The lower fluid unit YL is a known fluid unit including a master hydraulic pressure sensor PQ, a plurality of solenoid valves, an electric pump, and a low pressure reservoir. The lower fluid unit YL is controlled by the lower controller ECL. Wheel speed Vw, yaw rate, steering angle, longitudinal acceleration, lateral acceleration, and the like are input to the lower controller ECL. In the lower controller ECL, the vehicle body speed Vx is calculated based on the wheel speed Vw. Then, based on the vehicle speed Vx and the wheel speed Vw, anti-skid control is executed so as to suppress excessive deceleration slip (for example, wheel lock) of the wheel WH. Further, the lower controller ECL performs vehicle stabilization control (so-called ESC) that suppresses unstable behavior (excessive oversteer behavior, understeer behavior) of the vehicle based on the yaw rate. That is, the brake fluid pressure Pw of each wheel WH is individually controlled by the lower fluid unit YL. The calculated vehicle speed Vx is input to the upper controller ECU through the communication bus BS.
[制動制御装置SCの作動]
 車両の起動スイッチ(例えば、イグニッションスイッチ)が、オンされた場合に、第1開閉弁VAが開位置にされるとともに、第2開閉弁VBが閉位置にされる。従って、車両の走行中には、シミュレータ流体路HS、及び、第1開閉弁VAを介して、回生協調ユニットYKの入力室RnとマスタユニットYMの反力室Roとは連通状態にある。一方、第2開閉弁VBは閉位置にあるため、入力室Rn、及び、反力室Roは、リザーバRVとは遮断されている。
[Operation of braking controller SC]
When a vehicle start switch (for example, an ignition switch) is turned on, the first on-off valve VA is opened and the second on-off valve VB is closed. Therefore, during traveling of the vehicle, the input chamber Rn of the regeneration cooperative unit YK and the reaction force chamber Ro of the master unit YM are in communication with each other via the simulator fluid path HS and the first on-off valve VA. On the other hand, since the second on-off valve VB is in the closed position, the input chamber Rn and the reaction force chamber Ro are disconnected from the reservoir RV.
 非制動時(例えば、制動操作部材BPの操作が行われていない場合)には、調圧弁UA、及び、電気モータMCへの通電は行われない。このとき、ピストンPM、PNは、弾性体SM、SNによって、各初期位置に押し付けられ、マスタシリンダCMの液圧室Rmと、リザーバRVの液だめRuとは連通状態にあり、マスタ液圧Pmは「0(大気圧)」である。 In non-braking (for example, when the operation of the braking operation member BP is not performed), the energization of the pressure regulating valve UA and the electric motor MC is not performed. At this time, the pistons PM and PN are pressed to their initial positions by the elastic bodies SM and SN, and the hydraulic chamber Rm of the master cylinder CM and the reservoir Ru of the reservoir RV are in communication with each other, and the master hydraulic pressure Pm Is “0 (atmospheric pressure)”.
 制動操作部材BPが操作された場合(特に、制御制動の開始時)には、入力ピストンPKが前進方向Haに移動される。このとき、入力室Rnから流出する制動液BFの液量が、シミュレータSSに流入し、制動操作部材BPの操作力Fpが形成される。 When the braking operation member BP is operated (particularly at the start of control braking), the input piston PK is moved in the forward direction Ha. At this time, the amount of the brake fluid BF flowing out from the input chamber Rn flows into the simulator SS, and the operation force Fp of the brake operation member BP is formed.
 車両減速が、ジェネレータGNによる回生制動力で足りる場合には、「Pa=0」の状態が維持される。制動操作部材BPの操作によって、入力ピストンPKは、その初期位置から前進方向Haに移動されるが、このとき、調整液圧Paが、「0」のままであるため、マスタピストンPMは移動されない。従って、入力ピストンPKの前進に伴い、隙間Ks(入力ピストンPKの端面MgとマスタピストンPMの端面Mqとの間の距離)は、徐々に減少する。 When the vehicle deceleration is sufficient by the regenerative braking force by the generator GN, the state of “Pa = 0” is maintained. By operating the braking operation member BP, the input piston PK is moved in the forward direction Ha from its initial position. At this time, the adjustment hydraulic pressure Pa remains “0”, so the master piston PM is not moved. . Therefore, as the input piston PK advances, the gap Ks (the distance between the end surface Mg of the input piston PK and the end surface Mq of the master piston PM) gradually decreases.
 車両減速が、ジェネレータGNによる回生制動力では不足する場合には、コントローラECUによって、調圧ユニットYCが制御され、調整液圧Paが、オンデマンドで調節される。調整液圧Paは、前輪調圧流体路HFを通して、サーボ室Rsに付与される。サーボ室Rs内の液圧(「サーボ液圧」という)Pv(=Pa)によって発生する前進方向Haの力(前進力)Faが、マスタ弾性体SMのセット荷重よりも大きくなると、マスタピストンPMは、マスタシリンダCMの中心軸Jmに沿って移動される。この前進方向Haへの移動によって、マスタ室RmはリザーバRVから遮断される。更に、調整液圧Paが増加されると、制動液BFは、マスタシリンダCMから前輪ホイールシリンダCWfに向けて、マスタ液圧Pmで圧送される。マスタピストンPMには、マスタ液圧Pmによって、後退方向Hbの力(後退力)Fbが作用している。サーボ室Rsは、この後退力Fbに対抗(対向)するよう、調整液圧Paによって、前進方向Haの力(前進力)Faを発生する。調整液圧Paの増減に応じて、マスタ液圧Pmが増減される。調整液圧Paの増加に伴い、マスタピストンPMは初期位置から前進方向Haに移動されるが、隙間Ksは、調整液圧Paによって、「0≦Ks≦ks」の範囲で制動操作量Baとは独立して調整可能である。つまり、調整液圧Paによる隙間Ksの調節によって、回生協調制御が実行される。なお、調整液圧Paは、後輪調圧流体路HR、及び、下部流体ユニットYLを通して、直接、後輪ホイールシリンダCWrに付与される。 When the vehicle deceleration is insufficient with the regenerative braking force by the generator GN, the controller ECU controls the pressure adjusting unit YC and the adjusted hydraulic pressure Pa is adjusted on demand. The adjusted hydraulic pressure Pa is applied to the servo chamber Rs through the front wheel pressure adjusting fluid passage HF. When the force (forward force) Fa in the forward direction Ha generated by the hydraulic pressure (referred to as “servo hydraulic pressure”) Pv (= Pa) in the servo chamber Rs becomes larger than the set load of the master elastic body SM, the master piston PM Is moved along the central axis Jm of the master cylinder CM. The master chamber Rm is blocked from the reservoir RV by the movement in the forward direction Ha. Further, when the adjustment hydraulic pressure Pa is increased, the brake fluid BF is pumped from the master cylinder CM toward the front wheel cylinder CWf at the master hydraulic pressure Pm. A force (retracting force) Fb in the retreating direction Hb is applied to the master piston PM by the master hydraulic pressure Pm. The servo chamber Rs generates a force (forward force) Fa in the forward direction Ha by the adjustment hydraulic pressure Pa so as to oppose (oppose) the backward force Fb. The master hydraulic pressure Pm is increased or decreased according to the increase or decrease of the adjustment hydraulic pressure Pa. As the adjustment hydraulic pressure Pa increases, the master piston PM is moved in the forward direction Ha from the initial position, but the gap Ks is set to a braking operation amount Ba within a range of “0 ≦ Ks ≦ ks” by the adjustment hydraulic pressure Pa. Are independently adjustable. That is, regenerative cooperative control is executed by adjusting the gap Ks by the adjustment hydraulic pressure Pa. The adjustment hydraulic pressure Pa is directly applied to the rear wheel wheel cylinder CWr through the rear wheel pressure adjusting fluid path HR and the lower fluid unit YL.
 制動操作部材BPが戻されると、調整液圧Paが減少される。そして、サーボ液圧Pv(=Pa)が、マスタ室液圧Pm(=Pwf)よりも小さくなると、マスタピストンPMは後退方向Hbに移動される。制動操作部材BPが非操作状態にされると、圧縮ばねSMの弾性力によって、マスタピストンPM(特に、段付部My)は、マスタシリンダCMの第2底部Mtに接触する位置(初期位置)にまで戻される。 When the braking operation member BP is returned, the adjustment hydraulic pressure Pa is reduced. When the servo hydraulic pressure Pv (= Pa) becomes smaller than the master chamber hydraulic pressure Pm (= Pwf), the master piston PM is moved in the backward direction Hb. When the braking operation member BP is brought into a non-operating state, the master piston PM (particularly, the stepped portion My) comes into contact with the second bottom portion Mt of the master cylinder CM (initial position) by the elastic force of the compression spring SM. It is returned to.
 なお、マニュアル制動時(電源失陥時等)には、第1、第2開閉弁VA、VBには通電が行われない。従って、第1開閉弁VAが閉位置に、第2開閉弁VBが開位置にされる。第1開閉弁VAの閉位置によって、入力室Rnは流体ロックの状態(密封状態)にされ、入力ピストンPKとマスタピストンPMとが、相対移動できないようにされる。また、第2開閉弁VBの開位置によって、反力室Roは、第2リザーバ流体路HTを通して、リザーバRVに接続される。このため、マスタピストンPMの前進方向Haの移動によって、反力室Roの容積Voは減少されるが、容積減少に伴う液量は、リザーバRVに向けて排出される。制動操作部材BPの操作に連動して、入力ピストンPKとマスタピストンPMとが一体となって移動され(即ち、「Ks=0」)、マスタ室Rmから制動液BFが、前輪ホイールシリンダCWfに圧送される。 It should be noted that during manual braking (power failure, etc.), the first and second on-off valves VA and VB are not energized. Accordingly, the first on-off valve VA is in the closed position and the second on-off valve VB is in the open position. The input chamber Rn is brought into a fluid lock state (sealed state) by the closed position of the first on-off valve VA so that the input piston PK and the master piston PM cannot be moved relative to each other. Further, the reaction force chamber Ro is connected to the reservoir RV through the second reservoir fluid path HT depending on the open position of the second on-off valve VB. For this reason, the volume Vo of the reaction force chamber Ro is reduced by the movement of the master piston PM in the forward direction Ha, but the liquid amount accompanying the volume reduction is discharged toward the reservoir RV. In conjunction with the operation of the brake operation member BP, the input piston PK and the master piston PM are moved together (that is, “Ks = 0”), and the brake fluid BF is transferred from the master chamber Rm to the front wheel wheel cylinder CWf. Pumped.
<調圧制御処理>
 図2の制御フロー図を参照して、回生協調制御を含む調圧制御の処理について説明する。「調圧制御」は、調整液圧Paを調整するための、電気モータMC、及び、調圧弁UAの駆動制御である。該制御のアルゴリズムは、上部コントローラECU内にプログラムされている。
<Pressure control processing>
With reference to the control flow diagram of FIG. 2, processing of pressure regulation control including regenerative cooperative control will be described. “Pressure adjustment control” is drive control of the electric motor MC and the pressure adjustment valve UA for adjusting the adjustment hydraulic pressure Pa. The control algorithm is programmed in the upper controller ECU.
 ステップS110にて、制動制御装置SCの初期化が行われる。ステップS110では、各構成要素の初期診断が実行される。ステップS120にて、常閉型の第1開閉弁VA、及び、常開型の第2開閉弁VBに通電が行われる。つまり、装置の起動スイッチが、オンされた場合に、第1開閉弁VAが開位置にされ、第2開閉弁VBが閉位置にされる。制動操作毎に、第1、第2開閉弁VA、VBのオン/オフ状態が切り替えられるのではなく、車両の走行中には、常時、第1、第2開閉弁VA、VBに通電が行われる。これにより、作動音の面で有利であるとともに、シミュレータSSの特性が安定化され得る。 In step S110, the braking control device SC is initialized. In step S110, initial diagnosis of each component is executed. In step S120, energization is performed to the normally closed first open / close valve VA and the normally open second open / close valve VB. That is, when the start switch of the device is turned on, the first on-off valve VA is opened and the second on-off valve VB is closed. The on / off state of the first and second on-off valves VA and VB is not switched every time the braking operation is performed, but the first and second on-off valves VA and VB are always energized while the vehicle is running. Is called. Thereby, it is advantageous in terms of operating sound and the characteristics of the simulator SS can be stabilized.
 ステップS130にて、制動操作量Ba、操作信号St、調整液圧(検出値)Pa、及び、車体速度Vxが読み込まれる。操作量Baは、操作量センサBA(操作変位センサSP、入力液圧センサPN、シミュレータ液圧センサPS等)によって検出される。操作信号Stは、操作スイッチSTによって検出される。調整液圧Paは、調圧流体路HCに設けられた、調整液圧センサPAによって検出される。車体速度Vxは、通信バスBSを介して、下部コントローラECLから取得される。なお、車体速度Vxは、車輪速度Vwが上部コントローラECUに入力され、車輪速度Vwに基づいて、上部コントローラECUにて演算されてもよい。 In step S130, the braking operation amount Ba, the operation signal St, the adjustment hydraulic pressure (detection value) Pa, and the vehicle body speed Vx are read. The operation amount Ba is detected by an operation amount sensor BA (operation displacement sensor SP, input hydraulic pressure sensor PN, simulator hydraulic pressure sensor PS, etc.). The operation signal St is detected by the operation switch ST. The adjustment hydraulic pressure Pa is detected by an adjustment hydraulic pressure sensor PA provided in the pressure adjustment fluid path HC. The vehicle body speed Vx is acquired from the lower controller ECL via the communication bus BS. The vehicle body speed Vx may be calculated by the upper controller ECU based on the wheel speed Vw when the wheel speed Vw is input to the upper controller ECU.
 ステップS140にて、制動操作量Ba、及び、制動操作信号Stのうちの少なくとも1つに基づいて、「制動中であるか、否か」が判定される。例えば、操作量Baが、所定値boよりも大きい場合には、ステップS140は肯定され、処理はステップS150に進む。一方、操作量Baが所定値bo以下である場合には、ステップS140は否定され、処理はステップS130に戻される。ここで、所定値boは、制動操作部材BPの遊びに相当する、予め設定された定数である。また、操作信号Stがオンである場合には、ステップS150に進み、操作信号Stがオフである場合には、ステップS130に戻る。 In step S140, based on at least one of the braking operation amount Ba and the braking operation signal St, it is determined whether or not braking is being performed. For example, when the operation amount Ba is larger than the predetermined value bo, step S140 is affirmed and the process proceeds to step S150. On the other hand, when the operation amount Ba is equal to or smaller than the predetermined value bo, Step S140 is denied and the process returns to Step S130. Here, the predetermined value bo is a preset constant corresponding to the play of the braking operation member BP. When the operation signal St is on, the process proceeds to step S150, and when the operation signal St is off, the process returns to step S130.
 ステップS150にて、ブロックX150に示す様に、操作量Baに基づいて、要求制動力Fdが演算される。要求制動力Fdは、車両に作用する総制動力Fの目標値であり、「制動制御装置SCによる摩擦制動力Fm」と「ジェネレータGNによる回生制動力Fg」とを合わせた制動力である。要求制動力Fdは、演算マップZfdに従って、操作量Baが「0」から所定値boの範囲では、「0」に決定され、操作量Baが所定値bo以上では、操作量Baが増加するに伴い、「0」から単調増加するよう演算される。 In step S150, as shown in block X150, the required braking force Fd is calculated based on the operation amount Ba. The required braking force Fd is a target value of the total braking force F acting on the vehicle, and is a braking force obtained by combining the “friction braking force Fm by the braking controller SC” and the “regenerative braking force Fg by the generator GN”. The required braking force Fd is determined to be “0” when the operation amount Ba is in the range from “0” to the predetermined value bo according to the calculation map Zfd. When the operation amount Ba is equal to or greater than the predetermined value bo, the operation amount Ba increases. Accordingly, calculation is performed so as to monotonically increase from “0”.
 ステップS160にて、ブロックX160に示す様に、車体速度Vx、及び、演算マップZfxに基づいて、回生制動力の最大値(「最大回生力」という)Fxが演算される。ジェネレータGNの回生量は、駆動コントローラECDのパワートランジスタ(IGBT等)の定格、及び、バッテリの充電受入性によって制限される。例えば、ジェネレータGNの回生量は、所定の電力(単位時間当りの電気エネルギ)に制御される。電力(仕事率)が一定であるため、ジェネレータGNによる車輪軸まわりの回生トルクは、車輪WHの回転数(つまり、車体速度Vx)に反比例する。また、ジェネレータGNの回転数Ngが低下すると、回生量は減少する。更に、回生量には、上限値が設けられる。 In step S160, as indicated by a block X160, the maximum value (referred to as “maximum regenerative force”) Fx of the regenerative braking force is calculated based on the vehicle body speed Vx and the calculation map Zfx. The regeneration amount of the generator GN is limited by the rating of the power transistor (IGBT or the like) of the drive controller ECD and the battery charge acceptance. For example, the regeneration amount of the generator GN is controlled to a predetermined power (electric energy per unit time). Since the electric power (power) is constant, the regenerative torque around the wheel shaft by the generator GN is inversely proportional to the rotation speed of the wheel WH (that is, the vehicle body speed Vx). Further, when the rotational speed Ng of the generator GN decreases, the regeneration amount decreases. Furthermore, an upper limit is provided for the regeneration amount.
 以上のことから、最大回生力Fx用の演算マップZfxでは、車体速度Vxが、「0」以上、第1所定速度vo未満の範囲では、車体速度Vxの増加に従って、最大回生力Fxが増加するように設定される。また、車体速度Vxが、第1所定速度vo以上、第2所定速度vp未満の範囲では、最大回生力Fxは、上限値fxに決定される。そして、車体速度Vxが、第2所定速度vp以上では、車体速度Vxが増加するに従って、最大回生力Fxが減少するように設定されている。例えば、最大回生力Fxの減少特性(「Vx≧vp」の特性)では、車体速度Vxと最大回生力Fxとの関係は双曲線で表される(即ち、回生電力が一定)。ここで、各所定値vo、vpは予め設定された定数である。なお、演算マップZfxでは、車体速度Vxに代えて、ジェネレータGNの回転数Ngが採用され得る。 From the above, in the calculation map Zfx for the maximum regenerative force Fx, the maximum regenerative force Fx increases as the vehicle body speed Vx increases in the range where the vehicle body speed Vx is greater than or equal to “0” and less than the first predetermined speed vo. Is set as follows. Further, in the range where the vehicle body speed Vx is equal to or higher than the first predetermined speed vo and lower than the second predetermined speed vp, the maximum regenerative force Fx is determined as the upper limit value fx. When the vehicle body speed Vx is equal to or higher than the second predetermined speed vp, the maximum regenerative force Fx is set to decrease as the vehicle body speed Vx increases. For example, in the reduction characteristic of the maximum regenerative force Fx (characteristic of “Vx ≧ vp”), the relationship between the vehicle body speed Vx and the maximum regenerative force Fx is represented by a hyperbola (that is, the regenerative power is constant). Here, the predetermined values vo and vp are preset constants. Note that in the calculation map Zfx, the rotational speed Ng of the generator GN can be adopted instead of the vehicle body speed Vx.
 ステップS170にて、要求制動力Fd、及び、最大回生力Fxに基づいて、「要求制動力Fdが、最大回生力Fx以下であるか、否か」が判定される。つまり、運転者によって要求されている制動力Fdが、回生制動力Fgのみによって達成可能か、否かが判定される。「Fd≦Fx」であり、ステップS170が肯定される場合には、処理はステップS180に進む。一方、「Fd>Fx」であり、ステップS170が否定される場合には、処理はステップS190に進む。 In step S170, based on the required braking force Fd and the maximum regenerative force Fx, it is determined whether or not the required brake force Fd is equal to or less than the maximum regenerative force Fx. That is, it is determined whether or not the braking force Fd requested by the driver can be achieved only by the regenerative braking force Fg. If “Fd ≦ Fx” and step S170 is positive, the process proceeds to step S180. On the other hand, if “Fd> Fx” and step S170 is negative, the process proceeds to step S190.
 ステップS180にて、要求制動力Fdが、回生制動力Fgに決定される。また、ステップS180では、目標摩擦制動力Fmが、「0」に演算される。目標摩擦制動力Fmは、摩擦制動によって達成されるべき制動力の目標値である。この場合、車両減速には、摩擦制動が採用されず、回生制動のみによって、要求制動力Fdが達成される。ステップS190にて、回生制動力Fgが、最大回生力Fxに決定される。また、ステップS190では、目標摩擦制動力Fmが、要求制動力Fd、及び、最大回生力Fxに基づいて演算される。具体的には、目標摩擦制動力Fmは、要求制動力Fdから、最大回生力Fxが減算されて決定される。つまり、要求制動力Fdにおいて、回生制動力Fg(=Fx)では不足する分が、目標摩擦制動力Fmによって補われる。 In step S180, the required braking force Fd is determined as the regenerative braking force Fg. In step S180, the target friction braking force Fm is calculated to be “0”. The target friction braking force Fm is a target value of the braking force to be achieved by friction braking. In this case, friction braking is not employed for vehicle deceleration, and the required braking force Fd is achieved only by regenerative braking. In step S190, the regenerative braking force Fg is determined as the maximum regenerative force Fx. In step S190, the target friction braking force Fm is calculated based on the required braking force Fd and the maximum regenerative force Fx. Specifically, the target friction braking force Fm is determined by subtracting the maximum regenerative force Fx from the required braking force Fd. That is, the required braking force Fd is made up by the target friction braking force Fm, which is insufficient for the regenerative braking force Fg (= Fx).
 ステップS200にて、回生制動力Fgに基づいて、回生量Rgが演算される。回生量Rgは、ジェネレータGNの回生量の目標値である。回生量Rgは、通信バスBSを介して、制動コントローラECUから駆動コントローラECDに送信される。ステップS210にて、摩擦制動力の目標値Fmに基づいて、目標液圧Ptが演算される。目標液圧Ptは、調整液圧Paの目標値である。ステップS210では、目標摩擦制動力Fmが液圧換算されて、目標液圧Ptが決定される。 In step S200, the regenerative amount Rg is calculated based on the regenerative braking force Fg. The regeneration amount Rg is a target value for the regeneration amount of the generator GN. The regeneration amount Rg is transmitted from the braking controller ECU to the drive controller ECD via the communication bus BS. In step S210, the target hydraulic pressure Pt is calculated based on the target value Fm of the friction braking force. The target hydraulic pressure Pt is a target value for the adjusted hydraulic pressure Pa. In step S210, the target friction braking force Fm is converted into a hydraulic pressure, and the target hydraulic pressure Pt is determined.
 ステップS220にて、「急操作処理が必要であるか、否か」が判定され、必要である場合には、急操作処理が実行される。急操作処理は、制動液圧Pwの昇圧応答性を向上させるための処理である。急操作処理の詳細については後述する。 In step S220, it is determined whether or not an emergency operation process is necessary. If it is necessary, an emergency operation process is executed. The sudden operation process is a process for improving the pressure increase response of the brake fluid pressure Pw. Details of the emergency operation processing will be described later.
 ステップS230にて、電気モータMCが駆動され、流体ポンプQCを含んだ制動液BFの還流が形成される。なお、電気モータMC(電動ポンプDC)は、昇圧応答性を確保するため、制動中には、「Pt=0」であっても駆動(回転)される。ステップS240にて、目標液圧Pt、及び、調整液圧(整液圧センサPAの検出値)Paに基づいて、調整液圧Paが目標液圧Ptに近付くよう、調圧弁UAがサーボ制御される。サーボ制御では、実際値Paが、目標値Ptに一致するよう、フィードバック制御が行われる。 In step S230, the electric motor MC is driven to form a reflux of the brake fluid BF including the fluid pump QC. The electric motor MC (electric pump DC) is driven (rotated) even when “Pt = 0” during braking in order to ensure boosting response. In step S240, the pressure regulating valve UA is servo-controlled based on the target hydraulic pressure Pt and the adjusted hydraulic pressure (detected value of the regulated hydraulic pressure sensor PA) Pa so that the adjusted hydraulic pressure Pa approaches the target hydraulic pressure Pt. The In the servo control, feedback control is performed so that the actual value Pa matches the target value Pt.
<急操作処理>
 図3の制御フロー図を参照して、急操作時の処理について説明する。「急操作処理」は、運転者によって、制動操作部材BPが急操作された場合(即ち、急制動時)に、制動液圧Pwの昇圧応答性を向上させるものである。該処理が実行されない場合には、運転者の操作が制動液圧Pwとは切り離された「ブレーキ・バイ・ワイヤ」の構成であるが、急制動時には、運転者の操作力(操作パワー)が、昇圧応答向上に利用される。
<Sudden operation processing>
With reference to the control flow chart of FIG. 3, the processing at the time of sudden operation will be described. The “sudden operation process” is to improve the boosting response of the brake hydraulic pressure Pw when the braking operation member BP is suddenly operated by the driver (that is, during sudden braking). When the processing is not executed, the driver's operation is a “brake-by-wire” configuration separated from the brake fluid pressure Pw. However, during sudden braking, the driver's operation force (operation power) is reduced. This is used to improve the boosting response.
 ステップS310にて、操作量Baに基づいて、操作速度dBが演算される。具体的には、操作速度dBは、操作量Baが時間微分されて演算される。ここで、操作量Baは、制動操作部材BPの操作の程度を表す状態量であり、操作変位Sp、操作力Fp、入力液圧Pn、及び、シミュレータ液圧Psのうちの少なくとも1つに基づいて決定される。また、操作量Baとして、操作変位Spが採用され、操作速度dBとして、操作速度dS(操作変位Spの微分値)が演算されることが好適である。制動操作部材BPの操作は、動的には、「Sp→Pn→Ps」の順で伝播されるが、操作変位Spは最も制動操作部材BPに近い状態量であり、時間的に早期に検出される状態量であることに基づく。 In step S310, the operation speed dB is calculated based on the operation amount Ba. Specifically, the operation speed dB is calculated by differentiating the operation amount Ba with respect to time. Here, the operation amount Ba is a state amount representing the degree of operation of the braking operation member BP, and is based on at least one of the operation displacement Sp, the operation force Fp, the input hydraulic pressure Pn, and the simulator hydraulic pressure Ps. Determined. Further, it is preferable that the operation displacement Sp is adopted as the operation amount Ba, and the operation speed dS (differential value of the operation displacement Sp) is calculated as the operation speed dB. The operation of the brake operation member BP is dynamically propagated in the order of “Sp → Pn → Ps”, but the operation displacement Sp is a state quantity closest to the brake operation member BP and is detected early in time. Is based on the state quantity being made.
 ステップS320にて、操作速度dBに基づいて、「制動操作部材BPの操作が急操作であるか、否か」が判定される。例えば、急操作の判定は、以下の2つの条件(A1、A2)が、共に満足された場合に肯定される。
 条件A1:操作速度dBが第1所定速度dx以上である。第1所定速度dxは、予め設定された定数(所定値)である。
 条件A2:操作量Baが所定量bx以上である。所定量bxは、予め設定された定数(所定値)である。
 「dB≧dx、且つ、Ba≧bx」である場合には、ステップS320が肯定され、処理は、ステップS330に進む。一方、「dB<dx、又は、Ba<bx」であり、ステップS320が否定され、処理は、ステップS310に戻される。
In step S320, based on the operation speed dB, it is determined whether or not the operation of the braking operation member BP is a sudden operation. For example, the determination of the sudden operation is affirmed when the following two conditions (A1, A2) are both satisfied.
Condition A1: The operation speed dB is equal to or higher than the first predetermined speed dx. The first predetermined speed dx is a preset constant (predetermined value).
Condition A2: The operation amount Ba is equal to or greater than the predetermined amount bx. The predetermined amount bx is a preset constant (predetermined value).
If “dB ≧ dx and Ba ≧ bx”, step S320 is positive, and the process proceeds to step S330. On the other hand, “dB <dx or Ba <bx” is satisfied, step S320 is denied, and the process returns to step S310.
 ステップS330にて、経過時間Tzが演算される。経過時間Tzは、一連の制動操作(即ち、制動開始から制動終了までの操作)において、初めて、ステップS320の判定が肯定された時点からの経過時間である。つまり、初めて急操作が判定された演算周期において、タイマが作動され、経過時間Tzが積算される。 In step S330, the elapsed time Tz is calculated. The elapsed time Tz is the elapsed time from the time when the determination in step S320 is affirmed for the first time in a series of braking operations (that is, operations from the start of braking to the end of braking). In other words, the timer is activated and the elapsed time Tz is integrated in the calculation cycle in which the sudden operation is first determined.
 ステップS340にて、「急操作処理の終了条件が満足されるか、否か」が判定される。以下の3つの条件(B1~B3)のうちの少なくとも1つが満足された場合に、急操作処理は終了される。
 条件B1:経過時間Tzが所定時間tz以上である。所定時間tzは、予め設定された定数(所定値)である。
 条件B2:急操作が弱められた。「操作速度dBが、第2所定速度dy未満」の状態になった。ここで、第2所定速度dyは、第1所定速度dxよりも小さい、予め設定された定数(所定値)である(即ち、「dy<dx」)。
 条件B3:制動操作が終了された。つまり、「Ba=0」が達成された。
In step S340, it is determined whether or not the termination condition for the sudden operation process is satisfied. The abrupt operation process is terminated when at least one of the following three conditions (B1 to B3) is satisfied.
Condition B1: The elapsed time Tz is equal to or longer than the predetermined time tz. The predetermined time tz is a preset constant (predetermined value).
Condition B2: The sudden operation was weakened. The operation speed dB is less than the second predetermined speed dy. Here, the second predetermined speed dy is a preset constant (predetermined value) smaller than the first predetermined speed dx (that is, “dy <dx”).
Condition B3: The braking operation is terminated. That is, “Ba = 0” was achieved.
 ステップS340が否定される場合には、ステップS350、及び、ステップS360に進み、急操作処理が実行される。急操作処理では、ステップS350にて、第1開閉弁VAが閉位置にされる。そして、ステップS360にて、第2開閉弁VBが開位置にされる。第1開閉弁VAの閉位置によって、入力室Rnは、封じ込め状態にされる(つまり、入力室Rnが流体ロックされる)。このため、制動操作部材BPに連結された入力ピストンPKによって、マスタピストンPMは、前進方向Haに移動される。マスタピストンPMが、前進方向Haに移動されると、反力室Roの容積Voは減少される。第2開閉弁VBが閉位置にあると、反力室Roの制動液BFは、シミュレータSS内に流入される。シミュレータSSには、操作力Fpの発生のための弾性体Dsが設けられるとともに、その入り口には、操作特性の向上用にオリフィスOsが設けられている。弾性体Ds、及び、オリフィスOsは、制動液BFの流入に対して抵抗となる。この抵抗を回避するよう、第2開閉弁VBが開位置にされ、反力室Ro内の制動液BFが、抵抗なく、リザーバRVに移動される。また、マスタピストンPMが、前進方向Haに移動されると、サーボ室Rsの容積Vsは増加される。このとき、サーボ室Rsは、制動液BFを吸い込むことが必要となるが、流体ポンプQCをバイパスできるよう、バイパス流体路HDが設けられているため、バイパス流体路HD、及び、逆止弁GDを介して、抵抗なく、制動液BFが吸い込まれ得る。 If step S340 is negative, the process proceeds to step S350 and step S360, and the sudden operation process is executed. In the sudden operation process, the first on-off valve VA is closed at step S350. In step S360, the second on-off valve VB is set to the open position. The input chamber Rn is put into a containment state (that is, the input chamber Rn is fluid-locked) by the closed position of the first on-off valve VA. For this reason, the master piston PM is moved in the forward movement direction Ha by the input piston PK connected to the braking operation member BP. When the master piston PM is moved in the forward direction Ha, the volume Vo of the reaction force chamber Ro is reduced. When the second on-off valve VB is in the closed position, the brake fluid BF in the reaction force chamber Ro flows into the simulator SS. The simulator SS is provided with an elastic body Ds for generating the operation force Fp, and an orifice Os is provided at the entrance for improving the operation characteristics. The elastic body Ds and the orifice Os become a resistance against the inflow of the brake fluid BF. In order to avoid this resistance, the second on-off valve VB is opened, and the braking fluid BF in the reaction force chamber Ro is moved to the reservoir RV without resistance. Further, when the master piston PM is moved in the forward direction Ha, the volume Vs of the servo chamber Rs is increased. At this time, the servo chamber Rs needs to suck in the brake fluid BF. However, since the bypass fluid passage HD is provided so as to bypass the fluid pump QC, the bypass fluid passage HD and the check valve GD are provided. The brake fluid BF can be sucked through without any resistance.
 ステップS340が肯定される場合には、ステップS370、及び、ステップS380に進み、急操作処理が終了され、通常の状態に戻される。つまり、第1開閉弁VAが開位置にされ、流体ロックの状態が解消され、入力室RnとシミュレータSSとが接続される。また、第2開閉弁VBが閉位置にされ、液圧室Rn、RoとリザーバRVとが非連通状態にされる。 When step S340 is affirmed, the process proceeds to step S370 and step S380, the sudden operation process is terminated, and the normal state is restored. That is, the first on-off valve VA is set to the open position, the fluid lock state is canceled, and the input chamber Rn and the simulator SS are connected. In addition, the second on-off valve VB is closed, and the hydraulic chambers Rn, Ro and the reservoir RV are disconnected.
 急操作時の演算処理では、第1開閉弁VAが閉位置にされることにより、運転者によって操作された制動操作部材BPの操作力Fpが、入力室Rnを介して、マスタピストンPMに伝達される。通常時(即ち、急操作時以外)は、マスタピストンPMは、サーボ室Rs内の調整液圧Paのみによって駆動される。しかし、急操作処理が実行されると、マスタピストンPMは、調整液圧Pa、及び、運転者の操作力Fpによって、前進方向Haに押圧される。このため、マスタ液圧Pmの増加において、その応答性が向上される。 In the calculation process at the time of sudden operation, the operating force Fp of the braking operation member BP operated by the driver is transmitted to the master piston PM through the input chamber Rn by closing the first on-off valve VA. Is done. During normal operation (that is, other than during sudden operation), the master piston PM is driven only by the adjustment hydraulic pressure Pa in the servo chamber Rs. However, when the sudden operation process is executed, the master piston PM is pressed in the forward direction Ha by the adjustment hydraulic pressure Pa and the driver's operation force Fp. For this reason, in the increase of the master hydraulic pressure Pm, the responsiveness is improved.
 調圧ユニットYCは、オンデマンド型であるため、非制動時には、電動ポンプDCは停止されている。従って、制動操作部材BPが急操作される場合には、操作力Fpの増加に対して、調整液圧Paの増加が追い付かない状況(調整液圧Paの立ち上がりが、操作力Fpの立ち上がりに対して遅れる状態)が生じ得る。リザーバRVから、流体ポンプQCを通して、サーボ室Rsに制動液BFが供給されると、流体ポンプQCが流体抵抗として作用する。このことを回避するため、バイパス流体路HDが、調圧弁UAを含む調圧流体路HCに対して、並列に設けられている。調整液圧Paの立ち上がりが遅れる場合には、サーボ室Rsは、バイパス流体路HDから制動液BFを吸い込むことができるため、マスタ液圧Pmの増圧応答性が確保され得る。なお、バイパス流体路HDには、サーボ室RsからリザーバRVへの制動液BFの移動を阻止するよう、逆止弁GDが設けられる。 Since the pressure adjusting unit YC is an on-demand type, the electric pump DC is stopped during non-braking. Accordingly, when the braking operation member BP is suddenly operated, the increase in the adjustment fluid pressure Pa cannot keep up with the increase in the operation force Fp (the rise in the adjustment fluid pressure Pa is in contrast to the rise in the operation force Fp). Can be delayed). When the brake fluid BF is supplied from the reservoir RV to the servo chamber Rs through the fluid pump QC, the fluid pump QC acts as a fluid resistance. In order to avoid this, the bypass fluid passage HD is provided in parallel with the pressure regulation fluid passage HC including the pressure regulation valve UA. When the rising of the adjustment fluid pressure Pa is delayed, the servo chamber Rs can suck the brake fluid BF from the bypass fluid passage HD, so that the pressure increase response of the master fluid pressure Pm can be ensured. The bypass fluid path HD is provided with a check valve GD so as to prevent the movement of the brake fluid BF from the servo chamber Rs to the reservoir RV.
 シミュレータSSには、操作力Fpを発生するよう、弾性体Dsが設けられる。加えて、シミュレータSSには、減衰効果によって操作特性を向上するよう、オリフィスOsが設けられている。第1、第2開閉弁VA、VBが閉位置にされた状態で、マスタピストンPMは前進方向Haに移動され、反力室Roの容積Voが減少されると、その分の制動液BFは、シミュレータSSによって吸収されることが必要となる。しかし、シミュレータSSには、上記の弾性体Ds、オリフィスOsが設けられているため、これらが、シミュレータSSへの制動液BFの流入抵抗となる。急操作処理では、第2開閉弁VBが開位置にされるため、反力室Roの容積減少分の制動液BFは、シミュレータ流体路HS、及び、リザーバ流体路HTを介して、リザーバRVに戻される。従って、反力室Ro内の制動液BFが、抵抗なく移動されるため、マスタ液圧Pmの応答性が効果的に達成され得る。 The simulator SS is provided with an elastic body Ds so as to generate an operating force Fp. In addition, the simulator SS is provided with an orifice Os so as to improve the operation characteristics by a damping effect. When the first and second on-off valves VA and VB are in the closed position, the master piston PM is moved in the forward direction Ha, and when the volume Vo of the reaction force chamber Ro is reduced, the corresponding braking fluid BF is It needs to be absorbed by the simulator SS. However, since the simulator SS is provided with the elastic body Ds and the orifice Os, these serve as inflow resistance of the brake fluid BF to the simulator SS. In the sudden operation process, since the second on-off valve VB is set to the open position, the braking fluid BF corresponding to the volume reduction of the reaction force chamber Ro is transferred to the reservoir RV through the simulator fluid path HS and the reservoir fluid path HT. Returned. Therefore, since the braking fluid BF in the reaction force chamber Ro is moved without resistance, the responsiveness of the master fluid pressure Pm can be effectively achieved.
<制動制御装置SCの第2の実施形態>
 図4の全体構成図を参照して、制動制御装置SCの第2の実施形態について説明する。第2の実施形態に係る制動制御装置SCも、マスタユニットYM、回生協調ユニットYK、調圧ユニットYC、及び、コントローラECUを含んで構成される。マスタユニットYM、及び、回生協調ユニットYKは、第1の実施形態と同じである。第1の実施形態では、調圧ユニットYCが、1つの調圧弁UAにて構成され、サーボ室Rs、及び、後輪ホイールシリンダCWrに同じ液圧(調整液圧)Paが供給された。これに代えて、第2の実施形態では、調圧ユニットYCが、2つの調圧弁UB、UCを含んで構成され、コントローラECUによって、サーボ室Rsへの供給液圧Pcと、後輪ホイールシリンダCWrへの供給液圧Pbとは、独立、且つ、個別に制御される。以下、第1の実施形態と異なる点を中心に説明する。第2の実施形態では、前輪WHfに、ジェネレータGNが備えられる。
<Second Embodiment of Braking Control Device SC>
A second embodiment of the braking control device SC will be described with reference to the overall configuration diagram of FIG. The braking control device SC according to the second embodiment is also configured to include a master unit YM, a regeneration coordination unit YK, a pressure adjustment unit YC, and a controller ECU. The master unit YM and the regeneration cooperative unit YK are the same as those in the first embodiment. In the first embodiment, the pressure adjusting unit YC is configured by one pressure adjusting valve UA, and the same hydraulic pressure (adjusted hydraulic pressure) Pa is supplied to the servo chamber Rs and the rear wheel cylinder CWr. Instead, in the second embodiment, the pressure regulating unit YC includes two pressure regulating valves UB and UC, and the controller ECU supplies the hydraulic pressure Pc supplied to the servo chamber Rs and the rear wheel wheel cylinder. The supply hydraulic pressure Pb to CWr is controlled independently and individually. Hereinafter, a description will be given focusing on differences from the first embodiment. In the second embodiment, the front wheel WHf is provided with a generator GN.
 第1の実施形態と同様に、第2の実施形態でも、同一記号を付された構成部材、演算処理、信号、特性、及び、値は、同一機能のものである。記号末尾の添字「i」~「l」は、何れの車輪に関するものであるかを示す包括記号であり、「i」は右前輪、「j」は左前輪、「k」は右後輪、「l」は左後輪を示す。添字「i」~「l」が省略された場合には、各記号は、4つの各車輪の総称を表す。また、記号末尾の添字「f」、「r」は、2系統の流体路(制動液BFの移動経路)において、前後輪の何れの系統に関するものであるかを示す包括記号であり、「f」は前輪系統、「r」は後輪系統を示す。添字「f」、「r」が省略された場合には、2系統の総称を表す。各流体路において、「上流側(又は、上部)」はリザーバRVに近い側であり、「下流側(又は、下部)」はホイールシリンダCWに近い側である。 As in the first embodiment, in the second embodiment, the constituent members, arithmetic processing, signals, characteristics, and values that are given the same symbols have the same function. The suffix “i” to “l” at the end of the symbol is a comprehensive symbol indicating which wheel the wheel is associated with, “i” is the right front wheel, “j” is the left front wheel, “k” is the right rear wheel, “L” indicates the left rear wheel. When the subscripts “i” to “l” are omitted, each symbol represents a generic name of each of the four wheels. Subscripts “f” and “r” at the end of the symbol are general symbols indicating which of the front and rear wheels the two fluid paths (movement paths of the brake fluid BF) relate to. "" Indicates a front wheel system and "r" indicates a rear wheel system. When the subscripts “f” and “r” are omitted, it represents a generic name of two systems. In each fluid path, the “upstream side (or upper part)” is the side close to the reservoir RV, and the “downstream side (or lower part)” is the side close to the wheel cylinder CW.
[調圧ユニットYCの他の例]
 調圧ユニットYCは、電動ポンプDC、逆止弁GC、第1、第2調圧弁UB、UC、及び、第1、第2調整液圧センサPB、PCを備えている。調圧ユニットYCによって、前輪ホイールシリンダCWfの液圧Pwfと、後輪ホイールシリンダCWrの液圧Pwrとが、独立、且つ、個別に調節される。具体的には、ジェネレータGNが備えられる前輪WHfの制動液圧Pwfが、ジェネレータGNが備えられない後輪WHrの制動液圧Pwr以下になるよう調整される。
[Other examples of pressure control unit YC]
The pressure adjustment unit YC includes an electric pump DC, a check valve GC, first and second pressure adjustment valves UB and UC, and first and second adjustment hydraulic pressure sensors PB and PC. The pressure adjusting unit YC adjusts the hydraulic pressure Pwf of the front wheel cylinder CWf and the hydraulic pressure Pwr of the rear wheel cylinder CWr independently and individually. Specifically, the braking hydraulic pressure Pwf of the front wheel WHf provided with the generator GN is adjusted to be equal to or lower than the braking hydraulic pressure Pwr of the rear wheel WHr not provided with the generator GN.
 上記同様に、電動ポンプDCは、1つの電気モータMC、及び、1つの流体ポンプQCによって構成され、それらが一体となって回転する。流体ポンプQCにおいて、吸込口Qsは、第1リザーバ流体路HVに接続され、吐出口Qtは、調圧流体路HCの一方の端部に接続される。調圧流体路HCには、逆止弁GCが設けられる。調圧流体路HCの他方の端部Bvは、リザーバ流体路HVに接続される。 Similarly to the above, the electric pump DC is constituted by one electric motor MC and one fluid pump QC, which rotate together. In the fluid pump QC, the suction port Qs is connected to the first reservoir fluid path HV, and the discharge port Qt is connected to one end of the pressure regulating fluid path HC. A check valve GC is provided in the pressure regulating fluid path HC. The other end Bv of the pressure regulating fluid path HC is connected to the reservoir fluid path HV.
 調圧流体路HCにおいて、2つの調圧弁UB、UCが直列に設けられる。具体的には、調圧流体路HCには、第1調圧弁UBが設けられる。そして、第1調圧弁UBと部位Bvとの間に、第2調圧弁UCが配置される。第1、第2調圧弁UB、UCは、調圧弁UAと同様に、通電状態(例えば、供給電流)に基づいて開弁量(リフト量)が連続的に制御されるリニア型の電磁弁(比例弁、差圧弁)である。第1、第2調圧弁UB、UCは、駆動信号Ub、Ucに基づいて、コントローラECUによって制御される。第1、第2調圧弁UB、UCとして、常開型の電磁弁が採用される。 In the pressure regulating fluid path HC, two pressure regulating valves UB and UC are provided in series. Specifically, the first pressure regulating valve UB is provided in the pressure regulating fluid path HC. And the 2nd pressure regulation valve UC is arrange | positioned between the 1st pressure regulation valve UB and the site | part Bv. As with the pressure regulating valve UA, the first and second pressure regulating valves UB and UC are linear solenoid valves whose valve opening amount (lift amount) is continuously controlled based on an energized state (for example, supply current). Proportional valve, differential pressure valve). The first and second pressure regulating valves UB and UC are controlled by the controller ECU based on the drive signals Ub and Uc. As the first and second pressure regulating valves UB and UC, normally open solenoid valves are employed.
 電動ポンプDCが駆動されると、「HV→QC(Qs→Qt)→GC→UB→UC→HV」の制動液BFの還流が形成される。第1、第2調圧弁UB、UCが全開状態にある場合(これらは常開型であるため、非通電時)、調圧流体路HC内の液圧(調整液圧)Pb、Pcは、共に、略「0(大気圧)」である。第1調圧弁UBへの通電量が増加され、調圧弁UBによって還流が絞られると、調圧流体路HCにおける流体ポンプQCと第1調圧弁UBと間の液圧(第1調整液圧)Pbが、「0」から増加される。また、第2調圧弁UCへの通電量が増加され、調圧弁UCによって還流が絞られると、調圧流体路HCにおける第1調圧弁UBと第2調圧弁UCと間の液圧(第2調整液圧)Pcが、「0」から増加される。 When the electric pump DC is driven, a reflux of the brake fluid BF of “HV → QC (Qs → Qt) → GC → UB → UC → HV” is formed. When the first and second pressure regulating valves UB and UC are in a fully opened state (because these are normally open types, when not energized), the hydraulic pressures (adjusted hydraulic pressures) Pb and Pc in the regulated fluid path HC are: Both are substantially “0 (atmospheric pressure)”. When the energization amount to the first pressure regulating valve UB is increased and the recirculation is throttled by the pressure regulating valve UB, the fluid pressure (first regulated fluid pressure) between the fluid pump QC and the first pressure regulating valve UB in the pressure regulating fluid path HC. Pb is increased from “0”. Further, when the energization amount to the second pressure regulating valve UC is increased and the recirculation is throttled by the pressure regulating valve UC, the hydraulic pressure (second pressure) between the first pressure regulating valve UB and the second pressure regulating valve UC in the pressure regulating fluid path HC. Adjustment hydraulic pressure) Pc is increased from “0”.
 第1、第2調圧弁UB、UCは、調圧流体路HCに対して直列に配置されるため、第2調圧弁UCによって調整される第2調整液圧Pcは、第1調整液圧Pb以下である。換言すれば、第2調圧弁UCによって、第2調整液圧Pcが、「0(大気圧)」から増加するよう調整され、第1調圧弁UBによって、第1調整液圧Pbが、第2調整液圧Pcから増加するよう調整される。調圧ユニットYCでは、第1、第2調整液圧Pb、Pcを検出するよう、調圧流体路HCには、第1、第2調整液圧センサPB、PCが設けられる。 Since the first and second pressure regulating valves UB and UC are arranged in series with the pressure regulating fluid path HC, the second adjustment hydraulic pressure Pc adjusted by the second pressure regulating valve UC is the first adjustment hydraulic pressure Pb. It is as follows. In other words, the second adjustment hydraulic pressure Pc is adjusted to increase from “0 (atmospheric pressure)” by the second pressure adjustment valve UC, and the first adjustment hydraulic pressure Pb is adjusted to be the second by the first pressure adjustment valve UB. It adjusts so that it may increase from adjustment hydraulic pressure Pc. In the pressure adjusting unit YC, first and second adjustment hydraulic pressure sensors PB and PC are provided in the pressure adjustment fluid path HC so as to detect the first and second adjustment hydraulic pressures Pb and Pc.
 調圧流体路HCは、流体ポンプQCと第1調圧弁UBとの間の部位Bhにて、後輪調圧流体路HRに分岐される。後輪調圧流体路HRは、下部流体ユニットYLを介して、後輪ホイールシリンダCWrに接続される。従って、第1調整液圧Pbは、後輪ホールシリンダCWrに、直接、導入(供給)される。また、調圧流体路HCは、第1調圧弁UBと第2調圧弁UCとの間の部位Bgにて、前輪調圧流体路HFに分岐される。前輪調圧流体路HFは、サーボ室Rsに接続される。従って、第2調整液圧Pcは、サーボ室Rsに導入(供給)される。マスタシリンダCMは、下部流体ユニットYLを介して、前輪ホイールシリンダCWfに接続されているため、第2調整液圧Pcは、マスタシリンダCMを介して、前輪ホイールシリンダCWfに、間接的に導入される。 The pressure regulating fluid path HC is branched to the rear wheel regulating fluid path HR at a portion Bh between the fluid pump QC and the first pressure regulating valve UB. The rear wheel pressure adjusting fluid path HR is connected to the rear wheel wheel cylinder CWr via the lower fluid unit YL. Accordingly, the first adjustment hydraulic pressure Pb is directly introduced (supplied) to the rear wheel hole cylinder CWr. Further, the pressure regulating fluid path HC is branched to the front wheel pressure regulating fluid path HF at a portion Bg between the first pressure regulating valve UB and the second pressure regulating valve UC. The front wheel pressure adjusting fluid path HF is connected to the servo chamber Rs. Accordingly, the second adjustment hydraulic pressure Pc is introduced (supplied) into the servo chamber Rs. Since the master cylinder CM is connected to the front wheel cylinder CWf via the lower fluid unit YL, the second adjustment hydraulic pressure Pc is indirectly introduced to the front wheel cylinder CWf via the master cylinder CM. The
 第1の実施形態と同様に、急制動時の昇圧応答性を向上するよう、調圧ユニットYCには、調圧流体路HCとは並列に、リザーバRVとサーボ室Rsとを接続するバイパス流体路HDが設けられる。バイパス流体路HDには、逆止弁GDが介装される。逆止弁GDでは、リザーバRVからサーボ室Rsへの制動液BFの流れは許容されるが、サーボ室RsからリザーバRVへの流れは阻止される。 As in the first embodiment, the pressure adjusting unit YC has a bypass fluid that connects the reservoir RV and the servo chamber Rs in parallel with the pressure adjusting fluid path HC so as to improve the pressure rising response at the time of sudden braking. Road HD is provided. A check valve GD is interposed in the bypass fluid path HD. In the check valve GD, the flow of the brake fluid BF from the reservoir RV to the servo chamber Rs is allowed, but the flow from the servo chamber Rs to the reservoir RV is blocked.
 第2の実施形態では、「Pb≧Pc」の範囲で、第1調整液圧Pb、及び、第2調整液圧Pcが、独立、且つ、別々に調整される。これにより、制動力の前後配分が考慮された上で、回生協調制御が実行されるため、車両の減速性、安定性が確保されるとともに、回生エネルギが最大化され得る。 In the second embodiment, the first adjustment hydraulic pressure Pb and the second adjustment hydraulic pressure Pc are adjusted independently and separately within the range of “Pb ≧ Pc”. As a result, the regenerative cooperative control is executed in consideration of the front-rear distribution of the braking force, so that the deceleration and stability of the vehicle can be ensured and the regenerative energy can be maximized.
 例えば、操作量Baに応じた要求制動力Fdが、ジェネレータGNによって発生可能な回生制動力(最大回生力)Fx以下である場合には、「Pb=Pc=0」に制御され、摩擦制動力Fmは発生されない。ここで、要求制動力Fdは、車両全体に対する制動力であり、操作量Baの増加に応じて増加される。操作量Baが増加され、回生制動力Fgが最大回生力Fx(図2のブロックX160を参照)を超えると、回生制動力Fgでは、要求制動力Fdが達成され得なくなる。この場合、要求制動力Fdに対する回生制動力Fgの不足分(即ち、「Fd-Fx」)に相当する第1調整液圧Pbによって、後輪WHrの摩擦制動力Fmrが増加される。このとき、「Pc=0」のままであり、前輪WHfには回生制動力のみが付与され、摩擦制動力Fmfは発生されない。総制動力に対する前輪制動力の比率(前後配分比率)Hfは、後輪WHrの摩擦制動力Fmrが順次増加されると、100%から、徐々に減少される。操作量Baが、更に増加され、上記の配分比率Hfが、予め設定された所定比率(定数)hfに達すると、第2調整液圧Pcが「0」から増加開始される。第2調整液圧Pcの増加に伴い、前輪WHfの摩擦制動力Fmfが増加される。このため、回生制動力Fgが、その最大値Fxを維持したまま、前後配分比率Hfが、所望の値hfに維持される。 For example, when the required braking force Fd corresponding to the operation amount Ba is equal to or less than the regenerative braking force (maximum regenerative force) Fx that can be generated by the generator GN, the friction braking force is controlled to “Pb = Pc = 0”. Fm is not generated. Here, the required braking force Fd is a braking force for the entire vehicle, and is increased according to an increase in the operation amount Ba. When the operation amount Ba is increased and the regenerative braking force Fg exceeds the maximum regenerative force Fx (see block X160 in FIG. 2), the required braking force Fd cannot be achieved with the regenerative braking force Fg. In this case, the friction braking force Fmr of the rear wheel WHr is increased by the first adjustment hydraulic pressure Pb corresponding to the shortage of the regenerative braking force Fg with respect to the required braking force Fd (that is, “Fd−Fx”). At this time, “Pc = 0” remains, only the regenerative braking force is applied to the front wheels WHf, and no friction braking force Fmf is generated. The ratio (front / rear distribution ratio) Hf of the front wheel braking force to the total braking force is gradually decreased from 100% when the friction braking force Fmr of the rear wheel WHr is sequentially increased. When the operation amount Ba is further increased and the distribution ratio Hf reaches a predetermined ratio (constant) hf set in advance, the second adjustment hydraulic pressure Pc starts to increase from “0”. As the second adjustment hydraulic pressure Pc increases, the friction braking force Fmf of the front wheel WHf increases. For this reason, the front-rear distribution ratio Hf is maintained at the desired value hf while the regenerative braking force Fg maintains the maximum value Fx.
 以上で説明したように、第1、第2調整液圧Pb、Pcによって、前輪液圧Pwf、及び、後輪液圧Pwrが、個別に調整される。具体的には、操作量Baの増加に従って、「ジェネレータGNによる前輪WHfの回生制動力Fgのみ」→「(前輪WHfの回生制動力Fg)+(第1調整液圧Pbによる後輪WHrの摩擦制動力Fmr)」→「(前輪WHfの回生制動力Fg)+(第2調整液圧Pcによる前輪WHfの摩擦制動力Fmf)+(後輪WHrの摩擦制動力Fmr)」の順で制動力の発生状態が遷移される。これにより、回生可能なエネルギが十分に確保されるとともに、制動力の前後配分が適正にされるため、車両の減速性、安定性が確保され得る。 As described above, the front wheel hydraulic pressure Pwf and the rear wheel hydraulic pressure Pwr are individually adjusted by the first and second adjustment hydraulic pressures Pb and Pc. Specifically, as the operation amount Ba increases, “only the regenerative braking force Fg of the front wheel WHf by the generator GN” → “(regenerative braking force Fg of the front wheel WHf) + (friction of the rear wheel WHr by the first adjustment hydraulic pressure Pb). Braking force Fmr) ”→“ (regenerative braking force Fg of front wheel WHf) + (friction braking force Fmf of front wheel WHf due to second adjustment hydraulic pressure Pc) + (friction braking force Fmr of rear wheel WHr) ” The occurrence state of is transitioned. As a result, sufficient energy that can be regenerated is ensured, and the front-rear distribution of the braking force is made appropriate, so that the deceleration and stability of the vehicle can be ensured.
 第2の実施形態でも、第1の実施形態と同様の効果を奏する。つまり、急操作が判定された場合には、第1開閉弁VAが閉位置にされることによって、第2調整液圧Pcに加え、運転者による操作力Fpによって、マスタピストンPMが駆動される。このため、マスタ液圧Pmの昇圧応答性が向上される。また、操作力Fpの増加に対して、第2調整液圧Pcの増加が遅れる場合には、サーボ室Rsへの制動液BFが、バイパス流体路HDを介して、リザーバRVから供給される。制動液BFの移動において、流体抵抗が低いため、効果的に昇圧応答性が向上され得る。また、シミュレータSSには、弾性体Ds、オリフィスOs等の抵抗要素が含まれるが、急操作時には、第2開閉弁VBが開位置にされ、反力室Roからの制動液BFが、流体路HS、HTを介して、リザーバRVに移動される。抵抗要素の影響が回避され、効率的に昇圧応答性が向上され得る。 In the second embodiment, the same effects as in the first embodiment are obtained. That is, when a sudden operation is determined, the master piston PM is driven by the operating force Fp by the driver in addition to the second adjustment hydraulic pressure Pc by closing the first on-off valve VA. . For this reason, the boost response of the master hydraulic pressure Pm is improved. When the increase in the second adjustment hydraulic pressure Pc is delayed with respect to the increase in the operating force Fp, the brake fluid BF to the servo chamber Rs is supplied from the reservoir RV through the bypass fluid path HD. Since the fluid resistance is low in the movement of the brake fluid BF, the boosting response can be effectively improved. In addition, the simulator SS includes resistance elements such as the elastic body Ds and the orifice Os. However, during an emergency operation, the second on-off valve VB is opened, and the brake fluid BF from the reaction force chamber Ro is supplied to the fluid path. It is moved to the reservoir RV via HS and HT. The influence of the resistance element is avoided, and the boosting response can be improved efficiently.
<制動制御装置SCの第3の実施形態>
 次に、制動制御装置SCの第3の実施形態について説明する。第2の実施形態では、前輪WHfにジェネレータGNを備える車両において、第1調整液圧Pbが後輪ホイールシリンダCWrに導入され、第2調整液圧Pcがサーボ室Rsに供給された。第3の実施形態は、後輪WHrにジェネレータGNを備える車両に適用され、第1調整液圧Pbがサーボ室Rsに供給され、第2調整液圧Pcが後輪ホイールシリンダCWrに供給される。つまり、図4において、前輪調圧流体路HFが部位Bhに接続され、後輪調圧流体路HRが部位Bgに接続される。
<Third Embodiment of Braking Control Device SC>
Next, a third embodiment of the braking control device SC will be described. In the second embodiment, in a vehicle including the generator GN on the front wheel WHf, the first adjustment hydraulic pressure Pb is introduced into the rear wheel cylinder CWr, and the second adjustment hydraulic pressure Pc is supplied to the servo chamber Rs. The third embodiment is applied to a vehicle including a generator GN on the rear wheel WHr, the first adjustment hydraulic pressure Pb is supplied to the servo chamber Rs, and the second adjustment hydraulic pressure Pc is supplied to the rear wheel wheel cylinder CWr. . That is, in FIG. 4, the front wheel pressure regulating fluid path HF is connected to the part Bh, and the rear wheel pressure regulating fluid path HR is connected to the part Bg.
 第1、第2調整液圧Pb、Pcによって、後輪液圧Pwr、及び、前輪液圧Pwfが、個別に調整される。具体的には、操作量Baの増加に従って、「ジェネレータGNによる後輪WHrの回生制動力Fgのみ」→「(第1調整液圧Pbによる前輪WHfの摩擦制動力Fmf)+(後輪WHrの回生制動力Fg)」→「(第2調整液圧Pcによる前輪WHfの摩擦制動力Fmf)+(後輪WHrの回生制動力Fg)+(後輪WHrの摩擦制動力Fmr)」の順で制動力の発生状態が遷移される。これにより、回生可能なエネルギが十分に確保されるとともに、制動力の前後配分が適正にされるため、車両の減速性、安定性が確保され得る。更に、マスタ液圧Pmの応答性において、第1、第2開閉弁VA、VBの駆動によって、マスタシリンダ液圧Pm(結果、制動液圧Pw)の昇圧応答性が改善される。 The rear wheel hydraulic pressure Pwr and the front wheel hydraulic pressure Pwf are individually adjusted by the first and second adjustment hydraulic pressures Pb and Pc. Specifically, as the operation amount Ba increases, “only the regenerative braking force Fg of the rear wheel WHr by the generator GN” → “(friction braking force Fmf of the front wheel WHf by the first adjustment hydraulic pressure Pb) + (of the rear wheel WHr). Regenerative braking force Fg) "→" (friction braking force Fmf of front wheel WHf due to second adjustment hydraulic pressure Pc) + (regenerative braking force Fg of rear wheel WHr) + (friction braking force Fmr of rear wheel WHr) "in this order. The generation state of the braking force is changed. As a result, sufficient energy that can be regenerated is ensured, and the front-rear distribution of the braking force is made appropriate, so that the deceleration and stability of the vehicle can be ensured. Further, in the response of the master hydraulic pressure Pm, the boost response of the master cylinder hydraulic pressure Pm (resulting in the brake hydraulic pressure Pw) is improved by driving the first and second on-off valves VA and VB.
<作用・効果>
 本発明に係る制動制御装置SCの作用・効果についてまとめる。制動制御装置SCによって、制動操作部材BPの操作量Baに応じて、車輪WHに備えられたホイールシリンダCWに制動液BFが圧送され、その結果、車輪WHに制動トルクが発生される。制動制御装置SCは、シミュレータSS、マスタユニットYM、調圧ユニットYC、回生協調ユニットYK、第1開閉弁VA、及び、コントローラECUにて構成される。
<Action and effect>
The actions and effects of the braking control device SC according to the present invention will be summarized. The braking control device SC pumps the braking fluid BF to the wheel cylinder CW provided in the wheel WH according to the operation amount Ba of the braking operation member BP. As a result, braking torque is generated in the wheel WH. The braking control device SC includes a simulator SS, a master unit YM, a pressure adjustment unit YC, a regeneration coordination unit YK, a first on-off valve VA, and a controller ECU.
 シミュレータSSによって、制動操作部材BPの操作に応じた操作力Fpが、制動操作部材BPに付与される。マスタユニットYMは、マスタシリンダCM、及び、マスタピストンPMにて構成される。マスタユニットYMには、「ホイールシリンダCWに接続されたマスタ室Rm」、及び、「マスタ室RmによってマスタピストンPMに加えられる後退力Fbに対向する前進力FaをマスタピストンPMに付与するサーボ室Rs」が設けられる。調圧ユニットYCは、リザーバRVから制動液BFを吸入する電動ポンプDC、及び、電磁弁UA、UB、UCにて構成される。調圧ユニットYCでは、電動ポンプDCが吐出する制動液BFが、電磁弁UA、UB、UCによって調整液圧Pa、Pb、Pcに調節され、この調整液圧Pa、Pb、Pcがサーボ室Rsに導入される。回生協調ユニットYKは、制動操作部材BPに連動する入力ピストンPK、及び、入力シリンダCNにて構成される。回生協調ユニットYKには、シミュレータ流体路HSを介してシミュレータSSに接続された入力室Rnが設けられる。入力室Rnの内部では、マスタピストンPMと入力ピストンPKとの隙間Ksが調整液圧Pa、Pb、Pcによって制御される。入力室Rnの内部で、マスタピストンPMと入力ピストンPKとの隙間Ksが調整液圧Pa、Pb、Pcによって制御されることで、回生協調制御が達成される。 The simulator SS applies an operating force Fp according to the operation of the braking operation member BP to the braking operation member BP. The master unit YM is composed of a master cylinder CM and a master piston PM. The master unit YM includes a “master chamber Rm connected to the wheel cylinder CW” and a “servo chamber for applying a forward force Fa opposite to the reverse force Fb applied to the master piston PM by the master chamber Rm to the master piston PM. Rs "is provided. The pressure adjustment unit YC includes an electric pump DC that sucks the brake fluid BF from the reservoir RV, and electromagnetic valves UA, UB, and UC. In the pressure adjusting unit YC, the brake fluid BF discharged from the electric pump DC is adjusted to the adjusted hydraulic pressures Pa, Pb, Pc by the electromagnetic valves UA, UB, UC, and the adjusted hydraulic pressures Pa, Pb, Pc are adjusted to the servo chamber Rs. To be introduced. The regenerative cooperative unit YK includes an input piston PK that is linked to the braking operation member BP and an input cylinder CN. The regeneration coordination unit YK is provided with an input chamber Rn connected to the simulator SS via the simulator fluid path HS. Inside the input chamber Rn, the gap Ks between the master piston PM and the input piston PK is controlled by adjusting hydraulic pressures Pa, Pb, and Pc. In the input chamber Rn, the clearance Ks between the master piston PM and the input piston PK is controlled by the adjustment hydraulic pressures Pa, Pb, and Pc, thereby achieving regenerative cooperative control.
 第1開閉弁VAは、シミュレータ流体路HSに設けられる。第1開閉弁VAは、入力室RnとシミュレータSSとを連通する第1開位置、及び、入力室RnとシミュレータSSとを遮断する第1閉位置を有する常閉型オン・オフ電磁弁である。コントローラECUによって、電動ポンプDC、電磁弁UA、UB、UC、及び、第1開閉弁VAが制御される。コントローラECUでは、操作量Baに基づいて、「制動操作部材BPの操作が急操作であるか、否か」が判定される。そして、急操作であることが否定される場合(即ち、通常操作状態)には、第1開閉弁VAは第1開位置に駆動される。一方、急操作であることが肯定される場合(即ち、急操作状態)には、第1開閉弁VAは第1閉位置に駆動される。例えば、コントローラECUでは、操作量Ba(特に、制動操作部材BPの操作変位Sp)に基づいて操作速度dB(例えば、操作変位Spの微分値dS)が演算され、操作速度dBが所定速度dx未満である場合には急操作であることが否定され、操作速度dBが所定速度dx以上である場合には急操作であることが肯定される。なお、判定の確度を向上するよう、操作量Baの条件が付け加えられ得る。つまり、「dB<dx、又は、Ba<bx」では、通常操作状態が判定され、「dB≧dx、且つ、Ba≧bx」では、急操作状態が判定される。なお、所定速度dx、所定量bxは、予め設定された定数である。 The first on-off valve VA is provided in the simulator fluid path HS. The first on-off valve VA is a normally closed on / off solenoid valve having a first open position for communicating the input chamber Rn and the simulator SS and a first closed position for blocking the input chamber Rn and the simulator SS. . The controller ECU controls the electric pump DC, the electromagnetic valves UA, UB, UC, and the first on-off valve VA. In the controller ECU, based on the operation amount Ba, “whether or not the operation of the braking operation member BP is a sudden operation” is determined. And when it is denied that it is sudden operation (namely, normal operation state), the 1st on-off valve VA is driven to the 1st open position. On the other hand, when it is affirmed that the operation is sudden (that is, in the sudden operation state), the first on-off valve VA is driven to the first closed position. For example, the controller ECU calculates an operation speed dB (for example, a differential value dS of the operation displacement Sp) based on the operation amount Ba (in particular, the operation displacement Sp of the braking operation member BP), and the operation speed dB is less than the predetermined speed dx. If it is, it is denied that the operation is sudden, and if the operation speed dB is equal to or higher than the predetermined speed dx, it is affirmed that the operation is sudden. Note that a condition for the operation amount Ba can be added so as to improve the accuracy of determination. That is, when “dB <dx or Ba <bx”, the normal operation state is determined, and when “dB ≧ dx and Ba ≧ bx”, the sudden operation state is determined. The predetermined speed dx and the predetermined amount bx are preset constants.
 電動ポンプDCは、オンデマンド型であるため、非制動時には作動していない(停止状態である)。急操作状態には、第1開閉弁VAが閉位置にされることにより、入力室Rnが流体ロック状態にされる。これにより、運転者によって操作された制動操作部材BPの操作力Fpが、入力室Rnを介して、マスタピストンPMに伝達される。マスタピストンPMは、調整液圧Pa、Pb、Pc、及び、運転者の操作力Fpによって、前進方向Haに押圧される。このため、マスタシリンダ液圧Pm(つまり、制動液圧Pw)の増加において、その応答性が向上される。なお、通常操作状態では、第1開閉弁VAは閉位置にされ、入力室Rnは、シミュレータSS、及び、反力室Roと連通状態にされ、マスタピストンPMは、サーボ室Rs内の調整液圧Pa、Pb、Pcのみによって駆動される。 Since the electric pump DC is an on-demand type, the electric pump DC is not operated during non-braking (it is in a stopped state). In the sudden operation state, the input chamber Rn is brought into a fluid locked state by closing the first on-off valve VA. Thereby, the operating force Fp of the braking operation member BP operated by the driver is transmitted to the master piston PM via the input chamber Rn. The master piston PM is pressed in the forward direction Ha by the adjustment hydraulic pressures Pa, Pb, Pc and the driver's operation force Fp. For this reason, the response is improved as the master cylinder hydraulic pressure Pm (that is, the braking hydraulic pressure Pw) increases. In the normal operation state, the first on-off valve VA is closed, the input chamber Rn is in communication with the simulator SS and the reaction force chamber Ro, and the master piston PM is adjusted liquid in the servo chamber Rs. It is driven only by the pressures Pa, Pb, Pc.
 制動制御装置SCには、バイパス流体路HD、及び、逆止弁GDが設けられ得る。バイパス流体路HDは、リザーバRVとサーボ室Rsとを接続する流体路である。逆止弁GDは、バイパス流体路HDに設けられ、リザーバRVからサーボ室Rsへの制動液BFの移動を許容するが、サーボ室RsからリザーバRVへの制動液BFの移動を阻止する。 The brake control device SC may be provided with a bypass fluid path HD and a check valve GD. The bypass fluid path HD is a fluid path that connects the reservoir RV and the servo chamber Rs. The check valve GD is provided in the bypass fluid path HD and allows the brake fluid BF to move from the reservoir RV to the servo chamber Rs, but prevents the brake fluid BF from moving from the servo chamber Rs to the reservoir RV.
 制動操作部材BPが急操作される場合には、操作力Fpの増加に対して、調整液圧Pa、Pb、Pcの増加が不十分である状況が発生し得る。バイパス流体路HDが、調圧弁UA、UB、UCを含む調圧流体路HCに対して、並列に設けられ、リザーバRVとサーボ室Rsとが接続される。更に、バイパス流体路HDには、逆止弁GDが設けられ、制動液BFの移動において、「RV→Rs」の移動は許容されるが、「Rs→RV」の移動は禁止される。これにより、調整液圧Pa、Pb、Pcの立ち上がりが遅れた場合であっても、制動液BFは、バイパス流体路HDを介して、サーボ室Rsに流入できるため、マスタシリンダ液圧Pmの増圧応答性が担保され得る。 When the braking operation member BP is suddenly operated, a situation may occur in which the adjustment fluid pressures Pa, Pb, and Pc are insufficiently increased with respect to the increase in the operation force Fp. A bypass fluid path HD is provided in parallel to the pressure regulating fluid path HC including the pressure regulating valves UA, UB, UC, and the reservoir RV and the servo chamber Rs are connected. Further, a check valve GD is provided in the bypass fluid path HD, and movement of “RV → Rs” is allowed in movement of the brake fluid BF, but movement of “Rs → RV” is prohibited. As a result, even when the rising of the adjustment fluid pressures Pa, Pb, and Pc is delayed, the brake fluid BF can flow into the servo chamber Rs via the bypass fluid passage HD, so that the master cylinder fluid pressure Pm increases. Pressure responsiveness can be ensured.
 制動制御装置SC(特に、マスタユニットYM)には、サーボ室Rsの体積Vsが増加する場合に、体積Voが減少する反力室Roが設けられる。反力室Roは、シミュレータ流体路HSを介して、シミュレータSS、及び、入力室Rnに接続されている。そして、シミュレータ流体路HSの第1開閉弁VAと反力室Roとの間に、リザーバ流体路HTが接続され、最終的には、リザーバRVに接続される。リザーバ流体路HTには、第2開閉弁VBが設けられる。第2開閉弁VBは、反力室RoとリザーバRVとを連通する第2開位置と、反力室RoとリザーバRVとを遮断する第2閉位置とを有する常開型電磁弁である。第2開閉弁VBは、コントローラECUによって、急操作の否定時には第2閉位置に駆動され、急操作の肯定時には第2開位置に駆動される。 The braking controller SC (in particular, the master unit YM) is provided with a reaction force chamber Ro in which the volume Vo decreases when the volume Vs of the servo chamber Rs increases. The reaction force chamber Ro is connected to the simulator SS and the input chamber Rn via the simulator fluid path HS. The reservoir fluid path HT is connected between the first on-off valve VA and the reaction force chamber Ro of the simulator fluid path HS, and finally connected to the reservoir RV. The reservoir fluid path HT is provided with a second on-off valve VB. The second on-off valve VB is a normally open electromagnetic valve having a second open position that allows the reaction force chamber Ro and the reservoir RV to communicate with each other and a second closed position that blocks the reaction force chamber Ro and the reservoir RV. The second on-off valve VB is driven by the controller ECU to the second closed position when the sudden operation is denied, and to the second open position when the sudden operation is affirmed.
 シミュレータSSの内部には、操作力Fpを発生するよう、弾性体Dsが設けられる。更に、減衰効果によって操作特性を良好に維持するよう、シミュレータSSにおいて、制動液BFの流入孔には、オリフィスOsが設けられる。マスタピストンPMが前進方向Haに移動されると、反力室Roから制動液BFが排出される。制動液BFがシミュレータSSに流入する際には、弾性体Ds、オリフィスOsによる流体抵抗が生じ得る。しかし、急操作状態では、第2開閉弁VBが開位置にされ、反力室Roから制動液BFは、流体路HS、HTを介して、リザーバRVに戻される。このため、マスタピストンPMが前進する際に、反力室Ro内の制動液BFが、抵抗なく排出されるため、マスタ液圧Pmの応答性が効果的に達成され得る。 In the simulator SS, an elastic body Ds is provided so as to generate an operating force Fp. Further, in the simulator SS, an orifice Os is provided in the inflow hole of the brake fluid BF so as to maintain the operating characteristics favorably by the damping effect. When the master piston PM is moved in the forward direction Ha, the brake fluid BF is discharged from the reaction force chamber Ro. When the brake fluid BF flows into the simulator SS, fluid resistance due to the elastic body Ds and the orifice Os can occur. However, in the sudden operation state, the second on-off valve VB is set to the open position, and the braking fluid BF is returned from the reaction force chamber Ro to the reservoir RV through the fluid paths HS and HT. For this reason, when the master piston PM moves forward, the braking fluid BF in the reaction force chamber Ro is discharged without resistance, so that the responsiveness of the master fluid pressure Pm can be effectively achieved.
<他の実施形態>
 以下、他の実施形態について説明する。他の実施形態においても、上記同様の効果を奏する。
 上記実施形態では、リニア型の調圧弁UA、UB、UCには、通電量に応じて開弁量が調整されるものが採用された。例えば、調圧弁UA、UB、UCは、オン・オフ弁ではあるが、弁の開閉がデューティ比で制御され、液圧が線形に制御されるものでもよい。
<Other embodiments>
Hereinafter, other embodiments will be described. In other embodiments, the same effects as described above are obtained.
In the above-described embodiment, the linear pressure regulating valves UA, UB, and UC are used in which the valve opening amount is adjusted according to the energization amount. For example, although the pressure regulating valves UA, UB, and UC are on / off valves, the opening and closing of the valves may be controlled by a duty ratio, and the hydraulic pressure may be linearly controlled.
 上記実施形態では、ディスク型制動装置(ディスクブレーキ)の構成が例示された。この場合、摩擦部材はブレーキパッドであり、回転部材はブレーキディスクである。ディスク型制動装置に代えて、ドラム型制動装置(ドラムブレーキ)が採用され得る。ドラムブレーキの場合、キャリパに代えて、ブレーキドラムが採用される。また、摩擦部材はブレーキシューであり、回転部材はブレーキドラムである。 In the above embodiment, the configuration of the disc type braking device (disc brake) is exemplified. In this case, the friction member is a brake pad, and the rotating member is a brake disk. Instead of the disc type braking device, a drum type braking device (drum brake) may be employed. In the case of a drum brake, a brake drum is employed instead of the caliper. The friction member is a brake shoe, and the rotating member is a brake drum.
 上記実施形態では、調圧流体路HCは、第1リザーバ流体路HVに、部位Bvにて接続され、還流路が形成された。調圧流体路HCは、リザーバRV(特に、調圧リザーバ室Rd)に接続され、還流路が、リザーバRVを含んで形成され得る(図1、図4の二点鎖線で示す流体路を参照)。該構成によって、流体ポンプQCによる気体の吸い込みが抑制され得る。 In the above-described embodiment, the pressure regulating fluid path HC is connected to the first reservoir fluid path HV at the site Bv to form a reflux path. The pressure regulation fluid path HC is connected to the reservoir RV (particularly, the pressure regulation reservoir chamber Rd), and the reflux path may be formed including the reservoir RV (see the fluid path shown by the two-dot chain line in FIGS. 1 and 4). ). With this configuration, gas suction by the fluid pump QC can be suppressed.
 上記実施形態では、マスタシリンダCMには、1つのマスタ室Rmを有するシングル型のものが採用され、前輪ホイールシリンダCWf、及び、後輪ホイールシリンダCWrのうちの一方がマスタシリンダCMに接続され、前輪ホイールシリンダCWf、及び、後輪ホイールシリンダCWrのうちの他方が調圧流体路HCに接続された。これに代えて、マスタシリンダCMとしてタンデム型のものが採用され、マスタシリンダCMの2つの液圧室の一方が前輪ホイールシリンダCWfに接続され、マスタシリンダCMの2つの液圧室の他方が後輪ホイールシリンダCWrに接続され得る。また、タンデム型マスタシリンダCMが採用された、第1の実施形態(1つの調圧弁UAによって液圧Paが調整されるもの)に係る構成では、前後型の流体路に代えて、ダイアゴナル型(「X型」ともいう)の流体路が用いられてもよい。なお、シングル型マスタシリンダCMが採用される方が、制動制御装置SCの長手方向の寸法が短縮されるため、車両への搭載性においては好適である。 In the above embodiment, the master cylinder CM is a single type having one master chamber Rm, and one of the front wheel cylinder CWf and the rear wheel cylinder CWr is connected to the master cylinder CM. The other of the front wheel cylinder CWf and the rear wheel cylinder CWr was connected to the pressure regulating fluid path HC. Instead, a tandem type is adopted as the master cylinder CM, one of the two hydraulic chambers of the master cylinder CM is connected to the front wheel cylinder CWf, and the other of the two hydraulic chambers of the master cylinder CM is the rear. It can be connected to a wheel wheel cylinder CWr. Further, in the configuration according to the first embodiment (in which the hydraulic pressure Pa is adjusted by one pressure regulating valve UA) in which the tandem type master cylinder CM is employed, instead of the front and rear fluid paths, a diagonal type ( A fluid path (also referred to as “X-type”) may be used. In addition, since the dimension of the longitudinal direction of the braking control device SC is shortened when the single master cylinder CM is adopted, it is preferable in terms of mountability on the vehicle.
 上記の実施形態では、起動スイッチのオン状態で、第1開閉弁VA、及び、第2開閉弁VBに通電が行われた。これに代えて、「制動中であること」が判定された後に、第1開閉弁VAが開位置にされるとともに、第2開閉弁VBが閉位置にされてもよい。上述した様に、制動中の判定は、制動操作量Ba、及び、操作信号Stのうちの少なくとも1つに基づいて判定される(図2のステップS140を参照)。
 
In the above embodiment, the first on-off valve VA and the second on-off valve VB are energized while the start switch is on. Alternatively, after it is determined that “the brake is being performed”, the first on-off valve VA may be set to the open position and the second on-off valve VB may be set to the closed position. As described above, the determination during braking is performed based on at least one of the braking operation amount Ba and the operation signal St (see step S140 in FIG. 2).

Claims (4)

  1.  車両の制動操作部材の操作量に応じて、前記車両の車輪のホイールシリンダに制動液を圧送し、前記車輪に制動トルクを発生する車両の制動制御装置であって、
     前記操作量に応じた操作力を前記制動操作部材に付与するシミュレータと、
     マスタシリンダ、及び、マスタピストンにて構成され、
     前記ホイールシリンダに接続されたマスタ室、及び、前記マスタ室によって前記マスタピストンに加えられる後退力に対向する前進力を前記マスタピストンに付与するサーボ室を有するマスタユニットと、
     前記車両のリザーバから前記制動液を吸入する電動ポンプ、及び、電磁弁にて構成され、
     前記電動ポンプが吐出する前記制動液を、前記電磁弁によって調整液圧に調節し、該調整液圧を前記サーボ室に導入する調圧ユニットと、
     前記制動操作部材に連動する入力ピストン、及び、入力シリンダにて構成され、
     シミュレータ流体路を介して前記シミュレータに接続された入力室を有し、
     前記入力室の内部で、前記マスタピストンと前記入力ピストンとの隙間が前記調整液圧によって制御される回生協調ユニットと、
     前記シミュレータ流体路に設けられ、前記入力室と前記シミュレータとを連通する第1開位置、及び、前記入力室と前記シミュレータとを遮断する第1閉位置を有する第1開閉弁と、
     前記電動ポンプ、前記電磁弁、及び、前記第1開閉弁を制御するコントローラと、を備え、
     前記コントローラは、
     前記操作量に基づいて、前記制動操作部材の操作が急操作であるか、否かを判定し、
     前記急操作であることを否定する場合には、前記第1開閉弁を前記第1開位置に駆動し、
     前記急操作であることを肯定する場合には、前記第1開閉弁を前記第1閉位置に駆動するよう構成される、車両の制動制御装置。
    A vehicle braking control device that pumps braking fluid to a wheel cylinder of a wheel of the vehicle according to an operation amount of a braking operation member of the vehicle and generates a braking torque on the wheel,
    A simulator for applying an operation force corresponding to the operation amount to the braking operation member;
    It consists of a master cylinder and a master piston,
    A master chamber connected to the wheel cylinder; and a master unit having a servo chamber that applies a forward force to the master piston that opposes a reverse force applied to the master piston by the master chamber;
    An electric pump for sucking the brake fluid from a reservoir of the vehicle, and a solenoid valve;
    A pressure adjusting unit that adjusts the brake fluid discharged from the electric pump to an adjusted hydraulic pressure by the electromagnetic valve, and introduces the adjusted hydraulic pressure into the servo chamber;
    An input piston interlocked with the braking operation member, and an input cylinder,
    Having an input chamber connected to the simulator via a simulator fluid path;
    Inside the input chamber, a regenerative coordination unit in which a gap between the master piston and the input piston is controlled by the adjustment hydraulic pressure,
    A first on-off valve provided in the simulator fluid path, having a first open position for communicating the input chamber and the simulator, and a first closed position for blocking the input chamber and the simulator;
    A controller for controlling the electric pump, the electromagnetic valve, and the first on-off valve;
    The controller is
    Based on the operation amount, it is determined whether or not the operation of the braking operation member is a sudden operation,
    In the case of denying the sudden operation, the first on-off valve is driven to the first open position,
    A vehicle braking control device configured to drive the first on-off valve to the first closed position when it is affirmative that the operation is sudden.
  2.  請求項1に記載の車両の制動制御装置において、
     前記コントローラは、
     前記操作量に基づいて操作速度を演算し、
     前記操作速度が所定速度未満である場合に前記急操作であることを否定し、
     前記操作速度が前記所定速度以上である場合に前記急操作であることを肯定するよう構成される、車両の制動制御装置。
    The vehicle braking control device according to claim 1,
    The controller is
    Calculate the operation speed based on the operation amount,
    If the operation speed is less than a predetermined speed, deny the sudden operation,
    A vehicle braking control device configured to affirm that the sudden operation is performed when the operation speed is equal to or higher than the predetermined speed.
  3.  請求項1又は請求項2に記載の車両の制動制御装置であって、
     前記リザーバと前記サーボ室とを接続するバイパス流体路と、
     前記バイパス流体路に設けられ、前記リザーバから前記サーボ室への前記制動液の移動を許容するが、前記サーボ室から前記リザーバへの前記制動液の移動を阻止する逆止弁と、を備える、車両の制動制御装置。
    A braking control device for a vehicle according to claim 1 or 2,
    A bypass fluid path connecting the reservoir and the servo chamber;
    A check valve provided in the bypass fluid path and allowing movement of the brake fluid from the reservoir to the servo chamber, but preventing movement of the brake fluid from the servo chamber to the reservoir; Vehicle braking control device.
  4.  請求項1乃至請求項3のうちの何れか一項に記載の車両の制動制御装置であって、
     前記シミュレータ流体路を介して前記シミュレータに接続され、前記サーボ室の体積が増加する場合に体積が減少する反力室と、
     前記第1開閉弁と前記反力室との間で、前記シミュレータ流体路と前記リザーバとを接続するリザーバ流体路と、
     前記リザーバ流体路に設けられ、前記反力室と前記リザーバとを連通する第2開位置、及び、前記反力室と前記リザーバとを遮断する第2閉位置を有する第2開閉弁と、を備え、
     前記コントローラは、
     前記急操作であることを否定する場合には、前記第2開閉弁を前記第2閉位置に駆動し、
     前記急操作であることを肯定する場合には、前記第2開閉弁を前記第2開位置に駆動するよう構成される、車両の制動制御装置。
     
     
    A vehicle braking control device according to any one of claims 1 to 3,
    A reaction force chamber connected to the simulator via the simulator fluid path and having a volume that decreases when the volume of the servo chamber increases;
    A reservoir fluid path connecting the simulator fluid path and the reservoir between the first on-off valve and the reaction force chamber;
    A second open / close valve provided in the reservoir fluid path and having a second open position for communicating the reaction force chamber and the reservoir, and a second closed position for blocking the reaction force chamber and the reservoir; Prepared,
    The controller is
    In the case of denying the sudden operation, the second on-off valve is driven to the second closed position,
    A braking control device for a vehicle configured to drive the second on-off valve to the second open position when affirmative that the operation is sudden.

PCT/JP2019/015977 2018-04-13 2019-04-12 Vehicle braking control device WO2019198818A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-077208 2018-04-13
JP2018077208A JP7070001B2 (en) 2018-04-13 2018-04-13 Vehicle braking control device

Publications (1)

Publication Number Publication Date
WO2019198818A1 true WO2019198818A1 (en) 2019-10-17

Family

ID=68162890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015977 WO2019198818A1 (en) 2018-04-13 2019-04-12 Vehicle braking control device

Country Status (2)

Country Link
JP (1) JP7070001B2 (en)
WO (1) WO2019198818A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10244917A (en) * 1997-03-06 1998-09-14 Toyota Motor Corp Braking force control device
WO2018047902A1 (en) * 2016-09-09 2018-03-15 株式会社アドヴィックス Braking device for vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10244917A (en) * 1997-03-06 1998-09-14 Toyota Motor Corp Braking force control device
WO2018047902A1 (en) * 2016-09-09 2018-03-15 株式会社アドヴィックス Braking device for vehicle

Also Published As

Publication number Publication date
JP7070001B2 (en) 2022-05-18
JP2019182278A (en) 2019-10-24

Similar Documents

Publication Publication Date Title
WO2019156034A1 (en) Braking control device for vehicle
JP6935710B2 (en) Vehicle braking control device
CN111683843B (en) Vehicle brake control device
JP6935712B2 (en) Vehicle braking control device
JP7040316B2 (en) Vehicle braking control device
WO2020045565A1 (en) Brake control device for vehicle
WO2020004240A1 (en) Brake control device for vehicle
CN112313124B (en) Vehicle brake control device
WO2019198818A1 (en) Vehicle braking control device
JP7172526B2 (en) vehicle braking controller
WO2019198817A1 (en) Vehicle braking control device
JP2020032833A (en) Brake control device of vehicle
JP2020083229A (en) Vehicular brake control device
JP2022128545A (en) Vehicle brake control device
JP2022128544A (en) Vehicle brake control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19784489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19784489

Country of ref document: EP

Kind code of ref document: A1