WO2019198797A1 - Binary power generation system and binary power generation method - Google Patents

Binary power generation system and binary power generation method Download PDF

Info

Publication number
WO2019198797A1
WO2019198797A1 PCT/JP2019/015810 JP2019015810W WO2019198797A1 WO 2019198797 A1 WO2019198797 A1 WO 2019198797A1 JP 2019015810 W JP2019015810 W JP 2019015810W WO 2019198797 A1 WO2019198797 A1 WO 2019198797A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat storage
medium
power generation
storage body
Prior art date
Application number
PCT/JP2019/015810
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 賢一
一雄 三好
松山 良満
泰弘 頼
大輔 和田
淳 平田
大塚 裕之
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to JP2020513452A priority Critical patent/JPWO2019198797A1/en
Publication of WO2019198797A1 publication Critical patent/WO2019198797A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • F01K27/02Plants modified to use their waste heat, other than that of exhaust, e.g. engine-friction heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/02Use of accumulators and specific engine types; Control thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/12Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having two or more accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • This disclosure describes a binary power generation system and a binary power generation method.
  • the heat source can be used for power generation equipment.
  • the heat source include heat sources of facilities such as a garbage incineration plant, a steel mill, and a chemical factory.
  • the heat source derived from sunlight is also mentioned as a heat source.
  • An example of a power generation device using these heat sources is a binary power generation device.
  • the binary power generator employs an organic Rankine cycle (ORC).
  • the binary power generator includes an evaporator and a generator.
  • the binary power generator further includes a preheater as necessary.
  • the evaporator evaporates the working medium with a heat medium heated by a heat source.
  • the generator generates electric power using the steam of the working medium generated by the evaporator.
  • the preheater preheats the working medium.
  • Patent Document 1 discloses a binary cycle power generation device that uses a heat source such as factory waste water.
  • Patent Document 2 discloses a binary power generation apparatus that uses a heat source of a sewage treatment facility.
  • Patent Document 3 discloses a solar thermal energy power generation device that uses solar thermal energy.
  • JP 2005-248877 A Japanese Patent Laying-Open No. 2015-14396 JP 2015-37364 A
  • the heat sources of the above facilities are scattered in multiple locations. Moreover, the heat source of the said facility has a different temperature range. Therefore, heat sources such as the above facilities are not necessarily utilized efficiently.
  • the power generation device of Patent Document 1 does not have a configuration that can cope with heat sources in various temperature regions. Therefore, in order for the power generator of Patent Document 1 to efficiently use thermal energy in a wide temperature range, further improvement of the power generator of Patent Document 1 is necessary.
  • the power generation device of Patent Literature 2 uses thermal energy stored in a high-temperature heat storage device and a low-temperature heat storage device.
  • Patent Literature 2 in order for the power generation device of Patent Literature 2 to have a structure that can generate power using heat sources present in a plurality of facilities, further improvement of the power generation device of Patent Literature 2 is necessary.
  • the power generation device of Patent Document 3 maintains the temperature of the heat medium on the heat source side even when sunlight is not obtained.
  • further improvement of the power generation apparatus of Patent Document 3 is necessary.
  • This disclosure describes a binary power generation system and a binary power generation method that can utilize exhaust heat in different temperature ranges from multiple facilities.
  • a binary power generation system of the present disclosure includes a first heat medium line for flowing a first heat medium, a second heat medium line for flowing a second heat medium having a temperature higher than that of the first heat medium, and circulating a working medium.
  • the working medium line, the first heat medium line and the working medium line are provided, and the preheater for preheating the working medium is provided, and the second heat medium line and the working medium line are provided and are arranged downstream of the preheater.
  • Binary power generation having an evaporator for evaporating the working medium and generating working medium vapor, and a generator provided with a working medium line and disposed downstream of the evaporator and generating electric power using the working medium vapor
  • the apparatus one or a plurality of first heat storage bodies that store exhaust heat generated in the first facility among the plurality of facilities that generate exhaust heat, and the exhaust heat generated in the second facility among the plurality of facilities are stored.
  • the apparatus one or a plurality of first heat storage bodies that store exhaust heat generated in the first facility among the plurality of facilities that generate exhaust heat, and the exhaust heat generated in the second facility among the plurality of facilities are stored.
  • the first heat storage body generates a first heat medium.
  • the first heat medium is supplied to the preheater through the first heat medium line.
  • the second heat storage body generates a second heat medium.
  • the second heat medium is supplied to the evaporator through the second heat medium line.
  • FIG. 1 is a diagram illustrating a schematic configuration of a binary power generation system according to the first embodiment.
  • FIG. 2 is a diagram illustrating a schematic configuration of the binary power generation system according to the first embodiment.
  • FIG. 3 is a diagram illustrating an arrangement of a plurality of facilities and a binary power generation system that generate exhaust heat according to the first embodiment.
  • FIG. 4 is a diagram illustrating a schematic configuration of the binary power generation system according to the second embodiment.
  • FIG. 5 is a diagram illustrating a schematic configuration of the binary power generation system according to the second embodiment.
  • FIG. 6 is a diagram illustrating a schematic configuration of the binary power generation system according to the third embodiment.
  • FIG. 7 is a diagram illustrating a first application example of the binary power generation system.
  • FIG. 8 is a diagram illustrating a second application example of the binary power generation system.
  • FIG. 9 is a diagram illustrating a third application example of the binary power generation system.
  • a binary power generation system of the present disclosure includes a first heat medium line for flowing a first heat medium, a second heat medium line for flowing a second heat medium having a temperature higher than that of the first heat medium, and circulating a working medium.
  • the working medium line, the first heat medium line and the working medium line are provided, and the preheater for preheating the working medium is provided, and the second heat medium line and the working medium line are provided and are arranged downstream of the preheater.
  • Binary power generation having an evaporator for evaporating the working medium and generating working medium vapor, and a generator provided with a working medium line and disposed downstream of the evaporator and generating electric power using the working medium vapor
  • the apparatus one or a plurality of first heat storage bodies that store exhaust heat generated in the first facility among the plurality of facilities that generate exhaust heat, and the exhaust heat generated in the second facility among the plurality of facilities are stored.
  • the first heat storage body generates a first heat medium.
  • the first heat medium is supplied to the preheater through the first heat medium line.
  • the second heat storage body generates a second heat medium.
  • the second heat medium is supplied to the evaporator through the second heat medium line.
  • the first heat storage body and the second heat storage body of this binary power generation system can store exhaust heat from a plurality of facilities that generate exhaust heat.
  • These 1st heat storage bodies and 2nd heat storage bodies can be moved to the place where electricity is required after heat storage, for example, the place where the binary power generator was installed.
  • the second heat storage body can generate a heat medium for binary power generation after movement.
  • exhaust heat from the facility is effectively utilized.
  • a 1st heat storage body and a 2nd heat storage body can also be selectively provided with respect to the electric power generating apparatus with which the heat source for electric power generation is insufficient.
  • the second heat storage body can generate a second heat medium having a higher temperature than the first heat medium generated by the first heat storage body. Therefore, a binary power generation system that can utilize exhaust heat in different temperature ranges from a plurality of facilities is provided.
  • the binary power generation system of the present disclosure may further include a second switch that switches a second heat storage body that generates a second heat medium among the plurality of second heat storage bodies.
  • the second switch of the binary power generation system can easily change the second heat medium that generates the second heat medium to be supplied to the evaporator. Further, the second switch can be changed so that a plurality of second heat storage bodies generate the second heat medium at a time.
  • the first heat storage body may include at least one of a latent heat storage material and an adsorbent.
  • the second heat storage body may include at least one of a chemical heat storage material, a latent heat storage material, and an adsorbent.
  • the first heat storage body of the binary power generation system includes at least one of a latent heat storage material and an adsorbent. Therefore, the first heat storage body can efficiently generate the first heat medium having a temperature lower than that of the second heat medium.
  • the second heat storage body includes at least one of a chemical heat storage material, a latent heat storage material, and an adsorbent. Accordingly, the second heat storage body can efficiently generate the second heat medium having a temperature higher than that of the first heat medium.
  • the first heat storage body and the second heat storage body may include an adsorbent.
  • the first heat storage body and the second heat storage body of the binary power generation system include an adsorbent. Therefore, the first heat storage body can efficiently generate the first heat medium having a temperature lower than that of the second heat medium.
  • the binary power generation system of the present disclosure includes a condenser that is provided with a working medium line and is disposed downstream of the generator and that cools the working medium vapor by the cooling medium, cools the cooling medium, and includes the first heat storage body and A cooling tower that supplies a heat storage medium to at least one of the second heat storage bodies, and a heat storage medium line that connects at least one of the first heat storage body and the second heat storage body and the cooling tower may be further provided.
  • the first heat storage body and the second heat storage body include an adsorbent.
  • the cooling tower can supply moisture, which is a material for generating heat from the heat storage material, to the first heat storage body and the second heat storage body through the heat storage medium line.
  • the binary power generation system of the present disclosure may further include a fourth switch that switches the second heat storage body to which the heat storage medium is supplied among the plurality of second heat storage bodies.
  • the fourth switch of the binary power generation system can change the second heat storage body that supplies the heat storage medium.
  • the binary power generation method of the present disclosure is a binary power generation method in which power is generated by a generator of a binary power generation apparatus using working medium vapor.
  • the binary power generation method includes a step of generating a first heat medium by one or a plurality of first heat accumulators that store exhaust heat generated in a first facility among a plurality of facilities that generate exhaust heat; Among them, a step of generating a second heat medium having a temperature higher than that of the first heat medium by one or a plurality of second heat accumulators that store exhaust heat generated at the second facility, and supplying the first heat medium to the preheater. Preheating the working medium with the first heat medium in the preheater, supplying the second heat medium to the evaporator, and evaporating the working medium with the second heat medium in the evaporator to generate the working medium vapor; .
  • the first heat storage body of the binary power generation method can generate the first heat medium using exhaust heat generated in a plurality of facilities.
  • the second heat storage body can generate the second heat medium using exhaust heat generated in the first facility among the plurality of facilities. Therefore, the binary power generation method can use exhaust heat generated in a plurality of facilities.
  • the second heat medium has a higher temperature than the first heat medium. Therefore, this binary power generation method can utilize exhaust heat in different temperature ranges.
  • the binary power generation method of the present disclosure may further include a step of switching the second heat storage body that generates the second heat medium among the plurality of second heat storage bodies.
  • the binary power generation method includes a step of switching the second heat storage body. By this step, the second heat storage body that generates the second heat medium to be supplied to the evaporator can be easily changed.
  • the binary power generation system and the binary power generation method of the present disclosure will be described with reference to the drawings.
  • the same elements are given the same reference numerals.
  • duplicate description is omitted.
  • the “line” means a pipe or conduit through which a medium flows or a space.
  • upstream or “downstream” is based on the direction of the flow of the target medium.
  • FIG. 1 is a diagram illustrating a schematic configuration of the binary power generation system according to the first embodiment.
  • FIG. 1 shows a configuration before performing binary power generation.
  • FIG. 2 is a diagram illustrating a schematic configuration of the binary power generation system according to the first embodiment.
  • FIG. 2 shows a configuration when performing binary power generation.
  • Binary power generation system 1 generates power using working medium vapor.
  • the working medium vapor is generated by heat exchange between the heat medium and the working medium.
  • the binary power generation system employs an organic Rankine cycle, for example.
  • As the working medium a medium having a boiling point lower than that of water is used.
  • the working medium includes, for example, a halogenated hydrocarbon.
  • the working medium includes R-123, R-134a, or R-245fa.
  • the binary power generation system 1 includes a housing unit 10 and a binary power generation device 20.
  • the housing unit 10 houses one or more first heat storage bodies 30 and one or more second heat storage bodies 40.
  • the heat storage body accommodated in the accommodation unit 10 supplies a heat medium to the binary power generation device 20.
  • the heat medium includes a first heat medium and a second heat medium.
  • the temperature of the second heat medium is higher than that of the first heat medium.
  • the first heat storage body 30 generates a first heat medium.
  • the second heat storage body 40 generates a second heat medium.
  • the first heat medium and the second heat medium generate heat medium using exhaust heat from facilities such as a garbage incineration plant, a steel mill, and a chemical factory.
  • the storage unit 10 may be a structure such as a container and a warehouse, for example. Further, the storage unit 10 may be a space where the first heat storage body 30 and the second heat storage body 40 can be placed. Furthermore, the storage unit 10 may not be a structure.
  • the first heat storage body 30 includes a housing and a heat storage material.
  • the heat storage material is accommodated in the housing.
  • the housing of the first heat storage body 30 includes a first supply port 31 and a first receiving port 32.
  • the first supply port 31 supplies the first heat medium to the binary power generation device 20.
  • the first receiving port 32 receives the first heat medium from the binary power generation device 20.
  • the second heat storage body 40 includes a housing and a heat storage material.
  • the heat storage material is accommodated in the housing.
  • the housing of the second heat storage body 40 includes a second supply port 41 and a second receiving port 42.
  • the second supply port 41 supplies the second heat medium to the binary power generation device 20.
  • the second receiving port 42 receives the second heat medium from the binary power generation device 20.
  • the binary power generator 20 includes a preheater 60, an evaporator 65, an expansion generator (generator) 70, and a condenser 75.
  • the binary power generation device 20 includes a first heat medium line L1, a second heat medium line L2, and a working medium line L3.
  • the first heat medium line L1 allows the first heat medium to flow.
  • the second heat medium line L2 flows the second heat medium.
  • the working medium line L3 circulates the working medium.
  • the first heat medium line L ⁇ b> 1 passes through the preheater 60.
  • the second heat medium line L ⁇ b> 2 passes through the evaporator 65.
  • the working medium line L3 passes through the preheater 60, the evaporator 65, the expansion generator 70, and the condenser 75.
  • the binary power generation device 20 includes a working medium pump 50.
  • the working medium pump 50 is provided in the working medium line L3.
  • the working medium circulates inside the binary power generator 20 by the working medium pump 50.
  • the working medium line L3 includes a first circulation line L3a and a second circulation line L3b.
  • the working medium circulates inside the binary power generator 20 through the first circulation line L3a and the second circulation line L3b.
  • the upstream end of the first circulation line L3a is connected to the discharge unit 51 of the working medium pump 50.
  • the downstream end of the first circulation line L3a is connected to the inlet portion 71 of the expansion generator 70.
  • the upstream end of the second circulation line L3b is connected to the outlet portion 72 of the expansion generator 70.
  • the downstream end of the second circulation line L3b is connected to the suction part 52 of the working medium pump 50.
  • the preheater 60 and the evaporator 65 are provided in the first circulation line L3a.
  • the evaporator 65 is disposed downstream of the preheater 60 with reference to the flow of the working medium.
  • the preheater 60 passes through the first heat medium line L1 and the first circulation line L3a.
  • the second heat medium line L2 and the first circulation line L3a pass through the evaporator 65.
  • the expansion generator 70 is disposed downstream of the evaporator 65 with respect to the working medium.
  • the first heat medium line L1 has a first inlet port 33 provided at one end and a first outlet port 34 provided at the other end.
  • first inlet port 33 When performing binary power generation, for example, one of the first heat storage bodies 30 is taken out of the storage unit 10.
  • the first supply port 31 of the first heat storage body 30 is connected to the first inlet port 33.
  • the first receiving port 32 of the first heat storage body 30 is connected to the first outlet port 34.
  • the connection between the first supply port 31 and the first inlet port 33 is, for example, by a connecting member such as a flange.
  • the connection between the first receiving port 32 and the first outlet port 34 is also made by a connecting member such as a flange, for example.
  • the first heat medium passes through the connection portion between the first supply port 31 and the first inlet port 33.
  • the first heat medium is supplied from the first heat storage body 30 to the preheater 60 through the first heat medium line L1.
  • the first heat medium circulates inside the preheater 60.
  • the first heat medium passes through the connection portion between the first outlet port 34 and the first receiving port 32.
  • the first heat medium is returned to the first heat storage body 30.
  • the circulation of the first heat medium can form a closed loop.
  • the second heat medium line L2 has a second inlet port 43 provided at one end and a second outlet port 44 provided at the other end.
  • the second supply port 41 of the second heat storage body 40 is connected to the second inlet port 43.
  • the second receiving port 42 of the second heat storage body 40 is connected to the second outlet port 44.
  • the connection between the second supply port 41 and the second inlet port 43 is, for example, by a connecting member such as a flange.
  • the connection between the second receiving port 42 and the second outlet port 44 is also made by a connecting member such as a flange, for example.
  • the second heat medium passes through the connection portion between the second supply port 41 and the second inlet port 43.
  • the second heat medium is supplied from the second heat storage body 40 to the evaporator 65 through the second heat medium line L2.
  • the second heat medium circulates inside the evaporator 65.
  • the second heat medium passes through the connection portion between the second outlet port 44 and the second receiving port 42.
  • the second heat medium is returned to the second heat storage body 40.
  • the circulation of the second heat medium can form a closed loop.
  • the preheater 60 of the binary power generation system 1 heats (preheats) the working medium.
  • the working medium is heated by heat exchange between the first heat medium and the working medium.
  • the working medium is heated by utilizing the sensible heat of the first heat medium.
  • the working medium preheated by the preheater 60 is supplied to the evaporator 65.
  • the evaporator 65 heats the working medium again.
  • the working medium is heated by heat exchange between the working medium from the preheater 60 and the second heat medium. This heating generates working medium vapor.
  • the working medium vapor is supplied to the expansion generator 70 through the first circulation line L3a.
  • the preheater 60 is, for example, a single-phase type heat exchanger.
  • the preheater 60 may be a plate heat exchanger, for example.
  • the preheater 60 may be a countercurrent heat exchanger.
  • the preheater 60 may be a co-current heat exchanger.
  • the evaporator 65 is, for example, a phase conversion type heat exchanger.
  • the evaporator 65 may be a plate heat exchanger.
  • the evaporator 65 may be a countercurrent heat exchanger.
  • the evaporator 65 may be a co-current heat exchanger.
  • the binary power generator 20 has one preheater 60 and one evaporator 65.
  • the binary power generator 20 may further include a plurality of preheaters 60 and a plurality of evaporators 65. When a plurality of evaporators 65 are provided, the evaporator 65 may include a superheater for superheating (superheating) the working medium.
  • the expansion generator 70 includes, for example, an expander and a generator.
  • the expander is a turbo type machine such as a turbine.
  • the generator is connected to the expander.
  • the expansion generator 70 uses the working medium vapor from the evaporator 65 to rotate the turbine.
  • the expansion generator 70 generates power by rotating the turbine.
  • a power converter 73 is connected to the expansion generator 70.
  • the power converter 73 includes devices such as an AC-DC converter, a grid interconnection converter, and an insulation transformer, for example.
  • the expander of the expansion generator 70 is not limited to a turbo type expander.
  • the expander may be a screw-type positive displacement expander.
  • the working medium that has passed through the expansion generator 70 flows to the condenser 75 through the second circulation line L3b.
  • the condenser 75 cools and condenses the working medium by heat exchange between the working medium and the cooling medium. As a result, the working medium is liquefied.
  • a second circulation line L3b and a cooling medium line L4 pass through the condenser 75.
  • the condenser 75 may be a countercurrent heat exchanger.
  • the condenser 75 may be a co-current heat exchanger.
  • the condenser 75 may be an air cooling type.
  • the cooling medium may include a liquid such as water or a gas such as air.
  • the cooling medium line L4 is provided with a cooling tower 80 for cooling the cooling medium.
  • FIG. 3 is a diagram showing the binary power generation system of the first embodiment.
  • FIG. 3 shows an arrangement of a plurality of facilities that generate exhaust heat and a binary power generation system.
  • the plurality of facilities that generate exhaust heat are, for example, a garbage incineration plant, a steel mill, and a chemical factory.
  • the plurality of facilities includes a facility 5a, a facility 5b, a facility 5c, a facility 5d, a facility 5e, and a facility 5f.
  • These facilities can provide at least one of the first heat storage body 30 and the second heat storage body 40.
  • the first heat storage body 30 can store, for example, exhaust heat generated in the facility 5a of the first facility among the plurality of facilities 5a to 5f.
  • the first facility may be the facility 5b and / or the facility 5c.
  • the first facility may be the facility 5a to the facility 5c.
  • the second heat storage body 40 can store, for example, exhaust heat generated in the facility 5d of the second facility among the plurality of facilities 5a to 5f.
  • the second facility may be the facility 5e and / or the facility 5f.
  • the second facility may be the facility 5d to the facility 5f.
  • the facility a may have both the first facility and the second facility.
  • the facility a may provide both the first heat storage body 30 and the second heat storage body 40.
  • FIG. 3 facilities that generate exhaust heat exist at a plurality of locations. However, for example, there is one binary power generation system 1.
  • the 1st heat storage body 30 and the 2nd heat storage body 40 can be accommodated in the accommodation unit 10 of the one binary power generation system 1 from several facilities.
  • the first heat storage body 30 and the second heat storage body 40 are moved from the facilities 5a to 5f to the binary power generation system 1 by a vehicle such as an electric vehicle or an automatic driving truck.
  • the number of facilities that generate exhaust heat shown in FIG. 3 is six. However, the number of facilities may be 2 or more and 5 or less. Further, the number of facilities may be seven or more.
  • the first heat storage body 30 and the second heat storage body 40 of the binary power generation system 1 can store exhaust heat from a plurality of facilities that generate exhaust heat.
  • the 1st heat storage body 30 and the 2nd heat storage body 40 can be moved to the place where electricity is required after heat storage, for example, the place where the binary power generator was installed.
  • the first heat storage body 30 and the second heat storage body 40 can generate a heat medium for binary power generation after movement.
  • exhaust heat from the facility is effectively utilized.
  • the binary power generation system 1 can generate power at a place where electricity is required regardless of the place where the exhaust heat is generated.
  • the 1st heat storage body 30 and the 2nd heat storage body 40 can also be selectively provided with respect to the electric power generating apparatus with which the heat source for electric power generation is insufficient.
  • the 1st heat storage body 30 and the 2nd heat storage body 40 can also be moved from the power generator with an excess heat source to the power generator with a short heat source.
  • the second heat storage body 40 can generate a second heat medium having a higher temperature than the first heat medium generated by the first heat storage body 30. Therefore, the binary power generation system 1 is provided with a binary power generation system that can use exhaust heat in different temperature ranges from a plurality of facilities.
  • Heat sources such as waste heat from multiple facilities may be variable heat sources.
  • a fluctuating heat source does not have a range of temperatures.
  • the variable heat source does not have a constant amount of heat.
  • the variable heat source does not provide thermal energy continuously.
  • Thermal energy from the variable heat source is recovered by the first heat storage body 30 and the second heat storage body 40.
  • the 1st heat storage body 30 and the 2nd heat storage body 40 can be used for binary electric power generation as a heat source which has a fixed temperature range and calorie
  • the binary power generation method includes a step of generating a first heat medium by one or a plurality of first heat storage bodies 30 that store exhaust heat generated in a first facility among a plurality of facilities that generate exhaust heat.
  • the binary power generation method further includes a step of generating a second heat medium having a temperature higher than that of the first heat medium by one or a plurality of second heat storage bodies 40 that store exhaust heat generated in the second facility among the plurality of facilities.
  • the binary power generation method includes a step of supplying the first heat medium to the preheater 60 and preheating the working medium with the first heat medium in the preheater 60.
  • the binary power generation method also includes a step of supplying the second heat medium to the evaporator 65 and evaporating the working medium with the second heat medium in the evaporator 65 to generate working medium vapor.
  • the working medium vapor generated by the evaporator 65 is supplied to the expansion generator 70, and power is generated by the expansion generator 70 to which the working medium vapor is supplied.
  • the first heat storage body 30 is used to generate the first heat medium using exhaust heat generated in a plurality of facilities.
  • the second heat storage body 40 is used to generate the second heat medium using exhaust heat generated at the first facility among the plurality of facilities.
  • the binary power generation method can use exhaust heat generated in a plurality of facilities.
  • the second heat medium has a higher temperature than the first heat medium. Therefore, the binary power generation method can use exhaust heat in different temperature ranges.
  • the first heat storage body 30 supplies, for example, a first heat medium having a temperature of 40 ° C. or higher and 120 ° C. or lower.
  • the first heat storage body 30 stores, for example, cooling water and exhaust heat from the fuel cell.
  • the cooling water is generated inside the facilities 5a to 5f that generate exhaust heat.
  • the first heat storage body 30 uses, for example, hot water after being gradually heated using cooling water as a heat source.
  • the first heat storage body 30 may use jacket water of a power generation engine as a heat source, for example.
  • the 1st thermal storage body 30 is good also considering the cooling water of an incinerator as a heat source.
  • the 1st thermal storage body 30 is good also considering geothermal heat or the heat of a hot spring as a heat source.
  • the first heat storage body 30 can include at least one of a latent heat storage material and an adsorbent.
  • the latent heat storage material utilizes heat storage or heat dissipation that occurs during the solid-liquid phase change of materials such as sodium acetate and erythritol.
  • the heat storage material stores waste heat from the facilities 5a to 5f that generate waste heat and changes from a solid phase to a liquid phase.
  • the heat storage material dissipates the stored heat and changes from the liquid phase to the solid phase.
  • the latent heat storage material using sodium acetate trihydrate or sodium acetate changes from the liquid phase to the solid phase and dissipates heat
  • the first heat medium that is hot air or hot air of, for example, 40 ° C. or higher and 120 ° C. or lower is used. Generate.
  • the adsorbent uses heat storage or heat dissipation generated during the desorption or adsorption of moisture from materials such as Hasclay (registered trademark) or zeolite.
  • the heat storage material changes into a dry body while storing the exhaust heat from the facilities 5a to 5f that generate the exhaust heat.
  • the heat storage material changes into a wet body while receiving heat and moisture and radiating heat.
  • Hascray registered trademark
  • the adsorbent using Hascray changes to a wet body and dissipates heat, it generates a first heat medium made of hot air or hot air of, for example, 80 ° C. or higher and 120 ° C. or lower.
  • the second heat storage body 40 can supply, for example, a second heat medium having a temperature of 120 ° C. or higher and 400 ° C. or lower.
  • the second heat storage body 40 stores, for example, the exhaust heat of an iron mill, specifically, a blast furnace, an electric furnace, a coke furnace, or a sintering furnace.
  • the 2nd thermal storage body 40 is good also considering the exhaust gas of the incinerator of an incinerator, the exhaust heat of a cement factory, or the surplus steam of a biomass boiler as a heat source.
  • the second heat storage body 40 can include at least one of a chemical heat storage material, a latent heat storage material, and an adsorbent.
  • the chemical heat storage material uses heat storage or heat dissipation generated during dehydration or hydration reaction of a material such as magnesium hydroxide.
  • the heat storage material stores the exhaust heat from the facilities 5a to 5f that generate the exhaust heat to cause a dehydration reaction.
  • the heat storage material dissipates the stored heat to cause a hydration reaction.
  • a chemical heat storage material using magnesium hydroxide generates a second heat medium that is hot air or hot air of, for example, 200 ° C. or more and 400 ° C. or less when a dehydration reaction occurs.
  • the latent heat storage material for the second heat storage body 40 uses heat storage or heat dissipation that occurs during the solid-liquid phase change of a material such as erythritol.
  • a material such as erythritol.
  • the latent heat storage material using erythritol changes from the liquid phase to the solid phase and dissipates heat
  • the first heat medium for example, 120 ° C. hot air or hot air is generated.
  • the adsorbent for the second heat accumulator 40 utilizes heat storage or heat dissipation that occurs during the desorption or adsorption of moisture from a material such as zeolite.
  • a material such as zeolite.
  • the adsorbent using zeolite changes into a wet body and dissipates heat, it generates a second heat medium that is hot air or hot air of, for example, 120 ° C. or more and 200 ° C. or less.
  • the first heat storage body 30 of the binary power generation system 1 includes at least one of a latent heat storage material and an adsorbent. As a result, the first heat storage body 30 can efficiently generate the first heat medium having a temperature lower than that of the second heat medium.
  • the second heat storage body 40 includes at least one of a chemical heat storage material, a latent heat storage material, and an adsorbent. As a result, the second heat storage body 40 can efficiently generate the second heat medium having a temperature higher than that of the first heat medium.
  • the warm air or hot air generated by the chemical heat storage material, the latent heat storage material, and the adsorbent can be supplied to the preheater 60 and the evaporator 65 without passing through a purification device or the like.
  • the binary power generation system 1 of the present disclosure does not require scale measures for the preheater 60 and the evaporator 65.
  • FIG. 4 is a diagram illustrating a schematic configuration of a binary power generation system according to another embodiment of the present disclosure.
  • FIG. 4 shows a configuration before performing binary power generation.
  • FIG. 5 is a diagram illustrating a schematic configuration of a binary power generation system according to another embodiment of the present disclosure.
  • FIG. 5 shows a configuration when performing binary power generation.
  • the binary power generation system 1p of the second embodiment is the same as the binary power generation system 1 of the first embodiment except for the installation of the heat storage medium line L5 and the change in the configuration of the first heat storage body 30 and the second heat storage body 40. It has the same configuration. There is no particular upper limit on the number of first heat storage bodies 30 and second heat storage bodies 40 that the storage unit 10 stores. 4 and 5 show the storage unit 10.
  • the housing unit 10 houses two first heat storage bodies 30 and two second heat storage bodies 40.
  • the binary power generation system 1p includes a cooling tower 80 and a heat storage medium line L5.
  • the heat storage medium line L ⁇ b> 5 is provided between the first heat storage body 30 and the second heat storage body 40.
  • the cooling tower 80 generates moisture when the cooling medium that cools the working medium inside the condenser 75 is water. Therefore, the binary power generation system 1p can supply the moisture generated inside the cooling tower 80 to the first heat storage body 30 and the second heat storage body 40 through the heat storage medium line L5.
  • moisture content turns into a material for making a heat storage material generate
  • the heat storage medium line L5 includes a first water supply port 81 provided at one end and a second water supply port 82 provided at the other end.
  • the first water supply port 81 supplies moisture to the first heat storage body 30.
  • the second water supply port 82 supplies moisture to the second heat storage body 40.
  • the first heat storage body 30 of the binary power generation system 1p has a first supply port 31 and a first receiving port 32.
  • the first supply port 31 supplies the first heat medium to the binary power generation device 20.
  • the first receiving port 32 receives moisture supplied from the cooling tower 80 through the heat storage medium line L5.
  • the second heat storage body 40 includes a second supply port 41 and a second receiving port 42.
  • the second supply port 41 supplies the second heat medium to the binary power generation device 20.
  • the second receiving port 42 receives moisture supplied from the cooling tower 80 through the heat storage medium line L5.
  • the first heat medium line L1 includes a first inlet port 33 provided at one end and a first outlet port 34p provided at the other end.
  • first heat storage body 30 including an adsorbent such as Hascray (registered trademark), for example, one of the first heat storage bodies 30 is taken out from the storage unit 10.
  • the first supply port 31 of the extracted first heat storage body 30 is connected to the first inlet port 33.
  • the first heat storage body 30 can form a closed loop.
  • the first receiving port 32 of the first heat storage body 30 is connected to the first water supply port 81 of the heat storage medium line L5.
  • the connection between the first supply port 31 and the first inlet port 33 is, for example, by a connecting member such as a flange.
  • the connection between the first receiving port 32 and the first water supply port 81 is also made by a connecting member such as a flange, for example.
  • the first heat medium passes through the connection portion between the first supply port 31 and the first inlet port 33.
  • the first heat medium is supplied from the first heat storage body 30 to the preheater 60 through the first heat medium line L1.
  • the first heat medium circulates in the preheater 60.
  • the first heat medium is discharged to the atmosphere from the first outlet port 34p.
  • the first heat medium is released into the atmosphere after heat exchange with the cooling pipe as necessary.
  • the second heat medium line L2 has a second inlet port 43 provided at one end and a second outlet port 44 provided at the other end.
  • a second heat storage body 40 including an adsorbent such as zeolite for example, one of the second heat storage bodies 40 is taken out from the storage unit 10.
  • the second supply port 41 of the extracted second heat storage body 40 is connected to the second inlet port 43.
  • the second heat storage body 40 can form a closed loop.
  • the second receiving port 42 of the second heat storage body 40 can be connected to the second water supply port 82 of the heat storage medium line L5.
  • the connection between the second supply port 41 and the second inlet port 43 is, for example, by a connecting member such as a flange.
  • connection between the second receiving port 42 and the second water supply port 82 is also made by a connecting member such as a flange, for example.
  • the second heat medium passes through the connection portion between the second supply port 41 and the second inlet port 43.
  • the second heat medium is supplied from the second heat storage body 40 to the evaporator 65 through the second heat medium line L2.
  • the second heat medium circulates in the evaporator 65.
  • the second heat medium is discharged from the second outlet port 44 to the atmosphere.
  • the second heat medium is released to the atmosphere after heat exchange with the cooling pipe as necessary.
  • FIG. 6 is a diagram illustrating a schematic configuration of still another binary power generation system of the present disclosure.
  • the binary power generation system 1q changes the configuration of the housing unit 10, the configuration of the heat storage medium line L5, and the configurations of the first heat medium line L1 and the second heat medium line L2.
  • Other configurations of the binary power generation system 1q are the same as those of the binary power generation system 1p of the second embodiment.
  • FIG. 6 shows the storage unit 10.
  • the housing unit 10 houses two first heat storage bodies 30 and two second heat storage bodies 40.
  • the first supply port 31 of the first heat storage body 30 is connected to the first heat medium line L1. At this time, the first heat storage body 30 is accommodated in the accommodation unit 10.
  • the second supply port 41 of the second heat storage body 40 is connected to the second heat medium line L2. At this time, the second heat storage body 40 is accommodated in the accommodation unit 10.
  • the first heat medium line L1 has a first outlet port 34q provided at one end and one or a plurality of first branch lines L1a provided at the other end.
  • Each first branch line L1a has a first inlet port 33.
  • the first inlet port 33 is connected to the first supply port 31 of the first heat storage body 30.
  • the second heat medium line L2 includes a second outlet port 44 provided at one end and one or a plurality of second branch lines L2a provided at the other end.
  • Each second branch line L ⁇ b> 2 a has a second inlet port 43.
  • the second inlet port 43 is connected to the second supply port 41 of the second heat storage body 40.
  • the binary power generation system 1q includes a cooling tower 80 and a heat storage medium line L5.
  • the heat storage medium line L ⁇ b> 5 is provided between the first heat storage body 30 and the second heat storage body 40.
  • the cooling tower 80 generates water when the cooling medium that cools the working medium in the condenser 75 is water.
  • the binary power generation system 1p can supply moisture generated in the cooling tower 80 to the first heat storage body 30 and the second heat storage body 40 through the heat storage medium line L5.
  • moisture content turns into a material for making a heat storage material generate
  • the heat storage medium line L5 includes a first water supply port 81 provided at one end and a second water supply port 82 provided at the other end.
  • the first water supply port 81 supplies moisture to the first heat storage body 30.
  • the second water supply port 82 supplies moisture to the second heat storage body 40.
  • the first heat storage body 30 of the binary power generation system 1q includes a first supply port 31 and a first receiving port 32.
  • the first supply port 31 supplies the first heat medium to the binary power generation device 20.
  • the first receiving port 32 receives moisture supplied from the cooling tower 80 through the heat storage medium line L5.
  • the second heat storage body 40 includes a second supply port 41 and a second receiving port 42.
  • the second supply port 41 supplies the second heat medium to the binary power generation device 20.
  • the second receiving port 42 receives moisture supplied from the cooling tower 80 through the heat storage medium line L5.
  • the first supply port 31 of the first heat storage body 30 is connected to the first inlet port 33.
  • the first receiving port 32 of the first heat storage body 30 is connected to the first water supply port 81 of the heat storage medium line L5.
  • the connection between the first supply port 31 and the first inlet port 33 is, for example, by a connecting member such as a flange.
  • the connection between the first receiving port 32 and the first water supply port 81 is also made by a connecting member such as a flange, for example.
  • the first heat medium passes through the connection portion between the first supply port 31 and the first inlet port 33.
  • the first heat medium is supplied from the first heat storage body 30 to the preheater 60 through the first heat medium line L1.
  • the first heat medium circulates in the preheater 60.
  • the first heat medium is exhausted to the outside of the preheater 60 through the first outlet port 34q.
  • the first heat medium is exhausted after heat exchange with the cooling pipe as necessary.
  • the second supply port 41 of the second heat storage body 40 is connected to the second inlet port 43.
  • the second receiving port 42 of the second heat storage body 40 is connected to the second water supply port 82 of the heat storage medium line L5.
  • the connection between the second supply port 41 and the second inlet port 43 is, for example, by a connecting member such as a flange.
  • the connection between the second receiving port 42 and the second water supply port 82 is also made by a connecting member such as a flange, for example.
  • the second heat medium passes through the connection portion between the second supply port 41 and the second inlet port 43.
  • the second heat medium is supplied from the second heat storage body 40 to the evaporator 65 through the second heat medium line L2.
  • the second heat medium circulates inside the evaporator 65.
  • the second heat medium is exhausted from the second outlet port 44 to the outside of the evaporator 65.
  • the second heat medium is exhausted after heat exchange with the cooling pipe as necessary.
  • the binary power generation system 1q can include a first switch 91.
  • the number of the first switchers 91 can correspond to the number of first heat storage bodies 30 that can be accommodated in the accommodation unit 10.
  • the first switch 91 is provided in the first heat medium line L1.
  • the position where the first switch 91 is provided is, for example, near the position where the first supply port 31 and the first inlet port 33 are connected.
  • the binary power generation system 1q can include a second switch 92.
  • the number of second switchers 92 can correspond to the number of second heat storage bodies 40 that can be accommodated in the accommodation unit 10.
  • the second switch 92 is provided in the second heat medium line L2.
  • the position where the second switch 92 is provided is, for example, near the position where the second supply port 41 and the second inlet port 43 are connected.
  • the first switch 91 and the second switch 92 include line opening / closing members such as valves.
  • the first switch 91 of the binary power generation system 1q can easily change the first heat storage body 30 that supplies the first heat medium to the first heat medium line L1.
  • the first switch 91 can be changed to supply the first heat medium from the plurality of first heat storage bodies 30 to the first heat medium line L1 simultaneously.
  • the second switch 92 can easily change the second heat storage body 40 that supplies the second heat medium to the second heat medium line L2.
  • the 2nd switch 92 can be changed so that the 2nd heat carrier may be simultaneously supplied to the 2nd heat carrier line L2 from a plurality of 2nd heat storage elements 40. Operation of the 1st switch 91 and the 2nd switch 92 is performed based on the monitoring result of the temperature of the 1st heat medium and the 2nd heat medium which are supplied to the preheater 60 and the evaporator 65, for example.
  • the first switch 91 and the second switch 92 can be installed in, for example, a binary power generation system that does not include the heat storage medium line L5.
  • the first switch 91 can easily change the first heat storage body 30 that supplies the first heat medium to the first heat medium line L1.
  • the second switch 92 can easily change the second heat storage body 40 that supplies the second heat medium to the second heat medium line L2.
  • the first switch 91 of the binary power generation system 1q can easily change the first heat storage body that generates the first heat medium to be supplied to the preheater 60. Moreover, the 1st switch 91 can be changed so that a 1st heat medium may be produced
  • the second switch 92 can easily change the second heat medium that generates the second heat medium to be supplied to the evaporator 65.
  • the 2nd switch 92 can be changed so that the 2nd heat carrier may be generated simultaneously from a plurality of 2nd heat storages.
  • the heat storage medium line L ⁇ b> 5 can have a third switch 93.
  • the third switch 93 switches the first heat storage body 30 that supplies the heat storage medium.
  • the number of the third switchers 93 can correspond to the number of the first heat storage bodies 30 that can be accommodated in the accommodation unit 10.
  • the third switch 93 is provided, for example, in the vicinity of a position where the first receiving port 32 and the first water supply port 81 are connected.
  • the heat storage medium line L5 may include a fourth switch 94.
  • the fourth switch 94 switches the second heat storage body 40 that supplies the heat storage medium.
  • the number of the fourth switches 94 can correspond to the number of second heat storage bodies 40 that can be accommodated in the accommodation unit 10.
  • the fourth switch 94 is provided in the vicinity of a position where the second receiving port 42 and the second water supply port 82 are connected.
  • the third switch 93 can easily change the first heat storage body 30 and the second heat storage body 40 that supply moisture.
  • the 4th switch 94 can also change the 1st heat storage body 30 and the 2nd heat storage body 40 which supply a water
  • the 3rd switch 93 and the 4th switch 94 can be changed so that a water
  • the binary power generation method includes a step of switching the first heat storage body 30 that generates the first heat medium among the plurality of first heat storage bodies 30 and / or the plurality of second heat storage bodies 40.
  • a step of switching the second heat storage body 40 that generates the second heat medium is provided.
  • the first heat storage body 30 that generates the first heat medium to be supplied to the preheater 60 can be easily changed by the step of switching the first heat storage body 30.
  • generates the 2nd heat medium for supplying to the evaporator 65 can be easily changed by the process of switching the 2nd heat storage body 40.
  • FIG. 7 shows a first application example of the binary power generation system 1.
  • a plurality of facilities 6a, 6b, 6c, factories 7a, 7b, 7c, and an energy center 100A are provided on the site 200A.
  • the facilities 6a, 6b, and 6c are facilities that generate exhaust heat, such as a waste incineration facility.
  • the factories 7a, 7b, and 7c are factories such as a steel mill and a chemical factory, for example.
  • the facilities 6a, 6b, 6c and the factories 7a, 7b, 7c can provide at least one of the first heat storage body 30 and the second heat storage body 40.
  • the energy center 100A generates power using the exhaust heat of the facilities 6a, 6b, 6c and factories 7a, 7b, 7c.
  • the energy center 100 includes a binary power generation device 20 that constitutes the binary power generation system 1.
  • the energy center 100A may include binary power generation devices 20p and 20q.
  • Waste heat from the facilities 6a, 6b, 6c and the factories 7a, 7b, 7c is stored in the first heat storage body 30 and / or the second heat storage body 40. Then, the first heat storage body 30 and the second heat storage body 40 are transported from the facilities 6a, 6b, 6c and the factories 7a, 7b, 7c to the energy center 100A.
  • unmanned automatic conveyance using an automatic driving vehicle such as an automatic driving truck and an unmanned vehicle (AGV) may be applied.
  • AGV unmanned vehicle
  • vehicle used for transporting the first heat storage body 30 and the second heat storage body 40 is simply referred to as “vehicle 300”.
  • Vehicle 300 conveys first heat storage body 30 and second heat storage body 40 from facilities 6a, 6b, 6c and factories 7a, 7b, 7c to energy center 100A. In addition, the vehicle 300 conveys the first heat storage body 30 and the second heat storage body 40 from the energy center 100A to the facilities 6a, 6b, 6c and the plants 7a, 7b, 7c.
  • a prescribed driving route for the vehicle 300 may be set in the site 200A.
  • the driving route includes a main transport line 110 having a ring shape, a plurality of transport branch lines 111 extending from the main transport line 110 to the facilities 6a, 6b, and 6c and factories 7a, 7b, and 7c, and a transport branch extending from the main transport line 110 to the energy center 100A. 112.
  • the vehicle 300 moves along the driving route.
  • the vehicle 300 is an unmanned vehicle, the vehicle 300 moves according to a prescribed driving program.
  • the conveyance form by the vehicle 300 can take a desired form according to a prescribed driving program. For example, six vehicles 300 are prepared. And each vehicle 300 is linked
  • said some conveyance form is an illustration and is not limited to said conveyance form at all.
  • FIG. 8 shows a second application example of the binary power generation system.
  • a plurality of facilities 6a, 6b, 6c, factories 7a, 7b, 7c, and an energy center 100B are provided in the site 200B.
  • the energy center 100B includes two binary power generation devices 20A and 20B and a control device 101.
  • the control device 101 is connected to the binary power generation devices 20A and 20B. That is, it can be said that the control device 101 is a power control room that performs a power supply and demand adjustment function.
  • the control device 101 performs integrated control by outputting a control signal to the binary power generation devices 20A and 20B. According to this control signal, for example, the output power amount of the binary power generators 20A and 20B can be adjusted. For example, the output power amount of each of the binary power generators 20A and 20B is increased or decreased according to the demand power. Moreover, according to the demand power, one of the binary power generation apparatuses 20A and 20B is operated, and the other is stopped.
  • the control device 101 is connected to the equipment 6a, 6b, 6c and the monitoring device 8a and the power demand device 8b arranged in the factories 7a, 7b, 7c. That is, the control apparatus 101 performs remote monitoring of the facilities 6a, 6b, 6c and the factories 7a, 7b, 7c.
  • the control device 101 is connected to the monitoring device 8a and the power demand device 8b via a wired or wireless communication network.
  • the wired communication network includes a communication main line 120 having a ring shape, a plurality of communication branch lines 121 extending from the communication main line 120 to the monitoring device 8a and the power demand device 8b, and a communication branch line 122 extending from the communication main line 120 to the control device 101. And including.
  • the monitoring device 8a may monitor the amount of exhaust heat, for example.
  • the control device 101 receives information on the operation status of the facilities 6a, 6b, 6c and the factories 7a, 7b, 7c from the monitoring device 8a. For example, the control device 101 monitors exhaust heat.
  • the control device 101 may perform control such as loading and unloading of the first heat storage body 30 and the second heat storage body 40 by the vehicle 300 based on the information on the amount of exhaust heat.
  • the equipment 6a, 6b, 6c and the factories 7a, 7b, 7c and the energy center 100B may constitute a microgrid.
  • the control device 101 may perform control to maintain a balance between the demand power of the facilities 6a, 6b, 6c and the factories 7a, 7b, 7c and the power supplied to the energy center 100B.
  • the control apparatus 101 may adjust the power demand of the equipment 6a, 6b, 6c and the factories 7a, 7b, 7c according to the power supplied by the energy center 100B.
  • the energy center 100B may include a storage battery (not shown).
  • the storage battery can store surplus power when the demand power is less than the supplied power. Further, the storage battery can supply insufficient power when the demand power is larger than the supplied power. That is, according to the energy center 100B provided with a storage battery, more flexible energy management can be performed.
  • FIG. 9 shows a third application example of the binary power generation system.
  • the binary power generation system may be applied across a plurality of sites 200A and 200C.
  • the site 200A is a first business site
  • the site 200C is a second business site in a location different from the first business site.
  • the binary power generation system can be applied across two geographically separated offices. In this case, a connecting line 113 that connects the site 200A and the site 200C is set.
  • the vehicle 300 can move from the site 200 ⁇ / b> A to the site 200 ⁇ / b> B through the connecting line 113.
  • the exhaust heat in the site 200A can be converted into electric power in the energy center 100C arranged in another site 200B. Therefore, more flexible operation can be realized.

Abstract

This binary power generation system comprises: a binary power generation device; one or more first heat storage bodies that store exhaust heat generated in a first facility of a plurality of facilities; and one or more second heat storage bodies that store exhaust heat generated in a second facility of the plurality of facilities. The binary power generation device includes: a first heat medium line in which a first heat medium flows; a second heat medium line in which a second heat medium of a higher temperature than the first heat medium flows; a working medium line in which a working medium is circulated; a preheater to which the first heat medium line and the working medium line are provided and which preheats the working medium; an evaporator to which the second heat medium line and the working medium line are provided, which is disposed on the downstream side of the preheater, and which evaporates the working medium so as to generate working medium steam; and a generator to which the working medium line is provided, which is disposed on the downstream side of the evaporator, and which generates power using the working medium steam.

Description

バイナリー発電システムおよびバイナリー発電方法Binary power generation system and binary power generation method
 本開示は、バイナリー発電システムおよびバイナリー発電方法を説明する。 This disclosure describes a binary power generation system and a binary power generation method.
 熱源は、発電装置に利用できる。この熱源として、ごみ焼却場、製鋼所および化学工場といった施設の熱源が挙げられる。また、熱源として、太陽光に由来する熱源も挙げられる。これらの熱源が利用される発電装置には、例えばバイナリー発電装置がある。バイナリー発電装置は、有機ランキンサイクル(Organic Rankine Cycle;ORC)を採用する。バイナリー発電装置は、蒸発器と発電機とを備える。バイナリー発電装置は、必要に応じて予熱器をさらに備える。蒸発器は、熱源によって加熱された熱媒体によって作動媒体を蒸発させる。発電機は、蒸発器で生成された作動媒体の蒸気によって発電する。予熱器は、作動媒体を予熱する。さらに、予熱器は、予熱された作動媒体を蒸発器に供給する。特許文献1は、工場排温水等の熱源を利用するバイナリーサイクル発電装置を開示する。特許文献2は、下水処理施設の熱源を利用するバイナリー発電装置を開示する。特許文献3は、太陽熱エネルギーを利用する太陽熱エネルギー発電装置を開示する。 The heat source can be used for power generation equipment. Examples of the heat source include heat sources of facilities such as a garbage incineration plant, a steel mill, and a chemical factory. Moreover, the heat source derived from sunlight is also mentioned as a heat source. An example of a power generation device using these heat sources is a binary power generation device. The binary power generator employs an organic Rankine cycle (ORC). The binary power generator includes an evaporator and a generator. The binary power generator further includes a preheater as necessary. The evaporator evaporates the working medium with a heat medium heated by a heat source. The generator generates electric power using the steam of the working medium generated by the evaporator. The preheater preheats the working medium. Furthermore, the preheater supplies the preheated working medium to the evaporator. Patent Document 1 discloses a binary cycle power generation device that uses a heat source such as factory waste water. Patent Document 2 discloses a binary power generation apparatus that uses a heat source of a sewage treatment facility. Patent Document 3 discloses a solar thermal energy power generation device that uses solar thermal energy.
特開2005-248877号公報JP 2005-248877 A 特開2015-143496号公報Japanese Patent Laying-Open No. 2015-14396 特開2015-37364号公報JP 2015-37364 A
 上記施設等の熱源は、複数の箇所に散在する。また、上記施設の熱源は、異なる温度領域を有する。従って、上記施設等の熱源は、必ずしも効率的に活用されていない。特許文献1の発電装置は、多様な温度領域の熱源に対応できる構成を有していない。従って、特許文献1の発電装置が広範囲な温度領域の熱エネルギーを効率的に利用するためには、特許文献1の発電装置の更なる改善が必要である。特許文献2の発電装置は、高温蓄熱装置と低温蓄熱装置とに蓄熱された熱エネルギーを利用する。しかし、特許文献2の発電装置が複数の施設に存在する熱源を利用して発電できるような構造を備えるためには、特許文献2の発電装置の更なる改善が必要である。特許文献3の発電装置は、太陽光線が得られないときも熱源側の熱媒体の温度を維持する。しかし、特許文献3の発電装置が異なる温度領域に対応した発電を行うためには、特許文献3の発電装置の更なる改善が必要である。 熱 The heat sources of the above facilities are scattered in multiple locations. Moreover, the heat source of the said facility has a different temperature range. Therefore, heat sources such as the above facilities are not necessarily utilized efficiently. The power generation device of Patent Document 1 does not have a configuration that can cope with heat sources in various temperature regions. Therefore, in order for the power generator of Patent Document 1 to efficiently use thermal energy in a wide temperature range, further improvement of the power generator of Patent Document 1 is necessary. The power generation device of Patent Literature 2 uses thermal energy stored in a high-temperature heat storage device and a low-temperature heat storage device. However, in order for the power generation device of Patent Literature 2 to have a structure that can generate power using heat sources present in a plurality of facilities, further improvement of the power generation device of Patent Literature 2 is necessary. The power generation device of Patent Document 3 maintains the temperature of the heat medium on the heat source side even when sunlight is not obtained. However, in order for the power generation apparatus of Patent Document 3 to generate power corresponding to different temperature ranges, further improvement of the power generation apparatus of Patent Document 3 is necessary.
 本開示は、複数の施設からの異なる温度領域の排熱を利用できるバイナリー発電システムおよびバイナリー発電方法を説明する。 This disclosure describes a binary power generation system and a binary power generation method that can utilize exhaust heat in different temperature ranges from multiple facilities.
 本開示のバイナリー発電システムは、第1熱媒体を流すための第1熱媒体ライン、第1熱媒体より高い温度の第2熱媒体を流すための第2熱媒体ライン、作動媒体を循環させるための作動媒体ライン、第1熱媒体ラインと作動媒体ラインとが設けられると共に作動媒体を予熱する予熱器、第2熱媒体ラインと作動媒体ラインとが設けられ予熱器よりも下流側に配置されると共に作動媒体を蒸発させて作動媒体蒸気を生成する蒸発器、および、作動媒体ラインが設けられ蒸発器よりも下流側に配置されると共に作動媒体蒸気を用いて発電を行う発電機を有するバイナリー発電装置と、排熱を発生させる複数の施設のうち第1施設で発生した排熱を蓄熱する一つまたは複数の第1蓄熱体と、複数の施設のうち第2施設で発生した排熱を蓄熱する一つまたは複数の第2蓄熱体と、を備える。第1蓄熱体は、第1熱媒体を生成する。第1熱媒体は、第1熱媒体ラインを通じて予熱器に供給される。第2蓄熱体は、第2熱媒体を生成する。第2熱媒体は、第2熱媒体ラインを通じて蒸発器に供給される。 A binary power generation system of the present disclosure includes a first heat medium line for flowing a first heat medium, a second heat medium line for flowing a second heat medium having a temperature higher than that of the first heat medium, and circulating a working medium. The working medium line, the first heat medium line and the working medium line are provided, and the preheater for preheating the working medium is provided, and the second heat medium line and the working medium line are provided and are arranged downstream of the preheater. Binary power generation having an evaporator for evaporating the working medium and generating working medium vapor, and a generator provided with a working medium line and disposed downstream of the evaporator and generating electric power using the working medium vapor The apparatus, one or a plurality of first heat storage bodies that store exhaust heat generated in the first facility among the plurality of facilities that generate exhaust heat, and the exhaust heat generated in the second facility among the plurality of facilities are stored. Do One or comprising a plurality of the second regenerator, a. The first heat storage body generates a first heat medium. The first heat medium is supplied to the preheater through the first heat medium line. The second heat storage body generates a second heat medium. The second heat medium is supplied to the evaporator through the second heat medium line.
 本開示のいくつかの態様によれば、複数の施設からの異なる温度領域の排熱を利用できるバイナリー発電システムおよびバイナリー発電方法を提供できる。 According to some aspects of the present disclosure, it is possible to provide a binary power generation system and a binary power generation method that can use exhaust heat in different temperature ranges from a plurality of facilities.
図1は、第1実施形態に係るバイナリー発電システムの概略構成を示す図である。FIG. 1 is a diagram illustrating a schematic configuration of a binary power generation system according to the first embodiment. 図2は、第1実施形態に係るバイナリー発電システムの概略構成を示す図である。FIG. 2 is a diagram illustrating a schematic configuration of the binary power generation system according to the first embodiment. 図3は、第1実施形態に係る排熱を発生させる複数の施設およびバイナリー発電システムの配置を示した図である。FIG. 3 is a diagram illustrating an arrangement of a plurality of facilities and a binary power generation system that generate exhaust heat according to the first embodiment. 図4は、第2実施形態に係るバイナリー発電システムの概略構成を示す図である。FIG. 4 is a diagram illustrating a schematic configuration of the binary power generation system according to the second embodiment. 図5は、第2実施形態に係るバイナリー発電システムの概略構成を示す図である。FIG. 5 is a diagram illustrating a schematic configuration of the binary power generation system according to the second embodiment. 図6は、第3実施形態に係るバイナリー発電システムの概略構成を示す図である。FIG. 6 is a diagram illustrating a schematic configuration of the binary power generation system according to the third embodiment. 図7は、バイナリー発電システムの第1の適用例を示す図である。FIG. 7 is a diagram illustrating a first application example of the binary power generation system. 図8は、バイナリー発電システムの第2の適用例を示す図である。FIG. 8 is a diagram illustrating a second application example of the binary power generation system. 図9は、バイナリー発電システムの第3の適用例を示す図である。FIG. 9 is a diagram illustrating a third application example of the binary power generation system.
 本開示のバイナリー発電システムは、第1熱媒体を流すための第1熱媒体ライン、第1熱媒体より高い温度の第2熱媒体を流すための第2熱媒体ライン、作動媒体を循環させるための作動媒体ライン、第1熱媒体ラインと作動媒体ラインとが設けられると共に作動媒体を予熱する予熱器、第2熱媒体ラインと作動媒体ラインとが設けられ予熱器よりも下流側に配置されると共に作動媒体を蒸発させて作動媒体蒸気を生成する蒸発器、および、作動媒体ラインが設けられ蒸発器よりも下流側に配置されると共に作動媒体蒸気を用いて発電を行う発電機を有するバイナリー発電装置と、排熱を発生させる複数の施設のうち第1施設で発生した排熱を蓄熱する一つまたは複数の第1蓄熱体と、複数の施設のうち第2施設で発生した排熱を蓄熱する一つまたは複数の第2蓄熱体と、を備える。第1蓄熱体は、第1熱媒体を生成する。第1熱媒体は、第1熱媒体ラインを通じて予熱器に供給される。第2蓄熱体は、第2熱媒体を生成する。第2熱媒体は、第2熱媒体ラインを通じて蒸発器に供給される。 A binary power generation system of the present disclosure includes a first heat medium line for flowing a first heat medium, a second heat medium line for flowing a second heat medium having a temperature higher than that of the first heat medium, and circulating a working medium. The working medium line, the first heat medium line and the working medium line are provided, and the preheater for preheating the working medium is provided, and the second heat medium line and the working medium line are provided and are arranged downstream of the preheater. Binary power generation having an evaporator for evaporating the working medium and generating working medium vapor, and a generator provided with a working medium line and disposed downstream of the evaporator and generating electric power using the working medium vapor The apparatus, one or a plurality of first heat storage bodies that store exhaust heat generated in the first facility among the plurality of facilities that generate exhaust heat, and the exhaust heat generated in the second facility among the plurality of facilities are stored. Do One or comprises a plurality of second heat storage body. The first heat storage body generates a first heat medium. The first heat medium is supplied to the preheater through the first heat medium line. The second heat storage body generates a second heat medium. The second heat medium is supplied to the evaporator through the second heat medium line.
 このバイナリー発電システムの第1蓄熱体および第2蓄熱体は、排熱を発生させる複数の施設からの排熱を蓄熱することができる。これらの第1蓄熱体および第2蓄熱体は、蓄熱後に電気を必要とする場所、例えばバイナリー発電装置が設置された場所に移動させることができる。そして、第2蓄熱体は、移動後にバイナリー発電のための熱媒体を生成することができる。その結果、施設からの排熱が有効に活用される。さらに、排熱の発生場所と関係なく、電気を必要とする場所での発電が可能となる。また、発電のための熱源が不足している発電装置に対して、第1蓄熱体および第2蓄熱体を選択的に提供することもできる。熱源が過剰の発電装置から、熱源が不足している発電装置に対して、第1蓄熱体および第2蓄熱体を移動することもできる。第2蓄熱体は、第1蓄熱体が生成する第1熱媒体より高い温度の第2熱媒体を生成できる。従って、複数の施設からの異なる温度領域の排熱を利用できるバイナリー発電システムが提供される。 The first heat storage body and the second heat storage body of this binary power generation system can store exhaust heat from a plurality of facilities that generate exhaust heat. These 1st heat storage bodies and 2nd heat storage bodies can be moved to the place where electricity is required after heat storage, for example, the place where the binary power generator was installed. The second heat storage body can generate a heat medium for binary power generation after movement. As a result, exhaust heat from the facility is effectively utilized. Furthermore, it is possible to generate power at a place where electricity is required regardless of the place where the exhaust heat is generated. Moreover, a 1st heat storage body and a 2nd heat storage body can also be selectively provided with respect to the electric power generating apparatus with which the heat source for electric power generation is insufficient. It is also possible to move the first heat storage body and the second heat storage body from the power generation apparatus having an excessive heat source to the power generation apparatus having a shortage of heat source. The second heat storage body can generate a second heat medium having a higher temperature than the first heat medium generated by the first heat storage body. Therefore, a binary power generation system that can utilize exhaust heat in different temperature ranges from a plurality of facilities is provided.
 本開示のバイナリー発電システムでは、複数の第2蓄熱体の内で第2熱媒体を生成する第2蓄熱体を切り替える第2切替器をさらに備えてよい。 The binary power generation system of the present disclosure may further include a second switch that switches a second heat storage body that generates a second heat medium among the plurality of second heat storage bodies.
 バイナリー発電システムの第2切替器は、蒸発器に供給するための第2熱媒体を生成する第2熱媒体を容易に変更することができる。また、第2切替器は、一度に複数の第2蓄熱体が第2熱媒体を生成するように変更できる。 The second switch of the binary power generation system can easily change the second heat medium that generates the second heat medium to be supplied to the evaporator. Further, the second switch can be changed so that a plurality of second heat storage bodies generate the second heat medium at a time.
 本開示のバイナリー発電システムでは、第1蓄熱体は、潜熱蓄熱材および吸着材の少なくとも一つを含んでよい。第2蓄熱体は、化学蓄熱材、潜熱蓄熱材および吸着材の少なくとも一つを含んでよい。 In the binary power generation system of the present disclosure, the first heat storage body may include at least one of a latent heat storage material and an adsorbent. The second heat storage body may include at least one of a chemical heat storage material, a latent heat storage material, and an adsorbent.
 バイナリー発電システムの第1蓄熱体は、潜熱蓄熱材および吸着材の少なくとも一つを含む。従って、第1蓄熱体は、第2熱媒体より低い温度の第1熱媒体を効率よく生成できる。また、第2蓄熱体は、化学蓄熱材、潜熱蓄熱材および吸着材の少なくとも一つを含む。従って、第2蓄熱体は、第1熱媒体より高い温度の第2熱媒体を効率よく生成できる。 The first heat storage body of the binary power generation system includes at least one of a latent heat storage material and an adsorbent. Therefore, the first heat storage body can efficiently generate the first heat medium having a temperature lower than that of the second heat medium. In addition, the second heat storage body includes at least one of a chemical heat storage material, a latent heat storage material, and an adsorbent. Accordingly, the second heat storage body can efficiently generate the second heat medium having a temperature higher than that of the first heat medium.
 本開示のバイナリー発電システムでは、第1蓄熱体および第2蓄熱体は、吸着材を含んでよい。 In the binary power generation system of the present disclosure, the first heat storage body and the second heat storage body may include an adsorbent.
 バイナリー発電システムの第1蓄熱体および第2蓄熱体は吸着材を含む。従って、第1蓄熱体は、第2熱媒体より低い温度の第1熱媒体を効率よく生成できる。 The first heat storage body and the second heat storage body of the binary power generation system include an adsorbent. Therefore, the first heat storage body can efficiently generate the first heat medium having a temperature lower than that of the second heat medium.
 本開示のバイナリー発電システムは、作動媒体ラインが設けられ発電機よりも下流側に配置されると共に作動媒体蒸気を冷却媒体によって冷却する凝縮器と、冷却媒体を冷却すると共に、第1蓄熱体および第2蓄熱体の少なくとも一つに蓄熱用媒体を供給する冷却塔と、第1蓄熱体および第2蓄熱体の少なくとも一つと冷却塔とを接続する蓄熱用媒体ラインと、をさらに備えてよい。 The binary power generation system of the present disclosure includes a condenser that is provided with a working medium line and is disposed downstream of the generator and that cools the working medium vapor by the cooling medium, cools the cooling medium, and includes the first heat storage body and A cooling tower that supplies a heat storage medium to at least one of the second heat storage bodies, and a heat storage medium line that connects at least one of the first heat storage body and the second heat storage body and the cooling tower may be further provided.
 バイナリー発電システムでは、第1蓄熱体および第2蓄熱体が吸着材を含む。この場合に、冷却塔は、蓄熱用媒体ラインを通じて、第1蓄熱体および第2蓄熱体に対して、蓄熱材を発熱させるための材料である水分を供給することができる。 In the binary power generation system, the first heat storage body and the second heat storage body include an adsorbent. In this case, the cooling tower can supply moisture, which is a material for generating heat from the heat storage material, to the first heat storage body and the second heat storage body through the heat storage medium line.
 本開示のバイナリー発電システムは、複数の第2蓄熱体の内で蓄熱用媒体が供給される第2蓄熱体を切り替える第4切替器をさらに備えてもよい。 The binary power generation system of the present disclosure may further include a fourth switch that switches the second heat storage body to which the heat storage medium is supplied among the plurality of second heat storage bodies.
 バイナリー発電システムの第4切替器は、蓄熱用媒体を供給する第2蓄熱体を変更することができる。 The fourth switch of the binary power generation system can change the second heat storage body that supplies the heat storage medium.
 本開示のバイナリー発電方法は、作動媒体蒸気を用いてバイナリー発電装置の発電機で発電を行うバイナリー発電方法である。バイナリー発電方法は、排熱を発生させる複数の施設のうち第1施設で発生した排熱を蓄熱する一つまたは複数の第1蓄熱体によって第1熱媒体を生成する工程と、複数の施設のうち第2施設で発生した排熱を蓄熱する一つまたは複数の第2蓄熱体によって第1熱媒体より高い温度の第2熱媒体を生成する工程と、第1熱媒体を予熱器に供給し、予熱器において第1熱媒体により作動媒体を予熱する工程と、第2熱媒体を蒸発器に供給し、蒸発器において第2熱媒体により作動媒体を蒸発させて作動媒体蒸気を生成する工程と、を備える。 The binary power generation method of the present disclosure is a binary power generation method in which power is generated by a generator of a binary power generation apparatus using working medium vapor. The binary power generation method includes a step of generating a first heat medium by one or a plurality of first heat accumulators that store exhaust heat generated in a first facility among a plurality of facilities that generate exhaust heat; Among them, a step of generating a second heat medium having a temperature higher than that of the first heat medium by one or a plurality of second heat accumulators that store exhaust heat generated at the second facility, and supplying the first heat medium to the preheater. Preheating the working medium with the first heat medium in the preheater, supplying the second heat medium to the evaporator, and evaporating the working medium with the second heat medium in the evaporator to generate the working medium vapor; .
 バイナリー発電方法の第1蓄熱体は、複数の施設で発生した排熱を利用して第1熱媒体を生成できる。第2蓄熱体は、複数の施設のうち第1施設で発生した排熱を利用して第2熱媒体を生成できる。従って、バイナリー発電方法は、複数の施設で発生した排熱を利用できる。また、第2熱媒体は、第1熱媒体より高い温度を有する。従って、このバイナリー発電方法は、異なる温度領域の排熱を利用できる。 The first heat storage body of the binary power generation method can generate the first heat medium using exhaust heat generated in a plurality of facilities. The second heat storage body can generate the second heat medium using exhaust heat generated in the first facility among the plurality of facilities. Therefore, the binary power generation method can use exhaust heat generated in a plurality of facilities. The second heat medium has a higher temperature than the first heat medium. Therefore, this binary power generation method can utilize exhaust heat in different temperature ranges.
 本開示のバイナリー発電方法は、複数の第2蓄熱体の内で第2熱媒体を生成する第2蓄熱体を切り替える工程をさらに備えてよい。 The binary power generation method of the present disclosure may further include a step of switching the second heat storage body that generates the second heat medium among the plurality of second heat storage bodies.
 バイナリー発電方法は、第2蓄熱体を切り替える工程を備える。この工程によって、蒸発器に供給するための第2熱媒体を生成する第2蓄熱体を容易に変更することができる。 The binary power generation method includes a step of switching the second heat storage body. By this step, the second heat storage body that generates the second heat medium to be supplied to the evaporator can be easily changed.
 以下、本開示のバイナリー発電システムおよびバイナリー発電方法について、図面を参照しながら説明する。なお、図面の説明において同一要素には同一符号を付す。図面の説明において重複する説明は省略する。本明細書において、「ライン」は、内部を媒体が流れる配管もしくは管路、または、空間を意味する。また、本明細書において、「上流」または「下流」は、対象とする媒体の流れの方向を基準とする。 Hereinafter, the binary power generation system and the binary power generation method of the present disclosure will be described with reference to the drawings. In the description of the drawings, the same elements are given the same reference numerals. In the description of the drawings, duplicate description is omitted. In the present specification, the “line” means a pipe or conduit through which a medium flows or a space. In this specification, “upstream” or “downstream” is based on the direction of the flow of the target medium.
 (第1実施形態)
 図1は、第1実施形態のバイナリー発電システムの概略構成を示す図である。図1は、バイナリー発電を行う前の構成を示している。図2は、第1実施形態のバイナリー発電システムの概略構成を示す図である。図2は、バイナリー発電を行うときの構成を示している。
(First embodiment)
FIG. 1 is a diagram illustrating a schematic configuration of the binary power generation system according to the first embodiment. FIG. 1 shows a configuration before performing binary power generation. FIG. 2 is a diagram illustrating a schematic configuration of the binary power generation system according to the first embodiment. FIG. 2 shows a configuration when performing binary power generation.
 バイナリー発電システム1は、作動媒体蒸気を利用して発電を行う。作動媒体蒸気は、熱媒体と作動媒体との熱交換によって生成される。バイナリー発電システムは、例えばオーガニックランキンサイクルを採用する。作動媒体には、水よりも沸点の低い媒体が用いられる。作動媒体は、例えばハロゲン化炭化水素を含む。具体的には、作動媒体は、R-123、R-134a、またはR-245faを含む。 Binary power generation system 1 generates power using working medium vapor. The working medium vapor is generated by heat exchange between the heat medium and the working medium. The binary power generation system employs an organic Rankine cycle, for example. As the working medium, a medium having a boiling point lower than that of water is used. The working medium includes, for example, a halogenated hydrocarbon. Specifically, the working medium includes R-123, R-134a, or R-245fa.
 バイナリー発電システム1は、収容ユニット10と、バイナリー発電装置20と、を備える。収容ユニット10は、一つまたは複数の第1蓄熱体30と、一つまたは複数の第2蓄熱体40を収容する。収容ユニット10に収容された蓄熱体は、バイナリー発電装置20に熱媒体を供給する。熱媒体は、第1熱媒体と、第2熱媒体とを含む。第2熱媒体の温度は、第1熱媒体より高い。第1蓄熱体30は第1熱媒体を生成する。第2蓄熱体40は第2熱媒体を生成する。第1熱媒体および第2熱媒体は、ごみ焼却場、製鋼所および化学工場といった施設からの排熱を利用して熱媒体を生成する。図1および図2に示す収容ユニット10は、二つの第1蓄熱体30と、二つの第2蓄熱体40と、を収容する。収容ユニット10が収容する第1蓄熱体30および第2蓄熱体40の数は、特に上限はない。収容ユニット10は、例えば、容器および倉庫のような構造物であってもよい。また、収容ユニット10は、第1蓄熱体30および第2蓄熱体40を載置できるスペースであってもよい。さらに、収容ユニット10は、構造物でなくてもよい。 The binary power generation system 1 includes a housing unit 10 and a binary power generation device 20. The housing unit 10 houses one or more first heat storage bodies 30 and one or more second heat storage bodies 40. The heat storage body accommodated in the accommodation unit 10 supplies a heat medium to the binary power generation device 20. The heat medium includes a first heat medium and a second heat medium. The temperature of the second heat medium is higher than that of the first heat medium. The first heat storage body 30 generates a first heat medium. The second heat storage body 40 generates a second heat medium. The first heat medium and the second heat medium generate heat medium using exhaust heat from facilities such as a garbage incineration plant, a steel mill, and a chemical factory. The accommodation unit 10 shown in FIGS. 1 and 2 accommodates two first heat storage bodies 30 and two second heat storage bodies 40. There is no particular upper limit on the number of first heat storage bodies 30 and second heat storage bodies 40 that the storage unit 10 stores. The storage unit 10 may be a structure such as a container and a warehouse, for example. Further, the storage unit 10 may be a space where the first heat storage body 30 and the second heat storage body 40 can be placed. Furthermore, the storage unit 10 may not be a structure.
 第1蓄熱体30は、筐体と、蓄熱材料と、を有する。蓄熱材料は、筐体の内部に収容されている。第1蓄熱体30の筐体は、第1供給ポート31と、第1受入ポート32と、を有する。第1供給ポート31は、第1熱媒体をバイナリー発電装置20に供給する。第1受入ポート32は、バイナリー発電装置20から第1熱媒体を受け入れる。第2蓄熱体40は、筐体と、蓄熱材料と、を有する。蓄熱材料は、筐体内に収容されている。第2蓄熱体40の筐体は、第2供給ポート41と、第2受入ポート42と、を有する。第2供給ポート41は、第2熱媒体をバイナリー発電装置20に供給する。第2受入ポート42は、バイナリー発電装置20から第2熱媒体を受け入れる。 The first heat storage body 30 includes a housing and a heat storage material. The heat storage material is accommodated in the housing. The housing of the first heat storage body 30 includes a first supply port 31 and a first receiving port 32. The first supply port 31 supplies the first heat medium to the binary power generation device 20. The first receiving port 32 receives the first heat medium from the binary power generation device 20. The second heat storage body 40 includes a housing and a heat storage material. The heat storage material is accommodated in the housing. The housing of the second heat storage body 40 includes a second supply port 41 and a second receiving port 42. The second supply port 41 supplies the second heat medium to the binary power generation device 20. The second receiving port 42 receives the second heat medium from the binary power generation device 20.
 バイナリー発電装置20は、予熱器60と、蒸発器65と、膨張発電機(発電機)70と、凝縮器75と、を備える。バイナリー発電装置20は、第1熱媒体ラインL1と第2熱媒体ラインL2と作動媒体ラインL3とを備える。第1熱媒体ラインL1は、第1熱媒体を流す。第2熱媒体ラインL2は、第2熱媒体を流す。作動媒体ラインL3は、作動媒体を循環させる。第1熱媒体ラインL1は、予熱器60を通る。第2熱媒体ラインL2は、蒸発器65を通る。作動媒体ラインL3は、予熱器60、蒸発器65、膨張発電機70および凝縮器75を通る。バイナリー発電装置20は、作動媒体ポンプ50を備える。作動媒体ポンプ50は、作動媒体ラインL3に設けられている。作動媒体は、作動媒体ポンプ50によってバイナリー発電装置20の内部を循環する。 The binary power generator 20 includes a preheater 60, an evaporator 65, an expansion generator (generator) 70, and a condenser 75. The binary power generation device 20 includes a first heat medium line L1, a second heat medium line L2, and a working medium line L3. The first heat medium line L1 allows the first heat medium to flow. The second heat medium line L2 flows the second heat medium. The working medium line L3 circulates the working medium. The first heat medium line L <b> 1 passes through the preheater 60. The second heat medium line L <b> 2 passes through the evaporator 65. The working medium line L3 passes through the preheater 60, the evaporator 65, the expansion generator 70, and the condenser 75. The binary power generation device 20 includes a working medium pump 50. The working medium pump 50 is provided in the working medium line L3. The working medium circulates inside the binary power generator 20 by the working medium pump 50.
 作動媒体ラインL3は、第1循環ラインL3aと第2循環ラインL3bとを有する。作動媒体は、第1循環ラインL3aと第2循環ラインL3bとを通じてバイナリー発電装置20の内部を循環している。第1循環ラインL3aの上流端は、作動媒体ポンプ50の吐出部51に接続されている。第1循環ラインL3aの下流端は、膨張発電機70の入口部71に接続されている。第2循環ラインL3bの上流端は、膨張発電機70の出口部72に接続されている。第2循環ラインL3bの下流端は、作動媒体ポンプ50の吸込部52に接続されている。予熱器60および蒸発器65は、第1循環ラインL3aに設けられている。蒸発器65は、作動媒体の流れを基準として、予熱器60よりも下流側に配置されている。予熱器60には、第1熱媒体ラインL1と第1循環ラインL3aとが通っている。蒸発器65には、第2熱媒体ラインL2と第1循環ラインL3aとが通っている。膨張発電機70は、作動媒体を基準として蒸発器65よりも下流側に配置されている。 The working medium line L3 includes a first circulation line L3a and a second circulation line L3b. The working medium circulates inside the binary power generator 20 through the first circulation line L3a and the second circulation line L3b. The upstream end of the first circulation line L3a is connected to the discharge unit 51 of the working medium pump 50. The downstream end of the first circulation line L3a is connected to the inlet portion 71 of the expansion generator 70. The upstream end of the second circulation line L3b is connected to the outlet portion 72 of the expansion generator 70. The downstream end of the second circulation line L3b is connected to the suction part 52 of the working medium pump 50. The preheater 60 and the evaporator 65 are provided in the first circulation line L3a. The evaporator 65 is disposed downstream of the preheater 60 with reference to the flow of the working medium. The preheater 60 passes through the first heat medium line L1 and the first circulation line L3a. The second heat medium line L2 and the first circulation line L3a pass through the evaporator 65. The expansion generator 70 is disposed downstream of the evaporator 65 with respect to the working medium.
 図2に示されるように、第1熱媒体ラインL1は、一方の端部に設けられた第1入口ポート33と、他方の端部に設けられた第1出口ポート34と、を有する。バイナリー発電を行うときには、例えば第1蓄熱体30の一つが収容ユニット10から取り出される。第1蓄熱体30の第1供給ポート31は、第1入口ポート33に接続される。第1蓄熱体30の第1受入ポート32は、第1出口ポート34に接続される。第1供給ポート31と第1入口ポート33との接続は、例えば、フランジといった接続部材による。また、第1受入ポート32と第1出口ポート34との接続も、例えば、フランジといった接続部材による。第1熱媒体は、第1供給ポート31と第1入口ポート33との接続部を通る。次に、第1熱媒体は、第1熱媒体ラインL1を通じて第1蓄熱体30から予熱器60に供給される。次に、第1熱媒体は、予熱器60の内部を循環する。次に、第1熱媒体は、第1出口ポート34と第1受入ポート32との接続部を通る。そして、第1熱媒体は、第1蓄熱体30に戻される。第1熱媒体の循環は、閉ループを形成することができる。 As shown in FIG. 2, the first heat medium line L1 has a first inlet port 33 provided at one end and a first outlet port 34 provided at the other end. When performing binary power generation, for example, one of the first heat storage bodies 30 is taken out of the storage unit 10. The first supply port 31 of the first heat storage body 30 is connected to the first inlet port 33. The first receiving port 32 of the first heat storage body 30 is connected to the first outlet port 34. The connection between the first supply port 31 and the first inlet port 33 is, for example, by a connecting member such as a flange. Further, the connection between the first receiving port 32 and the first outlet port 34 is also made by a connecting member such as a flange, for example. The first heat medium passes through the connection portion between the first supply port 31 and the first inlet port 33. Next, the first heat medium is supplied from the first heat storage body 30 to the preheater 60 through the first heat medium line L1. Next, the first heat medium circulates inside the preheater 60. Next, the first heat medium passes through the connection portion between the first outlet port 34 and the first receiving port 32. Then, the first heat medium is returned to the first heat storage body 30. The circulation of the first heat medium can form a closed loop.
 第2熱媒体ラインL2は、一方の端部に設けられた第2入口ポート43と、他方の端部に設けられた第2出口ポート44と、を有する。バイナリー発電を行うときには、例えば第2蓄熱体40の一つが収容ユニット10から取り出される。第2蓄熱体40の第2供給ポート41は、第2入口ポート43に接続される。第2蓄熱体40の第2受入ポート42は、第2出口ポート44に接続される。第2供給ポート41と第2入口ポート43との接続は、例えば、フランジといった接続部材による。また、第2受入ポート42と第2出口ポート44との接続も、例えば、フランジといった接続部材による。第2熱媒体は、第2供給ポート41と第2入口ポート43との接続部を通る。次に、第2熱媒体は、第2熱媒体ラインL2を通じて第2蓄熱体40から蒸発器65に供給される。次に、第2熱媒体は、蒸発器65の内部を循環する。次に、第2熱媒体は、第2出口ポート44と第2受入ポート42との接続部を通る。そして、第2熱媒体は、第2蓄熱体40に戻される。第2熱媒体の循環は、閉ループを形成することができる。 The second heat medium line L2 has a second inlet port 43 provided at one end and a second outlet port 44 provided at the other end. When performing binary power generation, for example, one of the second heat storage bodies 40 is taken out of the storage unit 10. The second supply port 41 of the second heat storage body 40 is connected to the second inlet port 43. The second receiving port 42 of the second heat storage body 40 is connected to the second outlet port 44. The connection between the second supply port 41 and the second inlet port 43 is, for example, by a connecting member such as a flange. The connection between the second receiving port 42 and the second outlet port 44 is also made by a connecting member such as a flange, for example. The second heat medium passes through the connection portion between the second supply port 41 and the second inlet port 43. Next, the second heat medium is supplied from the second heat storage body 40 to the evaporator 65 through the second heat medium line L2. Next, the second heat medium circulates inside the evaporator 65. Next, the second heat medium passes through the connection portion between the second outlet port 44 and the second receiving port 42. Then, the second heat medium is returned to the second heat storage body 40. The circulation of the second heat medium can form a closed loop.
 バイナリー発電システム1の予熱器60は、作動媒体を加熱(予熱)する。作動媒体の加熱は、第1熱媒体と作動媒体との熱交換による。作動媒体を加熱は、第1熱媒体の顕熱を利用する。予熱器60によって予熱された作動媒体は、蒸発器65に供給される。蒸発器65は、作動媒体を再び加熱する。作動媒体の加熱は、予熱器60からの作動媒体と第2熱媒体との熱交換による。この加熱によって、作動媒体蒸気が生成される。作動媒体蒸気は、第1循環ラインL3aを通じて膨張発電機70に供給される。 The preheater 60 of the binary power generation system 1 heats (preheats) the working medium. The working medium is heated by heat exchange between the first heat medium and the working medium. The working medium is heated by utilizing the sensible heat of the first heat medium. The working medium preheated by the preheater 60 is supplied to the evaporator 65. The evaporator 65 heats the working medium again. The working medium is heated by heat exchange between the working medium from the preheater 60 and the second heat medium. This heating generates working medium vapor. The working medium vapor is supplied to the expansion generator 70 through the first circulation line L3a.
 予熱器60は、例えば単相タイプの熱交換器である。予熱器60は、例えばプレート式の熱交換器であってもよい。予熱器60は、向流式の熱交換器であってもよい。予熱器60は、並流式の熱交換器であってもよい。蒸発器65は、例えば相変換タイプの熱交換器である。蒸発器65は、プレート式の熱交換器であってもよい。蒸発器65は、向流式の熱交換器であってもよい。蒸発器65は、並流式の熱交換器であってもよい。バイナリー発電装置20は、一つの予熱器60と一つの蒸発器65とを有する。バイナリー発電装置20は、さらに、複数の予熱器60と複数の蒸発器65とを有してもよい。複数の蒸発器65が設けられるときには、蒸発器65は、作動媒体を過熱(スーパーヒート)するための過熱器を含んでもよい。 The preheater 60 is, for example, a single-phase type heat exchanger. The preheater 60 may be a plate heat exchanger, for example. The preheater 60 may be a countercurrent heat exchanger. The preheater 60 may be a co-current heat exchanger. The evaporator 65 is, for example, a phase conversion type heat exchanger. The evaporator 65 may be a plate heat exchanger. The evaporator 65 may be a countercurrent heat exchanger. The evaporator 65 may be a co-current heat exchanger. The binary power generator 20 has one preheater 60 and one evaporator 65. The binary power generator 20 may further include a plurality of preheaters 60 and a plurality of evaporators 65. When a plurality of evaporators 65 are provided, the evaporator 65 may include a superheater for superheating (superheating) the working medium.
 膨張発電機70は、例えば膨張機と、発電機と、を含んでいる。膨張機は、タービン等のターボ型の機械である。発電機は、膨張機に連結されている。膨張発電機70は、蒸発器65からの作動媒体蒸気を用いてタービンを回転させる。膨張発電機70は、タービンの回転によって発電を行う。膨張発電機70には、電力変換器73が接続されている。電力変換器73は、例えば、AC-DCコンバータ、系統連系コンバータ、および、絶縁トランス等の機器を含む。膨張発電機70の膨張機は、ターボ型の膨張機に限られない。膨張機は、スクリュー式の容積型膨張機であってもよい。膨張発電機70を通った作動媒体は、第2循環ラインL3bを通じて凝縮器75に流れる。 The expansion generator 70 includes, for example, an expander and a generator. The expander is a turbo type machine such as a turbine. The generator is connected to the expander. The expansion generator 70 uses the working medium vapor from the evaporator 65 to rotate the turbine. The expansion generator 70 generates power by rotating the turbine. A power converter 73 is connected to the expansion generator 70. The power converter 73 includes devices such as an AC-DC converter, a grid interconnection converter, and an insulation transformer, for example. The expander of the expansion generator 70 is not limited to a turbo type expander. The expander may be a screw-type positive displacement expander. The working medium that has passed through the expansion generator 70 flows to the condenser 75 through the second circulation line L3b.
 凝縮器75は、作動媒体と冷却媒体との熱交換により作動媒体を冷却および凝縮する。その結果、作動媒体は、液化する。凝縮器75には、第2循環ラインL3bと冷却媒体ラインL4とが通っている。凝縮器75は、向流式の熱交換器であってもよい。凝縮器75は、並流式の熱交換器であってもよい。凝縮器75は、空冷タイプであってもよい。冷却媒体は、水などの液体を含んでもよいし、空気などのガスを含んでもよい。冷却媒体ラインL4には、冷却媒体を冷却するための冷却塔80が設けられる。 The condenser 75 cools and condenses the working medium by heat exchange between the working medium and the cooling medium. As a result, the working medium is liquefied. A second circulation line L3b and a cooling medium line L4 pass through the condenser 75. The condenser 75 may be a countercurrent heat exchanger. The condenser 75 may be a co-current heat exchanger. The condenser 75 may be an air cooling type. The cooling medium may include a liquid such as water or a gas such as air. The cooling medium line L4 is provided with a cooling tower 80 for cooling the cooling medium.
 図3は、第1実施形態のバイナリー発電システムを示した図である。図3は、排熱を発生させる複数の施設と、バイナリー発電システムと、の配置を示す。図3に示すように、排熱を発生させる複数の施設は、例えば、ごみ焼却場、製鋼所および化学工場である。例えば、複数の施設は、施設5a、施設5b、施設5c、施設5d、施設5eおよび施設5fを含む。これらの施設は、第1蓄熱体30および第2蓄熱体40の少なくとも一つを提供することができる。第1蓄熱体30は、複数の施設5a~5fのうち、例えば、第1施設の施設5aで発生した排熱を蓄熱できる。第1施設は、施設5bおよび/または施設5cであってもよい。第1施設は、施設5a~施設5cであってもよい。第2蓄熱体40は、複数の施設5a~5fのうち、例えば、第2施設の施設5dで発生した排熱を蓄熱できる。第2施設は、施設5eおよび/または施設5fであってもよい。第2施設は、施設5d~施設5fであってもよい。また、例えば、施設aは、第1施設と第2施設とを兼ね備えてもよい。施設aは、第1蓄熱体30および第2蓄熱体40の両方を提供してもよい。図3に示すように、排熱を発生させる施設は、複数箇所に存在する。しかし、例えば、バイナリー発電システム1は一つである。第1蓄熱体30および第2蓄熱体40は、複数の施設から一つのバイナリー発電システム1の収容ユニット10に収容されることができる。第1蓄熱体30および第2蓄熱体40は、例えば電気自動車または自動運転トラックといった車両によって、施設5a~5fからバイナリー発電システム1まで移動する。図3が示す排熱を発生させる施設の数は、6つである。しかし、施設の数は、2つ以上5つ以下であってもよい。さらに、施設の数は、7つ以上であってもよい。 FIG. 3 is a diagram showing the binary power generation system of the first embodiment. FIG. 3 shows an arrangement of a plurality of facilities that generate exhaust heat and a binary power generation system. As shown in FIG. 3, the plurality of facilities that generate exhaust heat are, for example, a garbage incineration plant, a steel mill, and a chemical factory. For example, the plurality of facilities includes a facility 5a, a facility 5b, a facility 5c, a facility 5d, a facility 5e, and a facility 5f. These facilities can provide at least one of the first heat storage body 30 and the second heat storage body 40. The first heat storage body 30 can store, for example, exhaust heat generated in the facility 5a of the first facility among the plurality of facilities 5a to 5f. The first facility may be the facility 5b and / or the facility 5c. The first facility may be the facility 5a to the facility 5c. The second heat storage body 40 can store, for example, exhaust heat generated in the facility 5d of the second facility among the plurality of facilities 5a to 5f. The second facility may be the facility 5e and / or the facility 5f. The second facility may be the facility 5d to the facility 5f. For example, the facility a may have both the first facility and the second facility. The facility a may provide both the first heat storage body 30 and the second heat storage body 40. As shown in FIG. 3, facilities that generate exhaust heat exist at a plurality of locations. However, for example, there is one binary power generation system 1. The 1st heat storage body 30 and the 2nd heat storage body 40 can be accommodated in the accommodation unit 10 of the one binary power generation system 1 from several facilities. The first heat storage body 30 and the second heat storage body 40 are moved from the facilities 5a to 5f to the binary power generation system 1 by a vehicle such as an electric vehicle or an automatic driving truck. The number of facilities that generate exhaust heat shown in FIG. 3 is six. However, the number of facilities may be 2 or more and 5 or less. Further, the number of facilities may be seven or more.
 バイナリー発電システム1の第1蓄熱体30および第2蓄熱体40は、排熱を発生させる複数の施設からの排熱を蓄熱することができる。第1蓄熱体30および第2蓄熱体40は、蓄熱後に電気を必要とする場所、例えばバイナリー発電装置が設置された場所に移動させることができる。さらに、第1蓄熱体30および第2蓄熱体40は、移動後にバイナリー発電のための熱媒体を生成することができる。その結果、施設からの排熱が有効に活用される。また、バイナリー発電システム1は、排熱の発生場所と関係なく、電気を必要とする場所での発電が可能となる。さらに、第1蓄熱体30および第2蓄熱体40は、発電のための熱源が不足している発電装置に対して選択的に提供することもできる。第1蓄熱体30および第2蓄熱体40は、熱源が過剰の発電装置から、熱源が不足している発電装置へ移動させることもできる。第2蓄熱体40は、第1蓄熱体30が生成する第1熱媒体より高い温度の第2熱媒体を生成できる。従って、バイナリー発電システム1は、複数の施設からの異なる温度領域の排熱を利用できるバイナリー発電システムが提供される。 The first heat storage body 30 and the second heat storage body 40 of the binary power generation system 1 can store exhaust heat from a plurality of facilities that generate exhaust heat. The 1st heat storage body 30 and the 2nd heat storage body 40 can be moved to the place where electricity is required after heat storage, for example, the place where the binary power generator was installed. Further, the first heat storage body 30 and the second heat storage body 40 can generate a heat medium for binary power generation after movement. As a result, exhaust heat from the facility is effectively utilized. Further, the binary power generation system 1 can generate power at a place where electricity is required regardless of the place where the exhaust heat is generated. Furthermore, the 1st heat storage body 30 and the 2nd heat storage body 40 can also be selectively provided with respect to the electric power generating apparatus with which the heat source for electric power generation is insufficient. The 1st heat storage body 30 and the 2nd heat storage body 40 can also be moved from the power generator with an excess heat source to the power generator with a short heat source. The second heat storage body 40 can generate a second heat medium having a higher temperature than the first heat medium generated by the first heat storage body 30. Therefore, the binary power generation system 1 is provided with a binary power generation system that can use exhaust heat in different temperature ranges from a plurality of facilities.
 複数の施設からの排熱といった熱源は、変動熱源である場合もあり得る。変動熱源は、一定範囲の温度を有しない。また、変動熱源は、一定の熱量をも有しない。また、変動熱源は、熱エネルギーを連続的に提供しない。変動熱源からの熱エネルギーは、第1蓄熱体30および第2蓄熱体40によって回収される。そして、第1蓄熱体30および第2蓄熱体40は、一定の温度範囲および熱量を有する熱源としてバイナリー発電に用いることができる。 熱 Heat sources such as waste heat from multiple facilities may be variable heat sources. A fluctuating heat source does not have a range of temperatures. Moreover, the variable heat source does not have a constant amount of heat. Also, the variable heat source does not provide thermal energy continuously. Thermal energy from the variable heat source is recovered by the first heat storage body 30 and the second heat storage body 40. And the 1st heat storage body 30 and the 2nd heat storage body 40 can be used for binary electric power generation as a heat source which has a fixed temperature range and calorie | heat amount.
 本開示は、バイナリー発電方法を説明する。バイナリー発電方法は、作動媒体蒸気を用いてバイナリー発電装置20の膨張発電機(発電機)70で発電を行う。バイナリー発電方法は、排熱を発生させる複数の施設のうち第1施設で発生した排熱を蓄熱する一つまたは複数の第1蓄熱体30によって第1熱媒体を生成する工程を備える。バイナリー発電方法は、複数の施設のうち第2施設で発生した排熱を蓄熱する一つまたは複数の第2蓄熱体40によって第1熱媒体より高い温度の第2熱媒体を生成する工程をさらに備える。また、バイナリー発電方法は、第1熱媒体を予熱器60に供給し、予熱器60において第1熱媒体により作動媒体を予熱する工程を備える。バイナリー発電方法は、第2熱媒体を蒸発器65に供給し、蒸発器65において第2熱媒体により作動媒体を蒸発させて作動媒体蒸気を生成する工程も含む。バイナリー発電方法は、蒸発器65で生成した作動媒体蒸気を膨張発電機70に供給し、作動媒体蒸気が供給された膨張発電機70によって発電を行う。 This disclosure describes a binary power generation method. In the binary power generation method, power is generated by the expansion generator (generator) 70 of the binary power generation apparatus 20 using working medium vapor. The binary power generation method includes a step of generating a first heat medium by one or a plurality of first heat storage bodies 30 that store exhaust heat generated in a first facility among a plurality of facilities that generate exhaust heat. The binary power generation method further includes a step of generating a second heat medium having a temperature higher than that of the first heat medium by one or a plurality of second heat storage bodies 40 that store exhaust heat generated in the second facility among the plurality of facilities. Prepare. The binary power generation method includes a step of supplying the first heat medium to the preheater 60 and preheating the working medium with the first heat medium in the preheater 60. The binary power generation method also includes a step of supplying the second heat medium to the evaporator 65 and evaporating the working medium with the second heat medium in the evaporator 65 to generate working medium vapor. In the binary power generation method, the working medium vapor generated by the evaporator 65 is supplied to the expansion generator 70, and power is generated by the expansion generator 70 to which the working medium vapor is supplied.
 バイナリー発電方法は、第1蓄熱体30を用いて複数の施設で発生した排熱を利用して第1熱媒体を生成する。バイナリー発電方法は、第2蓄熱体40を用いて複数の施設のうち第1施設で発生した排熱を利用して第2熱媒体を生成する。バイナリー発電方法は、複数の施設で発生した排熱を利用できる。第2熱媒体は、第1熱媒体より高い温度を有する。従って、バイナリー発電方法は、異なる温度領域の排熱を利用できる。 In the binary power generation method, the first heat storage body 30 is used to generate the first heat medium using exhaust heat generated in a plurality of facilities. In the binary power generation method, the second heat storage body 40 is used to generate the second heat medium using exhaust heat generated at the first facility among the plurality of facilities. The binary power generation method can use exhaust heat generated in a plurality of facilities. The second heat medium has a higher temperature than the first heat medium. Therefore, the binary power generation method can use exhaust heat in different temperature ranges.
 本開示では、第1蓄熱体30は、例えば、40℃以上120℃以下の温度の第1熱媒体を供給する。第1蓄熱体30は、例えば、冷却水および燃料電池からの排熱を蓄熱する。冷却水は、排熱を発生させる施設5a~5fの内部で発生する。第1蓄熱体30は、例えば冷却水を使って徐熱した後の温水を熱源とする。第1蓄熱体30は、例えば発電エンジンのジャケット水を熱源としてもよい。第1蓄熱体30は、焼却場の冷却水を熱源としてもよい。第1蓄熱体30は、地熱または温泉の熱を熱源としてもよい。 In the present disclosure, the first heat storage body 30 supplies, for example, a first heat medium having a temperature of 40 ° C. or higher and 120 ° C. or lower. The first heat storage body 30 stores, for example, cooling water and exhaust heat from the fuel cell. The cooling water is generated inside the facilities 5a to 5f that generate exhaust heat. The first heat storage body 30 uses, for example, hot water after being gradually heated using cooling water as a heat source. The first heat storage body 30 may use jacket water of a power generation engine as a heat source, for example. The 1st thermal storage body 30 is good also considering the cooling water of an incinerator as a heat source. The 1st thermal storage body 30 is good also considering geothermal heat or the heat of a hot spring as a heat source.
 第1蓄熱体30は、潜熱蓄熱材および吸着材の少なくとも一つを含むことができる。潜熱蓄熱材は、酢酸ソーダおよびエリスリトールといった材料の固液相変化の際に生じる蓄熱または放熱を利用する。蓄熱材は、排熱を発生させる施設5a~5fからの排熱を蓄熱して固相から液相に変化する。一方、蓄熱材は、蓄熱した熱を放熱して液相から固相に変化する。酢酸ナトリウム三水和物または酢酸ソーダを用いた潜熱蓄熱材は、液相から固相に変化して放熱するときに、例えば40℃以上120℃以下の温風または熱風である第1熱媒体を生成する。 The first heat storage body 30 can include at least one of a latent heat storage material and an adsorbent. The latent heat storage material utilizes heat storage or heat dissipation that occurs during the solid-liquid phase change of materials such as sodium acetate and erythritol. The heat storage material stores waste heat from the facilities 5a to 5f that generate waste heat and changes from a solid phase to a liquid phase. On the other hand, the heat storage material dissipates the stored heat and changes from the liquid phase to the solid phase. When the latent heat storage material using sodium acetate trihydrate or sodium acetate changes from the liquid phase to the solid phase and dissipates heat, the first heat medium that is hot air or hot air of, for example, 40 ° C. or higher and 120 ° C. or lower is used. Generate.
 吸着材は、ハスクレイ(登録商標)またはゼオライトといった材料の水分の脱着または吸着の際に生じる蓄熱または放熱を利用する。蓄熱材は、排熱を発生させる施設5a~5fからの排熱を蓄熱しながら乾燥体に変化する。一方、蓄熱材は、空気と水分との供給を受けて放熱しながら湿潤体に変化する。ハスクレイ(登録商標)を用いた吸着材は、湿潤体に変化して放熱するときに、例えば80℃以上120℃以下の温風または熱風からなる第1熱媒体を生成する。 The adsorbent uses heat storage or heat dissipation generated during the desorption or adsorption of moisture from materials such as Hasclay (registered trademark) or zeolite. The heat storage material changes into a dry body while storing the exhaust heat from the facilities 5a to 5f that generate the exhaust heat. On the other hand, the heat storage material changes into a wet body while receiving heat and moisture and radiating heat. When the adsorbent using Hascray (registered trademark) changes to a wet body and dissipates heat, it generates a first heat medium made of hot air or hot air of, for example, 80 ° C. or higher and 120 ° C. or lower.
 第2蓄熱体40は、例えば、120℃以上400℃以下の温度の第2熱媒体を供給することができる。第2蓄熱体40は、例えば、製鉄所の内部、具体的には、高炉、電気炉、コークス炉または焼結炉の排熱を蓄熱する。第2蓄熱体40は、焼却場の焼却炉の排出ガス、セメント工場の排熱、またはバイオマスボイラの余剰蒸気を熱源としてもよい。 The second heat storage body 40 can supply, for example, a second heat medium having a temperature of 120 ° C. or higher and 400 ° C. or lower. The second heat storage body 40 stores, for example, the exhaust heat of an iron mill, specifically, a blast furnace, an electric furnace, a coke furnace, or a sintering furnace. The 2nd thermal storage body 40 is good also considering the exhaust gas of the incinerator of an incinerator, the exhaust heat of a cement factory, or the surplus steam of a biomass boiler as a heat source.
 第2蓄熱体40は、化学蓄熱材、潜熱蓄熱材および吸着材の少なくとも一つを含むことができる。化学蓄熱材は、水酸化マグネシウムといった材料の脱水または水和反応の際に生じる蓄熱または放熱を利用する。蓄熱材は、排熱を発生させる施設5a~5fからの排熱を蓄熱して脱水反応を生じる。一方、蓄熱材は、蓄熱した熱を放熱して水和反応を生じる。水酸化マグネシウムを用いた化学蓄熱材は、脱水反応を起こすときに、例えば200℃以上400℃以下の温風または熱風である第2熱媒体を生成する。 The second heat storage body 40 can include at least one of a chemical heat storage material, a latent heat storage material, and an adsorbent. The chemical heat storage material uses heat storage or heat dissipation generated during dehydration or hydration reaction of a material such as magnesium hydroxide. The heat storage material stores the exhaust heat from the facilities 5a to 5f that generate the exhaust heat to cause a dehydration reaction. On the other hand, the heat storage material dissipates the stored heat to cause a hydration reaction. A chemical heat storage material using magnesium hydroxide generates a second heat medium that is hot air or hot air of, for example, 200 ° C. or more and 400 ° C. or less when a dehydration reaction occurs.
 第2蓄熱体40のための潜熱蓄熱材は、エリスリトールといった材料の固液相変化の際に生じる蓄熱または放熱を利用する。エリスリトールを用いた潜熱蓄熱材は、液相から固相に変化して放熱するときに、例えば120℃の温風または熱風である第1熱媒体を生成する。 The latent heat storage material for the second heat storage body 40 uses heat storage or heat dissipation that occurs during the solid-liquid phase change of a material such as erythritol. When the latent heat storage material using erythritol changes from the liquid phase to the solid phase and dissipates heat, the first heat medium, for example, 120 ° C. hot air or hot air is generated.
 第2蓄熱体40のための吸着材は、ゼオライトといった材料の水分の脱着または吸着の際に生じる蓄熱または放熱を利用する。ゼオライトを用いた吸着材は、湿潤体に変化して放熱するときに、例えば120℃以上200℃以下の温風または熱風である第2熱媒体を生成する。 The adsorbent for the second heat accumulator 40 utilizes heat storage or heat dissipation that occurs during the desorption or adsorption of moisture from a material such as zeolite. When the adsorbent using zeolite changes into a wet body and dissipates heat, it generates a second heat medium that is hot air or hot air of, for example, 120 ° C. or more and 200 ° C. or less.
 バイナリー発電システム1の第1蓄熱体30は、潜熱蓄熱材および吸着材の少なくとも一つを含む。その結果、第1蓄熱体30は、第2熱媒体より低い温度の第1熱媒体を効率よく生成できる。第2蓄熱体40は、化学蓄熱材、潜熱蓄熱材および吸着材の少なくとも一つを含む。その結果、第2蓄熱体40は、第1熱媒体より高い温度の第2熱媒体を効率よく生成できる。化学蓄熱材、潜熱蓄熱材および吸着材によって生成された温風または熱風は、浄化装置等を通すことなく、予熱器60および蒸発器65に供給されることができる。本開示のバイナリー発電システム1は、予熱器60および蒸発器65のスケール対策等は不要である。 The first heat storage body 30 of the binary power generation system 1 includes at least one of a latent heat storage material and an adsorbent. As a result, the first heat storage body 30 can efficiently generate the first heat medium having a temperature lower than that of the second heat medium. The second heat storage body 40 includes at least one of a chemical heat storage material, a latent heat storage material, and an adsorbent. As a result, the second heat storage body 40 can efficiently generate the second heat medium having a temperature higher than that of the first heat medium. The warm air or hot air generated by the chemical heat storage material, the latent heat storage material, and the adsorbent can be supplied to the preheater 60 and the evaporator 65 without passing through a purification device or the like. The binary power generation system 1 of the present disclosure does not require scale measures for the preheater 60 and the evaporator 65.
 (第2実施形態)
 図4は、本開示の別の形態に係るバイナリー発電システムの概略構成を示す図である。図4は、バイナリー発電を行う前の構成を示している。図5は、本開示の別の形態に係るバイナリー発電システムの概略構成を示す図である。図5は、バイナリー発電を行うときの構成を示している。
(Second Embodiment)
FIG. 4 is a diagram illustrating a schematic configuration of a binary power generation system according to another embodiment of the present disclosure. FIG. 4 shows a configuration before performing binary power generation. FIG. 5 is a diagram illustrating a schematic configuration of a binary power generation system according to another embodiment of the present disclosure. FIG. 5 shows a configuration when performing binary power generation.
 第2実施形態のバイナリー発電システム1pは、蓄熱用媒体ラインL5の設置と、第1蓄熱体30および第2蓄熱体40の構成の変更とを除いて、第1実施形態のバイナリー発電システム1と同様の構成を有する。収容ユニット10が収容する第1蓄熱体30および第2蓄熱体40の数は、特に上限はない。図4および図5は、収容ユニット10を示す。収容ユニット10は、二つの第1蓄熱体30と、二つの第2蓄熱体40と、を収容する。 The binary power generation system 1p of the second embodiment is the same as the binary power generation system 1 of the first embodiment except for the installation of the heat storage medium line L5 and the change in the configuration of the first heat storage body 30 and the second heat storage body 40. It has the same configuration. There is no particular upper limit on the number of first heat storage bodies 30 and second heat storage bodies 40 that the storage unit 10 stores. 4 and 5 show the storage unit 10. The housing unit 10 houses two first heat storage bodies 30 and two second heat storage bodies 40.
 バイナリー発電システム1pは、冷却塔80と、蓄熱用媒体ラインL5と、を備える。蓄熱用媒体ラインL5は、第1蓄熱体30および第2蓄熱体40の間に設けられる。冷却塔80は、凝縮器75の内部で作動媒体を冷却する冷却媒体が水であるときに、水分を発生させる。従って、バイナリー発電システム1pは、冷却塔80の内部で生成した水分を蓄熱用媒体ラインL5を通じて第1蓄熱体30および第2蓄熱体40に供給することができる。第1蓄熱体30および第2蓄熱体40が吸着材を含むとき、供給された水分は、蓄熱材を発熱させるための材料となる。蓄熱用媒体ラインL5は、一方の端部に設けられた第1水供給ポート81と、他方の端部に設けられた第2水供給ポート82と、を有する。第1水供給ポート81は、第1蓄熱体30に水分を供給する。第2水供給ポート82は、第2蓄熱体40に水分を供給する。 The binary power generation system 1p includes a cooling tower 80 and a heat storage medium line L5. The heat storage medium line L <b> 5 is provided between the first heat storage body 30 and the second heat storage body 40. The cooling tower 80 generates moisture when the cooling medium that cools the working medium inside the condenser 75 is water. Therefore, the binary power generation system 1p can supply the moisture generated inside the cooling tower 80 to the first heat storage body 30 and the second heat storage body 40 through the heat storage medium line L5. When the 1st heat storage body 30 and the 2nd heat storage body 40 contain an adsorbent, the supplied water | moisture content turns into a material for making a heat storage material generate | occur | produce a heat | fever. The heat storage medium line L5 includes a first water supply port 81 provided at one end and a second water supply port 82 provided at the other end. The first water supply port 81 supplies moisture to the first heat storage body 30. The second water supply port 82 supplies moisture to the second heat storage body 40.
 バイナリー発電システム1pの第1蓄熱体30は、第1供給ポート31と、第1受入ポート32と、を有する。第1供給ポート31は、第1熱媒体をバイナリー発電装置20に供給する。第1受入ポート32は、冷却塔80から蓄熱用媒体ラインL5を通じて供給された水分を受け入れる。第2蓄熱体40は、第2供給ポート41と、第2受入ポート42と、を有する。第2供給ポート41は、第2熱媒体をバイナリー発電装置20に供給する。第2受入ポート42は、冷却塔80から蓄熱用媒体ラインL5を通じて供給された水分を受け入れる。 The first heat storage body 30 of the binary power generation system 1p has a first supply port 31 and a first receiving port 32. The first supply port 31 supplies the first heat medium to the binary power generation device 20. The first receiving port 32 receives moisture supplied from the cooling tower 80 through the heat storage medium line L5. The second heat storage body 40 includes a second supply port 41 and a second receiving port 42. The second supply port 41 supplies the second heat medium to the binary power generation device 20. The second receiving port 42 receives moisture supplied from the cooling tower 80 through the heat storage medium line L5.
 図5に示されるように、第1熱媒体ラインL1は、一方の端部に設けられた第1入口ポート33と、他方の端部に設けられた第1出口ポート34pと、を有する。ハスクレイ(登録商標)といった吸着剤を含む第1蓄熱体30を用いてバイナリー発電を行うときには、例えば、第1蓄熱体30の一つが収容ユニット10から取り出される。取り出された第1蓄熱体30の第1供給ポート31は、第1入口ポート33に接続される。第1蓄熱体30は、閉ループを形成することができる。第1蓄熱体30の第1受入ポート32は、蓄熱用媒体ラインL5の第1水供給ポート81に接続される。第1供給ポート31と第1入口ポート33との接続は、例えば、フランジといった接続部材による。第1受入ポート32と第1水供給ポート81との接続も、例えば、フランジといった接続部材による。第1熱媒体は、第1供給ポート31と第1入口ポート33との接続部を通る。次に、第1熱媒体は、第1熱媒体ラインL1を通じて第1蓄熱体30から予熱器60に供給される。次に、第1熱媒体は、予熱器60内を循環する。その後、第1熱媒体は、第1出口ポート34pから大気に放出される。第1熱媒体は、必要に応じて、冷却配管との熱交換後に大気放出される。 As shown in FIG. 5, the first heat medium line L1 includes a first inlet port 33 provided at one end and a first outlet port 34p provided at the other end. When performing binary power generation using the first heat storage body 30 including an adsorbent such as Hascray (registered trademark), for example, one of the first heat storage bodies 30 is taken out from the storage unit 10. The first supply port 31 of the extracted first heat storage body 30 is connected to the first inlet port 33. The first heat storage body 30 can form a closed loop. The first receiving port 32 of the first heat storage body 30 is connected to the first water supply port 81 of the heat storage medium line L5. The connection between the first supply port 31 and the first inlet port 33 is, for example, by a connecting member such as a flange. The connection between the first receiving port 32 and the first water supply port 81 is also made by a connecting member such as a flange, for example. The first heat medium passes through the connection portion between the first supply port 31 and the first inlet port 33. Next, the first heat medium is supplied from the first heat storage body 30 to the preheater 60 through the first heat medium line L1. Next, the first heat medium circulates in the preheater 60. Thereafter, the first heat medium is discharged to the atmosphere from the first outlet port 34p. The first heat medium is released into the atmosphere after heat exchange with the cooling pipe as necessary.
 第2熱媒体ラインL2は、一方の端部に設けられた第2入口ポート43と、他方の端部に設けられた第2出口ポート44と、を有する。ゼオライトといった吸着剤を含む第2蓄熱体40を用いてバイナリー発電を行うときには、例えば、その第2蓄熱体40の一つが収容ユニット10から取り出される。取り出された第2蓄熱体40の第2供給ポート41は、第2入口ポート43に接続される。第2蓄熱体40は、閉ループを形成することができる。第2蓄熱体40の第2受入ポート42は、蓄熱用媒体ラインL5の第2水供給ポート82に接続されることができる。第2供給ポート41と第2入口ポート43との接続は、例えば、フランジといった接続部材による。第2受入ポート42と第2水供給ポート82との接続も、例えば、フランジといった接続部材による。第2熱媒体は、第2供給ポート41と第2入口ポート43との接続部を通る。次に、第2熱媒体は、第2熱媒体ラインL2を通じて第2蓄熱体40から蒸発器65に供給される。次に、第2熱媒体は、蒸発器65内を循環する。その後、第2熱媒体は、第2出口ポート44から大気に放出される。第2熱媒体は、必要に応じて、冷却配管との熱交換後に大気に放出される。 The second heat medium line L2 has a second inlet port 43 provided at one end and a second outlet port 44 provided at the other end. When performing binary power generation using the second heat storage body 40 including an adsorbent such as zeolite, for example, one of the second heat storage bodies 40 is taken out from the storage unit 10. The second supply port 41 of the extracted second heat storage body 40 is connected to the second inlet port 43. The second heat storage body 40 can form a closed loop. The second receiving port 42 of the second heat storage body 40 can be connected to the second water supply port 82 of the heat storage medium line L5. The connection between the second supply port 41 and the second inlet port 43 is, for example, by a connecting member such as a flange. The connection between the second receiving port 42 and the second water supply port 82 is also made by a connecting member such as a flange, for example. The second heat medium passes through the connection portion between the second supply port 41 and the second inlet port 43. Next, the second heat medium is supplied from the second heat storage body 40 to the evaporator 65 through the second heat medium line L2. Next, the second heat medium circulates in the evaporator 65. Thereafter, the second heat medium is discharged from the second outlet port 44 to the atmosphere. The second heat medium is released to the atmosphere after heat exchange with the cooling pipe as necessary.
 (第3実施形態)
 図6は、本開示のさらに別のバイナリー発電システムの概略構成を示す図である。バイナリー発電システム1qは、収容ユニット10の構成と、蓄熱用媒体ラインL5の構成と、第1熱媒体ラインL1および第2熱媒体ラインL2の構成とをそれぞれ変更している。バイナリー発電システム1qのそのほかの構成は、第2実施形態のバイナリー発電システム1pと同様である。収容ユニット10に収容される第1蓄熱体30および第2蓄熱体40の数は、特に上限はない。図6は、収容ユニット10を示す。収容ユニット10は、二つの第1蓄熱体30と、二つの第2蓄熱体40と、を収容する。
(Third embodiment)
FIG. 6 is a diagram illustrating a schematic configuration of still another binary power generation system of the present disclosure. The binary power generation system 1q changes the configuration of the housing unit 10, the configuration of the heat storage medium line L5, and the configurations of the first heat medium line L1 and the second heat medium line L2. Other configurations of the binary power generation system 1q are the same as those of the binary power generation system 1p of the second embodiment. There is no particular upper limit on the number of the first heat storage bodies 30 and the second heat storage bodies 40 accommodated in the accommodation unit 10. FIG. 6 shows the storage unit 10. The housing unit 10 houses two first heat storage bodies 30 and two second heat storage bodies 40.
 図6に示されるように、第1蓄熱体30の第1供給ポート31は、第1熱媒体ラインL1に接続される。このとき、第1蓄熱体30は、収容ユニット10に収容されている。第2蓄熱体40の第2供給ポート41は、第2熱媒体ラインL2に接続される。このとき、第2蓄熱体40は、収容ユニット10に収容されている。 As shown in FIG. 6, the first supply port 31 of the first heat storage body 30 is connected to the first heat medium line L1. At this time, the first heat storage body 30 is accommodated in the accommodation unit 10. The second supply port 41 of the second heat storage body 40 is connected to the second heat medium line L2. At this time, the second heat storage body 40 is accommodated in the accommodation unit 10.
 第1熱媒体ラインL1は、一方の端部に設けられた第1出口ポート34qと、他方の端部に設けられた一又は複数の第1分岐ラインL1aと、を有する。それぞれの第1分岐ラインL1aは、第1入口ポート33を有する。第1入口ポート33は、第1蓄熱体30の第1供給ポート31に接続される。第2熱媒体ラインL2は、一方の端部に設けられた第2出口ポート44と、他方の端部に設けられた一又は複数の第2分岐ラインL2aと、を有する。それぞれの第2分岐ラインL2aは、第2入口ポート43を有する。第2入口ポート43は、第2蓄熱体40の第2供給ポート41に接続される。 The first heat medium line L1 has a first outlet port 34q provided at one end and one or a plurality of first branch lines L1a provided at the other end. Each first branch line L1a has a first inlet port 33. The first inlet port 33 is connected to the first supply port 31 of the first heat storage body 30. The second heat medium line L2 includes a second outlet port 44 provided at one end and one or a plurality of second branch lines L2a provided at the other end. Each second branch line L <b> 2 a has a second inlet port 43. The second inlet port 43 is connected to the second supply port 41 of the second heat storage body 40.
 バイナリー発電システム1qは、冷却塔80と、蓄熱用媒体ラインL5と、を備える。蓄熱用媒体ラインL5は、第1蓄熱体30および第2蓄熱体40の間に設けられる。冷却塔80は、凝縮器75内で作動媒体を冷却する冷却媒体が水であるときに、水分を発生させる。バイナリー発電システム1pは、冷却塔80の内部で生成した水分を蓄熱用媒体ラインL5を通じて第1蓄熱体30および第2蓄熱体40に供給することができる。第1蓄熱体30および第2蓄熱体40が吸着材を含むときに、供給された水分は、蓄熱材を発熱させるための材料となる。蓄熱用媒体ラインL5は、一方の端部に設けられた第1水供給ポート81と、他方の端部に設けられた第2水供給ポート82と、を有する。第1水供給ポート81は、第1蓄熱体30に水分を供給する。第2水供給ポート82は、第2蓄熱体40に水分を供給する。 The binary power generation system 1q includes a cooling tower 80 and a heat storage medium line L5. The heat storage medium line L <b> 5 is provided between the first heat storage body 30 and the second heat storage body 40. The cooling tower 80 generates water when the cooling medium that cools the working medium in the condenser 75 is water. The binary power generation system 1p can supply moisture generated in the cooling tower 80 to the first heat storage body 30 and the second heat storage body 40 through the heat storage medium line L5. When the 1st heat storage body 30 and the 2nd heat storage body 40 contain an adsorbent, the supplied water | moisture content turns into a material for making a heat storage material generate | occur | produce a heat | fever. The heat storage medium line L5 includes a first water supply port 81 provided at one end and a second water supply port 82 provided at the other end. The first water supply port 81 supplies moisture to the first heat storage body 30. The second water supply port 82 supplies moisture to the second heat storage body 40.
 バイナリー発電システム1qの第1蓄熱体30は、第1供給ポート31と、第1受入ポート32と、を有する。第1供給ポート31は、第1熱媒体をバイナリー発電装置20に供給する。第1受入ポート32は、冷却塔80から蓄熱用媒体ラインL5を通じて供給された水分を受け入れる。第2蓄熱体40は、第2供給ポート41と、第2受入ポート42と、を有する。第2供給ポート41は、第2熱媒体をバイナリー発電装置20に供給する。第2受入ポート42は、冷却塔80から蓄熱用媒体ラインL5を通じて供給された水分を受け入れる。 The first heat storage body 30 of the binary power generation system 1q includes a first supply port 31 and a first receiving port 32. The first supply port 31 supplies the first heat medium to the binary power generation device 20. The first receiving port 32 receives moisture supplied from the cooling tower 80 through the heat storage medium line L5. The second heat storage body 40 includes a second supply port 41 and a second receiving port 42. The second supply port 41 supplies the second heat medium to the binary power generation device 20. The second receiving port 42 receives moisture supplied from the cooling tower 80 through the heat storage medium line L5.
 バイナリー発電を行う前に、第1蓄熱体30の第1供給ポート31は、第1入口ポート33に接続される。第1蓄熱体30の第1受入ポート32は、蓄熱用媒体ラインL5の第1水供給ポート81に接続される。第1供給ポート31と第1入口ポート33との接続は、例えば、フランジといった接続部材による。第1受入ポート32と第1水供給ポート81との接続も、例えば、フランジといった接続部材による。第1熱媒体は、第1供給ポート31と第1入口ポート33との接続部を通る。次に、第1熱媒体は、第1熱媒体ラインL1を通じて第1蓄熱体30から予熱器60に供給される。次に、第1熱媒体は、予熱器60内を循環する。その後、第1熱媒体は、第1出口ポート34qから予熱器60の外部に排気される。第1熱媒体は、必要に応じて、冷却配管との熱交換後に排気される。 Before performing the binary power generation, the first supply port 31 of the first heat storage body 30 is connected to the first inlet port 33. The first receiving port 32 of the first heat storage body 30 is connected to the first water supply port 81 of the heat storage medium line L5. The connection between the first supply port 31 and the first inlet port 33 is, for example, by a connecting member such as a flange. The connection between the first receiving port 32 and the first water supply port 81 is also made by a connecting member such as a flange, for example. The first heat medium passes through the connection portion between the first supply port 31 and the first inlet port 33. Next, the first heat medium is supplied from the first heat storage body 30 to the preheater 60 through the first heat medium line L1. Next, the first heat medium circulates in the preheater 60. Thereafter, the first heat medium is exhausted to the outside of the preheater 60 through the first outlet port 34q. The first heat medium is exhausted after heat exchange with the cooling pipe as necessary.
 バイナリー発電を行う前に、第2蓄熱体40の第2供給ポート41は、第2入口ポート43に接続される。第2蓄熱体40の第2受入ポート42は、蓄熱用媒体ラインL5の第2水供給ポート82に接続される。第2供給ポート41と第2入口ポート43との接続は、例えば、フランジといった接続部材による。第2受入ポート42と第2水供給ポート82との接続も、例えば、フランジといった接続部材による。第2熱媒体は、第2供給ポート41と第2入口ポート43との接続部を通る。次に、第2熱媒体は、第2熱媒体ラインL2を通じて第2蓄熱体40から蒸発器65に供給される。次に、第2熱媒体は、蒸発器65の内部を循環する。その後、第2熱媒体は、第2出口ポート44から蒸発器65の外部に排気される。第2熱媒体は、必要に応じて、冷却配管との熱交換後に排気される。 Before performing binary power generation, the second supply port 41 of the second heat storage body 40 is connected to the second inlet port 43. The second receiving port 42 of the second heat storage body 40 is connected to the second water supply port 82 of the heat storage medium line L5. The connection between the second supply port 41 and the second inlet port 43 is, for example, by a connecting member such as a flange. The connection between the second receiving port 42 and the second water supply port 82 is also made by a connecting member such as a flange, for example. The second heat medium passes through the connection portion between the second supply port 41 and the second inlet port 43. Next, the second heat medium is supplied from the second heat storage body 40 to the evaporator 65 through the second heat medium line L2. Next, the second heat medium circulates inside the evaporator 65. Thereafter, the second heat medium is exhausted from the second outlet port 44 to the outside of the evaporator 65. The second heat medium is exhausted after heat exchange with the cooling pipe as necessary.
 バイナリー発電システム1qは、第1切替器91を有することができる。第1切替器91の数は、収容ユニット10に収容可能な第1蓄熱体30の数に対応させることができる。第1切替器91は、第1熱媒体ラインL1に設けられる。第1切替器91が設けられる位置は、例えば、第1供給ポート31と第1入口ポート33とが接続される位置の付近である。バイナリー発電システム1qは、第2切替器92を有することができる。第2切替器92の数は、収容ユニット10に収容可能な第2蓄熱体40の数に対応させることができる。第2切替器92は、第2熱媒体ラインL2に設けられる。第2切替器92が設けられる位置は、例えば、第2供給ポート41と第2入口ポート43とが接続される位置の付近である。第1切替器91および第2切替器92は、例えばバルブといったラインの開閉部材を含む。 The binary power generation system 1q can include a first switch 91. The number of the first switchers 91 can correspond to the number of first heat storage bodies 30 that can be accommodated in the accommodation unit 10. The first switch 91 is provided in the first heat medium line L1. The position where the first switch 91 is provided is, for example, near the position where the first supply port 31 and the first inlet port 33 are connected. The binary power generation system 1q can include a second switch 92. The number of second switchers 92 can correspond to the number of second heat storage bodies 40 that can be accommodated in the accommodation unit 10. The second switch 92 is provided in the second heat medium line L2. The position where the second switch 92 is provided is, for example, near the position where the second supply port 41 and the second inlet port 43 are connected. The first switch 91 and the second switch 92 include line opening / closing members such as valves.
 バイナリー発電システム1qの第1切替器91は、第1熱媒体ラインL1に第1熱媒体を供給する第1蓄熱体30を容易に変更することができる。第1切替器91は、第1熱媒体を複数の第1蓄熱体30から同時に第1熱媒体ラインL1へ供給させるように変更できる。第2切替器92は、第2熱媒体ラインL2に第2熱媒体を供給する第2蓄熱体40を容易に変更することができる。第2切替器92は、第2熱媒体を複数の第2蓄熱体40から同時に第2熱媒体ラインL2へ供給させるように変更できる。第1切替器91および第2切替器92の操作は、例えば予熱器60および蒸発器65に供給される第1熱媒体および第2熱媒体の温度のモニター結果に基づいて行われる。 The first switch 91 of the binary power generation system 1q can easily change the first heat storage body 30 that supplies the first heat medium to the first heat medium line L1. The first switch 91 can be changed to supply the first heat medium from the plurality of first heat storage bodies 30 to the first heat medium line L1 simultaneously. The second switch 92 can easily change the second heat storage body 40 that supplies the second heat medium to the second heat medium line L2. The 2nd switch 92 can be changed so that the 2nd heat carrier may be simultaneously supplied to the 2nd heat carrier line L2 from a plurality of 2nd heat storage elements 40. Operation of the 1st switch 91 and the 2nd switch 92 is performed based on the monitoring result of the temperature of the 1st heat medium and the 2nd heat medium which are supplied to the preheater 60 and the evaporator 65, for example.
 第1切替器91および第2切替器92は、例えば、蓄熱用媒体ラインL5を設けないバイナリー発電システムに設置することも可能である。第1切替器91は、第1熱媒体ラインL1に第1熱媒体を供給する第1蓄熱体30を容易に変更することができる。第2切替器92は、第2熱媒体ラインL2に第2熱媒体を供給する第2蓄熱体40を容易に変更することができる。 The first switch 91 and the second switch 92 can be installed in, for example, a binary power generation system that does not include the heat storage medium line L5. The first switch 91 can easily change the first heat storage body 30 that supplies the first heat medium to the first heat medium line L1. The second switch 92 can easily change the second heat storage body 40 that supplies the second heat medium to the second heat medium line L2.
 バイナリー発電システム1qの第1切替器91は、予熱器60に供給するための第1熱媒体を生成する第1蓄熱体を容易に変更することができる。また、第1切替器91は、第1熱媒体を複数の第1蓄熱体から同時に生成するように変更できる。第2切替器92は、蒸発器65に供給するための第2熱媒体を生成する第2熱媒体を容易に変更することができる。第2切替器92は、第2熱媒体を複数の第2蓄熱体から同時に生成するように変更できる。 The first switch 91 of the binary power generation system 1q can easily change the first heat storage body that generates the first heat medium to be supplied to the preheater 60. Moreover, the 1st switch 91 can be changed so that a 1st heat medium may be produced | generated simultaneously from several 1st thermal storage body. The second switch 92 can easily change the second heat medium that generates the second heat medium to be supplied to the evaporator 65. The 2nd switch 92 can be changed so that the 2nd heat carrier may be generated simultaneously from a plurality of 2nd heat storages.
 蓄熱用媒体ラインL5は、第3切替器93を有することができる。第3切替器93は、蓄熱用媒体を供給する第1蓄熱体30を切り替える。第3切替器93の数は、収容ユニット10に収容可能な第1蓄熱体30の数に対応させることができる。第3切替器93は、例えば、第1受入ポート32と第1水供給ポート81とが接続される位置の付近に設けられる。蓄熱用媒体ラインL5は、第4切替器94を有することができる。第4切替器94は、蓄熱用媒体を供給する第2蓄熱体40を切り替える。第4切替器94の数は、収容ユニット10に収容可能な第2蓄熱体40の数に対応させることができる。第4切替器94は、例えば、第2受入ポート42と第2水供給ポート82とが接続される位置の付近に設けられる。 The heat storage medium line L <b> 5 can have a third switch 93. The third switch 93 switches the first heat storage body 30 that supplies the heat storage medium. The number of the third switchers 93 can correspond to the number of the first heat storage bodies 30 that can be accommodated in the accommodation unit 10. The third switch 93 is provided, for example, in the vicinity of a position where the first receiving port 32 and the first water supply port 81 are connected. The heat storage medium line L5 may include a fourth switch 94. The fourth switch 94 switches the second heat storage body 40 that supplies the heat storage medium. The number of the fourth switches 94 can correspond to the number of second heat storage bodies 40 that can be accommodated in the accommodation unit 10. For example, the fourth switch 94 is provided in the vicinity of a position where the second receiving port 42 and the second water supply port 82 are connected.
 第3切替器93は、水分を供給する第1蓄熱体30および第2蓄熱体40を容易に変更することができる。第4切替器94も、水分を供給する第1蓄熱体30および第2蓄熱体40を容易に変更することができる。第3切替器93および第4切替器94は、それぞれ、水分を複数の第1蓄熱体30および第2蓄熱体40に同時に供給するように変更できる。第3切替器93および第4切替器94の操作は、それぞれ、例えば第1蓄熱体30および第2蓄熱体40に供給される水分量の測定結果に基づいて行われる。 The third switch 93 can easily change the first heat storage body 30 and the second heat storage body 40 that supply moisture. The 4th switch 94 can also change the 1st heat storage body 30 and the 2nd heat storage body 40 which supply a water | moisture content easily. The 3rd switch 93 and the 4th switch 94 can be changed so that a water | moisture content may be simultaneously supplied to the some 1st heat storage body 30 and the 2nd heat storage body 40, respectively. Operation of the 3rd switch 93 and the 4th switch 94 is performed based on the measurement result of the moisture content supplied, for example to the 1st heat storage body 30 and the 2nd heat storage body 40, respectively.
 本開示の別側面に係るバイナリー発電方法は、複数の第1蓄熱体30のなかで第1熱媒体を生成する第1蓄熱体30を切り替える工程、および/または、複数の第2蓄熱体40のなかで第2熱媒体を生成する第2蓄熱体40を切り替える工程を備える。このバイナリー発電方法では、第1蓄熱体30を切り替える工程によって、予熱器60に供給するための第1熱媒体を生成する第1蓄熱体30を容易に変更することができる。また、第2蓄熱体40を切り替える工程によって、蒸発器65に供給するための第2熱媒体を生成する第2蓄熱体40を容易に変更することができる。 The binary power generation method according to another aspect of the present disclosure includes a step of switching the first heat storage body 30 that generates the first heat medium among the plurality of first heat storage bodies 30 and / or the plurality of second heat storage bodies 40. Among these, a step of switching the second heat storage body 40 that generates the second heat medium is provided. In this binary power generation method, the first heat storage body 30 that generates the first heat medium to be supplied to the preheater 60 can be easily changed by the step of switching the first heat storage body 30. Moreover, the 2nd heat storage body 40 which produces | generates the 2nd heat medium for supplying to the evaporator 65 can be easily changed by the process of switching the 2nd heat storage body 40. FIG.
 さらに、本開示のバイナリー発電システムの適用例として、3つの例を挙げる。 Furthermore, three examples are given as application examples of the binary power generation system of the present disclosure.
(第1の適用例)
 図7は、バイナリー発電システム1の第1の適用例を示す。敷地200Aには、複数の設備6a、6b、6cと、工場7a、7b、7cと、エネルギーセンター100Aと、が設けられている。設備6a、6b、6cは、例えば、ごみ焼却設備といった排熱を発生させる設備である。工場7a、7b、7cは、例えば、製鋼所および化学工場といった工場である。設備6a、6b、6cおよび工場7a、7b、7cは、第1蓄熱体30および第2蓄熱体40の少なくとも一つを提供することができる。
(First application example)
FIG. 7 shows a first application example of the binary power generation system 1. A plurality of facilities 6a, 6b, 6c, factories 7a, 7b, 7c, and an energy center 100A are provided on the site 200A. The facilities 6a, 6b, and 6c are facilities that generate exhaust heat, such as a waste incineration facility. The factories 7a, 7b, and 7c are factories such as a steel mill and a chemical factory, for example. The facilities 6a, 6b, 6c and the factories 7a, 7b, 7c can provide at least one of the first heat storage body 30 and the second heat storage body 40.
 エネルギーセンター100Aは、設備6a、6b、6cおよび工場7a、7b、7cの排熱を利用して発電する。エネルギーセンター100は、バイナリー発電システム1を構成するバイナリー発電装置20を備える。なお、エネルギーセンター100Aは、バイナリー発電装置20p、20qを備えてもよい。 The energy center 100A generates power using the exhaust heat of the facilities 6a, 6b, 6c and factories 7a, 7b, 7c. The energy center 100 includes a binary power generation device 20 that constitutes the binary power generation system 1. The energy center 100A may include binary power generation devices 20p and 20q.
 設備6a、6b、6cおよび工場7a、7b、7cの排熱は、第1蓄熱体30および/または第2蓄熱体40に蓄えられる。そして、第1蓄熱体30および第2蓄熱体40は、設備6a、6b、6cおよび工場7a、7b、7cからエネルギーセンター100Aへ搬送させる。この搬送には、例えば、自動運転トラックといった自動運転車両および無人車両(AGV)を利用した無人の自動搬送を適用してよい。以下、第1蓄熱体30および第2蓄熱体40の搬送に用いる車両を、単に「車両300」と呼ぶ。 Waste heat from the facilities 6a, 6b, 6c and the factories 7a, 7b, 7c is stored in the first heat storage body 30 and / or the second heat storage body 40. Then, the first heat storage body 30 and the second heat storage body 40 are transported from the facilities 6a, 6b, 6c and the factories 7a, 7b, 7c to the energy center 100A. For this conveyance, unmanned automatic conveyance using an automatic driving vehicle such as an automatic driving truck and an unmanned vehicle (AGV) may be applied. Hereinafter, the vehicle used for transporting the first heat storage body 30 and the second heat storage body 40 is simply referred to as “vehicle 300”.
 車両300は、設備6a、6b、6cおよび工場7a、7b、7cからエネルギーセンター100Aへ第1蓄熱体30および第2蓄熱体40を搬送する。また、車両300は、エネルギーセンター100Aから設備6a、6b、6cおよび工場7a、7b、7cへ第1蓄熱体30および第2蓄熱体40を搬送する。 Vehicle 300 conveys first heat storage body 30 and second heat storage body 40 from facilities 6a, 6b, 6c and factories 7a, 7b, 7c to energy center 100A. In addition, the vehicle 300 conveys the first heat storage body 30 and the second heat storage body 40 from the energy center 100A to the facilities 6a, 6b, 6c and the plants 7a, 7b, 7c.
 敷地200Aには、車両300の規定の運転ルートが設定されてもよい。運転ルートは、輪状を呈する搬送本線110と、搬送本線110から設備6a、6b、6cおよび工場7a、7b、7cへ延びる複数の搬送分岐線111と、搬送本線110からエネルギーセンター100Aへ延びる搬送支線112と、を含む。車両300は、運転ルートに沿うように移動する。車両300が無人車両である場合には、車両300は、規定の運転プログラムに従って移動する。 A prescribed driving route for the vehicle 300 may be set in the site 200A. The driving route includes a main transport line 110 having a ring shape, a plurality of transport branch lines 111 extending from the main transport line 110 to the facilities 6a, 6b, and 6c and factories 7a, 7b, and 7c, and a transport branch extending from the main transport line 110 to the energy center 100A. 112. The vehicle 300 moves along the driving route. When the vehicle 300 is an unmanned vehicle, the vehicle 300 moves according to a prescribed driving program.
 車両300による搬送形態は、規定の運転プログラムに応じて所望の形態をとり得る。例えば、車両300を6台準備する。そして、それぞれの車両300と、設備6a、6b、6cおよび工場7a、7b、7cと、を関連付ける。例えば、ある車両300は、設備6aに関連付けられる。そして、車両300は、設備6aとエネルギーセンター100Aとを往復するように制御してもよい。また、車両300を1台準備する。この車両300は、設備6aからエネルギーセンター100Aへ移動する。次に、車両300は、エネルギーセンター100Aから別の設備6bへ移動する。そして、再び車両300は、エネルギーセンター100Aに移動してもよい。なお、上記のいくつかの搬送形態は、例示であり、上記の搬送形態になんら限定されない。 The conveyance form by the vehicle 300 can take a desired form according to a prescribed driving program. For example, six vehicles 300 are prepared. And each vehicle 300 is linked | related with the equipment 6a, 6b, 6c and the factory 7a, 7b, 7c. For example, a certain vehicle 300 is associated with the facility 6a. The vehicle 300 may be controlled to reciprocate between the facility 6a and the energy center 100A. Also, one vehicle 300 is prepared. The vehicle 300 moves from the facility 6a to the energy center 100A. Next, the vehicle 300 moves from the energy center 100A to another facility 6b. Then, the vehicle 300 may move again to the energy center 100A. In addition, said some conveyance form is an illustration and is not limited to said conveyance form at all.
(第2の適用例)
 図8は、バイナリー発電システムの第2の適用例を示す。敷地200Bには、複数の設備6a、6b、6cと、工場7a、7b、7cと、エネルギーセンター100Bと、が設けられている。
(Second application example)
FIG. 8 shows a second application example of the binary power generation system. A plurality of facilities 6a, 6b, 6c, factories 7a, 7b, 7c, and an energy center 100B are provided in the site 200B.
 エネルギーセンター100Bは、2基のバイナリー発電装置20A、20Bと、制御装置101と、を有する。制御装置101は、バイナリー発電装置20A、20Bに接続されている。つまり、制御装置101は、電力需給調整機能を奏する電力制御室であるともいえる。制御装置101は、バイナリー発電装置20A、20Bに対して制御信号を出力することにより統合制御を行う。この制御信号によれば、例えば、バイナリー発電装置20A、20Bの出力電力量を調整できる。例えば、需要電力に応じて、バイナリー発電装置20A、20Bのそれぞれの出力電力量を増減させる。また、需要電力に応じて、バイナリー発電装置20A、20Bの一方を運転させ、他方を停止させる。 The energy center 100B includes two binary power generation devices 20A and 20B and a control device 101. The control device 101 is connected to the binary power generation devices 20A and 20B. That is, it can be said that the control device 101 is a power control room that performs a power supply and demand adjustment function. The control device 101 performs integrated control by outputting a control signal to the binary power generation devices 20A and 20B. According to this control signal, for example, the output power amount of the binary power generators 20A and 20B can be adjusted. For example, the output power amount of each of the binary power generators 20A and 20B is increased or decreased according to the demand power. Moreover, according to the demand power, one of the binary power generation apparatuses 20A and 20B is operated, and the other is stopped.
 制御装置101は、設備6a、6b、6cおよび工場7a、7b、7cに配置されている監視装置8aおよび電力需要装置8bに接続されている。つまり、制御装置101は、設備6a、6b、6cおよび工場7a、7b、7cの遠隔監視を行う。制御装置101は、有線又は無線の通信網を介して監視装置8aおよび電力需要装置8bに接続されている。例えば、有線の通信網は、輪状を呈する通信本線120と、通信本線120から監視装置8aおよび電力需要装置8bへ延びる複数の通信分岐線121と、通信本線120から制御装置101へ延びる通信支線122と、を含む。監視装置8aは、例えば、排熱量をモニタリングしてもよい。制御装置101は、監視装置8aから設備6a、6b、6cおよび工場7a、7b、7cの稼働状況に関する情報を受ける。例えば、制御装置101は、排熱のモニタリングを行う。制御装置101は、排熱量に関する情報に基づいて、車両300による第1蓄熱体30および第2蓄熱体40の搬入や搬出といった制御を行ってよい。 The control device 101 is connected to the equipment 6a, 6b, 6c and the monitoring device 8a and the power demand device 8b arranged in the factories 7a, 7b, 7c. That is, the control apparatus 101 performs remote monitoring of the facilities 6a, 6b, 6c and the factories 7a, 7b, 7c. The control device 101 is connected to the monitoring device 8a and the power demand device 8b via a wired or wireless communication network. For example, the wired communication network includes a communication main line 120 having a ring shape, a plurality of communication branch lines 121 extending from the communication main line 120 to the monitoring device 8a and the power demand device 8b, and a communication branch line 122 extending from the communication main line 120 to the control device 101. And including. The monitoring device 8a may monitor the amount of exhaust heat, for example. The control device 101 receives information on the operation status of the facilities 6a, 6b, 6c and the factories 7a, 7b, 7c from the monitoring device 8a. For example, the control device 101 monitors exhaust heat. The control device 101 may perform control such as loading and unloading of the first heat storage body 30 and the second heat storage body 40 by the vehicle 300 based on the information on the amount of exhaust heat.
 例えば、敷地200Bにおいて、設備6a、6b、6cおよび工場7a、7b、7cおよびエネルギーセンター100Bがマイクログリッドを構成する場合もあり得る。この場合には、需要電力と供給電力とのバランスを制御するためのエネルギーマネジメントを要する。そこで、制御装置101は、設備6a、6b、6cおよび工場7a、7b、7cの需要電力と、エネルギーセンター100Bの供給電力と、のバランスを維持する制御を行ってもよい。例えば、制御装置101は、エネルギーセンター100Bの供給電力に応じて、設備6a、6b、6cおよび工場7a、7b、7cの需要電力を調整してもよい。 For example, in the site 200B, the equipment 6a, 6b, 6c and the factories 7a, 7b, 7c and the energy center 100B may constitute a microgrid. In this case, energy management is required to control the balance between demand power and supply power. Therefore, the control device 101 may perform control to maintain a balance between the demand power of the facilities 6a, 6b, 6c and the factories 7a, 7b, 7c and the power supplied to the energy center 100B. For example, the control apparatus 101 may adjust the power demand of the equipment 6a, 6b, 6c and the factories 7a, 7b, 7c according to the power supplied by the energy center 100B.
 なお、エネルギーセンター100Bは、図示しない蓄電池を備えてもよい。蓄電池は、供給電力に対して需要電力が少ない場合に、余剰の電力を蓄えることができる。また、蓄電池は、供給電力に対して需要電力が大きい場合に、不足する電力を供給することができる。つまり、蓄電池を備えるエネルギーセンター100Bによれば、より柔軟なエネルギーマネジメントを行うことができる。 Note that the energy center 100B may include a storage battery (not shown). The storage battery can store surplus power when the demand power is less than the supplied power. Further, the storage battery can supply insufficient power when the demand power is larger than the supplied power. That is, according to the energy center 100B provided with a storage battery, more flexible energy management can be performed.
(第3の適用例)
 図9は、バイナリー発電システムの第3の適用例を示す。上記第1の適用例および第2の適用例では、敷地200Aまたは敷地200Bに設けられた設備群に対してバイナリー発電システムを適用する例を示した。例えば、図9に示すように、バイナリー発電システムは、複数の敷地200A、200Cをまたいで適用されてもよい。図9において、敷地200Aは、第1の事業所であり、敷地200Cは、第1の事業所とは別の場所にある第2の事業所である。バイナリー発電システムは、地理的に離れた2か所の事業所をまたいで適用することも可能である。この場合、敷地200Aと敷地200Cとを繋ぐ連結線113が設定される。例えば、車両300は、連結線113を通じて敷地200Aから敷地200Bへ移動することができる。その結果、敷地200Aにおける排熱を、別の敷地200Bに配置されたエネルギーセンター100Cにおいて電力に変換することが可能になる。従って、より柔軟な運用を実現することができる。
(Third application example)
FIG. 9 shows a third application example of the binary power generation system. In the said 1st application example and the 2nd application example, the example which applies a binary power generation system with respect to the installation group provided in site 200A or site 200B was shown. For example, as shown in FIG. 9, the binary power generation system may be applied across a plurality of sites 200A and 200C. In FIG. 9, the site 200A is a first business site, and the site 200C is a second business site in a location different from the first business site. The binary power generation system can be applied across two geographically separated offices. In this case, a connecting line 113 that connects the site 200A and the site 200C is set. For example, the vehicle 300 can move from the site 200 </ b> A to the site 200 </ b> B through the connecting line 113. As a result, the exhaust heat in the site 200A can be converted into electric power in the energy center 100C arranged in another site 200B. Therefore, more flexible operation can be realized.
1、1p、1q バイナリー発電システム
10 収容ユニット
20 バイナリー発電装置
30 第1蓄熱体
40 第2蓄熱体
60 予熱器
65 蒸発器
70 膨張発電機
75 凝縮器
80 冷却塔
92 第2切替器
94 第4切替器
L1 第1熱媒体ライン
L2 第2熱媒体ライン
L3 作動媒体ライン
L5 蓄熱用媒体ライン
1, 1p, 1q Binary power generation system 10 Housing unit 20 Binary power generation apparatus 30 First heat storage body 40 Second heat storage body 60 Preheater 65 Evaporator 70 Expansion generator 75 Condenser 80 Cooling tower 92 Second switch 94 Fourth switch L1 First heat medium line L2 Second heat medium line L3 Working medium line L5 Heat storage medium line

Claims (8)

  1.  第1熱媒体を流すための第1熱媒体ライン、前記第1熱媒体より高い温度の第2熱媒体を流すための第2熱媒体ライン、作動媒体を循環させるための作動媒体ライン、前記第1熱媒体ラインと前記作動媒体ラインとが設けられると共に前記作動媒体を予熱する予熱器、前記第2熱媒体ラインと前記作動媒体ラインとが設けられ前記予熱器よりも下流側に配置されると共に前記作動媒体を蒸発させて作動媒体蒸気を生成する蒸発器、および、前記作動媒体ラインが設けられ前記蒸発器よりも下流側に配置されると共に前記作動媒体蒸気を用いて発電を行う発電機を有するバイナリー発電装置と、
     排熱を発生させる複数の施設のうち第1施設で発生した排熱を蓄熱する一つまたは複数の第1蓄熱体と、
     前記複数の施設のうち第2施設で発生した排熱を蓄熱する一つまたは複数の第2蓄熱体と、
    を備え、
     前記第1蓄熱体は、前記第1熱媒体を生成し、前記第1熱媒体は、前記第1熱媒体ラインを通じて前記予熱器に供給され、
     前記第2蓄熱体は、前記第2熱媒体を生成し、前記第2熱媒体は、前記第2熱媒体ラインを通じて前記蒸発器に供給される、バイナリー発電システム。
    A first heat medium line for flowing a first heat medium; a second heat medium line for flowing a second heat medium having a temperature higher than the first heat medium; a working medium line for circulating a working medium; A heating medium line and the working medium line are provided, and a preheater that preheats the working medium, the second heating medium line and the working medium line are provided, and are disposed downstream of the preheater. An evaporator that evaporates the working medium to generate working medium vapor; and a generator that is provided with the working medium line and is disposed downstream of the evaporator and that generates electric power using the working medium vapor. A binary power generator having
    One or a plurality of first heat storage bodies that store exhaust heat generated at the first facility among the plurality of facilities that generate exhaust heat;
    One or a plurality of second heat storage bodies for storing exhaust heat generated at a second facility among the plurality of facilities;
    With
    The first heat storage body generates the first heat medium, and the first heat medium is supplied to the preheater through the first heat medium line,
    The second heat storage body generates the second heat medium, and the second heat medium is supplied to the evaporator through the second heat medium line.
  2.  複数の前記第2蓄熱体の内で前記第2熱媒体を生成する前記第2蓄熱体を切り替える第2切替器をさらに備える、請求項1に記載のバイナリー発電システム。 The binary power generation system according to claim 1, further comprising a second switch that switches the second heat storage body that generates the second heat medium among the plurality of second heat storage bodies.
  3.  前記第1蓄熱体は、潜熱蓄熱材および吸着材の少なくとも一つを含み、
     前記第2蓄熱体は、化学蓄熱材、潜熱蓄熱材および吸着材の少なくとも一つを含む、請求項1または2に記載のバイナリー発電システム。
    The first heat storage body includes at least one of a latent heat storage material and an adsorbent,
    The binary power generation system according to claim 1, wherein the second heat storage body includes at least one of a chemical heat storage material, a latent heat storage material, and an adsorbent.
  4.  前記第1蓄熱体および前記第2蓄熱体は、吸着材を含む、請求項1または2に記載のバイナリー発電システム。 The binary power generation system according to claim 1 or 2, wherein the first heat storage body and the second heat storage body include an adsorbent.
  5.  前記作動媒体ラインが設けられ前記発電機よりも下流側に配置されると共に前記作動媒体蒸気を冷却媒体によって冷却する凝縮器と、
     前記冷却媒体を冷却すると共に、前記第1蓄熱体および前記第2蓄熱体の少なくとも一つに蓄熱用媒体を供給する冷却塔と、
     前記第1蓄熱体および前記第2蓄熱体の少なくとも一つと前記冷却塔とを接続する蓄熱用媒体ラインと、
    をさらに備える、請求項4に記載のバイナリー発電システム。
    A condenser provided with the working medium line and disposed downstream of the generator and cooling the working medium vapor with a cooling medium;
    A cooling tower that cools the cooling medium and supplies a heat storage medium to at least one of the first heat storage body and the second heat storage body;
    A heat storage medium line connecting at least one of the first heat storage body and the second heat storage body and the cooling tower;
    The binary power generation system according to claim 4, further comprising:
  6.  複数の前記第2蓄熱体の内で前記蓄熱用媒体が供給される前記第2蓄熱体を切り替える第4切替器をさらに備える、請求項5に記載のバイナリー発電システム。 6. The binary power generation system according to claim 5, further comprising a fourth switch for switching the second heat storage body to which the heat storage medium is supplied among a plurality of the second heat storage bodies.
  7.  作動媒体蒸気を用いてバイナリー発電装置の発電機で発電を行うバイナリー発電方法であって、
     排熱を発生させる複数の施設のうち第1施設で発生した排熱を蓄熱する一つまたは複数の第1蓄熱体によって第1熱媒体を生成する工程と、
     前記複数の施設のうち第2施設で発生した排熱を蓄熱する一つまたは複数の第2蓄熱体によって第1熱媒体より高い温度の第2熱媒体を生成する工程と、
     前記第1熱媒体を予熱器に供給し、前記予熱器において前記第1熱媒体により作動媒体を予熱する工程と、
     前記第2熱媒体を蒸発器に供給し、前記蒸発器において前記第2熱媒体により前記作動媒体を蒸発させて前記作動媒体蒸気を生成する工程と、
    を備える、バイナリー発電方法。
    A binary power generation method for generating power with a generator of a binary power generation device using working medium vapor,
    A step of generating a first heat medium by one or a plurality of first heat storage members that store exhaust heat generated in the first facility among a plurality of facilities that generate exhaust heat;
    Generating a second heat medium having a temperature higher than that of the first heat medium by one or a plurality of second heat accumulators that store exhaust heat generated in the second facility among the plurality of facilities;
    Supplying the first heat medium to a preheater, and preheating the working medium with the first heat medium in the preheater;
    Supplying the second heat medium to an evaporator, and evaporating the working medium with the second heat medium in the evaporator to generate the working medium vapor;
    A binary power generation method comprising:
  8.  複数の前記第2蓄熱体の内で前記第2熱媒体を生成する前記第2蓄熱体を切り替える工程をさらに備える、請求項7に記載のバイナリー発電方法。 The binary power generation method according to claim 7, further comprising a step of switching the second heat storage body that generates the second heat medium among the plurality of second heat storage bodies.
PCT/JP2019/015810 2018-04-13 2019-04-11 Binary power generation system and binary power generation method WO2019198797A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020513452A JPWO2019198797A1 (en) 2018-04-13 2019-04-11 Binary power generation system and binary power generation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018077962 2018-04-13
JP2018-077962 2018-04-13

Publications (1)

Publication Number Publication Date
WO2019198797A1 true WO2019198797A1 (en) 2019-10-17

Family

ID=68164304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015810 WO2019198797A1 (en) 2018-04-13 2019-04-11 Binary power generation system and binary power generation method

Country Status (2)

Country Link
JP (1) JPWO2019198797A1 (en)
WO (1) WO2019198797A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022543949A (en) * 2019-04-01 2022-10-17 クラフトブロック・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング energy supply system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6133902U (en) * 1984-08-02 1986-03-01 三菱重工業株式会社 Thermal storage power generation device
WO2014068797A1 (en) * 2012-10-30 2014-05-08 三井造船株式会社 Solar heat electric power generation plant and control method therefor
JP2015143496A (en) * 2014-01-31 2015-08-06 メタウォーター株式会社 Binary power generator by plural heat sources and plural heat accumulation materials and control method for the same
JP2017525933A (en) * 2014-08-22 2017-09-07 中盈▲長▼江国▲際▼新能源投▲資▼有限公司 Solar energy water heating auxiliary heat storage device and power plant boiler solar energy water heating supply system formed from solar energy water heating auxiliary heat storage device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6133902U (en) * 1984-08-02 1986-03-01 三菱重工業株式会社 Thermal storage power generation device
WO2014068797A1 (en) * 2012-10-30 2014-05-08 三井造船株式会社 Solar heat electric power generation plant and control method therefor
JP2015143496A (en) * 2014-01-31 2015-08-06 メタウォーター株式会社 Binary power generator by plural heat sources and plural heat accumulation materials and control method for the same
JP2017525933A (en) * 2014-08-22 2017-09-07 中盈▲長▼江国▲際▼新能源投▲資▼有限公司 Solar energy water heating auxiliary heat storage device and power plant boiler solar energy water heating supply system formed from solar energy water heating auxiliary heat storage device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022543949A (en) * 2019-04-01 2022-10-17 クラフトブロック・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング energy supply system

Also Published As

Publication number Publication date
JPWO2019198797A1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
EP1016775B1 (en) Waste heat recovery in an organic energy converter using an intermediate liquid cycle
Jaber et al. Short review on heat recovery from exhaust gas
EP0343650B1 (en) Heat accumulation system
US20220090827A1 (en) Plant and method for accumulation of energy in thermal form
WO2013038423A2 (en) Combined cooling/heating and power generation system utilizing sustainable energy
CN107429576B (en) Method for balancing and/or generating electrical energy and/or hydrogen and energy storage power plant
EP3081770A1 (en) Energy storage system and method
WO2010104897A2 (en) Systems and methods of thermal-electric power generation including latent heat utilization features
US10147989B2 (en) System for generating power from fuel cell waste heat
CN110573699B (en) Power station for generating electrical energy and method for operating a power station
US11502628B2 (en) Energy storage system
WO2019198797A1 (en) Binary power generation system and binary power generation method
JP6812252B2 (en) Hydrogen production equipment, power generation system and hydrogen production method
JP2014122576A (en) Solar heat utilization system
KR101409314B1 (en) Binary Type Electric Power Generation System
CN111878184A (en) Two-stage organic Rankine cycle combined heat and power system with preferential heat supply function and regulation and control method
US20150007567A1 (en) Plant and method for increasing the efficiency of electric energy production
WO2020116167A1 (en) Solar thermal power generation system
DK2984434T3 (en) Thermochemical storage system with improved storage efficiency
CN112262291B (en) Method for operating regenerative heat accumulator device and heat accumulator device
WO2016162205A1 (en) Energy storage system and method
CA3083702A1 (en) A process and method for waste heat recovery, combined heat and power, and electricity storage applications
KR102569574B1 (en) Temperature difference power generation system using solar collected heat
CN216482441U (en) Steam heat storage and release system
US11905857B2 (en) Plant and process for energy generation and storage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19785145

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020513452

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19785145

Country of ref document: EP

Kind code of ref document: A1