WO2019196786A1 - 信号映射方法以及装置、服务器及计算机可读存储介质 - Google Patents

信号映射方法以及装置、服务器及计算机可读存储介质 Download PDF

Info

Publication number
WO2019196786A1
WO2019196786A1 PCT/CN2019/081728 CN2019081728W WO2019196786A1 WO 2019196786 A1 WO2019196786 A1 WO 2019196786A1 CN 2019081728 W CN2019081728 W CN 2019081728W WO 2019196786 A1 WO2019196786 A1 WO 2019196786A1
Authority
WO
WIPO (PCT)
Prior art keywords
odu
segment
oduj
channel data
optical channel
Prior art date
Application number
PCT/CN2019/081728
Other languages
English (en)
French (fr)
Inventor
罗春
张冬
胡焕青
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2019196786A1 publication Critical patent/WO2019196786A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0077Labelling aspects, e.g. multiprotocol label switching [MPLS], G-MPLS, MPAS

Definitions

  • the present application relates to the field of communications technologies, and, for example, to a signal mapping method and apparatus, a server, and a computer readable storage medium.
  • ITU-T G.8080 and G.807 define the architecture of the Automatically Switched Optical Network (ASON), introducing the concept of the control plane.
  • the Generalized Multiprotocol Label Switching (GMPLS) protocol can dynamically exchange topology information, routing information, and other control signaling of an optical network to implement dynamic establishment and teardown of optical paths and dynamic allocation of network resources.
  • the GMPLS protocol family mainly includes routing, signaling, and link management protocols, and extends the label so that the label can be used not only to mark traditional data packets, but also to mark Time Division Multiplexing (TDM) time slots and wavelengths. , band, fiber, etc.
  • TDM Time Division Multiplexing
  • ITU-T G.709 [g709-2012] introduces new Optical Channel Data Unit (ODU) types (ODU0, ODU4, ODU2e, and ODUflex) to further enhance the Optical Transport Network (Optical Transport Network, OTN) scheduling flexibility.
  • IETF [RFC 4328] describes the relevant control technology details of GMPLS-Traffic Engineering (GMPLS-TE), and [RFC 7139] based on [RFC 4328], the latest extended definitions of related structures, including
  • the generalized label Generalized Label format definition represents the time slot allocation of the low rate client signal (generally referred to as optical channel data unit ODUj) in the high rate signal ODUCn.
  • the bitmap (Bitmap) identifying an ODU4 slot label needs 80 Bit (ie, 10 words). Section), as shown in Figure 2; but to identify a super 100G slot label, the bitmap requires more bits of the Bit, which is more bytes. For example, only the data transmission unit 400G, the minimum slot granularity identifier 1.25G/Bit calculation, the bitmap needs 320Bit (ie 40 bytes), plus the TPN bit, the reserved bit Reserved, the length bit Length and other fields, only one universal label It takes 44 bytes, as shown in Figure 3.
  • a Label Switching Path is established by using the Resource Reservation Protocol (RSVP) to display the route signaling format.
  • RSVP Resource Reservation Protocol
  • the present invention provides a signal mapping method and device, a server and a computer readable storage medium of a super 100G optical transmission network based on a Generalized Multiprotocol Label Switching (GMPLS) protocol, to overcome the network rate in the related art.
  • GPLS Generalized Multiprotocol Label Switching
  • An aspect of the present application provides a signal mapping method, where the method includes: concentrating an optical channel data unit ODUj onto an ODU segment in a preset ODU segment layer, where the ODU segment layer includes multiple ODU regions. a segment, and one of the optical channel data units ODUj corresponds to one of the plurality of ODU segments; the optical channel data unit ODUj is aggregated by the ODU segment to an ODUCn layer of the optical transmission network; The universal tag marks the correspondence between the optical channel data unit ODUj and the ODU segment.
  • the application further provides a signal mapping device, the device comprising:
  • the aggregation unit is configured to aggregate the optical channel data unit ODUj onto the ODU segment in the preset ODU segment layer, where the ODU segment layer includes multiple ODU segments, and one of the optical channel data units ODUj Corresponding to one of the plurality of ODU segments, and concentrating the optical channel data unit ODUj to the ODUCn layer of the optical transmission network through the ODU segment;
  • the marking unit is configured to mark a correspondence between the optical channel data unit ODUj and the ODU section by a preset universal label.
  • the application further provides a server, comprising the signal mapping device of any of the above.
  • the present application further provides a computer readable storage medium storing a computer program of a signal mapping method, when the computer program is executed by at least one processor to implement any of the above The mapping method described.
  • Figure 1 is a generalized Label format of a universal label defined by GMPLS-TE;
  • Figure 2 is an example of ODU4 (time slot granularity 1.25G), which is defined by the relevant GMPLS-TE, indicating the bit position of the bitmap in the Generalized Label format (80Bit, 10 bytes);
  • Figure 3 is an example of ODUC4 (time slot granularity 1.25G), which is defined by the relevant GMPLS-TE, indicating the location of the bitmap in the Generalized Label format (320 Bit, 40 bytes);
  • FIG. 4 is a schematic flowchart of a signal mapping method according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a multiplexing method for mapping a low-order ODUi layer to a high-order ODUCn layer through an ODU section in the embodiment of the present application;
  • FIG. 6 is a schematic diagram of a universal label defined in GMPLS-TE of the present application.
  • FIG. 7 is a schematic diagram of a label allocation method for mapping from a low-order ODUi layer to a high-order ODUC4 layer via a section ODU4 according to an embodiment of the present application;
  • FIG. 8 is a schematic diagram of a label allocation method for mapping from a low-order ODUi layer to a high-order ODUC4 layer via a section ODU3 according to an embodiment of the present application;
  • FIG. 9 (FIG. 9(a) and FIG. 9(b)) are schematic diagrams of a method for allocating a transform slot granularity (5G) label according to an embodiment of the present application;
  • FIG. 10 is a schematic structural diagram of a signal mapping apparatus according to an embodiment of the present disclosure.
  • the embodiment of the present application divides the super 100G network into multiple optical channels.
  • An Optical Channel Data Unit (ODU) section, and the correspondence between the ODUj and the ODU section is marked by a universal label, thereby saving the bitmap length in the universal label, thereby effectively overcoming the related art in that the network rate is increased. It is necessary to infinitely extend the length of the bitmap in the universal label, which ultimately affects the transmission efficiency of the protocol packet.
  • the embodiment of the present application provides a signal mapping method.
  • the method includes: step S401, step S402, and step S403.
  • step S401 the optical channel data unit ODUj is aggregated onto the ODU segment in the preset ODU segment layer, the ODU segment layer includes a plurality of ODU segments, and one of the optical channel data units ODUj Corresponding to one of the plurality of ODU segments.
  • step S402 the optical channel data unit ODUj is aggregated by the ODU section to an ODUCn layer of an optical transmission network exceeding 100G.
  • step S403 the correspondence between the optical channel data unit ODUj and the ODU section is marked by a preset universal label.
  • the embodiment of the present application is to converge the low-order ODUj to the ODU segment layer, and to map the ODU segment layer to the high-order ODUCn layer.
  • the ODU segment and the correspondence between the ODUj and the ODU segment are marked by the universal label, thereby saving the bitmap bitmap length in the universal label, thereby effectively avoiding the need to infinitely expand the universal label in the related art due to the increase of the network rate.
  • the length of the bitmap which ultimately affects the transmission efficiency of protocol packets.
  • the embodiment of the present application may be a signal mapping method of a super 100G optical transmission network based on a Generalized Multiprotocol Label Switching (GMPLS) protocol, that is, an optical transmission network according to an embodiment of the present application. It is an optical transmission network of over 100G, for example, 400G, 1T, and the like.
  • GPLS Generalized Multiprotocol Label Switching
  • optical channel data unit ODUj of the embodiment of the present application is connected to the device client side signal, where j in the ODUj can take values 0, 1, 2, 2e, 3, 3e2, 4, and flex, etc. This is not specifically limited.
  • the signal is aggregated to a higher layer by the ODUCn layer.
  • the OTUCn layer after mapping the optical channel data unit ODUj to the high-order ODUCn layer of the optical transmission network exceeding 100G through the ODU segment layer, the signal is aggregated to a higher layer by the ODUCn layer.
  • the OTUCn layer after mapping the optical channel data unit ODUj to the high-order ODUCn layer of the optical transmission network exceeding 100G through the ODU segment layer, the signal is aggregated to a higher layer by the ODUCn layer.
  • the OTUCn layer after mapping the optical channel data unit ODUj to the high-order ODUCn layer of the optical transmission network exceeding 100G through the ODU segment layer, the signal is aggregated to a higher layer by the ODUCn layer.
  • the OTUCn layer after mapping the optical channel data unit ODUj to the high-order ODUCn layer of the optical transmission network exceeding 100G through the ODU segment layer, the signal is aggregated to a higher layer
  • the ODUCn in the embodiment of the present application is a type of the optical channel data unit ODU, and is a signal representation manner of more than 100G.
  • the OTUCn in the embodiment of the present application is one of the optical channel transmission unit OTU. This is a signal representation of more than 100G.
  • FIG. 5 is a schematic diagram of a multiplexing method for mapping a low-order ODUj layer to a high-order ODUCn layer through an ODU segment in the embodiment of the present application.
  • the embodiment of the present application is based on the GMPLS protocol, and the service mapping is performed by the device client side to access the ODUj to the segment.
  • the ODU then goes to the ODUCn and finally summarizes to the OTUCn layer. That is to say, in the service mapping process, the embodiment of the present application must pass through the section ODU, so an ODUj must be located in one of the multiple section ODUs, and one is not allowed to appear.
  • ODUj is located in the case of multiple segment ODU services.
  • the line rate finally aggregates the N segments ODU into one ODUCn signal.
  • the method in the embodiment of the present application further includes: setting the universal label; setting a section number (Section, Sec) in the universal label, and passing the section number The bit is used to mark the correspondence between the ODUj and the ODU section.
  • the correspondence between the ODUj and the ODU segment is marked by the segment number bit, thereby saving the bitmap length in the universal tag, thereby effectively overcoming the related art, because the network rate increases, and the infinite expansion of the universal tag is required. Bitmap length, which ultimately affects the transmission efficiency of protocol packets.
  • the universal label in the embodiment of the present application further includes a slot granularity bit (Granularity, Gra), and the slot granularity bit is used to mark a slot occupied by one bit (bit) of the ODUj. granularity.
  • Gra slot granularity bit
  • the bitmap length in the universal label can also be reduced to some extent.
  • the embodiment of the present application newly defines the concept of a section number (Section, Sec) in the G.709 universal label object format, and identifies a section ODU number to which the accessed ODUj signal belongs, for example, 0. Indicates the first section, 1 represents the second section, 2 represents the third section, and so on.
  • the reserved bit is reserved at the rate of ODU4 and below (the tributary port number after the TPN field, the length field is preceded by 1 byte, 4 bits, where TPN is an abbreviation for Tributary Port Number) It is meaningless, so the segment number bit and the slot granularity bit can be set in the Reserved bit, as shown in FIG. 6 in an exemplary manner, but the embodiment of the present application does not limit the segment number bit and the slot granularity bit only in correlation. At the Reserved bit of the format, those skilled in the art can set the location of the segment number bit and the slot granularity bit in the universal tag according to actual needs.
  • the segment number bit and the slot granularity bit are set in the reserved reserved bits of the universal label.
  • the location setting method of the section number bit and the slot granularity bit in the common label in FIG. 6 is only an example.
  • the embodiment of the present application may also set the section number bit in the slot granularity. After the bit, or set both in other locations on the universal label.
  • the value of the slot granularity described in the embodiment of the present application represents different slot granularity occupied by one bit of the universal label bitmap.
  • the slot granularity set by the embodiment of the present application includes, but is not limited to, 1.25 Gbit/s, 2.5 Gbit/s, 5 Gbit/s, etc., and the foregoing embodiment of the present application breaks a related bit by setting multiple slot granularities.
  • the bit represents the limitation of the 1.25G minimum slot granularity. Since the bandwidth is increased by a single granularity, the required bitmap is also reduced correspondingly. Therefore, the embodiment of the present application can more flexibly support the access of different types of signals on the client side.
  • the embodiment of the present application needs to first set an ODU section in the ODU section layer.
  • the line rate of the ODU section in the embodiment of the present application may be arbitrarily set according to actual needs, and in the case that the capacity of the ODUCn is constant, the capacity of the section ODU is larger, and the number N is the least.
  • the interface required by the corresponding device layer is the least, and the maximum ODU capacity currently defined by IETF [RFC 7139] is ODU4 (100G). Therefore, the interface ODU capacity selects the interface required by the ODU4 corresponding device layer to be the least.
  • the embodiment of the present application does not limit the segment ODU to the ODU4.
  • the person skilled in the art may select another type of ODU as the segment according to the actual interface type of the device layer or the update of the related standard technology in the future. ODU capacity.
  • the embodiment of the present application provides an application implementation manner by concentrating the optical channel data unit ODUj to the ODU segment in the preset ODU segment layer.
  • the method may include: obtaining according to the ODU segment.
  • the time slot and the time slot of the current ODUj aggregate the ODUj onto the ODU section.
  • the embodiment of the present application sequentially determines whether the available time slot of the ODU section is greater than the time slot of the current ODUj according to the sector number sequence of the ODU section, and aggregates the ODUj to the available time of the first ODU section.
  • the slot is larger than the ODU segment of the ODUj slot.
  • the embodiment of the present application can implement the division of the ODUj into the corresponding ODU segment according to the time slot of the ODUj, and in the specific division, the embodiment of the present application sequentially completes the division according to the segment number of the ODU segment. .
  • the embodiments of the present application can implement flexible scheduling of accessing service slots of different rates across sectors and multiple granularities on the basis of complying with the relevant GMPLS protocol standards, without the need to expand the bearer rate requirements.
  • the signal of the super 100G optical transmission network in the embodiment of the present application is described by taking the ODU layer signal as the ODUC4 (400G), the ODU capacity as the ODU4 (100G), and the slot granularity of 1.25G as an example.
  • the device client side randomly accesses signals of different rates, such as ODU0, ODU3, and ODU4, and the method in the embodiment of the present application includes: Step 701 to Step 705.
  • step 701 in the common label format defined by the related GMPLS protocol, since the reserved field is meaningless when the TDM (ODUk layer) rate is ODU4 and below, the embodiment of the present application uses the high 4 bits of the reserved field to perform the section.
  • the number of the ODU4 is the number of the ODU4.
  • step 702 the client side accesses an ODU0 (occupying 1 time slot) service, and belongs to the first ODU4 (80 slots in total) segment, and the remaining remaining time slots of the first ODU4 segment are 79. .
  • step 703 the client side accesses the service of one ODU4 (occupying 80 time slots) again. Since only 79 of the available time slots of the first ODU4 segment remain, which is insufficient for the ODU4 service access, the ODU4 service is allocated. To the second ODU4 segment, the remaining 0 ODU4 segment available slots.
  • step 704 the client side accesses two ODU3 (occupying 31 time slots) services again. Since the remaining one of the first ODU4 segment available slots is sufficient for the ODU3 service access, the ODU3 service continues to be allocated. To the first ODU4 segment, the remaining one of the first ODU4 segment available slots.
  • step 705 the client side accesses an ODU3 (occupying 31 time slots) service again. Since the first available time slot of the first ODU4 segment is 14, the ODU3 service access is insufficient, and the second ODU4 segment is available. If there are 0 slots, the ODU3 service continues to be allocated to the third ODU4 segment, and the third ODU4 segment has 48 remaining slots.
  • the embodiment of the present application can implement the client side by using 4 ODU4 segments under the premise that the bitmap occupation of the GMPLS-TE defined Generalized Label does not exceed 80 bits (10 bytes).
  • Different access signals (1 ODU0, 3 ODU3, 1 ODU4) of the low-order ODUi layer are multiplexed to the time slots of the super 100G high-order ODUCn layer for flexible allocation.
  • the embodiment of the present application still takes the ODU layer signal as ODUC4 (400G), but the section ODU capacity is ODU3 (40G), and the slot granularity is 1.25G.
  • the device client side randomly accesses ODU0 and ODU1.
  • the signals of different rates, such as the ODU 2 and the ODU 3 the capacity of the ODUi accessed by the client side is not greater than the capacity of the ODU of the segment
  • the method in the embodiment of the present application includes: Step 801 to Step 805.
  • step 801 the client side accesses an ODU0 (occupying 1 time slot) service, and belongs to the first ODU3 (32 time slots) section, and the remaining 31 slots of the first ODU3 section are available. .
  • step 802 the client side accesses the service of one ODU3 (occupying 32 time slots) again. Since only 31 of the available time slots of the first ODU3 sector remain, which is insufficient for the ODU3 service access, the ODU3 service is allocated. To the second ODU3 segment, the remaining 0 ODU3 segment available slots.
  • step 803 the client side accesses an ODU2 (occupying 8 time slots) service again. Since the remaining 31 slots of the first ODU3 sector are sufficient for the ODU2 service to access, the ODU2 service is continuously allocated to the service. For the first ODU3 segment, the remaining one of the first ODU3 segment available slots.
  • step 804 the client side accesses an ODU3 (occupying 32 time slots) service again. Since the remaining 30 slots of the first ODU3 sector are available, the ODU3 service is insufficient for access, and the second ODU3 segment is available. If there are 0 slots in the slot, the ODU3 service continues to be allocated to the third ODU3 segment, and the remaining 3 slots of the third ODU3 segment are available.
  • ODU3 occupying 32 time slots
  • step 805 the client side accesses an ODU1 (occupying 2 time slots) service again. Since the remaining 31 slots of the first ODU3 sector are available for the ODU1 service access, the ODU1 service is continuously allocated. For the first ODU3 segment, the remaining one of the first ODU3 segment available slots.
  • the bitmap occupying no more than 80 bits (10 bytes), through the 10 ODU3 segments, the low-order ODUi layer is different from the client side.
  • the access signals (1 ODU0, 1 ODU1, 1 ODU2, 2 ODU3) are multiplexed to the time slot of the super 100G high-order ODUCn layer for flexible allocation.
  • the service mapping is performed by the device client side to access the ODUj to the ODUCn, and if the extended granularity is expressed, Save the bitmap size of the label.
  • the entire ODUC4 is represented as 80 bits at 5G granularity, and the ODU3 signal occupies 8 slots corresponding to 8 bits. Assuming that 8 bits are continuous from bit 0, the label representation shown in Fig. 9(a) is used.
  • the bitmap can be further reduced.
  • ODU3 40G
  • ODUC4 400G
  • slot granularity 5G segmentation is used.
  • the entire ODUC4 is represented by 4 20 bits at 5G granularity, and the ODU3 signal occupies 8 time slots corresponding to 8 of them.
  • the bit assuming 8 consecutive bits starting from bit 0, corresponds to the label representation shown in Fig. 9(b).
  • the embodiment of the present application can save the bitmap size of the label by expanding the granularity, and the section length can further shorten the length of the bitmap of the label.
  • the embodiment of the present application further provides a signal mapping apparatus.
  • the universal label of the embodiment of the present application includes: a convergence unit and a marking unit.
  • the aggregation unit is configured to aggregate the optical channel data unit ODUj onto the ODU segment in the preset ODU segment layer, where the ODU segment layer includes multiple ODU segments, and one of the optical channel data units ODUj Corresponding to one of the plurality of ODU segments, and concentrating the optical channel data unit ODUj through the ODU segment to an ODUCn layer of the optical transport network.
  • the marking unit is configured to mark a correspondence between the optical channel data unit ODUj and the ODU section by a preset universal label.
  • the network is divided into multiple ODU segments, and the correspondence between the ODUj and the ODU segment is marked by the universal label, thereby saving the bitmap length in the universal label, thereby effectively solving the related technology. Due to the increase of the network rate, it is necessary to infinitely extend the bitmap length in the universal label, which ultimately affects the transmission efficiency of the protocol packet.
  • the apparatus when implemented, further includes: a setting unit, where the setting of the universal label by the setting unit may include: setting a section number (Section, Sec) in the universal label, The section number bit is used to mark a correspondence between the optical channel data unit ODUj and the ODU section.
  • a setting unit where the setting of the universal label by the setting unit may include: setting a section number (Section, Sec) in the universal label, The section number bit is used to mark a correspondence between the optical channel data unit ODUj and the ODU section.
  • the correspondence between the ODUj and the ODU segment is marked by the segment number bit, thereby saving the bitmap length in the universal tag, thereby effectively overcoming the related art, because the network rate increases, and the infinite expansion of the universal tag is required. Bitmap length, which ultimately affects the transmission efficiency of protocol packets.
  • the embodiment of the present application may be a signal mapping device of a super 100G optical transmission network based on the Generalized Multiprotocol Label Switching (GMPLS) protocol, that is, the optical transmission in the embodiment of the present application.
  • the network is an optical transmission network of over 100G, for example, 400G, 1T, and the like.
  • the embodiment of the present application further sets, by using the setting unit, a slot granularity (Granularity, Gra) in the universal label, where the slot granularity bit is used to mark one bit of the optical channel data unit ODUj. Occupied slot granularity.
  • the bitmap length in the universal label can also be reduced to some extent.
  • the embodiment of the present application newly defines the concept of a section number bit in the G.709 universal label object format, and identifies the sector ODU number to which the accessed ODUj signal belongs. For example, 0 indicates the first section. , 1 indicates the second segment, 2 indicates the third segment, and so on.
  • the segment number bit and the slot granularity bit can be set to reserved bits. That is, the Reserved bit is specifically shown in FIG. 6.
  • the embodiment of the present application does not limit the segment number bit and the slot granularity bit only in the Reserved bit of the related format, and those skilled in the art can set the area according to actual needs.
  • the segment number bit and the slot granularity bit are set in the reserved bits of the universal label.
  • the location setting method of the section number bit and the slot granularity bit in the common label in FIG. 6 is only an example.
  • the embodiment of the present application may also set the section number bit in the slot granularity. After the bit, or set both in other locations on the universal label.
  • the value of the slot granularity described in the embodiment of the present application represents different slot granularity occupied by one bit of the universal label bitmap.
  • the slot granularity set by the embodiment of the present application includes, but is not limited to, 1.25 Gbit/s, 2.5 Gbit/s, 5 Gbit/s, etc., and the foregoing embodiment of the present application breaks a related bit by setting multiple slot granularities.
  • the bit represents the limitation of the 1.25G minimum slot granularity. Since the bandwidth is increased by a single granularity, the required bitmap is also reduced correspondingly. Therefore, the embodiment of the present application can more flexibly support the access of different types of signals on the client side.
  • the line rate of the ODU section in the embodiment of the present application may be arbitrarily set according to actual needs, and in the case that the capacity of the ODUCn is constant, the capacity of the section ODU is larger, and the number N is the least.
  • the interface required by the corresponding device layer is the least, and the maximum ODU capacity currently defined by IETF [RFC 7139] is ODU4 (100G). Therefore, the interface ODU capacity selects the interface required by the ODU4 corresponding device layer to be the least.
  • the embodiment of the present application does not limit the segment ODU to the ODU4.
  • the person skilled in the art may select another type of ODU as the segment according to the actual interface type of the device layer or the update of the related standard technology in the future. ODU capacity.
  • the aggregation unit is further configured to aggregate the current optical channel data unit ODUj onto the ODU segment according to the available time slot of the ODU segment and the time slot of the current optical channel data unit ODUj. .
  • the aggregation unit in the embodiment of the present application sequentially determines whether the available time slot of the ODU section is greater than the time slot of the current optical channel data unit ODUj according to the sector number sequence of the ODU section, and The available time slot in which the current optical channel data unit ODUj is converged to the first ODU segment is greater than the ODU segment of the current optical channel data unit ODUj slot.
  • the embodiment of the present application can implement the division of the ODUj into the corresponding ODU segment according to the time slot of the ODUj, and in the specific division, the embodiment of the present application sequentially completes the division according to the segment number of the ODU segment. .
  • the embodiments of the present application can implement flexible scheduling of accessing service slots of different rates across sectors and multiple granularities on the basis of complying with the relevant GMPLS protocol standards, without the need to expand the bearer rate requirements.
  • the embodiment of the present application further provides a server, where the server includes any of the foregoing signal mapping devices, and achieves corresponding technical effects, and related content may be understood by referring to the method embodiment and the device embodiment. .
  • embodiments of the present application further provide a computer readable storage medium storing a computer program of a signal mapping method, when the computer program is executed by at least one processor, to implement any of the above A method of signal mapping is described, and the corresponding technical effects are achieved.
  • the related content can be understood by referring to the method embodiment and the device embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Time-Division Multiplex Systems (AREA)

Abstract

公开了一种信号映射方法、装置、服务器及计算机可读存储介质,方法包括:将光通道数据单元ODUj汇聚到预设的ODU区段层内的ODU区段上,所述ODU区段层内包括多个ODU区段,且一个所述光通道数据单元ODUj对应多个所述ODU区段中的一个;通过所述ODU区段将所述光通道数据单元ODUj汇聚到光传输网络的ODUCn层;通过预设的通用标签标记所述光通道数据单元ODUj与所述ODU区段之间的对应关系。

Description

信号映射方法以及装置、服务器及计算机可读存储介质
本申请要求在2018年04月09日提交中国专利局、申请号为201810309845.7的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,例如涉及一种信号映射方法以及装置、服务器及计算机可读存储介质。
背景技术
近年来,随着技术与产业链的逐步成熟,以及互联网对经济与社会的深度渗透,网络带宽和传输管道承受巨大的规划压力,许多运营商争相将核心与干线网络从10G/40G升级到100G。为满足这种带宽日益快速增长的需求,光传输网络需要更高的频谱效率和更高的传输速率。一些先进运营商、标准组织、研究机构以及设备供应商等都将目光聚焦在下一代光传输网络的技术、标准等研究工作中,这就是200G/400G/1T等超100G光传送网络。
基于传统的光传输网传送平面,ITU-T的G.8080和G.807定义了自动交换光网络(Automatically Switched Optical Network,ASON)的体系结构,引入了控制平面的概念,控制平面通过使用通用多协议标签交换(Generalized Multiprotocol Label Switching,GMPLS)协议,可以动态地交换光网络的拓扑信息、路由信息以及其他的控制信令,实现光通路的动态建立和拆除,以及网络资源的动态分配。GMPLS协议族主要包括路由、信令和链路管理协议,且对标签进行扩展,使得标签不仅可以用来标记传统的数据包,还可以标记时分复用(Time Division Multiplexing,TDM)时隙、波长、波段、光纤等。
ITU-T G.709[g709-2012]引入了新的光通道数据单元(Optical Channel Data Unit,ODU)类型(ODU0,ODU4,ODU2e,和ODUflex),进一步增强了光传输网络(Optical Transport Network,OTN)的调度灵活性。IETF[RFC 4328]说明了流量工程(GMPLS-Traffic Engineering,GMPLS-TE)的相关控制技术细节,而[RFC 7139]在[RFC 4328]的基础上,对相关结构进行了最新的扩展定义,包括通用标签Generalized Label格式定义,如图1所示,表示低速率客户信号(一般称为光通道数据单元ODUj)在高速率信号ODUCn中所占的时隙分配情况。
依据该通用标签格式定义,若按照已定义的最大数据传输单元ODU4(100Gbps)、最小时隙粒度标识1.25G/Bit计算,标识一个ODU4时隙标签的位图(Bitmap)需要80Bit(即10字节),如图2所示;但如若要标识一个超100G时隙标签,位图需要更多的比特Bit位,也就是更多的字节数。比如仅以数据传输单元400G、最小时隙粒度标识1.25G/Bit计算,位图需要320Bit(即40字节),再加上TPN位、保留位Reserved、长度位Length等字段,仅一个通用标签就需要44个字节,如图3所示。依据资源预留协议(Resource Reservation Protocol,RSVP)显示路由信令格式方式建立标签交换路径(Label Switching Path,LSP),每跳路由采用端口加标签的表示方式,则每一跳就需要占据44+4(标签头部)+4(端口)=52个字节,而一般以太网链路层的最大传输单元(Maximum Transmission Unit,MTU)为1500字节,超过即需要分包,因此直接扩展通用标签表示方式业务路由跳数不能太大,否则引起分包传输,在一定程度上会影响协议报文的传输效率。
发明内容
本申请提供了一种基于通用多协议标签交换(Generalized Multiprotocol Label Switching,GMPLS)协议的超100G光传输网络的信号映射方法以及装置、服务器及计算机可读存储介质,以克服相关技术中由于网络速率增大,需要扩展通用标签位图的长度,而影响协议报文的传输效率的缺陷。
本申请一方面提供了一种信号映射方法,该方法包括:将光通道数据单元ODUj汇聚到预设的ODU区段层内的ODU区段上,所述ODU区段层内包括多个ODU区段,且一个所述光通道数据单元ODUj对应多个所述ODU区段中的一个;通过所述ODU区段将所述光通道数据单元ODUj汇聚到光传输网络的ODUCn层;通过预设的通用标签标记所述光通道数据单元ODUj与所述ODU区段之间的对应关系。
再一方面,本申请还提供了一种信号映射装置,该装置包括:
汇聚单元,设置为将光通道数据单元ODUj汇聚到预设的ODU区段层内的ODU区段上,所述ODU区段层内包括多个ODU区段,且一个所述光通道数据单元ODUj对应多个所述ODU区段中的一个,并通过所述ODU区段将所述光通道数据单元ODUj汇聚到光传输网络的ODUCn层;
标记单元,设置为通过预设的通用标签标记所述光通道数据单元ODUj与所述ODU区段之间的对应关系。
还再一方面,本申请还提供一种服务器,所述服务器包括上述任一一种所述的信号映射装置。
又再一方面,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质存储有信号映射方法的计算机程序,所述计算机程序被至少一个处理器执行时,以实现上述任一种所述的映射方法。
附图概述
图1是GMPLS-TE定义的通用标签Generalized Label格式;
图2是以ODU4(时隙粒度1.25G)为例,按相关GMPLS-TE定义,说明Generalized Label格式中位图的占位示意(80Bit,10字节);
图3是以ODUC4(时隙粒度1.25G)为例,按相关GMPLS-TE定义,说明Generalized Label格式中位图的占位示意(320Bit,40字节);
图4是本申请实施例提供的一种信号映射方法的流程示意图;
图5是本申请实施例中由低阶ODUi层经ODU区段映射到高阶ODUCn层的复用方法示意图;
图6是本申请在GMPLS-TE定义的通用标签的示意图;
图7是本申请实施例中说明的由低阶ODUi层经由区段ODU4映射到高阶ODUC4层的标签分配方法示意图;
图8是本申请实施例中说明的由低阶ODUi层经由区段ODU3映射到高阶ODUC4层的标签分配方法示意图;
图9(图9(a)与图9(b))是本申请实施例中说明的变换时隙粒度(5G)标签分配方法示意图;
图10为本申请实施例提供的一种信号映射装置结构示意图。
具体实施方式
为了克服相关技术中由于网络速率增大,需要扩展通用标签位图(Bitmap)的长度,而影响协议报文的传输效率的缺陷,本申请实施例是通过将超100G网络划分为多个光通道数据单元(Optical Channel Data Unit,ODU)区段,并由通用标签标记ODUj与ODU区段之间的对应关系,从而节省通用标签中位图长度, 从而有效克服了相关技术中由于网络速率增大,需要无限扩展通用标签中位图长度,最终影响协议报文的传输效率的缺陷。下面将通过几个示例性的例子对本申请所述的方法进行详细的解释和说明:
本申请实施例提供了一种信号映射方法,参见图4,该方法包括:步骤S401、步骤S402和步骤S403。
在步骤S401中,将光通道数据单元ODUj汇聚到预设的ODU区段层内的ODU区段上,所述ODU区段层内包括多个ODU区段,且一个所述光通道数据单元ODUj对应多个所述ODU区段中的一个。
在步骤S402中,通过所述ODU区段将所述光通道数据单元ODUj汇聚到超100G的光传输网络的ODUCn层。
在步骤S403中,通过预设的通用标签标记所述光通道数据单元ODUj与所述ODU区段之间的对应关系。
也就是说,本申请实施例通过将低阶的ODUj汇聚到ODU区段层,并由ODU区段层映射到高阶的ODUCn层,也就是说,本申请实施例通过将网络划分为多个ODU区段,并由通用标签标记ODUj与ODU区段之间的对应关系,从而节省通用标签中位图位图长度,从而有效避免了相关技术中由于网络速率增大,需要无限扩展通用标签中位图长度,最终影响协议报文的传输效率的情况。
需要说明的是,本申请实施例可以为基于通用多协议标签交换(Generalized Multiprotocol Label Switching,GMPLS)协议的超100G光传输网络的信号映射方法,也就是说,本申请实施例所述光传输网络为超100G的光传输网络,例如,400G、1T等等。
并且,本申请实施例所述的光通道数据单元ODUj连接设备客户侧信号,其中ODUj中的j可以取值0、1、2、2e、3、3e2、4以及flex等,本申请实施例对此不作具体限定。
另外,本申请实施例在实施时,在通过所述ODU区段层将所述光通道数据单元ODUj映射到超100G的光传输网络的高阶ODUCn层之后,由ODUCn层将信号汇聚到更高层的OTUCn层。
需要说明的是,本申请实施例中所述的ODUCn是光通道数据单元ODU的一种,是超过100G的信号表示方式,另外,本申请实施例所述的OTUCn是光通道传送单元OTU的一种,是超过100G的信号表示方式。
图5是本申请实施例中由低阶ODUj层经ODU区段映射到高阶ODUCn层的复用方法示意图,本申请实施例是基于GMPLS协议,业务映射为设备客户侧接入ODUj到区段ODU再到ODUCn,最后汇总到OTUCn层,也就是说,本申请实施例在业务映射过程中,必须经过区段ODU,所以一个ODUj必须位于多个区段ODU中的一个,且不允许出现一个ODUj位于多个区段ODU业务的情况。
本申请实施例将设备层从业务映射上来说实际看做N个区段ODU,其中N=ODUCn/区段ODU,即,ODU区段的个数N=ODUCn的网络传输速率/ODU区段的线路速率,最终将N个区段ODU汇聚成了1个ODUCn信号。
例如实施时,本申请实施例所述的方法在步骤S401之前,还包括:设置所述通用标签;所述通用标签内设有区段号位(Section,Sec),并通过所述区段号位用于标记所述ODUj与所述ODU区段之间的对应关系。
本申请实施例通过区段号位来标记ODUj与ODU区段之间的对应关系,从而节省通用标签中位图长度,从而有效克服了相关技术中由于网络速率增大,需要无限扩展通用标签中位图长度,最终影响协议报文的传输效率的缺陷。
并且,在实施时,本申请实施例所述通用标签内还设有时隙粒度位(Granularity,Gra),所述时隙粒度位用于标记所述ODUj的一个比特(Bit)位占用的时隙粒度。
本申请实施例通过设置时隙粒度位,并对时隙粒度进行进一步的划分,在一定程度上也可以减小通用标签中位图长度。
在一实施例中,本申请实施例在G.709通用标签对象格式中新定义区段号位(Section,Sec)的概念,标识接入的ODUj信号所从属的区段ODU编号,例如,0表示第一区段,1表示第二区段,2表示第三区段,等等。
由于在速率为ODU4及以下速率时,保留字段(Reserved)位(支路端口编号TPN字段之后,长度(Length)字段之前,1字节,4比特位,其中,TPN是Tributary Port Number的缩写)无意义,所以可将区段号位和时隙粒度位设置在Reserved位,示例性的如图6所示,但本申请实施例并不限定区段号位和时隙粒度位只能在相关格式的Reserved位处,本领域的技术人员可以根据实际需要来设置区段号位和时隙粒度位在通用标签中的位置。
也就是说,本申请实施例在网络传输速率小于400G时,将区段号位和时隙粒度位设置在所述通用标签的保留reserved位。
即,本申请实施例在速率超过ODU4时,低阶ODUj经由N个“区段ODU”复用映射到ODUCn(ODUCn=N*区段ODU的线段速率),每一个“区段ODU”有其专属编号,而低阶ODUj标签中的区段号位中的区段号,则表示其所从属的“区段ODU”,用于超100G OTN网络下跨区段ODU的时隙调度分配。
需要说明的是,图6中区段号位和时隙粒度位在通用标签中的位置设置方法仅是一个例子,例如实施时,本申请实施例也可以将区段号位设置在时隙粒度位后,或者将二者设置在通用标签的其他位置。
本申请实施例所述的时隙粒度的数值代表该通用标签位图的一个比特位占用的不同时隙粒度。
例如实施时,本申请实施例设置的时隙粒度包括但不限于1.25Gbit/s、2.5Gbit/s、5Gbit/s等,本申请实施例通过设置多种的时隙粒度,从而打破相关一个比特位代表1.25G最小时隙粒度的限制,由于单个粒度增加带宽,所需的位图也会相应减小,所以本申请实施例可以更加灵活的支持客户侧不同类型信号的接入。
例如实施时,本申请实施例在步骤S401之前,需先设置所述ODU区段层内的ODU区段。
其中,本申请实施例所述ODU区段的个数N=ODUCn的网络传输速率/ODU区段的线路速率。
需要说明的是,本申请实施例所述的ODU区段的线路速率可以根据实际需要进行任意设置,而在ODUCn容量一定的情况下,区段ODU的容量越大,其数量N也就最少,对应设备层所需要的接口也就最少,而IETF[RFC 7139]目前定义的最大ODU容量为ODU4(100G),因此区段ODU容量选择ODU4对应设备层所需要的接口最少。但是本申请实施例并不限定区段ODU都为ODU4,例如实施时,本领域的技术人员可以根据设备层实际接口类型的不同或者日后相关标准技术的更新发展,选择其他类型的ODU作为区段ODU容量。
例如实施时,本申请实施例将光通道数据单元ODUj汇聚到预设的ODU区段层内的ODU区段上还提供了一种应用实施方式,例如可以包括:根据所述ODU区段的可用时隙以及当前ODUj的时隙,将所述ODUj汇聚到所述ODU区段上。
例如实施时,本申请实施例是按照ODU区段的区段号顺序,依次判断ODU区段的可用时隙是否大于当前ODUj的时隙,并将该ODUj汇聚到首个ODU区 段的可用时隙大于所述ODUj时隙的ODU区段上。
也就是说,本申请实施例可实现根据ODUj的时隙将ODUj划分到相应的ODU区段上,并且,在具体划分上,本申请实施例是按照ODU区段的区段号顺序依次完成划分。
总体来说,本申请实施例在既遵守相关的GMPLS协议标准的基础上,能够实现对接入不同速率的业务时隙跨区段、多粒度的灵活调度,而无需随着承载速率需求的扩大而无限制的扩展位图长度。
下面将结合图7-图9对本申请实施例所述的方法进行详细的解释和说明。
如图7所示,本申请实施例以ODU层信号为ODUC4(400G)、区段ODU容量为ODU4(100G)、时隙粒度1.25G为例说明本申请实施例的超100G光传输网络的信号映射方法,设备客户侧随机接入ODU0、ODU3、ODU4等不同速率的信号,本申请实施例所述方法包括:步骤701至步骤705。
在步骤701中,在相关GMPLS协议定义的通用标签格式中,由于在TDM(ODUk层)速率为ODU4及以下时保留字段无意义,所以本申请实施例利用保留字段的高4比特位进行区段号标识,区段号取值0~3,用于表示调度口时隙对应哪一个ODU4的区段。
在步骤702中,客户侧接入一个ODU0(占用1个时隙)的业务,从属于第一个ODU4(共80个时隙)区段,则第一个ODU4区段可用时隙剩余79个。
在步骤703中,客户侧再次接入一个ODU4(占用80个时隙)的业务,由于第一个ODU4区段可用时隙只剩余79个,不够该ODU4业务接入,则将该ODU4业务分配到第二个ODU4区段,第二个ODU4区段可用时隙剩余0个。
在步骤704中,客户侧再次接入两个ODU3(占用31个时隙)业务,由于第一个ODU4区段可用时隙剩余79个,足够该ODU3业务接入,则将该ODU3业务继续分配到第一个ODU4区段,第一个ODU4区段可用时隙剩余14个。
在步骤705中,客户侧再次接入一个ODU3(占用31个时隙)业务,由于第一个ODU4区段可用时隙剩余14个,不够该ODU3业务接入,而第二个ODU4区段可用时隙剩余0个,则将该ODU3业务继续分配到第三个ODU4区段,第三个ODU4区段可用时隙剩余48个。
总体来说,本申请实施例可在GMPLS-TE定义的通用标签(Generalized Label)中位图占位不超过80比特(10字节)的前提下,经由4个ODU4区段,实现由客户侧低阶ODUi层不同的接入信号(1个ODU0、3个ODU3、1个ODU4) 复用到超100G高阶ODUCn层的时隙灵活分配。
如图8所示,本申请实施例仍以ODU层信号为ODUC4(400G)、但区段ODU容量为ODU3(40G)、时隙粒度1.25G为例,设备客户侧随机接入ODU0、ODU1、ODU2、ODU3等不同速率的信号(客户侧接入的ODUi容量不得大于区段ODU容量),本申请实施例所述方法包括:步骤801至步骤805。
在步骤801中,客户侧接入一个ODU0(占用1个时隙)的业务,从属于第一个ODU3(共32个时隙)区段,则第一个ODU3区段可用时隙剩余31个。
在步骤802中,客户侧再次接入一个ODU3(占用32个时隙)的业务,由于第一个ODU3区段可用时隙只剩余31个,不够该ODU3业务接入,则将该ODU3业务分配到第二个ODU3区段,第二个ODU3区段可用时隙剩余0个。
在步骤803中,客户侧再次接入一个ODU2(占用8个时隙)业务,由于第一个ODU3区段可用时隙剩余31个,足够该ODU2业务接入,则将该ODU2业务继续分配到第一个ODU3区段,第一个ODU3区段可用时隙剩余23个。
在步骤804中,客户侧再次接入一个ODU3(占用32个时隙)业务,由于第一个ODU3区段可用时隙剩余23个,不够该ODU3业务接入,而第二个ODU3区段可用时隙剩余0个,则将该ODU3业务继续分配到第三个ODU3区段,第三个ODU3区段可用时隙剩余0个。
在步骤805中,客户侧再次接入一个ODU1(占用2个时隙)业务,由于第一个ODU3区段可用时隙剩余23个,足够该ODU1业务接入,则将该ODU1业务继续分配到第一个ODU3区段,第一个ODU3区段可用时隙剩余21个。
总体来说,本申请实施例在GMPLS-TE定义的通用标签中位图占位不超过80比特(10字节)的前提下,经由10个ODU3区段,实现由客户侧低阶ODUi层不同的接入信号(1个ODU0、1个ODU1、1个ODU2、2个ODU3)复用到超100G高阶ODUCn层的时隙灵活分配。
如图9(图9(a)与图9(b))所示,基于本申请实施例所述的映射框架,业务映射为设备客户侧接入ODUj到ODUCn,若扩展粒度表示,则也可以节省标签的位图大小。
以ODU3(40G)映射到ODUC4(400G)、时隙粒度5G、不用区段划分为例,整个ODUC4在5G粒度下表示为80个比特,ODU3信号占用8个时隙对应其中的8个比特,假设从bit0开始连续8bit,则对应图9(a)所示的标签表示方式。
若与区段结合,则可以进一步减少位图。仍以ODU3(40G)映射到ODUC4(400G)、时隙粒度5G为例,采用区段划分,整个ODUC4在5G粒度下表示为4个20比特,ODU3信号占用8个时隙对应其中的8个比特,假设从bit0开始连续8比特,则对应图9(b)所示的标签表示方式。
也就是说,本申请实施例通过扩展粒度可以节省标签的位图大小,而通过区段划分,可以进一步缩短标签的位图的长度。
与图4相对应的,本申请实施例还提供了一种信号映射装置,如图10所示,本申请实施例的所述通用标签包括:汇聚单元和标记单元。
汇聚单元,设置为将光通道数据单元ODUj汇聚到预设的ODU区段层内的ODU区段上,所述ODU区段层内包括多个ODU区段,且一个所述光通道数据单元ODUj对应多个所述ODU区段中的一个,并通过所述ODU区段将所述光通道数据单元ODUj汇聚到光传输网络的ODUCn层。
标记单元,设置为通过预设的通用标签标记所述光通道数据单元ODUj与所述ODU区段之间的对应关系。
也就是说,本申请实施例通过将网络划分为多个ODU区段,并由通用标签标记ODUj与ODU区段之间的对应关系,从而节省通用标签中位图长度,从而有效解决了相关技术中由于网络速率增大,需要无限扩展通用标签中位图长度,最终影响协议报文的传输效率的问题。
例如实施时,本申请实施例所述的装置还包括:设置单元,通过所述设置单元设置所述通用标签,例如可以包括:在所述通用标签内设置区段号位(Section,Sec),所述区段号位用于标记所述光通道数据单元ODUj与所述ODU区段之间的对应关系。
本申请实施例通过区段号位来标记ODUj与ODU区段之间的对应关系,从而节省通用标签中位图长度,从而有效克服了相关技术中由于网络速率增大,需要无限扩展通用标签中位图长度,最终影响协议报文的传输效率的问题。
需要说明的是,本申请实施例例如可以为基于通用多协议标签交换(Generalized Multiprotocol Label Switching,GMPLS)协议的超100G光传输网络的信号映射装置,也就是说,本申请实施例所述光传输网络为超100G的光传输网络,例如,400G、1T等等。
例如实施时,本申请实施例还通过所述设置单元在所述通用标签内设置时隙粒度位Granularity,Gra),所述时隙粒度位用于标记所述光通道数据单元ODUj 的一个比特位占用的时隙粒度。
本申请实施例通过设置时隙粒度位,并对时隙粒度进行进一步的划分,在一定程度上也可以减小通用标签中位图长度。
在一实施例中,本申请实施例在G.709通用标签对象格式中新定义区段号位的概念,标识接入的ODUj信号所从属的区段ODU编号,例如,0表示第一区段,1表示第二区段,2表示第三区段,等等。
由于在速率为ODU4及以下速率时,保留字段位(TPN字段之后,长度字段之前,1字节,4比特位)无意义,所以可将区段号位和时隙粒度位设置在保留位,即Reserved位,具体如图6所示,但本申请实施例并不限定区段号位和时隙粒度位只能在相关格式的Reserved位处,本领域的技术人员可以根据实际需要来设置区段号位和时隙粒度位在通用标签中的位置。
也就是说,本申请实施例在网络传输速率小于400G时,将区段号位和时隙粒度位设置在所述通用标签的保留位。
即,本申请实施例在速率超过ODU4时,低阶ODUj经由N个“区段ODU”复用映射到ODUCn(ODUCn=N*区段ODU线段速率),每一个“区段ODU”有其专属编号,而低阶ODUj标签中的区段号位中的区段号,则表示其所从属的“区段ODU”,用于超100G OTN网络下跨区段ODU的时隙调度分配。
需要说明的是,图6中区段号位和时隙粒度位在通用标签中的位置设置方法仅是一个例子,例如实施时,本申请实施例也可以将区段号位设置在时隙粒度位后,或者将二者设置在通用标签的其他位置。
本申请实施例所述的时隙粒度的数值代表该通用标签位图的一个比特位占用的不同时隙粒度。
例如实施时,本申请实施例设置的时隙粒度包括但不限于1.25Gbit/s、2.5Gbit/s、5Gbit/s等,本申请实施例通过设置多种的时隙粒度,从而打破相关一个比特位代表1.25G最小时隙粒度的限制,由于单个粒度增加带宽,所需的位图也会相应减小,所以本申请实施例可以更加灵活的支持客户侧不同类型信号的接入。
例如实施时,本申请实施例所述设置单元还设置为,设置ODU区段的个数,其中,ODU区段的个数N=ODUCn的网络传输速率/ODU区段的线路速率。
需要说明的是,本申请实施例所述的ODU区段的线路速率可以根据实际需要进行任意设置,而在ODUCn容量一定的情况下,区段ODU的容量越大,其 数量N也就最少,对应设备层所需要的接口也就最少,而IETF[RFC 7139]目前定义的最大ODU容量为ODU4(100G),因此区段ODU容量选择ODU4对应设备层所需要的接口最少。但是本申请实施例并不限定区段ODU都为ODU4,例如实施时,本领域的技术人员可以根据设备层实际接口类型的不同或者日后相关标准技术的更新发展,选择其他类型的ODU作为区段ODU容量。
在一实施例中,所述汇聚单元还设置为根据所述ODU区段的可用时隙以及当前光通道数据单元ODUj的时隙,将当前的光通道数据单元ODUj汇聚到所述ODU区段上。
例如实施时,本申请实施例所述汇聚单元是按照所述ODU区段的区段号顺序,依次判断所述ODU区段的可用时隙是否大于当前光通道数据单元ODUj的时隙,并将当前光通道数据单元ODUj汇聚到首个ODU区段的可用时隙大于当前光通道数据单元ODUj时隙的ODU区段上。
也就是说,本申请实施例可实现根据ODUj的时隙将ODUj划分到相应的ODU区段上,并且,在具体划分上,本申请实施例是按照ODU区段的区段号顺序依次完成划分。
总体来说,本申请实施例在既遵守相关的GMPLS协议标准的基础上,能够实现对接入不同速率的业务时隙跨区段、多粒度的灵活调度,而无需随着承载速率需求的扩大而无限制的扩展位图长度。
本申请实施例的相关部分可参照方法实施例部分进行理解,在此不再详细赘述。
相应的,本申请实施例还提供了一种服务器,所述服务器包括上述任一种所述的信号映射装置,并达到相应的技术效果,相关内容可参照方法实施例和装置实施例部分进行理解。
并且,本申请的实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有信号映射方法的计算机程序,所述计算机程序被至少一个处理器执行时,以实现上述的任意一种所述的信号映射方法,并达到相应的技术效果,相关内容可参照方法实施例和装置实施例部分进行理解。

Claims (14)

  1. 一种信号映射方法,包括:
    将光通道数据单元ODUj汇聚到预设的ODU区段层内的ODU区段上,所述ODU区段层内包括多个ODU区段,且一个所述光通道数据单元ODUj对应多个所述ODU区段中的一个;
    通过所述ODU区段将所述光通道数据单元ODUj汇聚到光传输网络的ODUCn层;
    通过预设的通用标签标记所述光通道数据单元ODUj与所述ODU区段之间的对应关系。
  2. 根据权利要求1所述的方法,在将光通道数据单元ODUj汇聚到预设的ODU区段层内的ODU区段上之前,还包括:
    设置所述通用标签;
    所述通用标签内设有区段号位,所述区段号位用于标记所述光通道数据单元ODUj与所述ODU区段之间的对应关系。
  3. 根据权利要求2所述的方法,其中,
    所述通用标签内还设有时隙粒度位,所述时隙粒度位用于标记所述光通道数据单元ODUj的一个比特位占用的时隙粒度。
  4. 根据权利要求3所述的方法,其中,
    所述时隙粒度包括以下中的至少一种:1.25Gbit/s、2.5Gbit/s和5Gbit/s。
  5. 根据权利要求3所述的方法,其中,
    在网络传输速率小于400G的情况下,所述区段号位和所述时隙粒度位设置在所述通用标签的保留位。
  6. 根据权利要求1-5中任意一项所述的方法,其中,
    所述ODU区段的个数N等于ODUCn的网络传输速率除以ODU区段的线路速率。
  7. 根据权利要求1-5中任意一项所述的方法,其中,所述将光通道数据单元ODUj汇聚到预设的ODU区段层内的ODU区段上,包括:
    根据所述ODU区段的可用时隙以及当前光通道数据单元ODUj的时隙,将当前的光通道数据单元ODUj汇聚到所述ODU区段上;
    其中,所述根据所述ODU区段的可用时隙以及当前光通道数据单元ODUj的时隙,将当前的光通道数据单元ODUj汇聚到所述ODU区段上,包括:
    按照所述ODU区段的区段号顺序,依次判断所述ODU区段的可用时隙是 否大于当前光通道数据单元ODUj的时隙,并将当前光通道数据单元ODUj汇聚到首个ODU区段的可用时隙大于当前光通道数据单元ODUj时隙的ODU区段上。
  8. 一种信号映射装置,包括:
    汇聚单元,设置为将光通道数据单元ODUj汇聚到预设的ODU区段层内的ODU区段上,所述ODU区段层内包括多个ODU区段,且一个所述光通道数据单元ODUj对应多个所述ODU区段中的一个,并通过所述ODU区段将所述光通道数据单元ODUj汇聚到光传输网络的ODUCn层;
    标记单元,设置为通过预设的通用标签标记所述光通道数据单元ODUj与所述ODU区段之间的对应关系。
  9. 根据权利要求8所述的装置,还包括:
    设置单元,设置为设置所述通用标签,在所述通用标签内设置区段号位,所述区段号位用于标记所述光通道数据单元ODUj与所述ODU区段之间的对应关系。
  10. 根据权利要求9所述的装置,其中,
    所述设置单元还设置为,在所述通用标签内设置时隙粒度位,所述时隙粒度位用于标记所述光通道数据单元ODUj的一个比特位占用的时隙粒度。
  11. 根据权利要求10所述的装置,其中,
    所述设置单元还设置为,在网络传输速率小于400G的情况下,将所述区段号位和所述时隙粒度位设置在所述通用标签的保留位。
  12. 根据权利要求8-11中任意一项所述的装置,其中,
    所述汇聚单元还设置为,根据所述ODU区段的可用时隙以及当前光通道数据单元ODUj的时隙,将当前的光通道数据单元ODUj汇聚到所述ODU区段上,并按照所述ODU区段的区段号顺序,依次判断所述ODU区段的可用时隙是否大于当前光通道数据单元ODUj的时隙,并将当前光通道数据单元ODUj汇聚到首个ODU区段的可用时隙大于当前光通道数据单元ODUj时隙的ODU区段上。
  13. 一种服务器,所述服务器包括权利要求8-12中任意一项所述的信号映射装置。
  14. 一种计算机可读存储介质,所述计算机可读存储介质存储有信号映射的计算机程序,所述计算机程序被至少一个处理器执行时,以实现权利要求1-7中任意一项所述的信号映射方法。
PCT/CN2019/081728 2018-04-09 2019-04-08 信号映射方法以及装置、服务器及计算机可读存储介质 WO2019196786A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810309845.7A CN110365439B (zh) 2018-04-09 2018-04-09 信号映射方法、装置、服务器及计算机可读存储介质
CN201810309845.7 2018-04-09

Publications (1)

Publication Number Publication Date
WO2019196786A1 true WO2019196786A1 (zh) 2019-10-17

Family

ID=68163422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/081728 WO2019196786A1 (zh) 2018-04-09 2019-04-08 信号映射方法以及装置、服务器及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN110365439B (zh)
WO (1) WO2019196786A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101635867A (zh) * 2008-07-21 2010-01-27 华为技术有限公司 光信号的复用映射和解复用映射方法、装置及系统
CN101945306A (zh) * 2009-07-10 2011-01-12 中兴通讯股份有限公司 一种基于g.709的标签交换路径的通用标签生成方法
CN104303475A (zh) * 2013-04-10 2015-01-21 华为技术有限公司 调整线路接口速率的方法和节点
US20160006636A1 (en) * 2013-02-17 2016-01-07 Zte Corporation Method and node for detecting subframe sequence error in inverse multiplexing

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101945307B (zh) * 2009-07-03 2013-04-24 华为技术有限公司 光网络中标签的分配处理方法、光通信装置及光通信系统
CN104247452B (zh) * 2012-04-26 2018-06-22 中兴通讯股份有限公司 一种光通道数据单元的gmp映射方法及装置
CN105451102B (zh) * 2014-08-22 2019-05-28 华为技术有限公司 一种处理信号的方法、装置及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101635867A (zh) * 2008-07-21 2010-01-27 华为技术有限公司 光信号的复用映射和解复用映射方法、装置及系统
CN101945306A (zh) * 2009-07-10 2011-01-12 中兴通讯股份有限公司 一种基于g.709的标签交换路径的通用标签生成方法
US20160006636A1 (en) * 2013-02-17 2016-01-07 Zte Corporation Method and node for detecting subframe sequence error in inverse multiplexing
CN104303475A (zh) * 2013-04-10 2015-01-21 华为技术有限公司 调整线路接口速率的方法和节点

Also Published As

Publication number Publication date
CN110365439B (zh) 2021-09-03
CN110365439A (zh) 2019-10-22

Similar Documents

Publication Publication Date Title
US10334335B2 (en) Method for assigning and processing a label in an optical network, optical communication device, and optical communication system
WO2017156987A1 (zh) 一种灵活以太网路径建立的方法和装置
US9825845B2 (en) Path computation method, path computation element, node device, and network system
WO2017201953A1 (zh) 一种客户业务处理的方法和设备
CN106803814B (zh) 一种灵活以太网路径的建立方法、装置及系统
EP2627043B1 (en) Method, device and system for lossless bandwidth adjustment
WO2018090856A1 (zh) 用于建立灵活以太网群组的方法和设备
US10218455B2 (en) Method and apparatus for increasing and decreasing variable optical channel bandwidth
WO2015035883A1 (zh) 迁移数据的方法和通信节点
US20180324505A1 (en) Protection Switching Method and Node
EP2958279B1 (en) Service transfer device and method for optical channel data unit
CN106803811A (zh) 一种路由信息的获取方法及装置
WO2017201757A1 (zh) 一种业务传送方法和第一传送设备
US6816494B1 (en) Method and apparatus for distributed fairness algorithm for dynamic bandwidth allocation on a ring
Zhang et al. Framework for GMPLS and PCE Control of G. 709 Optical Transport Networks
EP1983712B1 (en) An automatic discovering method and device for client layer link
US9634813B2 (en) Hitless multi-carrier spectrum migration method and apparatus
WO2021027434A1 (zh) 一种业务传输的方法、装置和系统
CN105227371B (zh) 一种基于ODUflex的通道带宽调整方法
WO2019196786A1 (zh) 信号映射方法以及装置、服务器及计算机可读存储介质
CN104852851A (zh) 基于分组增强型光传送网的QoS功能实现系统及方法
WO2012088956A1 (zh) Oduflex无损调整能力路由洪泛方法、装置及节点
WO2024001370A1 (zh) 细粒度能力的洪泛方法、细粒度的配置方法,节点及介质
CN102687473B (zh) 端到端标签交换路径的建立方法和系统
WO2020107298A1 (zh) 传输通用服务传输转变编码的设备和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19785304

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 08.02.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19785304

Country of ref document: EP

Kind code of ref document: A1