WO2019196594A1 - 光模块 - Google Patents

光模块 Download PDF

Info

Publication number
WO2019196594A1
WO2019196594A1 PCT/CN2019/078335 CN2019078335W WO2019196594A1 WO 2019196594 A1 WO2019196594 A1 WO 2019196594A1 CN 2019078335 W CN2019078335 W CN 2019078335W WO 2019196594 A1 WO2019196594 A1 WO 2019196594A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip
lens array
optoelectronic chip
groove
optoelectronic
Prior art date
Application number
PCT/CN2019/078335
Other languages
English (en)
French (fr)
Inventor
刘旭霞
钟岩
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Priority to US16/354,666 priority Critical patent/US11209608B2/en
Publication of WO2019196594A1 publication Critical patent/WO2019196594A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/424Mounting of the optical light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4249Packages, e.g. shape, construction, internal or external details comprising arrays of active devices and fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/4284Electrical aspects of optical modules with disconnectable electrical connectors

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to an optical module.
  • Active Optical Cables are communication cables that realize photoelectric conversion by means of external energy sources during communication.
  • an AOC includes an optical fiber and optical modules respectively located at both ends of the optical fiber, and photoelectric conversion can be realized by connecting the optical fiber and the optical module.
  • an optical module including: a circuit board, a lens assembly, and a first lens array and a second lens array.
  • a first driving chip, a first photoelectric chip, a second photoelectric chip, and a second driving chip are sequentially disposed on the circuit board in a first direction.
  • the lens assembly covers the first optoelectronic chip and the second optoelectronic chip and has a first groove and a second groove on an upper surface thereof; the first lens array and the second lens array are arranged up and down in the second concave The groove is adjacent to the side of the first groove.
  • a bottom surface of the first recess forms a reflective surface;
  • the first optoelectronic chip is configured to reflect light emitted from the first optoelectronic chip or light received by the first optoelectronic chip through the reflective surface and pass through
  • the first lens array is configured to transmit light emitted from the second optoelectronic chip or light received by the second optoelectronic chip through the reflective surface and through the second lens array.
  • 1 is a schematic structural view of an optical module
  • FIG. 2 is a schematic overall structural diagram of an optical module according to one or more embodiments of the present disclosure
  • FIG. 3 is a schematic cross-sectional view of a light module according to one or more embodiments of the present disclosure
  • FIG. 4 is a first positional relationship diagram of a driving chip and an optoelectronic chip according to one or more embodiments of the present disclosure
  • FIG. 5 is a second positional relationship diagram of a driving chip and an optoelectronic chip according to one or more embodiments of the present disclosure.
  • FIG. 6 is a third positional relationship diagram of a driving chip and an optoelectronic chip according to one or more embodiments of the present disclosure
  • FIG. 7 is a fourth positional relationship diagram of a driving chip and an optoelectronic chip according to one or more embodiments of the present disclosure
  • Figure 8 is a bottom plan view of the lens assembly of Figure 3 provided in accordance with one or more embodiments of the present disclosure
  • FIG. 9 is a schematic structural diagram of a third lens array and a fourth lens array according to one or more embodiments of the present disclosure.
  • FIG. 10 is a schematic diagram of an optical path of an optical module according to one or more embodiments of the present disclosure.
  • the optical module is a component that realizes photoelectric conversion in the AOC, that is, the transmitting end converts the electrical signal into an optical signal and transmits it through the optical fiber; the receiving end converts the received optical signal into an electrical signal.
  • the optical module includes an upper casing 01, a lower casing 02, and a circuit board 03, a chip 04, a lens assembly 05, a fiber holder 06, and the like located in a chamber formed by the upper casing 01 and the lower casing 02.
  • a chip 04 is placed on the surface of the circuit board 03, and a lens assembly 05 is placed above the chip 04, and the chip 04 realizes transmission/reception of light through the lens assembly 05.
  • One side of the lens assembly 05 is provided with a fiber holder 06, and the optical fiber is inserted into the lens assembly 05 through the fiber holder 06 to realize optical connection between the lens assembly 05 and the optical fiber.
  • the optical module of the above structure is more suitable for connecting a single row of optical fibers.
  • the number of fibers continues to increase.
  • the volume of the lens assembly and the optical fiber holder is continuously increased, and the overall volume of the optical module is continuously increased.
  • the multi-fiber, large-volume optical module cannot meet the requirements of package integration miniaturization, and will increase the manufacturing cost of the optical module.
  • the optical module includes: a first driving chip, a first optoelectronic chip, a second optoelectronic chip, and a second driving chip, which are sequentially disposed along a first direction of the circuit board on the circuit board, and a cover A lens assembly of the first optoelectronic chip and the second optoelectronic chip.
  • the upper surface of the lens assembly is provided with a first groove and a second groove.
  • the bottom surface of the first groove forms a reflecting surface;
  • the second groove is provided with a first lens array and a second lens array arranged up and down adjacent to the side of the first groove.
  • the light emitted by the two sets of optoelectronic chips is reflected by different positions on the reflecting surface and then injected into the first lens array and the second lens array, respectively. Since the first lens array and the second lens array are arranged on the sidewall of the second groove at the same time, the light transmission channel can be increased, the volume of the optical module can be reduced, and the manufacturing cost of the optical module can be reduced.
  • the first optoelectronic chip and the second optoelectronic chip are disposed adjacent to each other, and the light emitted by the first optoelectronic chip or the light received by the first optoelectronic chip is reflected by the reflective surface and passes through the first lens array, the light emitted by the second optoelectronic chip Or the light received by the second optoelectronic chip is reflected by the reflective surface and passes through the second lens array, so that the reflective surface can simultaneously reflect the two sets of light to form two optical paths arranged up and down, thereby realizing light on the basis of increasing the optical transmission channel. Multi-channel simultaneous transmission.
  • FIG. 2 is a schematic diagram showing the overall structure of an optical module according to one or more embodiments of the present application.
  • FIG. 3 is a schematic cross-sectional view showing the optical module of the optical module provided by one or more embodiments of the present application. .
  • the optical module provided by the embodiment of the present application includes an upper casing 01 and a lower casing 02.
  • the upper outer casing 01 and the lower outer casing 02 are fastened to form an inner hollow chamber.
  • the inside of the chamber formed by the upper casing 01 and the lower casing 02 is packaged with a circuit board 1, a first driving chip 2, a first optoelectronic chip 3, a second optoelectronic chip 4, a second driving chip 5, a lens assembly 6, and a fiber holder 7.
  • a circuit board 1 a first driving chip 2
  • a first optoelectronic chip 3 a first optoelectronic chip 3
  • a second optoelectronic chip 4 a second driving chip 5
  • lens assembly 6 includes a fiber holder 7.
  • the circuit board 1 is located at the bottom of the inside of the lower casing 02.
  • the first driving chip 2, the first optoelectronic chip 3, the second optoelectronic chip 4, and the second driving chip 5 are sequentially disposed on the circuit board 1.
  • the first driving chip 2, the first optoelectronic chip 3, the second optoelectronic chip 4, and the second driving chip 5 are disposed on the circuit board 1 in order to facilitate the driving of the chip driving optoelectronic chip.
  • the first driving The chip 2 is configured to drive the first optoelectronic chip 3, and the second driver chip 5 is configured to drive the second optoelectronic chip 4.
  • the upper cover of the first optoelectronic chip 3 and the second optoelectronic chip 4 is provided with a lens assembly 6 configured to reflect the light emitted by the first optoelectronic chip 3 and the second optoelectronic chip 4 or by the first optoelectronic chip 3 and the second Light received by the optoelectronic chip 4.
  • the upper surface of the lens assembly 6 is provided with a first groove 8 and a second groove 9.
  • the first groove 8 and the second groove 9 are disposed adjacent to each other.
  • the bottom surface of the first recess 8 forms a reflecting surface 10.
  • the second groove 9 is disposed adjacent to the side of the first groove 8 with a first lens array 11 and a second lens array 12, and the first lens array 11 and the second lens array 12 are arranged in the second concave direction from top to bottom.
  • the reflecting surface 10 formed on the bottom surface of the first recess 8 is configured to reflect the light emitted by the first optoelectronic chip 3 and the second optoelectronic chip 4 or the light received by the first optoelectronic chip 3 and the second optoelectronic chip 4, thus, for convenience
  • the positional arrangement of the first lens array 11 and the second lens array 12 and in consideration of the volume of the lens assembly 6, the inclination angle of the reflection surface 10 can be set to 45 ⁇ 5°.
  • the reflecting surface 10 reflects the first optoelectronic chip 3 and The light emitted by the two optoelectronic chips 4 or the light received by the first optoelectronic chip 3 and the second optoelectronic chip 4.
  • each of the first lens array 11 and the second lens array 12 may be an array of convex lenses, and thus both the first lens array 11 and the second lens array 12 have a function of condensing light and converting into parallel beams.
  • the first lens array 11 and the second lens array 12 respectively include at least 8 convex lenses.
  • the first lens array 11 and the second lens array 12 comprise the same number of convex lenses to achieve simultaneous transmission of multiple rays. Further, in order to facilitate the simultaneous arrangement of the first lens array 11 and the second lens array 12 on the sidewall of the second recess 9, and the light reflected by the reflective surface 10 is incident on the first lens array 11 and the second lens array 12, respectively.
  • the first lens array 11 and the second lens array 12 may be disposed in parallel and are both parallel to the bottom surface of the second groove 9.
  • the first driving chip 2 drives the first optoelectronic chip 3 to operate
  • the light emitted by the first optoelectronic chip 3 is reflected by the reflecting surface 10 and then enters the first lens array 11; or, passes through the first lens.
  • the light of the array 11 is reflected by the reflecting surface 10 and injected into the first optoelectronic chip 3 to realize photoelectric conversion during the transmitting process and the receiving process.
  • the second driving chip 5 drives the second optoelectronic chip 4 to operate
  • the light emitted by the second optoelectronic chip 4 is reflected by the reflecting surface 10 and then enters the second lens array 12; or, passes through the second lens array 12.
  • the light is reflected by the reflecting surface 10 and injected into the second optoelectronic chip 4 to realize photoelectric conversion of the transmitting process and the receiving process.
  • the first lens array 11 and the second lens array 12 can increase the light transmission channel and reduce the volume of the optical module. Reduce the manufacturing cost of the optical module.
  • the first optoelectronic chip 3 and the second optoelectronic chip 4 are disposed adjacent to each other, and the light emitted by the first optoelectronic chip 3 or the light received by the first optoelectronic chip 3 passes through the reflective surface 10 and the first lens array 11, the second The light emitted by the optoelectronic chip 4 or the light received by the second optoelectronic chip 4 passes through the reflecting surface 10 and the second lens array 12, so that the reflecting surface 10 can simultaneously reflect two sets of light to form two optical paths arranged up and down, thereby increasing the light. Simultaneous transmission of multiple channels of light is achieved based on the transmission channel.
  • the first driver chip 2 and the second driver chip 5 are both the transmit driver chip 13 or the receive driver chip 14.
  • the first optoelectronic chip 3 and the second optoelectronic chip 4 are both the photoemission chip 15 or the photoreceiving chip 16.
  • the emission driving chip 13 is configured to drive the photo-emissive chip 15
  • the receiving driving chip 14 is configured to drive the photo-receiving chip 16 .
  • FIG. 4 illustrates a first positional relationship diagram of a driving chip and an optoelectronic chip in accordance with one or more embodiments of the present disclosure.
  • the first driving chip 2 and the second driving chip 5 are both emission driving chips 13
  • the first photovoltaic chip 3 and the second photovoltaic chip 4 are both photo-emitting chips 15.
  • the two emission driving chips 13 respectively control the two photo-emitting chips 15 to emit light, and the emitted light is reflected by the reflecting surface 10 and then injected into the first lens array 11 and the second lens array 12, respectively.
  • the optical module can only achieve the emission of light.
  • FIG. 5 illustrates a second positional relationship diagram of a driver chip and an optoelectronic chip in accordance with one or more embodiments of the present disclosure.
  • the first driving chip 2 and the second driving chip 5 are both receiving driving chips 14, and the first optoelectronic chip 3 and the second optoelectronic chip 4 are both photo receiving chips 16.
  • the optical module When the optical module is in operation, the light passing through the first lens array 11 and the second lens array 12 is reflected by the reflecting surface 10 and then injected into the two photo receiving chips 16, respectively, and the two receiving driving chips 14 respectively control the two photo receiving chips. 16 receives the light. In this case, the optical module is only capable of receiving light.
  • FIG. 6 illustrates a third positional relationship diagram of a driver chip and an optoelectronic chip in accordance with one or more embodiments of the present disclosure.
  • the first driving chip 2 is the emission driving chip 13
  • the first photoelectric chip 3 is the photoelectric transmitting chip 15
  • the second photoelectric chip 4 is the photoelectric receiving chip 16
  • the second driving chip 5 is the receiving driving chip 14 .
  • the emission driving chip 13 controls the photo-emitting chip 15 to emit light, and the emitted light is reflected by the reflecting surface 10 and then injected into the first lens array 11; meanwhile, the light passing through the second lens array 12 passes through the reflecting surface 10 After being reflected, it is incident on the photoreceiving chip 16, and the receiving driving chip 14 controls the photoreceiving chip 16 to receive the light.
  • the optical module is capable of simultaneously transmitting and receiving light.
  • FIG. 7 illustrates a fourth positional relationship diagram of a driving chip and an optoelectronic chip in accordance with one or more embodiments of the present disclosure.
  • the first driving chip 2 is the receiving driving chip 14
  • the first photoelectric chip 3 is the photoelectric receiving chip 16
  • the second photoelectric chip 4 is the photoelectric transmitting chip 15
  • the second driving chip 5 is the transmitting driving chip 13.
  • the optical module When the optical module is in operation, the light passing through the first lens array 11 is reflected by the reflective surface 10 and then injected into the photoreceiving chip 16, and the receiving driving chip 14 controls the photo receiving chip 16 to receive the light. Meanwhile, the transmitting driving chip 13 controls the photoelectric emission.
  • the chip 15 emits light, and the emitted light is reflected by the reflecting surface 10 and then incident into the second lens array 12. In this case, the optical module is capable of simultaneously transmitting and receiving light.
  • FIG. 8 is a bottom view of the lens assembly of FIG. 3 in accordance with one or more embodiments of the present disclosure.
  • the third driving chip 17, the third optical chip 18, the fourth optical chip 19, and the fourth driving chip 20 are sequentially disposed on the circuit board 1, and the lens assembly 6 is provided. It is also covered on the third optoelectronic chip 18 and the fourth optoelectronic chip 19, please refer to FIG.
  • the third driving chip 17 is used to drive the third optoelectronic chip 18, and the fourth driving chip 20 is used to drive the fourth optoelectronic chip 19.
  • the third driving chip 17 drives the third optoelectronic chip 18 to operate
  • the third optoelectronic chip 18 emits The light is reflected by the reflecting surface 10 and injected into the first lens array 11; or the light passing through the first lens array 11 is reflected by the reflecting surface 10 and then incident into the third optoelectronic chip 18.
  • the fourth driving chip 20 drives the fourth optoelectronic chip 19 to operate
  • the light emitted by the fourth optoelectronic chip 19 is reflected by the reflecting surface 10 and then incident into the second lens array 12; or the light passing through the second lens array 12 is reflected.
  • the surface 10 is reflected and injected into the fourth optoelectronic chip 19.
  • the arrangement of the third driving chip 17, the third optoelectronic chip 18, the fourth optoelectronic chip 19, and the fourth driving chip 20 can further increase the optical transmission channel, thereby achieving simultaneous multi-channel transmission of light.
  • the third driving chip 17 and the fourth driving chip 20 may both be the transmitting driving chip 13 or the receiving driving chip 14.
  • the third optoelectronic chip 18 and the fourth optoelectronic chip 19 may each be a photo-emitting chip 15 or a photo-receiving chip 16.
  • the driver chip and the optoelectronic chip in the optical module have four positional relationships and realize different combinations of light emission and reception.
  • the optical module further includes the third driving chip 17, the third optoelectronic chip 18, the fourth optoelectronic chip 19, and the fourth driving chip 20, the positional relationship between the driving chip and the optoelectronic chip in the optical module is more combined, and further A combination of different light transmission and reception can be achieved.
  • the first driving chip 2, the second driving chip 5, and the third driving chip 17 are all the emission driving chips 13, and the first photovoltaic chip 3, the second photovoltaic chip 4, and the third photovoltaic chip 18 are all the photo-emitting chips 15,
  • the four driving chips 20 are the receiving driving chips 14, and the fourth photoelectric chips 19 are the photoelectric receiving chips 16, the optical modules can realize the three-way light emission and the one-way light receiving.
  • the first driving chip 2 the first photovoltaic chip 3, the second photovoltaic chip 4, the second driving chip 5, the third driving chip 17, the third photovoltaic chip 18, the fourth photovoltaic chip 19, and the fourth driving chip 20 Combinations are not described in detail in the embodiments of the present application.
  • FIG. 9 is a schematic structural diagram of a third lens array and a fourth lens array according to one or more embodiments of the present disclosure
  • FIG. 10 is a schematic diagram of an optical path of an optical module according to one or more embodiments of the present disclosure.
  • the lower surface of the lens assembly 6 is provided with a third groove 21, and the bottom surface of the third groove 21 is provided with a third lens array 22 and a fourth lens.
  • Array 23 Since the lens assembly 6 is disposed over the first optoelectronic chip 3 and the second optoelectronic chip 4, the third lens array 22 and the fourth lens array 23 may be located above the first optoelectronic chip 3 and the second optoelectronic chip 4. In some embodiments, the third lens array 22 is located above the first optoelectronic chip 3 and the fourth lens array 23 is located above the second optoelectronic chip 4.
  • the light emitted by the first optoelectronic chip 3 passes through the third lens array 22 to form parallel light, and the parallel light is reflected by the reflecting surface 10 and then enters the first lens array 11; or the light passing through the first lens array 11 passes through
  • the reflective surface 10 is reflected and then incident into the third lens array 22, and then into the first optoelectronic chip 3 to achieve photoelectric conversion in the emission direction and the reception direction.
  • the light emitted by the second optoelectronic chip 4 passes through the fourth lens array 23 to form parallel light, and the parallel light is reflected by the reflecting surface 10 and then enters the second lens array 12; or the light passing through the second lens array 12 passes through
  • the reflective surface 10 is reflected and then incident into the fourth lens array 23, and then into the second optoelectronic chip 4 to achieve photoelectric conversion in the emission direction and the reception direction.
  • the lower surface of the lens assembly 6 is further provided with a fourth groove 24, and the depth of the fourth groove 24 is different from the depth of the third groove 21, at this time, the third groove 21 and the fourth The difference in depth of the grooves 24 forms a step of depth.
  • the fourth groove 24 is disposed only on a portion of the width direction of the lower surface of the lens assembly 6, and a portion of the third lens array 22 and the fourth lens array 23 are located at the fourth portion. On the bottom surface of the groove 24. The step formed in the depth direction by the third groove 21 and the fourth groove 24 can reduce the preparation material of the lens assembly 6, thereby reducing the manufacturing cost of the lens assembly 6.
  • the third optoelectronic chip 18 and the fourth optoelectronic chip 19 are disposed under the third recess 21, and the first optoelectronic chip 3 and the second optoelectronic device are disposed under the fourth recess 24.
  • Chip 4 the third optoelectronic chip 18 and the fourth optoelectronic chip 19 of the third recess 21 are both photo-emitting chips 15, and the first optoelectronic chip 3 and the second optoelectronic chip 4 in the fourth recess 24 are both Photoelectric receiving chip 16.
  • the first lens array 11 and the second lens array 12 each include at least 8 convex lenses, respectively
  • the light rays passing through the third lens array 22 and the fourth lens array 23 are respectively injected into the first Among the convex lenses different from the lens array 11 and the second lens array 12
  • the third lens array 22 and the fourth lens array 23 also include the same number of convex lenses as the first lens array 11 and the second lens array 12, respectively.
  • Light passing through the convex lenses in the third lens array 22 and the fourth lens array 23 is reflected by the reflecting surface 10 and then incident into different convex lenses of the first lens array 11 and the second lens array 12, respectively.
  • the second groove 9 is further provided with a fiber holder 7 for erecting an optical fiber.
  • the fiber holder 7 is internally provided with two rows of fiber arrays 25.
  • the fiber array 25 may include a plurality of fibers, and the number of each fiber array is at least the number of convex lenses in the first lens array 11 or the second lens array 12.
  • the first lens array 11 and the second lens array 12 respectively correspond to a row of fiber arrays 25. As shown in FIG. 10, the first lens array 11 corresponds to the lower row of fiber arrays 25, and the second lens array 12 corresponds to the upper row of fiber arrays 25. .
  • the first lens array 11 and the row of fiber arrays 25 are located on the same horizontal plane, and the second lens array 12 and the other The row of fiber arrays 25 are on the same level.
  • a positioning mechanism 26, such as a positioning post is disposed on both sides of the first lens array 11 or the second lens array 12, and the fiber holder 7 is close to
  • the side surface of the first lens array 11 or the second lens array 12 is provided with a positioning hole (not shown).
  • the fiber holder 7 is fixed by inserting the positioning post 26 into the positioning hole on the fiber holder 7.
  • the first lens array 11 or the second lens array 12 on the sidewall of the second groove 9 is provided with fixing holes on both sides thereof.
  • the side of the bracket 7 adjacent to the first lens array 11 or the second lens array 12 is also provided with a fixing hole, and the two ends of the two guiding pins are respectively inserted into the fixing holes on the side wall of the second groove 9 and fixed on the side of the fiber holder.
  • the fiber holder 7 is fixed in the hole.
  • the first driving chip 2 and the second driving chip 5 respectively drive the first photovoltaic chip 3 and the second photovoltaic chip 4 to emit light.
  • the light emitted from the first optoelectronic chip 3 passes through the third lens array 22 to form parallel light
  • the light emitted from the second optoelectronic chip 4 passes through the fourth lens array 23 to form parallel light.
  • the two parallel beams are respectively incident on different positions of the reflecting surface 10, and are reflected by the reflecting surface 10 to form parallel light different from the aforementioned parallel light direction.
  • the two parallel beams of the transition direction are respectively incident into the first lens array 11 and the second lens array 12, and are merged into the optical fibers of the two rows of the optical fiber array 25 through the convergence of the first lens array 11 and the second lens array 12, respectively.
  • the process of entering the first optoelectronic chip 3 / the second optoelectronic chip 4 through the fiber array 25 , the first lens array 11 / the second lens array 12 , the reflective surface 10 , the third lens array 22 / the fourth lens array 23 is the above process The reverse process is not repeated here.
  • the third lens array 22 and the fourth lens array 23 respectively, is reflected by the reflecting surface 10 and then injected into the first lens array 11 and the second lens array 12, respectively.
  • the third lens array 22, the fourth lens array 23, the first lens array 11, and the second lens array 12 respectively include at least 8 convex lenses, so that multi-channel simultaneous transmission of light can be realized in one propagation of light. .
  • the present application can reduce the volume of the optical module while reducing the manufacturing cost of the optical module while achieving simultaneous transmission of multiple channels.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种光模组,包括电路板(1)、第一驱动芯片(2)、第一光电芯片(3)、第二光电芯片(4)、第二驱动芯(5)和透镜组件(6)。透镜组件(6)的上表面设有第一凹槽(8)和第二凹槽(9)。第一凹槽(8)的底面形成反射面(10);第二凹槽(9)的侧面设有上下排列的第一透镜阵列(11)和第二透镜阵列(12)。由于第一光电芯片(3)发出或接收的光通过反射面(10)和第一透镜阵列(11),第二光电芯片(4)发出或接收的光通过反射面(10)和第二透镜阵列(12),反射面(10)能够同时反射两组光,形成两条上下排列的光路,进而在增加光传输通道的基础上实现光的多通道同时传输。

Description

光模块
相关申请的交叉引用
本专利申请要求于2018年4月11日递交的、申请号为201810321976.7、发明名称为“一种光模组”的中国专利申请的优先权,该申请的全文以引用的方式并入本文中。
技术领域
本公开涉及通信技术领域,尤其涉及一种光模块。
背景技术
有源光缆(Active Optical Cables,AOC)为通信过程中借助外部能源实现光电转换的通信线缆。通常,AOC包括光纤以及分别位于光纤两端的光模块,通过光纤和光模块的连接能够实现光电转换。
发明内容
有鉴于此,本申请公开了一种光模块,包括:电路板、透镜组件以及第一透镜阵列和第二透镜阵列。在所述电路板上沿第一方向依次设置有第一驱动芯片、第一光电芯片、第二光电芯片和第二驱动芯片。透镜组件罩设所述第一光电芯片和所述第二光电芯片且其上表面设有第一凹槽和第二凹槽;第一透镜阵列和第二透镜阵列上下排列在所述第二凹槽靠近所述第一凹槽的侧面上。所述第一凹槽的底面形成反射面;所述第一光电芯片配置为从所述第一光电芯片发出的光或由所述第一光电芯片接收的光经所述反射面反射并通过所述第一透镜阵列;所述第二光电芯片配置为从所述第二光电芯片发出的光或由所述第二光电芯片接收的光经所述反射面反射并通过所述第二透镜阵列。
附图说明
为了更清楚地说明本申请的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一种光模块的结构示意图;
图2为本公开一个或多个实施例提供的光模块的整体结构示意图;
图3为本公开一个或多个实施例提供的光模块的截面立体结构示意图;
图4为本公开一个或多个实施例提供的驱动芯片和光电芯片的第一种位置关系图;
图5为本公开一个或多个实施例提供的驱动芯片和光电芯片的第二种位置关系图
图6为本公开一个或多个实施例提供的驱动芯片和光电芯片的第三种位置关系图;
图7为本公开一个或多个实施例提供的驱动芯片和光电芯片的第四种位置关系图;
图8为本公开一个或多个实施例提供的图3中透镜组件的仰视图;
图9为本公开一个或多个实施例提供的第三透镜阵列和第四透镜阵列的结构示意图;
图10为本公开一个或多个实施例提供的光模块的光路示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
光模块为AOC中实现光电转换的部件,即发送端将电信号转换为光信号,并通过光纤传送;接收端将接收到的光信号转换为电信号。
图1是一种光模块的示意图。通常,光模块包括上外壳01、下外壳02以及位于上外壳01和下外壳02所形成的腔室内的电路板03、芯片04、透镜组件05和光纤支架06等。电路板03的表面放置芯片04,且芯片04的上方放置透镜组件05,芯片04通过透镜组件05实现光的发射/接收。透镜组件05的一侧设置有光纤支架06,光纤通过光纤支架06接入透镜组件05中,实现透镜组件05和光纤之间的光连接。
上述结构的光模块较适用于连接单排光纤。随着光纤传送速率的提高,光纤的数量不断增加。为容纳较多数量的光纤及实现光电转换,透镜组件和光纤支架的体积不断加大,光模块的整体体积不断增大。然而,多光纤、大体积的光模块不能满足封装集成小型化的要求,且会增加光模块的制备成本。
本申请提供一种光模块,以在实现多通道同时传输的同时,减小光模块的体积,降 低光模块的制备成本。在本公开的一些实施方式中,光模块包括:在电路板上沿电路板的第一方向依次设置的第一驱动芯片、第一光电芯片、第二光电芯片和第二驱动芯片,以及罩设第一光电芯片和第二光电芯片的透镜组件。透镜组件的上表面设有第一凹槽和第二凹槽。第一凹槽的底面形成反射面;第二凹槽靠近第一凹槽的侧面设有上下排列的第一透镜阵列和第二透镜阵列。两组光电芯片发出的光线经过反射面不同位置的反射后分别射入第一透镜阵列和第二透镜阵列中。由于第二凹槽侧壁上同时设置上下排列的第一透镜阵列和第二透镜阵列,因而能够增加光的传输通道,减小光模块的体积,降低光模块的制备成本。又由于第一光电芯片和第二光电芯片相邻设置,且第一光电芯片发出的光或由第一光电芯片接收的光经反射面反射并通过第一透镜阵列,第二光电芯片发出的光或由第二光电芯片接收的光经反射面反射并通过第二透镜阵列,因而反射面能够同时反射两组光,形成两条上下排列的光路,进而在增加光传输通道的基础上实现光的多通道同时传输。
请参考图2、3,图2示出了本申请一个或多个实施例提供的光模块整体结构示意图,图3示出了本申请一个或多个实施例提供的光模块的截面立体结构示意图。
由图2、3可知,本申请实施例提供的光模块包括上外壳01和下外壳02。上外壳01和下外壳02扣合后形成内部中空的腔室。上外壳01和下外壳02所形成的腔室内部封装有电路板1、第一驱动芯片2、第一光电芯片3、第二光电芯片4、第二驱动芯片5、透镜组件6和光纤支架7,由此形成完整的光模块。
具体地,电路板1位于下外壳02内部的底部。沿电路板1的同一方向,如长度方向或宽度方向,电路板1上依次设有第一驱动芯片2、第一光电芯片3、第二光电芯片4和第二驱动芯片5。由于电路板1上依次设置第一驱动芯片2、第一光电芯片3、第二光电芯片4和第二驱动芯片5,为便于驱动芯片驱动光电芯片工作,在本申请实施例中,第一驱动芯片2配置为驱动第一光电芯片3,第二驱动芯片5配置为驱动第二光电芯片4。
第一光电芯片3和第二光电芯片4的上方罩设有透镜组件6,透镜组件6配置为反射第一光电芯片3和第二光电芯片4射出的光或由第一光电芯片3和第二光电芯片4接收的光。具体地,透镜组件6的上表面设有第一凹槽8和第二凹槽9。为减小透镜组件6的体积,第一凹槽8和第二凹槽9相邻设置。第一凹槽8的底面形成反射面10。第二凹槽9靠近第一凹槽8的侧面设有第一透镜阵列11和第二透镜阵列12,第一透镜阵列11和第二透镜阵列12按照从上到下的方向排列在第二凹槽的侧面,其中,所述从上到 下的方向是指沿透镜组件6的高度方向。
第一凹槽8的底面形成的反射面10配置为反射第一光电芯片3和第二光电芯片4发出的光或由第一光电芯片3和第二光电芯片4接收的光,因此,为便于第一透镜阵列11和第二透镜阵列12的位置设置以及考虑到透镜组件6的体积,反射面10的倾斜角度可以设置为45±5°。通过调整反射面10的倾斜角度、第一光电芯片3和第二光电芯片4的位置以及第一透镜阵列11和第二透镜阵列12的位置,能够实现反射面10反射第一光电芯片3和第二光电芯片4发出的光或由第一光电芯片3和第二光电芯片4接收的光。
在一些实施方式中,第一透镜阵列11和第二透镜阵列12均可以是由凸透镜组成的阵列,因而第一透镜阵列11和第二透镜阵列12均有会聚光线和转化为平行光束的作用。在一些实施例中,第一透镜阵列11和第二透镜阵列12分别包括至少8个凸透镜。在一些实施例中,第一透镜阵列11和第二透镜阵列12所包含的凸透镜的数量相同,以实现多条光线的同时传输。进一步,为便于在第二凹槽9侧壁上同时设置第一透镜阵列11和第二透镜阵列12,以及便于反射面10反射后的光线分别射入第一透镜阵列11和第二透镜阵列12中,可以将第一透镜阵列11和第二透镜阵列12平行设置,且均平行于第二凹槽9的底面。
在一些实施方式中,第一驱动芯片2驱动第一光电芯片3工作时,第一光电芯片3发出的光经反射面10反射后射入第一透镜阵列11中;或,穿过第一透镜阵列11的光经反射面10反射后射入第一光电芯片3中,以实现发射过程和接收过程中的光电转换。
类似地,第二驱动芯片5驱动第二光电芯片4工作时,第二光电芯片4发出的光经反射面10反射后射入第二透镜阵列12中;或,穿过第二透镜阵列12的光经反射面10反射后射入第二光电芯片4中,以实现发射过程和接收过程的光电转换。
在本申请实施例中,通过在第二凹槽9侧壁设置上下排列的两组透镜阵列,第一透镜阵列11和第二透镜阵列12,能够增加光的传输通道,减小光模块的体积,降低光模块的制备成本。另外,由于第一光电芯片3和第二光电芯片4相邻设置,且第一光电芯片3发出的光或由第一光电芯片3接收的光通过反射面10和第一透镜阵列11,第二光电芯片4发出的光或由第二光电芯片4接收的光通过反射面10和第二透镜阵列12,因而反射面10能够同时反射两组光,形成两条上下排列的光路,进而在增加光传输通道的基础上实现光的多通道同时传输。
在一些实施方式中,第一驱动芯片2和第二驱动芯片5均为发射驱动芯片13或接收 驱动芯片14。对应地,第一光电芯片3和第二光电芯片4均为光电发射芯片15或光电接收芯片16。其中,发射驱动芯片13配置为驱动光电发射芯片15,接收驱动芯片14配置为驱动光电接收芯片16。
图4示出了根据本公开一个或多个实施例的驱动芯片和光电芯片的第一种位置关系图。如图4所示,第一驱动芯片2和第二驱动芯片5均为发射驱动芯片13,第一光电芯片3和第二光电芯片4均为光电发射芯片15。光模块工作时,两个发射驱动芯片13分别控制两个光电发射芯片15发出光线,发出的光线经过反射面10反射后分别射入第一透镜阵列11和第二透镜阵列12中。在这种情况下,光模块仅能够实现光的发射。
图5示出了根据本公开一个或多个实施例的驱动芯片和光电芯片的第二种位置关系图。如图5所示,第一驱动芯片2和第二驱动芯片5均为接收驱动芯片14,第一光电芯片3和第二光电芯片4均为光电接收芯片16。光模块工作时,穿过第一透镜阵列11和第二透镜阵列12的光经反射面10反射后分别射入两个光电接收芯片16中,两个接收驱动芯片14分别控制两个光电接收芯片16接收该光线。在这种情况下,光模块仅能够实现光的接收。
图6示出了根据本公开一个或多个实施例的驱动芯片和光电芯片的第三种位置关系图。由图6可知,第一驱动芯片2为发射驱动芯片13,第一光电芯片3为光电发射芯片15,第二光电芯片4为光电接收芯片16,第二驱动芯片5为接收驱动芯片14。光模块工作时,发射驱动芯片13控制光电发射芯片15发出光线,发出的光线经过反射面10反射后射入第一透镜阵列11中;同时,穿过第二透镜阵列12的光经反射面10反射后射入光电接收芯片16中,接收驱动芯片14控制光电接收芯片16接收该光线。在这种情况下,光模块能够同时实现光的发射和接收。
图7示出了根据本公开一个或多个实施例的驱动芯片和光电芯片的第四种位置关系图。由图7可知,第一驱动芯片2为接收驱动芯片14,第一光电芯片3为光电接收芯片16,第二光电芯片4为光电发射芯片15,第二驱动芯片5为发射驱动芯片13。光模块工作时,穿过第一透镜阵列11的光经反射面10反射后射入光电接收芯片16中,接收驱动芯片14控制光电接收芯片16接收该光线;同时,发射驱动芯片13控制光电发射芯片15发出光线,发出的光线经过反射面10反射后射入第二透镜阵列12中。在这种情况下,光模块能够同时实现光的发射和接收。
在本申请实施例中,图8是根据本公开一个或多个实施例的图3中透镜组件的仰视图。如图8所示,沿电路板1的长度方向,电路板1上还依次设有第三驱动芯片17、第 三光电芯片18、第四光电芯片19和第四驱动芯片20,且透镜组件6还罩设在第三光电芯片18和第四光电芯片19上,请参考图8。在本申请实施例中,第三驱动芯片17用于驱动第三光电芯片18,第四驱动芯片20用于驱动第四光电芯片19。
同第一驱动芯片2、第一光电芯片3、第二光电芯片4和第二驱动芯片5的工作过程类似,第三驱动芯片17驱动第三光电芯片18工作时,第三光电芯片18发出的光经反射面10反射后射入第一透镜阵列11中;或,穿过第一透镜阵列11的光经反射面10反射后射入第三光电芯片18中。第四驱动芯片20驱动第四光电芯片19工作时,第四光电芯片19发出的光经反射面10反射后射入第二透镜阵列12中;或,穿过第二透镜阵列12的光经反射面10反射后射入第四光电芯片19中。
本申请的实施方式中,第三驱动芯片17、第三光电芯片18、第四光电芯片19和第四驱动芯片20的设置能够进一步增加光的传输通道,进而实现光的多通道同时传输。
在一些实施方式中,第三驱动芯片17和第四驱动芯片20可以均为发射驱动芯片13或接收驱动芯片14。第三光电芯片18和第四光电芯片19可以相应地均为光电发射芯片15或光电接收芯片16。
当第一驱动芯片2和第二驱动芯片5分别为发射驱动芯片13或接收驱动芯片14,第一光电芯片3和第二光电芯片4分别对应地为光电发射芯片15或光电接收芯片16时,光模块中的驱动芯片和光电芯片有四种位置关系,并实现光发射和接收的不同组合。当光模块进一步包括第三驱动芯片17、第三光电芯片18、第四光电芯片19和第四驱动芯片20时,光模块中的驱动芯片和光电芯片的位置关系则有更多的组合,进而能够实现不同的光发射和接收的组合。如第一驱动芯片2、第二驱动芯片5和第三驱动芯片17均为发射驱动芯片13,第一光电芯片3、第二光电芯片4和第三光电芯片18均为光电发射芯片15,第四驱动芯片20为接收驱动芯片14,第四光电芯片19为光电接收芯片16时,光模块能够实现三路光的发射和一路光的接收。关于第一驱动芯片2、第一光电芯片3、第二光电芯片4、第二驱动芯片5、第三驱动芯片17、第三光电芯片18、第四光电芯片19和第四驱动芯片20的其他组合,本申请实施例不再赘述。
下面介绍图9和图10。图9是本公开一个或多个实施例提供的第三透镜阵列和第四透镜阵列的结构示意图,图10示出了本公开一个或多个实施例提供的光模块的光路示意图。
在本申请一些实施例中,如图9和图10所示,透镜组件6的下表面设有第三凹槽 21,且第三凹槽21的底面设有第三透镜阵列22和第四透镜阵列23。由于透镜组件6罩设在第一光电芯片3和第二光电芯片4的上方,因此,第三透镜阵列22和第四透镜阵列23可位于第一光电芯片3和第二光电芯片4的上方。在一些实施例中,第三透镜阵列22位于第一光电芯片3的上方,第四透镜阵列23位于第二光电芯片4的上方。
第一光电芯片3发出的光穿过第三透镜阵列22后形成平行光,且平行光经反射面10反射后射入第一透镜阵列11中;或,穿过第一透镜阵列11的光经反射面10反射后射入第三透镜阵列22中,进而射入第一光电芯片3中,以实现发射方向和接收方向的光电转换。
第二光电芯片4发出的光穿过第四透镜阵列23后形成平行光,且平行光经反射面10反射后射入第二透镜阵列12中;或,穿过第二透镜阵列12的光经反射面10反射后射入第四透镜阵列23中,进而射入第二光电芯片4中,以实现发射方向和接收方向的光电转换。
在一些实施例中,透镜组件6的下表面还设有第四凹槽24,且第四凹槽24的深度不同于第三凹槽21的深度,此时,第三凹槽21和第四凹槽24的深度的差值,形成深度的阶梯。在一些实施例中,如图9所示,第四凹槽24仅设置在透镜组件6下表面的宽度方向的一部分上,第三透镜阵列22和第四透镜阵列23中的部分透镜位于第四凹槽24的底面上。第三凹槽21和第四凹槽24在深度方向上形成的阶梯能够减少透镜组件6的制备材料,进而降低透镜组件6的制备成本。为便于凹槽内设置光电芯片,在一些实施例中,第三凹槽21下设置第三光电芯片18和第四光电芯片19,第四凹槽24下设置第一光电芯片3和第二光电芯片4。在一些实施例中,第三凹槽21的第三光电芯片18和第四光电芯片19均为光电发射芯片15,第四凹槽24内的第一光电芯片3和第二光电芯片4均为光电接收芯片16。
在一些实施例中,由于第一透镜阵列11和第二透镜阵列12均分别包括至少8个凸透镜,因此,为使穿过第三透镜阵列22和第四透镜阵列23的光线分别射入第一透镜阵列11和第二透镜阵列12不同的凸透镜中,第三透镜阵列22和第四透镜阵列23也分别包括与第一透镜阵列11和第二透镜阵列12相同数量的凸透镜。穿过第三透镜阵列22和第四透镜阵列23中凸透镜的光线经反射面10反射后分别射入第一透镜阵列11和第二透镜阵列12不同的凸透镜中。
在一些实施例中,第二凹槽9中还设有用于架设光纤的光纤支架7。光纤支架7内部设有两排光纤阵列25,光纤阵列25可包括多条光纤,且每排光纤阵列的数量至少为 第一透镜阵列11或第二透镜阵列12中凸透镜的数量。第一透镜阵列11和第二透镜阵列12分别对应一排光纤阵列25,如图10所示,第一透镜阵列11对应下排的光纤阵列25,第二透镜阵列12对应上排的光纤阵列25。为便于射入第一透镜阵列11和第二透镜阵列12的光线分别进入对应的光纤阵列25中,第一透镜阵列11和一排光纤阵列25位于同一水平面上,第二透镜阵列12和另一排光纤阵列25位于同一水平面上。
在一些实施例中,为使光纤支架7稳定设于第二凹槽9内,第一透镜阵列11或第二透镜阵列12的两侧均设有定位机构26,例如定位柱,光纤支架7靠近第一透镜阵列11或第二透镜阵列12的侧面设有定位孔(图中未示出)。通过定位柱26插入光纤支架7上定位孔的方式固定光纤支架7。在一些实施例中,为使光纤支架7稳定设于第二凹槽9内,第二凹槽9侧壁上第一透镜阵列11或第二透镜阵列12的两侧均设有固定孔,光纤支架7靠近第一透镜阵列11或第二透镜阵列12的侧面也设有固定孔,通过两个导针的两端分别插入第二凹槽9侧壁上的固定孔及光纤支架侧面上的固定孔中来固定光纤支架7。
如图10所示,第一驱动芯片2和第二驱动芯片5分别驱动第一光电芯片3和第二光电芯片4射出光线。第一光电芯片3射出的光线穿过第三透镜阵列22后形成平行光,第二光电芯片4射出的光线穿过第四透镜阵列23后形成平行光。两束平行光分别射在反射面10的不同位置,并经过反射面10的反射形成不同于前述平行光方向的平行光。转变方向的两束平行光分别射入第一透镜阵列11和第二透镜阵列12中,并经过第一透镜阵列11和第二透镜阵列12的汇聚后分别射入两排光纤阵列25的光纤中。光线经光纤阵列25、第一透镜阵列11/第二透镜阵列12、反射面10、第三透镜阵列22/第四透镜阵列23进入第一光电芯片3/第二光电芯片4的过程为上述过程的反过程,此处不再赘述。
由于第一光电芯片3和第二光电芯片4射出的光线分别穿过第三透镜阵列22和第四透镜阵列23,经反射面10反射后分别射入第一透镜阵列11和第二透镜阵列12,且第三透镜阵列22、第四透镜阵列23、第一透镜阵列11和第二透镜阵列12分别包括至少8个凸透镜,因此,在光线的一次传播过程中,能够实现光线的多通道同时传输。又由于第二凹槽9侧壁上同时设置第一透镜阵列11和第二透镜阵列12,且第三透镜阵列22和第四透镜阵列23同时设置在第三凹槽21的底部,因而本申请实施例提供的光模块能够在实现多通道同时传输的同时,减小光模块的体积,进而降低光模块的制备成本。
以上所述的本公开实施方式并不构成对本公开保护范围的限定。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (11)

  1. 一种光模块,包括:
    电路板,在所述电路板上沿第一方向依次设置的第一驱动芯片、第一光电芯片、第二光电芯片和第二驱动芯片,
    透镜组件,其罩设所述第一光电芯片和所述第二光电芯片,所述透镜组件的上表面设有第一凹槽和第二凹槽;以及
    第一透镜阵列和第二透镜阵列,其上下排列设置在所述第二凹槽靠近所述第一凹槽的侧面;
    其中,所述第一凹槽的底面形成反射面;
    所述第一光电芯片配置为从所述第一光电芯片发出的光或由所述第一光电芯片接收的光经所述反射面反射并通过所述第一透镜阵列;
    所述第二光电芯片配置为从所述第二光电芯片发出的光或由所述第二光电芯片接收的光经所述反射面反射并通过所述第二透镜阵列。
  2. 根据权利要求1所述的光模块,还包括位于所述第二凹槽内的光纤支架,
    所述光纤支架内部设有上下排列的光纤阵列;
    所述第一透镜阵列对应所述光线阵列中的第一光纤阵列,所述第二透镜阵列对应所述光纤阵列中的第二光纤阵列。
  3. 根据权利要求2所述的光模块,所述第一透镜阵列的两侧设有定位机构,所述定位机构配置为插入所述光纤支架上的定位孔。
  4. 根据权利要求2所述的光模块,所述第二透镜阵列的两侧设有定位机构,所述定位机构配置为插入所述光纤支架上的定位孔。
  5. 根据权利要求2所述的光模块,还包括导针,
    所述第一透镜阵列的两侧设有第一固定孔,
    所述光纤支架的侧面两端分别设置有与所述第一固定孔对应的第二固定孔,
    所述导针的两端配置为分别插入所述第一固定孔和所述第二固定孔中,以将所述光纤支架固定于所述第二凹槽。
  6. 根据权利要求2所述的光模块,还包括导针,
    所述第二透镜阵列的两侧均设有第一固定孔,
    所述光纤支架的侧面两端分别设置有与所述第一固定孔对应的第二固定孔,
    所述导针的两端配置为分别插入所述第一固定孔和所述第二固定孔中,以将所述光纤支架固定于所述第二凹槽。
  7. 如权利要求1所述的光模块,其中,所述透镜组件的下表面设有第三凹槽,所述第三凹槽的底面设有第三透镜阵列和第四透镜阵列;
    所述第三透镜阵列位于所述第一光电芯片上方,所述第四透镜阵列位于所述第二光电芯片上方,
    所述第一光电芯片配置为从所述第一光电芯片发出的光或由所述第一光电芯片接收的光通过所述第三透镜阵列、经所述反射面反射并通过所述第一透镜阵列;
    所述第二光电芯片配置为从所述第二光电芯片发出的光或由所述第二光电芯片接收的光通过所述第四透镜阵列、经所述反射面反射并通过所述第二透镜阵列。
  8. 根据权利要求7所述的光模块,
    所述透镜组件的下表面还设有第四凹槽,所述第四凹槽的深度不同于所述第三凹槽的深度;
    在所述电路板上沿与所述第一方向平行的第二方向依次设有第三驱动芯片、第三光电芯片、第四光电芯片和第四驱动芯片;
    所述透镜组件还罩设在所述第三光电芯片和所述第四光电芯片上;
    所述第三凹槽位于所述第三光电芯片和所述第四光电芯片上方;
    所述第四凹槽位于所述第一光电芯片和所述第二光电芯片上方。
  9. 根据权利要求1所述的光模块,所述反射面的倾斜角度范围为40°到50°。
  10. 根据权利要求1-9中任意一项所述的光模块,
    所述第一透镜阵列包括至少8个凸透镜;
    所述第二透镜阵列包括至少8个凸透镜。
  11. 根据权利要求10所述的光模块,所述光模块还包括第一外壳和第二外壳,
    所述电路板、所述第一驱动芯片、所述第一光电芯片、所述第二光电芯片、所述第二驱动芯片和所述透镜组件封装在所述第一外壳和所述第二外壳围成的腔内。
PCT/CN2019/078335 2018-04-11 2019-03-15 光模块 WO2019196594A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/354,666 US11209608B2 (en) 2018-04-11 2019-03-15 Optical module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810321976.7A CN108508553B (zh) 2018-04-11 2018-04-11 一种光模组
CN201810321976.7 2018-04-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/354,666 Continuation US11209608B2 (en) 2018-04-11 2019-03-15 Optical module

Publications (1)

Publication Number Publication Date
WO2019196594A1 true WO2019196594A1 (zh) 2019-10-17

Family

ID=63381585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/078335 WO2019196594A1 (zh) 2018-04-11 2019-03-15 光模块

Country Status (2)

Country Link
CN (2) CN111142201A (zh)
WO (1) WO2019196594A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111142201A (zh) * 2018-04-11 2020-05-12 青岛海信宽带多媒体技术有限公司 一种光模块
US11209608B2 (en) 2018-04-11 2021-12-28 Hisense Broadband Multimedia Technologies Co., Ltd. Optical module
CN113009645A (zh) * 2019-12-20 2021-06-22 青岛海信宽带多媒体技术有限公司 一种光模块
CN214278493U (zh) * 2021-03-17 2021-09-24 青岛海信宽带多媒体技术有限公司 一种光模块
CN113238330B (zh) * 2021-05-10 2023-04-28 杭州耀芯科技有限公司 一种超薄型板对板光电转换装置
CN116755199A (zh) * 2023-06-19 2023-09-15 长芯盛(武汉)科技有限公司 一种光组件、光电模组及安装方法、插头和有源线缆

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7399125B1 (en) * 2006-07-26 2008-07-15 Lockheed Martin Corporation Lens array with integrated folding mirror
CN102023347A (zh) * 2009-09-11 2011-04-20 株式会社藤仓 光路变更部件和保持部件主体
CN103941352A (zh) * 2013-01-17 2014-07-23 鸿富锦精密工业(深圳)有限公司 光通讯模组
CN104280836A (zh) * 2013-07-11 2015-01-14 鸿富锦精密工业(深圳)有限公司 光通信模组
CN105785524A (zh) * 2016-03-31 2016-07-20 青岛海信宽带多媒体技术有限公司 一种光模块
CN105929491A (zh) * 2015-02-26 2016-09-07 住友电气工业株式会社 与单根光纤通信的双向光学组件及配备该组件的光收发器
CN107589488A (zh) * 2017-09-25 2018-01-16 中航海信光电技术有限公司 一种透镜光纤阵列及并行光收发模块
CN108508553A (zh) * 2018-04-11 2018-09-07 青岛海信宽带多媒体技术有限公司 一种光模组

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105467531A (zh) * 2014-09-04 2016-04-06 鸿富锦精密工业(深圳)有限公司 光电转换模块
CN106291835A (zh) * 2015-05-29 2017-01-04 鸿富锦精密工业(深圳)有限公司 光连接器及光电转换模块
CN106597616B (zh) * 2017-02-23 2019-02-15 青岛海信宽带多媒体技术有限公司 一种光模块
CN206609999U (zh) * 2017-04-11 2017-11-03 太平洋(聊城)光电科技有限公司 一种固定光收发组件透镜与光纤的弹力卡扣结构
CN207133475U (zh) * 2017-09-05 2018-03-23 禾橙科技股份有限公司 光通讯模组

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7399125B1 (en) * 2006-07-26 2008-07-15 Lockheed Martin Corporation Lens array with integrated folding mirror
CN102023347A (zh) * 2009-09-11 2011-04-20 株式会社藤仓 光路变更部件和保持部件主体
CN103941352A (zh) * 2013-01-17 2014-07-23 鸿富锦精密工业(深圳)有限公司 光通讯模组
CN104280836A (zh) * 2013-07-11 2015-01-14 鸿富锦精密工业(深圳)有限公司 光通信模组
CN105929491A (zh) * 2015-02-26 2016-09-07 住友电气工业株式会社 与单根光纤通信的双向光学组件及配备该组件的光收发器
CN105785524A (zh) * 2016-03-31 2016-07-20 青岛海信宽带多媒体技术有限公司 一种光模块
CN107589488A (zh) * 2017-09-25 2018-01-16 中航海信光电技术有限公司 一种透镜光纤阵列及并行光收发模块
CN108508553A (zh) * 2018-04-11 2018-09-07 青岛海信宽带多媒体技术有限公司 一种光模组

Also Published As

Publication number Publication date
CN108508553B (zh) 2020-06-16
CN108508553A (zh) 2018-09-07
CN111142201A (zh) 2020-05-12

Similar Documents

Publication Publication Date Title
WO2019196594A1 (zh) 光模块
JP5238651B2 (ja) 光路変更部材、光接続方法
KR100583646B1 (ko) 병렬 광접속 모듈용 광접속 장치 및 이를 이용한 병렬광접속 모듈
TWI612353B (zh) 光插座及具備它之光模組
US8641299B2 (en) Optical connector
TWI529438B (zh) 光收發器模組
US9971106B2 (en) Optical receptacle and optical module
US8942525B2 (en) Photoelectric conversion device and optical fiber coupling connector
US10156687B2 (en) Optical receptacle and optical module
US20150293316A1 (en) Optical assembly
US10481353B2 (en) Optical receptacle, optical module, and method for producing optical module
CN108254838A (zh) 光模块
US9046667B2 (en) Photoelectric conversion device and optical fiber coupling connector
US11209608B2 (en) Optical module
CN112904494B (zh) 一种光模块
CN114460698B (zh) 一种光发射模块
CN115016074B (zh) 一种光模块
WO2022083041A1 (zh) 一种光模块
WO2022083040A1 (zh) 一种光模块
CN115201977A (zh) 一种光模块
US20220187551A1 (en) Optical receptacle, optical module, and method for manufacturing optical module
CN114384646A (zh) 一种光模块
CN112904493A (zh) 一种光模块
CN218866165U (zh) 一种光模块
CN115032749B (zh) 一种光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19785904

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19785904

Country of ref document: EP

Kind code of ref document: A1