WO2019196445A1 - 星载多频段一维综合孔径一维实孔径的微波辐射探测方法 - Google Patents

星载多频段一维综合孔径一维实孔径的微波辐射探测方法 Download PDF

Info

Publication number
WO2019196445A1
WO2019196445A1 PCT/CN2018/119568 CN2018119568W WO2019196445A1 WO 2019196445 A1 WO2019196445 A1 WO 2019196445A1 CN 2018119568 W CN2018119568 W CN 2018119568W WO 2019196445 A1 WO2019196445 A1 WO 2019196445A1
Authority
WO
WIPO (PCT)
Prior art keywords
band
detection
aperture
dimensional
microwave radiation
Prior art date
Application number
PCT/CN2018/119568
Other languages
English (en)
French (fr)
Inventor
赵锋
姚崇斌
徐红新
陈雄
Original Assignee
上海航天电子通讯设备研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海航天电子通讯设备研究所 filed Critical 上海航天电子通讯设备研究所
Publication of WO2019196445A1 publication Critical patent/WO2019196445A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/0209Systems with very large relative bandwidth, i.e. larger than 10 %, e.g. baseband, pulse, carrier-free, ultrawideband
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver

Definitions

  • the invention relates to a microwave radiation detecting method for a space-borne multi-band one-dimensional synthetic aperture one-dimensional real aperture.
  • Microwave radiation measurement technology is used to measure high-sensitivity receiving equipment for microwave heat radiation of objects.
  • the temperature, humidity, precipitation, cloud liquid water content, cloud water phase, land surface temperature, soil moisture, sea ice and cover, snow depth and snow can be inverted.
  • Information such as water content.
  • the development trend of spaceborne microwave radiometers is: 1) development towards multi-band and multi-polarization integration, achieving simultaneous observation of multiple parameters; 2) towards larger antenna aperture Develop to achieve higher spatial resolution.
  • the biggest difficulty caused by the increase of antenna aperture is that it is difficult to realize mechanical scanning of large-diameter antennas.
  • Two-dimensional synthetic aperture radiation detection can avoid this difficulty, but the new problem is that the number of array elements is extremely large, such as the US pre-research GeoSTAR per frequency band.
  • the number of units is up to several hundred, and the related number is up to 100,000, so multi-band and multi-polar integrated detection cannot be realized.
  • the object of the present invention is to provide a microwave radiation detecting method for a one-dimensional multi-band one-dimensional synthetic aperture one-dimensional real aperture, which can avoid mechanical scanning difficulty of a large-diameter antenna and greatly reduce the number of array units.
  • the present invention provides a microwave radiation detecting method for a space-borne multi-band one-dimensional synthetic aperture one-dimensional real aperture, including:
  • Target detection is carried out by means of composite detection of cross-track detection and on-track detection.
  • array beam synthesis realizes cross-track electric scanning, and the orbital scanning is realized by satellite motion.
  • the target scene radiation signal is concentrated by the parabolic cylindrical antenna reflection surface.
  • the linear feed array is simultaneously received, and the array layout of each detected frequency band satisfies the UV visibility plane spatial sampling law, and the received signal is processed by the in-orbit complex operation of the corresponding processor to obtain a visibility function value.
  • the visibility function value is processed by the computer of the image reconstruction, and the scene radiation brightness temperature distribution is obtained.
  • the detected frequency band is from 5 bands of C band, X band, Ku band, K band to Ka band.
  • the C-band, X-band, Ku-band, K-band to Ka-band feed arrays are divided into 3 rows, and the total number of feed arrays is 280.
  • the C-band feed array is one row
  • the X-band feed array is one row
  • the Ku-band, K-band and Ka-band three-band feed arrays are in a row.
  • the bandwidth of each of the C-band, X-band, Ku-band, K-band to Ka-band is greater than 400 MHz.
  • the cross-track detection adopts integrated aperture radiation detection, and electrical scanning is implemented by the three rows of linear feed arrays; the tracking detection uses real-area radiation detection to realize scanning by satellite motion.
  • the size of the reflective surface of the parabolic cylindrical antenna is 12 m*10 m, wherein the deformation accuracy of the central region of 2 m*2 m is greater than 0.25 mm.
  • the target detection is performed by using a composite detection method of the intersection detection and the on-track detection, wherein the array beam synthesis realizes the cross-track electric scan, and the tracking is performed by the satellite motion, and the target scene radiation signal passes through the parabolic column.
  • the plane antenna reflection surface is concentrated, it is simultaneously received by three rows of linear feed arrays, and the array layout of each detected frequency band satisfies the UV visibility plane spatial sampling law, and the received signal is processed by the corresponding processor in-orbit complex operation. Obtaining a visibility function value.
  • the visibility function value is processed by a computer reconstructed by the image to obtain a scene radiation brightness temperature distribution, including:
  • Step 1 The target scene radiation signal is reflected by the parabolic antenna antenna reflecting surface, wherein the energy is concentrated in the orbit direction, and the optical path is reflected in the intersecting direction;
  • Step 2 The feed arrays of the detected C-band, X-band, Ku-band, K-band to Ka-band 5 frequency bands are divided into three rows, and the array layout of each detected frequency band satisfies the UV visibility plane spatial sampling.
  • the law at the same time receiving the reflective signal of the parabolic antenna reflecting surface, into the respective receiver channel;
  • Step 3 the signal is amplified, filtered, and down-converted by the receiver channel, and then divided into two paths.
  • One channel is directly time-sampled by the high-speed AD collector, and then enters the complex correlator to perform corresponding processing between the two to output correlation coefficients; another way After the squared rate detection and integration by the detection integration channel, the pre-processor samples the output power value;
  • Step 4 combining the correlation coefficient outputted by the complex correlator with the power value output by the detection integration channel, performing inverse normalization processing to obtain a visibility complex correlation function value, which is then performed by the central processing unit 80.
  • the visibility complex correlation function value is packaged and sent to the ground for computer reconstruction after image reconstruction, and the scene radiation brightness temperature distribution is obtained.
  • the present invention adopts the microwave radiation detecting technology to realize real-area radiation detection in the orbital direction through the parabolic antenna antenna reflecting surface, realize comprehensive aperture detection in the intersecting direction, and realize cross-track electric power through array beam synthesis. Scanning, parallel tracking by satellite motion, the combination of the two avoids the mechanical scanning of large-diameter antennas, solves the problem of difficult compensation of dynamic unbalance, and prolongs the service life of the instrument. Compared with the traditional two-dimensional real-aperture radiation detection technology, the mechanical scanning of large-diameter antennas is avoided, and the number of array elements is greatly reduced compared with the traditional two-dimensional synthetic aperture radiation detection technology, and the radiation detection technology of large-diameter antennas is optimized. compromise.
  • FIG. 1 is a schematic diagram of microwave radiation detection of a one-dimensional synthetic aperture one-dimensional real aperture according to an embodiment of the present invention
  • FIG. 2 is a simulation diagram of a microwave radiation detecting antenna feed for a one-dimensional real aperture of a dimensional integrated aperture according to an embodiment of the invention
  • FIG. 3 is a layout diagram of a microwave radiation array of a multi-band one-dimensional synthetic aperture one-dimensional real aperture according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a radiation detection process of a one-dimensional synthetic aperture one-dimensional real aperture according to an embodiment of the invention.
  • FIG. 1 is a schematic diagram of microwave radiation detection of a one-dimensional synthetic aperture one-dimensional real aperture according to an embodiment of the present invention
  • FIG. 2 is a simulation diagram of a microwave radiation detection antenna feeder of a one-dimensional real aperture of a composite aperture according to an embodiment of the invention.
  • the invention provides a microwave radiation detecting method for a spaceborne multi-band one-dimensional synthetic aperture one-dimensional real aperture, comprising:
  • Target detection is carried out by means of composite detection of cross-track detection and on-track detection.
  • array beam synthesis realizes cross-track electric scanning, and the orbital scanning is realized by satellite motion.
  • the target scene radiation signal is concentrated by the parabolic cylindrical antenna reflection surface.
  • the linear feed array is simultaneously received, and the array layout of each detected frequency band satisfies the UV visibility plane spatial sampling law, and the received signal is processed by the in-orbit complex operation of the corresponding processor to obtain a visibility function value ( The complex correlation value), and finally the visibility function value is processed by the computer reconstructed by the image, and the scene radiation brightness temperature distribution is obtained.
  • the detection frequency band of the present invention is from the C-band to the Ka-band (a total of 5 frequency bands), and is composed of a parabolic cylindrical antenna reflection surface and a linear feed array receiver (3 rows, wherein the high frequency 3 frequency bands are a row), A related processor and an image reconstruction computer are composed.
  • the orbital scanning is realized by the satellite motion in the orbital direction to realize the real aperture radiation detection; the cross beam electric scanning is performed by the array beam synthesis in the cross direction to realize the comprehensive aperture detection.
  • the invention realizes cross-track electric scanning by array beam synthesis, and realizes on-track scanning by satellite motion.
  • the combination of the two avoids the mechanical scanning of the large-diameter antenna, solves the problem that the dynamic unbalance amount is difficult to be compensated, and prolongs the service life of the instrument.
  • the mechanical scanning of the large-caliber antenna is avoided, which greatly reduces the number of array elements, reduces the computational complexity, and realizes the radiation of large-diameter antennas compared with the traditional two-dimensional synthetic aperture radiation detection technology. The best compromise of detection technology.
  • the invention has certain versatility and can be widely applied to various ground-borne large-caliber antenna ground radiation measurement systems.
  • the detected frequency band is from five bands of C-band, X-band, Ku-band, K-band to Ka-band.
  • the system detects the frequency band from the C band to the Ka band, a total of five frequency bands, consisting of a parabolic cylindrical antenna reflecting surface, a linear feed array receiving, a related processor and an image reconstruction computer.
  • the C-band, X-band, Ku-band, K-band to Ka-band feed arrays are divided into 3 rows, in an embodiment of the spaceborne multi-band one-dimensional synthetic aperture one-dimensional real aperture microwave radiation detection method.
  • the total number of feed arrays is 280, enabling simultaneous detection of multiple frequency bands.
  • the C-band feed array is a row
  • the X-band feed array is For a row, the feed arrays of the three frequency bands of high frequency (Ku band, K band and Ka band) are in a row.
  • the bandwidth of the C-band, X-band, Ku-band, K-band to Ka-band is greater than 400 MHz.
  • the intersection detection uses integrated aperture radiation detection, and is realized by the three rows of linear feed arrays (receiving arrays). Electrical scanning; the tracking detection uses real-area radiation detection to achieve scanning by satellite motion.
  • the present invention realizes real-aperture radiation detection in the orbital direction by the parabolic antenna antenna reflecting surface, and realizes comprehensive aperture detection in the cross-track direction.
  • the size of the reflective surface of the parabolic cylindrical antenna is 12 m*10 m, wherein the deformation accuracy of the central region of 2 m*2 m is greater than 0.25mm, it can meet the requirements of real-path detection and cross-track comprehensive aperture detection.
  • the target detection is performed by using a composite detection method of cross-track detection and on-track detection, wherein the array beam synthesis realizes the cross-track electric power.
  • Scanning, tracking is performed by satellite motion.
  • the target scene radiation signal is concentrated by the parabolic cylindrical antenna reflection surface and received by three rows of linear feed arrays.
  • the array layout of each detected frequency band satisfies the UV visibility plane space sampling law.
  • the received signal is processed by the in-orbit complex operation of the corresponding processor to obtain a visibility function value (complex correlation value), and finally the visibility function value is processed by the computer of the image reconstruction to obtain the scene radiation.
  • the brightness temperature distribution includes:
  • Step 1 The target scene radiation signal is reflected by the parabolic antenna antenna reflecting surface 10, wherein the energy is concentrated in the orbit direction, and the optical path is reflected in the intersecting direction;
  • Step 2 The feed array 20 of the detected C-band, X-band, Ku-band, K-band to Ka-band 5 frequency bands is divided into three rows, and the array layout of each detected frequency band satisfies the UV visibility plane space.
  • Sampling law spatial sampling law of synthetic aperture visibility function
  • Step 3 the signal is amplified, filtered, and down-converted by the receiver channel 30, and then divided into two paths.
  • One channel is directly sampled (time sampled) by the high-speed AD collector 40, and then enters the complex correlator 50 to perform corresponding processing between the two.
  • the correlation coefficient is output;
  • the other detected channel integration channel 60 performs square-rate detection and integration, and is sampled by the pre-processor 70 to output a power value;
  • Step 4 combining the correlation coefficient outputted by the complex correlator 50 with the power value output by the detection integration channel 60, performing inverse normalization processing to obtain a visibility function value (re-correlation value), and then processing by the central processing
  • the package 80 sends the visibility function value to the ground and performs computer reconstruction of the image reconstruction, the scene radiation brightness temperature distribution is obtained.
  • the present invention adopts the microwave radiation detecting technology to realize real-area radiation detection in the orbit direction through the parabolic antenna antenna reflecting surface, realize comprehensive aperture detection in the intersecting direction, and realize cross-track electric scanning through array beam synthesis.
  • the combination of the two avoids the mechanical scanning of the large-diameter antenna, solves the problem of difficulty in compensating the dynamic unbalance, and prolongs the service life of the instrument.
  • the mechanical scanning of large-diameter antennas is avoided, and the number of array elements is greatly reduced compared with the traditional two-dimensional synthetic aperture radiation detection technology, and the radiation detection technology of large-diameter antennas is optimized. compromise.

Abstract

一种星载多频段一维综合孔径一维实孔径的微波辐射探测方法,采用本微波辐射探测技术,通过抛物柱面天线反射面在顺轨方向实现实孔径辐射探测,在交轨方向实现综合孔径探测,通过阵列波束合成实现交轨电扫描,通过卫星运动实现顺轨扫描,两者组合避免了大口径天线的机械扫描,解决了动不平衡量补偿困难的问题,延长了仪器使用寿命。相对于传统二维实孔径辐射探测技术而言避免了大口径天线的机械扫描,相对于传统二维综合孔径辐射探测技术而言大幅减少了阵列单元数目,实现了大口径天线辐射探测技术最优折中。

Description

星载多频段一维综合孔径一维实孔径的微波辐射探测方法 技术领域
本发明涉及一种星载多频段一维综合孔径一维实孔径的微波辐射探测方法。
背景技术
微波辐射测量技术用来测量物体微波热辐射的高灵敏度接收设备。通过不同频段不同极化的热辐射数据,可反演目标的温度、湿度、降水、云的液态水含量、云水相态、陆表温度、土壤湿度、海冰和覆盖、积雪深度和雪水含量等信息。广泛应用于气象、海洋、国土资源、环境、天文观测和深空探测领域。由国外发展现状可以看出,星载微波辐射计的发展趋势为:1)向多频段、多极化的集成一体化方向发展,实现对多参量的同时观测;2)向更大天线口径方向发展,实现更高的空间分辨率。天线口径的增加带来的最大困难是大口径天线机械扫描难以实现,二维综合孔径辐射探测可以避免这一困难,但引出的新问题是阵列单元数目极大,如美国预研的GeoSTAR每频段单元数目高达几百,相关数目高达十万量级,因此无法实现多频段、多极化一体化探测。
发明内容
本发明的目的在于提供一种星载多频段一维综合孔径一维实孔径的微波辐射探测方法,能够避免大口径天线的机械扫描困难,大幅降低阵列单元数目。
为解决上述问题,本发明提供一种星载多频段一维综合孔径一维实孔径的微波辐射探测方法,包括:
采用交轨探测和顺轨探测的复合探测的方式进行目标探测,其中,阵列波 束合成实现交轨电扫描,通过卫星运动实现顺轨扫描,目标场景辐射信号经抛物柱面天线反射面汇聚后由3排线性馈源阵列同时接收,每个探测的频段的阵列布局满足UV可视度平面空间采样定律,所述接收的信号再经过对应处理器的在轨复运算处理,得到可视度函数值,最后所述可视度函数值由图像重构的计算机处理后,获得场景辐射亮温分布。
进一步的,在上述方法中,所述探测的频段从C波段、X波段、Ku波段、K波段至Ka波段共5个频段。
进一步的,在上述方法中,所述C波段、X波段、Ku波段、K波段至Ka波段的馈源阵列分为3排,馈源阵列总数目为280个。
进一步的,在上述方法中,所述C波段的馈源阵列为一排,X波段的的馈源阵列为一排,Ku波段、K波段与Ka波段三个频段的馈源阵列为一排。
进一步的,在上述方法中,所述C波段、X波段、Ku波段、K波段至Ka波段各个频段的带宽大于400MHz。
进一步的,在上述方法中,所述交轨探测采用综合孔径辐射探测,通过所述3排线性馈源阵列实现电扫描;所述顺轨探测采用实孔径辐射探测,通过卫星运动实现扫描。
进一步的,在上述方法中,所述抛物柱面天线反射面的尺寸为12m*10m,其中,2m*2m中心区域形变精度大于0.25mm。
进一步的,在上述方法中,采用交轨探测和顺轨探测的复合探测的方式进行目标探测,其中,阵列波束合成实现交轨电扫描,通过卫星运动实现顺轨扫描,目标场景辐射信号经抛物柱面天线反射面汇聚后由3排线性馈源阵列同时接收,每个探测的频段的阵列布局满足UV可视度平面空间采样定律,所述接收的信号再经过对应处理器的在轨复运算处理,得到可视度函数值,最后所述可视度函数值由图像重构的计算机处理后,获得场景辐射亮温分布,包括:
步骤1,目标场景辐射信号由抛物柱面状天线反射面反射,其中,顺轨方向进行能量汇聚,交轨方向实现光路反射;
步骤2,将探测的C波段、X波段、Ku波段、K波段至Ka波段共5个频段的馈源阵列分为三排,每个探测的频段的阵列布局均满足UV可视度平面空间采样定律,同时接收抛物柱面状天线反射面反射信号,进入各自接收机通道;
步骤3,信号经所述接收机通道放大、滤波与下变频后分为两路,一路经高速AD采集器直接时间采样后进入复相关器进行两两间对应处理,以输出相关系数;另一路经检波积分通道进行平方率检波与积分后由预处理器采样,以输出功率值;
步骤4,将所述复相关器输出的相关系数与所述检波积分通道输出的功率值结合,进行反归一化处理,得到可视度复相关函数值,再由中央处理器80将所述可视度复相关函数值打包发送至地面后进行图像重构的计算机处理后,获得场景辐射亮温分布。
与现有技术相比,本发明采用本微波辐射探测技术,通过抛物柱面天线反射面在顺轨方向实现实孔径辐射探测,在交轨方向实现综合孔径探测,通过阵列波束合成实现交轨电扫描,通过卫星运动实现顺轨扫描,两者组合避免了大口径天线的机械扫描,解决了动不平衡量补偿困难的问题,延长了仪器使用寿命。相对于传统二维实孔径辐射探测技术而言避免了大口径天线的机械扫描,相对于传统二维综合孔径辐射探测技术而言大幅减少了阵列单元数目,实现了大口径天线辐射探测技术最优折中。
附图说明
图1是本发明一实施例的一维综合孔径一维实孔径的微波辐射探测示意图;
图2是本发明一实施例的维综合孔径一维实孔径的微波辐射探测天馈仿真图;
图3是本发明一实施例的多频段一维综合孔径一维实孔径的微波辐射阵列 布局图;
图4是本发明一实施例的一维综合孔径一维实孔径的辐射探测流程示意图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1是本发明一实施例的一维综合孔径一维实孔径的微波辐射探测示意图,图2是本发明一实施例的维综合孔径一维实孔径的微波辐射探测天馈仿真图。
本发明提供一种星载多频段一维综合孔径一维实孔径的微波辐射探测方法,包括:
采用交轨探测和顺轨探测的复合探测的方式进行目标探测,其中,阵列波束合成实现交轨电扫描,通过卫星运动实现顺轨扫描,目标场景辐射信号经抛物柱面天线反射面汇聚后由3排线性馈源阵列同时接收,每个探测的频段的阵列布局满足UV可视度平面空间采样定律,所述接收的信号再经过对应处理器的在轨复运算处理,得到可视度函数值(复相关值),最后所述可视度函数值由图像重构的计算机处理后,获得场景辐射亮温分布。
在此,本发明的探测频段从C波段至Ka波段(共5个频段),由抛物柱面天线反射面、线性馈源阵列接收机(3排,其中高频3个频段为一排)、相关处理器及图像重构计算机等组成。
通过抛物柱面天线反射面在顺轨方向通过卫星运动实现顺轨扫描,实现实孔径辐射探测;在交轨方向通过阵列波束合成进行交轨电扫描,实现综合孔径探测。
本发明通过阵列波束合成实现交轨电扫描,通过卫星运动实现顺轨扫描,两者组合避免了大口径天线的机械扫描,解决了动不平衡量补偿困难的问题,延长了仪器使用寿命。相对于传统实孔径辐射探测技术而言避免了大口径天线 的机械扫描,相对于传统二维综合孔径辐射探测技术而言大幅减少了阵列单元数目,降低了计算复杂度,实现了大口径天线辐射探测技术最优折中。本发明具有一定的通用性,可广泛应用于各类星载大口径天线对地辐射测量系统中。
本发明的星载多频段一维综合孔径一维实孔径的微波辐射探测方法一实施例中,所述探测的频段从C波段、X波段、Ku波段、K波段至Ka波段共5个频段。
在此,系统探测频段从C波段至Ka波段,共5个频段,由抛物柱面天线反射面、线性馈源阵列接收、相关处理器与图像重构计算机等组成。
本发明的星载多频段一维综合孔径一维实孔径的微波辐射探测方法一实施例中,所述C波段、X波段、Ku波段、K波段至Ka波段的馈源阵列分为3排,馈源阵列总数目为280个,实现多频段同时探测。
本发明的星载多频段一维综合孔径一维实孔径的微波辐射探测方法一实施例中,如图3所示,所述C波段的馈源阵列为一排,X波段的的馈源阵列为一排,高频(Ku波段、K波段与Ka波段)三个频段的的馈源阵列为一排。
本发明的星载多频段一维综合孔径一维实孔径的微波辐射探测方法一实施例中,所述C波段、X波段、Ku波段、K波段至Ka波段各个频段的带宽大于400MHz。
本发明的星载多频段一维综合孔径一维实孔径的微波辐射探测方法一实施例中,所述交轨探测采用综合孔径辐射探测,通过所述3排线性馈源阵列(接收阵列)实现电扫描;所述顺轨探测采用实孔径辐射探测,通过卫星运动实现扫描。
在此,本发明通过抛物柱面天线反射面在顺轨方向实现实孔径辐射探测,在交轨方向实现综合孔径探测。
本发明的星载多频段一维综合孔径一维实孔径的微波辐射探测方法一实施例中,所述抛物柱面天线反射面的尺寸为12m*10m,其中,2m*2m中心区域形变精度大于0.25mm,能够同时满足顺轨实孔径探测需求和交轨综合孔径探测 需求。
本发明的星载多频段一维综合孔径一维实孔径的微波辐射探测方法一实施例中,采用交轨探测和顺轨探测的复合探测的方式进行目标探测,其中,阵列波束合成实现交轨电扫描,通过卫星运动实现顺轨扫描,目标场景辐射信号经抛物柱面天线反射面汇聚后由3排线性馈源阵列同时接收,每个探测的频段的阵列布局满足UV可视度平面空间采样定律,所述接收的信号再经过对应处理器的在轨复运算处理,得到可视度函数值(复相关值),最后所述可视度函数值由图像重构的计算机处理后,获得场景辐射亮温分布,如图4所示,包括:
步骤1,目标场景辐射信号由抛物柱面状天线反射面10反射,其中,顺轨方向进行能量汇聚,交轨方向实现光路反射;
步骤2,将探测的C波段、X波段、Ku波段、K波段至Ka波段共5个频段的馈源阵列20分为三排,每个探测的频段的阵列布局均满足UV可视度平面空间采样定律(综合孔径可视度函数的空间采样定律),同时接收抛物柱面状天线反射面10反射信号,进入各自接收机通道30;
步骤3,信号经所述接收机通道30放大、滤波与下变频后分为两路,一路经高速AD采集器40直接采样(时间采样)后进入复相关器50进行两两间对应处理,以输出相关系数;另一路经检波积分通道60进行平方率检波与积分后由预处理器70采样,以输出功率值;
步骤4,将所述复相关器50输出的相关系数与所述检波积分通道60输出的功率值结合,进行反归一化处理,得到可视度函数值(复相关值),再由中央处理器80将所述可视度函数值打包发送至地面后进行图像重构的计算机处理后,获得场景辐射亮温分布。
综上所述,本发明采用本微波辐射探测技术,通过抛物柱面天线反射面在顺轨方向实现实孔径辐射探测,在交轨方向实现综合孔径探测,通过阵列波束合成实现交轨电扫描,通过卫星运动实现顺轨扫描,两者组合避免了大口径天线的机械扫描,解决了动不平衡量补偿困难的问题,延长了仪器使用寿命。相 对于传统二维实孔径辐射探测技术而言避免了大口径天线的机械扫描,相对于传统二维综合孔径辐射探测技术而言大幅减少了阵列单元数目,实现了大口径天线辐射探测技术最优折中。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
显然,本领域的技术人员可以对发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包括这些改动和变型在内。

Claims (8)

  1. 一种星载多频段一维综合孔径一维实孔径的微波辐射探测方法,其特征在于,包括:
    采用交轨探测和顺轨探测的复合探测的方式进行目标探测,其中,阵列波束合成实现交轨电扫描,通过卫星运动实现顺轨扫描,目标场景辐射信号经抛物柱面天线反射面汇聚后由3排线性馈源阵列同时接收,每个探测的频段的阵列布局满足UV可视度平面空间采样定律,所述接收的信号再经过对应处理器的在轨复运算处理,得到可视度函数值,最后所述可视度函数值由图像重构的计算机处理后,获得场景辐射亮温分布。
  2. 如权利要求1所述的星载多频段一维综合孔径一维实孔径的微波辐射探测方法,其特征在于,所述探测的频段从C波段、X波段、Ku波段、K波段至Ka波段共5个频段。
  3. 如权利要求2所述的星载多频段一维综合孔径一维实孔径的微波辐射探测方法,其特征在于,所述C波段、X波段、Ku波段、K波段至Ka波段的馈源阵列分为3排,馈源阵列总数目为280个。
  4. 如权利要求3所述的星载多频段一维综合孔径一维实孔径的微波辐射探测方法,其特征在于,所述C波段的馈源阵列为一排,X波段的的馈源阵列为一排,Ku波段、K波段与Ka波段三个频段的馈源阵列为一排。
  5. 如权利要求2所述的星载多频段一维综合孔径一维实孔径的微波辐射探测方法,其特征在于,所述C波段、X波段、Ku波段、K波段至Ka波段各个频段的带宽大于400MHz。
  6. 如权利要求1所述的星载多频段一维综合孔径一维实孔径的微波辐射探测方法,其特征在于,所述交轨探测采用综合孔径辐射探测,通过所述3排线性馈源阵列实现电扫描;所述顺轨探测采用实孔径辐射探测,通过卫星运动实现扫描。
  7. 如权利要求1所述的星载多频段一维综合孔径一维实孔径的微波辐射探 测方法,其特征在于,所述抛物柱面天线反射面的尺寸为12m*10m,其中,2m*2m中心区域形变精度大于0.25mm。
  8. 如权利要求1至7任一项所述的星载多频段一维综合孔径一维实孔径的微波辐射探测方法,其特征在于,采用交轨探测和顺轨探测的复合探测的方式进行目标探测,其中,阵列波束合成实现交轨电扫描,通过卫星运动实现顺轨扫描,目标场景辐射信号经抛物柱面天线反射面汇聚后由3排线性馈源阵列同时接收,每个探测的频段的阵列布局满足UV可视度平面空间采样定律,所述接收的信号再经过对应处理器的在轨复运算处理,得到可视度函数值,最后所述可视度函数值由图像重构的计算机处理后,获得场景辐射亮温分布,包括:
    步骤1,目标场景辐射信号由抛物柱面状天线反射面反射,其中,顺轨方向进行能量汇聚,交轨方向实现光路反射;
    步骤2,将探测的C波段、X波段、Ku波段、K波段至Ka波段共5个频段的馈源阵列分为三排,每个探测的频段的阵列布局均满足UV可视度平面空间采样定律,同时接收抛物柱面状天线反射面反射信号,进入各自接收机通道;
    步骤3,信号经所述接收机通道放大、滤波与下变频后分为两路,一路经高速AD采集器直接时间采样后进入复相关器进行两两间对应处理,以输出相关系数;另一路经检波积分通道进行平方率检波与积分后由预处理器采样,以输出功率值;
    步骤4,将所述复相关器输出的相关系数与所述检波积分通道输出的功率值结合,进行反归一化处理,得到可视度复相关函数值,再由中央处理器80将所述可视度复相关函数值打包发送至地面后进行图像重构的计算机处理后,获得场景辐射亮温分布。
PCT/CN2018/119568 2018-04-08 2018-12-06 星载多频段一维综合孔径一维实孔径的微波辐射探测方法 WO2019196445A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810307441.4 2018-04-08
CN201810307441.4A CN108535725A (zh) 2018-04-08 2018-04-08 星载多频段一维综合孔径一维实孔径的微波辐射探测方法

Publications (1)

Publication Number Publication Date
WO2019196445A1 true WO2019196445A1 (zh) 2019-10-17

Family

ID=63481784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/119568 WO2019196445A1 (zh) 2018-04-08 2018-12-06 星载多频段一维综合孔径一维实孔径的微波辐射探测方法

Country Status (2)

Country Link
CN (1) CN108535725A (zh)
WO (1) WO2019196445A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111426889A (zh) * 2020-04-14 2020-07-17 中国科学院国家天文台 一种宽带双模数字接收机及其信号处理方法
CN116774222A (zh) * 2023-08-23 2023-09-19 中国电子科技集团公司第十四研究所 一种机电扫结合的多模式马赛克成像方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108535725A (zh) * 2018-04-08 2018-09-14 上海航天电子通讯设备研究所 星载多频段一维综合孔径一维实孔径的微波辐射探测方法
CN109245833B (zh) * 2018-10-17 2021-08-10 中国运载火箭技术研究院 一种航天器通用化综合射频测控系统
CN109541325B (zh) * 2018-11-27 2021-05-11 上海航天电子通讯设备研究所 一种星载一维综合孔径微波辐射测量系统及测量方法
CN109927938B (zh) * 2019-02-21 2021-05-11 上海卫星工程研究所 静止轨道实孔径微波探测卫星构型
CN110554440A (zh) * 2019-09-11 2019-12-10 上海航天测控通信研究所 星载微波辐射测量系统及测量方法
CN110470678B (zh) * 2019-09-24 2022-08-02 上海航天测控通信研究所 一种星载微波复合探测仪
CN115291218B (zh) * 2022-10-10 2022-12-09 中国电子科技集团公司第十四研究所 一种同源共视多波段干涉sar试验系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103616567A (zh) * 2013-11-27 2014-03-05 西安电子工程研究所 一种多通道微波辐射测量装置
CN107300561A (zh) * 2016-04-15 2017-10-27 北京空间飞行器总体设计部 基于多遥感器联合探测的海洋盐度卫星
CN107449965A (zh) * 2016-05-30 2017-12-08 中国科学院国家空间科学中心 一种星载微波辐射计
CN108535725A (zh) * 2018-04-08 2018-09-14 上海航天电子通讯设备研究所 星载多频段一维综合孔径一维实孔径的微波辐射探测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103616567A (zh) * 2013-11-27 2014-03-05 西安电子工程研究所 一种多通道微波辐射测量装置
CN107300561A (zh) * 2016-04-15 2017-10-27 北京空间飞行器总体设计部 基于多遥感器联合探测的海洋盐度卫星
CN107449965A (zh) * 2016-05-30 2017-12-08 中国科学院国家空间科学中心 一种星载微波辐射计
CN108535725A (zh) * 2018-04-08 2018-09-14 上海航天电子通讯设备研究所 星载多频段一维综合孔径一维实孔径的微波辐射探测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAO L., ET AL.: "MICAP (Microwave imager combined active and passive): A new instrument for Chinese ocean salinity satellite", 2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 31 July 2015 (2015-07-31), XP032805986 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111426889A (zh) * 2020-04-14 2020-07-17 中国科学院国家天文台 一种宽带双模数字接收机及其信号处理方法
CN111426889B (zh) * 2020-04-14 2022-04-29 中国科学院国家天文台 一种宽带双模数字接收机及其信号处理方法
CN116774222A (zh) * 2023-08-23 2023-09-19 中国电子科技集团公司第十四研究所 一种机电扫结合的多模式马赛克成像方法
CN116774222B (zh) * 2023-08-23 2023-11-14 中国电子科技集团公司第十四研究所 一种机电扫结合的多模式马赛克成像方法

Also Published As

Publication number Publication date
CN108535725A (zh) 2018-09-14

Similar Documents

Publication Publication Date Title
WO2019196445A1 (zh) 星载多频段一维综合孔径一维实孔径的微波辐射探测方法
van Ardenne et al. Extending the field of view with phased array techniques: Results of European SKA research
Iupikov et al. Multibeam focal plane arrays with digital beamforming for high precision space-borne ocean remote sensing
WO2019196446A1 (zh) 星载多频段一维综合孔径馈源阵列布局方法
CN114488135B (zh) 低轨小卫星分布式gnss-s雷达系统及在轨处理方法
CN113608216B (zh) 一种星载多波段共口径sar及目标联合在轨检测系统及方法
Jiang et al. A side-lobe suppression method based on coherence factor for terahertz array imaging
Schuss et al. Large-scale phased array calibration
CN114509754B (zh) 星载多通道gnss-s雷达海量数据在轨处理系统及方法
Feng et al. Passive radar imaging by filling gaps between ISDB digital TV channels
CN110554440A (zh) 星载微波辐射测量系统及测量方法
Wannberg et al. EISCAT_3D: a next-generation European radar system for upper-atmosphere and geospace research
Frazer et al. A regular two-dimensional over-sampled sparse receiving array for Over-The-Horizon Radar
Hu Study on THz imaging system for concealed threats detection
Sadowy et al. Ka-band digital beamforming and sweepSAR demonstration for ice and solid earth topography
Bordoni et al. Performance investigation on the high-resolution wide-swath SAR system with monostatic architecture
Maddikonda et al. SAR image processing using GPU
Li et al. A general platform for millimeter wave synthetic aperture radiometers
CN113534121A (zh) 用于定量遥感的一维馈源相控阵雷达
Fisher Phased array feeds for low noise reflector antennas
de Vaate et al. Expanding the field of view: Design considerations for a sparse-regular FFT SKA radio telescope
Kovalenko et al. Architecture and perfomance of the spaceborne multi-aperture high-resolution SAR system based on analog-digital active array antenna
Warnick High efficiency phased array feed antennas for large radio telescopes and small satellite communications terminals
Rantakyrö et al. Multiband VLBI observations of CTA 102.
Fu et al. Overview of orbital debris detection using spaceborne radar

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18914537

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/05/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18914537

Country of ref document: EP

Kind code of ref document: A1