WO2019196028A1 - 一种陶瓷天线制作方法和陶瓷天线及陶瓷后盖 - Google Patents

一种陶瓷天线制作方法和陶瓷天线及陶瓷后盖 Download PDF

Info

Publication number
WO2019196028A1
WO2019196028A1 PCT/CN2018/082631 CN2018082631W WO2019196028A1 WO 2019196028 A1 WO2019196028 A1 WO 2019196028A1 CN 2018082631 W CN2018082631 W CN 2018082631W WO 2019196028 A1 WO2019196028 A1 WO 2019196028A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
antenna
overflow point
back cover
signal overflow
Prior art date
Application number
PCT/CN2018/082631
Other languages
English (en)
French (fr)
Inventor
刘峻
Original Assignee
深圳市可信华成通信科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市可信华成通信科技有限公司 filed Critical 深圳市可信华成通信科技有限公司
Priority to PCT/CN2018/082631 priority Critical patent/WO2019196028A1/zh
Publication of WO2019196028A1 publication Critical patent/WO2019196028A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles

Definitions

  • the present invention relates to the field of antennas, and more particularly to a method of fabricating a ceramic antenna and a ceramic antenna and a ceramic back cover.
  • 5G communication will be initially commercialized.
  • the distinctive feature of 5G signal is that the signal transmission speed is faster, the number of antennas is large, the wavelength of millimeter wave is very short, the interference from metal is serious, and ceramic has "congenital" Advantage".
  • ceramic materials With the gradual popularization of ceramics in the field of mobile phone functions such as fingerprint recognition and wireless charging, ceramic materials have the characteristics of no signal shielding, high hardness, strong sense of appearance, close to the mechanical properties of metal materials and excellent heat dissipation, which will become a mobile phone enterprise to enter the 5G era.
  • the key choice the antenna design based on the ceramic back cover was studied by the antenna design industry.
  • the antenna space of 18:9 full-screen ID mobile phones and smart wearable wireless terminal products has been compressed to the limit, and the required clearance space for antenna radiation has become the biggest bottleneck of the antenna.
  • the technical problem to be solved by the present invention is that a method for fabricating a ceramic antenna and a ceramic antenna and a ceramic back cover are provided for the above-mentioned antenna space of the prior art being compressed to cause insufficient defects in the antenna radiation clearance space.
  • the technical solution adopted by the present invention to solve the technical problem thereof is to construct a ceramic antenna manufacturing method, and the method includes:
  • the conducting treatment comprises: performing metal activation on the signal overflow point by a laser laser engraving process to restore the signal leakage point conductivity.
  • the conducting treatment comprises: connecting the electrical conductor and the signal overflow point by soldering to restore the signal leakage point conductive property.
  • the electrical conductor comprises a gold plated metal sheet.
  • the high temperature sintering comprises sintering at a temperature of 1400 °C.
  • the antenna body has a signal overflow point thickness greater than other portions of the antenna body.
  • the injection mold comprises a mold for the back cover of the wireless terminal.
  • the invention also constructs a ceramic antenna made in accordance with any of the ceramic antenna fabrication methods described above.
  • the antenna body comprises a single layer or a multi-layered three-dimensional structure.
  • the present invention also provides a ceramic back cover comprising a back cover body and an antenna body, the antenna body being fabricated in the back cover body according to any of the ceramic antenna fabrication methods described above, wherein the signal overflow point is placed in the The back cover is the inner surface of the body.
  • a ceramic antenna manufacturing method and ceramic antenna and ceramic back cover embodying the present invention has the following beneficial effects: in the case where the space of the whole machine is limited, when the space of the whole machine is limited, the clearance space and height of the antenna can be ensured to the utmost, and the process is simple and easy to operate. Moreover, it can improve the bottleneck of the antenna radiation space of the current wireless terminal product with small space and low height, and at the same time improve the performance of the antenna and improve the wireless experience of the user.
  • FIG. 1 is a schematic flow chart of a method for fabricating a ceramic antenna according to the present invention
  • FIG. 2 is a schematic structural view of an embodiment of a ceramic antenna according to the present invention.
  • FIG. 3 is a schematic structural view of a first embodiment of a ceramic back cover according to the present invention.
  • Figure 4 is a schematic view showing the structure of a second embodiment of a ceramic back cover of the present invention.
  • the method includes the following steps:
  • the ceramics here include ceramic materials such as zirconia, and ceramic powders generally use ceramic materials with low dielectric constant. This has the least impact on the antenna.
  • CaMgSi2O6 ceramic is selected, which is a low dielectric constant ceramic material with excellent properties, which is convenient for antenna radiation.
  • the antenna body is used for an external circuit or a signal overflow point of the ground to expose the surface of the slurry mixture;
  • the antenna metal radiation piece is placed in the injection mold. Note that the position of the antenna metal radiation piece should meet the requirements of the whole machine design.
  • the injection molding device is used to inject the above-mentioned fluid slurry into the injection mold to form the final.
  • the shape of the antenna body that is, the antenna metal radiating piece is not limited, and a single layer structure, a multilayer three-dimensional structure, or a combination of various structures may be employed.
  • the material of the antenna metal radiation sheet is not limited, and it is suitable for high temperature metal materials such as copper and silver. It should be noted that for the subsequent operation, during the molding of the slurry mixture, it is necessary to ensure that the antenna body is used for the signal overflow point of the external circuit or ground to expose the surface of the slurry mixture.
  • the signal overflow point of the antenna metal radiating chip can be arbitrarily set according to the requirements of the antenna debugging, the position, the quantity and the height of the overflow point, and the overflow point is connected with the circuit board grounding point or the signal feeding point of the product.
  • the polymer adhesive turns from a macromolecule to a small molecule and is finally volatilized.
  • the antenna body does not have a positional offset, which has little effect on the performance of the final antenna product.
  • the slurry mixture is sintered at a high temperature in a sintering furnace to obtain a product having sufficient hardness and strength.
  • the antenna radiating piece can be integrated with the ceramic, and the net headroom of the antenna can be maximized under the limited condition of the whole machine, thereby relatively improving the antenna performance.
  • all the antenna metal radiating fins except the signal overflow point have been completely sintered in the ceramic medium by the realization process, and the contact between the antenna metal radiating sheet and the air is prevented, and the antenna metal radiating sheet is prevented from being oxidized or deformed, thereby enhancing the reliability of the antenna and The structural stability of the antenna ultimately achieves the goal of improving the user's wireless experience.
  • the laser overflow process can be used to activate the metal of the signal overflow point to restore the conductivity of the signal overflow point.
  • the metal oxide on the surface of the signal overflow point is removed by the laser to expose the metal body, so that the conductivity of the metal body is enhanced to ensure the transmission of various radio frequency signals.
  • the conductor and the signal overflow point can connect by soldering to restore the conductivity of the signal overflow point.
  • a gold-plated metal piece of a suitable size is used to bond the gold-plated metal piece to the signal overflow point by electric welding to restore the electrical conductivity.
  • the gold-plated metal sheet here can also adopt other conductive functions having a conductive function, and the shape can also be designed as needed, and is not limited to the chip structure, and may be a columnar structure, a needle-like structure or the like.
  • high temperature sintering includes sintering at a temperature of 1400 °C.
  • the hardness of the original product is ensured without affecting the performance of the antenna, and the high temperature sintering temperature is controlled at about 1400 °C.
  • the temperature does not exceed the melting point of the antenna body material to reduce the influence on the antenna.
  • the metal used here is mainly made of 304 steel sheet, the melting point of the steel sheet is 1530 ° C, and the ceramic sintering is 1400 ° C, so that the antenna body does not melt and deform. .
  • the signal overflow point thickness of the antenna body is greater than other portions of the antenna body.
  • the antenna body in order to ensure that the signal overflow point 1011 of the antenna body 101 exposes the slurry mixture, even if the signal overflow point 1011 is exposed on the surface of the product in the final product, the antenna body can be used here.
  • the signal overflow point 1012 of 101 is designed to be larger than other portions of the antenna body 101, so that while the antenna body 101 is buried inside the ceramic body 102, the signal overflow point 1011 exposes the surface of the product, and the other side of the signal overflow point 1011 can be very Good bonding with ceramic 102 ensures a strong bond of signal overflow point 1011 to ceramic 102.
  • the signal overflow point 1011 forms a height difference with other portions of the antenna body 101, so that the antenna body 1011 is buried in the ceramic 102. At the same time, the signal overflow point 1011 can expose the surface of the ceramic 102.
  • the injection mold includes a mold for the back cover of the wireless terminal. Specifically, in the manufacturing process of the ceramic antenna, the injection mold adopts the mold of the final product to form a final product combining the ceramic antenna and the product, for example, the injection mold adopts the mold of the wireless terminal back cover, and thus the formed wireless terminal product Cover-shaped ceramic antenna.
  • the ceramic antenna of the present invention is produced by the above-described ceramic antenna fabrication method. Specifically, as shown in FIG. 2, in the antenna product formed by the above method, the depth W embedded in the ceramic body 102 of the antenna body 101 increases the clearance width of the antenna, wherein the clearance width is the main parameter for improving the radiation efficiency of the antenna. When the antenna radiating metal piece is placed inside the ceramic, the clearance distance equivalent to the antenna increases the depth W buried in the ceramic on the basis of the original.
  • the antenna body comprises a single layer or a multi-layered three-dimensional structure.
  • the shape of the antenna metal radiating piece is not limited, and a single layer structure or a multi-layer three-dimensional structure may be adopted, or a combination of various structures may be adopted and placed in the ceramic.
  • the material of the antenna metal radiation sheet is not limited, and it is suitable for high temperature metal materials such as copper and silver.
  • a ceramic back cover of the present invention comprises a back cover body 103 (here, corresponding to the ceramic body 102) and an antenna body 101, wherein the antenna body 101 is fabricated inside the back cover body 103 according to the ceramic antenna manufacturing method described above.
  • the signal overflow point 1011 is placed on the inner surface of the back cover body 103.
  • the injection mold adopts the mold of the final product to form a final product combining the ceramic antenna and the product, for example, the injection mold adopts the mold of the wireless terminal back cover, and the wireless terminal product back cover thus formed Shaped ceramic antenna. As shown in FIG. 3 and FIG.
  • the ceramic portion covered on the antenna body 101 in the illustration is transparent to see the structure of the antenna body 101 placed inside the ceramic
  • the ceramic back cover is placed in the sidewall of the back cover body 103, and the signal overflow point 1011 is exposed on the inner surface of the back cover body 103 to facilitate connection of the signal overflow point 1011 with the circuit inside the wireless terminal.
  • the signal overflow point 1011 is differently processed in order to expose the signal overflow point 1011 to the surface of the back cover body 103.
  • the signal overflow point 1011 is differently processed.
  • the shape of the signal overflow point 1011 is optimized. It forms a certain height difference with respect to other parts of the antenna body 101.
  • the thickness of the signal overflow point 1013 is increased.
  • the antenna body 101 is composed of a plurality of components. This makes it easier to design the antenna structure.
  • the combination of the antenna body 101 is not limited to the form described above, and may be discrete, combined, or multi-layered.

Landscapes

  • Details Of Aerials (AREA)

Abstract

本发明涉及一种陶瓷天线制作方法和陶瓷天线及陶瓷后盖,本发明的一种陶瓷天线制作方法,包括:S1、混合陶瓷粉末与高分子黏胶剂以形成浆料;S2、通过注射设备将浆料注入设有天线本体的注射模以形成浆料混合体,其中天线本体用于外接电路或地的信号溢出点露出浆料混合体表面;S3、通过催化剂对浆料混合体脱除高分子黏胶剂,并对浆料混合体进行高温烧结;S4、对信号溢出点进行导电处理。实施本发明能够在整机空间有限的情况下,能够最大限度的保证天线的净空空间和高度。

Description

一种陶瓷天线制作方法和陶瓷天线及陶瓷后盖 技术领域
本发明涉及天线领域,更具体地说,涉及一种陶瓷天线制作方法和陶瓷天线及陶瓷后盖。
背景技术
随着通信技术的发展,5G通信将初步实现商业化,5G信号显著特点是信号传输速度更快,其天线数量多,毫米波的波长很短,来自金属的干扰较为严重,而陶瓷具有“先天优势”。随着陶瓷在指纹识别、无线充电等手机功能领域的逐渐普及,陶瓷材料具有无信号屏蔽、硬度高、观感强及接近金属材料的机械性能以及优异的散热性等特点将成为手机企业进军5G时代的关键选择。同时,基于陶瓷背盖的天线设计方案被天线设计行业进行研究。加上18:9全面屏ID手机、智能穿戴等无线终端产品的天线空间已被压缩到极限,天线辐射需要的净空空间成为了天线最大的瓶颈。
技术问题
本发明要解决的技术问题在于,针对现有技术的上述天线空间被压缩导致天线辐射净空空间不够缺陷,提供一种陶瓷天线制作方法和陶瓷天线及陶瓷后盖。
技术解决方案
本发明解决其技术问题所采用的技术方案是:构造一种陶瓷天线制作方法,所述方法包括:
S1、混合陶瓷粉末与高分子黏胶剂以形成浆料;
S2、通过注射设备将所述浆料注入设有天线本体的注射模以形成浆料混合体,其中所述天线本体用于外接电路或地的信号溢出点露出所述浆料混合体表面;
S3、通过催化剂对所述浆料混合体脱除所述高分子黏胶剂,并对所述浆料混合体进行高温烧结;
S4、对所述信号溢出点进行导电处理。
优选地,在所述步骤S4中,所述导电处理包括:通过激光镭雕工艺对所述信号溢出点进行金属活化,恢复所述信号溢出点导电性能。
优选地,在所述步骤S4中,所述导电处理包括:通过焊接方式连接导电体与所述信号溢出点,恢复所述信号溢出点导电性能。
优选地,所述导电体包括镀金金属片。
优选地,在所述步骤S3中,所述高温烧结包括采用1400℃的温度进行烧结。
优选地,所述天线本体的信号溢出点厚度大于所述天线本体的其他部分。
优选地,所述注射模包括用于无线终端后盖的模具。
本发明还构造一种陶瓷天线,根据上面任意所述的陶瓷天线制作方法制成。
进一步的,所述天线本体包括单层或多层立体结构。
本发明还构造一种陶瓷后盖,包含后盖本体和天线本体,所述天线本体根据上面任意所述的陶瓷天线制作方法制作于所述后盖本体内部,所述信号溢出点置于所述后盖本体内表面。
有益效果
实施本发明的一种陶瓷天线制作方法和陶瓷天线及陶瓷后盖。具有以下有益效果:在整机空间有限的情况下,整机空间有限的情况下,能够最大限度的保证天线的净空空间和高度,工艺简单易操作。且能够改善目前无线终端产品的天线辐射空间小、高度低的瓶颈,同时提高天线性能,改善用户无线体验效果的解决方案。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明一种陶瓷天线制作方法的流程示意图;
图2是本发明一种陶瓷天线的一实施例的结构示意图;
图3是本发明一种陶瓷后盖第一实施例的结构示意图;
图4是本发明一种陶瓷后盖第二实施例的结构示意图。
本发明的实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
如图1所示,在本发明的一种陶瓷天线制作方法实施例中,包括以下步骤:
S1、混合陶瓷粉末与高分子黏胶剂以形成浆料;具体的,将陶瓷粉末与高分子黏胶剂按照比例混在一起,形成具有流动性的混合浆料。这里的陶瓷包括氧化锆等陶瓷材料, 陶瓷粉末一般选用低介电常数的陶瓷材料。这样对天线影响最小。例如选用CaMgSi2O6陶瓷,该陶瓷是一种具有优良性能的低介电常数陶瓷材料,便于天线辐射。
S2、通过注射设备将浆料注入设有天线本体的注射模以形成浆料混合体,其中天线本体用于外接电路或地的信号溢出点露出浆料混合体表面;具体的,设置预先调试好的天线金属辐射片置于注射模内,注意这里天线金属辐射片的位置要满足整机设计的需求,然后,利用注射设备在注射模内注入上面配置的具有流动性的浆料,形成具有最终产品形状要求的浆料混合体。这里天线本体即天线金属辐射片的形状不受限制,可以采用单层结构,也可以是多层立体结构,还可以采用各种结构组合方式。天线金属辐射片内材质不受限制,采用耐高温金属材质,如铜、银都适用。需要注意的是,为了后面的操作,在浆料混合体成型的过程中,要保证天线本体用于外接电路或地的信号溢出点露出浆料混合体表面。天线金属辐射片的信号溢出点部分,可根据天线调试的需求任意设置溢出点的位置、数量、高度,该溢出点与产品的电路板接地点或信号馈入点相连接。
S3、通过催化剂对浆料混合体脱除高分子黏胶剂,并对浆料混合体进行高温烧结;具体的,通过催化剂脱除成型的浆料混合体中高分子黏胶剂部分,在脱胶过程中,高分子黏胶剂由大分子裂变成小分子,最终被挥发掉。在这个过程中,天线本体不会产生位置偏移,对最终天线产品的性能影响较小。在烧结炉中通过高温对浆料混合体进行烧结,获得拥有足够的硬度与强度的产品。
S4、对信号溢出点进行导电处理。具体的,由于天线本体用于外接电路或地的信号溢出点在高温烧结过程中容易氧化,影响其导电性能,这样对整个天线的信号传递会有很大的影响,所以要对信号溢出点进行导电处理,以实现信号溢出点信号传递功能,尤其是对各种射频信号的传递。
在这里,通过上述步骤,可以实现天线辐射片与陶瓷融为一体,将在整机有限的情况下最大限度的增加天线的净空,从而相对提高天线性能。此外除信号溢出点以外的所有天线金属辐射片通过实现工艺已被完全烧结与陶瓷介质内,隔绝天线金属辐射片与空气的接触,防止天线金属辐射片发生氧化或变形,增强天线的可靠性和天线的结构稳定性,最终达到提升用户无线体验效果的目的。
进一步的,可以通过激光镭雕工艺对信号溢出点进行金属活化,恢复信号溢出点导电性能。具体的,就是通过激光将信号溢出点表面的金属氧化物去除,露出金属本体,使其的导电能力增强,保证各种射频信号的传递。
还可以通过焊接方式连接导电体与信号溢出点,恢复信号溢出点导电性能。具体的,采用合适大小镀金金属片,采用电焊方式将镀金金属片与信号溢出点结合到一起,从而恢复导电性能。当然,这里的镀金金属片也可以采用其他的具有导电功能的导电体,其形状也可以根据需要进行设计,不局限于片式结构,可以是柱状结构,针状结构等等。
进一步的,在步骤S3中,高温烧结包括采用1400℃的温度进行烧结。具体的,为了保证天线本体和陶瓷的紧密结合,在保证真个产品的硬度的同时不影响天线的性能,高温烧结温度控制在1400℃左右。此外温度不超过天线本体材质的熔点,以减小对天线的影响,例如这里用到的金属以304钢片为主,钢片的熔点为1530℃,陶瓷烧结1400℃这样天线本体不会熔化变形。
进一步的,天线本体的信号溢出点厚度大于天线本体的其他部分。具体的,如图2所示,在上面的操作过程中,为了保证天线本体101的信号溢出点1011露出浆料混合体,即使最终产品中该信号溢出点1011露出产品表面,这里可以将天线本体101的信号溢出点1012厚度设计的大于天线本体101的其他部分,这样在保证天线本体101埋入陶瓷本体102内部的同时,信号溢出点1011一面露出产品表面,信号溢出点1011的另一面可以很好的同陶瓷102结合,保证信号溢出点1011与陶瓷102的牢固结合。当然在其他的一些实施例中,也可以通过改变信号溢出点1012的形状,使信号溢出点1011同天线本体101的其他部分形成高度差,这样也能保证在天线本体1011埋入陶瓷102内部的同时,信号溢出点1011能够露出陶瓷102表面。
进一步的,注射模包括用于无线终端后盖的模具。具体的,可以在陶瓷天线制作过程中,注射模采用最终产品的模具,以形成陶瓷天线与产品结合的最终产品,例如,将注射模采用无线终端后盖的模具,这样形成的无线终端产品后盖形状的陶瓷天线。
另,本发明的陶瓷天线,采用上面所述的陶瓷天线制作方法制成。具体的,如图2所示,通过上面的方法,形成的天线产品中,天线本体101在陶瓷102中埋入的深度W增加了天线的净空宽度,其中净空宽度为提高天线辐射效率的主要参数:当天线辐射金属片置于陶瓷内部时,相当于天线的净空距离在原来的基础上增加了陶瓷中埋入的深度W。
进一步的,天线本体包括单层或多层立体结构。具体的,在陶瓷天线制作过程中,天线金属辐射片的形状不受限制,可以采用单层结构,也可以是多层立体结构,还可以采用各种结构组合方式,置于陶瓷内。天线金属辐射片内材质不受限制,采用耐高温金属材质,如铜、银都适用。
另,本发明的一种陶瓷后盖,包含后盖本体103(这里即相当于陶瓷本体102)和天线本体101,其中天线本体101根据上面描述的陶瓷天线制作方法制作于后盖本体103内部,信号溢出点1011置于后盖本体103内表面。具体的,可以在陶瓷天线制作过程中,注射模采用最终产品的模具,以形成陶瓷天线与产品结合的最终产品,例如,注射模采用无线终端后盖的模具,这样形成的无线终端产品后盖形状的陶瓷天线。如图3和图4所示,(为了方便理解,图示中将天线本体101上覆盖的陶瓷部分透明化,以便看到置于陶瓷内部的天线本体101结构)为陶瓷后盖的两个实施例,陶瓷后盖中天线本体101置于后盖本体103的侧壁内,其信号溢出点1011露出在后盖本体103的内表面,方便信号溢出点1011与无线终端内部的电路进行连接。在这里,这两个实施例中,为了使信号溢出点1011露出后盖本体103表面,对信号溢出点1011做了不同的处理,图3中,是对信号溢出点1011的形状进行了优化,使其相对于天线本体101的其他部分形成了一定的高度差。图4中,是增加了信号溢出点1013的厚度。此外这两个实施例中,可以看出,天线本体101是由多个部件组合而成的。这样更方便进行天线结构设计。当然天线本体101的组合方式不局限于上面描述的形式,采用分立的、组合的,或者多层的均可以。
以理解的,以上实施例仅表达了本发明的优选实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制;应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,可以对上述技术特点进行自由组合,还可以做出若干变形和改进,这些都属于本发明的保护范围;因此,凡跟本发明权利要求范围所做的等同变换与修饰,均应属于本发明权利要求的涵盖范围。

Claims (10)

  1. 一种陶瓷天线制作方法,其特征在于,所述方法包括:
    S1、混合陶瓷粉末与高分子黏胶剂以形成浆料;
    S2、通过注射设备将所述浆料注入设有天线本体的注射模以形成浆料混合体,其中所述天线本体用于外接电路或地的信号溢出点露出所述浆料混合体表面;
    S3、通过催化剂对所述浆料混合体脱除所述高分子黏胶剂,并对所述浆料混合体进行高温烧结;
    S4、对所述信号溢出点进行导电处理。
  2. 根据权利要求1所述的陶瓷天线制作方法,其特征在于,在所述步骤S4中,所述导电处理包括:通过激光镭雕工艺对所述信号溢出点进行金属活化,恢复所述信号溢出点导电性能。
  3. 根据权利要求1所述的陶瓷天线制作方法,其特征在于,在所述步骤S4中,所述导电处理包括:通过焊接方式连接导电体与所述信号溢出点,恢复所述信号溢出点导电性能。
  4. 根据权利要求3所述的陶瓷天线制作方法,其特征在于,所述导电体包括镀金金属片。
  5. 根据权利要求1所述的陶瓷天线制作方法,其特征在于,在所述步骤S3中,所述高温烧结包括采用1400℃的温度进行烧结。
  6. 根据权利要求1所述的陶瓷天线制作方法,其特征在于,所述天线本体的信号溢出点厚度大于所述天线本体的其他部分。
  7. 7、根据权利要求1所述的陶瓷天线制作方法,其特征在于,所述注射模包括用于无线终端后盖的模具。
  8. 一种陶瓷天线,其特征在于,根据权利要求1-6任意一项所述的陶瓷天线制作方法制成。
  9. 根据权利要求8所述的陶瓷天线,其特征在于,所述天线本体包括单层或多层立体结构。
  10. 一种陶瓷后盖,其特征在于,包含后盖本体和天线本体,所述天线本体根据权利要求1-6任意一项所述的陶瓷天线制作方法制作于所述后盖本体内部,所述信号溢出点置于所述后盖本体内表面。
PCT/CN2018/082631 2018-04-11 2018-04-11 一种陶瓷天线制作方法和陶瓷天线及陶瓷后盖 WO2019196028A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/082631 WO2019196028A1 (zh) 2018-04-11 2018-04-11 一种陶瓷天线制作方法和陶瓷天线及陶瓷后盖

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/082631 WO2019196028A1 (zh) 2018-04-11 2018-04-11 一种陶瓷天线制作方法和陶瓷天线及陶瓷后盖

Publications (1)

Publication Number Publication Date
WO2019196028A1 true WO2019196028A1 (zh) 2019-10-17

Family

ID=68163479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/082631 WO2019196028A1 (zh) 2018-04-11 2018-04-11 一种陶瓷天线制作方法和陶瓷天线及陶瓷后盖

Country Status (1)

Country Link
WO (1) WO2019196028A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101289321A (zh) * 2008-05-29 2008-10-22 厦门大学 用于片式天线的微波陶瓷基板的制备方法
CN102780079A (zh) * 2011-05-09 2012-11-14 深圳富泰宏精密工业有限公司 天线组件及该天线组件的制作方法
WO2015088486A1 (en) * 2013-12-09 2015-06-18 Intel Corporation Antenna on ceramics for a packaged die
CN104852134A (zh) * 2015-04-22 2015-08-19 东莞劲胜精密组件股份有限公司 印刷天线、其制备方法及移动通讯终端设备
CN108767422A (zh) * 2018-04-11 2018-11-06 深圳市可信华成通信科技有限公司 一种陶瓷天线制作方法和陶瓷天线及陶瓷后盖

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101289321A (zh) * 2008-05-29 2008-10-22 厦门大学 用于片式天线的微波陶瓷基板的制备方法
CN102780079A (zh) * 2011-05-09 2012-11-14 深圳富泰宏精密工业有限公司 天线组件及该天线组件的制作方法
WO2015088486A1 (en) * 2013-12-09 2015-06-18 Intel Corporation Antenna on ceramics for a packaged die
CN104852134A (zh) * 2015-04-22 2015-08-19 东莞劲胜精密组件股份有限公司 印刷天线、其制备方法及移动通讯终端设备
CN108767422A (zh) * 2018-04-11 2018-11-06 深圳市可信华成通信科技有限公司 一种陶瓷天线制作方法和陶瓷天线及陶瓷后盖

Similar Documents

Publication Publication Date Title
US11120937B2 (en) High current, low equivalent series resistance printed circuit board coil for power transfer application
JP6469572B2 (ja) アンテナ一体型無線モジュールおよびこのモジュールの製造方法
JP2605654B2 (ja) 複合マイクロ波回路モジュール及びその製造方法
Ullah et al. Antenna in LTCC technologies: a review and the current state of the art
CN104602176B (zh) 一种在绝缘基材上直接成型音圈的方法及其应用
US20070164420A1 (en) Apparatus and methods for packaging dielectric resonator antennas with integrated circuit chips
TW201114101A (en) Mobile communication device and antenna thereof
Moon et al. Small chip antenna for 2.4/5.8-GHz dual ISM-band applications
CN112071579A (zh) 一种贴片电感的制造方法及由其制得的贴片电感
JP2005020206A (ja) アンテナおよびアンテナモジュールおよびそれを具備した無線通信装置
JP2008053675A (ja) コイル内蔵基板
CN107293858B (zh) 天线装置
US20090086461A1 (en) Shielding Apparatus and Manufacturing Method Thereof
US10643785B2 (en) Thin film type coil component
WO2019196028A1 (zh) 一种陶瓷天线制作方法和陶瓷天线及陶瓷后盖
JP2013247554A (ja) アンテナ装置および通信端末装置
Yoshida et al. Experimental verification of excavated structure on multi-layered substrates for millimeter-wave signal vertical transition using copper balls
CN214227154U (zh) 一种5g毫米波谐振器天线模组
CN111814419B (zh) 通讯用集总参数环行器中集总电容选择设计方法
CN114678685A (zh) 超宽带天线
CN108767422A (zh) 一种陶瓷天线制作方法和陶瓷天线及陶瓷后盖
TWI243511B (en) Antenna device and method for forming the same
KR101636228B1 (ko) 멀티 페라이트 시트, 이를 포함하는 무선충전 및 근접통신 기능을 갖는 복합체 및 휴대용 단말기
KR100718812B1 (ko) 내장형 안테나 및 금속 분말 사출 성형을 이용한 내장형안테나의 제조 방법
Wong et al. An EMC foam‐base chip antenna for WLAN operation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18914672

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 15.02.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18914672

Country of ref document: EP

Kind code of ref document: A1