WO2019194200A1 - Component-embedded substrate - Google Patents

Component-embedded substrate Download PDF

Info

Publication number
WO2019194200A1
WO2019194200A1 PCT/JP2019/014692 JP2019014692W WO2019194200A1 WO 2019194200 A1 WO2019194200 A1 WO 2019194200A1 JP 2019014692 W JP2019014692 W JP 2019014692W WO 2019194200 A1 WO2019194200 A1 WO 2019194200A1
Authority
WO
WIPO (PCT)
Prior art keywords
main surface
semiconductor element
component
wiring pattern
cavity
Prior art date
Application number
PCT/JP2019/014692
Other languages
French (fr)
Japanese (ja)
Inventor
杉山 裕一
宮崎 政志
猿渡 達郎
Original Assignee
太陽誘電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽誘電株式会社 filed Critical 太陽誘電株式会社
Priority to JP2020512271A priority Critical patent/JPWO2019194200A1/en
Publication of WO2019194200A1 publication Critical patent/WO2019194200A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Definitions

  • the present invention relates to a component-embedded substrate in which a semiconductor element is embedded in a metal core base material.
  • the power circuit easily generates heat because it consumes a large current, and it is difficult to reduce the size because it requires coil components that are larger in size than passive components such as capacitors and resistors.
  • Using a 3D mounting technology such as a component-embedded board to incorporate components other than the coil into the substrate is also effective for the power supply module, but because the heat density increases compared to the surface-mounting substrate, the built-in components are generated. It is required to transfer heat efficiently. For this reason, in recent years, a component-embedded substrate having a metal core base material has been widely used (see, for example, Patent Document 1).
  • a component-embedded substrate having a metal core base material it is required to further improve the heat dissipation efficiency of the built-in component and shorten the wiring length between the electronic component mounted on the mounting surface.
  • an object of the present invention is to provide a component-embedded substrate capable of improving heat dissipation efficiency and shortening the wiring length between a mounting surface and a built-in component.
  • a component-embedded substrate includes a metal core base material, a semiconductor element, a first resin layer, a multilayer wiring layer, and an interlayer connection portion.
  • the core base material penetrates between a first main surface, a second main surface opposite to the first main surface, and the first main surface and the second main surface. And a cavity.
  • the semiconductor element has a thickness smaller than that of the core substrate, is accommodated in the cavity, and is located on the first main surface side with respect to the center of the core substrate.
  • the first resin layer fills the cavity and seals the semiconductor element.
  • the multilayer wiring layer includes a first wiring pattern disposed on the first main surface side and a second wiring pattern disposed on the second main surface side.
  • the interlayer connection portion includes a first via formed at a first height between the first wiring pattern and the semiconductor element, and a gap between the second wiring pattern and the semiconductor element. And a second via formed at a second height greater than the first height.
  • the wiring length with the first wiring pattern can be made relatively short.
  • the second via that communicates with the second wiring pattern can be formed with a larger diameter than the first via, the second via can be made to function as a thermal via. It is possible to improve the heat dissipation efficiency of the element.
  • the second via may include a surface conductor layer that electrically connects the second wiring pattern and the semiconductor element, and a second resin layer filled in the surface conductor layer. Good.
  • the inside of the surface conductor layer may be filled with a conductive paste or Cu plating.
  • the second via may be formed with a larger diameter than the first via.
  • the cavity may have an inner wall surface including an annular protrusion protruding inward, and the semiconductor element may be disposed between the annular protrusion and the first main surface.
  • the component-embedded substrate may further include an electronic component mounted on the first main surface side and electrically connected to the semiconductor element.
  • FIG. 1 is an external perspective view of a circuit module including a component built-in substrate according to an embodiment of the present invention. It is a schematic sectional side view of the principal part of the said circuit module. It is a principal part schematic sectional side view of the said component built-in board
  • FIG. 1 is an external perspective view of a circuit module 100 including a component built-in substrate 10 according to an embodiment of the present invention
  • FIG. 2 is a schematic side sectional view of a main part of the circuit module 100
  • FIG. It is a principal part schematic sectional side view.
  • an X axis, a Y axis, and a Z axis indicate three axial directions orthogonal to each other
  • FIGS. 2 and 3 are cross-sectional views as viewed from the Y axis direction.
  • the circuit module 100 includes a component built-in substrate 10, a plurality of electronic components 21 mounted on the surface (component mounting surface) of the component built-in substrate 10, and built-in components housed in the component built-in substrate 10.
  • the semiconductor element 22 and the mold part 30 that covers the electronic component 21 are provided.
  • circuit module 100 a predetermined electronic circuit including the electronic component 21 and the semiconductor element 22 is three-dimensionally constructed.
  • the circuit module 100 is configured to be capable of being soldered and mounted on a mounting substrate (motherboard) (not shown) via an external connection terminal 31 provided on the back surface (terminal surface) of the component built-in substrate 10.
  • the component-embedded substrate 10 includes a metal core base 110, an exterior part 120, a semiconductor element 22, a multilayer wiring layer 130 (first wiring pattern 131 and second wiring pattern 132), 1 is a substrate module having one resin layer 140 and an interlayer connection 150 (first via 151 and second via 152).
  • the core substrate 110 is a metal plate having a predetermined thickness (for example, 35 to 500 ⁇ m) such as copper, a copper alloy (a metal mainly composed of copper), or an iron alloy such as stainless steel (a metal mainly composed of iron). Composed.
  • the planar shape of the core substrate 110 is rectangular, and has a first main surface 111, a second main surface 112, and four side surfaces 113. Inside the core substrate 110, a plurality of cavities including a first cavity C1 that accommodates the semiconductor element 22 and a second cavity C2 that accommodates a through hole V for interlayer connection are formed.
  • the exterior portion 120 has a stacked structure of a first insulating layer 121, a second insulating layer 122, and a third insulating layer 123.
  • the first insulating layer 121 covers the first main surface 111 of the core base material 110
  • the second insulating layer 122 covers the second main surface 112 of the core base material 110.
  • the third insulating layer 123 covers the side surface 113 of the core substrate 110.
  • the first insulating layer 121, the second insulating layer 122, and the third insulating layer 123 are typically made of the same synthetic resin material.
  • epoxy resin epoxy resin
  • polyimide It is composed of a resin or a composite material in which a filler such as glass fiber is mixed.
  • the first wiring pattern 131 is arranged on the first main surface 111 side, and the second wiring pattern 132 is arranged on the second main surface 12 side. That is, the first wiring pattern 131 is provided on the first main surface 111 of the core substrate 110 via the first insulating layer 121, and the second wiring pattern 132 is interposed via the second insulating layer 122. Provided on the second main surface 112 of the core substrate 110.
  • the first wiring pattern 131 and the second wiring pattern 132 are typically made of copper foil, and are formed in a desired shape.
  • the wiring pattern is composed of pads or electrodes covering vias and through holes, electrodes connected to electronic components, wiring integrated with the pads or electrodes, and the like.
  • a part of the first wiring pattern 131 is connected to the first main surface 111 of the core substrate 110 through a via penetrating the first insulating layer 121.
  • a part of the second wiring pattern 132 is connected to the second main surface 112 of the core substrate 110 through a via penetrating the second insulating layer 122.
  • the connection with the core base material 110 mainly contributes to the grounding of the GND for the purpose of grounding the voltage.
  • the first wiring pattern 131 and the second wiring pattern 132 are covered with an insulating protective film such as solder resist SR1, SR2.
  • the solder resists SR1 and SR2 have openings at appropriate positions, through which the first wiring pattern 131 is connected to the terminal portion of the electronic component 21 and the second wiring pattern 132 is connected to the external connection terminal 31. Connected to each.
  • the substrate surface on which the first wiring pattern 131 is formed is configured as a mounting surface on which the electronic component 21 is surface-mounted.
  • the external connection terminal 31 is made of a brazing material such as solder, for example.
  • the semiconductor element 22 accommodated in the first cavity portion C1 has a thickness that is half or less that of the core substrate 110.
  • the semiconductor element 22 is typically an IC component or a discrete component.
  • a power transistor through which a large current flows is used.
  • the power transistor include a BiP transistor made of Si, a MOSFET, an IGBT, and the like, and a transistor made of SiC, GaN, or the like.
  • the electronic component 21 mounted on the mounting surface an electronic component that is typically larger than the semiconductor element 22 such as a capacitor component or a coil component is used.
  • the semiconductor element 22 is housed in the first cavity portion C1 face-up with its active surface facing the first main surface 111 side.
  • the semiconductor element 22 is located closer to the first main surface 111 than the center of the core substrate 110.
  • the surface or electrode of the semiconductor element 22 is disposed on the same plane as the first main surface 111 of the core substrate 110.
  • the first resin layer 140 is made of an electrically insulating resin material that fills the first cavity portion C1 and the second cavity portion C2 and seals the semiconductor element 22.
  • the first resin layer 140 is typically made of an insulating material containing the same kind or the same organic material as the first to third insulating layers 121 to 123. Thereby, since affinity with the exterior part 120 is improved, the adhesiveness of the 1st resin layer 140 with respect to the exterior part 120 increases.
  • the first resin layer 140 may contain an inorganic filler such as fiber made of glass or carbon, glass cloth, silicon oxide, aluminum oxide, calcium carbonate, etc., similarly to the constituent material of the exterior part 120.
  • the interlayer connection 150 has a first via 151 and a second via 152.
  • the first via 151 is formed between the first wiring pattern 131 and the semiconductor element 22 (active surface thereof).
  • the second via 152 is formed between the second wiring pattern 132 and the semiconductor element 22 (inactive surface thereof).
  • the semiconductor element 22 is located closer to the first main surface 111 side than the center of the core base 110 in the first cavity C1, and in this embodiment, the surface or electrode of the semiconductor element 22 is the first surface.
  • the first main surface 111 is located substantially on the same plane.
  • the first via 151 is connected between the first wiring pattern 131 and the active surface of the semiconductor element 22 via the first insulating layer 121, and the second via 152 includes the second insulating layer 122 and the second insulating layer 122.
  • the second wiring pattern 132 is connected to the non-active surface (back surface electrode) of the semiconductor element 22 through the first resin layer 140.
  • the height (or depth) of the first via 151 is increased. Is smaller (lower) than the height (or depth) of the second via 152.
  • the maximum via diameter tends to increase as the via height (or depth) increases. Therefore, in the present embodiment, the first via 151 can be formed with a finer pitch than the second via 152, and the second via 152 can be formed more than the first via. In addition, a low-resistance via can be formed. Therefore, it is advantageous when a large current flows from the semiconductor element 22 to the second wiring pattern 132 through the second via 152 or when the second via 152 functions as a thermal via for heat dissipation of the semiconductor element 22. It becomes. Further, when the second vias 152 are all formed of a conductor, the peripheral resin and the insulating layer constituting the substrate have a larger coefficient of thermal expansion ( ⁇ ), and thus warp the substrate.
  • coefficient of thermal expansion
  • the second via 152 includes a surface conductor layer 521 that electrically connects the second wiring pattern 132 and the semiconductor element 22, and a second conductor 152 that is filled in the surface conductor layer 521. 2 resin layers 522.
  • the surface conductor layer 521 is configured by conductor plating such as copper plating formed on the inner wall surface of the hole formed in the second insulating layer 122 and the first resin layer 140 by a laser processing method or the like.
  • the second resin layer 522 is typically made of a resin material that forms the second insulating layer 122 and is formed simultaneously with the formation of the second insulating layer 122.
  • the number of the second vias 152 is not particularly limited and may be a single number, but typically a plurality of the second vias 152 are provided. All the second vias 152 are not limited to the case where they are connected between the semiconductor element 22 and the second wiring pattern 132, and part of the second vias 152 are formed between the semiconductor element 22 and the core substrate 110. It may be connected between appropriate wiring patterns that are electrically connected to each other.
  • the first via 151 and the second via 152 are provided on the front surface (active surface) and the back surface (inactive surface) of the semiconductor element 22, respectively. Therefore, the conductive path and the heat transfer path are shortened by lowering the resistance value and the thermal resistance as compared with the case where the via is connected to only one side of the component. Moreover, it becomes easy to provide a thermal via, and the heat dissipation of the inactive surface of the semiconductor element 22 can be improved.
  • the semiconductor element 22 is located closer to the first main surface 111 side than the center of the core base material 110 in the first cavity portion C1, fine signal wiring is formed by the first via 151.
  • a wiring and a heat radiation line through which a large current flows can be formed by the second via 152.
  • the substrate can be made smaller and thinner by making the wiring density different between the front and back surfaces of the semiconductor element 22 or by separating the heat radiation line and the fine signal wiring.
  • the second via 152 is constituted by the surface conductor layer 521 and the second resin layer 522, the component-embedded substrate is compared with the case where the second via 152 is filled with a conductor such as metal.
  • a predetermined stress relaxation function can be provided with respect to an external force such as a bending stress acting on 10. Therefore, even when the second via 152 is formed relatively high (or deep), desired connection reliability can be ensured.
  • the second via 152 is filled with a conductor such as a metal, the larger the via height (depth), the more the via is bent. Can keep.
  • the first cavity portion C1 and the second cavity portion C2 are formed by a wet etching method.
  • the cavity portions C1 and C2 are formed by half-etching predetermined regions of the first main surface 111 and the second main surface 112 of the core layer 110, respectively.
  • an annular protrusion (annular protrusion) Cp that protrudes inward of the cavities C1 and C2 may be formed on the inner wall surface corresponding to the confluence of both half-etched regions (see FIG. 3). ).
  • the semiconductor element 22 is located closer to the first main surface 111 side than the center of the core substrate 110 in the first cavity portion C1.
  • the semiconductor element 22 is preferably arranged at a position that does not face the tip of the annular protrusion Cp in a direction orthogonal to the thickness direction (Z-axis direction) of the core layer 110, and typically the annular protrusion Cp and the first Between the first main surface 111 and the first main surface 111.
  • the electronic component 21 is a single product, and the occupation ratio of the area of the core base material surface is from 50% to 100% of the component-embedded substrate. In some cases, the element may have an occupation ratio as close to 50% to 100%. In that case, the connection between the electronic component 21 and the surface of the core substrate 110 leads to a certain degree of reliability due to the rigidity of the electronic component 21 and the mold part 30. On the other hand, the member contributing to this rigidity is not provided on the back surface side of the core substrate 110. Therefore, a large warping force is applied to the back surface side of the core substrate 110.
  • filling the via 152 with the second resin layer 522 generates flexibility in the via 152 itself, and the second via 152 and the second wiring pattern 132 are not connected. Contact failure can be suppressed.
  • the first via 151 is formed to be thin or shallow, the following merit with the electronic component 21 occurs.
  • the electronic component 21 is a capacitor, noise absorption is steep, and malfunction of the semiconductor element 22 can be prevented.
  • the electronic component 21 is a solenoid, it is less likely to pick up noise between the solenoid and the semiconductor element.
  • the current from the power transistor, which is a semiconductor element, to the electronic component has a short path and a small resistance value, which is effective as signal processing. Considering the flow of current, the current flows from the external terminal 31 on the right side to the electronic component through the through hole V in FIG. 2, and then flows from the electronic component 21 to the vertical transistor 22 through the first via 151.
  • the transistor 22 Flows to the left external terminal 31 through the second via 152. Or vice versa, current flows.
  • the transistor 22 generates heat because it flows in the thickness direction of the multilayer substrate, and the second via 152 is deep, and its diameter is larger than that of the first via. Therefore, the transistor 22 greatly contributes as a thermal via.
  • the number of wiring layers (wiring patterns) formed on both main surfaces of the component-embedded substrate 10 is one, but the present invention is not limited to this.
  • a multilayer wiring structure may be employed.
  • a wiring layer is further formed on the wiring patterns 131 and 132 via an interlayer insulating film.
  • the core substrate 110 includes the first cavity portion C1 that houses the semiconductor element 22 .
  • the number of cavity portions that house the built-in components is not limited to one, and a plurality of There may be.
  • the housed component to be accommodated is not limited to a semiconductor element, and may be a passive component such as a capacitor or a resistance element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

[Problem] To provide a component-embedded substrate that improves heat-dissipation efficiency and makes it possible to shorten the length of wiring between a mounting surface and an embedded component. [Solution] A component-embedded substrate according to an embodiment of the present invention comprises a metal core material, a semiconductor element, a first resin layer, a multilayer wiring layer, and an interlayer connection part. The semiconductor element is thinner than the core material, is housed in a cavity, and is positioned further toward a first main surface side than the center of the core material. The first resin layer fills the cavity, and seals the semiconductor element. The multilayer wiring layer has a first wiring pattern that is disposed on the first main surface side, and a second wiring pattern that is disposed on a second main surface side. The interlayer connection part has a first via that is formed between the first wiring pattern and the semiconductor element and has a first height, and a second via that is formed between the second wiring pattern and the semiconductor element and has a second height greater than the first height.

Description

部品内蔵基板Component built-in board
 本発明は、金属製のコア基材に半導体素子を内蔵した部品内蔵基板に関する。 The present invention relates to a component-embedded substrate in which a semiconductor element is embedded in a metal core base material.
 電子機器に対するニーズは情報通信産業の拡大に伴い多様化し、開発や量産開始の早期化に対するニーズも高まっている。特にスマートフォンでは、電話としての基本機能に加えて、インターネット、電子メール、カメラ、GPS、無線LAN、ワンセグテレビなどの多様な機能が追加され、機種も増加している。高機能なスマートフォンでは、電池容量の向上が課題となっており、メインボードの高密度実装化、小型・薄型化、及び機能ブロックのモジュール化が進められている。 Demand for electronic devices has become diversified as the information and telecommunications industry expands, and needs for early development and mass production have also increased. In particular, in smartphones, in addition to basic functions as a telephone, various functions such as the Internet, e-mail, camera, GPS, wireless LAN, and 1Seg TV are added, and the number of models is increasing. In high-performance smartphones, improving battery capacity is an issue, and high-density mounting of main boards, miniaturization and thinning, and modularization of functional blocks are being promoted.
 一方、電源回路は、大電流を消費するため発熱しやすく、また、コンデンサや抵抗といった受動部品と比べてサイズが大きいコイル部品が必要なため、小型化が難しい。部品内蔵基板等の三次元実装技術を用いて、コイル以外の部品を基板に内蔵することは電源モジュールにも有効であるが、表層実装基板と比べて熱密度が増大するため、内蔵部品が発する熱を効率よく伝達することが求められる。このため近年では、金属製のコア基材を有する部品内蔵基板が広く用いられている(例えば特許文献1参照)。 On the other hand, the power circuit easily generates heat because it consumes a large current, and it is difficult to reduce the size because it requires coil components that are larger in size than passive components such as capacitors and resistors. Using a 3D mounting technology such as a component-embedded board to incorporate components other than the coil into the substrate is also effective for the power supply module, but because the heat density increases compared to the surface-mounting substrate, the built-in components are generated. It is required to transfer heat efficiently. For this reason, in recent years, a component-embedded substrate having a metal core base material has been widely used (see, for example, Patent Document 1).
特開2014-38933号公報JP 2014-38933 A
 金属製のコア基材を有する部品内蔵基板においては、内蔵部品の放熱効率の更なる向上と、実装面に搭載される電子部品との間の配線長の短縮が求められる。 In a component-embedded substrate having a metal core base material, it is required to further improve the heat dissipation efficiency of the built-in component and shorten the wiring length between the electronic component mounted on the mounting surface.
 以上のような事情に鑑み、本発明の目的は、放熱効率の向上と、実装面と内蔵部品との間の配線長の短縮を実現することができる部品内蔵基板を提供することにある。 In view of the circumstances as described above, an object of the present invention is to provide a component-embedded substrate capable of improving heat dissipation efficiency and shortening the wiring length between a mounting surface and a built-in component.
 上記目的を達成するため、本発明の一形態に係る部品内蔵基板は、金属製のコア基材と、半導体素子と、第1の樹脂層と、多層配線層と、層間接続部とを具備する。
 前記コア基材は、第1の主面と、前記第1の主面とは反対側の第2の主面と、前記第1の主面と前記第2の主面との間を貫通するキャビティとを有する。
 前記半導体素子は、前記コア基材よりも小さい厚みを有し、前記キャビティに収容され、前記コア基材の中心よりも前記第1の主面側に位置する。
 前記第1の樹脂層は、前記キャビティに充填され、前記半導体素子を封止する。
 前記多層配線層は、前記第1の主面側に配置された第1の配線パターンと、前記第2の主面側に配置された第2の配線パターンとを有する。
 前記層間接続部は、前記第1の配線パターンと前記半導体素子との間に第1の高さで形成された第1のビアと、前記第2の配線パターンと前記半導体素子との間に前記第1の高さよりも大きい第2の高さで形成された第2のビアとを有する。
In order to achieve the above object, a component-embedded substrate according to an aspect of the present invention includes a metal core base material, a semiconductor element, a first resin layer, a multilayer wiring layer, and an interlayer connection portion. .
The core base material penetrates between a first main surface, a second main surface opposite to the first main surface, and the first main surface and the second main surface. And a cavity.
The semiconductor element has a thickness smaller than that of the core substrate, is accommodated in the cavity, and is located on the first main surface side with respect to the center of the core substrate.
The first resin layer fills the cavity and seals the semiconductor element.
The multilayer wiring layer includes a first wiring pattern disposed on the first main surface side and a second wiring pattern disposed on the second main surface side.
The interlayer connection portion includes a first via formed at a first height between the first wiring pattern and the semiconductor element, and a gap between the second wiring pattern and the semiconductor element. And a second via formed at a second height greater than the first height.
 上記部品内蔵基板においては、半導体素子がコア基材の中心よりも第1の主面側に位置しているため、第1の配線パターンとの配線長を比較的短くすることができる。また、第2の配線パターンと連絡する第2のビアを第1のビアよりも大きな径で形成することができるため、当該第2のビアをサーマルビアとして機能させることが可能となり、これにより半導体素子の放熱効率の向上を図ることができる。 In the component built-in substrate, since the semiconductor element is located on the first main surface side with respect to the center of the core base material, the wiring length with the first wiring pattern can be made relatively short. In addition, since the second via that communicates with the second wiring pattern can be formed with a larger diameter than the first via, the second via can be made to function as a thermal via. It is possible to improve the heat dissipation efficiency of the element.
 前記第2のビアは、前記第2の配線パターンと前記半導体素子との間を電気的に接続する表面導体層と、前記表面導体層の内部に充填された第2の樹脂層とを含んでもよい。
 前記第2の樹脂層の代わりに、導電性ペーストまたはCuめっきで前記表面導体層の内部が充填されても良い。
The second via may include a surface conductor layer that electrically connects the second wiring pattern and the semiconductor element, and a second resin layer filled in the surface conductor layer. Good.
Instead of the second resin layer, the inside of the surface conductor layer may be filled with a conductive paste or Cu plating.
 前記第2のビアは、前記第1のビアよりも大きな径で形成されてもよい。 The second via may be formed with a larger diameter than the first via.
 前記キャビティは、内方に向かって突出する環状突起部を含む内壁面を有し、前記半導体素子は、前記環状突起部と前記第1の主面との間に配置されてもよい。 The cavity may have an inner wall surface including an annular protrusion protruding inward, and the semiconductor element may be disposed between the annular protrusion and the first main surface.
 前記部品内蔵基板は、前記第1の主面側に搭載され、前記半導体素子と電気的に接続される電子部品をさらに具備してもよい。 The component-embedded substrate may further include an electronic component mounted on the first main surface side and electrically connected to the semiconductor element.
 以上述べたように、本発明によれば、放熱効率の向上と、実装面と内蔵部品との間の配線長の短縮を実現することができる。 As described above, according to the present invention, it is possible to improve the heat dissipation efficiency and shorten the wiring length between the mounting surface and the built-in component.
本発明の一実施形態に係る部品内蔵基板を備えた回路モジュールの外観斜視図である。1 is an external perspective view of a circuit module including a component built-in substrate according to an embodiment of the present invention. 上記回路モジュールの要部の概略側断面図である。It is a schematic sectional side view of the principal part of the said circuit module. 上記部品内蔵基板の要部概略側断面図である。It is a principal part schematic sectional side view of the said component built-in board | substrate.
 以下、図面を参照しながら、本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の一実施形態に係る部品内蔵基板10を備えた回路モジュール100の外観斜視図、図2は回路モジュール100の要部の概略側断面図、図3は部品内蔵基板10の要部概略側断面図である。
 なお、各図においてX軸、Y軸及びZ軸は、相互に直交する3軸方向を示しており、図2及び図3はそれぞれY軸方向から見た断面図である。
1 is an external perspective view of a circuit module 100 including a component built-in substrate 10 according to an embodiment of the present invention, FIG. 2 is a schematic side sectional view of a main part of the circuit module 100, and FIG. It is a principal part schematic sectional side view.
In each figure, an X axis, a Y axis, and a Z axis indicate three axial directions orthogonal to each other, and FIGS. 2 and 3 are cross-sectional views as viewed from the Y axis direction.
 本実施形態の回路モジュール100は、部品内蔵基板10と、部品内蔵基板10の表面(部品実装面)に実装された複数の電子部品21と、部品内蔵基板10の内部に収容された内蔵部品としての半導体素子22と、電子部品21を覆うモールド部30とを備える。 The circuit module 100 according to the present embodiment includes a component built-in substrate 10, a plurality of electronic components 21 mounted on the surface (component mounting surface) of the component built-in substrate 10, and built-in components housed in the component built-in substrate 10. The semiconductor element 22 and the mold part 30 that covers the electronic component 21 are provided.
 回路モジュール100においては、電子部品21と半導体素子22を含む所定の電子回路が三次元的に構築されている。回路モジュール100は、部品内蔵基板10の裏面(端子面)に設けられた外部接続端子31を介して、図示しない実装基板(マザーボード)上に半田付け実装することが可能に構成される。 In the circuit module 100, a predetermined electronic circuit including the electronic component 21 and the semiconductor element 22 is three-dimensionally constructed. The circuit module 100 is configured to be capable of being soldered and mounted on a mounting substrate (motherboard) (not shown) via an external connection terminal 31 provided on the back surface (terminal surface) of the component built-in substrate 10.
 続いて、部品内蔵基板10の詳細について説明する。 Subsequently, details of the component-embedded substrate 10 will be described.
 図2に示すように、部品内蔵基板10は、金属製のコア基材110、外装部120、半導体素子22、多層配線層130(第1の配線パターン131及び第2の配線パターン132)、第1の樹脂層140及び層間接続部150(第1のビア151及び第2のビア152)を有する基板モジュールである。 As shown in FIG. 2, the component-embedded substrate 10 includes a metal core base 110, an exterior part 120, a semiconductor element 22, a multilayer wiring layer 130 (first wiring pattern 131 and second wiring pattern 132), 1 is a substrate module having one resin layer 140 and an interlayer connection 150 (first via 151 and second via 152).
 コア基材110は、銅や銅合金(銅を主材料とした金属)、ステンレス鋼等の鉄合金(鉄を主材料とした金属)などの所定厚み(例えば、35~500μm)の金属板で構成される。コア基材110の平面形状は矩形であり、第1の主面111と、第2の主面112と、4つの側面113とを有する。コア基材110の内側には、半導体素子22を収容する第1のキャビティ部C1と層間接続用のスルーホールVを収容する第2のキャビティ部C2を含む複数のキャビティが形成されている。 The core substrate 110 is a metal plate having a predetermined thickness (for example, 35 to 500 μm) such as copper, a copper alloy (a metal mainly composed of copper), or an iron alloy such as stainless steel (a metal mainly composed of iron). Composed. The planar shape of the core substrate 110 is rectangular, and has a first main surface 111, a second main surface 112, and four side surfaces 113. Inside the core substrate 110, a plurality of cavities including a first cavity C1 that accommodates the semiconductor element 22 and a second cavity C2 that accommodates a through hole V for interlayer connection are formed.
 外装部120は、第1の絶縁層121と、第2の絶縁層122と、第3の絶縁層123との積層構造を有する。第1の絶縁層121は、コア基材110の第1の主面111を被覆し、第2の絶縁層122は、コア基材110の第2の主面112を被覆する。第3の絶縁層123は、コア基材110の側面113を被覆する。 The exterior portion 120 has a stacked structure of a first insulating layer 121, a second insulating layer 122, and a third insulating layer 123. The first insulating layer 121 covers the first main surface 111 of the core base material 110, and the second insulating layer 122 covers the second main surface 112 of the core base material 110. The third insulating layer 123 covers the side surface 113 of the core substrate 110.
 第1の絶縁層121、第2の絶縁層122及び第3の絶縁層123は、典型的には、同一の合成樹脂材料で構成され、例えば、エポキシ樹脂、BT(ビスマレイミドトリアジン)樹脂、ポリイミド樹脂、あるいはこれにガラス繊維等のフィラーが混合された複合材料で構成される。 The first insulating layer 121, the second insulating layer 122, and the third insulating layer 123 are typically made of the same synthetic resin material. For example, epoxy resin, BT (bismaleimide triazine) resin, polyimide It is composed of a resin or a composite material in which a filler such as glass fiber is mixed.
 第1の配線パターン131は第1の主面111側に配置され、第2の配線パターン132は第2の主面12側に配置される。すなわち、第1の配線パターン131は、第1の絶縁層121を介してコア基材110の第1の主面111に設けられ、第2の配線パターン132は、第2の絶縁層122を介してコア基材110の第2の主面112に設けられる。 The first wiring pattern 131 is arranged on the first main surface 111 side, and the second wiring pattern 132 is arranged on the second main surface 12 side. That is, the first wiring pattern 131 is provided on the first main surface 111 of the core substrate 110 via the first insulating layer 121, and the second wiring pattern 132 is interposed via the second insulating layer 122. Provided on the second main surface 112 of the core substrate 110.
 第1の配線パターン131及び第2の配線パターン132は、典型的には銅箔で構成され、任意の形状にパターン形成される。特に、この配線パターンは、ビアやスルーホール上を覆うパッドまたは電極、電子部品と接続される電極、このパッドまたは電極と一体の配線等からなる。第1の配線パターン131の一部は、第1の絶縁層121を貫通するビアを介してコア基材110の第1の主面111に接続される。第2の配線パターン132の一部は、第2の絶縁層122を貫通するビアを介してコア基材110の第2の主面112に接続される。ここで、コア基材110との接続は、主にGND接地が目的で電圧の安定等に寄与する。 The first wiring pattern 131 and the second wiring pattern 132 are typically made of copper foil, and are formed in a desired shape. In particular, the wiring pattern is composed of pads or electrodes covering vias and through holes, electrodes connected to electronic components, wiring integrated with the pads or electrodes, and the like. A part of the first wiring pattern 131 is connected to the first main surface 111 of the core substrate 110 through a via penetrating the first insulating layer 121. A part of the second wiring pattern 132 is connected to the second main surface 112 of the core substrate 110 through a via penetrating the second insulating layer 122. Here, the connection with the core base material 110 mainly contributes to the grounding of the GND for the purpose of grounding the voltage.
 第1の配線パターン131及び第2の配線パターン132は、ソルダレジストSR1、SR2等の絶縁性保護膜により被覆される。ソルダレジストSR1,SR2は適宜の位置に開口部を有し、これらの開口部を介して、第1の配線パターン131が電子部品21の端子部に、第2の配線パターン132が外部接続端子31にそれぞれ接続される。第1の配線パターン131が形成される基板表面は、電子部品21が表面実装される実装面として構成される。外部接続端子31は、例えば、半田などのロウ材からなる。 The first wiring pattern 131 and the second wiring pattern 132 are covered with an insulating protective film such as solder resist SR1, SR2. The solder resists SR1 and SR2 have openings at appropriate positions, through which the first wiring pattern 131 is connected to the terminal portion of the electronic component 21 and the second wiring pattern 132 is connected to the external connection terminal 31. Connected to each. The substrate surface on which the first wiring pattern 131 is formed is configured as a mounting surface on which the electronic component 21 is surface-mounted. The external connection terminal 31 is made of a brazing material such as solder, for example.
 第1のキャビティ部C1に収容される半導体素子22は、コア基材110の半分以下の厚みを有する。半導体素子22は、典型的には、IC部品やディスクリート部品が用いられ、本実施形態では、大電流が流れるパワートランジスタが用いられる。パワートランジスタとしては、SiからなるBiPトランジスタ、MOSFET、IGBTなど、また、SiCやGaNなどからなるトランジスタが挙げられる。実装面に搭載される電子部品21としては、コンデンサ部品やコイル部品など、典型的には半導体素子22よりも大型の電子部品が用いられる。 The semiconductor element 22 accommodated in the first cavity portion C1 has a thickness that is half or less that of the core substrate 110. The semiconductor element 22 is typically an IC component or a discrete component. In this embodiment, a power transistor through which a large current flows is used. Examples of the power transistor include a BiP transistor made of Si, a MOSFET, an IGBT, and the like, and a transistor made of SiC, GaN, or the like. As the electronic component 21 mounted on the mounting surface, an electronic component that is typically larger than the semiconductor element 22 such as a capacitor component or a coil component is used.
 半導体素子22は、フェイスアップで、その能動面を第1の主面111側に向けて第1のキャビティ部C1に収容される。半導体素子22は、コア基材110の中心よりも第1の主面111側に位置する。本実施形態において半導体素子22の表面または電極は、コア基材110の第1の主面111と同一平面上に配置される。 The semiconductor element 22 is housed in the first cavity portion C1 face-up with its active surface facing the first main surface 111 side. The semiconductor element 22 is located closer to the first main surface 111 than the center of the core substrate 110. In the present embodiment, the surface or electrode of the semiconductor element 22 is disposed on the same plane as the first main surface 111 of the core substrate 110.
 第1の樹脂層140は、第1のキャビティ部C1及び第2のキャビティ部C2の内部に充填され、半導体素子22を封止する電気絶縁性の樹脂材料で構成される。第1の樹脂層140は、典型的には、第1~第3の絶縁層121~123と同種の又は同一の有機材料を含む絶縁材料で構成される。これにより、外装部120との親和性が高められるため、外装部120に対する第1の樹脂層140の密着性が高まる。第1の樹脂層140は、外装部120の構成材料と同様に、ガラスまたは炭素からなる繊維、ガラスクロス、シリコン酸化物、酸化アルミニウム、炭酸カルシウム等の無機フィラーを含有してもよい。 The first resin layer 140 is made of an electrically insulating resin material that fills the first cavity portion C1 and the second cavity portion C2 and seals the semiconductor element 22. The first resin layer 140 is typically made of an insulating material containing the same kind or the same organic material as the first to third insulating layers 121 to 123. Thereby, since affinity with the exterior part 120 is improved, the adhesiveness of the 1st resin layer 140 with respect to the exterior part 120 increases. The first resin layer 140 may contain an inorganic filler such as fiber made of glass or carbon, glass cloth, silicon oxide, aluminum oxide, calcium carbonate, etc., similarly to the constituent material of the exterior part 120.
 層間接続部150は、第1のビア151と、第2のビア152とを有する。第1のビア151は、第1の配線パターン131と半導体素子22(の能動面)との間に形成される。第2のビア152は、第2の配線パターン132と半導体素子22(の非能動面)との間に形成される。 The interlayer connection 150 has a first via 151 and a second via 152. The first via 151 is formed between the first wiring pattern 131 and the semiconductor element 22 (active surface thereof). The second via 152 is formed between the second wiring pattern 132 and the semiconductor element 22 (inactive surface thereof).
 半導体素子22は上述のように第1のキャビティ部C1の内部においてコア基材110の中心よりも第1の主面111側に位置し、本実施形態では、半導体素子22の表面または電極は第1の主面111と実質的に同一平面上に位置する。第1のビア151は、第1の絶縁層121を介して第1の配線パターン131と半導体素子22の能動面との間に接続され、第2のビア152は、第2の絶縁層122及び第1の樹脂層140を介して第2の配線パターン132と半導体素子22の非能動面(裏面電極)との間に接続される。第1の絶縁層121及び第2の絶縁層122は第1の主面111及び第2の主面112上に概ね同一の厚みで形成されるため、第1のビア151の高さ(あるいは深さ)は、第2のビア152の高さ(あるいは深さ)よりも小さい(低い)。 As described above, the semiconductor element 22 is located closer to the first main surface 111 side than the center of the core base 110 in the first cavity C1, and in this embodiment, the surface or electrode of the semiconductor element 22 is the first surface. The first main surface 111 is located substantially on the same plane. The first via 151 is connected between the first wiring pattern 131 and the active surface of the semiconductor element 22 via the first insulating layer 121, and the second via 152 includes the second insulating layer 122 and the second insulating layer 122. The second wiring pattern 132 is connected to the non-active surface (back surface electrode) of the semiconductor element 22 through the first resin layer 140. Since the first insulating layer 121 and the second insulating layer 122 are formed on the first main surface 111 and the second main surface 112 with substantially the same thickness, the height (or depth) of the first via 151 is increased. Is smaller (lower) than the height (or depth) of the second via 152.
 一般に、ビアの高さ(あるいは深さ)が大きくなるほど、ビアの最大径は大きくなる傾向にある。したがって本実施形態においては、第1のビア151にあっては、第2のビア152よりも微細なピッチで形成することが可能となり、第2のビア152にあっては、第1のビアよりも低抵抗なビアを形成することが可能となる。したがって、第2のビア152を介して半導体素子22から第2の配線パターン132へ大電流を流す場合とか、第2のビア152を半導体素子22の放熱のためのサーマルビアとして機能させる場合に有利となる。また、第2のビア152が全て導体で形成される場合、基板を構成する周辺の樹脂、絶縁層の方が熱膨張係数(α)の値が大きいため、基板に反りを与えてしまう。その結果、配線パターンとビアの接続部分、半導体素子とビアとの接続部に応力が加わり、コンタクト不良が生じてしまう。しかしながら、ビアの高さ(深さ)があるため、ビア自体がたわみ、αのミスマッチによるクラックを防止できる。詳しくは後述する。 Generally, the maximum via diameter tends to increase as the via height (or depth) increases. Therefore, in the present embodiment, the first via 151 can be formed with a finer pitch than the second via 152, and the second via 152 can be formed more than the first via. In addition, a low-resistance via can be formed. Therefore, it is advantageous when a large current flows from the semiconductor element 22 to the second wiring pattern 132 through the second via 152 or when the second via 152 functions as a thermal via for heat dissipation of the semiconductor element 22. It becomes. Further, when the second vias 152 are all formed of a conductor, the peripheral resin and the insulating layer constituting the substrate have a larger coefficient of thermal expansion (α), and thus warp the substrate. As a result, stress is applied to the connection portion between the wiring pattern and the via and the connection portion between the semiconductor element and the via, resulting in a contact failure. However, since there is a height (depth) of the via, the via itself bends and cracks due to α mismatch can be prevented. Details will be described later.
 図3に示すように、第2のビア152は、第2の配線パターン132と半導体素子22との間を電気的に接続する表面導体層521と、表面導体層521の内部に充填された第2の樹脂層522とを含む。表面導体層521は、第2の絶縁層122及び第1の樹脂層140にレーザ加工法等により穿設された孔部の内壁面に形成された銅めっき等の導体めっきで構成される。第2の樹脂層522は、典型的には、第2の絶縁層122を構成する樹脂材料で構成され、第2の絶縁層122の形成と同時に形成される。 As shown in FIG. 3, the second via 152 includes a surface conductor layer 521 that electrically connects the second wiring pattern 132 and the semiconductor element 22, and a second conductor 152 that is filled in the surface conductor layer 521. 2 resin layers 522. The surface conductor layer 521 is configured by conductor plating such as copper plating formed on the inner wall surface of the hole formed in the second insulating layer 122 and the first resin layer 140 by a laser processing method or the like. The second resin layer 522 is typically made of a resin material that forms the second insulating layer 122 and is formed simultaneously with the formation of the second insulating layer 122.
 第2のビア152の数は特に限定されず、単数でもよいが、典型的には複数設けられる。すべての第2のビア152は、半導体素子22と第2の配線パターン132との間に接続される場合に限られず、第2のビア152の一部が、半導体素子22と、コア基材110に電気的に接続される適宜の配線パターンとの間に接続されてもよい。 The number of the second vias 152 is not particularly limited and may be a single number, but typically a plurality of the second vias 152 are provided. All the second vias 152 are not limited to the case where they are connected between the semiconductor element 22 and the second wiring pattern 132, and part of the second vias 152 are formed between the semiconductor element 22 and the core substrate 110. It may be connected between appropriate wiring patterns that are electrically connected to each other.
 以上のように構成される本実施形態の部品内蔵基板10においては、半導体素子22の表面(能動面)及び裏面(非能動面)にそれぞれ第1のビア151及び第2のビア152が設けられているため、部品の片面にのみビアを接続する場合と比較して、抵抗値及び熱抵抗が下がることで導電経路及び伝熱経路が短くなる。また、サーマルビアを設けることが容易となり、半導体素子22の非能動面の放熱性を高めることができる。 In the component-embedded substrate 10 of the present embodiment configured as described above, the first via 151 and the second via 152 are provided on the front surface (active surface) and the back surface (inactive surface) of the semiconductor element 22, respectively. Therefore, the conductive path and the heat transfer path are shortened by lowering the resistance value and the thermal resistance as compared with the case where the via is connected to only one side of the component. Moreover, it becomes easy to provide a thermal via, and the heat dissipation of the inactive surface of the semiconductor element 22 can be improved.
 また本実施形態によれば、半導体素子22が第1のキャビティ部C1においてコア基材110の中心よりも第1の主面111側に位置するため、第1のビア151で微細な信号配線を形成するとともに、第2のビア152で大電流が流れる配線や放熱ラインを形成することができる。このように、半導体素子22の表裏で配線密度を異ならせたり、放熱ラインと微細の信号配線とを分けたりすることで、基板の小型化、薄型化を実現することができる。 Further, according to the present embodiment, since the semiconductor element 22 is located closer to the first main surface 111 side than the center of the core base material 110 in the first cavity portion C1, fine signal wiring is formed by the first via 151. In addition to the formation, a wiring and a heat radiation line through which a large current flows can be formed by the second via 152. In this manner, the substrate can be made smaller and thinner by making the wiring density different between the front and back surfaces of the semiconductor element 22 or by separating the heat radiation line and the fine signal wiring.
 さらに、第2のビア152が表面導体層521と第2の樹脂層522とにより構成されているため、第2のビア152が金属等の導体で充填される場合と比較して、部品内蔵基板10に作用する曲げ応力等の外力に対して所定の応力緩和機能をもたせることができる。このため、第2のビア152が比較的高く(あるいは深く)形成される場合でも、所望とする接続信頼性を確保することができる。ただし、第2のビア152が金属等の導体で充填される場合でも、ビアの高さ(深さ)を大きくするほど、ビアがたわむため、αのミスマッチによるクラックが生じ難くなり、安定した接続を保つことができる。 Further, since the second via 152 is constituted by the surface conductor layer 521 and the second resin layer 522, the component-embedded substrate is compared with the case where the second via 152 is filled with a conductor such as metal. A predetermined stress relaxation function can be provided with respect to an external force such as a bending stress acting on 10. Therefore, even when the second via 152 is formed relatively high (or deep), desired connection reliability can be ensured. However, even when the second via 152 is filled with a conductor such as a metal, the larger the via height (depth), the more the via is bent. Can keep.
 さらに、半導体素子22を第1の主面111側に偏って配置することで、以下のような作用効果を得ることができる。 Furthermore, by arranging the semiconductor element 22 so as to be biased toward the first main surface 111 side, the following operational effects can be obtained.
 例えば、第1のキャビティ部C1及び第2のキャビティ部C2は、ウェットエッチング法によって形成される。本実施形態において各キャビティ部C1,C2は、コア層110の第1の主面111及び第2の主面112の所定領域をそれぞれハーフエッチングすることで形成される。このため、両ハーフエッチング領域の合流部に相当する内壁面には、キャビティ部C1,C2の内方に突出する環状の突起部(環状突起部)Cpが形成される場合がある(図3参照)。 For example, the first cavity portion C1 and the second cavity portion C2 are formed by a wet etching method. In the present embodiment, the cavity portions C1 and C2 are formed by half-etching predetermined regions of the first main surface 111 and the second main surface 112 of the core layer 110, respectively. For this reason, an annular protrusion (annular protrusion) Cp that protrudes inward of the cavities C1 and C2 may be formed on the inner wall surface corresponding to the confluence of both half-etched regions (see FIG. 3). ).
 上述のように本実施形態においては、半導体素子22が第1のキャビティ部C1においてコア基材110の中心よりも第1の主面111側に位置している。半導体素子22は、コア層110の厚み方向(Z軸方向)と直交する方向に環状突起部Cpの先端と対向しない位置に配置されることが好ましく、典型的には、環状突起部Cpと第1の主面111との間に配置される。これにより、環状突起部Cpと半導体素子22の周面との絶縁距離を確保しやすくなるため、半導体素子22の絶縁耐圧を向上させることができる。 As described above, in the present embodiment, the semiconductor element 22 is located closer to the first main surface 111 side than the center of the core substrate 110 in the first cavity portion C1. The semiconductor element 22 is preferably arranged at a position that does not face the tip of the annular protrusion Cp in a direction orthogonal to the thickness direction (Z-axis direction) of the core layer 110, and typically the annular protrusion Cp and the first Between the first main surface 111 and the first main surface 111. Thereby, since it becomes easy to ensure the insulation distance of the cyclic | annular protrusion part Cp and the surrounding surface of the semiconductor element 22, the withstand voltage of the semiconductor element 22 can be improved.
 また、本実施形態に於いて、電子部品21が、単品で、コア基材表面の面積の占有比率で、本部品内蔵基板の50%から100%に近い程の占有率であったり、複数の素子で50%から100%に近い程の占有率であったりする場合がある。その場合、電子部品21とコア基材110表面との間の接続部は、電子部品21やモールド部30の剛性によってある程度の信頼性確保につながる。一方、コア基材110の裏面側は、この剛性に寄与する部材が設けられていない。よってコア基材110の裏面側は、大きく反りの力が加わることになる。特に第2のビア152を金属で完全に埋めてしまうと、その硬さのため、第2のビア152と半導体素子22とのコンタクト部分、第2のビア152と第2の配線パターン132とのコンタクト部分には、大きな応力が加わることになる。しかしながら、本実施形態の様に、ビア152の内部に第2の樹脂層522を充填する事により、ビア152自体に柔軟性が発生し、第2のビア152と第2の配線パターン132とのコンタクト不良を抑止することができる。 In the present embodiment, the electronic component 21 is a single product, and the occupation ratio of the area of the core base material surface is from 50% to 100% of the component-embedded substrate. In some cases, the element may have an occupation ratio as close to 50% to 100%. In that case, the connection between the electronic component 21 and the surface of the core substrate 110 leads to a certain degree of reliability due to the rigidity of the electronic component 21 and the mold part 30. On the other hand, the member contributing to this rigidity is not provided on the back surface side of the core substrate 110. Therefore, a large warping force is applied to the back surface side of the core substrate 110. In particular, if the second via 152 is completely filled with metal, due to its hardness, the contact portion between the second via 152 and the semiconductor element 22, and the second via 152 and the second wiring pattern 132 A large stress is applied to the contact portion. However, as in this embodiment, filling the via 152 with the second resin layer 522 generates flexibility in the via 152 itself, and the second via 152 and the second wiring pattern 132 are not connected. Contact failure can be suppressed.
 更には、第1のビア151が薄く、または浅く形成される事から、電子部品21との間で以下のメリットが発生する。
 電子部品21がコンデンサである場合、ノイズ吸収が急峻であり、半導体素子22の誤動作を防止できる。また電子部品21がソレノイドであれば、ソレノイドと半導体素子の間でノイズを拾うことが少なくなる。この様に、半導体素子であるパワートランジスタから電子部品への電流は、パスが短く、抵抗値が小さくなり、信号処理として有効となる。
 電流の流れを考えると、図2において右側の外部端子31からスルーホールVを介して電子部品に流れ、そして電子部品21から第1のビア151を介して縦型のトランジスタ22を流れ、その電流は第2のビア152を介して左側の外部端子31へと流れる。またはその逆で電流が流れる。特に、トランジスタ22は、多層基板の厚み方向に、流れるため発熱し第2のビア152が深いため、その径も第1のビアよりも大きいため、サーマルビアとして大きく寄与する。
Furthermore, since the first via 151 is formed to be thin or shallow, the following merit with the electronic component 21 occurs.
When the electronic component 21 is a capacitor, noise absorption is steep, and malfunction of the semiconductor element 22 can be prevented. Moreover, if the electronic component 21 is a solenoid, it is less likely to pick up noise between the solenoid and the semiconductor element. As described above, the current from the power transistor, which is a semiconductor element, to the electronic component has a short path and a small resistance value, which is effective as signal processing.
Considering the flow of current, the current flows from the external terminal 31 on the right side to the electronic component through the through hole V in FIG. 2, and then flows from the electronic component 21 to the vertical transistor 22 through the first via 151. Flows to the left external terminal 31 through the second via 152. Or vice versa, current flows. In particular, the transistor 22 generates heat because it flows in the thickness direction of the multilayer substrate, and the second via 152 is deep, and its diameter is larger than that of the first via. Therefore, the transistor 22 greatly contributes as a thermal via.
 以上、本発明の実施形態について説明したが、本発明は上述の実施形態にのみ限定されるものではなく種々変更を加え得ることは勿論である。 As mentioned above, although embodiment of this invention was described, this invention is not limited only to the above-mentioned embodiment, Of course, a various change can be added.
 例えば以上の実施形態では、例えば以上の実施形態では、部品内蔵基板10の両主面に形成される配線層(配線パターン)の数をそれぞれ1層としたが、これに限られず、2層以上の多層配線構造が採用されてもよい。この場合、配線パターン131,132の上に層間絶縁膜を介して配線層がさらに形成される。 For example, in the above embodiment, for example, in the above embodiment, the number of wiring layers (wiring patterns) formed on both main surfaces of the component-embedded substrate 10 is one, but the present invention is not limited to this. A multilayer wiring structure may be employed. In this case, a wiring layer is further formed on the wiring patterns 131 and 132 via an interlayer insulating film.
 また、以上の実施形態では、コア基材110が半導体素子22を収容する第1のキャビティ部C1を有する例について説明したが、内蔵部品を収容するキャビティ部の数は1つに限られず、複数あってもよい。この場合、収容される内蔵部品は半導体素子に限られず、コンデンサや抵抗素子等の受動部品であってもよい。 In the above embodiment, the example in which the core substrate 110 includes the first cavity portion C1 that houses the semiconductor element 22 has been described. However, the number of cavity portions that house the built-in components is not limited to one, and a plurality of There may be. In this case, the housed component to be accommodated is not limited to a semiconductor element, and may be a passive component such as a capacitor or a resistance element.
 10…部品内蔵基板
 21…電子部品
 22…半導体素子
 100…回路モジュール
 110…コア基材
 111…第1の主面
 112…第2の主面
 130…多層配線層
 131…第1の配線パターン
 132…第2の配線パターン
 140…第1の樹脂層
 150…層間接続部
 151…第1のビア
 152…第2のビア
 521…表面導体層
 522…第2の樹脂層
 C1…第1のキャビティ部
 Cp…環状突起部
DESCRIPTION OF SYMBOLS 10 ... Component built-in board 21 ... Electronic component 22 ... Semiconductor element 100 ... Circuit module 110 ... Core base material 111 ... 1st main surface 112 ... 2nd main surface 130 ... Multilayer wiring layer 131 ... 1st wiring pattern 132 ... Second wiring pattern 140 ... first resin layer 150 ... interlayer connection 151 ... first via 152 ... second via 521 ... surface conductor layer 522 ... second resin layer C1 ... first cavity Cp ... Annular projection

Claims (7)

  1.  第1の主面と、前記第1の主面とは反対側の第2の主面と、前記第1の主面と前記第2の主面との間を貫通するキャビティとを有する金属製のコア基材と
     前記コア基材よりも小さい厚みを有し、前記キャビティに収容され、前記コア基材の中心よりも前記第1の主面側に位置する半導体素子と、
     前記キャビティに充填され、前記半導体素子を封止する第1の樹脂層と、
     前記第1の主面側に配置された第1の配線パターンと、前記第2の主面側に配置された第2の配線パターンとを有する多層配線層と、
     前記第1の配線パターンと前記半導体素子との間に第1の高さで形成された第1のビアと、前記第2の配線パターンと前記半導体素子との間に前記第1の高さよりも大きい第2の高さで形成された第2のビアとを有する層間接続部と
     を具備する部品内蔵基板。
    A metal having a first main surface, a second main surface opposite to the first main surface, and a cavity penetrating between the first main surface and the second main surface A semiconductor element having a thickness smaller than that of the core base material, housed in the cavity, and located on the first main surface side from the center of the core base material,
    A first resin layer that fills the cavity and seals the semiconductor element;
    A multilayer wiring layer having a first wiring pattern disposed on the first main surface side and a second wiring pattern disposed on the second main surface side;
    The first via formed at a first height between the first wiring pattern and the semiconductor element, and the first via between the second wiring pattern and the semiconductor element than the first height. A component-embedded substrate comprising: an interlayer connection portion having a second via formed with a large second height.
  2.  請求項1に記載の部品内蔵基板であって、
     前記第2のビアは、前記第2の配線パターンと前記半導体素子との間を電気的に接続する表面導体層と、前記表面導体層の内部に充填された第2の樹脂層とを含む
     部品内蔵基板。
    The component-embedded substrate according to claim 1,
    The second via includes a surface conductor layer that electrically connects the second wiring pattern and the semiconductor element, and a second resin layer filled in the surface conductor layer. Built-in board.
  3.  請求項1又は2に記載の部品内蔵基板であって、
     前記第2のビアは、前記第1のビアよりも大きな径で形成される
     部品内蔵基板。
    The component-embedded substrate according to claim 1 or 2,
    The second via is formed with a larger diameter than the first via.
  4.  請求項1~3のいずれか1つに記載の部品内蔵基板であって、
     前記キャビティは、内方に向かって突出する環状突起部を含む内壁面を有し、
     前記半導体素子は、前記環状突起部と前記第1の主面との間に配置される
     部品内蔵基板。
    The component-embedded substrate according to any one of claims 1 to 3,
    The cavity has an inner wall surface including an annular protrusion protruding inward,
    The semiconductor element is disposed between the annular protrusion and the first main surface.
  5.  請求項1~4のいずれか1つに記載の部品内蔵基板であって、
     前記第1の主面側に搭載され、前記半導体素子と電気的に接続される電子部品をさらに具備する
     部品内蔵基板。
    The component-embedded substrate according to any one of claims 1 to 4,
    A component built-in substrate further comprising an electronic component mounted on the first main surface side and electrically connected to the semiconductor element.
  6.  互いに対向する第1の主面および第2の主面を有する金属製のコア基材と、
     前記第1の主面および前記第2の主面にそれぞれ絶縁処理されて設けられた第1の配線パターンおよび第2の配線パターンと、
     前記第1の配線パターンと電気的に接続され、前記第1の主面側に実装され前記第1の主面の面積の50%以上を占有する少なくとも一つの電子部品と、
     前記第1の主面に設けられ前記電子部を覆うモールド部と、
     前記コア基材に設けられたキャビティと、
     前記キャビティに設けられ、前記第1の主面側に偏って配置された、前記コア基材の厚みよりも薄いパワー半導体素子と、
     前記半導体素子の前記第1の主面側の表面に設けられた第1のビアと、
     前記半導体素子の前記第2の主面側の裏面に設けられ、前記第1のビアよりも長い第2のビアと、
     を具備し、
     前記第2のビアは、その内側表面に設けられた表面導体層と、前記表面導体層で構成される空間に充填された第2の樹脂層と、を有する
     部品内蔵基板。
    A metal core substrate having a first main surface and a second main surface facing each other;
    A first wiring pattern and a second wiring pattern provided by being insulated from the first main surface and the second main surface, respectively;
    At least one electronic component electrically connected to the first wiring pattern, mounted on the first main surface side and occupying 50% or more of the area of the first main surface;
    A mold part provided on the first main surface and covering the electronic part;
    A cavity provided in the core substrate;
    A power semiconductor element which is provided in the cavity and is arranged to be biased toward the first main surface side, and is thinner than the thickness of the core substrate;
    A first via provided on a surface of the semiconductor element on the first main surface side;
    A second via provided on the back surface of the semiconductor element on the second main surface side and longer than the first via;
    Comprising
    The second via includes a surface conductor layer provided on an inner surface of the second via and a second resin layer filled in a space formed by the surface conductor layer.
  7.  請求項6に記載の部品内蔵基板であって、
     前記電子部品は、チップコンデンサまたはソレノイドであり、
     前記パワー半導体素子は、縦型のトランジスタ、パワーMOS、IGBT、SiCまたはGaNから成る
     部品内蔵基板。
    The component-embedded substrate according to claim 6,
    The electronic component is a chip capacitor or a solenoid,
    The power semiconductor element is a component-embedded substrate made of a vertical transistor, power MOS, IGBT, SiC, or GaN.
PCT/JP2019/014692 2018-04-04 2019-04-02 Component-embedded substrate WO2019194200A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020512271A JPWO2019194200A1 (en) 2018-04-04 2019-04-02 Built-in component board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-072032 2018-04-04
JP2018072032 2018-04-04

Publications (1)

Publication Number Publication Date
WO2019194200A1 true WO2019194200A1 (en) 2019-10-10

Family

ID=68100552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014692 WO2019194200A1 (en) 2018-04-04 2019-04-02 Component-embedded substrate

Country Status (2)

Country Link
JP (1) JPWO2019194200A1 (en)
WO (1) WO2019194200A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008182184A (en) * 2006-12-26 2008-08-07 Jtekt Corp Multilayer circuit board and motor drive circuit board
JP2008288298A (en) * 2007-05-16 2008-11-27 Toppan Printing Co Ltd Method for manufacturing printed-wiring board with built-in electronic part
JP2011522403A (en) * 2008-05-30 2011-07-28 アーテー・ウント・エス・オーストリア・テヒノロギー・ウント・ジュステームテッヒニク・アクチェンゲゼルシャフト Method for incorporating at least one electronic component into a printed circuit board and printed circuit board
WO2011102561A1 (en) * 2010-02-22 2011-08-25 三洋電機株式会社 Multilayer printed circuit board and manufacturing method therefor
JP2012191204A (en) * 2011-03-11 2012-10-04 Ibiden Co Ltd Manufacturing method of printed wiring board
JP2014112627A (en) * 2012-11-07 2014-06-19 Taiyo Yuden Co Ltd Electronic circuit module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008182184A (en) * 2006-12-26 2008-08-07 Jtekt Corp Multilayer circuit board and motor drive circuit board
JP2008288298A (en) * 2007-05-16 2008-11-27 Toppan Printing Co Ltd Method for manufacturing printed-wiring board with built-in electronic part
JP2011522403A (en) * 2008-05-30 2011-07-28 アーテー・ウント・エス・オーストリア・テヒノロギー・ウント・ジュステームテッヒニク・アクチェンゲゼルシャフト Method for incorporating at least one electronic component into a printed circuit board and printed circuit board
WO2011102561A1 (en) * 2010-02-22 2011-08-25 三洋電機株式会社 Multilayer printed circuit board and manufacturing method therefor
JP2012191204A (en) * 2011-03-11 2012-10-04 Ibiden Co Ltd Manufacturing method of printed wiring board
JP2014112627A (en) * 2012-11-07 2014-06-19 Taiyo Yuden Co Ltd Electronic circuit module

Also Published As

Publication number Publication date
JPWO2019194200A1 (en) 2021-04-01

Similar Documents

Publication Publication Date Title
US8704101B2 (en) Package carrier and manufacturing method thereof
JP5715334B2 (en) Semiconductor device
US20140251658A1 (en) Thermally enhanced wiring board with built-in heat sink and build-up circuitry
US11134570B2 (en) Electronic module with a magnetic device
US20140029201A1 (en) Power package module and manufacturing method thereof
US9635763B2 (en) Component built-in board mounting body and method of manufacturing the same, and component built-in board
US8802999B2 (en) Embedded printed circuit board and manufacturing method thereof
JP2004064043A (en) Semiconductor packaging device
JP2008085089A (en) Resin wiring board and semiconductor device
JP2007158279A (en) Semiconductor device and electronic controller using the same
US10262930B2 (en) Interposer and method for manufacturing interposer
US9024446B2 (en) Element mounting substrate and semiconductor module
JP5173758B2 (en) Manufacturing method of semiconductor package
JP2009076815A (en) Semiconductor device
TW201603665A (en) Printed circuit board, method for manufacturing the same and package on package having the same
WO2018216627A1 (en) Electronic device
JP5412002B1 (en) Component built-in board
JP2017084886A (en) Wiring board and mounting structure of semiconductor element using the same
US7911039B2 (en) Component arrangement comprising a carrier
WO2019194200A1 (en) Component-embedded substrate
JP2007318048A (en) Multilayer wiring board and manufacturing method therefor
JP2009129960A (en) Semiconductor device and its manufacturing method
JP2006339293A (en) Circuit module
KR101363108B1 (en) Printed circuit board with multi-layered structure
KR101391092B1 (en) Printed circuit board with multi-layered structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19781027

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020512271

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19781027

Country of ref document: EP

Kind code of ref document: A1