WO2019194073A1 - Motor unit - Google Patents

Motor unit Download PDF

Info

Publication number
WO2019194073A1
WO2019194073A1 PCT/JP2019/013688 JP2019013688W WO2019194073A1 WO 2019194073 A1 WO2019194073 A1 WO 2019194073A1 JP 2019013688 W JP2019013688 W JP 2019013688W WO 2019194073 A1 WO2019194073 A1 WO 2019194073A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
shaft
engine
oil
generator
Prior art date
Application number
PCT/JP2019/013688
Other languages
French (fr)
Japanese (ja)
Inventor
山口 康夫
久嗣 藤原
中村 圭吾
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN201980024066.5A priority Critical patent/CN111936336B/en
Publication of WO2019194073A1 publication Critical patent/WO2019194073A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/06Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of change-speed gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • B60K6/405Housings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a motor unit.
  • Patent Document 1 discloses a structure in which oil pumped up by a gear is collected by an oil receiver and supplied to the motor to cool the motor.
  • Patent Document 1 when the vehicle speed decreases, the amount of oil pumped up by the gear decreases, and the motor may be insufficiently cooled. In a motor unit provided with a generator, it is necessary to cool not only the motor but also the generator.
  • One aspect of the present invention is to provide a motor unit capable of efficiently cooling a motor and a generator.
  • One aspect of the motor unit of the present invention is a motor unit connected to an engine, wherein a power is generated between the generator, the motor, and the engine, the generator, and the motor.
  • a pump unit provided in the transmission mechanism and driven by the power of the engine.
  • the accommodation space is provided with a first oil passage and a second oil passage for circulating the oil. The first oil passage supplies the oil into the motor from a lower region of the accommodation space.
  • the second oil path includes a suction path that is connected to a suction port of the pump unit from a lower region of the housing space, and a first branch path and a second branch path that are branched from each other at the discharge port of the pump unit.
  • the first branch path extends from the discharge port to directly above the motor and supplies the oil to the motor from above the motor.
  • the second branch path supplies the oil from the discharge port to the generator.
  • a motor unit capable of efficiently cooling a motor and a generator is provided.
  • FIG. 1 is a conceptual diagram of a power train having a motor unit according to an embodiment.
  • FIG. 2 is a side view of the motor unit according to the embodiment.
  • FIG. 3 is a partial cross-sectional view of a motor unit according to an embodiment.
  • FIG. 4 is a cross-sectional view of a pump unit according to an embodiment.
  • the direction of gravity is defined and described based on the positional relationship when the motor unit 10 is mounted on a vehicle located on a horizontal road surface.
  • “extending along the axial direction” means not only extending in the axial direction (that is, the direction parallel to the X axis) but also tilting in a range of less than 45 ° with respect to the axial direction. This includes cases extending in the other direction.
  • “extending along the axis” means extending in the axial direction around a predetermined axis.
  • extending in the radial direction means strictly in the range of less than 45 ° with respect to the radial direction in addition to the case of extending in the radial direction, that is, the direction perpendicular to the axial direction. Including the case of extending in an inclined direction.
  • FIG. 1 is a conceptual diagram of a power train 3 having a motor unit 10 according to an embodiment.
  • FIG. 1 shows the Y axis.
  • the Y-axis direction is the vehicle width direction (left-right direction).
  • the power train 3 has a motor unit 10 and an engine 2.
  • the motor unit 10 is connected to the engine 2.
  • the motor unit 10 includes a motor 1, a motor rotation sensor 33, a generator 4, a generator rotation sensor 43, a transmission mechanism (transaxle) 5, a clutch (separation mechanism) 6, and a park lock mechanism 7.
  • the inverter unit 9 has a control unit 9a. That is, the motor unit 10 includes a control unit 9a.
  • the controller 9 a is connected to the motor 1, the generator 4, the clutch 6, the generator rotation sensor 43, and the motor rotation sensor 33.
  • the motor unit 10 is mounted on a vehicle using the motor 1 and the engine 2 as power sources, such as a hybrid vehicle (HEV) and a plug-in hybrid vehicle (PHV).
  • a vehicle using the motor 1 and the engine 2 as power sources, such as a hybrid vehicle (HEV) and a plug-in hybrid vehicle (PHV).
  • HEV hybrid vehicle
  • PHY plug-in hybrid vehicle
  • the vehicle (not shown) on which the motor unit 10 is mounted has three types of travel modes: EV mode, series mode, and parallel mode. These travel modes are alternatively selected by the control unit 9a in accordance with the vehicle state, the travel state, the driver's requested output, and the like.
  • the EV mode is a travel mode in which the vehicle is driven only by the motor 1 using the charging power of a driving battery (not shown) while the engine 2 and the generator 4 are stopped.
  • the EV mode is selected when the traveling load is low or the battery charge level is high.
  • the series mode is a traveling mode in which the generator 2 is driven by the engine 2 to generate power, and the vehicle is driven by the motor 1 using the electric power.
  • the series mode is selected when the traveling load is medium or when the battery charge level is low.
  • the parallel mode is a traveling mode in which the vehicle is driven mainly by the engine 2 and the driving of the vehicle is assisted by the motor 1 as necessary, and is selected when the traveling load is high.
  • Engine 2 is an internal combustion engine (gasoline engine or diesel engine) that burns gasoline or light oil.
  • the engine 2 of the present embodiment is a so-called horizontal engine that is disposed sideways so that the direction of the crankshaft 2a coincides with the vehicle width direction of the vehicle.
  • the engine 2 is disposed on one side of the motor unit 10 in the vehicle width direction.
  • the crankshaft 2a extends along the engine axis J2.
  • the engine shaft J2 is disposed in parallel to the output shaft 55 of the motor unit 10.
  • the operating state of the engine 2 is controlled by the control unit 9a.
  • the engine 2 and the motor unit 10 are connected via a damper 2c.
  • the damper 2c functions as a torque limiter.
  • the damper 2c reduces vibrations caused by sudden torque fluctuations such as when the vehicle is suddenly accelerated by the engine.
  • the engine 2 is connected to the engine drive shaft 12 of the motor unit 10 via the damper 2c. That is, the engine 2 drives the engine drive shaft 12.
  • the housing 8 is made of, for example, aluminum die casting.
  • the housing 8 is configured by connecting a plurality of members arranged in the vehicle width direction.
  • the housing 8 is provided with an accommodation space 8S.
  • the housing 8 accommodates the motor 1, the motor rotation sensor 33, the generator 4, the generator rotation sensor 43, the transmission mechanism 5, the clutch 6, the park lock mechanism 7, and the pump unit 70 in the accommodation space 8 ⁇ / b> S. Further, oil O accumulates in the lower region of the accommodation space 8S.
  • a generator chamber 8A for accommodating the generator 4 a gear chamber 8B for accommodating the transmission mechanism 5, and a motor chamber 8C for accommodating the motor 1 are provided.
  • the housing 8 includes a generator housing portion 81 that forms a generator chamber 8A inside, a transmission mechanism housing portion 82 that forms a gear chamber 8B inside, and a motor housing portion 83 that forms a motor chamber 8C inside.
  • a generator housing portion 81 that forms a generator chamber 8A inside
  • a transmission mechanism housing portion 82 that forms a gear chamber 8B inside
  • a motor housing portion 83 that forms a motor chamber 8C inside.
  • the housing 8 has an outer peripheral wall portion 8a surrounding the housing space 8S, and a first partition wall portion (partition wall portion) 8b and a second partition wall portion (partition wall portion) 8c that divide the interior of the housing space.
  • the first partition wall portion 8b and the second partition wall portion 8c extend along a plane orthogonal to the vehicle width direction (that is, the axial direction).
  • the first partition 8b partitions the generator chamber 8A and the gear chamber 8B.
  • the second partition 8c partitions the gear chamber 8B and the motor chamber 8C.
  • the second partition wall portion 8c faces the first partition wall portion 8b in the vehicle width direction. Therefore, the 1st partition part 8b and the 2nd partition part 8c are located in the both sides of the vehicle width direction of the gear chamber 8B, and surround the gear chamber 8B from the vehicle width direction both sides.
  • an oil reservoir P in which oil O is accumulated is provided in the lower region of the accommodation space 8S.
  • the bottom of the motor chamber 8C and the bottom of the generator chamber 8A are located above the bottom of the gear chamber 8B.
  • the first partition wall portion 8b is provided with a first partition wall opening 8bb.
  • the first partition opening 8bb allows the generator chamber 8A and the gear chamber 8B to communicate with each other.
  • the first partition opening 8bb moves the oil O accumulated in the lower region of the generator chamber 8A to the gear chamber 8B.
  • the second partition wall 8c is provided with a second partition opening 8cb.
  • the second partition opening 8cb allows the motor chamber 8C and the gear chamber 8B to communicate with each other.
  • the second partition opening 8cb moves the oil O accumulated in the lower region of the motor chamber 8C to the gear chamber 8B. Therefore, the oil O in the accommodation space 8S finally accumulates in the lower region of the gear chamber 8B. That is, in this embodiment, the oil sump P is located in the lower region of the gear chamber 8B.
  • an oil passage 90 for circulating the oil O is provided in the accommodating space 8S.
  • the oil passage 90 includes a first oil passage 91 and a second oil passage 92. That is, the accommodation space 8S is provided with a first oil passage 91 and a second oil passage 92 through which the oil O is circulated. Oil O is supplied from the oil reservoir P to each part of the motor unit 10 in the oil passage 90.
  • the oil passage 90 will be described in detail later.
  • the housing 8 has a bottom wall portion 8d located below the oil reservoir P.
  • the bottom wall portion 8d constitutes a part of the transmission mechanism accommodating portion 82.
  • a channel member 8e is fixed to the bottom wall portion 8d.
  • the flow path member 8e is made of a metal material having high thermal conductivity. As an example, the flow path member 8e is made of an aluminum alloy.
  • a coolant channel 8ea is provided inside the channel member 8e.
  • Refrigerant piping 8eb is connected to both ends of the refrigerant flow path 8ea.
  • the refrigerant pipe 8eb is configured in a loop shape.
  • the refrigerant cooled by a radiator (not shown) provided in the path flows through the refrigerant pipe 8eb.
  • the refrigerant flows between the inlet and the outlet in the refrigerant channel 8ea of the channel member 8e. Thereby, the flow path member 8e is cooled by the refrigerant.
  • An inverter unit 9 is provided in the path of the refrigerant pipe 8eb. The refrigerant flowing in the refrigerant pipe 8eb cools the inverter unit 9 together with the flow path member 8e.
  • the flow path member 8e is fixed to the bottom wall portion 8d of the housing 8 below the oil reservoir P. For this reason, the flow path member 8e cooled by the refrigerant cools the bottom wall portion 8d. Thereby, the flow path member 8e cools the oil O accumulated in the oil reservoir P through the bottom wall portion 8d.
  • the flow path member 8e can be regarded as a part of the bottom wall portion 8d. That is, the housing 8 is provided with a refrigerant flow path 8ea that passes under the oil reservoir P (lower region of the accommodation space 8S). As will be described later, the oil O circulating through the first oil passage 91 and the second oil passage 92 joins in the oil reservoir P. The refrigerant flowing through the refrigerant flow path 8ea cools the oil O accumulated in the oil reservoir P, so that the oil O circulating in the first oil path 91 and the second oil path 92 can be cooled together.
  • Oil O is used for lubricating the transmission mechanism 5 and for cooling the motor 1 and the generator 4. Oil O accumulates in the lower region (namely, oil reservoir P) of gear chamber 8B. Since the oil O functions as a lubricating oil and a cooling oil, it is preferable to use an oil equivalent to a low-viscosity automatic transmission lubricating oil (ATF).
  • ATF automatic transmission lubricating oil
  • the motor 1 is a motor generator that has both a function as a motor and a function as a generator.
  • the motor 1 mainly functions as an electric motor to drive the vehicle, and functions as a generator during regeneration.
  • the motor 1 includes a motor rotor (rotor) 31 and a motor stator (stator) 32 surrounding the motor rotor 31.
  • the motor rotor 31 rotates about the motor shaft J1.
  • the motor stator 32 is annular.
  • the motor stator 32 surrounds the motor rotor 31 from the outside in the radial direction of the motor shaft J1.
  • the motor rotor 31 is fixed to a motor drive shaft 11 described later.
  • the motor rotor 31 rotates around the motor shaft J1.
  • the motor rotor 31 includes a motor rotor magnet 31a and a motor rotor core 31b.
  • the motor rotor magnet 31a is fixed in a holding hole provided in the motor rotor core 31b.
  • the motor stator 32 has a motor stator core 32a and a motor coil 32b.
  • the motor stator core 32a has a plurality of teeth protruding radially inward of the motor shaft J1.
  • the motor coil 32b is wound around the teeth of the motor stator core 32a.
  • the rotation speed of the motor 1 is measured by a motor rotation sensor 33.
  • the rotation sensor 33 for motors of this embodiment is a resolver, and has a resolver rotor and a resolver stator.
  • the resolver rotor of the motor rotation sensor 33 is attached to the motor drive shaft 11.
  • the resolver stator of the motor rotation sensor 33 is fixed to the inner wall surface of the housing 8.
  • the generator 4 is a motor generator that has both a function as a motor and a function as a generator.
  • the generator 4 functions as an electric motor (starter) when starting the engine 2, and generates electric power with engine power when the engine 2 is operated.
  • the generator 4 includes a generator rotor 41 and a generator stator 42 surrounding the generator rotor 41.
  • the generator rotor 41 rotates about the engine shaft J2.
  • the generator stator 42 is annular.
  • the generator stator 42 surrounds the generator rotor 41 from the outside in the radial direction of the engine shaft J2.
  • the generator rotor 41 is fixed to an engine drive shaft 12 described later.
  • the generator rotor 41 rotates around the engine axis J2.
  • the generator rotor 41 includes a rotor magnet 41a and a rotor core 41b.
  • the rotor magnet 41a is fixed in a holding hole provided in the rotor core 41b.
  • the generator stator 42 has a stator core 42a and a coil 42b.
  • Stator core 42a has a plurality of teeth protruding inward in the radial direction of engine shaft J2.
  • the coil 42b is wound around the teeth of the stator core 42a.
  • the rotation speed of the generator 4 is measured by a generator rotation sensor 43.
  • the generator rotation sensor 43 of the present embodiment is a resolver, like the motor rotation sensor 33, and includes a resolver rotor and a resolver stator.
  • the resolver rotor of the generator rotation sensor 43 is attached to the engine drive shaft 12.
  • the resolver stator of the generator rotation sensor 43 is fixed to the inner wall surface of the housing 8.
  • the motor stator 32 and the generator stator 42 are connected to the inverter unit 9 that converts direct current and alternating current.
  • the rotational speeds of the motor 1 and the generator 4 are controlled by the inverter unit 9.
  • the transmission mechanism 5 transmits power between the engine 2, the generator 4 and the motor 1.
  • the transmission mechanism 5 has a plurality of mechanisms responsible for power transmission between the drive source and the driven device.
  • the transmission mechanism 5 outputs the power of the engine 2 and the motor 1 from the output shaft 55.
  • the transmission mechanism 5 has a differential device (differential gear) 50.
  • the transmission mechanism 5 includes a plurality of shafts extending in the horizontal direction and a plurality of gears fixed to the plurality of shafts. Further, the transmission mechanism 5 is provided with a pump unit 70, a clutch 6, and a park lock mechanism 7.
  • the plurality of shafts of the transmission mechanism 5 include a motor drive shaft 11, an engine drive shaft 12, a counter shaft 13, and a pair of output shafts 55 provided in the differential device 50.
  • the plurality of gears of the transmission mechanism 5 include a motor drive gear 21, an engine drive gear 22, a counter gear 23 and a drive gear 24, and a ring gear 51 provided in the differential device 50.
  • the motor drive shaft 11 extends along the motor axis J1.
  • the motor drive shaft 11 is fixed to the motor rotor 31.
  • the motor drive shaft 11 is rotated by the motor 1.
  • the motor drive gear 21 is fixed to the motor drive shaft 11.
  • the motor drive gear 21 rotates around the motor axis J1 together with the motor drive shaft 11.
  • the motor drive shaft 11 is a hollow shaft provided with a hollow portion 11h.
  • the hollow portion 11h extends linearly along the motor shaft J1.
  • oil O is supplied to the hollow portion 11h. Therefore, the oil O flows through the hollow portion 11h.
  • the motor drive shaft 11 is provided with a through hole 11p extending from the hollow portion 11h to the outside in the radial direction of the motor shaft J1.
  • the position of the through hole 11p in the axial direction overlaps the position of the motor stator 32 in the axial direction.
  • the through hole 11p faces the motor stator 32 in the radial direction of the motor shaft J1.
  • the oil O supplied to the hollow portion 11h is scattered radially outward from the through hole 11p and supplied to the motor stator 32 to cool the motor stator 32.
  • the engine drive shaft 12 extends along the engine axis J2.
  • the engine drive shaft 12 is connected to the crankshaft 2a of the engine 2 via the damper 2c.
  • the engine drive shaft 12 is rotated by the engine 2.
  • the engine drive shaft 12 rotates in synchronization with the crankshaft 2a.
  • a generator rotor 41 is fixed to the engine drive shaft 12.
  • a part of the pump unit 70 (external gear 72, see FIG. 4) is fixed to the engine drive shaft 12.
  • the pump unit 70 will be described in detail later.
  • the engine drive shaft 12 is a hollow shaft provided with a hollow portion 12h inside.
  • the hollow portion 12h extends linearly along the engine axis J2.
  • the discharge port 76 of the pump unit 70 is connected to the hollow portion 12h. Therefore, the oil O flows through the hollow portion 12h.
  • the hollow portion 12 h opens in the axial direction on the upper side of the motor 1. Part of the oil O flowing through the hollow portion 12h is supplied to the motor 1 from the upper side to cool the motor 1.
  • the engine drive shaft 12 is provided with a first through hole 12p and a second through hole 12q extending from the hollow portion 12h to the outside in the radial direction of the engine shaft J2.
  • the first through hole 12p and the second through hole 12q are arranged along the axial direction of the engine shaft J2.
  • the position of the first through hole 12p in the axial direction overlaps the position of the gear constituting the transmission mechanism 5 in the axial direction.
  • the first through hole 12p faces the gear that constitutes the transmission mechanism 5 in the radial direction of the engine shaft J2.
  • a part of the oil O supplied to the hollow part 12h by the pump part 70 is scattered radially outward from the first through hole 12p and supplied to each gear of the transmission mechanism 5 to improve the lubricity between the gears.
  • the position of the second through hole 12q in the axial direction overlaps with the position of the generator stator 42 in the axial direction.
  • the second through hole 12q faces the generator stator 42 in the radial direction of the engine shaft J2.
  • Part of the oil O supplied to the hollow part 12h by the pump part 70 is scattered radially outward from the second through hole 12q and supplied to the generator stator 42, thereby cooling the generator stator 42.
  • the engine drive shaft 12 has a first shaft portion 12A and a second shaft portion 12B.
  • the first shaft portion 12A and the second shaft portion 12B each extend along the engine shaft J2. That is, the first shaft portion 12A and the second shaft portion 12B are arranged coaxially.
  • the hollow portion 12h of the engine drive shaft 12 extends across the first shaft portion 12A and the second shaft portion 12B.
  • the generator rotor 41 and the external gear 72 of the pump unit 70 are fixed to the first shaft portion 12A.
  • An engine drive gear 22 is fixed to the second shaft portion 12B.
  • the engine drive shaft 12 is provided with a clutch 6.
  • the clutch 6 separates the first shaft portion 12A and the second shaft portion 12B when the vehicle travels in the EV mode or the series mode.
  • the clutch 6 connects the first shaft portion 12A and the second shaft portion 12B when the vehicle travels in the parallel mode. The clutch 6 will be described in detail later.
  • the engine drive gear 22 is fixed to the engine drive shaft 12.
  • the engine drive gear 22 rotates around the engine axis J2 together with the engine drive shaft 12.
  • the counter shaft 13 extends along the counter axis J3.
  • the counter shaft 13 rotates around the counter axis J3.
  • a park lock gear 7 a of the park lock mechanism 7 is fixed to the counter shaft 13. Further, the tooth surface of the park lock gear 7a faces the park lock arm 7b in the radial direction of the counter shaft J3.
  • the park lock arm 7b meshes with the park lock gear 7a.
  • the park lock mechanism 7 will be described in detail later.
  • the counter gear 23 is fixed to the counter shaft 13.
  • the counter gear 23 rotates around the counter axis J3 together with the counter shaft 13.
  • the counter gear 23 meshes with the motor drive gear 21 and the engine drive gear 22.
  • the counter gear 23 is rotated by the motor 1 via the motor drive gear 21.
  • the counter gear 23 is rotated by the engine 2 through the engine drive gear 22.
  • the drive gear 24 is fixed to the counter shaft 13.
  • the drive gear 24 rotates around the counter axis J3 together with the counter shaft 13 and the counter gear 23.
  • the ring gear 51 is fixed to the differential device 50.
  • the ring gear 51 rotates around the output shaft J4.
  • Ring gear 51 meshes with drive gear 24.
  • Ring gear 51 transmits the power of motor 1 and engine 2 transmitted via drive gear 24 to differential device 50.
  • the differential device 50 is a device for transmitting torque output from the motor 1 and the engine 2 to the wheels of the vehicle.
  • the differential device 50 has a function of transmitting the same torque to the output shafts 55 of the left and right wheels while absorbing the speed difference between the left and right wheels when the vehicle is turning.
  • the differential device 50 includes a gear housing (not shown) fixed to the ring gear 51, a pair of pinion gears (not shown), a pinion shaft (not shown), and a pair of side gears (not shown).
  • the gear housing rotates around the output shaft J4 together with the ring gear 51.
  • the gear housing accommodates a pair of pinion gears, a pinion shaft, and a pair of side gears.
  • the pair of pinion gears are bevel gears facing each other.
  • the pair of pinion gears are supported by the pinion shaft.
  • the pair of side gears are bevel gears that mesh at right angles with the pair of pinion gears.
  • the pair of side gears are fixed to the output shaft 55, respectively.
  • the output shaft 55 rotates around the output axis J4.
  • the power of the motor drive gear 21 is transmitted to the output shaft 55 via each gear.
  • the power of the engine drive gear 22 is transmitted to the output shaft 55 via each gear.
  • the motor unit 10 of this embodiment is provided with a pair of output shafts 55.
  • the pair of output shafts 55 are connected to the ring gear 51 via the differential device 50, respectively. Wheels are respectively fixed to the tips of the pair of output shafts 55.
  • the output shaft 55 outputs power to the outside (road surface through wheels).
  • FIG. 2 is a side view of the motor unit 10 according to the embodiment.
  • FIG. 2 shows an XYZ coordinate system.
  • the X-axis direction is the longitudinal direction of the vehicle.
  • the Y-axis direction is the vehicle width direction.
  • the Z-axis direction is the vertical direction, and the + Z direction is the upward direction.
  • the motor shaft J1, engine shaft J2, counter shaft J3 and output shaft J4 are parallel to each other.
  • the motor shaft J1, the engine shaft J2, the counter shaft J3, and the output shaft J4 are parallel to the vehicle width direction.
  • the vehicle width direction may be simply referred to as the axial direction.
  • the transmission mechanism 5 has three power transmission paths.
  • the first power transmission path is a motor drive path from the motor 1 to the output shaft 55.
  • the second power transmission path is an engine drive path from the engine 2 to the output shaft 55.
  • the third power drive path is a power generation path from the engine 2 to the generator 4.
  • the power of the motor 1 is first transmitted from the motor drive gear 21 to the counter gear 23.
  • the counter gear 23 is arranged coaxially with the drive gear 24 and rotates together with the drive gear 24.
  • the power of the motor 1 is transmitted from the drive gear 24 to the ring gear 51, and is transmitted to the output shaft 55 via the differential device 50.
  • the power of the engine 2 is first transmitted from the engine drive gear 22 to the counter gear 23.
  • the power of the engine 2 transmitted to the counter gear 23 is transmitted to the output shaft 55 through the drive gear 24, the ring gear 51, and the differential device 50 similarly to the power of the motor 1. That is, the motor drive path and the engine drive path share a power transmission path from the counter gear 23 to the output shaft 55.
  • the power of the engine 2 is transmitted to the engine drive shaft 12.
  • the generator rotor 41 is fixed to the engine drive shaft 12. Therefore, the power of the engine 2 is transmitted to the generator 4 without using a gear.
  • the counter gear 23 meshes with the motor drive gear 21 and the engine drive gear 22.
  • the power of the motor 1 and the power of the engine 2 are transmitted to the counter gear 23. Therefore, the power transmission path from the counter gear 23 to the output shaft 55 can be shared by the motor drive path and the engine drive path.
  • the number of shafts and gears provided in the transmission mechanism 5 can be reduced, and the motor unit 10 can be reduced in size and weight.
  • the reduction ratios of the motor drive path and the engine drive path can be individually set. Can be set.
  • a reduction ratio suitable for driving with the engine 2 and a reduction ratio suitable for driving with the motor 1 can be realized in each path.
  • the vehicle can be driven efficiently in any case of driving with either one or both of the engine 2 and the motor 1. That is, according to the present embodiment, the shaft and gear are set while individually setting the reduction ratio of the power transmission path from the motor 1 to the output shaft 55 and the reduction ratio of the power transmission path from the engine 2 to the output shaft 55. Can be provided.
  • the diameter of the motor drive gear 21 is smaller than the diameter of the engine drive gear 22.
  • the number of teeth of the motor drive gear 21 is smaller than the number of teeth of the engine drive gear 22.
  • the reduction ratio of the motor drive path can be made higher than the reduction ratio of the engine drive path.
  • the limit rotational speed of the motor 1 is larger than the limit rotational speed of the engine 2.
  • the limit rotation speed of the motor 1 is 15000 rotations.
  • the limit rotational speed of the engine 2 is 6000 revolutions.
  • the reduction ratio of the motor drive path can be made higher than the reduction ratio of the engine drive path, and the vehicle can be run efficiently.
  • the reduction ratio of the motor drive path is 9-11.
  • the reduction ratio of the engine drive path is set to 2.5 to 3.5.
  • the diameter of the engine drive gear 22 is larger than the diameter of the counter gear 23. Therefore, in the engine drive path, the power is once increased in the process from the engine drive gear 22 to the counter gear 23.
  • the diameter of the counter gear 23 is reduced, and as a result, the distance between the counter shaft J3 and the motor shaft J1 can be shortened.
  • the motor 1 can be disposed close to the center of the motor unit 10 when viewed from the axial direction, and the overall dimensions of the motor unit 10 viewed from the axial direction can be reduced.
  • the park lock mechanism 7 is driven based on a driver shift operation.
  • the park lock mechanism 7 is selectively switched between a locked state that restricts transmission of power in the transmission mechanism 5 and an unlocked state that releases the restriction.
  • the park lock mechanism 7 includes a park lock gear 7a, a park lock arm 7b, an arm support shaft 7e, a park lock actuator 7c, and a park lock power transmission mechanism 7d.
  • the park lock gear 7 a is fixed to the counter shaft 13.
  • the park lock gear 7a rotates around the counter axis J3 together with the counter shaft 13.
  • a plurality of teeth aligned along the circumferential direction of the counter shaft J3 are arranged on the outer peripheral surface of the park lock gear 7a facing the radially outer side of the counter shaft J3.
  • the park lock arm 7b has a plate shape extending along a plane orthogonal to the axial direction.
  • the park lock arm 7b is rotatably supported by an arm support shaft 7e having a second central axis J7e extending in the axial direction as a center.
  • the park lock arm 7b extends upward from the arm support shaft 7e.
  • the park lock arm 7b extends along the outer peripheral surface of the park lock gear 7a.
  • the park lock arm 7b faces the tooth portion of the park lock gear 7a in the radial direction of the counter shaft J3.
  • the park lock arm 7b has a meshing portion 7ba facing the tooth portion of the park lock gear 7a.
  • the meshing portion 7ba protrudes inward in the radial direction of the counter shaft J3.
  • the meshing portion 7ba meshes with a tooth portion of the park lock gear 7a. That is, the park lock arm 7b meshes with the park lock gear at the meshing portion 7ba.
  • the park lock arm 7b is driven by the park lock actuator 7c and rotates within a predetermined range about the second central axis J7e.
  • the park lock arm 7b rotates clockwise around the second central axis J7e, and the meshing portion 7ba engages with the teeth of the park lock gear 7a. Freed from the department. As a result, the engine drive shaft can freely rotate, and the transmission mechanism 5 can transmit power.
  • the park lock arm 7b extends along the vertical direction.
  • the motor drive shaft 11 and the park lock arm 7 b are disposed on opposite sides of the counter shaft 13 in the horizontal direction.
  • the vertical dimension of the motor unit 10 can be suppressed.
  • the engine drive shaft 12 and the park lock arm 7 b are disposed on the opposite sides of the counter shaft 13 in the horizontal direction. For this reason, as shown in this embodiment, even when the motor unit 10 is mounted on a hybrid vehicle connected to the engine 2, the vertical dimension of the motor unit 10 can be suppressed.
  • the park lock power transmission mechanism 7d is located between the park lock actuator 7c and the park lock arm 7b.
  • the park lock power transmission mechanism 7d transmits the power of the manual shaft 7ca rotating around the first center axis J7c to the park lock arm 7b, and rotates the park lock arm 7b around the second center axis J7e.
  • the park lock actuator 7 c is fixed to the upper side of the housing 8.
  • the park lock actuator 7c has a manual shaft 7ca centered on a first central axis J7c extending in the vertical direction.
  • the park lock actuator 7c rotates the manual shaft 7ca around the first central axis J7c.
  • the park lock actuator 7c drives the park lock arm 7b via the park lock power transmission mechanism 7d.
  • the park lock actuator 7c is located immediately above the counter shaft 13. That is, the park lock actuator 7 c overlaps with the counter shaft 13 when viewed from above and below. Thereby, the dimension of the horizontal direction of the motor unit 10 can be reduced in size.
  • the park lock actuator 7c is located outside the accommodation space 8S. That is, at least a part of the park lock arm 7b is exposed to the outside.
  • the park lock actuator 7c at least partially overlaps the housing 8 when viewed from the axial direction. That is, the park lock actuator 7 c is arranged so as to be hidden by a part of the housing 8 when viewed from the axial direction. More specifically, the park lock actuator 7 c overlaps the motor housing 83 of the motor 1 and the housing 8 when viewed from the axial direction. For this reason, even if the park lock actuator 7c is exposed to the outside, the overall size viewed from the axial direction of the motor unit 10 does not increase. As a result, maintenance of the park lock actuator 7c can be facilitated, and the motor unit 10 can be reduced in size.
  • the park lock actuator 7c overlaps with the motor accommodating portion 83 of the housing 8 as viewed from the axial direction.
  • the park lock actuator 7c may overlap other portions of the housing 8 when viewed from the axial direction.
  • the park lock actuator 7 c may overlap with the generator accommodating portion 81 of the housing 8.
  • the park lock actuator 7c is preferably overlapped with the generator 4.
  • the clutch 6 can cut the power transmission path (engine drive path) of the engine 2 at the engine drive shaft 12.
  • the engine drive shaft 12 has the first shaft portion 12A and the second shaft portion 12B.
  • the clutch 6 selectively switches between a connection state that connects the first shaft portion 12A and the second shaft portion 12B and a disconnected state that disconnects the first shaft portion 12A and the second shaft portion 12B.
  • the first shaft portion 12A is connected to the engine 2 and the generator 4. Moreover, the pump part 70 is provided in the first shaft part 12A.
  • the second shaft portion 12B is disposed coaxially with the first shaft portion 12A.
  • the second shaft portion 12B is located on the output side (that is, on the output shaft 55 side) with respect to the first shaft portion 12A in the path of the transmission mechanism 5. The power of the engine 2 is transmitted from the first shaft portion 12A to the second shaft portion 12B.
  • FIG. 3 is a cross-sectional view of the motor unit 10 including the clutch 6.
  • the first shaft portion 12A has a first facing end portion 12Aa that faces the second shaft portion 12B in the axial direction.
  • the first facing end 12Aa is provided with a recess 12Ac that opens in the axial direction.
  • the first shaft portion 12A has a connection flange portion 12Ab located at the first opposing end portion 12Aa.
  • An external spline 12Ad is provided on the outer peripheral surface of the connection flange portion 12Ab.
  • the second shaft portion 12B has a second facing end portion 12Ba facing the first shaft portion 12A in the axial direction.
  • the second shaft portion 12B is accommodated in the recess 12Ac of the first shaft portion 12A at the second facing end portion 12Ba.
  • a needle bearing 12n is accommodated between the inner peripheral surface of the recess 12Ac and the second shaft portion 12B.
  • the clutch 6 includes a sleeve 61, a clutch hub 62, a synchronizer ring 63, a key 64, a fork (support member) 65, a first support shaft 66A, a second support shaft 66B, a rack gear 67a, and a pinion gear 67b.
  • the clutch 6 of this embodiment is referred to as a rotation synchronization device or a synchromesh mechanism.
  • the clutch hub 62 is fixed to the outer peripheral surface of the second shaft portion 12B. That is, the clutch 6 of the present embodiment is fixed to the second shaft portion 12B.
  • the clutch hub 62 rotates about the engine shaft J2 together with the second shaft portion 12B.
  • An external spline 62 a is provided on the outer peripheral surface of the clutch hub 62.
  • the sleeve 61 is supported by the second shaft portion 12B via the clutch hub 62.
  • the sleeve 61 is moved in the axial direction of the engine shaft J2 by the clutch actuator 69 via the fork 65, the rack gear 67a, the pinion gear 67b, and the reduction gear unit 68.
  • An inner tooth spline 61 a is provided on the inner peripheral surface of the sleeve 61.
  • the sleeve 61 meshes with the external spline 62a of the clutch hub 62, and rotates integrally with the clutch hub 62 and the second shaft portion 12B.
  • the internal spline 61a of the sleeve 61 is fitted into the external spline 12Ad provided on the outer peripheral surface of the connection flange portion 12Ab after the clutch hub 62 and the connection flange portion 12Ab rotate synchronously.
  • the clutch 6 connects the first shaft portion 12A and the second shaft portion 12B.
  • the key 64 is held by the sleeve 61.
  • the key 64 moves in the axial direction together with the sleeve 61.
  • the key 64 matches the phases of the internal spline 61a and the external spline 12Ad provided on the sleeve 61 and the connecting flange portion 12Ab, respectively.
  • the synchronizer ring 63 moves in the axial direction together with the sleeve 61.
  • the synchronizer ring 63 has a tapered surface that increases its inner diameter as it approaches the connection flange portion 12Ab side.
  • the connecting flange portion 12Ab is provided with a boss portion that protrudes toward the synchronizer ring 63 along the axial direction.
  • the boss portion is provided with a tapered surface facing the synchronizer ring 63.
  • the synchronizer ring 63 and the connection flange portion 12Ab rotate synchronously by bringing the tapered surfaces into contact with each other.
  • the fork 65 sandwiches the outer peripheral surface of the sleeve 61 from the vertical direction.
  • the fork 65 supports the sleeve 61 so as to be rotatable around the engine axis J2.
  • the fork 65 has a first surface 65a facing the one side in the axial direction (+ Y side) and a second surface 65b facing the other side in the axial direction ( ⁇ Y side).
  • a first support shaft 66A and a second support shaft 66B are fixed to the fork 65.
  • the fork 65 is supported by the housing 8 via the first support shaft 66A and the second support shaft 66B.
  • the first support shaft 66A extends from the first surface 65a of the fork 65 so as to protrude to the one axial side (+ Y) side.
  • the tip of the first support shaft 66A is inserted into a first holding hole 8ba provided in the first partition wall portion 8b of the housing 8.
  • the diameter of the tip of the first support shaft 66A is slightly smaller than the diameter of the first holding hole 8ba.
  • the first support shaft 66A is movable in the axial direction with respect to the first holding hole 8ba. That is, the first support shaft 66A is slidably supported by the first partition wall portion 8b.
  • the second support shaft 66B extends from the second surface 65b of the fork 65 so as to protrude to the other axial side ( ⁇ Y) side.
  • the tip of the second support shaft 66B is inserted into a second holding hole 8ca provided in the second partition wall portion 8c of the housing 8.
  • the diameter of the tip of the second support shaft 66B is slightly smaller than the diameter of the second holding hole 8ca.
  • the second support shaft 66B is movable in the axial direction with respect to the second holding hole 8ca. That is, the second support shaft 66B is slidably supported by the second partition wall portion 8c. For this reason, the fork 65 is movable in the axial direction with respect to the housing 8.
  • the fork 65 is supported by the two support shafts (the first support shaft 66A and the second support shaft 66B). Further, the first support shaft 66A and the second support shaft 66B are disposed at different positions when viewed from the axial direction.
  • the fork 65 can easily maintain the posture of the fork 65 even if it receives a reaction force from the sleeve 61. As a result, the sleeve 61 can be moved smoothly.
  • At least a part of the first support shaft 66A is located on the radially inner side of the engine shaft J2 with respect to the generator stator 42. Further, at least a part of the second support shaft 66B is located on the radially outer side of the engine shaft J2 with respect to the engine drive gear 22.
  • the axial dimension of the gear chamber 8B is reduced to the limit.
  • the axial position of the first support shaft 66A overlaps with the axial position of the generator stator 42
  • the axial position of the second support shaft 66B overlaps with the axial position of the engine drive gear 22.
  • the fork of the clutch is supported by a single support shaft that passes through the fork.
  • the support shaft needs to be arranged on the radially outer side of the generator stator 42, and the motor unit 10 is enlarged in the radial direction.
  • the fork 65 is supported by the two support shafts (the first support shaft 66A and the second support shaft 66B), so that the first support shaft 66A is positioned radially inward of the generator stator 42.
  • the second support shaft 66B can be disposed outside the engine drive gear 22 in the radial direction. Thereby, the enlargement of the motor unit 10 can be suppressed.
  • the rack gear 67a is provided on the outer peripheral surface of the second support shaft 66B. That is, the rack gear 67a is fixed to the second support shaft 66B. The plurality of teeth of the rack gear 67a are arranged along the axial direction. The rack gear 67a meshes with the pinion gear 67b. The pinion gear 67b rotates about a rotation shaft extending substantially in the vertical direction. The pinion gear 67 b is rotated by the clutch actuator 69 via the reduction gear unit 68. The reduction gear unit 68 decelerates the rotation of the clutch actuator 69.
  • the clutch actuator 69 is a small motor.
  • the clutch actuator 69 is driven, the pinion gear 67b rotates through the reduction gear unit 68.
  • the rotational motion of the pinion gear 67b is converted to a linear motion in the axial direction by being transmitted to the rack gear 67a.
  • the rack gear 67a moves in the axial direction
  • the sleeve 61 moves in the axial direction via the second support shaft 66B and the fork 65.
  • the clutch actuator 69 is embedded inside the housing 8.
  • the clutch actuator 69 overlaps with the generator 4 when viewed from the axial direction. For this reason, compared with the case where the clutch actuator 69 is provided in the exterior of the housing 8, the dimension of the motor unit 10 can be reduced in size.
  • the clutch 6 has a sleeve 61 provided with an internal spline 61a and moving along the engine shaft J2.
  • the clutch 6 has a synchronizer ring 63 that is pressed against the connection flange portion 12Ab by the sleeve 61 to synchronize the rotation of the first shaft portion 12A and the second shaft portion 12B.
  • the external spline 12Ad of the connection flange portion 12Ab and the internal spline 61a of the sleeve 61 mesh with each other after the first shaft portion 12A and the second shaft portion 12B rotate in synchronization. That is, the clutch 6 meshes the internal spline 61a with the external spline 12Ad in the connected state, and opens the internal spline 61a from the external spline 12Ad in the disconnected state.
  • the clutch 6 since the clutch 6 has the synchronizer ring 63, the first shaft portion 12A and the second shaft portion 12B can be rotated synchronously when the first shaft portion 12A and the second shaft portion 12B are connected. it can. For this reason, it can suppress that an impact is added to 12 A of 1st shaft parts and the 2nd shaft part 12B at the time of clutch 6 connection.
  • the clutch 6 separates the first shaft portion 12A and the second shaft portion 12B that are aligned on the same axis. For this reason, the clutch 6 can be reduced in size. Accordingly, the motor unit 10 can be reduced in size.
  • the clutch 6 of this modification is an example. Other mechanisms may be employed as the clutch. However, it is preferable that the first shaft portion 12A and the second shaft portion 12B separated from each other by the clutch 6 are arranged coaxially.
  • the sleeve 61 is supported on the second shaft portion 12B, and the connection flange portion 12Ab is provided on the first shaft portion 12A.
  • the sleeve 61 may be supported by one of the first shaft portion 12A and the second shaft portion 12B, and the connection flange portion may be provided on the other of the first shaft portion 12A and the second shaft portion 12B.
  • the engine 2, the generator 4, and the clutch 6 are arranged coaxially.
  • the engine drive shaft 12 has both functions of a rotating shaft and a clutch shaft of the generator 4.
  • the motor unit 10 can be reduced in size.
  • the clutch 6 of the modified example is configured such that the sleeve is connected to the engine shaft at a timing at which the rotation speed of the second shaft portion 12B by the power of the motor 1 and the rotation speed of the first shaft portion 12A by the power of the engine 2 are synchronized.
  • the sleeve is moved along J2, and the internal spline of the sleeve meshes with the external spline 12Ad of the connecting flange portion 12Ab.
  • the clutch 6 is controlled by the control unit 9a of the inverter unit 9.
  • the control unit 9 a controls the motor 1 and the generator 4. Further, the control unit 9 a controls the start of the engine 2 in conjunction with the control device of the engine 2.
  • the first shaft portion 12A and the second shaft portion 12B are separated from each other. Accordingly, in the cut state, the first shaft portion 12A and the second shaft portion 12B rotate independently of each other.
  • the controller 9a uses the motor rotation sensor 33 to measure the rotational speed of the motor 1 that drives the vehicle.
  • the control unit 9a calculates the rotation speed of the second shaft portion 12B rotated by the motor 1 from the rotation speed of the motor 1 measured by the motor rotation sensor 33 according to the reduction ratio in the transmission mechanism 5.
  • control unit 9a instructs the control device of the engine 2 to drive the engine 2 so that the rotational speed of the engine 2 approaches the rotational speed of the second shaft portion 12B.
  • the control unit 9a uses the generator rotation sensor 43 to measure the rotation speed of the first shaft portion 12A driven by the engine 2.
  • the generator rotation sensor 43 is provided on the first shaft portion 12A together with the generator 4, and directly measures the rotation speed of the first shaft portion 12A.
  • the rotational speed measured by the generator rotation sensor is a gear relative to the rotational speed of the first shaft portion 12A. Multiply by the reduction ratio of the mechanism.
  • the control unit 9a calculates the rotation speed of the first shaft portion 12A rotated by the motor 1 from the rotation speed of the motor 1 measured by the generator rotation sensor 43 according to the reduction ratio in the gear mechanism. . That is, the control unit 9a determines the first shaft portion 12A from the rotational speed measured by the generator rotation sensor 43 based on the relationship of power transmission between the first shaft portion 12A and the generator rotation sensor 43. The number of rotations is calculated.
  • control unit 9a calculates the difference between the rotation speed of the first shaft portion 12A calculated from the rotation speed of the generator 4 and the rotation speed of the second shaft portion 12B calculated from the rotation speed of the motor 1.
  • the rotation speed of the first shaft portion 12A and the rotation speed of the second shaft portion 12B are unlikely to coincide with each other. That is, the difference in rotational speed between the first shaft portion 12A and the second shaft portion 12B is unlikely to be zero.
  • the control unit 9a supplies power to the generator 4 based on the difference between the rotational speeds of the first shaft portion 12A and the second shaft portion 12B.
  • the generator 4 When electric power is supplied to the generator 4, the generator 4 generates torque in the first shaft portion 12 ⁇ / b> A according to the electric power. That is, the control unit 9a causes the generator 4 to apply torque to the first shaft portion 12A.
  • the control part 9a makes the rotation speed of 12 A of 1st shaft parts approach the rotation speed of the 2nd shaft part 12B.
  • the control unit 9a performs feedback control for adjusting the power supplied to the generator 4 until the difference between the rotation speed of the first shaft portion 12A and the rotation speed of the second shaft portion 12B is equal to or less than a predetermined threshold value. .
  • the rotational speed of the first shaft portion 12A is brought close to the rotational speed of the second shaft portion 12B by driving the engine 2 and then the generator 4 is driven to drive the first shaft portion 12A. Adjust the rotation speed.
  • the rotation speeds of the first shaft portion 12A and the second shaft portion 12B are measured by the generator rotation sensor 43 and the motor rotation sensor 33, respectively.
  • the rotation speed of the first shaft portion 12A driven by the generator 4 can be made sufficiently close to the rotation speed of the second shaft portion 12B by feedback control. Therefore, according to the present embodiment, it is possible to suppress an impact from being applied to the first shaft portion 12A and the second shaft portion 12B when the clutch 6 is connected. Further, wear of the synchronizer ring 63 provided in the clutch 6 can be suppressed.
  • the first shaft portion 12A is braked (braking) by driving the generator 4, and the rotation speed of the first shaft portion 12A and the second shaft portion 12B is reduced by reducing the rotational speed of the first shaft portion 12A.
  • the number may be adjusted. That is, in the clutch connection operation, the control unit 9a may supply power to the generator 4 to brake the rotation of the first shaft portion 12A by the generator 4, and reduce the rotation speed of the first shaft portion 12A. .
  • the rotational speed of the first shaft portion 12A driven by the engine 2 is set higher than the rotational speed of the second shaft portion 12B in advance.
  • the generator 4 applies a torque in a direction opposite to the rotation direction of the first shaft portion 12A to brake the rotation of the first shaft portion 12A. Highly accurate control is possible. Thereby, the connection operation between the first shaft portion 12A and the second shaft portion 12B can be performed more smoothly.
  • the first shaft portion 12A is accelerated by driving the generator 4, and the rotational speed of the first shaft portion 12A and the second shaft portion 12B is adjusted by increasing the rotational speed of the first shaft portion 12A. May be. That is, in the clutch connection operation, the control unit 9a may supply electric power to the generator 4 to accelerate the rotation of the first shaft portion 12A by the generator 4 and increase the rotation speed of the first shaft portion 12A. . In this case, the rotational speed of the first shaft portion 12A driven by the engine 2 is previously set lower than the rotational speed of the second shaft portion 12B.
  • the generator 4 applies a torque in the same direction as the rotational speed of the first shaft portion 12A to accelerate the rotational speed of the first shaft portion 12A.
  • the energy efficiency of the entire power train 3 can be increased.
  • the pump part 70 is held by the first partition part 8 b of the housing 8.
  • the pump unit 70 is provided on the engine drive shaft 12 connected to the engine 2 and is driven by the power of the engine 2. More specifically, the pump unit 70 is provided on the first shaft portion 12A of the engine drive shaft 12, and is driven by the rotation of the first shaft portion 12A.
  • the pump unit 70 sucks up the oil O from the lower region of the accommodation space 8S, supplies the oil O to the motor 1 and the generator 4, and cools the motor 1 and the generator 4.
  • the pump unit 70 includes a pump chamber 71, an external gear (inner rotor) 72, an internal gear (outer rotor) 73, a suction port 75, and a discharge port 76.
  • the pump chamber 71 is configured in a space surrounded by a pump housing recess 71a provided on the surface of the first partition wall portion 8b facing the generator chamber 8A and a lid portion 74 covering the opening of the pump housing recess 71a. .
  • the pump chamber 71 is sealed from the outside using an O-ring (not shown).
  • An external gear 72 and an internal gear 73 are accommodated in the pump chamber 71.
  • the engine shaft J2 passes through the pump chamber 71.
  • the outer shape of the pump chamber 71 is circular when viewed from the axial direction.
  • FIG. 4 is a cross-sectional view of the pump unit 70 in a cross section orthogonal to the engine axis J2.
  • the external gear 72 is fixed to the outer peripheral surface of the first shaft portion 12 ⁇ / b> A of the engine drive shaft 12.
  • the external gear 72 rotates around the engine shaft J2 together with the first shaft portion 12A.
  • the external gear 72 is accommodated in the pump chamber 71.
  • the external gear 72 has a plurality of tooth portions 72b on the outer peripheral surface.
  • the tooth profile of the tooth portion 72b of the external gear 72 is a trochoidal tooth profile.
  • the internal gear 73 surrounds the radial outside of the external gear 72.
  • the internal gear 73 is an annular gear that is rotatable around a rotation axis Jt that is eccentric with respect to the engine shaft J2.
  • the internal gear 73 is accommodated in the pump chamber 71.
  • the internal gear 73 meshes with the external gear 72.
  • the internal gear 73 has a plurality of tooth portions 73b on the inner peripheral surface.
  • the tooth profile of the tooth portion 73b of the internal gear 73 is a trochoidal tooth profile.
  • a trochoid pump can be configured. Therefore, noise generated from the pump unit 70 can be reduced, and the pressure and amount of the oil O discharged from the pump unit 70 can be easily stabilized.
  • a first pump oil passage 78 and a second pump oil passage 79 are provided on the inner wall surface of the pump chamber 71, each extending in an arc shape.
  • the first pump oil passage 78 and the second pump oil passage 79 are arranged side by side in the circumferential direction of the engine shaft J2.
  • the first pump internal oil passage 78 and the second pump internal oil passage 79 overlap with some of the plurality of tooth portions 73 b of the internal gear 73 as viewed in the axial direction.
  • the first oil passage 78 in the pump is an oil passage in an arcuate groove provided on the bottom surface of the pump housing recess 71a.
  • the first pump oil passage 78 is connected to the suction port 75.
  • the pump unit 70 sucks the oil O from the suction port 75.
  • the suction port 75 is connected to a suction path 92a of a second oil path 92 described later.
  • the siphoning path 92a is a path connected to the lower region of the accommodation space 8S. Accordingly, the pump unit 70 sucks up oil from the lower region of the accommodation space 8S through the suction path 92a.
  • the second oil passage 79 in the pump is an oil passage in an arc-shaped groove provided in the bottom surface of the pump housing recess 71a and the facing surface of the lid portion 74 facing the bottom surface.
  • the second pump oil passage 79 is connected to the discharge port 76.
  • the pump unit 70 discharges the oil O from the discharge port 76.
  • the discharge port 76 is connected to the hollow portion 12 h of the engine drive shaft 12. Therefore, the pump unit 70 supplies oil to the hollow portion 12 h of the engine drive shaft 12.
  • the pump unit 70 is driven using the rotation of the engine drive shaft 12, and sucks the oil O from the lower region of the accommodation space 8S via the suction path 92a. For this reason, an external power supply is not required for driving the pump unit 70.
  • the discharge port 76 of the pump unit 70 is connected to the hollow portion 12h of the engine drive shaft 12.
  • One end of the hollow portion 12h opens on the upper side of the motor 1.
  • the pump unit 70 supplies the oil O sucked up from the oil reservoir P to the motor 1 through the hollow portion 12h.
  • the engine drive shaft 12 rotates around the engine axis J2
  • centrifugal force is applied to the oil O in the hollow portion 12h.
  • the oil O in the hollow portion 12h is scattered radially outward from the first through hole 12p and the second through hole 12q.
  • the inside of the hollow part 12h becomes a negative pressure during the driving of the pump part 70, and the suction of the oil O by the pump part 70 is promoted. Therefore, even when the pump unit 70 is downsized, the pump unit 70 can have a sufficient suction force.
  • the pump unit 70 can be downsized, and as a result, the motor unit 10 can be downsized.
  • the oil passage 90 is configured across the generator chamber 8A, the gear chamber 8B, and the motor chamber 8C.
  • the oil path 90 is a path of the oil O that supplies the oil O from the oil reservoir P to the motor 1 and the generator 4 and guides it to the oil reservoir P again.
  • the “oil path” means a path of the oil O that circulates in the accommodation space 8S. Therefore, the “oil path” is not only a “flow path” that forms a steady oil flow in one direction in a steady manner, but also a path (for example, a reservoir) for temporarily retaining oil and the oil dripping. It is a concept that includes routes.
  • the oil passage 90 has a first oil passage 91 and a second oil passage 92.
  • the first oil passage 91 supplies oil O to the inside of the motor 1 from the lower region (oil reservoir P) of the accommodation space 8S, and cools the motor 1 from the inside.
  • the second oil path 92 supplies oil O to the outside of the motor 1 from the lower region (oil sump P) of the accommodation space 8S to cool the motor 1 from the outside.
  • the second oil passage 92 supplies oil O from the lower region (oil sump P) of the accommodation space 8S to the inside of the generator 4 to cool the generator 4 from the inside.
  • the first oil passage 91 has a scooping path 91a and a motor supply path 91b.
  • a reservoir 93 located in the gear chamber 8B is provided in the first oil passage 91.
  • the scooping path 91 a is a path for scooping up the oil O from the oil reservoir P by the rotation of the ring gear 51 and receiving the oil O in the reservoir 93.
  • the reservoir 93 opens to the upper side, receives the oil O lifted up by the ring gear 51, and temporarily stores the oil O.
  • the reservoir 93 receives the oil O that is pumped up by the engine drive gear 22 in addition to the ring gear 51. That is, the scooping path 91 a is a path for scooping up the oil O accumulated in the lower region of the accommodation space 8 ⁇ / b> S by the gears constituting the transmission mechanism 5 and storing it in the reservoir 93.
  • a part of the oil O that is pumped up by the rotation of the ring gear 51 is supplied to the gear tooth surface that constitutes the transmission mechanism 5. Thereby, the power transmission efficiency by the transmission mechanism 5 can be increased.
  • the motor supply path 91 b is a path for supplying oil O from the reservoir 93 to the inside of the motor 1.
  • the motor supply path 91b has a shaft supply path 91ba, an in-shaft path 91bb, and an in-rotor path 91bc.
  • the shaft supply path 91ba guides oil O from the reservoir 93 to the hollow portion 11h of the motor drive shaft 11.
  • the in-shaft path 91bb is a path through which the oil O passes through the hollow portion 11h of the motor drive shaft 11.
  • the in-rotor path 91bc is a path that scatters to the through hole 11p of the motor drive shaft 11 or the motor stator 32.
  • the oil O that has reached the motor stator 32 removes heat from the motor stator 32.
  • the oil O that has cooled the motor stator 32 is dropped downward and collected in the lower region of the motor chamber 8C.
  • the oil O accumulated in the lower region of the motor chamber 8C moves to the gear chamber 8B through the second partition opening 8cb provided in the second partition portion 8c.
  • the second oil path 92 has a suction path 92a, a first branch path 92b, and a second branch path 92c.
  • a pump unit 70 is provided in the second oil passage 92.
  • the suction path 92a is provided inside the first partition wall portion 8b.
  • the suction path 92a extends along the vertical direction.
  • the lower end of the suction path 92a is connected to the oil reservoir P.
  • the upper end of the suction path 92 a is connected to the suction port 75 of the pump unit 70. That is, the suction path 92a is connected to the suction port 75 of the pump unit 70 from the lower region of the accommodation space 8S.
  • the first branch path 92b and the second branch path 92c branch from each other at the discharge port 76 of the pump unit 70.
  • the first branch path 92b and the second branch path 92c pass through the interior of the hollow portion 12h of the engine drive shaft 12.
  • the first branch path 92b is a path toward the opposite sides in the axial direction inside the hollow portion 12h.
  • the first branch path 92 b is a path for supplying the oil O to the motor 1 from the upper side of the motor 1.
  • the first branch path 92b extends from the discharge port 76 toward the motor 1 in the hollow portion 12h.
  • the first branch path 92 b extends from the discharge port 76 of the pump unit 70 to a position directly above the motor 1.
  • the oil O supplied to the motor 1 from the upper side of the motor 1 via the first branch path 92b cools the motor stator 32 and is dropped on the lower side, and accumulates in the lower region of the motor chamber 8C. Merges with oil O on the path 91. Further, the oil O accumulated in the lower region of the motor chamber 8C moves to the gear chamber 8B through the second partition opening 8cb provided in the second partition portion 8c.
  • the lubricity of the tooth surface of each gear of the transmission mechanism 5 can be improved, and the power transmission efficiency by the transmission mechanism 5 can be increased.
  • the second branch path 92 c is a path for supplying the oil O from the discharge port 76 of the pump unit 70 to the generator 4.
  • the second branch path 92c extends from the discharge port 76 toward the generator 4 inside the hollow portion 12h.
  • the oil O passing through the second branch path 92 c is scattered from the second through hole 12 q provided in the engine drive shaft 12 and supplied to the generator stator 42.
  • the oil O that has reached the generator stator 42 takes heat away from the generator stator 42.
  • the oil O that has cooled the generator stator 42 is dropped downward and collected in the lower region of the generator chamber 8A.
  • the oil O collected in the lower region of the generator chamber 8A moves to the gear chamber 8B through the first partition opening 8bb provided in the first partition portion 8b.
  • the oil O passing through the first oil passage 91 and the oil O passing through the first branch path 92b and the second branch path 92c of the second oil path 92 are all merged in the lower region of the gear chamber 8B.
  • a pool P is formed.
  • the oil O in the oil reservoir P is cooled by the refrigerant passing through the refrigerant flow path 8ea provided in the flow path member 8e.
  • the oil passage 90 includes the first oil passage 91 that cools the motor 1 from the inside, and the second oil passage 92 that cools the motor 1 from the outside.
  • the motor 1 can be efficiently cooled by supplying the oil O to the inside and outside of the motor 1 from a plurality of paths and cooling the motor 1.
  • the pump unit 70 of the second oil passage 92 is driven by the engine 2.
  • a driving device such as a motor is not required for driving the motor 1 and the generator 4.
  • the motor unit 10 can be reduced in size.
  • the first oil passage 91 is also not provided with an electric pump.
  • the oil O can be circulated in the accommodation space 8S as the whole motor unit 10 without using an electric pump.
  • the first oil passage 91 includes the in-shaft passage 91bb provided in the hollow portion 11h of the motor drive shaft 11.
  • the second oil passage 92 includes a first branch path 92b and a second branch path 92c provided in the hollow portion 12h of the engine drive shaft 12.
  • the pump unit 70 provided in the second oil passage 92 is provided in the first shaft portion 12A of the engine drive shaft 12 and driven by the rotation of the first shaft portion 12A. That is, the pump unit 70 is positioned on the engine 2 side with respect to the clutch 6 in the power transmission path of the engine 2.
  • the pump unit 70 is located closer to the engine 2 than the clutch 6 in the transmission mechanism 5. Therefore, the pump unit 70 can be driven by the power of the engine 2 in a state where the clutch 6 is in the disconnected state and the power of the engine 2 is disconnected from the output shaft 55. That is, when the vehicle climbs up, the power train 3 can be driven in the series mode and the oil O can be sucked up by the pump unit 70. In the series mode, the driving of the pump unit 70 is disconnected from the output shaft 55, so that the pump unit 70 can be driven at high speed even during climbing. Therefore, a sufficient amount of oil O can be supplied from the second oil passage 92 to the motor 1 even during climbing, and the motor 1 can be sufficiently cooled.
  • the power train 3 is driven in the parallel mode when the vehicle climbs up, the engine 2 cannot be driven at a high speed, and the drive efficiency of the engine is reduced. Therefore, also from the viewpoint of engine drive efficiency, it is preferable to drive the powertrain 3 in the series mode when the vehicle climbs up.
  • Synchronizer ring 65 ... Fork (support) Member
  • 66A first support shaft
  • 66B second support shaft
  • 69 clutch actuator
  • 70 pump part
  • 75 suction port
  • 76 ... discharge port
  • 81 generator housing unit
  • 82 transmission mechanism housing unit
  • Motor housing part, 90 ... oil passage, 91 ... first oil passage, 91a ... pumping route, 92a ... sucking route, 91b ... MO Supply path, 92: second oil passage, 92b ... first branch path, 92c ... second branch path, 93 ... reservoir, J1 ... motor shaft, J2 ... engine shaft, O ... Oil

Abstract

One embodiment of this motor unit is a motor unit connected to an engine and comprising a generator, a motor, a transmission mechanism, a housing, oil, and a pump provided to the transmission mechanism and driven by motive power of the engine. A first oil path and a second oil path for circulating the oil are provided in an accommodation space in the housing. The first oil path supplies oil from a lower region of the accommodation space to the interior of the motor. The second oil path has a suction channel connecting the lower region of the accommodation space to a suction opening of the pump, and a first and second branch channel branching from each other at a discharge opening of the pump. The first branch channel extends from the discharge opening to immediately above the motor, and supplies oil to the motor from the upper side of the motor. The second branch channel supplies oil from the discharge opening to the generator.

Description

モータユニットMotor unit
 本発明は、モータユニットに関する。 The present invention relates to a motor unit.
 近年、ハイブリット自動車の普及とともにモータの冷却効率を高めたモータユニットの開発が進んでいる。特許文献1には、ギヤによってかき上げたオイルを、オイルレシーバによって捕集してモータに供給することでモータを冷却する構造が開示されている。 In recent years, with the spread of hybrid cars, development of motor units with higher motor cooling efficiency is progressing. Patent Document 1 discloses a structure in which oil pumped up by a gear is collected by an oil receiver and supplied to the motor to cool the motor.
日本特開平9-182375号公報Japanese Unexamined Patent Publication No. 9-182375
 特許文献1の構造では、車速が低下した際にギヤによるオイルのかき上げ量が低下し、モータの冷却が不十分となる虞がある。また、発電機を備えたモータユニットにおいては、モータのみならず、発電機を冷却する必要が生じる。 In the structure of Patent Document 1, when the vehicle speed decreases, the amount of oil pumped up by the gear decreases, and the motor may be insufficiently cooled. In a motor unit provided with a generator, it is necessary to cool not only the motor but also the generator.
 本発明の一つの態様は、モータおよび発電機を効率的に冷却できるモータユニットの提供を目的の一つとする。 One aspect of the present invention is to provide a motor unit capable of efficiently cooling a motor and a generator.
 本発明のモータユニットの一つの態様は、エンジンに接続されるモータユニットであって、前記エンジンの動力により発電する発電機と、モータと、前記エンジン、前記発電機および前記モータの間で力を伝達し、前記エンジンおよび前記モータの動力を出力シャフトから出力する伝達機構と、前記発電機、前記モータおよび前記伝達機構を収容する収容空間が設けられるハウジングと、前記収容空間の下部領域に溜るオイルと、前記伝達機構に設けられ前記エンジンの動力により駆動するポンプ部と、を備える。前記収容空間には、前記オイルを循環させる第1の油路および第2の油路が設けられる。前記第1の油路は、前記収容空間の下部領域から前記モータの内部に前記オイルを供給する。前記第2の油路は、前記収容空間の下部領域から前記ポンプ部の吸入口に繋がる吸い上げ経路と、前記ポンプ部の吐出口において互いに分岐する第1分岐経路および第2分岐経路と、を有する。前記第1分岐経路は、前記吐出口から前記モータの直上まで延びて前記オイルを前記モータの上側から前記モータに供給する。前記第2分岐経路は、前記吐出口から前記発電機に前記オイルを供給する。 One aspect of the motor unit of the present invention is a motor unit connected to an engine, wherein a power is generated between the generator, the motor, and the engine, the generator, and the motor. A transmission mechanism for transmitting power from the engine and the motor from an output shaft; a housing in which a housing space for housing the generator, the motor, and the transmission mechanism is provided; and oil accumulated in a lower region of the housing space And a pump unit provided in the transmission mechanism and driven by the power of the engine. The accommodation space is provided with a first oil passage and a second oil passage for circulating the oil. The first oil passage supplies the oil into the motor from a lower region of the accommodation space. The second oil path includes a suction path that is connected to a suction port of the pump unit from a lower region of the housing space, and a first branch path and a second branch path that are branched from each other at the discharge port of the pump unit. . The first branch path extends from the discharge port to directly above the motor and supplies the oil to the motor from above the motor. The second branch path supplies the oil from the discharge port to the generator.
 本発明の一つの態様によれば、モータおよび発電機を効率的に冷却できるモータユニットが提供される。 According to one aspect of the present invention, a motor unit capable of efficiently cooling a motor and a generator is provided.
図1は、一実施形態のモータユニットを有するパワートレインの概念図である。FIG. 1 is a conceptual diagram of a power train having a motor unit according to an embodiment. 図2は、一実施形態のモータユニットの側面図である。FIG. 2 is a side view of the motor unit according to the embodiment. 図3は、一実施形態のモータユニットの部分断面図である。FIG. 3 is a partial cross-sectional view of a motor unit according to an embodiment. 図4は、一実施形態のポンプ部の断面図である。FIG. 4 is a cross-sectional view of a pump unit according to an embodiment.
 以下、図面を参照しながら、本発明の実施形態に係るモータユニットについて説明する。なお、本発明の範囲は、以下の実施の形態に限定されず、本発明の技術的思想の範囲内で任意に変更可能である。また、以下の図面においては、各構成をわかりやすくするために、実際の構造と各構造における縮尺や数などを異ならせる場合がある。 Hereinafter, a motor unit according to an embodiment of the present invention will be described with reference to the drawings. The scope of the present invention is not limited to the following embodiments, and can be arbitrarily changed within the scope of the technical idea of the present invention. Moreover, in the following drawings, in order to make each structure easy to understand, the actual structure may be different from the scale or number in each structure.
 以下の説明では、モータユニット10が水平な路面上に位置する車両に搭載された場合の位置関係を基に、重力方向を規定して説明する。
 本明細書において、「軸方向に沿って延びる」とは、厳密に軸方向(すなわち、X軸と平行な方向)に延びる場合に加えて、軸方向に対して、45°未満の範囲で傾いた方向に延びる場合も含む。本明細書において、「~軸に沿って延びる」とは、所定の軸を中心として、軸方向に延びることを意味する。また、本明細書において、「径方向に延びる」とは、厳密に径方向、すなわち、軸方向に対して垂直な方向に延びる場合に加えて、径方向に対して、45°未満の範囲で傾いた方向に延びる場合も含む。
In the following description, the direction of gravity is defined and described based on the positional relationship when the motor unit 10 is mounted on a vehicle located on a horizontal road surface.
In this specification, “extending along the axial direction” means not only extending in the axial direction (that is, the direction parallel to the X axis) but also tilting in a range of less than 45 ° with respect to the axial direction. This includes cases extending in the other direction. In this specification, “extending along the axis” means extending in the axial direction around a predetermined axis. Further, in this specification, “extending in the radial direction” means strictly in the range of less than 45 ° with respect to the radial direction in addition to the case of extending in the radial direction, that is, the direction perpendicular to the axial direction. Including the case of extending in an inclined direction.
 図1は、一実施形態のモータユニット10を有するパワートレイン3の概念図である。図1には、Y軸を示す。Y軸方向は、車両の幅方向(左右方向)である。 FIG. 1 is a conceptual diagram of a power train 3 having a motor unit 10 according to an embodiment. FIG. 1 shows the Y axis. The Y-axis direction is the vehicle width direction (left-right direction).
 パワートレイン3は、モータユニット10とエンジン2とを有する。モータユニット10は、エンジン2に接続される。モータユニット10は、モータ1と、モータ用回転センサ33と、発電機4と、発電機用回転センサ43と、伝達機構(トランスアクスル)5と、クラッチ(切り離し機構)6と、パークロック機構7と、ポンプ部70と、ハウジング8と、インバータユニット9と、ハウジング8内に溜るオイルOと、を備える。インバータユニット9は、制御部9aを有する。すなわち、モータユニット10は、制御部9aを有する。制御部9aは、モータ1、発電機4、クラッチ6、発電機用回転センサ43およびモータ用回転センサ33に接続される。 The power train 3 has a motor unit 10 and an engine 2. The motor unit 10 is connected to the engine 2. The motor unit 10 includes a motor 1, a motor rotation sensor 33, a generator 4, a generator rotation sensor 43, a transmission mechanism (transaxle) 5, a clutch (separation mechanism) 6, and a park lock mechanism 7. And a pump unit 70, a housing 8, an inverter unit 9, and an oil O that accumulates in the housing 8. The inverter unit 9 has a control unit 9a. That is, the motor unit 10 includes a control unit 9a. The controller 9 a is connected to the motor 1, the generator 4, the clutch 6, the generator rotation sensor 43, and the motor rotation sensor 33.
 モータユニット10は、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHV)など、モータ1とエンジン2とを動力源とする車両に搭載される。 The motor unit 10 is mounted on a vehicle using the motor 1 and the engine 2 as power sources, such as a hybrid vehicle (HEV) and a plug-in hybrid vehicle (PHV).
 モータユニット10が搭載された車両(図示略)には、EVモード、シリーズモード、パラレルモードの三種類の走行モードが用意される。これらの走行モードは、制御部9aにより、車両状態や走行状態、運転者の要求出力などに応じて択一的に選択される。 The vehicle (not shown) on which the motor unit 10 is mounted has three types of travel modes: EV mode, series mode, and parallel mode. These travel modes are alternatively selected by the control unit 9a in accordance with the vehicle state, the travel state, the driver's requested output, and the like.
 EVモードは、エンジン2および発電機4を停止させたまま、図示しない駆動用のバッテリの充電電力を用いてモータ1のみで車両を駆動する走行モードである。EVモードは、走行負荷が低い場合又はバッテリの充電レベルが高い場合に選択される。 The EV mode is a travel mode in which the vehicle is driven only by the motor 1 using the charging power of a driving battery (not shown) while the engine 2 and the generator 4 are stopped. The EV mode is selected when the traveling load is low or the battery charge level is high.
 シリーズモードは、エンジン2で発電機4を駆動して発電しつつ、その電力を利用してモータ1で車両を駆動する走行モードである。シリーズモードは、走行負荷が中程度の場合又はバッテリの充電レベルが低い場合に選択される。 The series mode is a traveling mode in which the generator 2 is driven by the engine 2 to generate power, and the vehicle is driven by the motor 1 using the electric power. The series mode is selected when the traveling load is medium or when the battery charge level is low.
 パラレルモードは、おもにエンジン2で車両を駆動し、必要に応じてモータ1で車両の駆動をアシストする走行モードであり、走行負荷が高い場合に選択される。 The parallel mode is a traveling mode in which the vehicle is driven mainly by the engine 2 and the driving of the vehicle is assisted by the motor 1 as necessary, and is selected when the traveling load is high.
 エンジン2は、ガソリンや軽油を燃焼とする内燃機関(ガソリンエンジン又はディーゼルエンジン)である。本実施形態のエンジン2は、クランクシャフト2aの向きが車両の車幅方向に一致するように横向きに配置されたいわゆる横置きエンジンである。エンジン2は、モータユニット10の車幅方向一方側に配置される。クランクシャフト2aは、エンジン軸J2に沿って延びる。エンジン軸J2は、モータユニット10の出力シャフト55に対して平行に配置される。エンジン2の作動状態は、制御部9aで制御される。 Engine 2 is an internal combustion engine (gasoline engine or diesel engine) that burns gasoline or light oil. The engine 2 of the present embodiment is a so-called horizontal engine that is disposed sideways so that the direction of the crankshaft 2a coincides with the vehicle width direction of the vehicle. The engine 2 is disposed on one side of the motor unit 10 in the vehicle width direction. The crankshaft 2a extends along the engine axis J2. The engine shaft J2 is disposed in parallel to the output shaft 55 of the motor unit 10. The operating state of the engine 2 is controlled by the control unit 9a.
 図1に示すように、エンジン2とモータユニット10とは、ダンパ2cを介して接続される。ダンパ2cは、トルクリミッタとして機能する。ダンパ2cは、エンジンによって車両の急加速を行う場合などの急激なトルク変動による振動を低減する。エンジン2は、ダンパ2cを介してモータユニット10のエンジンドライブシャフト12に接続される。すなわち、エンジン2は、エンジンドライブシャフト12を駆動する。 As shown in FIG. 1, the engine 2 and the motor unit 10 are connected via a damper 2c. The damper 2c functions as a torque limiter. The damper 2c reduces vibrations caused by sudden torque fluctuations such as when the vehicle is suddenly accelerated by the engine. The engine 2 is connected to the engine drive shaft 12 of the motor unit 10 via the damper 2c. That is, the engine 2 drives the engine drive shaft 12.
 ハウジング8は、例えばアルミダイカスト製である。ハウジング8は、車幅方向に沿って並ぶ複数部材を連結させることで構成される。ハウジング8には、収容空間8Sが設けられる。ハウジング8は、収容空間8Sにおいて、モータ1、モータ用回転センサ33、発電機4、発電機用回転センサ43、伝達機構5、クラッチ6、パークロック機構7およびポンプ部70を収納する。また、収容空間8Sの下部領域には、オイルOが溜る。 The housing 8 is made of, for example, aluminum die casting. The housing 8 is configured by connecting a plurality of members arranged in the vehicle width direction. The housing 8 is provided with an accommodation space 8S. The housing 8 accommodates the motor 1, the motor rotation sensor 33, the generator 4, the generator rotation sensor 43, the transmission mechanism 5, the clutch 6, the park lock mechanism 7, and the pump unit 70 in the accommodation space 8 </ b> S. Further, oil O accumulates in the lower region of the accommodation space 8S.
 収容空間8Sには、発電機4を収容する発電機室8Aと、伝達機構5を収容するギヤ室8Bと、モータ1を収容するモータ室8Cと、が設けられる。 In the accommodation space 8S, a generator chamber 8A for accommodating the generator 4, a gear chamber 8B for accommodating the transmission mechanism 5, and a motor chamber 8C for accommodating the motor 1 are provided.
 また、ハウジング8は、内部に発電機室8Aを構成する発電機収容部81と、内部にギヤ室8Bを構成する伝達機構収容部82と、内部にモータ室8Cを構成するモータ収容部83と、を有する。 The housing 8 includes a generator housing portion 81 that forms a generator chamber 8A inside, a transmission mechanism housing portion 82 that forms a gear chamber 8B inside, and a motor housing portion 83 that forms a motor chamber 8C inside. Have.
 ハウジング8は、収容空間8Sの周囲を囲む外周壁部8aと、収容空間の内部を区画する第1隔壁部(隔壁部)8bおよび第2隔壁部(隔壁部)8cと、を有する。 The housing 8 has an outer peripheral wall portion 8a surrounding the housing space 8S, and a first partition wall portion (partition wall portion) 8b and a second partition wall portion (partition wall portion) 8c that divide the interior of the housing space.
 第1隔壁部8bおよび第2隔壁部8cは、車幅方向(すなわち、軸方向)と直交する平面に沿って延びる。第1隔壁部8bは、発電機室8Aとギヤ室8Bとを区画する。第2隔壁部8cは、ギヤ室8Bとモータ室8Cとを区画する。第2隔壁部8cは、車幅方向において、第1隔壁部8bと対向する。したがって、第1隔壁部8bおよび第2隔壁部8cは、ギヤ室8Bの車幅方向の両側に位置し、ギヤ室8Bを車幅方向両側から囲む。 The first partition wall portion 8b and the second partition wall portion 8c extend along a plane orthogonal to the vehicle width direction (that is, the axial direction). The first partition 8b partitions the generator chamber 8A and the gear chamber 8B. The second partition 8c partitions the gear chamber 8B and the motor chamber 8C. The second partition wall portion 8c faces the first partition wall portion 8b in the vehicle width direction. Therefore, the 1st partition part 8b and the 2nd partition part 8c are located in the both sides of the vehicle width direction of the gear chamber 8B, and surround the gear chamber 8B from the vehicle width direction both sides.
 収容空間8Sの下部領域には、オイルOが溜るオイル溜りPが設けられる。本実施形態では、モータ室8Cの底部および発電機室8Aの底部は、ギヤ室8Bの底部より上側に位置する。第1隔壁部8bには、第1隔壁開口8bbが設けられる。第1隔壁開口8bbは、発電機室8Aとギヤ室8Bとを連通させる。第1隔壁開口8bbは、発電機室8Aの下部領域に溜ったオイルOをギヤ室8Bに移動させる。同様に、第2隔壁部8cには、第2隔壁開口8cbが設けられる。第2隔壁開口8cbは、モータ室8Cとギヤ室8Bとを連通させる。第2隔壁開口8cbは、モータ室8Cの下部領域に溜ったオイルOをギヤ室8Bに移動させる。したがって、収容空間8S内のオイルOは、最終的にギヤ室8Bの下部領域に溜る。すなわち、本実施形態においてオイル溜りPは、ギヤ室8Bの下部領域に位置する。 In the lower region of the accommodation space 8S, an oil reservoir P in which oil O is accumulated is provided. In the present embodiment, the bottom of the motor chamber 8C and the bottom of the generator chamber 8A are located above the bottom of the gear chamber 8B. The first partition wall portion 8b is provided with a first partition wall opening 8bb. The first partition opening 8bb allows the generator chamber 8A and the gear chamber 8B to communicate with each other. The first partition opening 8bb moves the oil O accumulated in the lower region of the generator chamber 8A to the gear chamber 8B. Similarly, the second partition wall 8c is provided with a second partition opening 8cb. The second partition opening 8cb allows the motor chamber 8C and the gear chamber 8B to communicate with each other. The second partition opening 8cb moves the oil O accumulated in the lower region of the motor chamber 8C to the gear chamber 8B. Therefore, the oil O in the accommodation space 8S finally accumulates in the lower region of the gear chamber 8B. That is, in this embodiment, the oil sump P is located in the lower region of the gear chamber 8B.
 収容空間8Sには、オイルOを循環させる油路90が設けられる。油路90は、第1の油路91と第2の油路92とを含む。すなわち、収容空間8Sには、オイルOを循環させる第1の油路91および第2の油路92が設けられる。オイルOは、油路90において、オイル溜りPからモータユニット10の各部に供給される。油路90については、後段において詳細に説明する。 In the accommodating space 8S, an oil passage 90 for circulating the oil O is provided. The oil passage 90 includes a first oil passage 91 and a second oil passage 92. That is, the accommodation space 8S is provided with a first oil passage 91 and a second oil passage 92 through which the oil O is circulated. Oil O is supplied from the oil reservoir P to each part of the motor unit 10 in the oil passage 90. The oil passage 90 will be described in detail later.
 ハウジング8は、オイル溜りPの下側に位置する底壁部8dを有する。底壁部8dは、伝達機構収容部82の一部を構成する。底壁部8dには、流路部材8eが固定される。流路部材8eは、熱伝導性の高い金属材料で構成される。一例として、流路部材8eは、アルミニウム合金から構成される。 The housing 8 has a bottom wall portion 8d located below the oil reservoir P. The bottom wall portion 8d constitutes a part of the transmission mechanism accommodating portion 82. A channel member 8e is fixed to the bottom wall portion 8d. The flow path member 8e is made of a metal material having high thermal conductivity. As an example, the flow path member 8e is made of an aluminum alloy.
 流路部材8eの内部には、冷媒流路8eaが設けられる。冷媒流路8eaの両端には、それぞれ冷媒配管8ebが接続される。冷媒配管8ebは、ループ状に構成される。冷媒配管8ebには、経路中に設けられたラジエーター(図示略)で冷却された冷媒が流れる。流路部材8eの冷媒流路8eaには、流入口から流出口の間で冷媒が流れる。これにより、流路部材8eは、冷媒によって冷却される。
 なお、冷媒配管8ebの経路中には、インバータユニット9が設けられる。冷媒配管8eb内を流れる冷媒は、流路部材8eとともにインバータユニット9を冷却する。
A coolant channel 8ea is provided inside the channel member 8e. Refrigerant piping 8eb is connected to both ends of the refrigerant flow path 8ea. The refrigerant pipe 8eb is configured in a loop shape. The refrigerant cooled by a radiator (not shown) provided in the path flows through the refrigerant pipe 8eb. The refrigerant flows between the inlet and the outlet in the refrigerant channel 8ea of the channel member 8e. Thereby, the flow path member 8e is cooled by the refrigerant.
An inverter unit 9 is provided in the path of the refrigerant pipe 8eb. The refrigerant flowing in the refrigerant pipe 8eb cools the inverter unit 9 together with the flow path member 8e.
 流路部材8eは、オイル溜りPの下側において、ハウジング8の底壁部8dに固定される。このため、冷媒によって冷却された流路部材8eは、底壁部8dを冷却する。これにより、流路部材8eは、底壁部8dを介してオイル溜りPに溜るオイルOを冷却する。 The flow path member 8e is fixed to the bottom wall portion 8d of the housing 8 below the oil reservoir P. For this reason, the flow path member 8e cooled by the refrigerant cools the bottom wall portion 8d. Thereby, the flow path member 8e cools the oil O accumulated in the oil reservoir P through the bottom wall portion 8d.
 流路部材8eは、底壁部8dの一部と見做すことができる。すなわち、ハウジング8には、オイル溜りP(収容空間8Sの下部領域)の下側を通過する冷媒流路8eaが設けられる。後段において説明するように、第1の油路91および第2の油路92を循環するオイルOは、オイル溜りPにおいて合流する。冷媒流路8eaを流れる冷媒が、オイル溜りPに溜るオイルOを冷却することで、第1の油路91および第2の油路92を循環するオイルOを、共に冷却することできる。 The flow path member 8e can be regarded as a part of the bottom wall portion 8d. That is, the housing 8 is provided with a refrigerant flow path 8ea that passes under the oil reservoir P (lower region of the accommodation space 8S). As will be described later, the oil O circulating through the first oil passage 91 and the second oil passage 92 joins in the oil reservoir P. The refrigerant flowing through the refrigerant flow path 8ea cools the oil O accumulated in the oil reservoir P, so that the oil O circulating in the first oil path 91 and the second oil path 92 can be cooled together.
 オイルOは、伝達機構5の潤滑用として使用されるとともに、モータ1および発電機4の冷却用として使用される。オイルOは、ギヤ室8Bの下部領域(すなわちオイル溜りP)に溜る。オイルOは、潤滑油および冷却油の機能を奏するため、粘度の低いオートマチックトランスミッション用潤滑油(ATF:Automatic Transmission Fluid)と同等のものを用いることが好ましい。 Oil O is used for lubricating the transmission mechanism 5 and for cooling the motor 1 and the generator 4. Oil O accumulates in the lower region (namely, oil reservoir P) of gear chamber 8B. Since the oil O functions as a lubricating oil and a cooling oil, it is preferable to use an oil equivalent to a low-viscosity automatic transmission lubricating oil (ATF).
 モータ1は、電動機としての機能と発電機としての機能とを兼ね備えた電動発電機である。モータ1は、おもに電動機として機能して車両を駆動し、回生時には発電機として機能する。 The motor 1 is a motor generator that has both a function as a motor and a function as a generator. The motor 1 mainly functions as an electric motor to drive the vehicle, and functions as a generator during regeneration.
 モータ1は、モータ用ロータ(ロータ)31と、モータ用ロータ31を囲むモータ用ステータ(ステータ)32と、を有する。モータ用ロータ31は、モータ軸J1を中心として回転する。モータ用ステータ32は、環状である。モータ用ステータ32は、モータ用ロータ31をモータ軸J1の径方向外側から囲む。 The motor 1 includes a motor rotor (rotor) 31 and a motor stator (stator) 32 surrounding the motor rotor 31. The motor rotor 31 rotates about the motor shaft J1. The motor stator 32 is annular. The motor stator 32 surrounds the motor rotor 31 from the outside in the radial direction of the motor shaft J1.
 モータ用ロータ31は、後述するモータドライブシャフト11に固定される。モータ用ロータ31は、モータ軸J1周りを回転する。モータ用ロータ31は、モータ用ロータマグネット31aと、モータ用ロータコア31bと、を有する。モータ用ロータマグネット31aは、モータ用ロータコア31bに設けられた保持孔内に固定される。 The motor rotor 31 is fixed to a motor drive shaft 11 described later. The motor rotor 31 rotates around the motor shaft J1. The motor rotor 31 includes a motor rotor magnet 31a and a motor rotor core 31b. The motor rotor magnet 31a is fixed in a holding hole provided in the motor rotor core 31b.
 モータ用ステータ32は、モータ用ステータコア32aと、モータ用コイル32bと、を有する。モータ用ステータコア32aは、モータ軸J1の径方向内側に突出する複数のティースを有する。モータ用コイル32bは、モータ用ステータコア32aのティースに巻き付けられる。 The motor stator 32 has a motor stator core 32a and a motor coil 32b. The motor stator core 32a has a plurality of teeth protruding radially inward of the motor shaft J1. The motor coil 32b is wound around the teeth of the motor stator core 32a.
 モータ1の回転数は、モータ用回転センサ33によって測定される。本実施形態のモータ用回転センサ33は、レゾルバであり、レゾルバロータとレゾルバステータとを有する。モータ用回転センサ33のレゾルバロータは、モータドライブシャフト11に取り付けられる。また、モータ用回転センサ33のレゾルバステータは、ハウジング8の内壁面に固定される。 The rotation speed of the motor 1 is measured by a motor rotation sensor 33. The rotation sensor 33 for motors of this embodiment is a resolver, and has a resolver rotor and a resolver stator. The resolver rotor of the motor rotation sensor 33 is attached to the motor drive shaft 11. The resolver stator of the motor rotation sensor 33 is fixed to the inner wall surface of the housing 8.
 発電機4は、モータとしての機能と発電機としての機能とを兼ね備えた電動発電機である。発電機4は、エンジン2を始動させる際に電動機(スターター)として機能し、エンジン2の作動時にはエンジン動力により発電する。 The generator 4 is a motor generator that has both a function as a motor and a function as a generator. The generator 4 functions as an electric motor (starter) when starting the engine 2, and generates electric power with engine power when the engine 2 is operated.
 発電機4は、発電機用ロータ41と、発電機用ロータ41を囲む発電機用ステータ42と、を有する。発電機用ロータ41は、エンジン軸J2を中心として回転する。発電機用ステータ42は、環状である。発電機用ステータ42は、発電機用ロータ41をエンジン軸J2の径方向外側から囲む。 The generator 4 includes a generator rotor 41 and a generator stator 42 surrounding the generator rotor 41. The generator rotor 41 rotates about the engine shaft J2. The generator stator 42 is annular. The generator stator 42 surrounds the generator rotor 41 from the outside in the radial direction of the engine shaft J2.
 発電機用ロータ41は、後述するエンジンドライブシャフト12に固定される。発電機用ロータ41は、エンジン軸J2周りを回転する。発電機用ロータ41は、ロータマグネット41aと、ロータコア41bと、を有する。ロータマグネット41aは、ロータコア41bに設けられた保持孔内に固定される。 The generator rotor 41 is fixed to an engine drive shaft 12 described later. The generator rotor 41 rotates around the engine axis J2. The generator rotor 41 includes a rotor magnet 41a and a rotor core 41b. The rotor magnet 41a is fixed in a holding hole provided in the rotor core 41b.
 発電機用ステータ42は、ステータコア42aと、コイル42bと、を有する。ステータコア42aは、エンジン軸J2の径方向内側に突出する複数のティースを有する。コイル42bは、ステータコア42aのティースに巻き付けられる。 The generator stator 42 has a stator core 42a and a coil 42b. Stator core 42a has a plurality of teeth protruding inward in the radial direction of engine shaft J2. The coil 42b is wound around the teeth of the stator core 42a.
 発電機4の回転数は、発電機用回転センサ43によって測定される。本実施形態の発電機用回転センサ43は、モータ用回転センサ33と同様に、レゾルバであり、レゾルバロータとレゾルバステータとを有する。発電機用回転センサ43のレゾルバロータは、エンジンドライブシャフト12に取り付けられる。また、発電機用回転センサ43のレゾルバステータは、ハウジング8の内壁面に固定される。 The rotation speed of the generator 4 is measured by a generator rotation sensor 43. The generator rotation sensor 43 of the present embodiment is a resolver, like the motor rotation sensor 33, and includes a resolver rotor and a resolver stator. The resolver rotor of the generator rotation sensor 43 is attached to the engine drive shaft 12. The resolver stator of the generator rotation sensor 43 is fixed to the inner wall surface of the housing 8.
 モータ用ステータ32および発電機用ステータ42は、直流電流と交流電流とを変換するインバータユニット9に接続される。モータ1および発電機4の各回転速度は、インバータユニット9において制御される。 The motor stator 32 and the generator stator 42 are connected to the inverter unit 9 that converts direct current and alternating current. The rotational speeds of the motor 1 and the generator 4 are controlled by the inverter unit 9.
 伝達機構5は、エンジン2、発電機4およびモータ1の間で力を伝達する。伝達機構5は、駆動源と被駆動装置との間の動力伝達を担う複数の機構を有する。伝達機構5は、エンジン2およびモータ1の動力を出力シャフト55から出力する。 The transmission mechanism 5 transmits power between the engine 2, the generator 4 and the motor 1. The transmission mechanism 5 has a plurality of mechanisms responsible for power transmission between the drive source and the driven device. The transmission mechanism 5 outputs the power of the engine 2 and the motor 1 from the output shaft 55.
 伝達機構5は、差動装置(デファレンシャルギヤ)50を有する。伝達機構5は、水平方向に延びる複数のシャフトと、複数のシャフトにそれぞれ固定された複数のギヤと、を有する。また、伝達機構5には、ポンプ部70と、クラッチ6と、パークロック機構7と、が設けられる。 The transmission mechanism 5 has a differential device (differential gear) 50. The transmission mechanism 5 includes a plurality of shafts extending in the horizontal direction and a plurality of gears fixed to the plurality of shafts. Further, the transmission mechanism 5 is provided with a pump unit 70, a clutch 6, and a park lock mechanism 7.
 伝達機構5の複数のシャフトは、モータドライブシャフト11と、エンジンドライブシャフト12と、カウンタシャフト13と、差動装置50に設けられる一対の出力シャフト55と、を含む。 The plurality of shafts of the transmission mechanism 5 include a motor drive shaft 11, an engine drive shaft 12, a counter shaft 13, and a pair of output shafts 55 provided in the differential device 50.
 伝達機構5の複数のギヤは、モータドライブギヤ21と、エンジンドライブギヤ22と、カウンタギヤ23およびドライブギヤ24と、差動装置50に設けられるリングギヤ51と、を含む。 The plurality of gears of the transmission mechanism 5 include a motor drive gear 21, an engine drive gear 22, a counter gear 23 and a drive gear 24, and a ring gear 51 provided in the differential device 50.
 モータドライブシャフト11は、モータ軸J1に沿って延びる。モータドライブシャフト11は、モータ用ロータ31に固定される。モータドライブシャフト11は、モータ1に回転させられる。 The motor drive shaft 11 extends along the motor axis J1. The motor drive shaft 11 is fixed to the motor rotor 31. The motor drive shaft 11 is rotated by the motor 1.
 モータドライブギヤ21は、モータドライブシャフト11に固定される。モータドライブギヤ21は、モータドライブシャフト11とともに、モータ軸J1周りを回転する。 The motor drive gear 21 is fixed to the motor drive shaft 11. The motor drive gear 21 rotates around the motor axis J1 together with the motor drive shaft 11.
 モータドライブシャフト11は、内部に中空部11hが設けられた中空シャフトである。中空部11hは、モータ軸J1に沿って直線状に延びる。後段に説明するように、中空部11hにはオイルOが供給される。したがって、中空部11hには、オイルOが流れる。 The motor drive shaft 11 is a hollow shaft provided with a hollow portion 11h. The hollow portion 11h extends linearly along the motor shaft J1. As will be described later, oil O is supplied to the hollow portion 11h. Therefore, the oil O flows through the hollow portion 11h.
 モータドライブシャフト11には、中空部11hからモータ軸J1の径方向外側に延びる貫通孔11pが設けられる。貫通孔11pの軸方向における位置は、モータ用ステータ32の軸方向における位置と重なる。貫通孔11pは、モータ軸J1の径方向においてモータ用ステータ32と対向する。中空部11hに供給されたオイルOは、貫通孔11pから径方向外側に飛散してモータ用ステータ32に供給され、モータ用ステータ32を冷却する。 The motor drive shaft 11 is provided with a through hole 11p extending from the hollow portion 11h to the outside in the radial direction of the motor shaft J1. The position of the through hole 11p in the axial direction overlaps the position of the motor stator 32 in the axial direction. The through hole 11p faces the motor stator 32 in the radial direction of the motor shaft J1. The oil O supplied to the hollow portion 11h is scattered radially outward from the through hole 11p and supplied to the motor stator 32 to cool the motor stator 32.
 エンジンドライブシャフト12は、エンジン軸J2に沿って延びる。エンジンドライブシャフト12は、ダンパ2cを介して、エンジン2のクランクシャフト2aに接続される。エンジンドライブシャフト12は、エンジン2により回転させられる。エンジン2を定常回転させる場合、エンジンドライブシャフト12は、クランクシャフト2aと同期回転する。エンジンドライブシャフト12には、発電機用ロータ41が固定される。 The engine drive shaft 12 extends along the engine axis J2. The engine drive shaft 12 is connected to the crankshaft 2a of the engine 2 via the damper 2c. The engine drive shaft 12 is rotated by the engine 2. When the engine 2 is rotated in a steady manner, the engine drive shaft 12 rotates in synchronization with the crankshaft 2a. A generator rotor 41 is fixed to the engine drive shaft 12.
 エンジンドライブシャフト12には、ポンプ部70の一部(外歯ギヤ72、図4参照)が固定される。ポンプ部70については、後段において詳細に説明する。 A part of the pump unit 70 (external gear 72, see FIG. 4) is fixed to the engine drive shaft 12. The pump unit 70 will be described in detail later.
 エンジンドライブシャフト12は、内部に中空部12hが設けられた中空シャフトである。中空部12hは、エンジン軸J2に沿って直線状に延びる。ポンプ部70の吐出口76は、中空部12hに繋がる。したがって、中空部12hには、オイルOが流れる。中空部12hは、モータ1の上側で軸方向に開口する。中空部12hを流れるオイルOの一部は、モータ1に上側から供給され、モータ1を冷却する。 The engine drive shaft 12 is a hollow shaft provided with a hollow portion 12h inside. The hollow portion 12h extends linearly along the engine axis J2. The discharge port 76 of the pump unit 70 is connected to the hollow portion 12h. Therefore, the oil O flows through the hollow portion 12h. The hollow portion 12 h opens in the axial direction on the upper side of the motor 1. Part of the oil O flowing through the hollow portion 12h is supplied to the motor 1 from the upper side to cool the motor 1.
 エンジンドライブシャフト12には、中空部12hからエンジン軸J2の径方向外側に延びる第1貫通孔12pおよび第2貫通孔12qが設けられる。第1貫通孔12pおよび第2貫通孔12qは、エンジン軸J2の軸方向に沿って並ぶ。 The engine drive shaft 12 is provided with a first through hole 12p and a second through hole 12q extending from the hollow portion 12h to the outside in the radial direction of the engine shaft J2. The first through hole 12p and the second through hole 12q are arranged along the axial direction of the engine shaft J2.
 第1貫通孔12pの軸方向における位置は、伝達機構5を構成するギヤの軸方向における位置と重なる。第1貫通孔12pは、エンジン軸J2の径方向において伝達機構5を構成するギヤに対向する。ポンプ部70によって中空部12hに供給されたオイルOの一部は、第1貫通孔12pから径方向外側に飛散して伝達機構5の各ギヤに供給され、ギヤ間の潤滑性を高める。 The position of the first through hole 12p in the axial direction overlaps the position of the gear constituting the transmission mechanism 5 in the axial direction. The first through hole 12p faces the gear that constitutes the transmission mechanism 5 in the radial direction of the engine shaft J2. A part of the oil O supplied to the hollow part 12h by the pump part 70 is scattered radially outward from the first through hole 12p and supplied to each gear of the transmission mechanism 5 to improve the lubricity between the gears.
 第2貫通孔12qの軸方向における位置は、発電機用ステータ42の軸方向における位置と重なる。第2貫通孔12qは、エンジン軸J2の径方向において発電機用ステータ42と対向する。ポンプ部70によって中空部12hに供給されたオイルOの一部は、第2貫通孔12qから径方向外側に飛散して発電機用ステータ42に供給され、発電機用ステータ42を冷却する。 The position of the second through hole 12q in the axial direction overlaps with the position of the generator stator 42 in the axial direction. The second through hole 12q faces the generator stator 42 in the radial direction of the engine shaft J2. Part of the oil O supplied to the hollow part 12h by the pump part 70 is scattered radially outward from the second through hole 12q and supplied to the generator stator 42, thereby cooling the generator stator 42.
 エンジンドライブシャフト12は、第1軸部12Aと第2軸部12Bとを有する。第1軸部12Aおよび第2軸部12Bは、それぞれエンジン軸J2に沿って延びる。すなわち、第1軸部12Aと第2軸部12Bとは、同軸上に並ぶ。エンジンドライブシャフト12の中空部12hは、第1軸部12Aおよび第2軸部12Bの内部に跨って延びる。第1軸部12Aには、発電機用ロータ41およびポンプ部70の外歯ギヤ72が固定される。第2軸部12Bには、エンジンドライブギヤ22が固定される。 The engine drive shaft 12 has a first shaft portion 12A and a second shaft portion 12B. The first shaft portion 12A and the second shaft portion 12B each extend along the engine shaft J2. That is, the first shaft portion 12A and the second shaft portion 12B are arranged coaxially. The hollow portion 12h of the engine drive shaft 12 extends across the first shaft portion 12A and the second shaft portion 12B. The generator rotor 41 and the external gear 72 of the pump unit 70 are fixed to the first shaft portion 12A. An engine drive gear 22 is fixed to the second shaft portion 12B.
 エンジンドライブシャフト12には、クラッチ6が設けられる。クラッチ6は、車両がEVモード又はシリーズモードで走行する場合に、第1軸部12Aと第2軸部12Bとを切り離す。また、クラッチ6は、車両がパラレルモードで走行する場合に、第1軸部12Aと第2軸部12Bとを接続する。クラッチ6については、後段において詳細に説明する。 The engine drive shaft 12 is provided with a clutch 6. The clutch 6 separates the first shaft portion 12A and the second shaft portion 12B when the vehicle travels in the EV mode or the series mode. The clutch 6 connects the first shaft portion 12A and the second shaft portion 12B when the vehicle travels in the parallel mode. The clutch 6 will be described in detail later.
 エンジンドライブギヤ22は、エンジンドライブシャフト12に固定される。エンジンドライブギヤ22は、エンジンドライブシャフト12とともに、エンジン軸J2周りを回転する。 The engine drive gear 22 is fixed to the engine drive shaft 12. The engine drive gear 22 rotates around the engine axis J2 together with the engine drive shaft 12.
 カウンタシャフト13は、カウンタ軸J3に沿って延びる。カウンタシャフト13は、カウンタ軸J3周りを回転する。カウンタシャフト13には、パークロック機構7のパークロックギヤ7aが固定される。また、パークロックギヤ7aの歯面は、カウンタ軸J3の径方向においてパークロックアーム7bと対向する。パークロックアーム7bは、パークロックギヤ7aと噛み合う。パークロック機構7については、後段において詳細に説明する。 The counter shaft 13 extends along the counter axis J3. The counter shaft 13 rotates around the counter axis J3. A park lock gear 7 a of the park lock mechanism 7 is fixed to the counter shaft 13. Further, the tooth surface of the park lock gear 7a faces the park lock arm 7b in the radial direction of the counter shaft J3. The park lock arm 7b meshes with the park lock gear 7a. The park lock mechanism 7 will be described in detail later.
 カウンタギヤ23は、カウンタシャフト13に固定される。カウンタギヤ23は、カウンタシャフト13とともに、カウンタ軸J3周りを回転する。カウンタギヤ23は、モータドライブギヤ21およびエンジンドライブギヤ22と噛み合う。カウンタギヤ23は、モータドライブギヤ21を介して、モータ1により回転させられる。また、カウンタギヤ23は、エンジンドライブギヤ22を介してエンジン2により回転させられる。 The counter gear 23 is fixed to the counter shaft 13. The counter gear 23 rotates around the counter axis J3 together with the counter shaft 13. The counter gear 23 meshes with the motor drive gear 21 and the engine drive gear 22. The counter gear 23 is rotated by the motor 1 via the motor drive gear 21. The counter gear 23 is rotated by the engine 2 through the engine drive gear 22.
 ドライブギヤ24は、カウンタシャフト13に固定される。ドライブギヤ24は、カウンタシャフト13およびカウンタギヤ23とともに、カウンタ軸J3周りを回転する。 The drive gear 24 is fixed to the counter shaft 13. The drive gear 24 rotates around the counter axis J3 together with the counter shaft 13 and the counter gear 23.
 リングギヤ51は、差動装置50に固定される。リングギヤ51は、出力軸J4周りを回転する。リングギヤ51は、ドライブギヤ24と噛み合う。リングギヤ51は、ドライブギヤ24を介して伝達されるモータ1およびエンジン2の動力を差動装置50に伝達する。 The ring gear 51 is fixed to the differential device 50. The ring gear 51 rotates around the output shaft J4. Ring gear 51 meshes with drive gear 24. Ring gear 51 transmits the power of motor 1 and engine 2 transmitted via drive gear 24 to differential device 50.
 差動装置50は、モータ1およびエンジン2から出力されるトルクを車両の車輪に伝達するための装置である。差動装置50は、車両の旋回時に、左右の車輪の速度差を吸収しつつ、左右両輪の出力シャフト55に同トルクを伝える機能を有する。 The differential device 50 is a device for transmitting torque output from the motor 1 and the engine 2 to the wheels of the vehicle. The differential device 50 has a function of transmitting the same torque to the output shafts 55 of the left and right wheels while absorbing the speed difference between the left and right wheels when the vehicle is turning.
 差動装置50は、リングギヤ51に固定されるギヤハウジング(不図示)と、一対のピニオンギヤ(不図示)と、ピニオンシャフト(不図示)と、一対のサイドギヤ(不図示)と、を有する。ギヤハウジングは、リングギヤ51とともに出力軸J4を中心として回転する。ギヤハウジングは、一対のピニオンギヤ、ピニオンシャフトおよび一対のサイドギヤを収容する。一対のピニオンギヤは、互いに向かい合う傘歯車である。一対のピニオンギヤは、ピニオンシャフトに支持される。一対のサイドギヤは、一対のピニオンギヤに直角に噛み合う傘歯車である。一対のサイドギヤは、それぞれ出力シャフト55に固定される。 The differential device 50 includes a gear housing (not shown) fixed to the ring gear 51, a pair of pinion gears (not shown), a pinion shaft (not shown), and a pair of side gears (not shown). The gear housing rotates around the output shaft J4 together with the ring gear 51. The gear housing accommodates a pair of pinion gears, a pinion shaft, and a pair of side gears. The pair of pinion gears are bevel gears facing each other. The pair of pinion gears are supported by the pinion shaft. The pair of side gears are bevel gears that mesh at right angles with the pair of pinion gears. The pair of side gears are fixed to the output shaft 55, respectively.
 出力シャフト55は、出力軸J4周りを回転する。出力シャフト55には、各ギヤを介して、モータドライブギヤ21の動力が伝達される。同様に、出力シャフト55には、各ギヤを介して、エンジンドライブギヤ22の動力が伝達される。 The output shaft 55 rotates around the output axis J4. The power of the motor drive gear 21 is transmitted to the output shaft 55 via each gear. Similarly, the power of the engine drive gear 22 is transmitted to the output shaft 55 via each gear.
 本実施形態のモータユニット10には、一対の出力シャフト55が設けられる。一対の出力シャフト55は、それぞれ差動装置50を介してリングギヤ51に接続される。一対の出力シャフト55の先端には、それぞれ車輪が固定される。出力シャフト55は、動力を外部(車輪を介して路面)に出力する。 The motor unit 10 of this embodiment is provided with a pair of output shafts 55. The pair of output shafts 55 are connected to the ring gear 51 via the differential device 50, respectively. Wheels are respectively fixed to the tips of the pair of output shafts 55. The output shaft 55 outputs power to the outside (road surface through wheels).
 図2は、一実施形態のモータユニット10の側面図である。図2には、XYZ座標系を示す。X軸方向は、車両の前後方向である。Y軸方向は、車両の幅方向である。Z軸方向は、上下方向であり、+Z方向が上方向である。 FIG. 2 is a side view of the motor unit 10 according to the embodiment. FIG. 2 shows an XYZ coordinate system. The X-axis direction is the longitudinal direction of the vehicle. The Y-axis direction is the vehicle width direction. The Z-axis direction is the vertical direction, and the + Z direction is the upward direction.
 モータ軸J1、エンジン軸J2、カウンタ軸J3および出力軸J4は、互いに平行である。また、モータ軸J1、エンジン軸J2、カウンタ軸J3および出力軸J4は、車両の幅方向と平行である。以下の説明において、車幅方向を単に軸方向と呼ぶ場合がある。 The motor shaft J1, engine shaft J2, counter shaft J3 and output shaft J4 are parallel to each other. The motor shaft J1, the engine shaft J2, the counter shaft J3, and the output shaft J4 are parallel to the vehicle width direction. In the following description, the vehicle width direction may be simply referred to as the axial direction.
 伝達機構5は、3つの動力伝達経路を有する。1つ目の動力伝達経路は、モータ1から出力シャフト55に至るモータ駆動経路である。2つ目の動力伝達経路は、エンジン2から出力シャフト55に至るエンジン駆動経路である。3つ目の動力駆動経路は、エンジン2から発電機4に至る発電経路である。 The transmission mechanism 5 has three power transmission paths. The first power transmission path is a motor drive path from the motor 1 to the output shaft 55. The second power transmission path is an engine drive path from the engine 2 to the output shaft 55. The third power drive path is a power generation path from the engine 2 to the generator 4.
 モータ駆動経路において、モータ1の動力は、まず、モータドライブギヤ21からカウンタギヤ23に伝達される。カウンタギヤ23は、ドライブギヤ24と同軸上に配置され、ドライブギヤ24とともに回転する。モータ1の動力は、ドライブギヤ24からリングギヤ51に伝達され、差動装置50を介して出力シャフト55に伝達される。 In the motor drive path, the power of the motor 1 is first transmitted from the motor drive gear 21 to the counter gear 23. The counter gear 23 is arranged coaxially with the drive gear 24 and rotates together with the drive gear 24. The power of the motor 1 is transmitted from the drive gear 24 to the ring gear 51, and is transmitted to the output shaft 55 via the differential device 50.
 エンジン駆動経路において、エンジン2の動力は、まず、エンジンドライブギヤ22からカウンタギヤ23に伝達される。カウンタギヤ23に伝わったエンジン2の動力は、モータ1の動力と同様に、ドライブギヤ24、リングギヤ51および差動装置50を介して出力シャフト55に伝達される。すなわち、モータ駆動経路とエンジン駆動経路とは、カウンタギヤ23から出力シャフト55に至る動力伝達経路を共有する。 In the engine drive path, the power of the engine 2 is first transmitted from the engine drive gear 22 to the counter gear 23. The power of the engine 2 transmitted to the counter gear 23 is transmitted to the output shaft 55 through the drive gear 24, the ring gear 51, and the differential device 50 similarly to the power of the motor 1. That is, the motor drive path and the engine drive path share a power transmission path from the counter gear 23 to the output shaft 55.
 発電経路において、エンジン2の動力は、エンジンドライブシャフト12に伝わる。発電機用ロータ41は、エンジンドライブシャフト12に固定される。したがって、エンジン2の動力は、発電機4にギヤを介することなく、伝達される。 In the power generation path, the power of the engine 2 is transmitted to the engine drive shaft 12. The generator rotor 41 is fixed to the engine drive shaft 12. Therefore, the power of the engine 2 is transmitted to the generator 4 without using a gear.
 本実施形態によれば、カウンタギヤ23は、モータドライブギヤ21およびエンジンドライブギヤ22と噛み合う。カウンタギヤ23には、モータ1の動力とエンジン2の動力とが伝達される。したがって、カウンタギヤ23から出力シャフト55に至る動力伝達の経路を、モータ駆動経路とエンジン駆動経路とで共有することができる。結果的に、伝達機構5に設けられるシャフトおよびギヤの数を減らして、モータユニット10を小型化および軽量化することができる。 According to the present embodiment, the counter gear 23 meshes with the motor drive gear 21 and the engine drive gear 22. The power of the motor 1 and the power of the engine 2 are transmitted to the counter gear 23. Therefore, the power transmission path from the counter gear 23 to the output shaft 55 can be shared by the motor drive path and the engine drive path. As a result, the number of shafts and gears provided in the transmission mechanism 5 can be reduced, and the motor unit 10 can be reduced in size and weight.
 また、本実施形態によれば、カウンタギヤ23と噛み合うモータドライブギヤ21およびエンジンドライブギヤ22の直径(すなわち歯数)を適宜設定することで、モータ駆動経路およびエンジン駆動経路の減速比を個別に設定できる。モータ駆動経路とエンジン駆動経路とで、減速比を異ならせることで、それぞれの経路において、エンジン2での駆動に適した減速比とモータ1での駆動に適した減速比とを実現できる。その結果、エンジン2およびモータ1の何れか一方、又は両方で駆動する何れの場合においても、車両を効率的に駆動させることができる。すなわち、本実施形態によれば、モータ1から出力シャフト55に至る動力伝達経路の減速比と、エンジン2から出力シャフト55に至る動力伝達経路の減速比と、を個別に設定しつつシャフトおよびギヤの数を減らしたモータユニット10を提供できる。 In addition, according to the present embodiment, by appropriately setting the diameters (that is, the number of teeth) of the motor drive gear 21 and the engine drive gear 22 that mesh with the counter gear 23, the reduction ratios of the motor drive path and the engine drive path can be individually set. Can be set. By making the reduction ratios different between the motor drive path and the engine drive path, a reduction ratio suitable for driving with the engine 2 and a reduction ratio suitable for driving with the motor 1 can be realized in each path. As a result, the vehicle can be driven efficiently in any case of driving with either one or both of the engine 2 and the motor 1. That is, according to the present embodiment, the shaft and gear are set while individually setting the reduction ratio of the power transmission path from the motor 1 to the output shaft 55 and the reduction ratio of the power transmission path from the engine 2 to the output shaft 55. Can be provided.
 モータドライブギヤ21の直径は、エンジンドライブギヤ22の直径より、小さい。言い換えると、モータドライブギヤ21の歯数は、エンジンドライブギヤ22の歯数より、少ない。これにより、モータ駆動経路の減速比を、エンジン駆動経路の減速比より高くすることができる。一般的に、モータ1の限界回転数は、エンジン2の限界回転数より大きい。一例として、モータ1の限界回転数は、15000回転である。また、エンジン2の限界回転数は、6000回転である。このため、モータ駆動経路の減速比を、エンジン駆動経路の減速比より高くして、車両を効率的に走行させることができる。なお、本実施形態において、モータ駆動経路の減速比は、9~11とされる。一方で、エンジン駆動経路の減速比は、2.5~3.5とされる。 The diameter of the motor drive gear 21 is smaller than the diameter of the engine drive gear 22. In other words, the number of teeth of the motor drive gear 21 is smaller than the number of teeth of the engine drive gear 22. Thereby, the reduction ratio of the motor drive path can be made higher than the reduction ratio of the engine drive path. Generally, the limit rotational speed of the motor 1 is larger than the limit rotational speed of the engine 2. As an example, the limit rotation speed of the motor 1 is 15000 rotations. The limit rotational speed of the engine 2 is 6000 revolutions. For this reason, the reduction ratio of the motor drive path can be made higher than the reduction ratio of the engine drive path, and the vehicle can be run efficiently. In this embodiment, the reduction ratio of the motor drive path is 9-11. On the other hand, the reduction ratio of the engine drive path is set to 2.5 to 3.5.
 本実施形態によれば、エンジンドライブギヤ22の直径は、カウンタギヤ23の直径より大きい。このため、エンジン駆動経路において、エンジンドライブギヤ22からカウンタギヤ23への過程で、動力は一旦増速される。このような構成をとることで、カウンタギヤ23の直径が小さくなり、結果的に、カウンタ軸J3とモータ軸J1との間の距離を短くすることができる。これにより、軸方向から見てモータ1をモータユニット10の中央に近づけて配置することが可能となり、軸方向から見たモータユニット10全体の寸法を小型化できる。 According to this embodiment, the diameter of the engine drive gear 22 is larger than the diameter of the counter gear 23. Therefore, in the engine drive path, the power is once increased in the process from the engine drive gear 22 to the counter gear 23. By adopting such a configuration, the diameter of the counter gear 23 is reduced, and as a result, the distance between the counter shaft J3 and the motor shaft J1 can be shortened. Thereby, the motor 1 can be disposed close to the center of the motor unit 10 when viewed from the axial direction, and the overall dimensions of the motor unit 10 viewed from the axial direction can be reduced.
 パークロック機構7は、ドライバーのシフト操作に基づいて駆動される。パークロック機構7は、伝達機構5における動力の伝達を制限するロック状態と、制限を解除するアンロック状態との間で択一的に切り替えられる。 The park lock mechanism 7 is driven based on a driver shift operation. The park lock mechanism 7 is selectively switched between a locked state that restricts transmission of power in the transmission mechanism 5 and an unlocked state that releases the restriction.
 図2に示すように、パークロック機構7は、パークロックギヤ7aと、パークロックアーム7bと、アーム支持シャフト7eと、パークロックアクチュエータ7cと、パークロック動力伝達機構7dと、を有する。 As shown in FIG. 2, the park lock mechanism 7 includes a park lock gear 7a, a park lock arm 7b, an arm support shaft 7e, a park lock actuator 7c, and a park lock power transmission mechanism 7d.
 パークロックギヤ7aは、カウンタシャフト13に固定される。パークロックギヤ7aは、カウンタシャフト13とともにカウンタ軸J3周りに回転する。パークロックギヤ7aのカウンタ軸J3の径方向外側を向く外周面には、カウンタ軸J3の周方向に沿って並ぶ複数の歯部が並ぶ。 The park lock gear 7 a is fixed to the counter shaft 13. The park lock gear 7a rotates around the counter axis J3 together with the counter shaft 13. A plurality of teeth aligned along the circumferential direction of the counter shaft J3 are arranged on the outer peripheral surface of the park lock gear 7a facing the radially outer side of the counter shaft J3.
 パークロックアーム7bは、軸方向と直交する平面に沿って延びる板状である。パークロックアーム7bは、軸方向に延びる第2中心軸J7eを中心とするアーム支持シャフト7eに回転可能に支持される。パークロックアーム7bは、アーム支持シャフト7eから上側に延びる。 The park lock arm 7b has a plate shape extending along a plane orthogonal to the axial direction. The park lock arm 7b is rotatably supported by an arm support shaft 7e having a second central axis J7e extending in the axial direction as a center. The park lock arm 7b extends upward from the arm support shaft 7e.
 パークロックアーム7bは、パークロックギヤ7aの外周面に沿って延びる。パークロックアーム7bは、パークロックギヤ7aの歯部にカウンタ軸J3の径方向において対向する。パークロックアーム7bは、パークロックギヤ7aの歯部と対向する噛合部7baを有する。噛合部7baは、カウンタ軸J3の径方向内側に向かって突出する。噛合部7baは、パークロックギヤ7aの歯部に噛み合う。すなわち、パークロックアーム7bは、噛合部7baにおいて、パークロックギヤに噛み合う。 The park lock arm 7b extends along the outer peripheral surface of the park lock gear 7a. The park lock arm 7b faces the tooth portion of the park lock gear 7a in the radial direction of the counter shaft J3. The park lock arm 7b has a meshing portion 7ba facing the tooth portion of the park lock gear 7a. The meshing portion 7ba protrudes inward in the radial direction of the counter shaft J3. The meshing portion 7ba meshes with a tooth portion of the park lock gear 7a. That is, the park lock arm 7b meshes with the park lock gear at the meshing portion 7ba.
 パークロックアーム7bは、パークロックアクチュエータ7cにより駆動され第2中心軸J7eを中心として所定の範囲で回転する。 The park lock arm 7b is driven by the park lock actuator 7c and rotates within a predetermined range about the second central axis J7e.
 ドライバーの操作により、パークロック機構7がロック状態とされると、図2において、パークロックアーム7bが第2中心軸J7e周りを反時計回りに回転して、噛合部7baがパークロックギヤ7aの歯部に噛み合う。これにより、カウンタシャフト13の回転が抑制され、伝達機構5における動力の伝達が制限される。 When the park lock mechanism 7 is locked by the driver's operation, in FIG. 2, the park lock arm 7b rotates counterclockwise around the second central axis J7e, and the meshing portion 7ba of the park lock gear 7a Engage with teeth. Thereby, the rotation of the countershaft 13 is suppressed, and the transmission of power in the transmission mechanism 5 is limited.
 一方で、ドライバーの操作により、パークロック機構7がアンロック状態とされると、パークロックアーム7bが第2中心軸J7e周りを時計回りに回転して、噛合部7baがパークロックギヤ7aの歯部から解放される。これにより、エンジンドライブシャフトが自由に回転可能となり、伝達機構5が動力を伝達できる状態となる。 On the other hand, when the park lock mechanism 7 is unlocked by the operation of the driver, the park lock arm 7b rotates clockwise around the second central axis J7e, and the meshing portion 7ba engages with the teeth of the park lock gear 7a. Freed from the department. As a result, the engine drive shaft can freely rotate, and the transmission mechanism 5 can transmit power.
 本実施形態によれば、パークロックアーム7bは、上下方向に沿って延びる。軸方向から見て、モータドライブシャフト11とパークロックアーム7bとは、カウンタシャフト13に対して互いに水平方向の反対側に配置される。このため、モータユニット10の上下方向の寸法を抑制できる。同様に、軸方向から見て、エンジンドライブシャフト12とパークロックアーム7bは、カウンタシャフト13に対して互いに水平方向の反対側に配置される。このため、本実施形態に示すように、モータユニット10がエンジン2に接続されるハイブリット自動車に搭載される場合においても、モータユニット10の上下方向の寸法を抑制できる。 According to the present embodiment, the park lock arm 7b extends along the vertical direction. When viewed from the axial direction, the motor drive shaft 11 and the park lock arm 7 b are disposed on opposite sides of the counter shaft 13 in the horizontal direction. For this reason, the vertical dimension of the motor unit 10 can be suppressed. Similarly, when viewed from the axial direction, the engine drive shaft 12 and the park lock arm 7 b are disposed on the opposite sides of the counter shaft 13 in the horizontal direction. For this reason, as shown in this embodiment, even when the motor unit 10 is mounted on a hybrid vehicle connected to the engine 2, the vertical dimension of the motor unit 10 can be suppressed.
 パークロック動力伝達機構7dは、パークロックアクチュエータ7cとパークロックアーム7bとの間に位置する。パークロック動力伝達機構7dは、第1中心軸J7c周りに回転するマニュアルシャフト7caの動力をパークロックアーム7bに伝えて、パークロックアーム7bを第2中心軸J7e周りに回転させる。 The park lock power transmission mechanism 7d is located between the park lock actuator 7c and the park lock arm 7b. The park lock power transmission mechanism 7d transmits the power of the manual shaft 7ca rotating around the first center axis J7c to the park lock arm 7b, and rotates the park lock arm 7b around the second center axis J7e.
 パークロックアクチュエータ7cは、ハウジング8の上側に固定される。パークロックアクチュエータ7cは、上下方向に延びる第1中心軸J7cを中心とするマニュアルシャフト7caを有する。パークロックアクチュエータ7cは、第1中心軸J7cを中心としてマニュアルシャフト7caを回転させる。パークロックアクチュエータ7cは、パークロック動力伝達機構7dを介してパークロックアーム7bを駆動させる。 The park lock actuator 7 c is fixed to the upper side of the housing 8. The park lock actuator 7c has a manual shaft 7ca centered on a first central axis J7c extending in the vertical direction. The park lock actuator 7c rotates the manual shaft 7ca around the first central axis J7c. The park lock actuator 7c drives the park lock arm 7b via the park lock power transmission mechanism 7d.
 本実施形態によれば、パークロックアクチュエータ7cは、カウンタシャフト13の直上に位置する。すなわち、上下方向から見て、パークロックアクチュエータ7cは、カウンタシャフト13と重なる。これにより、モータユニット10の水平方向の寸法を小型化することができる。 According to the present embodiment, the park lock actuator 7c is located immediately above the counter shaft 13. That is, the park lock actuator 7 c overlaps with the counter shaft 13 when viewed from above and below. Thereby, the dimension of the horizontal direction of the motor unit 10 can be reduced in size.
 パークロックアクチュエータ7cは、収容空間8Sの外部に位置する。すなわち、パークロックアーム7bは、少なくとも一部が、外部に露出する。パークロックアクチュエータ7cは、軸方向から見て、少なくとも一部がハウジング8と重なる。すなわち、軸方向から見て、パークロックアクチュエータ7cは、ハウジング8の一部に隠れるように配置される。より具体的には、パークロックアクチュエータ7cは、軸方向から見て、モータ1およびハウジング8のモータ収容部83と重なる。このため、パークロックアクチュエータ7cが、外部に露出していてもモータユニット10の軸方向から見た全体の寸法が大型化することがない。結果的に、パークロックアクチュエータ7cのメンテナンスを容易とするとともに、モータユニット10を小型化することができる。 The park lock actuator 7c is located outside the accommodation space 8S. That is, at least a part of the park lock arm 7b is exposed to the outside. The park lock actuator 7c at least partially overlaps the housing 8 when viewed from the axial direction. That is, the park lock actuator 7 c is arranged so as to be hidden by a part of the housing 8 when viewed from the axial direction. More specifically, the park lock actuator 7 c overlaps the motor housing 83 of the motor 1 and the housing 8 when viewed from the axial direction. For this reason, even if the park lock actuator 7c is exposed to the outside, the overall size viewed from the axial direction of the motor unit 10 does not increase. As a result, maintenance of the park lock actuator 7c can be facilitated, and the motor unit 10 can be reduced in size.
 なお、本実施形態では、パークロックアクチュエータ7cが、軸方向から見てハウジング8のモータ収容部83と重なる場合について例示した。しかしながら、パークロックアクチュエータ7cは、軸方向から見てハウジング8の他の部分の重なっていてもよい。一例として、パークロックアクチュエータ7cは、ハウジング8の発電機収容部81と重なっていてもよい。また、この場合、パークロックアクチュエータ7cは、発電機4とも重なっているとなおよい。パークロックアクチュエータ7cをこのように配置することで、モータユニット10の軸方向から見た全体の寸法が大型化することを抑制できる。 In the present embodiment, the case where the park lock actuator 7c overlaps with the motor accommodating portion 83 of the housing 8 as viewed from the axial direction is illustrated. However, the park lock actuator 7c may overlap other portions of the housing 8 when viewed from the axial direction. As an example, the park lock actuator 7 c may overlap with the generator accommodating portion 81 of the housing 8. In this case, the park lock actuator 7c is preferably overlapped with the generator 4. By arranging the park lock actuator 7c in this way, it is possible to suppress an increase in the overall size of the motor unit 10 viewed from the axial direction.
 クラッチ6は、エンジンドライブシャフト12において、エンジン2の動力の伝達経路(エンジン駆動経路)を切断可能である。上述したように、エンジンドライブシャフト12は、第1軸部12Aおよび第2軸部12Bを有する。クラッチ6は、第1軸部12Aと第2軸部12Bとを繋ぐ接続状態と、第1軸部12Aと第2軸部12Bとを切り離す切断状態と、を択一的に切り替える。 The clutch 6 can cut the power transmission path (engine drive path) of the engine 2 at the engine drive shaft 12. As described above, the engine drive shaft 12 has the first shaft portion 12A and the second shaft portion 12B. The clutch 6 selectively switches between a connection state that connects the first shaft portion 12A and the second shaft portion 12B and a disconnected state that disconnects the first shaft portion 12A and the second shaft portion 12B.
 第1軸部12Aは、エンジン2および発電機4に接続される。また、第1軸部12Aには、ポンプ部70が設けられる。第2軸部12Bは、第1軸部12Aと同軸上に配置される。第2軸部12Bは、伝達機構5の経路中において第1軸部12Aに対し出力側(すなわち、出力シャフト55側)に位置する。エンジン2の動力は、第1軸部12Aから第2軸部12Bに伝わる。 The first shaft portion 12A is connected to the engine 2 and the generator 4. Moreover, the pump part 70 is provided in the first shaft part 12A. The second shaft portion 12B is disposed coaxially with the first shaft portion 12A. The second shaft portion 12B is located on the output side (that is, on the output shaft 55 side) with respect to the first shaft portion 12A in the path of the transmission mechanism 5. The power of the engine 2 is transmitted from the first shaft portion 12A to the second shaft portion 12B.
 図3は、クラッチ6を含むモータユニット10の断面図である。
 第1軸部12Aは、第2軸部12Bと軸方向に対向する第1対向端部12Aaを有する。第1対向端部12Aaには、軸方向に開口する凹部12Acが設けられる。また、第1軸部12Aは、第1対向端部12Aaに位置する接続フランジ部12Abを有する。接続フランジ部12Abの外周面には、外歯スプライン12Adが設けられる。
FIG. 3 is a cross-sectional view of the motor unit 10 including the clutch 6.
The first shaft portion 12A has a first facing end portion 12Aa that faces the second shaft portion 12B in the axial direction. The first facing end 12Aa is provided with a recess 12Ac that opens in the axial direction. In addition, the first shaft portion 12A has a connection flange portion 12Ab located at the first opposing end portion 12Aa. An external spline 12Ad is provided on the outer peripheral surface of the connection flange portion 12Ab.
 第2軸部12Bは、第1軸部12Aと軸方向に対向する第2対向端部12Baを有する。第2軸部12Bは、第2対向端部12Baにおいて、第1軸部12Aの凹部12Acに収容される。凹部12Acの内周面と、第2軸部12Bとの間には、ニードルベアリング12nが収容される。 The second shaft portion 12B has a second facing end portion 12Ba facing the first shaft portion 12A in the axial direction. The second shaft portion 12B is accommodated in the recess 12Ac of the first shaft portion 12A at the second facing end portion 12Ba. A needle bearing 12n is accommodated between the inner peripheral surface of the recess 12Ac and the second shaft portion 12B.
 クラッチ6は、スリーブ61と、クラッチハブ62と、シンクロナイザリング63と、キー64と、フォーク(支持部材)65と、第1支持シャフト66Aと、第2支持シャフト66Bと、ラックギヤ67aと、ピニオンギヤ67bと、減速機部68と、クラッチアクチュエータ69と、を有する。本実施形態のクラッチ6は、回転同期装置又はシンクロメッシュ機構と称される。 The clutch 6 includes a sleeve 61, a clutch hub 62, a synchronizer ring 63, a key 64, a fork (support member) 65, a first support shaft 66A, a second support shaft 66B, a rack gear 67a, and a pinion gear 67b. A reduction gear unit 68 and a clutch actuator 69. The clutch 6 of this embodiment is referred to as a rotation synchronization device or a synchromesh mechanism.
 クラッチハブ62は、第2軸部12Bの外周面に固定される。すなわち、本実施形態のクラッチ6は、第2軸部12Bに固定される。クラッチハブ62は、第2軸部12Bとともにエンジン軸J2を中心として回転する。クラッチハブ62の外周面には、外歯スプライン62aが設けられる。 The clutch hub 62 is fixed to the outer peripheral surface of the second shaft portion 12B. That is, the clutch 6 of the present embodiment is fixed to the second shaft portion 12B. The clutch hub 62 rotates about the engine shaft J2 together with the second shaft portion 12B. An external spline 62 a is provided on the outer peripheral surface of the clutch hub 62.
 スリーブ61は、クラッチハブ62を介して第2軸部12Bに支持される。スリーブ61は、フォーク65、ラックギヤ67a、ピニオンギヤ67bおよび減速機部68を介してクラッチアクチュエータ69によって、エンジン軸J2の軸方向に移動させられる。 The sleeve 61 is supported by the second shaft portion 12B via the clutch hub 62. The sleeve 61 is moved in the axial direction of the engine shaft J2 by the clutch actuator 69 via the fork 65, the rack gear 67a, the pinion gear 67b, and the reduction gear unit 68.
 スリーブ61の内周面には、内歯スプライン61aが設けられる。スリーブ61は、クラッチハブ62の外歯スプライン62aと噛み合っており、クラッチハブ62および第2軸部12Bとともに一体的に回転する。スリーブ61の内歯スプライン61aは、クラッチハブ62と接続フランジ部12Abとが同期回転した後に、接続フランジ部12Abの外周面に設けられた外歯スプライン12Adに嵌る。これにより、クラッチ6は、第1軸部12Aと第2軸部12Bとを連結させる。 An inner tooth spline 61 a is provided on the inner peripheral surface of the sleeve 61. The sleeve 61 meshes with the external spline 62a of the clutch hub 62, and rotates integrally with the clutch hub 62 and the second shaft portion 12B. The internal spline 61a of the sleeve 61 is fitted into the external spline 12Ad provided on the outer peripheral surface of the connection flange portion 12Ab after the clutch hub 62 and the connection flange portion 12Ab rotate synchronously. Thereby, the clutch 6 connects the first shaft portion 12A and the second shaft portion 12B.
 キー64は、スリーブ61に保持される。キー64は、スリーブ61とともに軸方向に移動する。キー64は、スリーブ61および接続フランジ部12Abにそれぞれ設けられた内歯スプライン61aおよび外歯スプライン12Adの位相を一致させる。 The key 64 is held by the sleeve 61. The key 64 moves in the axial direction together with the sleeve 61. The key 64 matches the phases of the internal spline 61a and the external spline 12Ad provided on the sleeve 61 and the connecting flange portion 12Ab, respectively.
 シンクロナイザリング63は、スリーブ61とともに軸方向に移動する。シンクロナイザリング63は、接続フランジ部12Ab側に近づくに従い内径を大きくするテーパ面を有する。一方で、接続フランジ部12Abには、軸方向に沿ってシンクロナイザリング63側に突出するボス部が設けられる。ボス部は、シンクロナイザリング63と対向するテーパ面が設けられる。シンクロナイザリング63と接続フランジ部12Abは、互いのテーパ面同士を接触させることで同期回転する。 The synchronizer ring 63 moves in the axial direction together with the sleeve 61. The synchronizer ring 63 has a tapered surface that increases its inner diameter as it approaches the connection flange portion 12Ab side. On the other hand, the connecting flange portion 12Ab is provided with a boss portion that protrudes toward the synchronizer ring 63 along the axial direction. The boss portion is provided with a tapered surface facing the synchronizer ring 63. The synchronizer ring 63 and the connection flange portion 12Ab rotate synchronously by bringing the tapered surfaces into contact with each other.
 図2に示すように、フォーク65は、上下方向からスリーブ61の外周面を挟み込む。フォーク65は、スリーブ61をエンジン軸J2周りに回転可能に支持する。 As shown in FIG. 2, the fork 65 sandwiches the outer peripheral surface of the sleeve 61 from the vertical direction. The fork 65 supports the sleeve 61 so as to be rotatable around the engine axis J2.
 図3に示すように、フォーク65には、軸方向一方側(+Y側)を向く第1面65aと、軸方向他方側(-Y側)を向く第2面65bと、を有する。フォーク65には、第1支持シャフト66Aおよび第2支持シャフト66Bが固定される。フォーク65は、第1支持シャフト66Aおよび第2支持シャフト66Bを介してハウジング8に支持される。 3, the fork 65 has a first surface 65a facing the one side in the axial direction (+ Y side) and a second surface 65b facing the other side in the axial direction (−Y side). A first support shaft 66A and a second support shaft 66B are fixed to the fork 65. The fork 65 is supported by the housing 8 via the first support shaft 66A and the second support shaft 66B.
 第1支持シャフト66Aは、フォーク65の第1面65aから軸方向一方側(+Y)側に突出して延びる。第1支持シャフト66Aの先端は、ハウジング8の第1隔壁部8bに設けられた第1の保持孔8baに挿入される。第1支持シャフト66Aの先端の直径は、第1の保持孔8baの直径より若干小さい。第1支持シャフト66Aは、第1の保持孔8baに対して軸方向に移動可能である。すなわち、第1支持シャフト66Aは、第1隔壁部8bに摺動可能に支持される。 The first support shaft 66A extends from the first surface 65a of the fork 65 so as to protrude to the one axial side (+ Y) side. The tip of the first support shaft 66A is inserted into a first holding hole 8ba provided in the first partition wall portion 8b of the housing 8. The diameter of the tip of the first support shaft 66A is slightly smaller than the diameter of the first holding hole 8ba. The first support shaft 66A is movable in the axial direction with respect to the first holding hole 8ba. That is, the first support shaft 66A is slidably supported by the first partition wall portion 8b.
 第2支持シャフト66Bは、フォーク65の第2面65bから軸方向他方側(-Y)側に突出して延びる。第2支持シャフト66Bの先端は、ハウジング8の第2隔壁部8cに設けられた、第2の保持孔8caに挿入される。第2支持シャフト66Bの先端の直径は、第2の保持孔8caの直径より若干小さい。第2支持シャフト66Bは、第2の保持孔8caに対して軸方向に移動可能である。すなわち、第2支持シャフト66Bは、第2隔壁部8cに摺動可能に支持される。このため、フォーク65は、ハウジング8に対して軸方向に移動可能である。 The second support shaft 66B extends from the second surface 65b of the fork 65 so as to protrude to the other axial side (−Y) side. The tip of the second support shaft 66B is inserted into a second holding hole 8ca provided in the second partition wall portion 8c of the housing 8. The diameter of the tip of the second support shaft 66B is slightly smaller than the diameter of the second holding hole 8ca. The second support shaft 66B is movable in the axial direction with respect to the second holding hole 8ca. That is, the second support shaft 66B is slidably supported by the second partition wall portion 8c. For this reason, the fork 65 is movable in the axial direction with respect to the housing 8.
 本実施形態によれば、フォーク65は、2本の支持シャフト(第1支持シャフト66Aおよび第2支持シャフト66B)により支持される。また、第1支持シャフト66Aと第2支持シャフト66Bとは、軸方向から見て、互いに異なる位置に配置される。これにより、フォーク65が、第1支持シャフト66Aおよび第2支持シャフト66Bとともに軸方向に移動してスリーブ61を駆動させる際に、スリーブ61から反力を受けてもフォーク65の姿勢を保ちやすい。結果的に、スリーブ61の移動をスムーズとすることができる。 According to the present embodiment, the fork 65 is supported by the two support shafts (the first support shaft 66A and the second support shaft 66B). Further, the first support shaft 66A and the second support shaft 66B are disposed at different positions when viewed from the axial direction. Thus, when the fork 65 moves in the axial direction together with the first support shaft 66A and the second support shaft 66B to drive the sleeve 61, the fork 65 can easily maintain the posture of the fork 65 even if it receives a reaction force from the sleeve 61. As a result, the sleeve 61 can be moved smoothly.
 第1支持シャフト66Aの少なくとも一部は、発電機用ステータ42に対しエンジン軸J2の径方向内側に位置する。また、第2支持シャフト66Bの少なくとも一部は、エンジンドライブギヤ22に対しエンジン軸J2の径方向外側に位置する。 At least a part of the first support shaft 66A is located on the radially inner side of the engine shaft J2 with respect to the generator stator 42. Further, at least a part of the second support shaft 66B is located on the radially outer side of the engine shaft J2 with respect to the engine drive gear 22.
 本実施形態のモータユニット10では、ギヤ室8Bの軸方向寸法を極限まで小型化している。結果的に、第1支持シャフト66Aの軸方向位置は、発電機用ステータ42の軸方向位置と重なり、第2支持シャフト66Bの軸方向位置は、エンジンドライブギヤ22の軸方向位置と重なる。
 一般的に、クラッチのフォークは、フォークを貫通する1本の支持シャフトで支持される。本実施形態において、フォーク65を1本の支持シャフトにより支持しようとすると、支持シャフトを発電機用ステータ42の径方向外側に配置する必要が生じ、モータユニット10が径方向に大型化してしまう。本実施形態によれば、フォーク65を2本の支持シャフト(第1支持シャフト66Aおよび第2支持シャフト66B)により支持させることで、第1支持シャフト66Aを発電機用ステータ42の径方向内側に配置し、第2支持シャフト66Bをエンジンドライブギヤ22の径方向外側に配置することができる。これにより、モータユニット10の大型化を抑制できる。
In the motor unit 10 of the present embodiment, the axial dimension of the gear chamber 8B is reduced to the limit. As a result, the axial position of the first support shaft 66A overlaps with the axial position of the generator stator 42, and the axial position of the second support shaft 66B overlaps with the axial position of the engine drive gear 22.
Generally, the fork of the clutch is supported by a single support shaft that passes through the fork. In the present embodiment, if the fork 65 is to be supported by one support shaft, the support shaft needs to be arranged on the radially outer side of the generator stator 42, and the motor unit 10 is enlarged in the radial direction. According to the present embodiment, the fork 65 is supported by the two support shafts (the first support shaft 66A and the second support shaft 66B), so that the first support shaft 66A is positioned radially inward of the generator stator 42. The second support shaft 66B can be disposed outside the engine drive gear 22 in the radial direction. Thereby, the enlargement of the motor unit 10 can be suppressed.
 ラックギヤ67aは、第2支持シャフト66Bの外周面に設けられる。すなわち、ラックギヤ67aは、第2支持シャフト66Bに固定される。ラックギヤ67aの複数の歯は軸方向に沿って並ぶ。ラックギヤ67aは、ピニオンギヤ67bが噛み合う。ピニオンギヤ67bは、略上下方向に延びる回転軸を中心として回転する。ピニオンギヤ67bは、減速機部68を介してクラッチアクチュエータ69により回転させられる。減速機部68は、クラッチアクチュエータ69の回転を減速する。 The rack gear 67a is provided on the outer peripheral surface of the second support shaft 66B. That is, the rack gear 67a is fixed to the second support shaft 66B. The plurality of teeth of the rack gear 67a are arranged along the axial direction. The rack gear 67a meshes with the pinion gear 67b. The pinion gear 67b rotates about a rotation shaft extending substantially in the vertical direction. The pinion gear 67 b is rotated by the clutch actuator 69 via the reduction gear unit 68. The reduction gear unit 68 decelerates the rotation of the clutch actuator 69.
 クラッチアクチュエータ69は、小型のモータである。クラッチアクチュエータ69が駆動すると、減速機部68を介してピニオンギヤ67bが回転する。ピニオンギヤ67bの回転運動は、ラックギヤ67aに伝達することで、軸方向への直線運動に変換される。ラックギヤ67aが、軸方向に移動すると、第2支持シャフト66Bおよびフォーク65を介して、スリーブ61が軸方向に移動する。 The clutch actuator 69 is a small motor. When the clutch actuator 69 is driven, the pinion gear 67b rotates through the reduction gear unit 68. The rotational motion of the pinion gear 67b is converted to a linear motion in the axial direction by being transmitted to the rack gear 67a. When the rack gear 67a moves in the axial direction, the sleeve 61 moves in the axial direction via the second support shaft 66B and the fork 65.
 クラッチアクチュエータ69の駆動により、スリーブ61が軸方向一方側(+Y側)に移動すると、スリーブ61の内歯スプライン61aを外歯スプライン12Adに噛み合う。これにより、クラッチ6は、第1軸部12Aと第2軸部12Bとが繋った接続状態に切り替わる。また、クラッチアクチュエータ69の駆動により、スリーブ61が、軸方向他方側(-Y側)に移動すると、スリーブ61の内歯スプライン61aを外歯スプライン12Adから開放する。これにより、クラッチ6は、第1軸部12Aと第2軸部12Bとが切り離された切断状態に切り替える。 When the sleeve 61 moves to one side in the axial direction (+ Y side) by driving the clutch actuator 69, the internal spline 61a of the sleeve 61 is engaged with the external spline 12Ad. Thereby, the clutch 6 is switched to a connected state in which the first shaft portion 12A and the second shaft portion 12B are connected. Further, when the sleeve 61 moves to the other side (−Y side) in the axial direction by driving the clutch actuator 69, the internal spline 61a of the sleeve 61 is released from the external spline 12Ad. As a result, the clutch 6 switches to a disconnected state in which the first shaft portion 12A and the second shaft portion 12B are disconnected.
 図2に示すように、クラッチアクチュエータ69は、ハウジング8の内部に埋め込まれて配置される。また、クラッチアクチュエータ69は、軸方向から見て発電機4と重なる。このため、クラッチアクチュエータ69をハウジング8の外部に設ける場合と比較して、モータユニット10の寸法を小型化することができる。 As shown in FIG. 2, the clutch actuator 69 is embedded inside the housing 8. The clutch actuator 69 overlaps with the generator 4 when viewed from the axial direction. For this reason, compared with the case where the clutch actuator 69 is provided in the exterior of the housing 8, the dimension of the motor unit 10 can be reduced in size.
 図3に示すように、本実施形態においてクラッチ6は、内歯スプライン61aが設けられエンジン軸J2に沿って移動するスリーブ61を有する。また、クラッチ6は、スリーブ61によって接続フランジ部12Abに押し当てられて第1軸部12Aと第2軸部12Bとの回転を同期させるシンクロナイザリング63を有する。接続フランジ部12Abの外歯スプライン12Adと、スリーブ61の内歯スプライン61aとは、第1軸部12Aと第2軸部12Bが同期回転した後に互いに噛み合う。すなわち、クラッチ6は、接続状態において、内歯スプライン61aを外歯スプライン12Adに噛み合わせ、切断状態において、内歯スプライン61aを外歯スプライン12Adから開放させる。 As shown in FIG. 3, in this embodiment, the clutch 6 has a sleeve 61 provided with an internal spline 61a and moving along the engine shaft J2. The clutch 6 has a synchronizer ring 63 that is pressed against the connection flange portion 12Ab by the sleeve 61 to synchronize the rotation of the first shaft portion 12A and the second shaft portion 12B. The external spline 12Ad of the connection flange portion 12Ab and the internal spline 61a of the sleeve 61 mesh with each other after the first shaft portion 12A and the second shaft portion 12B rotate in synchronization. That is, the clutch 6 meshes the internal spline 61a with the external spline 12Ad in the connected state, and opens the internal spline 61a from the external spline 12Ad in the disconnected state.
 本実施形態によれば、クラッチ6がシンクロナイザリング63を有するため、第1軸部12Aと第2軸部12Bとの接続時に第1軸部12Aと第2軸部12Bとを同期回転させることができる。このため、クラッチ6の接続時に第1軸部12Aおよび第2軸部12Bに衝撃が加わることを抑制できる。 According to the present embodiment, since the clutch 6 has the synchronizer ring 63, the first shaft portion 12A and the second shaft portion 12B can be rotated synchronously when the first shaft portion 12A and the second shaft portion 12B are connected. it can. For this reason, it can suppress that an impact is added to 12 A of 1st shaft parts and the 2nd shaft part 12B at the time of clutch 6 connection.
 本実施形態によれば、クラッチ6が、同軸上に並ぶ第1軸部12Aと第2軸部12Bとを切り離す。このため、クラッチ6を小型化することができる。また、これに伴い、モータユニット10を小型化することができる。
 なお、本変形例のクラッチ6は一例である。クラッチとしては、他の機構を採用してもよい。しかしながら、クラッチ6により互いに切り離される第1軸部12Aと第2軸部12Bとが同軸上に配置されることが好ましい。
According to the present embodiment, the clutch 6 separates the first shaft portion 12A and the second shaft portion 12B that are aligned on the same axis. For this reason, the clutch 6 can be reduced in size. Accordingly, the motor unit 10 can be reduced in size.
In addition, the clutch 6 of this modification is an example. Other mechanisms may be employed as the clutch. However, it is preferable that the first shaft portion 12A and the second shaft portion 12B separated from each other by the clutch 6 are arranged coaxially.
 本実施形態のクラッチ6は、第2軸部12Bにスリーブ61が支持され、第1軸部12Aに接続フランジ部12Abが設けられる。しかしながら、スリーブ61は、第1軸部12Aおよび第2軸部12Bの何れか一方に支持され、第1軸部12Aおよび第2軸部12Bの他方に接続フランジ部が設けられていればよい。 In the clutch 6 of the present embodiment, the sleeve 61 is supported on the second shaft portion 12B, and the connection flange portion 12Ab is provided on the first shaft portion 12A. However, the sleeve 61 may be supported by one of the first shaft portion 12A and the second shaft portion 12B, and the connection flange portion may be provided on the other of the first shaft portion 12A and the second shaft portion 12B.
 本実施形態によれば、エンジン2と発電機4とクラッチ6とが同軸に配置される。このため、エンジンドライブシャフト12が、発電機4の回転シャフトとクラッチシャフトの機能を併せ持つ。これにより、モータユニット10を小型化することができる。 According to the present embodiment, the engine 2, the generator 4, and the clutch 6 are arranged coaxially. For this reason, the engine drive shaft 12 has both functions of a rotating shaft and a clutch shaft of the generator 4. Thereby, the motor unit 10 can be reduced in size.
 クラッチ6の変形例として、シンクロナイザリングを有さない構造を採用してもよい。この場合、変形例のクラッチ6は、モータ1の動力による第2軸部12Bの回転速度と、エンジン2の動力による第1軸部12Aの回転速度と、が同期したタイミングで、スリーブをエンジン軸J2に沿って移動させてスリーブの内歯スプラインを接続フランジ部12Abの外歯スプライン12Adと噛み合わせる。 As a modification of the clutch 6, a structure that does not have a synchronizer ring may be adopted. In this case, the clutch 6 of the modified example is configured such that the sleeve is connected to the engine shaft at a timing at which the rotation speed of the second shaft portion 12B by the power of the motor 1 and the rotation speed of the first shaft portion 12A by the power of the engine 2 are synchronized. The sleeve is moved along J2, and the internal spline of the sleeve meshes with the external spline 12Ad of the connecting flange portion 12Ab.
 次に、車両の走行中にEVモードまたはシリーズモードからパラレルモードに切り替える操作(すなわち接続操作)を行う場合のクラッチ6の制御方法について説明する。すなわち、モータ1が第2軸部12Bを、エンジン2が第1軸部12Aを、それぞれ独立して駆動する状態で、クラッチ6を切断状態から接続状態に切り替えるクラッチ接続操作時の制御方法について説明する。 Next, a method for controlling the clutch 6 in the case where an operation for switching from the EV mode or the series mode to the parallel mode (that is, a connection operation) is performed while the vehicle is running will be described. That is, the control method during clutch connection operation for switching the clutch 6 from the disconnected state to the connected state in a state where the motor 1 drives the second shaft portion 12B and the engine 2 independently drives the first shaft portion 12A, respectively. To do.
 クラッチ6は、インバータユニット9の制御部9aによって制御される。また、制御部9aは、モータ1および発電機4を制御する。また、制御部9aは、エンジン2の制御装置と連動して、エンジン2の起動を制御する。 The clutch 6 is controlled by the control unit 9a of the inverter unit 9. The control unit 9 a controls the motor 1 and the generator 4. Further, the control unit 9 a controls the start of the engine 2 in conjunction with the control device of the engine 2.
 切断状態において、第1軸部12Aと第2軸部12Bとは、互いに切り離されている。したがって、切断状態において、第1軸部12Aと第2軸部12Bとは、互いに独立して回転する。 In the cut state, the first shaft portion 12A and the second shaft portion 12B are separated from each other. Accordingly, in the cut state, the first shaft portion 12A and the second shaft portion 12B rotate independently of each other.
 まず、制御部9aは、モータ用回転センサ33を用いて、車両を駆動するモータ1の回転数を測定する。制御部9aは、伝達機構5における減速比に応じて、モータ用回転センサ33によって測定されるモータ1の回転数からモータ1によって回転させられる第2軸部12Bの回転数を算出する。 First, the controller 9a uses the motor rotation sensor 33 to measure the rotational speed of the motor 1 that drives the vehicle. The control unit 9a calculates the rotation speed of the second shaft portion 12B rotated by the motor 1 from the rotation speed of the motor 1 measured by the motor rotation sensor 33 according to the reduction ratio in the transmission mechanism 5.
 次いで、制御部9aは、エンジン2の制御装置に対して指令してエンジン2を駆動させエンジン2の回転数を第2軸部12Bの回転数に近づける。 Next, the control unit 9a instructs the control device of the engine 2 to drive the engine 2 so that the rotational speed of the engine 2 approaches the rotational speed of the second shaft portion 12B.
 次いで、制御部9aは、発電機用回転センサ43を用いて、エンジン2によって駆動される第1軸部12Aの回転数を測定する。本実施形態において、発電機用回転センサ43は、発電機4とともに第1軸部12Aに設けられ、第1軸部12Aの回転数を直接的に測定する。しかしながら、発電機および発電機用センサがギヤ機構を介して第1軸部12Aに接続される場合、発電機用回転センサで測定される回転数は、第1軸部12Aの回転数に対しギヤ機構の減速比を乗じたものとなる。この場合、制御部9aは、ギヤ機構における減速比に応じて、発電機用回転センサ43によって測定されるモータ1の回転数からモータ1によって回転させられる第1軸部12Aの回転数を算出する。すなわち、制御部9aは、第1軸部12Aと発電機用回転センサ43との間の動力伝達の関係を基に、発電機用回転センサ43で測定される回転数から、第1軸部12Aの回転数を算出する。 Next, the control unit 9a uses the generator rotation sensor 43 to measure the rotation speed of the first shaft portion 12A driven by the engine 2. In this embodiment, the generator rotation sensor 43 is provided on the first shaft portion 12A together with the generator 4, and directly measures the rotation speed of the first shaft portion 12A. However, when the generator and the generator sensor are connected to the first shaft portion 12A via the gear mechanism, the rotational speed measured by the generator rotation sensor is a gear relative to the rotational speed of the first shaft portion 12A. Multiply by the reduction ratio of the mechanism. In this case, the control unit 9a calculates the rotation speed of the first shaft portion 12A rotated by the motor 1 from the rotation speed of the motor 1 measured by the generator rotation sensor 43 according to the reduction ratio in the gear mechanism. . That is, the control unit 9a determines the first shaft portion 12A from the rotational speed measured by the generator rotation sensor 43 based on the relationship of power transmission between the first shaft portion 12A and the generator rotation sensor 43. The number of rotations is calculated.
 次いで、制御部9aは、発電機4の回転数から算出される第1軸部12Aの回転数とモータ1の回転数から算出される第2軸部12Bの回転数との差分を算出する。一般的に、エンジン2の回転数を厳密に制御することは、困難である。このため、第1軸部12Aの回転数と第2軸部12Bの回転数とは、互いに一致し難い。すなわち、第1軸部12Aと第2軸部12Bの回転数の差分は、0とはなり難い。 Next, the control unit 9a calculates the difference between the rotation speed of the first shaft portion 12A calculated from the rotation speed of the generator 4 and the rotation speed of the second shaft portion 12B calculated from the rotation speed of the motor 1. In general, it is difficult to strictly control the rotational speed of the engine 2. For this reason, the rotation speed of the first shaft portion 12A and the rotation speed of the second shaft portion 12B are unlikely to coincide with each other. That is, the difference in rotational speed between the first shaft portion 12A and the second shaft portion 12B is unlikely to be zero.
 次いで、制御部9aは、第1軸部12Aと第2軸部12Bの回転数の差分に基づき、発電機4に電力を供給する。発電機4に電力が供給されると、発電機4は、電力に応じて第1軸部12Aにトルクを生じさせる。すなわち、制御部9aは、発電機4により第1軸部12Aにトルクを付与させる。これにより、制御部9aは、第1軸部12Aの回転数を第2軸部12Bの回転数に近づけさせる。さらに、制御部9aは、第1軸部12Aの回転数と第2軸部12Bの回転数の差分が、所定の閾値以下となるまで、発電機4に供給する電力を調整するフィードバック制御を行う。 Next, the control unit 9a supplies power to the generator 4 based on the difference between the rotational speeds of the first shaft portion 12A and the second shaft portion 12B. When electric power is supplied to the generator 4, the generator 4 generates torque in the first shaft portion 12 </ b> A according to the electric power. That is, the control unit 9a causes the generator 4 to apply torque to the first shaft portion 12A. Thereby, the control part 9a makes the rotation speed of 12 A of 1st shaft parts approach the rotation speed of the 2nd shaft part 12B. Furthermore, the control unit 9a performs feedback control for adjusting the power supplied to the generator 4 until the difference between the rotation speed of the first shaft portion 12A and the rotation speed of the second shaft portion 12B is equal to or less than a predetermined threshold value. .
 本実施形態によれば、エンジン2の駆動により、第1軸部12Aの回転数を第2軸部12Bの回転数に大まかに近づけた後に、発電機4の駆動により、第1軸部12Aの回転数を調整する。第1軸部12Aおよび第2軸部12Bの回転数は、それぞれ発電機用回転センサ43およびモータ用回転センサ33により測定される。発電機4の駆動による第1軸部12Aの回転数は、フィードバック制御により十分に第2軸部12Bの回転数に近づけることができる。したがって、本実施形態によれば、クラッチ6の接続時に第1軸部12Aおよび第2軸部12Bに衝撃が加わることを抑制できる。また、クラッチ6に設けられたシンクロナイザリング63の摩耗を抑制することができる。 According to the present embodiment, the rotational speed of the first shaft portion 12A is brought close to the rotational speed of the second shaft portion 12B by driving the engine 2 and then the generator 4 is driven to drive the first shaft portion 12A. Adjust the rotation speed. The rotation speeds of the first shaft portion 12A and the second shaft portion 12B are measured by the generator rotation sensor 43 and the motor rotation sensor 33, respectively. The rotation speed of the first shaft portion 12A driven by the generator 4 can be made sufficiently close to the rotation speed of the second shaft portion 12B by feedback control. Therefore, according to the present embodiment, it is possible to suppress an impact from being applied to the first shaft portion 12A and the second shaft portion 12B when the clutch 6 is connected. Further, wear of the synchronizer ring 63 provided in the clutch 6 can be suppressed.
 本実施形態において、発電機4の駆動により第1軸部12Aを制動(ブレーキング)し、第1軸部12Aの回転数を低下させて第1軸部12Aと第2軸部12Bとの回転数を調整してもよい。すなわち、制御部9aは、クラッチ接続操作において、発電機4に電力を供給して第1軸部12Aの回転を発電機4により制動し、第1軸部12Aの回転数を低下させてもよい。この場合、エンジン2の駆動による第1軸部12Aの回転数を、予め第2軸部12Bの回転数より高めとする。 In the present embodiment, the first shaft portion 12A is braked (braking) by driving the generator 4, and the rotation speed of the first shaft portion 12A and the second shaft portion 12B is reduced by reducing the rotational speed of the first shaft portion 12A. The number may be adjusted. That is, in the clutch connection operation, the control unit 9a may supply power to the generator 4 to brake the rotation of the first shaft portion 12A by the generator 4, and reduce the rotation speed of the first shaft portion 12A. . In this case, the rotational speed of the first shaft portion 12A driven by the engine 2 is set higher than the rotational speed of the second shaft portion 12B in advance.
 発電機4によって第1軸部12Aの回転数を制御する場合、発電機4によって第1軸部12Aの回転方向と逆方向のトルクを付与して第1軸部12Aの回転を制動することで、高精度な制御が可能となる。これにより、第1軸部12Aと第2軸部12Bとの接続操作をより円滑に行うことができる。 When the rotational speed of the first shaft portion 12A is controlled by the generator 4, the generator 4 applies a torque in a direction opposite to the rotation direction of the first shaft portion 12A to brake the rotation of the first shaft portion 12A. Highly accurate control is possible. Thereby, the connection operation between the first shaft portion 12A and the second shaft portion 12B can be performed more smoothly.
 本実施形態において、発電機4の駆動により第1軸部12Aを加速し、第1軸部12Aの回転数を上昇させて第1軸部12Aと第2軸部12Bとの回転数を調整してもよい。すなわち、制御部9aは、クラッチ接続操作において、発電機4に電力を供給して第1軸部12Aの回転を発電機4により加速し、第1軸部12Aの回転数を上昇させてもよい。この場合、エンジン2の駆動による第1軸部12Aの回転数を、予め第2軸部12Bの回転数より低めとする。 In the present embodiment, the first shaft portion 12A is accelerated by driving the generator 4, and the rotational speed of the first shaft portion 12A and the second shaft portion 12B is adjusted by increasing the rotational speed of the first shaft portion 12A. May be. That is, in the clutch connection operation, the control unit 9a may supply electric power to the generator 4 to accelerate the rotation of the first shaft portion 12A by the generator 4 and increase the rotation speed of the first shaft portion 12A. . In this case, the rotational speed of the first shaft portion 12A driven by the engine 2 is previously set lower than the rotational speed of the second shaft portion 12B.
 発電機4によって第1軸部12Aの回転数を制御する場合、発電機4によって第1軸部12Aの回転数と同方向のトルクを付与して第1軸部12Aの回転数を加速させることで、パワートレイン3全体のエネルギー効率を高めることができる。 When the rotational speed of the first shaft portion 12A is controlled by the generator 4, the generator 4 applies a torque in the same direction as the rotational speed of the first shaft portion 12A to accelerate the rotational speed of the first shaft portion 12A. Thus, the energy efficiency of the entire power train 3 can be increased.
 (ポンプ部) 図1に示すように、ポンプ部70は、ハウジング8の第1隔壁部8bに保持される。ポンプ部70は、エンジン2に接続されるエンジンドライブシャフト12に設けられ、エンジン2の動力により駆動する。より具体的には、ポンプ部70は、エンジンドライブシャフト12の第1軸部12Aに設けられ、第1軸部12Aの回転によって駆動させられる。ポンプ部70は、収容空間8Sの下部領域からオイルOを吸い上げて、モータ1および発電機4にオイルOを供給し、モータ1および発電機4を冷却する。 (Pump part) As shown in FIG. 1, the pump part 70 is held by the first partition part 8 b of the housing 8. The pump unit 70 is provided on the engine drive shaft 12 connected to the engine 2 and is driven by the power of the engine 2. More specifically, the pump unit 70 is provided on the first shaft portion 12A of the engine drive shaft 12, and is driven by the rotation of the first shaft portion 12A. The pump unit 70 sucks up the oil O from the lower region of the accommodation space 8S, supplies the oil O to the motor 1 and the generator 4, and cools the motor 1 and the generator 4.
 図3に示すようにポンプ部70は、ポンプ室71と、外歯ギヤ(インナーロータ)72と、内歯ギヤ(アウターロータ)73と、吸入口75と、吐出口76と、を有する。 As shown in FIG. 3, the pump unit 70 includes a pump chamber 71, an external gear (inner rotor) 72, an internal gear (outer rotor) 73, a suction port 75, and a discharge port 76.
 ポンプ室71は、第1隔壁部8bの発電機室8A側を向く面に設けられたポンプ収容凹部71aと、ポンプ収容凹部71aの開口を覆う蓋部74とに囲まれた空間に構成される。ポンプ室71は、図示略のOリングを用いて外部に対して封止される。ポンプ室71には、外歯ギヤ72および内歯ギヤ73が収容される。ポンプ室71には、エンジン軸J2が通る。ポンプ室71の外形は、軸方向から見て円形状である。 The pump chamber 71 is configured in a space surrounded by a pump housing recess 71a provided on the surface of the first partition wall portion 8b facing the generator chamber 8A and a lid portion 74 covering the opening of the pump housing recess 71a. . The pump chamber 71 is sealed from the outside using an O-ring (not shown). An external gear 72 and an internal gear 73 are accommodated in the pump chamber 71. The engine shaft J2 passes through the pump chamber 71. The outer shape of the pump chamber 71 is circular when viewed from the axial direction.
 図4は、エンジン軸J2と直交する断面におけるポンプ部70の断面図である。
 外歯ギヤ72は、エンジンドライブシャフト12の第1軸部12Aの外周面に固定される。外歯ギヤ72は、第1軸部12Aとともに、エンジン軸J2周りに回転する。外歯ギヤ72は、ポンプ室71内に収容される。外歯ギヤ72は、外周面に複数の歯部72bを有する。外歯ギヤ72の歯部72bの歯形は、トロコイド歯形である。
FIG. 4 is a cross-sectional view of the pump unit 70 in a cross section orthogonal to the engine axis J2.
The external gear 72 is fixed to the outer peripheral surface of the first shaft portion 12 </ b> A of the engine drive shaft 12. The external gear 72 rotates around the engine shaft J2 together with the first shaft portion 12A. The external gear 72 is accommodated in the pump chamber 71. The external gear 72 has a plurality of tooth portions 72b on the outer peripheral surface. The tooth profile of the tooth portion 72b of the external gear 72 is a trochoidal tooth profile.
 内歯ギヤ73は、外歯ギヤ72の径方向外側を囲む。内歯ギヤ73は、エンジン軸J2に対して偏心する回転軸Jt周りに回転可能な円環状のギヤである。内歯ギヤ73は、ポンプ室71内に収容される。内歯ギヤ73は、外歯ギヤ72と噛み合う。内歯ギヤ73は、内周面に複数の歯部73bを有する。内歯ギヤ73の歯部73bの歯形は、トロコイド歯形である。 The internal gear 73 surrounds the radial outside of the external gear 72. The internal gear 73 is an annular gear that is rotatable around a rotation axis Jt that is eccentric with respect to the engine shaft J2. The internal gear 73 is accommodated in the pump chamber 71. The internal gear 73 meshes with the external gear 72. The internal gear 73 has a plurality of tooth portions 73b on the inner peripheral surface. The tooth profile of the tooth portion 73b of the internal gear 73 is a trochoidal tooth profile.
 本実施形態によれば、外歯ギヤ72の歯部72bの歯形および内歯ギヤ73の歯部73bの歯形がトロコイド歯形であるため、トロコイドポンプを構成することができる。したがって、ポンプ部70から生じる騒音を低減でき、ポンプ部70から吐出されるオイルOの圧力および量を安定させやすい。 According to this embodiment, since the tooth profile of the tooth portion 72b of the external gear 72 and the tooth profile of the tooth portion 73b of the internal gear 73 are trochoidal tooth profiles, a trochoid pump can be configured. Therefore, noise generated from the pump unit 70 can be reduced, and the pressure and amount of the oil O discharged from the pump unit 70 can be easily stabilized.
 ポンプ室71の内壁面には、それぞれ円弧状に延びる第1のポンプ内油路78および第2のポンプ内油路79が設けられる。第1のポンプ内油路78と第2のポンプ内油路79とは、エンジン軸J2の周方向に並んで配置される。第1のポンプ内油路78および第2のポンプ内油路79は、軸方向から見て、内歯ギヤ73の複数の歯部73bのうち幾つかに重なる。 A first pump oil passage 78 and a second pump oil passage 79 are provided on the inner wall surface of the pump chamber 71, each extending in an arc shape. The first pump oil passage 78 and the second pump oil passage 79 are arranged side by side in the circumferential direction of the engine shaft J2. The first pump internal oil passage 78 and the second pump internal oil passage 79 overlap with some of the plurality of tooth portions 73 b of the internal gear 73 as viewed in the axial direction.
 第1のポンプ内油路78は、ポンプ収容凹部71aの底面に設けられた円弧状に延びる溝部内の油路である。第1のポンプ内油路78には、吸入口75に繋がる。ポンプ部70は、吸入口75からオイルOを吸い込む。吸入口75は、後段に説明する第2の油路92の吸い上げ経路92aに繋がる。なお、吸い上げ経路92aは、収容空間8Sの下部領域に繋がる経路である。したがって、ポンプ部70は、吸い上げ経路92aを介して収容空間8Sの下部領域からオイルを吸い上げる。 The first oil passage 78 in the pump is an oil passage in an arcuate groove provided on the bottom surface of the pump housing recess 71a. The first pump oil passage 78 is connected to the suction port 75. The pump unit 70 sucks the oil O from the suction port 75. The suction port 75 is connected to a suction path 92a of a second oil path 92 described later. The siphoning path 92a is a path connected to the lower region of the accommodation space 8S. Accordingly, the pump unit 70 sucks up oil from the lower region of the accommodation space 8S through the suction path 92a.
 第2のポンプ内油路79は、ポンプ収容凹部71aの底面と、この底面に対向する蓋部74の対向面と、に設けられた円弧状に延びる溝部内の油路である。第2のポンプ内油路79は、吐出口76に繋がる。ポンプ部70は、吐出口76からオイルOを吐出する。吐出口76は、エンジンドライブシャフト12の中空部12hに繋がる。したがって、ポンプ部70は、エンジンドライブシャフト12の中空部12hにオイルを供給する。 The second oil passage 79 in the pump is an oil passage in an arc-shaped groove provided in the bottom surface of the pump housing recess 71a and the facing surface of the lid portion 74 facing the bottom surface. The second pump oil passage 79 is connected to the discharge port 76. The pump unit 70 discharges the oil O from the discharge port 76. The discharge port 76 is connected to the hollow portion 12 h of the engine drive shaft 12. Therefore, the pump unit 70 supplies oil to the hollow portion 12 h of the engine drive shaft 12.
 エンジンドライブシャフト12の第1軸部12Aが回転すると、第1軸部12Aに固定された外歯ギヤ72がエンジン軸J2周りに回転する。これにより、外歯ギヤ72と噛み合う内歯ギヤ73が、回転軸Jt周りに回転する。また、外歯ギヤ72と内歯ギヤ73との隙間が広くなる部分が、エンジン軸J2周りに移動する。さらに、吸入口75からポンプ室71内に吸入されるオイルOが、外歯ギヤ72と内歯ギヤ73との間の隙間を介して、吐出口76へと送られる。吐出口76から吐出されたオイルOは、エンジンドライブシャフト12の中空部12hに流入する。このようにして、ポンプ部70は、エンジンドライブシャフト12を介して駆動される。 When the first shaft portion 12A of the engine drive shaft 12 rotates, the external gear 72 fixed to the first shaft portion 12A rotates around the engine shaft J2. Thereby, the internal gear 73 which meshes with the external gear 72 rotates around the rotation axis Jt. Further, the portion where the gap between the external gear 72 and the internal gear 73 is wide moves around the engine axis J2. Further, the oil O sucked into the pump chamber 71 from the suction port 75 is sent to the discharge port 76 through a gap between the external gear 72 and the internal gear 73. The oil O discharged from the discharge port 76 flows into the hollow portion 12h of the engine drive shaft 12. In this way, the pump unit 70 is driven via the engine drive shaft 12.
 本実施形態によれば、ポンプ部70は、エンジンドライブシャフト12の回転を利用して駆動されて、吸い上げ経路92aを介して収容空間8Sの下部領域からオイルOを吸引する。このため、ポンプ部70の駆動に、外部電源を必要とすることがない。 According to the present embodiment, the pump unit 70 is driven using the rotation of the engine drive shaft 12, and sucks the oil O from the lower region of the accommodation space 8S via the suction path 92a. For this reason, an external power supply is not required for driving the pump unit 70.
 本実施形態によれば、ポンプ部70の吐出口76は、エンジンドライブシャフト12の中空部12hに繋がる。中空部12hの一端は、モータ1の上側で開口する。ポンプ部70は、オイル溜りPから吸い上げたオイルOを、中空部12hを介してモータ1に供給する。 According to this embodiment, the discharge port 76 of the pump unit 70 is connected to the hollow portion 12h of the engine drive shaft 12. One end of the hollow portion 12h opens on the upper side of the motor 1. The pump unit 70 supplies the oil O sucked up from the oil reservoir P to the motor 1 through the hollow portion 12h.
 本実施形態によれば、エンジンドライブシャフト12は、エンジン軸J2周りに回転するため、中空部12h内のオイルOには、遠心力が付与される。中空部12h内のオイルOは、第1貫通孔12pおよび第2貫通孔12qから径方向外側に飛散する。このため、本実施形態において、ポンプ部70の駆動中に、中空部12hの内部は負圧となり、ポンプ部70によるオイルOの吸込みが促進される。したがって、ポンプ部70を小型化した場合であっても、ポンプ部70に十分な吸込み力を持たせることができる。本実施形態によれば、ポンプ部70の小型化が可能となり、結果的にモータユニット10の小型化を実現できる。 According to this embodiment, since the engine drive shaft 12 rotates around the engine axis J2, centrifugal force is applied to the oil O in the hollow portion 12h. The oil O in the hollow portion 12h is scattered radially outward from the first through hole 12p and the second through hole 12q. For this reason, in this embodiment, the inside of the hollow part 12h becomes a negative pressure during the driving of the pump part 70, and the suction of the oil O by the pump part 70 is promoted. Therefore, even when the pump unit 70 is downsized, the pump unit 70 can have a sufficient suction force. According to the present embodiment, the pump unit 70 can be downsized, and as a result, the motor unit 10 can be downsized.
 図1に示すように、油路90は、発電機室8A、ギヤ室8Bおよびモータ室8Cに跨って構成される。油路90は、オイル溜りPからオイルOをモータ1および発電機4に供給し、再びオイル溜りPに導くオイルOの経路である。 As shown in FIG. 1, the oil passage 90 is configured across the generator chamber 8A, the gear chamber 8B, and the motor chamber 8C. The oil path 90 is a path of the oil O that supplies the oil O from the oil reservoir P to the motor 1 and the generator 4 and guides it to the oil reservoir P again.
 なお、本明細書において、「油路」とは、収容空間8Sを循環するオイルOの経路を意味する。したがって、「油路」とは、定常的に一方向に向かう定常的なオイルの流動を形成する「流路」のみならず、オイルを一時的に滞留させる経路(例えばリザーバ)およびオイルが滴り落ちる経路をも含む概念である。 In the present specification, the “oil path” means a path of the oil O that circulates in the accommodation space 8S. Therefore, the “oil path” is not only a “flow path” that forms a steady oil flow in one direction in a steady manner, but also a path (for example, a reservoir) for temporarily retaining oil and the oil dripping. It is a concept that includes routes.
 油路90は、第1の油路91と第2の油路92とを有する。
 第1の油路91は、収容空間8Sの下部領域(オイル溜りP)からモータ1の内部にオイルOを供給し、モータ1を内部から冷却する。
 第2の油路92は、収容空間8Sの下部領域(オイル溜りP)からモータ1の外部にオイルOを供給しモータ1を外部から冷却する。また、第2の油路92は、収容空間8Sの下部領域(オイル溜りP)から発電機4の内部にオイルOを供給し発電機4を内部から冷却する。
The oil passage 90 has a first oil passage 91 and a second oil passage 92.
The first oil passage 91 supplies oil O to the inside of the motor 1 from the lower region (oil reservoir P) of the accommodation space 8S, and cools the motor 1 from the inside.
The second oil path 92 supplies oil O to the outside of the motor 1 from the lower region (oil sump P) of the accommodation space 8S to cool the motor 1 from the outside. The second oil passage 92 supplies oil O from the lower region (oil sump P) of the accommodation space 8S to the inside of the generator 4 to cool the generator 4 from the inside.
 第1の油路91は、かき上げ経路91aと、モータ供給経路91bと、を有する。また、第1の油路91の経路中には、ギヤ室8B内に位置するリザーバ93が設けられる。 The first oil passage 91 has a scooping path 91a and a motor supply path 91b. In addition, a reservoir 93 located in the gear chamber 8B is provided in the first oil passage 91.
 かき上げ経路91aは、リングギヤ51の回転によってオイル溜りPからオイルOをかき上げて、リザーバ93でオイルOを受ける経路である。リザーバ93は、上側に開口し、リングギヤ51がかき上げたオイルOを受けオイルOを一時的に貯留する。また、モータ1の駆動直後などオイル溜りPの液面が高い場合等には、リザーバ93は、リングギヤ51に加えてエンジンドライブギヤ22によってかき上げられたオイルOも受ける。すなわち、かき上げ経路91aは、収容空間8Sの下部領域に溜るオイルOを伝達機構5を構成するギヤによってかき上げてリザーバ93に貯留させる経路である。
 なお、リングギヤ51の回転によってかき上げられたオイルOの一部は、伝達機構5を構成するギヤの歯面に供給される。これによって、伝達機構5による動力の伝達効率を高めることができる。
The scooping path 91 a is a path for scooping up the oil O from the oil reservoir P by the rotation of the ring gear 51 and receiving the oil O in the reservoir 93. The reservoir 93 opens to the upper side, receives the oil O lifted up by the ring gear 51, and temporarily stores the oil O. In addition, when the liquid level of the oil reservoir P is high, such as immediately after the motor 1 is driven, the reservoir 93 receives the oil O that is pumped up by the engine drive gear 22 in addition to the ring gear 51. That is, the scooping path 91 a is a path for scooping up the oil O accumulated in the lower region of the accommodation space 8 </ b> S by the gears constituting the transmission mechanism 5 and storing it in the reservoir 93.
A part of the oil O that is pumped up by the rotation of the ring gear 51 is supplied to the gear tooth surface that constitutes the transmission mechanism 5. Thereby, the power transmission efficiency by the transmission mechanism 5 can be increased.
 モータ供給経路91bは、リザーバ93からモータ1の内部にオイルOを供給する経路である。モータ供給経路91bは、シャフト供給経路91baと、シャフト内経路91bbと、ロータ内経路91bcと、を有する。シャフト供給経路91baは、リザーバ93からモータドライブシャフト11の中空部11hにオイルOを誘導する。シャフト内経路91bbは、モータドライブシャフト11の中空部11h内をオイルOが通過する経路である。ロータ内経路91bcは、モータドライブシャフト11の貫通孔11pかモータ用ステータ32に飛散する経路である。 The motor supply path 91 b is a path for supplying oil O from the reservoir 93 to the inside of the motor 1. The motor supply path 91b has a shaft supply path 91ba, an in-shaft path 91bb, and an in-rotor path 91bc. The shaft supply path 91ba guides oil O from the reservoir 93 to the hollow portion 11h of the motor drive shaft 11. The in-shaft path 91bb is a path through which the oil O passes through the hollow portion 11h of the motor drive shaft 11. The in-rotor path 91bc is a path that scatters to the through hole 11p of the motor drive shaft 11 or the motor stator 32.
 シャフト内経路91bbにおいて、中空部11hのオイルOには、モータドライブシャフト11の回転に伴い遠心力が付与される。これにより、オイルOは、モータドライブシャフト11から径方向外側に連続的に飛散する。また、オイルOの飛散に伴い、中空部11hの内部が負圧となり、リザーバ93に溜るオイルOが、中空部11hに吸引され、中空部11hにオイルOが満たされる。 In the in-shaft path 91bb, centrifugal force is applied to the oil O in the hollow portion 11h as the motor drive shaft 11 rotates. Thereby, the oil O is continuously scattered radially outward from the motor drive shaft 11. As the oil O scatters, the inside of the hollow portion 11h becomes negative pressure, and the oil O accumulated in the reservoir 93 is sucked into the hollow portion 11h, and the hollow portion 11h is filled with the oil O.
 モータ用ステータ32に到達したオイルOは、モータ用ステータ32から熱を奪う。モータ用ステータ32を冷却したオイルOは、下側に滴下され、モータ室8Cの下部領域に溜る。モータ室8Cの下部領域に溜ったオイルOは、第2隔壁部8cに設けられた第2隔壁開口8cbを介してギヤ室8Bに移動する。 The oil O that has reached the motor stator 32 removes heat from the motor stator 32. The oil O that has cooled the motor stator 32 is dropped downward and collected in the lower region of the motor chamber 8C. The oil O accumulated in the lower region of the motor chamber 8C moves to the gear chamber 8B through the second partition opening 8cb provided in the second partition portion 8c.
 第2の油路92は、吸い上げ経路92aと、第1分岐経路92bと、第2分岐経路92cと、を有する。また、第2の油路92の経路中には、ポンプ部70が設けられる。 The second oil path 92 has a suction path 92a, a first branch path 92b, and a second branch path 92c. A pump unit 70 is provided in the second oil passage 92.
 吸い上げ経路92aは、第1隔壁部8bの内部に設けられる。吸い上げ経路92aは、上下方向に沿って延びる。吸い上げ経路92aの下端は、オイル溜りPに繋がる。また、吸い上げ経路92aの上端は、ポンプ部70の吸入口75に繋がる。すなわち、吸い上げ経路92aは、収容空間8Sの下部領域からポンプ部70の吸入口75に繋がる。 The suction path 92a is provided inside the first partition wall portion 8b. The suction path 92a extends along the vertical direction. The lower end of the suction path 92a is connected to the oil reservoir P. The upper end of the suction path 92 a is connected to the suction port 75 of the pump unit 70. That is, the suction path 92a is connected to the suction port 75 of the pump unit 70 from the lower region of the accommodation space 8S.
 第1分岐経路92bおよび第2分岐経路92cは、ポンプ部70の吐出口76において互いに分岐する。第1分岐経路92bおよび第2分岐経路92cは、エンジンドライブシャフト12の中空部12hの内部を通過する。第1分岐経路92bは、中空部12hの内部において軸方向の互いに反対側に向かう経路である。 The first branch path 92b and the second branch path 92c branch from each other at the discharge port 76 of the pump unit 70. The first branch path 92b and the second branch path 92c pass through the interior of the hollow portion 12h of the engine drive shaft 12. The first branch path 92b is a path toward the opposite sides in the axial direction inside the hollow portion 12h.
 第1分岐経路92bは、オイルOをモータ1の上側からモータ1に供給する経路である。第1分岐経路92bは、中空部12hの内部において吐出口76からモータ1側に向かって延びる。第1分岐経路92bは、ポンプ部70の吐出口76からモータ1の直上まで延びる。 The first branch path 92 b is a path for supplying the oil O to the motor 1 from the upper side of the motor 1. The first branch path 92b extends from the discharge port 76 toward the motor 1 in the hollow portion 12h. The first branch path 92 b extends from the discharge port 76 of the pump unit 70 to a position directly above the motor 1.
 第1分岐経路92bを介してモータ1の上側からモータ1に供給されたオイルOは、モータ用ステータ32を冷却して下側に滴下され、モータ室8Cの下部領域に溜り、第1の油路91のオイルOと合流する。さらに、モータ室8Cの下部領域に溜ったオイルOは、第2隔壁部8cに設けられた第2隔壁開口8cbを介してギヤ室8Bに移動する。 The oil O supplied to the motor 1 from the upper side of the motor 1 via the first branch path 92b cools the motor stator 32 and is dropped on the lower side, and accumulates in the lower region of the motor chamber 8C. Merges with oil O on the path 91. Further, the oil O accumulated in the lower region of the motor chamber 8C moves to the gear chamber 8B through the second partition opening 8cb provided in the second partition portion 8c.
 第1分岐経路92bにおいて中空部12hを通過するオイルOの一部は、エンジンドライブシャフト12の第1貫通孔12pから飛散して伝達機構5を構成するギヤに供給される。これにより、伝達機構5の各ギヤの歯面の潤滑性を高め、伝達機構5による動力伝達効率を高めることができる。 In the first branch path 92b, a part of the oil O that passes through the hollow portion 12h is scattered from the first through hole 12p of the engine drive shaft 12 and supplied to the gear constituting the transmission mechanism 5. Thereby, the lubricity of the tooth surface of each gear of the transmission mechanism 5 can be improved, and the power transmission efficiency by the transmission mechanism 5 can be increased.
 第2分岐経路92cは、ポンプ部70の吐出口76から発電機4にオイルOを供給する経路である。第2分岐経路92cは、中空部12hの内部において吐出口76あら発電機4側に向かって延びる。第2分岐経路92cを通過するオイルOは、エンジンドライブシャフト12に設けられた第2貫通孔12qから飛散して発電機用ステータ42に供給される。 The second branch path 92 c is a path for supplying the oil O from the discharge port 76 of the pump unit 70 to the generator 4. The second branch path 92c extends from the discharge port 76 toward the generator 4 inside the hollow portion 12h. The oil O passing through the second branch path 92 c is scattered from the second through hole 12 q provided in the engine drive shaft 12 and supplied to the generator stator 42.
 発電機用ステータ42に到達したオイルOは、発電機用ステータ42から熱を奪う。発電機用ステータ42を冷却したオイルOは、下側に滴下され、発電機室8Aの下部領域に溜る。発電機室8Aの下部領域に溜ったオイルOは、第1隔壁部8bに設けられた第1隔壁開口8bbを介してギヤ室8Bに移動する。 The oil O that has reached the generator stator 42 takes heat away from the generator stator 42. The oil O that has cooled the generator stator 42 is dropped downward and collected in the lower region of the generator chamber 8A. The oil O collected in the lower region of the generator chamber 8A moves to the gear chamber 8B through the first partition opening 8bb provided in the first partition portion 8b.
 第1の油路91を通過するオイルOと、第2の油路92の第1分岐経路92bおよび第2分岐経路92cを通過するオイルOとは、ギヤ室8Bの下部領域において全て合流しオイル溜りPを構成する。オイル溜りPのオイルOは、流路部材8eに設けられた冷媒流路8eaを通過する冷媒によって冷却される。 The oil O passing through the first oil passage 91 and the oil O passing through the first branch path 92b and the second branch path 92c of the second oil path 92 are all merged in the lower region of the gear chamber 8B. A pool P is formed. The oil O in the oil reservoir P is cooled by the refrigerant passing through the refrigerant flow path 8ea provided in the flow path member 8e.
 本実施形態によれば、油路90は、モータ1を内部から冷却する第1の油路91と、モータ1を外部から冷却する第2の油路92と、を含む。本実施形態によれば、複数の経路からオイルOをモータ1の内外に供給してモータ1を冷却することで、モータ1を効率的に冷却できる。 According to the present embodiment, the oil passage 90 includes the first oil passage 91 that cools the motor 1 from the inside, and the second oil passage 92 that cools the motor 1 from the outside. According to this embodiment, the motor 1 can be efficiently cooled by supplying the oil O to the inside and outside of the motor 1 from a plurality of paths and cooling the motor 1.
 本実施形態によれば、第2の油路92のポンプ部70がエンジン2によって駆動される。このため、モータ1および発電機4の駆動に別途モータ等の駆動装置を必要としない。結果的に、本実施形態によれば、モータユニット10を小型化することができる。
 なお、本実施形態において、第1の油路91にも、電動ポンプが設けられていない。このため、本実施形態によれば、モータユニット10全体として、電動ポンプを用いることなく収容空間8S内でオイルOを循環させることができる。
According to the present embodiment, the pump unit 70 of the second oil passage 92 is driven by the engine 2. For this reason, a driving device such as a motor is not required for driving the motor 1 and the generator 4. As a result, according to this embodiment, the motor unit 10 can be reduced in size.
In the present embodiment, the first oil passage 91 is also not provided with an electric pump. For this reason, according to this embodiment, the oil O can be circulated in the accommodation space 8S as the whole motor unit 10 without using an electric pump.
 本実施形態によれば、第1の油路91は、モータドライブシャフト11の中空部11hに設けられたシャフト内経路91bbを含む。同様に、第2の油路92は、エンジンドライブシャフト12の中空部12hに設けられた第1分岐経路92bおよび第2分岐経路92cを含む。このように、中空部11h、12h内に油路90の一部が設けられるため、油路を構成する外部配管を省略することができる。結果的に、モータユニット10を小型化することができる。 According to the present embodiment, the first oil passage 91 includes the in-shaft passage 91bb provided in the hollow portion 11h of the motor drive shaft 11. Similarly, the second oil passage 92 includes a first branch path 92b and a second branch path 92c provided in the hollow portion 12h of the engine drive shaft 12. Thus, since a part of oil passage 90 is provided in hollow parts 11h and 12h, external piping which constitutes an oil passage can be omitted. As a result, the motor unit 10 can be reduced in size.
 本実施形態において、第2の油路92に設けられたポンプ部70は、エンジンドライブシャフト12の第1軸部12Aに設けられ第1軸部12Aの回転により駆動される。すなわち、ポンプ部70は、エンジン2の動力伝達経路中においてクラッチ6に対しエンジン2側に位置する。 In the present embodiment, the pump unit 70 provided in the second oil passage 92 is provided in the first shaft portion 12A of the engine drive shaft 12 and driven by the rotation of the first shaft portion 12A. That is, the pump unit 70 is positioned on the engine 2 side with respect to the clutch 6 in the power transmission path of the engine 2.
 車両が急激な坂道を登坂する際、モータ1の負荷が大きくなるため、モータ1の温度が高まりやすい。また、車両が登坂する際、出力シャフト55の回転数が低下するため、リングギヤ51のかき上げが十分に行われない。このため、第1の油路91を循環するオイルOの量が少なくなる。また、車両が登坂する際、クラッチ6を接続状態としてパワートレイン3をパラレルモードで駆動すると、エンジンドライブシャフト12の回転数も低下する。したがって、この場合、ポンプ部70によるオイルOの吸い上げ量も低下し、第2の油路92を循環するオイルOの量も少なくなる。結果的に、モータ1の冷却が不十分となる虞がある。 When the vehicle climbs a steep slope, the load on the motor 1 increases, so the temperature of the motor 1 tends to increase. Further, when the vehicle climbs up, the rotation speed of the output shaft 55 decreases, so that the ring gear 51 is not sufficiently lifted up. For this reason, the amount of oil O circulating in the first oil passage 91 is reduced. Further, when the vehicle climbs up and the clutch 6 is engaged and the power train 3 is driven in the parallel mode, the rotational speed of the engine drive shaft 12 also decreases. Accordingly, in this case, the amount of oil O drawn by the pump unit 70 is also reduced, and the amount of oil O circulating in the second oil passage 92 is also reduced. As a result, there is a possibility that the cooling of the motor 1 becomes insufficient.
 本実施形態によれば、ポンプ部70は、伝達機構5においてクラッチ6よりエンジン2側に位置する。このため、クラッチ6を切断状態としエンジン2の動力を出力シャフト55から切り離した状態で、エンジン2の動力によってポンプ部70を駆動できる。すなわち、車両が登坂する際に、パワートレイン3をシリーズモードで駆動して、ポンプ部70によってオイルOの吸い上げを行うことができる。シリーズモードにおいて、ポンプ部70の駆動は、出力シャフト55から切り離されているため、登坂時であってもポンプ部70を高速で駆動できる。このため、登坂時においても、第2の油路92からモータ1に十分な量のオイルOを供給することができ、モータ1を十分に冷却することができる。 According to the present embodiment, the pump unit 70 is located closer to the engine 2 than the clutch 6 in the transmission mechanism 5. Therefore, the pump unit 70 can be driven by the power of the engine 2 in a state where the clutch 6 is in the disconnected state and the power of the engine 2 is disconnected from the output shaft 55. That is, when the vehicle climbs up, the power train 3 can be driven in the series mode and the oil O can be sucked up by the pump unit 70. In the series mode, the driving of the pump unit 70 is disconnected from the output shaft 55, so that the pump unit 70 can be driven at high speed even during climbing. Therefore, a sufficient amount of oil O can be supplied from the second oil passage 92 to the motor 1 even during climbing, and the motor 1 can be sufficiently cooled.
 なお、車両が登坂する際に、パワートレイン3をパラレルモードで駆動すると、エンジン2を高回転で駆動させることができず、エンジンの駆動効率が低下する。したがって、エンジンの駆動効率の観点においても、車両が登坂する際には、パワートレイン3をシリーズモードで駆動することが好ましい。 If the power train 3 is driven in the parallel mode when the vehicle climbs up, the engine 2 cannot be driven at a high speed, and the drive efficiency of the engine is reduced. Therefore, also from the viewpoint of engine drive efficiency, it is preferable to drive the powertrain 3 in the series mode when the vehicle climbs up.
 以上に、本発明の実施形態および変形例を説明したが、実施形態および変形例における各構成およびそれらの組み合わせなどは一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換およびその他の変更が可能である。また、本発明は実施形態によって限定されることはない。 Although the embodiments and modifications of the present invention have been described above, the configurations and combinations thereof in the embodiments and modifications are examples, and additions and omissions of configurations are within the scope that does not depart from the spirit of the present invention. , Substitutions and other changes are possible. Further, the present invention is not limited by the embodiment.
 1…モータ、2…エンジン、4…発電機、5…伝達機構、6…クラッチ、7…パークロック機構、7a…パークロックギヤ、7b…パークロックアーム、7c…パークロックアクチュエータ、8…ハウジング、8A…発電機室、8B…ギヤ室、8C…モータ室、8S…収容空間、8b…第1隔壁部(隔壁部)、8c…第2隔壁部(隔壁部)、8ea…冷媒流路、9…インバータユニット、9a…制御部、10…モータユニット、11…モータドライブシャフト、11h,12h…中空部、11p…貫通孔、12…エンジンドライブシャフト、12A…第1軸部、12B…第2軸部、12p…第1貫通孔、12q…第2貫通孔、12Ab…接続フランジ部、13…カウンタシャフト、21…モータドライブギヤ、22…エンジンドライブギヤ、23…カウンタギヤ、24…ドライブギヤ、31…モータ用ロータ(ロータ)、32…モータ用ステータ(ステータ)、33…モータ用回転センサ、41…発電機用ロータ、42…発電機用ステータ、43…発電機用回転センサ、50…差動装置、51…リングギヤ、55…出力シャフト、61…スリーブ、61a…内歯スプライン、62a,12Ad…外歯スプライン、63…シンクロナイザリング、65…フォーク(支持部材)、66A…第1支持シャフト、66B…第2支持シャフト、69…クラッチアクチュエータ、70…ポンプ部、75…吸入口、76…吐出口、81…発電機収容部、82…伝達機構収容部、83…モータ収容部、90…油路、91…第1の油路、91a…かき上げ経路、92a…吸い上げ経路、91b…モータ供給経路、92…第2の油路、92b…第1分岐経路、92c…第2分岐経路、93…リザーバ、J1…モータ軸、J2…エンジン軸、O…オイル DESCRIPTION OF SYMBOLS 1 ... Motor, 2 ... Engine, 4 ... Generator, 5 ... Transmission mechanism, 6 ... Clutch, 7 ... Park lock mechanism, 7a ... Park lock gear, 7b ... Park lock arm, 7c ... Park lock actuator, 8 ... Housing, 8A ... Generator room, 8B ... Gear room, 8C ... Motor room, 8S ... Housing space, 8b ... First partition part (partition part), 8c ... Second partition part (partition part), 8ea ... Refrigerant flow path, 9 ... inverter unit, 9a ... control unit, 10 ... motor unit, 11 ... motor drive shaft, 11h, 12h ... hollow part, 11p ... through hole, 12 ... engine drive shaft, 12A ... first shaft part, 12B ... second shaft Part, 12p ... first through hole, 12q ... second through hole, 12Ab ... connection flange part, 13 ... counter shaft, 21 ... motor drive gear, 22 ... engine drive gear 23 ... Counter gear, 24 ... Drive gear, 31 ... Motor rotor (rotor), 32 ... Motor stator (stator), 33 ... Motor rotation sensor, 41 ... Generator rotor, 42 ... Generator stator, 43 Rotation sensor for generator, 50 ... Differential gear, 51 ... Ring gear, 55 ... Output shaft, 61 ... Sleeve, 61a ... Internal spline, 62a, 12Ad ... External spline, 63 ... Synchronizer ring, 65 ... Fork (support) Member), 66A ... first support shaft, 66B ... second support shaft, 69 ... clutch actuator, 70 ... pump part, 75 ... suction port, 76 ... discharge port, 81 ... generator housing unit, 82 ... transmission mechanism housing unit 83 ... Motor housing part, 90 ... oil passage, 91 ... first oil passage, 91a ... pumping route, 92a ... sucking route, 91b ... MO Supply path, 92: second oil passage, 92b ... first branch path, 92c ... second branch path, 93 ... reservoir, J1 ... motor shaft, J2 ... engine shaft, O ... Oil

Claims (8)

  1.  エンジンに接続されるモータユニットであって、
     前記エンジンの動力により発電する発電機と、
     モータと、
     前記エンジン、前記発電機および前記モータの間で力を伝達し、前記エンジンおよび前記モータの動力を出力シャフトから出力する伝達機構と、
     前記発電機、前記モータおよび前記伝達機構を収容する収容空間が設けられるハウジングと、
     前記収容空間の下部領域に溜るオイルと、
     前記伝達機構に設けられ前記エンジンの動力により駆動するポンプ部と、を備え、
     前記収容空間には、前記オイルを循環させる第1の油路および第2の油路が設けられ、
     前記第1の油路は、前記収容空間の下部領域から前記モータの内部に前記オイルを供給し、
     前記第2の油路は、
      前記収容空間の下部領域から前記ポンプ部の吸入口に繋がる吸い上げ経路と、
      前記ポンプ部の吐出口において互いに分岐する第1分岐経路および第2分岐経路と、を有し、
     前記第1分岐経路は、前記吐出口から前記モータの直上まで延びて前記オイルを前記モータの上側から前記モータに供給し、
     前記第2分岐経路は、前記吐出口から前記発電機に前記オイルを供給する、モータユニット。
    A motor unit connected to the engine,
    A generator for generating power by the power of the engine;
    A motor,
    A transmission mechanism for transmitting force between the engine, the generator and the motor, and outputting power of the engine and the motor from an output shaft;
    A housing provided with a housing space for housing the generator, the motor and the transmission mechanism;
    Oil accumulated in a lower region of the housing space;
    A pump unit provided in the transmission mechanism and driven by the power of the engine,
    The accommodation space is provided with a first oil passage and a second oil passage for circulating the oil,
    The first oil passage supplies the oil into the motor from a lower region of the accommodation space,
    The second oil passage is
    A suction path leading from the lower region of the housing space to the suction port of the pump unit;
    A first branch path and a second branch path branching from each other at the discharge port of the pump unit;
    The first branch path extends from the discharge port to a position directly above the motor, and supplies the oil from the upper side of the motor to the motor.
    The second branch path is a motor unit that supplies the oil from the discharge port to the generator.
  2.  前記第1の油路の経路中には、前記収容空間に位置し前記オイルを一時的に貯留するリザーバが設けられ、
     前記第1の油路は、前記収容空間の下部領域に溜る前記オイルを前記伝達機構を構成するギヤによってかき上げて前記リザーバに貯留させるかき上げ経路と、前記リザーバから前記モータの内部に前記オイルを供給するモータ供給経路と、を有する、請求項1に記載のモータユニット。
    In the path of the first oil passage, a reservoir that is located in the accommodation space and temporarily stores the oil is provided,
    The first oil passage includes a scooping path for scooping up the oil accumulated in a lower region of the accommodation space by a gear constituting the transmission mechanism and storing the oil in the reservoir, and the oil from the reservoir to the inside of the motor. The motor unit according to claim 1, further comprising: a motor supply path that supplies the motor.
  3.  前記伝達機構は、エンジン軸に沿って延び前記エンジンにより回転させられるエンジンドライブシャフトを有し、
     前記エンジンドライブシャフトは、内部に中空部が設けられた中空シャフトであり、
     前記第1分岐経路および前記第2分岐経路は、前記中空部を通過する、請求項1又は2に記載のモータユニット。
    The transmission mechanism has an engine drive shaft extending along the engine axis and rotated by the engine;
    The engine drive shaft is a hollow shaft provided with a hollow portion therein,
    The motor unit according to claim 1, wherein the first branch path and the second branch path pass through the hollow portion.
  4.  前記エンジンドライブシャフトには、前記中空部から前記エンジン軸の径方向外側に延びる第1貫通孔が設けられ、
     前記第1貫通孔は、前記エンジン軸の径方向において前記伝達機構を構成するギヤに対向し、
     前記第1分岐経路を通過する前記オイルの一部は、前記第1貫通孔から飛散して前記ギヤに供給される、請求項3に記載のモータユニット。
    The engine drive shaft is provided with a first through hole extending radially outward of the engine shaft from the hollow portion,
    The first through hole is opposed to a gear constituting the transmission mechanism in a radial direction of the engine shaft,
    4. The motor unit according to claim 3, wherein a part of the oil passing through the first branch path is scattered from the first through hole and supplied to the gear.
  5.  前記発電機は、前記エンジンドライブシャフトに固定される発電機用ロータと、前記発電機用ロータを囲む発電機用ステータと、を有し、
     前記エンジンドライブシャフトには、前記中空部から前記エンジン軸の径方向外側に延びる第2貫通孔が設けられ、
     前記第2貫通孔は、前記エンジン軸の径方向において前記発電機用ステータと対向し、
     前記第2分岐経路を通過する前記オイルは、前記第2貫通孔から飛散して前記発電機用ステータに供給される、請求項3又は4に記載のモータユニット。
    The generator has a generator rotor fixed to the engine drive shaft, and a generator stator surrounding the generator rotor,
    The engine drive shaft is provided with a second through hole extending outward from the hollow portion in the radial direction of the engine shaft,
    The second through hole faces the generator stator in the radial direction of the engine shaft,
    5. The motor unit according to claim 3, wherein the oil passing through the second branch path is scattered from the second through hole and supplied to the generator stator. 6.
  6.  前記伝達機構に設けられ前記エンジンの動力の伝達経路を切断可能なクラッチを備え、
     前記エンジンドライブシャフトは、前記エンジンおよび前記発電機に接続される第1軸部と、前記第1軸部と同軸上に配置され前記伝達機構の経路中において前記第1軸部に対し前記出力シャフト側に位置する第2軸部と、を有し、
     前記クラッチは、前記第1軸部と前記第2軸部とを繋ぐ接続状態と、前記第1軸部と前記第2軸部とを切り離す切断状態と、を択一的に切り替え、
     前記ポンプ部は、前記第1軸部に設けられ、前記第1軸部の回転によって駆動される、請求項3~5の何れか一項に記載のモータユニット。
    A clutch provided in the transmission mechanism and capable of cutting a transmission path of power of the engine;
    The engine drive shaft includes a first shaft portion connected to the engine and the generator, and the output shaft with respect to the first shaft portion disposed coaxially with the first shaft portion and in the path of the transmission mechanism. A second shaft portion located on the side,
    The clutch selectively switches between a connection state connecting the first shaft portion and the second shaft portion and a disconnected state separating the first shaft portion and the second shaft portion,
    The motor unit according to any one of claims 3 to 5, wherein the pump unit is provided in the first shaft portion and is driven by rotation of the first shaft portion.
  7.  前記ハウジングには、前記収容空間の下部領域に溜る前記オイルの下側を通過する冷媒流路が設けられ、
     前記冷媒流路には、前記収容空間の下部領域に溜る前記オイルを冷却する冷媒が流れる、請求項1~6の何れか一項に記載のモータユニット。
    The housing is provided with a refrigerant flow path that passes below the oil that accumulates in a lower region of the accommodation space.
    The motor unit according to any one of claims 1 to 6, wherein a refrigerant that cools the oil accumulated in a lower region of the accommodation space flows in the refrigerant flow path.
  8.  前記ハウジングの前記収容空間には、前記発電機を収容する発電機室と、前記伝達機構を収容するギヤ室と、が設けられ、
     前記ハウジングは、前記発電機室と前記ギヤ室とを区画する隔壁部を有し、
     前記ポンプ部は、前記隔壁部により保持される、請求項1~7の何れか一項に記載のモータユニット。
    The housing space of the housing is provided with a generator chamber that houses the generator, and a gear chamber that houses the transmission mechanism,
    The housing has a partition wall that partitions the generator chamber and the gear chamber,
    The motor unit according to any one of claims 1 to 7, wherein the pump part is held by the partition part.
PCT/JP2019/013688 2018-04-06 2019-03-28 Motor unit WO2019194073A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980024066.5A CN111936336B (en) 2018-04-06 2019-03-28 Motor unit

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862653710P 2018-04-06 2018-04-06
US62/653,710 2018-04-06
JP2018-125469 2018-06-29
JP2018125469 2018-06-29

Publications (1)

Publication Number Publication Date
WO2019194073A1 true WO2019194073A1 (en) 2019-10-10

Family

ID=68100247

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2019/013664 WO2019194070A1 (en) 2018-04-06 2019-03-28 Motor unit
PCT/JP2019/013688 WO2019194073A1 (en) 2018-04-06 2019-03-28 Motor unit

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013664 WO2019194070A1 (en) 2018-04-06 2019-03-28 Motor unit

Country Status (2)

Country Link
CN (2) CN111936336B (en)
WO (2) WO2019194070A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230136544A1 (en) * 2021-10-29 2023-05-04 Nidec Corporation Drive apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113767553B (en) * 2020-12-23 2023-09-01 华为数字能源技术有限公司 Power assembly, vehicle and motor cooling method
CN117242281A (en) * 2021-06-01 2023-12-15 舍弗勒技术股份两合公司 Bridge drive system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS511862A (en) * 1974-06-21 1976-01-09 Nissan Diesel Motor Co Gyabotsukusuno junkatsuyureikyakusochi
JPH0776229A (en) * 1993-06-16 1995-03-20 Aqueous Res:Kk Lubricating device for hybrid vehicle
JP2000335263A (en) * 1999-05-24 2000-12-05 Aisin Aw Co Ltd Hydraulic pressure generation unit and hybrid vehicle utilizing the same
JP2010036819A (en) * 2008-08-07 2010-02-18 Toyota Motor Corp Power transmission device and assembling method of power transmission device
WO2012046307A1 (en) * 2010-10-05 2012-04-12 本田技研工業株式会社 Apparatus for driving electric vehicle
JP2015154519A (en) * 2014-02-12 2015-08-24 本田技研工業株式会社 Cooling structure of drive device
US20160178548A1 (en) * 2014-12-18 2016-06-23 GM Global Technology Operations LLC Method and apparatus to determine an effective temperature of coolant fluid for a heat generating device
JP2017132282A (en) * 2016-01-25 2017-08-03 本田技研工業株式会社 Hybrid vehicle
WO2018030372A1 (en) * 2016-08-09 2018-02-15 日本電産株式会社 Motor unit

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4591312B2 (en) * 2005-11-01 2010-12-01 トヨタ自動車株式会社 Vehicle drive device
JP5359660B2 (en) * 2009-07-31 2013-12-04 トヨタ自動車株式会社 Hybrid vehicle
JP2013177030A (en) * 2012-02-28 2013-09-09 Toyota Motor Corp Cooling structure of rotating electrical machine
JP6458693B2 (en) * 2015-09-16 2019-01-30 トヨタ自動車株式会社 Power transmission device
JP6314947B2 (en) * 2015-10-02 2018-04-25 トヨタ自動車株式会社 Power transmission device cooling structure
JP2017088087A (en) * 2015-11-16 2017-05-25 トヨタ自動車株式会社 Vehicular cooling system
WO2018030344A1 (en) * 2016-08-09 2018-02-15 日本電産株式会社 Motor unit

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS511862A (en) * 1974-06-21 1976-01-09 Nissan Diesel Motor Co Gyabotsukusuno junkatsuyureikyakusochi
JPH0776229A (en) * 1993-06-16 1995-03-20 Aqueous Res:Kk Lubricating device for hybrid vehicle
JP2000335263A (en) * 1999-05-24 2000-12-05 Aisin Aw Co Ltd Hydraulic pressure generation unit and hybrid vehicle utilizing the same
JP2010036819A (en) * 2008-08-07 2010-02-18 Toyota Motor Corp Power transmission device and assembling method of power transmission device
WO2012046307A1 (en) * 2010-10-05 2012-04-12 本田技研工業株式会社 Apparatus for driving electric vehicle
JP2015154519A (en) * 2014-02-12 2015-08-24 本田技研工業株式会社 Cooling structure of drive device
US20160178548A1 (en) * 2014-12-18 2016-06-23 GM Global Technology Operations LLC Method and apparatus to determine an effective temperature of coolant fluid for a heat generating device
JP2017132282A (en) * 2016-01-25 2017-08-03 本田技研工業株式会社 Hybrid vehicle
WO2018030372A1 (en) * 2016-08-09 2018-02-15 日本電産株式会社 Motor unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230136544A1 (en) * 2021-10-29 2023-05-04 Nidec Corporation Drive apparatus

Also Published As

Publication number Publication date
WO2019194070A1 (en) 2019-10-10
CN111936336A (en) 2020-11-13
CN111971194A (en) 2020-11-20
CN111936336B (en) 2023-10-13
CN111971194B (en) 2023-10-31

Similar Documents

Publication Publication Date Title
EP3456570B1 (en) Cooling system for vehicle rotary electric machine
JP4683140B2 (en) Heating part cooling structure of vehicle drive device
JP4770947B2 (en) Vehicle power transmission device
US6770005B2 (en) Power transmission system and operation method therefor
JP5365880B2 (en) Vehicle drive device
WO2019194073A1 (en) Motor unit
JP6906083B2 (en) Power transmission device
WO2019194076A1 (en) Motor unit
JP5367276B2 (en) Lubrication cooling structure of electric motor
WO2013065677A1 (en) Vehicle drive device
WO2019194072A1 (en) Motor unit
WO2019194078A1 (en) Motor unit
JP4701587B2 (en) Electric drive
JP5115465B2 (en) Drive device
WO2019194077A1 (en) Motor unit
JP4852895B2 (en) Oil supply device
JP7468349B2 (en) Motor unit
JP2016094944A (en) Vehicular drive device
JP2006145043A (en) Lubricating device
JP2021061675A (en) Motor unit
CN114763828A (en) Rotary driving device
JP2013177116A (en) Hybrid driving device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19781489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19781489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP