WO2019193740A1 - Natural gas treatment method, and natural gas treatment device - Google Patents

Natural gas treatment method, and natural gas treatment device Download PDF

Info

Publication number
WO2019193740A1
WO2019193740A1 PCT/JP2018/014669 JP2018014669W WO2019193740A1 WO 2019193740 A1 WO2019193740 A1 WO 2019193740A1 JP 2018014669 W JP2018014669 W JP 2018014669W WO 2019193740 A1 WO2019193740 A1 WO 2019193740A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
natural gas
liquid
absorption liquid
benzene
Prior art date
Application number
PCT/JP2018/014669
Other languages
French (fr)
Japanese (ja)
Inventor
謙 角谷
直樹 一町
Original Assignee
日揮株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日揮株式会社 filed Critical 日揮株式会社
Priority to PCT/JP2018/014669 priority Critical patent/WO2019193740A1/en
Publication of WO2019193740A1 publication Critical patent/WO2019193740A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0042Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by liquid expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0229Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock
    • F25J1/0231Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock for the working-up of the hydrocarbon feed, e.g. reinjection of heavier hydrocarbons into the liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0238Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0242Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 3 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0247Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 4 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/70Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/78Refluxing the column with a liquid stream originating from an upstream or downstream fractionator column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/50Processes or apparatus using other separation and/or other processing means using absorption, i.e. with selective solvents or lean oil, heavier CnHm and including generally a regeneration step for the solvent or lean oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/04Mixing or blending of fluids with the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/06Splitting of the feed stream, e.g. for treating or cooling in different ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/40Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2260/00Coupling of processes or apparatus to other units; Integrated schemes
    • F25J2260/20Integration in an installation for liquefying or solidifying a fluid stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/14External refrigeration with work-producing gas expansion loop

Definitions

  • the present invention relates to a technology for processing natural gas containing benzene.
  • NG NaturalNGas
  • a natural gas distillation tower is used. Then, a process of separating NG into a gas containing methane as a main component (methane gas) and a heavy component heavier than methane is performed.
  • Patent Document 1 a fluid extracted from a demethanizer that is a natural gas distillation tower (gas flowing out from the top of the demethanizer or a part of the liquid being distilled) is used as a self-refrigerant and cooled NG. Describes a technique for distilling the slag with a demethanizer.
  • the demethanizer of Patent Document 1 is supplied with NG cooled to about -70 to -90 ° C.
  • the heavy component contained in NG may contain a component that solidifies at a low temperature and closes a device that performs NG processing.
  • Patent Document 2 discloses heavy carbonization to the “volatile residual gas (methane, hydrogen, nitrogen, and other volatile gases)” extracted from the top of a fractionation tower, which is a natural gas distillation tower.
  • a C 2 -C 5 hydrocarbon distillate from a middle height region of a fractionation column also described as “distillation column, demethanizer”
  • a lighter component than C 3 is stripped in a depropanizer and C 4 -C 5 hydrocarbons are re-supplied to the top of the fractionation column.
  • the C 4 -C 5 hydrocarbon acts as an absorbent that absorbs the C 2 + component contained in the vapor rising in the fractionating column.
  • Patent Document 2 mentions the problem that benzene contained in NG solidifies and solidifies at the processing temperature of NG, but does not disclose a technique focusing on the processing of benzene in NG.
  • the present invention has been made under the background as described above, and in the process of separating natural gas into methane and heavy components having 2 or more carbon atoms, the content of benzene mixed in methane is reduced, Provided is a natural gas processing method capable of preventing benzene from solidifying in a facility in which low-temperature methane flows.
  • the natural gas processing method of the present invention uses a natural gas distillation tower to separate natural gas into methane and a heavy component having 2 or more carbon atoms.
  • the natural gas processing method may have the following characteristics.
  • the absorption liquid is a mixed liquid of the absorption liquid main component and a fraction lighter than the absorption liquid main component.
  • B The gas obtained in the gas-liquid separation unit is separated into a part of the gas that is decompressed and expanded in the pressure-decreasing unit and the remaining gas, and after the remaining gas is further cooled, Obtaining a gas-liquid mixture by decompressing and expanding in the pressure-lowering part, and obtaining a gas-liquid mixture obtained by decompressing and expanding in the pressure-lowering part by first gas-liquid mixture and decompressing and expanding in the other pressure-lowering part
  • the obtained gas-liquid mixture is called a second gas-liquid mixture
  • the obtained gas-liquid mixture is called a second gas-liquid mixture
  • the step of introducing the gas-liquid mixture and the liquid the first gas-liquid mixture, the second gas-liquid mixture, and The liquid is introduced into the natural gas distillation column at different height positions from the upper side in ascending order of temperature.
  • the absorption liquid is supplied to the gas-liquid separation unit, and the gas separated from the liquid is brought into countercurrent contact with the absorption liquid, whereby benzene in the gas Is absorbed in the absorption liquid, and the absorption liquid that has absorbed benzene is combined with the liquid.
  • the gas-liquid separation unit is supplied with an absorption liquid supercooled by heat exchange with the self-refrigerant extracted from the natural gas distillation tower.
  • the gas-liquid separator is supplied with an absorption liquid supercooled by heat exchange with an external refrigerant.
  • the absorption liquid In the step of absorbing the benzene into the absorption liquid, the absorption liquid is combined with the natural gas before the step of cooling the natural gas through the natural gas supply line and the natural gas is gasified. In the process of separating into liquid and liquid, the liquid containing the absorption liquid after absorbing benzene is separated from the gas.
  • the rectifying section is a distillation tower for separating ethane, propane, butane, and isopentane from the heavy fraction in this order, an ethane separation tower, a propane separation tower, a butane separation tower, and an isopentane separation tower And in the step of separating the heavy component, the main component of the absorbing solution is obtained from the butane and isopentane obtained in the butane separation tower and the isopentane separation tower.
  • the rectification section includes an ethane separation tower, a propane separation tower, and a butane-isopentane, which are distillation towers for separating ethane, propane, and a mixture of butane and isopentane in this order from the heavy component.
  • a separation tower is provided, and in the step of separating the heavy component, the main component of the absorbing solution is obtained from the mixture obtained in the butane-isopentane separation tower.
  • the rectification section includes an ethane separation tower, which is a distillation tower for separating a mixture of ethane and propane, butane, and isopentane in this order from the heavy fraction, and a stabilizer, In the step of separating the components, the main component of the absorbent is obtained from the mixture obtained by the stabilizer.
  • the natural gas supplied from the natural gas supply line contains 90 mol% or more of methane, and liquefies methane flowing out from the top of the natural gas distillation column to obtain liquefied natural gas. thing.
  • the present invention uses a natural gas distillation column to separate the natural gas into methane and a heavy component having 2 or more carbon atoms, and the main component of the absorption liquid containing butane and isopentane separated from the natural gas is natural gas. Therefore, benzene contained in the natural gas can be taken into the heavy component side.
  • FIG. 1 shows a configuration example of a natural gas processing apparatus (NG processing apparatus) to which the natural gas processing method of the present invention is applied.
  • the NG processing apparatus includes an NG supply line 101 to which natural gas (NG) to be processed is supplied, cold boxes 11 and 12 for cooling NG supplied from the NG supply line 101, and cold boxes 11 and 12.
  • a gas distillation column) 17 and a rectifying section 2 for further distilling and separating components contained in the heavy component.
  • the region obtained by dividing the demethanizer 17 in the height direction as shown in FIG. 1 is also referred to as “upper region S1, middle region S2, lower region S3” from the top. Further, these “upper region S1, middle region S2, and lower region S3” may be further divided into two parts in the vertical direction and referred to as “upper side, lower side” (for example, “lower side of upper region S1”). 2 to 6, S1, S2, and S3 are not attached. However, in FIGS. 2 to 6, as in FIG. 1, the portions corresponding to the demethanizer 17 in FIG. 1 are “upper region S1, middle region S2. , Lower region S3 ".
  • NG from which impurities such as mercury, moisture, and acid gas have been removed in a pretreatment unit is supplied at a pressure of 5 to 7 MPa (step of receiving natural gas).
  • the NG supplied from the NG supply line 101 handles NG called low-calorific value gas (lean gas) containing 90 mol% or more of methane and having a heavy content of 2 or more carbon atoms of less than 10 mol%. This is an example.
  • the NG treatment apparatus of this example is suitable for the treatment of NG containing benzene having a concentration of 10 mol ppm or more. While it is difficult to remove benzene by pretreatment, benzene is solidified at a low temperature, and the filling P filled in the upper region S1 in the demethanizer 17 and the methane gas outflow line 105 through which the methane flowing out from the demethanizer 17 flows. There is a risk of blocking the piping. Therefore, the benzene concentration in the methane gas at about ⁇ 160 ° C.
  • the methane gas outflow line 105 is 1 mol ppm or less, and the benzene concentration in the upper region S1 of the demethanizer 17 that is ⁇ 80 ° C. or less is 10 mol ppm or less. Is operated.
  • the benzene mixed in the methane is solidified in the process of circulating in the demethanizer 17 or the methane gas outflow line 105, and there is a possibility that the equipment through which the methane flows is blocked by the solidified benzene.
  • concentration of benzene in NG is 10 mol ppm or more, the problem of this blockage becomes remarkable and improvement is necessary.
  • the NG treatment apparatus of this example can treat NG containing 10 mol ppm or more of benzene. Since the concentration of benzene contained in NG produced from the natural world is diverse, it is difficult to specify the upper limit of the benzene content in general, especially when processing NG containing 100 mol ppm or more of benzene. The effect of taking benzene into the heavy side becomes higher.
  • the NG treatment apparatus of this example is also capable of treating NG containing about 10 mol% of benzene as long as it can be treated with an acid removal equipment (ASRU) provided in the previous stage of the NG treatment equipment as a pretreatment equipment for NG. It can be designed to be possible.
  • ASRU acid removal equipment
  • NG supplied from the NG supply line 101 is cooled in the cold boxes 11 and 12 to become a gas-liquid mixed fluid.
  • the cold box 11 cools NG by using methane gas, which is part of the fluid distilled by the demethanizer 17 and flowing out from the top of the demethanizer 17, as a self-cooling agent (step of cooling natural gas).
  • the cold box 11 corresponds to the natural gas cooling unit of this example.
  • cold heat is recovered by heat exchange between NG supplied from the NG supply line 101 and a liquid condensed from NG in a feed separator 13 described later, and this cold heat is supplied from the NG supply line 101. Used to cool part of NG.
  • a fluid for example, a liquid extracted from the middle region S2 or the lower region S3 of the demethanizer 17 is used as a self-refrigerant, and cooling of NG supplied from the NG supply line 101 (step of cooling natural gas) is performed.
  • NG supplied from the NG supply line 101 step of cooling natural gas
  • the gas-liquid mixed fluid of NG cooled in the cold boxes 11 and 12 is supplied to a feed separator 13 which is a gas-liquid separator, and is separated into gas and liquid (step of separating into gas and liquid).
  • a feed separator 13 which is a gas-liquid separator, and is separated into gas and liquid (step of separating into gas and liquid).
  • the NG gas-liquid mixed fluid is gas-liquid separated by the feed separator 13, so that benzene flows out to the upper region S 1 of the demethanizer 17 and the methane gas outflow line 105. Can be suppressed. Details of the gas-liquid separation will be described later.
  • Part of the gas obtained by the feed separator 13 is diverted to the expander 14 constituting the pressure-lowering part, and the gas-liquid mixture (first gas-liquid mixture) is reduced by expanding the pressure under reduced pressure. Obtained (step of obtaining a gas-liquid mixture).
  • the gas / liquid mixture obtained by the expander 14 is introduced to the lower side of the upper region S ⁇ b> 1 of the demethanizer 17 through the first gas / liquid mixture supply line 103.
  • the temperature at which the gas-liquid mixture (first gas-liquid mixture) is supplied to the demethanizer 17 is, for example, ⁇ 50 ° C. to ⁇ 80 ° C.
  • the step-down unit may be configured such that, for example, a JT (Joule-Thomson) valve 15 is attached to the expander 14.
  • a JT Joule-Thomson
  • the flow rate for operating the expander 14 is small as a part of the gas obtained in the feed separator 13 and the expander 14 cannot be operated, a part of the gas is not diverted to the expander 14. The entire amount may be diverted to the JT valve 15.
  • the excess may be diverted to the JT valve 15.
  • the JT valve 15 is used together. It may be diverted to the expander 14 and the JT valve 15. Not only when the expander 14 is installed as described above, but by installing only the JT valve 15, a part of the gas obtained by the feed separator 13 may be diverted to the JT valve 15. .
  • the gas obtained by the feed separator 13 except for the gas supplied to the step-down unit is supplied to the cold box 16 which is a cooling unit.
  • the remaining gas is further cooled by heat exchange with the low-temperature methane gas flowing out from the top of the demethanizer 17 in the cold box 16, and then decompressed (more specifically, adiabatically expanded) by the decompression valve 104a.
  • the pressure reducing valve 104a corresponds to “another pressure reducing unit” in this example.
  • a gas-liquid mixture (second gas-liquid mixture) is obtained from the remaining gas (step of obtaining a gas-liquid mixture).
  • the gas / liquid mixture obtained by flowing through the cold box 16 and the pressure reducing valve 104a is supplied to the upper side of the upper region S1 of the demethanizer 17 via the second gas / liquid mixture supply line 104.
  • the temperature at which the gas-liquid mixture (second gas-liquid mixture) is introduced into the demethanizer 17 is, for example, ⁇ 70 ° C. to ⁇ 100 ° C.
  • the entire amount of gas obtained by the feed separator 13 may be supplied to the pressure-lowering unit (expander 14 or JT valve 15), and a gas-liquid mixture may be obtained by decompression expansion.
  • the liquid obtained in the feed separator 13 is subjected to heat exchange with the NG supplied from the NG supply line 101 in the cold box 12, and after the cold energy is recovered, the liquid outflow line 102 and the distribution are obtained. It is introduced into the upper side of the lower region S3 of the demethanizer 17 via the 172.
  • the temperature at which the liquid is introduced into the demethanizer 17 is, for example, ⁇ 10 ° C. to 30 ° C.
  • the demethanizer 17 is arranged at different height positions in descending order from the upper side (second gas-liquid mixture, In the order of the first gas-liquid mixture and the liquid, these gas-liquid mixture and liquid are introduced (step of introducing the gas-liquid mixture and liquid).
  • the demethanizer 17 is provided with a reboiler 171 as an external heat source.
  • the reboiler 171 heats the liquid extracted from the lower side of the lower region S3 of the demethanizer 17 and returns it to the lower side than the extraction position of the liquid.
  • the liquid heated in the reboiler 171 serves as a heat source, and light components in the demethanizer 17 are distilled.
  • the liquid extracted from the middle region S2 and the lower region S3 of the demethanizer 17 is used as a self-cooling agent, and cold is performed to cool the NG supplied from the NG supply line 101.
  • a box may be provided.
  • the self-refrigerant whose temperature has increased due to heat exchange with NG is returned again to the bottom side of the demethanizer 17 (below the extraction position), thereby providing a heat source for the distillation operation performed in the demethanizer 17. You can also.
  • the demethanizer 17 is provided with packings P or trays for promoting gas-liquid contact of fluid distilled in the tower in each of the upper region S1, the middle region S2, and the lower region S3.
  • NG is distilled in the demethanizer 17 having the above-described configuration, and is distilled into methane and a heavy component having 2 or more carbon atoms.
  • methane gas at ⁇ 70 ° C. to ⁇ 120 ° C. flows out from the top of the demethanizer 17 toward the methane gas outflow line 105, and heavy components at 40 ° C. to 140 ° C., for example, are heavy from the bottom of the demethanizer 17. It flows out toward the separation line 106 (a step of flowing out methane from the top of the tower and flowing out heavy components from the bottom of the tower).
  • the methane gas that flowed out to the methane gas outflow line 105 (collected from NG) was supplied from the NG supply line 101 in the cold boxes 16 and 11 in order to partially cool the gas obtained in the feed separator 13. Cool NG. Thereafter, the pressure of the methane gas is increased by the compressor 311 and the booster compressor 312, cooled by the air fin cooler 32, and then shipped by pipeline through the gas discharge line 301.
  • the heavy component that has flowed out to the heavy component discharge line 106 (collected from NG) is sent to the rectification unit 2 equipped with a plurality of distillation columns 21 to 24 using the extraction pump 173.
  • the rectifying unit 2 separates useful components (such as propane and butane described later) and heavier fractions of condensate from the heavy component (step of separating the heavy component).
  • ethane is separated from a deethanizer 21 that separates ethane (C2) from the heavy components.
  • a rectifying unit 2 including a depropanizer 22 that separates C3 from the heavy component after separation and a debutizer 23 that separates C4 from the heavy component after separation of C3 may be provided.
  • a fraction heavier than C4 (C5 +) after C4 is separated by the debutizer 23 is discharged from the bottom of the debutizer 23 as a condensate.
  • the NG processing apparatus of this example is a liquid (absorbing liquid main component) containing C4 and isopentane (i-C5) contained in the heavy component flowing out from the bottom of the demethanizer 17. This is characterized in that benzene contained in NG is taken into the heavy component side.
  • the rectifying unit 2 of the NG treatment apparatus shown in FIG. 1 is a distillation column for separating C2, C3, C4, and i-C5 in this order from the heavy component flowing into the heavy component discharge line 106.
  • C2 and C3 correspond to lighter fractions than the main component of the absorbing liquid (in this example, C4 and i-C5 separated by the debutanizer 23 and the deisopentanizer 24).
  • C2 and C3 components are combined with the main component of the absorbing solution containing C4 and i-C5 to form a mixed solution, which is supplied to the feed separator 13 as an absorbing solution for absorbing benzene.
  • the flow of the absorbing liquid will be described later.
  • the deisopentaizer 24 separates i-C5 from the heavy component after C4 is separated by the debutanizer 23. Then, a component heavier than i-C5, more specifically a component containing normal pentane (n-C5) after i-C5 is separated by deisopentaizer 24, is discharged as condensate. It is paid out from the line 204.
  • n-C5 pentane
  • n-C5 is difficult to be separated from benzene by distillation
  • benzene may be re-supplied to NG supplied from the NG supply line 101. is there. Therefore, i-C5 is separated by the deisopentanizer 24, and a fraction heavier than n-C5 and n-C5 is used as a condensate, thereby suppressing resupply of benzene to NG.
  • C2 obtained by the deethanizer 21, C3 obtained by the depropanizer 22, C4 obtained by the debutanizer 23, and i-C5 obtained by the deisopentaizer 24 are supplied to the absorbent raw material line 201.
  • the gas and liquid are separated by the separator 27. Note that surplus C2, C3, and C4 that are not used as the main component of the absorbing solution are paid out as products.
  • Surplus i-C5 is mixed with condensate.
  • the gas that is separated from the liquid by the separator 27 and mainly contains C2 is discharged out of the system via the fuel gas line 202 and used as fuel gas. Further, the gas containing C2 flowing out of the separator 27 is pressurized using a compressor (not shown), and the pressurized gas is joined to the upstream side of the booster compressor 312 so that the gas containing C2 is used as a pipeline. You may ship.
  • the liquid separated from the gas by the separator 27 is supplied as an absorption liquid to the upstream side of the demethanizer 17 via the liquid feed pump 28 and the absorption liquid supply line 203.
  • the absorption liquid supplied through the absorption liquid supply line 203 is supercooled to about ⁇ 20 ° C. to ⁇ 45 ° C. in the cold box 11 by heat exchange with methane gas, which is a self refrigerant (each component of the absorption liquid is liquefied). After cooling to a temperature lower than the temperature at which the feed separator 13 is supplied. The supercooling of the absorbing solution is performed in order to improve the ability of benzene to absorb the absorbing solution.
  • the NG from the NG supply line 101 and the absorption liquid from the absorption liquid supply line 203 are brought into contact with each other, and the gas benzene contained in NG is absorbed into the absorption liquid.
  • the absorption liquid supply line 203 corresponds to the absorption liquid supply unit of this example.
  • the feed separator 13 is filled with a filler Q for promoting contact between the NG gas and the absorbing liquid.
  • Absorbing liquid from the absorbing liquid supply line 203 is introduced into the feed separator 13 from a position above the packing Q layer, and NG from the NG supplying line 101 is fed from a position below the packing Q layer. Introduced into the separator 13.
  • the NG gas rising in the feed separator 13 and the descending absorbing liquid come into countercurrent contact, and benzene contained in a trace amount in the gas is efficiently absorbed by the absorbing liquid based on the gas-liquid equilibrium ( Process of absorbing benzene in the absorbing solution).
  • the absorbing liquid that has absorbed benzene in the feed separator 13 joins with the NG liquid separated in the feed separator 13 and is supplied to the demethanizer 17 and flows out from the bottom of the demethanizer 17 as a heavy component.
  • the gas brought into contact with the absorbing solution has a small amount of entrained benzene, the amount of benzene in the upper region S1 of the demethanizer 17 and the methane gas outflow line 105 decreases.
  • low-temperature methane gas flows such as the packing P provided in the upper region S1 of the demethanizer 17 and the equipment installed downstream of the demethanizer 17. It is possible to prevent benzene from solidifying at the locations.
  • the absorbing liquid containing C4 and i-C5 separated from NG Since the main component is resupplied to the supply side of NG, benzene contained in the NG can be taken into the heavy component side.
  • the technology for absorbing benzene in NG using the absorbing liquid of this example is an NG process in which methane gas obtained by distilling NG is shipped as in the example described with reference to FIG.
  • the present invention is not limited to the case where it is applied to an apparatus.
  • the present invention can also be applied to an NG processing apparatus that is a natural gas liquefying apparatus (NG liquefying apparatus) that liquefies NG to produce LNG.
  • NG liquefying apparatus natural gas liquefying apparatus
  • the methane gas flows out from the top of the demethanizer 17 to the methane gas outflow line 105, and then heat exchange in the cold boxes 16 and 11, compression by the compressor 311 and the booster compressor 312, the air fin cooler 32. Then, it is further cooled by the cooler 33. Thereafter, the methane gas is cooled using MCHE (Main Cryogenic Heat Exchanger) 34, liquefied and supercooled to become LNG.
  • MCHE Main Cryogenic Heat Exchanger
  • the gas (mainly C2) separated from the heavy component in the rectifying unit 2 and liquefied and supercooled in the MCHE 34 is also liquefied and supercooled and joined with the LNG obtained from the methane gas. You may pay out via the payout line 302.
  • an absorption liquid containing C4 and i-C5 an absorption liquid containing C4 and i-C5
  • an NG gas containing benzene By bringing them into countercurrent contact, benzene in the gas can be taken into the heavy component side.
  • the rectifying unit 2 shown in FIG. 3 is provided with a debut / deisopentaizer 25 instead of the debutanizer 23 and the deisopentanizer 24 described in FIG. That is, the rectifying unit 2 is a distillation tower for separating C2, C3, and “mixture of C4 and i-C5” from the heavy components in this order, the deethanizer 21, the depropanizer 22, and the debuter A deisopentaizer 25 is provided. Then, the main component of the absorbent is obtained from the mixture obtained by the debut / deisopentanizer 25 (step of separating heavy components).
  • the rectification unit 2 includes a deethanizer 21 and a stabilizer 26 which are distillation towers for separating C2 and “mixture of C3, C4, and i-C5” in this order from the heavy component. And an absorption liquid main component is obtained from the mixture obtained in the stabilizer 26 (process which isolate
  • C2 obtained by the deethanizer 21 and a mixture of C3, C4 and i-C5 obtained by the stabilizer 26 are merged in the absorbent raw material line 201, and gas-liquid separation is performed in the separator 27.
  • an absorption liquid containing a mixture of C3, C4, and i-C5, which are the main components of the absorption liquid, and a light component (C2) is obtained, and this absorption liquid is fed through the absorption liquid supply line 203 to the feed separator. 13 is supplied.
  • FIG. 5 shows an absorption liquid cooler 18 that uses an external refrigerant instead of the cooling method that uses the methane gas that is the self refrigerant in the cold box 11 described in FIG.
  • the external refrigerant include liquefied C3.
  • an absorbent cooler 18 using an external refrigerant may be provided as an auxiliary to the cold box 11 that supercools the absorbent using the self-refrigerant shown in FIG.
  • FIG. 6 shows a case where NG (natural) before being cooled in the cold boxes 11 and 12 through the NG supply line 101 instead of the example in which the supply destination of the absorbing liquid described in FIG.
  • An example is shown in which the absorbent is joined to NG) before the gas cooling step is performed.
  • benzene is absorbed from the NG side to the absorption liquid side until the mixture of NG and the absorption liquid flows into the feed separator 13a which is a gas-liquid separator. According to such a configuration, it is not necessary to provide a flow path for allowing the absorbent to flow through the cold box 11, and the cold box 11 can be configured simply.
  • the liquid containing the absorbing liquid that has absorbed benzene is separated from the mixture of NG and the absorbing liquid.
  • the feed separator 13 a that performs gas-liquid separation of NG is cooled by the cold boxes 11 and 12. Any drum that can separate NG, which is a gas-liquid mixed fluid, into gas and liquid may be used.
  • NG supplied from the NG supply line 101 has been described with respect to the case where 90 mol% or more of methane is contained and the heavy component having 2 or more carbon atoms is less than 10 mol%, but is not limited thereto. It is not something.
  • This NG liquefaction device treats NG with a benzene concentration that is extremely high, for example, even if the amount of methane contained in NG is less than 90 mol%, for example, containing 10 mol% or more of heavy components having 2 or more carbon atoms It can also be applied to.
  • the C2, C3, C4, and i-C5 components obtained in the rectifying unit 2 are the MCHE 34 shown in FIG. It may be used as a refrigerant.
  • the rectifying unit 2 includes a plurality of distillation columns, so that C2, C3, The C4 and i-C5 components can be extracted as a single substance or as a mixed refrigerant, and the degree of freedom by combining the refrigerant compositions used in the MCHE 34 can be increased.
  • the rectifying unit 2 may be configured to include a deethanizer 21 and a stabilizer 26 as shown in FIG.
  • the present NG liquefaction apparatus can be employed as a ground facility or an offshore facility.
  • the demethanizer 17 and the rectifying unit 2 are installed closer to each other than in the case of ground facilities. Therefore, when adopting the present NG liquefaction apparatus as an offshore facility, the absorbent supply line 203 can be designed to be short, which is advantageous.
  • the number of distillation columns installed in the rectifying unit 2 can be reduced. Therefore, when employing this NG liquefaction apparatus as an offshore facility, a distillation tower can be installed in a space-saving manner in a limited space on the ocean, and the space can be used effectively.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

[Problem] To provide technology for reducing the content of benzene mixed into methane during a treatment for separating natural gas into methane and a C2 or higher heavy component. [Solution] A natural gas treatment method using a natural gas distillation column 17 to separate natural gas into methane and a C2 or higher heavy component, wherein natural gas containing benzene is received from a supply line 106, cooled, and then separated into a gas and a liquid. By decompressing and expanding the gas obtained from the separation and thus lowering the temperature thereof, a gas-liquid mixture is obtained, and the gas-liquid mixture and the gas are introduced into a natural gas distillation column 174 and distilled to discharge methane and a heavy component. A rectification unit 2 separates, from the heavy component, absorption liquid main components which include butane and isopentane and are for absorbing the benzene in the natural gas. Natural gas from a natural gas supply line 101 and an absorption liquid containing the absorption liquid main components are brought into contact, and the benzene contained in the natural gas is absorbed by the absorption liquid.

Description

天然ガス処理方法、及び天然ガス処理装置Natural gas processing method and natural gas processing apparatus
 本発明は、ベンゼンを含む天然ガスを処理する技術に関する。 The present invention relates to a technology for processing natural gas containing benzene.
 天然ガス(NG:Natural Gas)の処理を行う天然ガス処理装置においては、井戸元より産出されたNG中に含まれる水分や酸性ガスなどの不純物の除去を行った後、天然ガス蒸留塔を用い、メタンを主成分とするガス(メタンガス)と、メタンより重質の重質分とにNGを分離する処理が行われる。 In natural gas processing equipment that processes natural gas (NG: NaturalNGas), after removing impurities such as water and acid gas contained in NG produced from the well source, a natural gas distillation tower is used. Then, a process of separating NG into a gas containing methane as a main component (methane gas) and a heavy component heavier than methane is performed.
 例えば特許文献1には、天然ガス蒸留塔であるデメタナイザーから抜き出された流体(デメタナイザーの塔頂から流出したガスや、蒸留中の液体の一部)を自己冷媒として利用し、冷却されたNGをデメタナイザーにて蒸留する技術が記載されている。特許文献1のデメタナイザーには、-70~-90℃程度にまで冷却されたNGが供給される。 
 一方で、NGに含まれる重質分には、低温で固化し、NGの処理を行う機器を閉塞させる成分が含まれている場合がある。
For example, in Patent Document 1, a fluid extracted from a demethanizer that is a natural gas distillation tower (gas flowing out from the top of the demethanizer or a part of the liquid being distilled) is used as a self-refrigerant and cooled NG. Describes a technique for distilling the slag with a demethanizer. The demethanizer of Patent Document 1 is supplied with NG cooled to about -70 to -90 ° C.
On the other hand, the heavy component contained in NG may contain a component that solidifies at a low temperature and closes a device that performs NG processing.
 また特許文献2には、天然ガス蒸留塔である分留塔の頂部から抜き出される「揮発性の残留ガス(メタン、水素、窒素及びその他の揮発性ガス)」側への、重質の炭化水素(C+成分)の流出を低減するため、分留塔(「蒸留塔、脱メタン装置」とも記載されている)の中間の高さ領域より、C-C炭化水素の蒸留液を抜き出し、脱プロパン装置にてCより軽質の成分をストリッピングし、C-Cの炭化水素を分留塔の最上部に再供給する技術が記載されている。C-C炭化水素は、分留塔内を上昇する蒸気に含まれるC+成分を吸収する吸収剤として作用する。 
 ここで特許文献2は、NGに含まれるベンゼンが、NGの処理温度にて凝固、固化する問題点に言及しているが、NG中のベンゼンの処理に着目した技術は開示されていない。
Further, Patent Document 2 discloses heavy carbonization to the “volatile residual gas (methane, hydrogen, nitrogen, and other volatile gases)” extracted from the top of a fractionation tower, which is a natural gas distillation tower. In order to reduce the outflow of hydrogen (C 2 + component), a C 2 -C 5 hydrocarbon distillate from a middle height region of a fractionation column (also described as “distillation column, demethanizer”) In which a lighter component than C 3 is stripped in a depropanizer and C 4 -C 5 hydrocarbons are re-supplied to the top of the fractionation column. The C 4 -C 5 hydrocarbon acts as an absorbent that absorbs the C 2 + component contained in the vapor rising in the fractionating column.
Here, Patent Document 2 mentions the problem that benzene contained in NG solidifies and solidifies at the processing temperature of NG, but does not disclose a technique focusing on the processing of benzene in NG.
米国特許第4,157,904号明細書US Pat. No. 4,157,904 特許第5798127号公報Japanese Patent No. 5798127
 本発明は、上述のような背景の下になされたものであり、天然ガスをメタンと炭素数2以上の重質分とに分離する処理において、メタンに混入するベンゼンの含有量を低減し、低温のメタンが流通する設備内でベンゼンが固化するのを防止することが可能な天然ガス処理方法を提供する。 The present invention has been made under the background as described above, and in the process of separating natural gas into methane and heavy components having 2 or more carbon atoms, the content of benzene mixed in methane is reduced, Provided is a natural gas processing method capable of preventing benzene from solidifying in a facility in which low-temperature methane flows.
 本発明の天然ガス処理方法は、天然ガス蒸留塔を用い、天然ガスをメタンと炭素数2以上の重質分とに分離する天然ガス処理方法において、
 天然ガス供給ラインから、5~7MPaの圧力で供給され、10モルppm以上の濃度のベンゼンを含む天然ガスを受け入れる工程と、
 前記天然ガス蒸留塔にて蒸留されている低温流体を抜き出して自己冷媒として利用し、前記天然ガス供給ラインから受け入れた天然ガスを冷却する工程と、
 前記冷却後の天然ガスを気液分離部にて気体と液体とに分離する工程と、
 前記気液分離部にて得られた気体を降圧部にて減圧膨張させることにより温度低下させ、気液混合体を得る工程と、
 前記天然ガス蒸留塔の異なる高さ位置に、上側から温度の低い順に、前記気液混合体及び前記気液分離部からの前記液体を導入する工程と、
 これら気液混合体及び液体を、前記天然ガス蒸留塔にて蒸留し、塔頂部から前記メタンを流出させ、塔底部から前記重質分を流出させる工程と、
 複数の蒸留塔を備え前記天然ガス蒸留塔から流出した前記重質分を分離するための精留部にて、前記重質分を、ブタン及びイソペンタンを含み、天然ガス中のベンゼンを吸収させるための吸収液主成分と、前記吸収液主成分より軽い留分と、前記吸収液主成分より重い留分のコンデンセートとに分離する工程と、
 前記天然ガス供給ラインからの天然ガスと、前記吸収液主成分を含む吸収液とを接触させて、当該天然ガスに含まれるベンゼンを吸収液に吸収させる工程と、を含むことを特徴とする。
The natural gas processing method of the present invention uses a natural gas distillation tower to separate natural gas into methane and a heavy component having 2 or more carbon atoms.
Receiving a natural gas supplied from a natural gas supply line at a pressure of 5 to 7 MPa and containing benzene at a concentration of 10 mol ppm or more;
Extracting a low-temperature fluid distilled in the natural gas distillation tower and using it as a self-cooling medium, and cooling the natural gas received from the natural gas supply line;
Separating the natural gas after cooling into gas and liquid in a gas-liquid separator;
Reducing the temperature by expanding the gas obtained in the gas-liquid separation part under reduced pressure in the pressure-lowering part, and obtaining a gas-liquid mixture;
Introducing the liquid from the gas-liquid mixture and the gas-liquid separation unit into the different height positions of the natural gas distillation column from the upper side in ascending order of temperature;
These gas-liquid mixture and liquid are distilled in the natural gas distillation tower, the methane is flowed out from the top of the tower, and the heavy component is flowed out from the bottom of the tower;
In order to absorb benzene in natural gas, including butane and isopentane, in a rectifying section that has a plurality of distillation columns and separates the heavy components flowing out from the natural gas distillation column Separating the absorption liquid main component, a fraction lighter than the absorption liquid main component, and a condensate heavier than the absorption liquid main component,
A step of bringing the natural gas from the natural gas supply line into contact with an absorption liquid containing the main component of the absorption liquid and causing the absorption liquid to absorb benzene contained in the natural gas.
 前記天然ガス処理方法は以下の特徴を備えていてもよい。 
(a)前記吸収液は、前記吸収液主成分と前記吸収液主成分より軽い留分との混合液であること。 
(b)前記気液分離部にて得られた気体を、前記降圧部にて減圧膨張させる一部の気体と、残りの気体とに分離し、前記残りの気体をさらに冷却した後、他の降圧部にて減圧膨張させて気液混合体を得る工程と、前記降圧部における減圧膨張により得られた気液混合体を第1の気液混合体、前記他の降圧部における減圧膨張により得られた気液混合体を第2の気液混合体と呼ぶとき、前記気液混合体及び前記液体を導入する工程では、これら第1の気液混合体、第2の気液混合体、及び前記液体が、前記天然ガス蒸留塔の異なる高さ位置に、上側から温度の低い順に導入されること。 
(c)前記ベンゼンを吸収液に吸収させる工程では、前記気液分離部に吸収液を供給し、前記液体から分離された気体と前記吸収液とを向流接触させることにより、気体中のベンゼンを吸収液に吸収させ、ベンゼンを吸収した吸収液を前記液体と合流させること。前記気液分離部には、前記天然ガス蒸留塔から抜き出された自己冷媒との熱交換により過冷却された吸収液が供給されること。または、前記気液分離部には、外部冷媒との熱交換により過冷却された吸収液が供給されること。 
(d)前記ベンゼンを吸収液に吸収させる工程では、前記天然ガス供給ラインを流れ、前記天然ガスを冷却する工程が実施される前の天然ガスに前記吸収液を合流させ、前記天然ガスを気体と液体とに分離する工程にて、ベンゼンを吸収した後の吸収液を含んだ液体を気体から分離すること。
The natural gas processing method may have the following characteristics.
(A) The absorption liquid is a mixed liquid of the absorption liquid main component and a fraction lighter than the absorption liquid main component.
(B) The gas obtained in the gas-liquid separation unit is separated into a part of the gas that is decompressed and expanded in the pressure-decreasing unit and the remaining gas, and after the remaining gas is further cooled, Obtaining a gas-liquid mixture by decompressing and expanding in the pressure-lowering part, and obtaining a gas-liquid mixture obtained by decompressing and expanding in the pressure-lowering part by first gas-liquid mixture and decompressing and expanding in the other pressure-lowering part When the obtained gas-liquid mixture is called a second gas-liquid mixture, in the step of introducing the gas-liquid mixture and the liquid, the first gas-liquid mixture, the second gas-liquid mixture, and The liquid is introduced into the natural gas distillation column at different height positions from the upper side in ascending order of temperature.
(C) In the step of absorbing the benzene into the absorption liquid, the absorption liquid is supplied to the gas-liquid separation unit, and the gas separated from the liquid is brought into countercurrent contact with the absorption liquid, whereby benzene in the gas Is absorbed in the absorption liquid, and the absorption liquid that has absorbed benzene is combined with the liquid. The gas-liquid separation unit is supplied with an absorption liquid supercooled by heat exchange with the self-refrigerant extracted from the natural gas distillation tower. Alternatively, the gas-liquid separator is supplied with an absorption liquid supercooled by heat exchange with an external refrigerant.
(D) In the step of absorbing the benzene into the absorption liquid, the absorption liquid is combined with the natural gas before the step of cooling the natural gas through the natural gas supply line and the natural gas is gasified. In the process of separating into liquid and liquid, the liquid containing the absorption liquid after absorbing benzene is separated from the gas.
(e)前記精留部は、前記重質分からエタン、プロパン、ブタン、及びイソペンタンを、この順に分離するための蒸留塔である、エタン分離塔、プロパン分離塔、ブタン分離塔、及びイソペンタン分離塔を備え、前記重質分を分離する工程では前記ブタン分離塔、及びイソペンタン分離塔にて得られたブタン及びイソペンタンから前記吸収液主成分を得ること。 
(f)前記精留部には、前記重質分からエタン、プロパン、及びブタンとイソペンタンとの混合物を、この順に分離するための蒸留塔である、エタン分離塔、プロパン分離塔、及びブタン-イソペンタン分離塔を備え、前記重質分を分離する工程では前記ブタン-イソペンタン分離塔にて得られた混合物から前記吸収液主成分を得ること。 
(g)前記精留部には、前記重質分からエタン、及びプロパンとブタンとイソペンタンとの混合物を、この順に分離するための蒸留塔である、エタン分離塔、及びスタビライザーを備え、前記重質分を分離する工程では前記スタビライザーにて得られた混合物から前記吸収液主成分を得ること。
(h)前記天然ガス供給ラインから供給される天然ガスは、メタンを90モル%以上含み、前記天然ガス蒸留塔の塔頂部から流出したメタンを液化して液化天然ガスを得るためのものであること。
(E) The rectifying section is a distillation tower for separating ethane, propane, butane, and isopentane from the heavy fraction in this order, an ethane separation tower, a propane separation tower, a butane separation tower, and an isopentane separation tower And in the step of separating the heavy component, the main component of the absorbing solution is obtained from the butane and isopentane obtained in the butane separation tower and the isopentane separation tower.
(F) The rectification section includes an ethane separation tower, a propane separation tower, and a butane-isopentane, which are distillation towers for separating ethane, propane, and a mixture of butane and isopentane in this order from the heavy component. A separation tower is provided, and in the step of separating the heavy component, the main component of the absorbing solution is obtained from the mixture obtained in the butane-isopentane separation tower.
(G) The rectification section includes an ethane separation tower, which is a distillation tower for separating a mixture of ethane and propane, butane, and isopentane in this order from the heavy fraction, and a stabilizer, In the step of separating the components, the main component of the absorbent is obtained from the mixture obtained by the stabilizer.
(H) The natural gas supplied from the natural gas supply line contains 90 mol% or more of methane, and liquefies methane flowing out from the top of the natural gas distillation column to obtain liquefied natural gas. thing.
 本発明は、天然ガス蒸留塔を用い、天然ガスをメタンと炭素数2以上の重質分とに分離する処理を行うにあたり、天然ガスから分離したブタン及びイソペンタンを含む吸収液主成分を天然ガスの供給側に再供給するので、当該天然ガスに含まれるベンゼンを重質分側に取り込むことができる。 The present invention uses a natural gas distillation column to separate the natural gas into methane and a heavy component having 2 or more carbon atoms, and the main component of the absorption liquid containing butane and isopentane separated from the natural gas is natural gas. Therefore, benzene contained in the natural gas can be taken into the heavy component side.
実施の形態に係るNG処理装置の説明図である。It is explanatory drawing of the NG processing apparatus which concerns on embodiment. 第2の実施の形態に係るNG処理装置の説明図である。It is explanatory drawing of the NG processing apparatus which concerns on 2nd Embodiment. 第3の実施の形態に係るNG処理装置の説明図である。It is explanatory drawing of the NG processing apparatus which concerns on 3rd Embodiment. 第4の実施の形態に係るNG処理装置の説明図である。It is explanatory drawing of the NG processing apparatus which concerns on 4th Embodiment. 第5の実施の形態に係るNG処理装置の説明図である。It is explanatory drawing of the NG processing apparatus which concerns on 5th Embodiment. 第6の実施の形態に係るNG処理装置の説明図である。It is explanatory drawing of the NG processing apparatus which concerns on 6th Embodiment.
 図1は、本発明の天然ガス処理方法が適用される天然ガス処理装置(NG処理装置)の構成例を示している。当該NG処理装置は、処理対象の天然ガス(NG)が供給されるNG供給ライン101と、NG供給ライン101から供給されたNGを冷却するコールドボックス11、12と、コールドボックス11、12にて冷却され、一部が液化したNGの気液分離を行うフィード・セパレーター(気液分離部)13と、NGの蒸留を行い、メタンと炭素数2以上の重質分とに分離するデメタナイザー(天然ガス蒸留塔)17と、前記重質分に含まれる成分をさらに蒸留分離する精留部2と、を備える。 
 以下の説明では、デメタナイザー17を高さ方向に図1に示すように三分割した領域を上から「上部領域S1、中部領域S2、下部領域S3」とも呼ぶ。また、これら「上部領域S1、中部領域S2、下部領域S3」をさらに上下に2分割して「上部側、下部側」とも呼ぶ場合がある(例えば「上部領域S1の下部側」など)。尚、図2~6にはS1、S2、S3を付していないが、図2~6においても図1と同様に、図1のデメタナイザー17に対応する個所を「上部領域S1、中部領域S2、下部領域S3」とする。
FIG. 1 shows a configuration example of a natural gas processing apparatus (NG processing apparatus) to which the natural gas processing method of the present invention is applied. The NG processing apparatus includes an NG supply line 101 to which natural gas (NG) to be processed is supplied, cold boxes 11 and 12 for cooling NG supplied from the NG supply line 101, and cold boxes 11 and 12. A feed separator (gas-liquid separation unit) 13 for gas-liquid separation of NG that has been cooled and partially liquefied, and a demethanizer (naturally-occurring) that performs distillation of NG and separates it into methane and heavy components having 2 or more carbon atoms A gas distillation column) 17 and a rectifying section 2 for further distilling and separating components contained in the heavy component.
In the following description, the region obtained by dividing the demethanizer 17 in the height direction as shown in FIG. 1 is also referred to as “upper region S1, middle region S2, lower region S3” from the top. Further, these “upper region S1, middle region S2, and lower region S3” may be further divided into two parts in the vertical direction and referred to as “upper side, lower side” (for example, “lower side of upper region S1”). 2 to 6, S1, S2, and S3 are not attached. However, in FIGS. 2 to 6, as in FIG. 1, the portions corresponding to the demethanizer 17 in FIG. 1 are “upper region S1, middle region S2. , Lower region S3 ".
 NG供給ライン101からは、不図示の前処理部にて水銀や水分、酸性ガスなどの不純物が除去されたNGが5~7MPaの圧力で供給される(天然ガスを受け入れる工程)。NG供給ライン101から供給されるNGは、メタンが90モル%以上含まれ、炭素数が2以上の重質分は10モル%未満である低発熱量ガス(リーンガス)と称されるNGを取り扱う場合の例示である。 From the NG supply line 101, NG from which impurities such as mercury, moisture, and acid gas have been removed in a pretreatment unit (not shown) is supplied at a pressure of 5 to 7 MPa (step of receiving natural gas). The NG supplied from the NG supply line 101 handles NG called low-calorific value gas (lean gas) containing 90 mol% or more of methane and having a heavy content of 2 or more carbon atoms of less than 10 mol%. This is an example.
 さらに本例のNG処理装置は、10モルppm以上の濃度のベンゼンを含むNGの処理に好適である。ベンゼンは、前処理によって除去することが困難である一方で、低温で固化し、デメタナイザー17内の上部領域S1に充填された充填物Pや、デメタナイザー17から流出したメタンが流れるメタンガス流出ライン105の配管を閉塞させるおそれがある。そこで、メタンガス流出ライン105を流れる-160℃程度のメタンガス中のベンゼン濃度は1モルppm以下、-80℃以下になるデメタナイザー17の上部領域S1におけるベンゼン濃度は10モルppm以下となるようにデメタナイザー17の運転が行われる。 Furthermore, the NG treatment apparatus of this example is suitable for the treatment of NG containing benzene having a concentration of 10 mol ppm or more. While it is difficult to remove benzene by pretreatment, benzene is solidified at a low temperature, and the filling P filled in the upper region S1 in the demethanizer 17 and the methane gas outflow line 105 through which the methane flowing out from the demethanizer 17 flows. There is a risk of blocking the piping. Therefore, the benzene concentration in the methane gas at about −160 ° C. flowing through the methane gas outflow line 105 is 1 mol ppm or less, and the benzene concentration in the upper region S1 of the demethanizer 17 that is −80 ° C. or less is 10 mol ppm or less. Is operated.
 しかしながら、NG処理装置においては、デメタナイザー17に供給されるNGのベンゼン濃度が高いほどプロダクトとなるメタン側にベンゼンが混入しやすい。メタンに混入したベンゼンはデメタナイザー17内またはメタンガス流出ライン105を流通する過程で固化し、固化したベンゼンによりメタンが流通する機器類を閉塞してしまうおそれがある。特に、NG中のベンゼン濃度が10モルppm以上である場合には、この閉塞の問題が顕著となり、改善が必要であることが分かった。 However, in the NG processing apparatus, the higher the benzene concentration of NG supplied to the demethanizer 17, the more likely benzene is mixed into the methane side that is the product. The benzene mixed in the methane is solidified in the process of circulating in the demethanizer 17 or the methane gas outflow line 105, and there is a possibility that the equipment through which the methane flows is blocked by the solidified benzene. In particular, it was found that when the concentration of benzene in NG is 10 mol ppm or more, the problem of this blockage becomes remarkable and improvement is necessary.
 このような課題に対し、本例のNG処理装置は、ベンゼンを10モルppm以上含むNGを処理することが可能である。自然界から産出するNGに含まれるベンゼン濃度は多様であるため、ベンゼン含有量の上限値を一概に特定することは困難であるが、特に、ベンゼンを100モルppm以上含むNGを処理する際に、ベンゼンを重質分側に取り込む効果が高くなる。本例のNG処理装置は、例えばNGの前処理設備としてNG処理装置の前段に設けられた酸性除去設備(ASRU)で処理が可能であれば、10モル%程度のベンゼンを含むNGの処理も行うことが可能なように設計することができる。 For such a problem, the NG treatment apparatus of this example can treat NG containing 10 mol ppm or more of benzene. Since the concentration of benzene contained in NG produced from the natural world is diverse, it is difficult to specify the upper limit of the benzene content in general, especially when processing NG containing 100 mol ppm or more of benzene. The effect of taking benzene into the heavy side becomes higher. The NG treatment apparatus of this example is also capable of treating NG containing about 10 mol% of benzene as long as it can be treated with an acid removal equipment (ASRU) provided in the previous stage of the NG treatment equipment as a pretreatment equipment for NG. It can be designed to be possible.
 NG供給ライン101から供給されたNGは、コールドボックス11、12にて冷却され、気液混合流体となる。 
 コールドボックス11においては、デメタナイザー17にて蒸留されている流体の一部であり、デメタナイザー17の塔頂から流出したメタンガスを自己冷媒として利用してNGを冷却する(天然ガスを冷却する工程)。コールドボックス11は、本例の天然ガス冷却部に相当する。コールドボックス12においては、NG供給ライン101から供給されたNGと後述するフィード・セパレーター13内でNGより凝縮した液体との熱交換により冷熱が回収され、この冷熱はNG供給ライン101から供給されたNGの一部の冷却に使用される。
NG supplied from the NG supply line 101 is cooled in the cold boxes 11 and 12 to become a gas-liquid mixed fluid.
The cold box 11 cools NG by using methane gas, which is part of the fluid distilled by the demethanizer 17 and flowing out from the top of the demethanizer 17, as a self-cooling agent (step of cooling natural gas). The cold box 11 corresponds to the natural gas cooling unit of this example. In the cold box 12, cold heat is recovered by heat exchange between NG supplied from the NG supply line 101 and a liquid condensed from NG in a feed separator 13 described later, and this cold heat is supplied from the NG supply line 101. Used to cool part of NG.
 またここで、例えばデメタナイザー17の中部領域S2や下部領域S3から抜き出された流体(例えば液体)を自己冷媒とし、NG供給ライン101から供給されたNGの冷却(天然ガスを冷却する工程)を行うコールドボックスを設けるバリエーションを採用してもよい。 In addition, here, for example, a fluid (for example, a liquid) extracted from the middle region S2 or the lower region S3 of the demethanizer 17 is used as a self-refrigerant, and cooling of NG supplied from the NG supply line 101 (step of cooling natural gas) is performed. You may employ | adopt the variation which provides the cold box to perform.
 コールドボックス11、12にて冷却されたNGの気液混合流体は、気液分離部であるフィード・セパレーター13に供給され、気体と液体とに分離される(気体と液体とに分離する工程)。図1に示すNG処理装置においては、当該フィード・セパレーター13にてNGの気液混合流体が気液分離されることで、ベンゼンがデメタナイザー17の上部領域S1やメタンガス流出ライン105へ流出するのを抑えることができる。当該気液分離の詳細については後述する。 The gas-liquid mixed fluid of NG cooled in the cold boxes 11 and 12 is supplied to a feed separator 13 which is a gas-liquid separator, and is separated into gas and liquid (step of separating into gas and liquid). . In the NG treatment apparatus shown in FIG. 1, the NG gas-liquid mixed fluid is gas-liquid separated by the feed separator 13, so that benzene flows out to the upper region S 1 of the demethanizer 17 and the methane gas outflow line 105. Can be suppressed. Details of the gas-liquid separation will be described later.
 フィード・セパレーター13にて得られた気体の一部は、降圧部を構成するエキスパンダー14へと分流され、減圧膨張して温度低下することにより気液混合体(第1の気液混合体)が得られる(気液混合体を得る工程)。エキスパンダー14にて得られた気液混合体は、第1の気液混合体供給ライン103を介してデメタナイザー17の上部領域S1の下部側に導入される。当該気液混合体(第1の気液混合体)がデメタナイザー17に供給される温度は、例えば-50℃~-80℃である。 Part of the gas obtained by the feed separator 13 is diverted to the expander 14 constituting the pressure-lowering part, and the gas-liquid mixture (first gas-liquid mixture) is reduced by expanding the pressure under reduced pressure. Obtained (step of obtaining a gas-liquid mixture). The gas / liquid mixture obtained by the expander 14 is introduced to the lower side of the upper region S <b> 1 of the demethanizer 17 through the first gas / liquid mixture supply line 103. The temperature at which the gas-liquid mixture (first gas-liquid mixture) is supplied to the demethanizer 17 is, for example, −50 ° C. to −80 ° C.
 また、図1に示すように、降圧部は、例えばJT(Joule-Thomson)バルブ15がエキスパンダー14に対して併設されて構成されていてもよい。この場合、フィード・セパレーター13にて得られた気体の一部としてエキスパンダー14を運転するための流量が少なく、エキスパンダー14を稼働できない場合には、前記気体の一部は、エキスパンダー14に分流せずにJTバルブ15へと全量が分流されてもよい。また、フィード・セパレーター13にて得られた気体の一部が過剰でありエキスパンダー14のみで処理できない場合には、過剰分がJTバルブ15へと分流されてもよい。さらに、エキスパンダー14の効率が良く、フィード・セパレーター13にて得られた気体の一部が想定以上に冷えてプロセス上問題が生じる場合にはJTバルブ15を併用し、前記気体の一部は、エキスパンダー14及びJTバルブ15へと分流されてもよい。上記のようにエキスパンダー14が設置される場合に限られず、JTバルブ15のみが設置されることにより、フィード・セパレーター13にて得られた気体の一部がJTバルブ15へと分流されてもよい。 Further, as shown in FIG. 1, the step-down unit may be configured such that, for example, a JT (Joule-Thomson) valve 15 is attached to the expander 14. In this case, when the flow rate for operating the expander 14 is small as a part of the gas obtained in the feed separator 13 and the expander 14 cannot be operated, a part of the gas is not diverted to the expander 14. The entire amount may be diverted to the JT valve 15. In addition, when a part of the gas obtained by the feed separator 13 is excessive and cannot be processed only by the expander 14, the excess may be diverted to the JT valve 15. Further, when the expander 14 is efficient and part of the gas obtained in the feed separator 13 cools more than expected and causes a problem in the process, the JT valve 15 is used together. It may be diverted to the expander 14 and the JT valve 15. Not only when the expander 14 is installed as described above, but by installing only the JT valve 15, a part of the gas obtained by the feed separator 13 may be diverted to the JT valve 15. .
 フィード・セパレーター13にて得られた気体であって、降圧部へと供給された気体を除いた残りの気体は冷却部であるコールドボックス16に供給される。前記残りの気体は、コールドボックス16でデメタナイザー17の塔頂から流出した低温のメタンガスとの熱交換によりさらに冷却された後、減圧バルブ104aにより減圧膨張(より具体的には断熱膨張)する。減圧バルブ104aは、本例の「他の降圧部」に相当する。このように、前記残りの気体から気液混合体(第2の気液混合体)が得られる(気液混合体を得る工程)。コールドボックス16及び減圧バルブ104aを流通することによって得られた気液混合体は、第2の気液混合体供給ライン104を介してデメタナイザー17の上部領域S1の上部側に供給される。当該気液混合体(第2の気液混合体)がデメタナイザー17に導入される温度は、例えば-70℃~-100℃である。 The gas obtained by the feed separator 13 except for the gas supplied to the step-down unit is supplied to the cold box 16 which is a cooling unit. The remaining gas is further cooled by heat exchange with the low-temperature methane gas flowing out from the top of the demethanizer 17 in the cold box 16, and then decompressed (more specifically, adiabatically expanded) by the decompression valve 104a. The pressure reducing valve 104a corresponds to “another pressure reducing unit” in this example. Thus, a gas-liquid mixture (second gas-liquid mixture) is obtained from the remaining gas (step of obtaining a gas-liquid mixture). The gas / liquid mixture obtained by flowing through the cold box 16 and the pressure reducing valve 104a is supplied to the upper side of the upper region S1 of the demethanizer 17 via the second gas / liquid mixture supply line 104. The temperature at which the gas-liquid mixture (second gas-liquid mixture) is introduced into the demethanizer 17 is, for example, −70 ° C. to −100 ° C.
 なお、フィード・セパレーター13にて得られた気体の一部をさらに冷却するコールドボックス16を設けることは必須の要件ではない。例えばフィード・セパレーター13にて得られた気体の全量を降圧部(エキスパンダー14又はJTバルブ15)に供給し、減圧膨張により気液混合体を得てもよい。 Note that it is not an essential requirement to provide a cold box 16 for further cooling a part of the gas obtained by the feed separator 13. For example, the entire amount of gas obtained by the feed separator 13 may be supplied to the pressure-lowering unit (expander 14 or JT valve 15), and a gas-liquid mixture may be obtained by decompression expansion.
 一方、フィード・セパレーター13にて得られた液体は、コールドボックス12にて、NG供給ライン101から供給されたNGとの熱交換が行われ、冷熱が回収された後、液体流出ライン102及びディストリビューター172を介してデメタナイザー17の下部領域S3の上部側に導入される。当該液体がデメタナイザー17に導入される温度は、例えば-10℃~30℃である。 On the other hand, the liquid obtained in the feed separator 13 is subjected to heat exchange with the NG supplied from the NG supply line 101 in the cold box 12, and after the cold energy is recovered, the liquid outflow line 102 and the distribution are obtained. It is introduced into the upper side of the lower region S3 of the demethanizer 17 via the 172. The temperature at which the liquid is introduced into the demethanizer 17 is, for example, −10 ° C. to 30 ° C.
 上述のように、デメタナイザー17に対しては、その内部の高さ方向の温度分布に対応して、デメタナイザー17の異なる高さ位置に、上側から温度の低い順(第2の気液混合体、第1の気液混合体、液体の順)に、これらの気液混合体及び液体が導入される(気液混合体及び液体を導入する工程)。 As described above, with respect to the demethanizer 17, corresponding to the temperature distribution in the height direction of the demethanizer 17, the demethanizer 17 is arranged at different height positions in descending order from the upper side (second gas-liquid mixture, In the order of the first gas-liquid mixture and the liquid, these gas-liquid mixture and liquid are introduced (step of introducing the gas-liquid mixture and liquid).
 さらにデメタナイザー17には、外部熱源としてリボイラー171が設けられている。リボイラー171は、デメタナイザー17の下部領域S3の下部側から抜き出された液体を加熱して、同液体の抜き出し位置よりも下方側へ戻す。リボイラー171にて加熱された液体が熱源となってデメタナイザー17における軽質成分の蒸留が実施される。 Further, the demethanizer 17 is provided with a reboiler 171 as an external heat source. The reboiler 171 heats the liquid extracted from the lower side of the lower region S3 of the demethanizer 17 and returns it to the lower side than the extraction position of the liquid. The liquid heated in the reboiler 171 serves as a heat source, and light components in the demethanizer 17 are distilled.
 なお、NGの冷却手法のバリエーションとして言及したように、デメタナイザー17の中部領域S2や下部領域S3から抜き出された液体を自己冷媒として用い、NG供給ライン101から供給されたNGの冷却を行うコールドボックスを設ける場合もある。この場合には、NGとの熱交換により温度上昇した自己冷媒を再びデメタナイザー17の底部側(抜き出し位置よりも下方側)に戻すことにより、デメタナイザー17にて実施される蒸留操作の熱源とすることもできる。 As mentioned above as a variation of the cooling method for NG, the liquid extracted from the middle region S2 and the lower region S3 of the demethanizer 17 is used as a self-cooling agent, and cold is performed to cool the NG supplied from the NG supply line 101. A box may be provided. In this case, the self-refrigerant whose temperature has increased due to heat exchange with NG is returned again to the bottom side of the demethanizer 17 (below the extraction position), thereby providing a heat source for the distillation operation performed in the demethanizer 17. You can also.
 デメタナイザー17には、上部領域S1、中部領域S2、下部領域S3の各領域に、塔内で蒸留される流体の気液接触を促進するための充填物Pまたはトレイが設置されている。図1では、デメタナイザー17に充填物Pが設置されている場合を図示している。NGは、上述の構成を備えるデメタナイザー17にて蒸留が行われ、メタンと、炭素数2以上の重質分とに蒸留される。 The demethanizer 17 is provided with packings P or trays for promoting gas-liquid contact of fluid distilled in the tower in each of the upper region S1, the middle region S2, and the lower region S3. In FIG. 1, the case where the filler P is installed in the demethanizer 17 is illustrated. NG is distilled in the demethanizer 17 having the above-described configuration, and is distilled into methane and a heavy component having 2 or more carbon atoms.
 デメタナイザー17の塔頂部からは、例えば-70℃~-120℃のメタンガスがメタンガス流出ライン105へ向けて流出し、デメタナイザー17の塔底部からは、例えば40℃~140℃の重質分が重質分流出ライン106へ向けて流出する(塔頂部からメタンを流出させ、塔底部から重質分を流出させる工程)。 For example, methane gas at −70 ° C. to −120 ° C. flows out from the top of the demethanizer 17 toward the methane gas outflow line 105, and heavy components at 40 ° C. to 140 ° C., for example, are heavy from the bottom of the demethanizer 17. It flows out toward the separation line 106 (a step of flowing out methane from the top of the tower and flowing out heavy components from the bottom of the tower).
 メタンガス流出ライン105に流出した(NGから回収された)メタンガスは、コールドボックス16、11にて、順次、フィード・セパレーター13で得られた気体の一部の冷却、NG供給ライン101から供給されたNGの冷却を行う。しかる後、メタンガスは、コンプレッサー311、ブースター・コンプレッサー312にて昇圧され、エアフィンクーラー32にて冷却された後、ガス払い出しライン301を介してパイプライン出荷される。 The methane gas that flowed out to the methane gas outflow line 105 (collected from NG) was supplied from the NG supply line 101 in the cold boxes 16 and 11 in order to partially cool the gas obtained in the feed separator 13. Cool NG. Thereafter, the pressure of the methane gas is increased by the compressor 311 and the booster compressor 312, cooled by the air fin cooler 32, and then shipped by pipeline through the gas discharge line 301.
 一方、重質分流出ライン106に流出した(NGから回収された)重質分は、抜出ポンプ173を用いて、複数の蒸留塔21~24を備えた精留部2に送られる。精留部2では、当該重質分から、有用成分(後述のプロパンやブタンなど)と、より重い留分のコンデンセートとの分離を行う(前記重質分を分離する工程)。 On the other hand, the heavy component that has flowed out to the heavy component discharge line 106 (collected from NG) is sent to the rectification unit 2 equipped with a plurality of distillation columns 21 to 24 using the extraction pump 173. The rectifying unit 2 separates useful components (such as propane and butane described later) and heavier fractions of condensate from the heavy component (step of separating the heavy component).
 ここで従来のNG処理装置には、付加価値の高いLPGとなるプロパン(C3)やブタン(C4)を得るために、前記重質分からエタン(C2)を分離するデエタナイザー21と、エタンが分離された後の重質分からC3を分離するデプロパナイザー22と、C3が分離された後の重質分からC4を分離するデブタナイザー23と、を備えた精留部2が設けられている場合がある。この場合には、デブタナイザー23にてC4が分離された後の、C4よりも重い留分(C5+)がコンデンセートとしてデブタナイザー23の底部から払い出される。 Here, in the conventional NG processing apparatus, in order to obtain propane (C3) and butane (C4) as LPG having high added value, ethane is separated from a deethanizer 21 that separates ethane (C2) from the heavy components. In some cases, a rectifying unit 2 including a depropanizer 22 that separates C3 from the heavy component after separation and a debutizer 23 that separates C4 from the heavy component after separation of C3 may be provided. In this case, a fraction heavier than C4 (C5 +) after C4 is separated by the debutizer 23 is discharged from the bottom of the debutizer 23 as a condensate.
 このような従来のNG処理装置に対し、本例のNG処理装置は、デメタナイザー17の底部から流出した重質分に含まれるC4とイソペンタン(i-C5)とを含む液体(吸収液主成分)を活用し、NGに含まれるベンゼンを重質分側に取り込む処理を行う点に特徴を有している。 In contrast to such a conventional NG processing apparatus, the NG processing apparatus of this example is a liquid (absorbing liquid main component) containing C4 and isopentane (i-C5) contained in the heavy component flowing out from the bottom of the demethanizer 17. This is characterized in that benzene contained in NG is taken into the heavy component side.
 この観点において、図1に示すNG処理装置の精留部2は、重質分流出ライン106に流出した重質分からC2、C3、C4、及びi-C5を、この順に分離するための蒸留塔である、デエタナイザー21、デプロパナイザー22、デブタナイザー23、及びデイソペンタナイザー24を備えている。
 C2、C3は吸収液主成分(本例ではデブタナイザー23、デイソペンタナイザー24で分離されるC4、i-C5)よりも軽い留分に相当する。これらC2及びC3成分は、C4及びi-C5を含む吸収液主成分と合流して混合液となり、ベンゼンを吸収するための吸収液としてフィード・セパレーター13に供給される。吸収液の流れについては後述する。
From this point of view, the rectifying unit 2 of the NG treatment apparatus shown in FIG. 1 is a distillation column for separating C2, C3, C4, and i-C5 in this order from the heavy component flowing into the heavy component discharge line 106. A deethanizer 21, a depropanizer 22, a debutanizer 23, and a deisopentanizer 24.
C2 and C3 correspond to lighter fractions than the main component of the absorbing liquid (in this example, C4 and i-C5 separated by the debutanizer 23 and the deisopentanizer 24). These C2 and C3 components are combined with the main component of the absorbing solution containing C4 and i-C5 to form a mixed solution, which is supplied to the feed separator 13 as an absorbing solution for absorbing benzene. The flow of the absorbing liquid will be described later.
 デイソペンタナイザー24は、デブタナイザー23にてC4が分離された後の重質分からi-C5を分離する。そして、デイソペンタナイザー24にてi-C5が分離された後の、i-C5よりも重質の成分、より具体的にはノルマルペンタン(n-C5)を含む成分がコンデンセートとして、コンデンセート払い出しライン204より払い出される。 The deisopentaizer 24 separates i-C5 from the heavy component after C4 is separated by the debutanizer 23. Then, a component heavier than i-C5, more specifically a component containing normal pentane (n-C5) after i-C5 is separated by deisopentaizer 24, is discharged as condensate. It is paid out from the line 204.
 i-C5の次に重質な成分は、ノルマルペンタン(n-C5)である。n-C5は、ベンゼンとの蒸留分離が困難であるため、当該n-C5まで吸収液主成分として活用すると、NG供給ライン101から供給されるNGに対してベンゼンが再供給されてしまうおそれがある。そこでデイソペンタナイザー24でi-C5を分離し、n-C5及びn-C5よりも重い留分をコンデンセートとすることにより、NGへのベンゼンの再供給を抑制する。 The next heaviest component after i-C5 is normal pentane (n-C5). Since n-C5 is difficult to be separated from benzene by distillation, if n-C5 is used as the main component of the absorbing solution, benzene may be re-supplied to NG supplied from the NG supply line 101. is there. Therefore, i-C5 is separated by the deisopentanizer 24, and a fraction heavier than n-C5 and n-C5 is used as a condensate, thereby suppressing resupply of benzene to NG.
 デエタナイザー21にて得られたC2、デプロパナイザー22にて得られたC3、デブタナイザー23にて得られたC4、及びデイソペンタナイザー24にて得られたi-C5は吸収液原料ライン201にて合流し、セパレーター27にて気液分離される。なお、吸収液主成分として利用しない、余剰のC2、C3、C4は、製品などとして払い出される。また、余剰のi-C5は、コンデンセートに混合される。 C2 obtained by the deethanizer 21, C3 obtained by the depropanizer 22, C4 obtained by the debutanizer 23, and i-C5 obtained by the deisopentaizer 24 are supplied to the absorbent raw material line 201. The gas and liquid are separated by the separator 27. Note that surplus C2, C3, and C4 that are not used as the main component of the absorbing solution are paid out as products. Surplus i-C5 is mixed with condensate.
 セパレーター27にて液体から分離され、主にC2を含む気体は、燃料ガスライン202を介して系外に払い出され、燃料ガスとして活用される。また、セパレーター27から流出した前記C2を含む気体を不図示のコンプレッサーを用いて昇圧し、昇圧後の気体をブースター・コンプレッサー312の上流側に合流させることにより、C2を含む気体を製品としてパイプライン出荷してもよい。 The gas that is separated from the liquid by the separator 27 and mainly contains C2 is discharged out of the system via the fuel gas line 202 and used as fuel gas. Further, the gas containing C2 flowing out of the separator 27 is pressurized using a compressor (not shown), and the pressurized gas is joined to the upstream side of the booster compressor 312 so that the gas containing C2 is used as a pipeline. You may ship.
 セパレーター27にて気体から分離された液体は、吸収液として送液ポンプ28、吸収液供給ライン203を介してデメタナイザー17の上流側に供給される。NG供給ライン101から供給されるNGに含まれる重質分(炭素数2以上)が多いほど、ベンゼンはデメタナイザー17の塔底側に落ちやすくなり、ベンゼンを吸収するためにフィード・セパレーター13に供給される吸収液主成分及び吸収液を少なくすることができる。 The liquid separated from the gas by the separator 27 is supplied as an absorption liquid to the upstream side of the demethanizer 17 via the liquid feed pump 28 and the absorption liquid supply line 203. The more heavy components (2 or more carbon atoms) contained in the NG supplied from the NG supply line 101, the easier benzene falls to the bottom of the demethanizer 17, and the benzene is supplied to the feed separator 13 to absorb benzene. It is possible to reduce the absorption liquid main component and the absorption liquid.
 吸収液供給ライン203を介して供給された吸収液は、コールドボックス11にて、自己冷媒であるメタンガスとの熱交換により-20℃~-45℃程度まで過冷却(吸収液の各成分が液化する温度よりも低い温度に冷却)された後、既述のフィード・セパレーター13に供給される。吸収液の過冷却は、当該吸収液に対するベンゼンの吸収能力を向上させるために行われる。フィード・セパレーター13内では、NG供給ライン101からのNGと、吸収液供給ライン203からの吸収液とを接触させて、NGに含まれる気体のベンゼンを吸収液に吸収させる処理が行われる。吸収液供給ライン203は、本例の吸収液供給部に相当する。 The absorption liquid supplied through the absorption liquid supply line 203 is supercooled to about −20 ° C. to −45 ° C. in the cold box 11 by heat exchange with methane gas, which is a self refrigerant (each component of the absorption liquid is liquefied). After cooling to a temperature lower than the temperature at which the feed separator 13 is supplied. The supercooling of the absorbing solution is performed in order to improve the ability of benzene to absorb the absorbing solution. In the feed separator 13, the NG from the NG supply line 101 and the absorption liquid from the absorption liquid supply line 203 are brought into contact with each other, and the gas benzene contained in NG is absorbed into the absorption liquid. The absorption liquid supply line 203 corresponds to the absorption liquid supply unit of this example.
 フィード・セパレーター13には、NGの気体と吸収液との接触を促進するための充填物Qが充填されている。吸収液供給ライン203からの吸収液は、充填物Qの層の上方側の位置からフィード・セパレーター13に導入され、NG供給ライン101からのNGは充填物Qの層の下方側の位置からフィード・セパレーター13に導入される。この結果、フィード・セパレーター13内を上昇するNGの気体と下降する吸収液とが向流接触し、気液平衡に基づき、当該気体に微量に含まれるベンゼンが効率よく吸収液に吸収される(ベンゼンを吸収液に吸収させる工程)。 The feed separator 13 is filled with a filler Q for promoting contact between the NG gas and the absorbing liquid. Absorbing liquid from the absorbing liquid supply line 203 is introduced into the feed separator 13 from a position above the packing Q layer, and NG from the NG supplying line 101 is fed from a position below the packing Q layer. Introduced into the separator 13. As a result, the NG gas rising in the feed separator 13 and the descending absorbing liquid come into countercurrent contact, and benzene contained in a trace amount in the gas is efficiently absorbed by the absorbing liquid based on the gas-liquid equilibrium ( Process of absorbing benzene in the absorbing solution).
 フィード・セパレーター13内でベンゼンを吸収した吸収液は、同フィード・セパレーター13内で分離されたNGの液体と合流してデメタナイザー17に供給され、重質分としてデメタナイザー17の底部から流出する。 
 一方、吸収液と接触させた気体は、同伴するベンゼンの量が少なくなっているので、デメタナイザー17の上部領域S1やメタンガス流出ライン105中のベンゼン量が少なくなる。この結果、吸収液によるベンゼンの吸収を行わない場合と比較して、デメタナイザー17の上部領域S1に設けられた充填物P及びデメタナイザー17の下流に設置された機器類等、低温のメタンガスが流通する個所でベンゼンが固化するのを防止することができる。
The absorbing liquid that has absorbed benzene in the feed separator 13 joins with the NG liquid separated in the feed separator 13 and is supplied to the demethanizer 17 and flows out from the bottom of the demethanizer 17 as a heavy component.
On the other hand, since the gas brought into contact with the absorbing solution has a small amount of entrained benzene, the amount of benzene in the upper region S1 of the demethanizer 17 and the methane gas outflow line 105 decreases. As a result, compared with the case where benzene is not absorbed by the absorbing liquid, low-temperature methane gas flows, such as the packing P provided in the upper region S1 of the demethanizer 17 and the equipment installed downstream of the demethanizer 17. It is possible to prevent benzene from solidifying at the locations.
 本実施の形態に係るNG液化装置によれば、デメタナイザー17を用い、NGをメタンとC2以上の重質分とに分離する処理を行うにあたり、NGから分離したC4及びi-C5を含む吸収液主成分をNGの供給側に再供給するので、当該NGに含まれるベンゼンを重質分側に取り込むことができる。 According to the NG liquefaction apparatus according to the present embodiment, when performing the process of separating NG into methane and heavy components of C2 or higher using the demethanizer 17, the absorbing liquid containing C4 and i-C5 separated from NG Since the main component is resupplied to the supply side of NG, benzene contained in the NG can be taken into the heavy component side.
 ここで、本例の吸収液を用いてNG中のベンゼンの吸収を行う技術は、図1を用いて説明した例の如く、NGを蒸留して得られたメタンガスのパイプライン出荷を行うNG処理装置に適用する場合に限定されない。例えば、図2に示す例の如く、NGを液化してLNGを製造する天然ガス液化装置(NG液化装置)であるNG処理装置にも適用できる。
 以下、図2~6を用いて説明する各実施の形態において、図1を用いて説明したものと共通の構成要素には、図1にて用いたものと同じ符号を付してある。
Here, the technology for absorbing benzene in NG using the absorbing liquid of this example is an NG process in which methane gas obtained by distilling NG is shipped as in the example described with reference to FIG. The present invention is not limited to the case where it is applied to an apparatus. For example, as in the example shown in FIG. 2, the present invention can also be applied to an NG processing apparatus that is a natural gas liquefying apparatus (NG liquefying apparatus) that liquefies NG to produce LNG.
Hereinafter, in the embodiments described with reference to FIGS. 2 to 6, the same reference numerals as those used in FIG. 1 are given to the same components as those described with reference to FIG.
 NG液化装置の場合には、メタンガスは、デメタナイザー17の塔頂からメタンガス流出ライン105へと流出した後、コールドボックス16、11における熱交換、コンプレッサー311及びブースター・コンプレッサー312により圧縮、エアフィンクーラー32により冷却された後、さらにクーラー33にて冷却される。しかる後、メタンガスは、MCHE(Main Cryogenic Heat Exchanger、極低温主熱交換器)34を用いて冷却され、液化、過冷却されてLNGとなる。LNGは、リキッドエキスパンダー35にて減圧され、LNG払い出しライン302を介して払い出される。 In the case of the NG liquefaction apparatus, the methane gas flows out from the top of the demethanizer 17 to the methane gas outflow line 105, and then heat exchange in the cold boxes 16 and 11, compression by the compressor 311 and the booster compressor 312, the air fin cooler 32. Then, it is further cooled by the cooler 33. Thereafter, the methane gas is cooled using MCHE (Main Cryogenic Heat Exchanger) 34, liquefied and supercooled to become LNG. The LNG is depressurized by the liquid expander 35 and delivered through the LNG delivery line 302.
 また、精留部2にて重質分から分離され、セパレーター27にて分離された気体(主にC2)についてもMCHE34にて液化、過冷却し、メタンガスから得られたLNGと合流させた後にLNG払い出しライン302を介して払い出してもよい。 Further, the gas (mainly C2) separated from the heavy component in the rectifying unit 2 and liquefied and supercooled in the MCHE 34 is also liquefied and supercooled and joined with the LNG obtained from the methane gas. You may pay out via the payout line 302.
 図1を用いて説明した例と同様に、上述の構成を備えるNG液化装置においても、例えばフィード・セパレーター13にて、C4、及びi-C5を含む吸収液と、ベンゼンを含むNGの気体とを向流接触させることにより、気体中のベンゼンを重質分側に取り込むことができる。 Similar to the example described with reference to FIG. 1, in the NG liquefying apparatus having the above-described configuration, for example, in the feed separator 13, an absorption liquid containing C4 and i-C5, an NG gas containing benzene, By bringing them into countercurrent contact, benzene in the gas can be taken into the heavy component side.
 次に、図3、4を参照しながら精留部2のバリエーションに係る実施の形態について説明する。 
 図3に示す精留部2においては、図1にて説明したデブタナイザー23、デイソペンタナイザー24に替えて、デブタ・デイソペンタナイザー25が設けられている。即ち、精留部2は、重質分からC2、C3、及び「C4とi-C5との混合物」を、この順に分離するための蒸留塔である、デエタナイザー21、デプロパナイザー22、及びデブタ・デイソペンタナイザー25を備える。そして、デブタ・デイソペンタナイザー25にて得られた混合物から吸収液主成分を得る(重質分を分離する工程)。
Next, an embodiment according to a variation of the rectifying unit 2 will be described with reference to FIGS.
The rectifying unit 2 shown in FIG. 3 is provided with a debut / deisopentaizer 25 instead of the debutanizer 23 and the deisopentanizer 24 described in FIG. That is, the rectifying unit 2 is a distillation tower for separating C2, C3, and “mixture of C4 and i-C5” from the heavy components in this order, the deethanizer 21, the depropanizer 22, and the debuter A deisopentaizer 25 is provided. Then, the main component of the absorbent is obtained from the mixture obtained by the debut / deisopentanizer 25 (step of separating heavy components).
 そして、デエタナイザー21にて得られたC2、デプロパナイザー22にて得られたC3、デブタ・デイソペンタナイザー25にて得られたC4とi-C5との混合物が吸収液原料ライン201にて合流し、セパレーター27にて気液分離される。この結果、吸収液主成分であるC4とi-C5との混合物と、軽質分(C2、C3)とを含む吸収液が得られ、この吸収液が吸収液供給ライン203を介してフィード・セパレーター13に供給される。 Then, a mixture of C2 obtained by the deethanizer 21, C3 obtained by the depropanizer 22, and C4 obtained by the debut / deisopentanizer 25 and i-C5 is absorbed in the absorbent raw material line 201. The gas and liquid are separated by the separator 27. As a result, an absorption liquid containing a mixture of C4 and i-C5, which are the main components of the absorption liquid, and light components (C2, C3) is obtained, and this absorption liquid is supplied to the feed separator via the absorption liquid supply line 203. 13 is supplied.
 また、図4に示す精留部2においては、図1にて説明したデプロパナイザー22、デブタナイザー23、デイソペンタナイザー24に替えて、スタビライザー26が設けられている。即ち、精留部2は、重質分からC2、及び「C3とC4とi-C5との混合物」を、この順に分離するための蒸留塔である、デエタナイザー21及びスタビライザー26を備える。そして、スタビライザー26にて得られた混合物から吸収液主成分を得る(重質分を分離する工程)。 Further, in the rectifying section 2 shown in FIG. 4, a stabilizer 26 is provided in place of the depropanizer 22, the debutizer 23, and the deisopentanizer 24 described in FIG. That is, the rectification unit 2 includes a deethanizer 21 and a stabilizer 26 which are distillation towers for separating C2 and “mixture of C3, C4, and i-C5” in this order from the heavy component. And an absorption liquid main component is obtained from the mixture obtained in the stabilizer 26 (process which isolate | separates a heavy part).
 そして、デエタナイザー21にて得られたC2、スタビライザー26にて得られたC3とC4とi-C5との混合物が吸収液原料ライン201にて合流し、セパレーター27にて気液分離される。この結果、吸収液主成分であるC3とC4とi-C5との混合物と、軽質分(C2)とを含む吸収液が得られ、この吸収液が吸収液供給ライン203を介してフィード・セパレーター13に供給される。 Then, C2 obtained by the deethanizer 21 and a mixture of C3, C4 and i-C5 obtained by the stabilizer 26 are merged in the absorbent raw material line 201, and gas-liquid separation is performed in the separator 27. As a result, an absorption liquid containing a mixture of C3, C4, and i-C5, which are the main components of the absorption liquid, and a light component (C2) is obtained, and this absorption liquid is fed through the absorption liquid supply line 203 to the feed separator. 13 is supplied.
 次いで図5は、吸収液の過冷却を行うにあたり、図1にて説明したコールドボックス11にて自己冷媒であるメタンガスを利用して冷却を行う手法に替えて、外部冷媒を用いる吸収液クーラー18を設けた例を示している。外部冷媒としては、液化したC3などを例示することができる。また図1に示した自己冷媒を用いて吸収液の過冷却を行うコールドボックス11の補助として、外部冷媒を用いる吸収液クーラー18を併設してもよい。 Next, FIG. 5 shows an absorption liquid cooler 18 that uses an external refrigerant instead of the cooling method that uses the methane gas that is the self refrigerant in the cold box 11 described in FIG. The example which provided is shown. Examples of the external refrigerant include liquefied C3. Further, an absorbent cooler 18 using an external refrigerant may be provided as an auxiliary to the cold box 11 that supercools the absorbent using the self-refrigerant shown in FIG.
 さらに図6は、図1にて説明した吸収液の供給先をフィード・セパレーター13とする例に替えて、NG供給ライン101を流れ、コールドボックス11、12にて冷却される前のNG(天然ガスを冷却する工程が実施される前のNG)に吸収液を合流させる例を示している。この例では、NGと吸収液との混合物が気液分離部であるフィード・セパレーター13aへと流れ込むまでの間に、NG側から吸収液側へとベンゼンが吸収される。かかる構成によれば、コールドボックス11に吸収液を流通させる流路を設ける必要がなく、コールドボックス11をシンプルに構成することができる。 Further, FIG. 6 shows a case where NG (natural) before being cooled in the cold boxes 11 and 12 through the NG supply line 101 instead of the example in which the supply destination of the absorbing liquid described in FIG. An example is shown in which the absorbent is joined to NG) before the gas cooling step is performed. In this example, benzene is absorbed from the NG side to the absorption liquid side until the mixture of NG and the absorption liquid flows into the feed separator 13a which is a gas-liquid separator. According to such a configuration, it is not necessary to provide a flow path for allowing the absorbent to flow through the cold box 11, and the cold box 11 can be configured simply.
 しかる後、フィード・セパレーター13a内にて、NGと吸収液との混合物から、ベンゼンを吸収した吸収液を含む液体が分離される。ここで、図1を用いて説明した充填物Qの層が設けられたフィード・セパレーター13の例とは異なり、NGの気液分離を行うフィード・セパレーター13aは、コールドボックス11、12にて冷却され、気液混合流体となっているNGを気体と液体とに分離することが可能なドラムであればよい。 Thereafter, in the feed separator 13a, the liquid containing the absorbing liquid that has absorbed benzene is separated from the mixture of NG and the absorbing liquid. Here, unlike the example of the feed separator 13 provided with the layer of the packing Q described with reference to FIG. 1, the feed separator 13 a that performs gas-liquid separation of NG is cooled by the cold boxes 11 and 12. Any drum that can separate NG, which is a gas-liquid mixed fluid, into gas and liquid may be used.
 図3~6を用いて説明した各実施形態に係る技術は、図2に示すNG液化装置に対しても適用することができる。 The technology according to each embodiment described with reference to FIGS. 3 to 6 can be applied to the NG liquefying apparatus shown in FIG.
 上記実施形態では、NG供給ライン101から供給されるNGは、メタンが90モル%以上含まれ、炭素数が2以上の重質分が10モル%未満である場合について説明したがこれに限定されるものではない。本NG液化装置は、NGに含まれるメタンが90モル%未満であっても、例えば炭素数が2以上の重質分が10モル%以上含まれ、且つ著しくベンゼン濃度が高いNGを処理する場合にも適用することができる。 In the above embodiment, NG supplied from the NG supply line 101 has been described with respect to the case where 90 mol% or more of methane is contained and the heavy component having 2 or more carbon atoms is less than 10 mol%, but is not limited thereto. It is not something. This NG liquefaction device treats NG with a benzene concentration that is extremely high, for example, even if the amount of methane contained in NG is less than 90 mol%, for example, containing 10 mol% or more of heavy components having 2 or more carbon atoms It can also be applied to.
 上記実施形態では特に言及するものではないが、例えばLNG設備が併設されている場合には、精留部2で得られたC2、C3、C4、及びi-C5成分は、図2に示すMCHE34の冷媒として使用されてもよい。この場合、図1~3、図5及び図6に記載された上記実施形態のように、精留部2が複数の蒸留塔を備えることによって、精留部2で得られたC2、C3、C4、及びi-C5成分を単体として又は混合冷媒として抜き出すことができ、MCHE34で使用する冷媒の組成組み合せによる自由度を高めることができる。尚、LNG設備が併設されない場合には、MCHE34で使用する冷媒を抜き出す必要がないため、精留部2は、図4に示すようにデエタナイザー21及びスタビライザー26を備える構成としてもよい。 Although not particularly mentioned in the above embodiment, for example, when an LNG facility is provided, the C2, C3, C4, and i-C5 components obtained in the rectifying unit 2 are the MCHE 34 shown in FIG. It may be used as a refrigerant. In this case, as in the above-described embodiment described in FIGS. 1 to 3, 5, and 6, the rectifying unit 2 includes a plurality of distillation columns, so that C2, C3, The C4 and i-C5 components can be extracted as a single substance or as a mixed refrigerant, and the degree of freedom by combining the refrigerant compositions used in the MCHE 34 can be increased. If no LNG facility is provided, it is not necessary to extract the refrigerant used in the MCHE 34. Therefore, the rectifying unit 2 may be configured to include a deethanizer 21 and a stabilizer 26 as shown in FIG.
 上記実施形態では特に言及するものではないが、本NG液化装置は、地上設備としても、洋上設備としても採用することができる。尚、洋上の限られたスペースにおいてデメタナイザー17及び精留部2は、地上設備の場合と比較して近接して設置される。そのため、本NG液化装置を洋上設備として採用する場合には、吸収液供給ライン203を短く設計することができ、有利である。 Although not particularly mentioned in the above embodiment, the present NG liquefaction apparatus can be employed as a ground facility or an offshore facility. In the limited space on the ocean, the demethanizer 17 and the rectifying unit 2 are installed closer to each other than in the case of ground facilities. Therefore, when adopting the present NG liquefaction apparatus as an offshore facility, the absorbent supply line 203 can be designed to be short, which is advantageous.
 また、図3、及び図4で示す実施形態では、精留部2に設置する蒸留塔の本数を削減することができる。そのため、本NG液化装置を洋上設備として採用する場合には、洋上の限られたスペースにおいて省スペースに蒸留塔を設置することができると共にスペースを有効利用することができる。 Moreover, in the embodiment shown in FIGS. 3 and 4, the number of distillation columns installed in the rectifying unit 2 can be reduced. Therefore, when employing this NG liquefaction apparatus as an offshore facility, a distillation tower can be installed in a space-saving manner in a limited space on the ocean, and the space can be used effectively.
101   NG供給ライン
13、13a
      フィード・セパレーター
17    デメタナイザー
2     精留部
21    デエタナイザー
22    デプロパナイザー
23    デブタナイザー
24    デイソペンタナイザー
25    デブタ・デイソペンタナイザー
26    スタビライザー
 

 
101 NG supply line 13, 13a
Feed separator 17 Demethanizer 2 Rectifier 21 Deethanizer 22 Depropanizer 23 Debutizer 24 Deisopentaizer 25 Debuta deisopentaizer 26 Stabilizer

Claims (12)

  1.  天然ガス蒸留塔を用い、天然ガスをメタンと炭素数2以上の重質分とに分離する天然ガス処理方法において、
     天然ガス供給ラインから、5~7MPaの圧力で供給され、10モルppm以上の濃度のベンゼンを含む天然ガスを受け入れる工程と、
     前記天然ガス蒸留塔にて蒸留されている低温流体を抜き出して自己冷媒として利用し、前記天然ガス供給ラインから受け入れた天然ガスを冷却する工程と、
     前記冷却後の天然ガスを気液分離部にて気体と液体とに分離する工程と、
     前記気液分離部にて得られた気体を降圧部にて減圧膨張させることにより温度低下させ、気液混合体を得る工程と、
     前記天然ガス蒸留塔の異なる高さ位置に、上側から温度の低い順に、前記気液混合体及び前記気液分離部からの前記液体を導入する工程と、
     これら気液混合体及び液体を、前記天然ガス蒸留塔にて蒸留し、塔頂部から前記メタンを流出させ、塔底部から前記重質分を流出させる工程と、
     複数の蒸留塔を備え前記天然ガス蒸留塔から流出した前記重質分を分離するための精留部にて、前記重質分を、ブタン及びイソペンタンを含み、天然ガス中のベンゼンを吸収させるための吸収液主成分と、前記吸収液主成分より軽い留分と、前記吸収液主成分より重い留分のコンデンセートとに分離する工程と、
     前記天然ガス供給ラインからの天然ガスと、前記吸収液主成分を含む吸収液とを接触させて、当該天然ガスに含まれるベンゼンを吸収液に吸収させる工程と、を含むことを特徴とする天然ガス処理方法。
    In a natural gas processing method for separating natural gas into methane and heavy components having 2 or more carbon atoms using a natural gas distillation tower,
    Receiving a natural gas supplied from a natural gas supply line at a pressure of 5 to 7 MPa and containing benzene at a concentration of 10 mol ppm or more;
    Extracting a low-temperature fluid distilled in the natural gas distillation tower and using it as a self-cooling medium, and cooling the natural gas received from the natural gas supply line;
    Separating the natural gas after cooling into gas and liquid in a gas-liquid separator;
    Reducing the temperature by expanding the gas obtained in the gas-liquid separation part under reduced pressure in the pressure-lowering part, and obtaining a gas-liquid mixture;
    Introducing the liquid from the gas-liquid mixture and the gas-liquid separation unit into the different height positions of the natural gas distillation column from the upper side in ascending order of temperature;
    These gas-liquid mixture and liquid are distilled in the natural gas distillation tower, the methane is flowed out from the top of the tower, and the heavy component is flowed out from the bottom of the tower;
    In order to absorb benzene in natural gas, including butane and isopentane, in a rectifying section that has a plurality of distillation columns and separates the heavy components flowing out from the natural gas distillation column Separating the absorption liquid main component, a fraction lighter than the absorption liquid main component, and a condensate heavier than the absorption liquid main component,
    Natural gas from the natural gas supply line, and the absorption liquid containing the main component of the absorption liquid is brought into contact with each other, and the absorption liquid absorbs benzene contained in the natural gas. Gas processing method.
  2.  前記吸収液は、前記吸収液主成分と前記吸収液主成分より軽い留分との混合液であることを特徴とする請求項1に記載の天然ガス処理方法。 The natural gas treatment method according to claim 1, wherein the absorption liquid is a mixed liquid of the absorption liquid main component and a fraction lighter than the absorption liquid main component.
  3.  前記気液分離部にて得られた気体を、前記降圧部にて減圧膨張させる一部の気体と、残りの気体とに分離し、前記残りの気体をさらに冷却した後、他の降圧部にて減圧膨張させて気液混合体を得る工程と、
     前記降圧部における減圧膨張により得られた気液混合体を第1の気液混合体、前記他の降圧部における減圧膨張により得られた気液混合体を第2の気液混合体と呼ぶとき、前記気液混合体及び前記液体を導入する工程では、これら第1の気液混合体、第2の気液混合体、及び前記液体が、前記天然ガス蒸留塔の異なる高さ位置に、上側から温度の低い順に導入されることを特徴とする請求項1に記載の天然ガス処理方法。
    The gas obtained in the gas-liquid separation unit is separated into a part of the gas that is decompressed and expanded in the pressure-decreasing unit and the remaining gas, and after the remaining gas is further cooled, Obtaining a gas-liquid mixture by expanding under reduced pressure,
    When the gas-liquid mixture obtained by decompression expansion in the pressure-lowering part is called a first gas-liquid mixture, and the gas-liquid mixture obtained by decompression expansion in the other pressure-lowering part is called a second gas-liquid mixture. In the step of introducing the gas-liquid mixture and the liquid, the first gas-liquid mixture, the second gas-liquid mixture, and the liquid are placed on the upper side at different height positions of the natural gas distillation column. The natural gas treatment method according to claim 1, wherein the natural gas treatment method is introduced in ascending order of temperature.
  4.  前記ベンゼンを吸収液に吸収させる工程では、前記気液分離部に吸収液を供給し、前記液体から分離された気体と前記吸収液とを向流接触させることにより、気体中のベンゼンを吸収液に吸収させ、ベンゼンを吸収した吸収液を前記液体と合流させることを特徴とする請求項1に記載の天然ガス処理方法。 In the step of absorbing the benzene in the absorption liquid, the absorption liquid is supplied to the gas-liquid separation unit, and the gas separated from the liquid is brought into countercurrent contact with the absorption liquid, whereby the benzene in the gas is absorbed. The natural gas treatment method according to claim 1, wherein an absorption liquid that has been absorbed in water and benzene is combined with the liquid.
  5.  前記気液分離部には、前記天然ガス蒸留塔から抜き出された自己冷媒との熱交換により過冷却された吸収液が供給されることを特徴とする請求項4に記載の天然ガス処理方法。 The natural gas processing method according to claim 4, wherein the gas-liquid separation unit is supplied with a supercooled absorption liquid by heat exchange with the self-refrigerant extracted from the natural gas distillation tower. .
  6.  前記気液分離部には、外部冷媒との熱交換により過冷却された吸収液が供給されることを特徴とする請求項4に記載の天然ガス処理方法。 The natural gas processing method according to claim 4, wherein the gas-liquid separation unit is supplied with an absorption liquid supercooled by heat exchange with an external refrigerant.
  7.  前記ベンゼンを吸収液に吸収させる工程では、前記天然ガス供給ラインを流れ、前記天然ガスを冷却する工程が実施される前の天然ガスに前記吸収液を合流させ、前記天然ガスを気体と液体とに分離する工程にて、ベンゼンを吸収した後の吸収液を含んだ液体を気体から分離することを特徴とする請求項1に記載の天然ガス処理方法。 In the step of absorbing the benzene into the absorption liquid, the absorption liquid is combined with the natural gas before the step of cooling the natural gas is performed through the natural gas supply line, and the natural gas is gas and liquid. 2. The natural gas processing method according to claim 1, wherein in the step of separating the liquid, the liquid containing the absorption liquid after absorbing benzene is separated from the gas.
  8.  前記精留部は、前記重質分からエタン、プロパン、ブタン、及びイソペンタンを、この順に分離するための蒸留塔である、エタン分離塔、プロパン分離塔、ブタン分離塔、及びイソペンタン分離塔を備え、前記重質分を分離する工程では前記ブタン分離塔、及びイソペンタン分離塔にて得られたブタン及びイソペンタンから前記吸収液主成分を得ることを特徴とする請求項1に記載の天然ガス処理方法。 The rectifying section includes an ethane separation tower, a propane separation tower, a butane separation tower, and an isopentane separation tower, which are distillation towers for separating ethane, propane, butane, and isopentane from the heavy fraction in this order. 2. The natural gas processing method according to claim 1, wherein in the step of separating the heavy component, the main component of the absorption liquid is obtained from butane and isopentane obtained in the butane separation tower and the isopentane separation tower.
  9.  前記精留部には、前記重質分からエタン、プロパン、及びブタンとイソペンタンとの混合物を、この順に分離するための蒸留塔である、エタン分離塔、プロパン分離塔、及びブタン-イソペンタン分離塔を備え、前記重質分を分離する工程では前記ブタン-イソペンタン分離塔にて得られた混合物から前記吸収液主成分を得ることを特徴とする請求項1に記載の天然ガス処理方法。 The rectification section includes an ethane separation tower, a propane separation tower, and a butane-isopentane separation tower, which are distillation towers for separating ethane, propane, and a mixture of butane and isopentane in this order from the heavy fraction. The natural gas treatment method according to claim 1, wherein the main component of the absorbent is obtained from the mixture obtained in the butane-isopentane separation column in the step of separating the heavy component.
  10.  前記精留部には、前記重質分からエタン、及びプロパンとブタンとイソペンタンとの混合物を、この順に分離するための蒸留塔である、エタン分離塔、及びスタビライザーを備え、前記重質分を分離する工程では前記スタビライザーにて得られた混合物から前記吸収液主成分を得ることを特徴とする請求項1に記載の天然ガス処理方法。 The rectifying section is provided with an ethane separation tower and a stabilizer for separating ethane and a mixture of propane, butane, and isopentane in this order from the heavy fraction, and separates the heavy fraction. The natural gas processing method according to claim 1, wherein the absorbing liquid main component is obtained from the mixture obtained by the stabilizer in the step of performing.
  11.  前記天然ガス供給ラインから供給される天然ガスは、メタンを90モル%以上含み、前記天然ガス蒸留塔の塔頂部から流出したメタンを液化して液化天然ガスを得るためのものであることを特徴とする請求項1に記載の天然ガス処理方法。 The natural gas supplied from the natural gas supply line contains 90 mol% or more of methane, and is for liquefying methane flowing out from the top of the natural gas distillation tower to obtain liquefied natural gas. The natural gas processing method according to claim 1.
  12.  天然ガス蒸留塔を備え、天然ガスをメタンと炭素数2以上の重質分とに分離する天然ガス処理装置において、
     10モルppm以上の濃度のベンゼンを含む天然ガスが、5~7MPaの圧力にて供給される天然ガス供給ラインと、
     前記天然ガス蒸留塔にて蒸留されている低温流体を抜き出して自己冷媒として利用し、前記天然ガス供給ラインから受け入れた天然ガスを冷却する天然ガス冷却部と、
     前記冷却後の天然ガスを気体と液体とに分離する気液分離部と、
     前記気液分離部にて得られた気体を減圧膨張させることにより温度低下させ、気液混合体を得る降圧部と、
     上側から温度の低い順に、前記気液混合体及び前記気液分離部からの前記液体が異なる高さ位置に導入され、これら気液混合体及び液体を蒸留し、塔頂部から前記メタンを流出させ、塔底部から前記重質分を流出させる天然ガス蒸留塔と、
     複数の蒸留塔を備え、ブタン及びイソペンタンを含み、天然ガス中のベンゼンを吸収させるための吸収液主成分と、前記吸収液主成分より軽い留分と、前記吸収液主成分より重い留分のコンデンセートと、に前記天然ガス蒸留塔から流出した前記重質分を分離する精留部と、
     当該天然ガスに含まれるベンゼンを吸収液に吸収させるために、前記天然ガス供給ラインから供給された天然ガスに、前記吸収液主成分を含む吸収液を接触させる吸収液供給部と、を備えたことを特徴とする天然ガス処理装置。
     
     
     

     
    In a natural gas processing apparatus equipped with a natural gas distillation tower and separating natural gas into methane and heavy components having 2 or more carbon atoms,
    A natural gas supply line in which natural gas containing benzene at a concentration of 10 mol ppm or more is supplied at a pressure of 5 to 7 MPa;
    A natural gas cooling section for extracting a low-temperature fluid distilled in the natural gas distillation tower and using it as a self-refrigerant and cooling natural gas received from the natural gas supply line;
    A gas-liquid separator that separates the cooled natural gas into gas and liquid;
    A pressure reducing unit that lowers the temperature by expanding the gas obtained in the gas-liquid separation unit under reduced pressure to obtain a gas-liquid mixture;
    The liquids from the gas-liquid mixture and the gas-liquid separation unit are introduced into different height positions from the upper side in ascending order of temperature, the gas-liquid mixture and the liquid are distilled, and the methane is discharged from the top of the tower. A natural gas distillation tower for letting out the heavy component from the bottom of the tower,
    A plurality of distillation towers, including butane and isopentane, an absorbent main component for absorbing benzene in natural gas, a fraction lighter than the main component of the absorbent, and a fraction heavier than the main component of the absorber A condensate, and a rectifying section for separating the heavy component flowing out from the natural gas distillation tower,
    In order to make the absorption liquid absorb benzene contained in the natural gas, an absorption liquid supply unit that makes the absorption liquid containing the main component of the absorption liquid contact the natural gas supplied from the natural gas supply line, A natural gas processing apparatus characterized by that.




PCT/JP2018/014669 2018-04-06 2018-04-06 Natural gas treatment method, and natural gas treatment device WO2019193740A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/014669 WO2019193740A1 (en) 2018-04-06 2018-04-06 Natural gas treatment method, and natural gas treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/014669 WO2019193740A1 (en) 2018-04-06 2018-04-06 Natural gas treatment method, and natural gas treatment device

Publications (1)

Publication Number Publication Date
WO2019193740A1 true WO2019193740A1 (en) 2019-10-10

Family

ID=68100526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014669 WO2019193740A1 (en) 2018-04-06 2018-04-06 Natural gas treatment method, and natural gas treatment device

Country Status (1)

Country Link
WO (1) WO2019193740A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4157904A (en) * 1976-08-09 1979-06-12 The Ortloff Corporation Hydrocarbon gas processing
JP2006523296A (en) * 2003-03-07 2006-10-12 オートロフ・エンジニアーズ・リミテッド LNG production at low temperature natural gas processing plant
US20150267137A1 (en) * 2012-10-16 2015-09-24 Rainer Sapper Method for separating heavy hydrocarbons from a hydrocarbon-rich fraction
JP5798127B2 (en) * 2010-01-14 2015-10-21 オートロフ・エンジニアーズ・リミテッド Treatment of hydrocarbon gas
JP2017510787A (en) * 2014-03-14 2017-04-13 ルマス テクノロジー インコーポレイテッド Method and apparatus for removing heavy hydrocarbons from lean natural gas before liquefaction

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4157904A (en) * 1976-08-09 1979-06-12 The Ortloff Corporation Hydrocarbon gas processing
JP2006523296A (en) * 2003-03-07 2006-10-12 オートロフ・エンジニアーズ・リミテッド LNG production at low temperature natural gas processing plant
JP5798127B2 (en) * 2010-01-14 2015-10-21 オートロフ・エンジニアーズ・リミテッド Treatment of hydrocarbon gas
US20150267137A1 (en) * 2012-10-16 2015-09-24 Rainer Sapper Method for separating heavy hydrocarbons from a hydrocarbon-rich fraction
JP2017510787A (en) * 2014-03-14 2017-04-13 ルマス テクノロジー インコーポレイテッド Method and apparatus for removing heavy hydrocarbons from lean natural gas before liquefaction

Similar Documents

Publication Publication Date Title
RU2194930C2 (en) Method for liquefaction of natural gas containing at least one freezable component
KR100338882B1 (en) Improved cascade refrigeration process for liquefaction of natural gas
RU2641778C2 (en) Complex method for extraction of gas-condensate liquids and liquefaction of natural gas
CA2819128C (en) Ngl recovery from natural gas using a mixed refrigerant
KR100338880B1 (en) multi-component refrigeration process for liquefaction of natural gas
KR102243894B1 (en) Pretreatment of natural gas before liquefaction
RU2224961C2 (en) Method for removal of volatile components from natural gas
JP4548867B2 (en) Improved natural gas liquefaction method
JP6561077B2 (en) Method and apparatus for removing heavy hydrocarbons from lean natural gas before liquefaction
JP6591983B2 (en) Hydrocarbon gas treatment
EA016149B1 (en) Method and apparatus for recovering and fractionating a mixed hydrocarbon feed stream
JP2005042093A (en) Method for recovering component heavier than methane from natural gas and apparatus for the same
JP5636036B2 (en) Method and associated apparatus for treating feed natural gas to obtain treated natural gas and C5 + hydrocarbon fractions
RU2763101C2 (en) Methods for cold supply in installations for extraction of gas condensate liquids
EA031162B1 (en) Method of liquefying a contaminated hydrocarbon-containing gas stream
KR20110010776A (en) Iso-pressure open refrigeration ngl recovery
JP2004536176A (en) A method for recovering ethane and heavier hydrocarbons from a methane-rich pressurized liquid mixture
JP5210302B2 (en) Method and apparatus for treating hydrocarbon streams
EA022763B1 (en) Hydrocarbon gas processing
WO2010040735A2 (en) Methods of treating a hydrocarbon stream and apparatus therefor
WO2019193740A1 (en) Natural gas treatment method, and natural gas treatment device
WO2013144671A1 (en) Cryogenic separation process of a feed gas stream containing carbon dioxide and methane
GB2345124A (en) Natural gas fractionation involving a dephlegmator.
AU2016363566B2 (en) Method of liquefying a contaminated hydrocarbon-containing gas stream
WO2020021633A1 (en) Natural gas treatment device and natural gas treatment method

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18913857

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18913857

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP