WO2019193632A1 - Motor control device - Google Patents

Motor control device Download PDF

Info

Publication number
WO2019193632A1
WO2019193632A1 PCT/JP2018/014130 JP2018014130W WO2019193632A1 WO 2019193632 A1 WO2019193632 A1 WO 2019193632A1 JP 2018014130 W JP2018014130 W JP 2018014130W WO 2019193632 A1 WO2019193632 A1 WO 2019193632A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
current detection
detection circuit
current
contact
Prior art date
Application number
PCT/JP2018/014130
Other languages
French (fr)
Japanese (ja)
Inventor
悟 下條
文夫 齋藤
正史 芦野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/014130 priority Critical patent/WO2019193632A1/en
Priority to JP2020512119A priority patent/JP6987216B2/en
Publication of WO2019193632A1 publication Critical patent/WO2019193632A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring

Definitions

  • the present invention relates to a motor control device that controls the rotation speed of a motor.
  • the motor control device described in the following Patent Document 1 is a device that controls a motor having a plurality of tap lead wires and a single common wire, and electromagnetically opens and closes an arbitrary one of the plurality of tap lead wires such as a relay.
  • the rotation speed is controlled by controlling with an apparatus and applying an AC voltage to the motor.
  • a current detection circuit configured by connecting the light emission side of a phototransistor coupler between any one of a plurality of tap extraction lines and a single common line is provided.
  • the motor control device determines that there is an abnormality if a current is flowing through the current detection circuit, and performs control to stop the motor operation.
  • the voltage applied to the current detection circuit is Since it is stepped down by the motor winding, it may be about 40V.
  • the phototransistor coupler does not emit light due to a decrease in the input voltage, and a failure such as welding may not be detected for the relay contact for controlling the tap lead wire on the side where the current detection circuit is not connected. There was a problem that there was.
  • the present invention has been made in view of the above, and an object thereof is to obtain a motor control device capable of reliably detecting a failure such as welding of a relay contact.
  • a motor control device provides a motor with a single common line drawn from the motor and a plurality of tap lead lines drawn from the motor. An AC voltage is applied to control the rotational speed of the motor.
  • the motor control device includes a relay group having c contact relays for controlling the application of an AC voltage between a single common line and each of the plurality of tap extraction lines, by the number of tap extraction lines.
  • the motor control device also includes a current detection circuit having a first current detection circuit for detecting the current that flows when the AC voltage is applied via the c-contact relay when the motor is stopped and the AC voltage is applied. Provide a group.
  • the motor control device includes a second current detection circuit that is connected between the single common line and any of the plurality of tap lead lines and detects a leakage current that can flow between the motor and the ground.
  • the motor control device determines whether to stop the operation of the motor based on the detection result of the first current detection circuit and the detection result of the second current detection circuit.
  • the figure which shows the circuit structure of the motor control system containing the motor control apparatus which concerns on embodiment The figure which shows the internal structure of c contact relay in embodiment
  • the figure which shows an example of the circuit structure of the 1st electric current detection circuit in embodiment The figure which shows an example of the circuit structure of the 2nd electric current detection circuit in embodiment
  • the flowchart which shows an example of the control flow by the control circuit 5 of embodiment Determination table for stop command used in the flowchart of FIG. Determination table at the time of operation command used in the flowchart of FIG. 1 is a block diagram showing an example of a hardware configuration when the functions of the control circuit shown in FIG. 1 are realized by software
  • connection electric connection and physical connection are not distinguished from each other and simply referred to as “connection”.
  • FIG. 1 is a diagram illustrating a circuit configuration of a motor control system including a motor control device according to an embodiment.
  • FIG. 2 is a diagram illustrating an internal configuration of the c-contact relay according to the embodiment.
  • the motor control system 100 in the embodiment includes a motor 1 and a motor control device 2 that controls the rotation speed of the motor 1.
  • the motor 1 includes a motor winding 9 and a thermal fuse 10.
  • the thermal fuse 10 is a protection means that blows when abnormal heat is generated inside the motor 1.
  • the motor 1 and the motor control device 2 are connected by a single common line 6 drawn from the motor 1 and two tap lead lines 7 and 8 drawn from the motor 1.
  • the thermal fuse 10 is inserted into a single common line 6 inside the motor 1.
  • the AC power supply 3 applies an AC voltage to the motor winding 9 of the motor 1 through the two tap lead wires 7 and 8 and the single common wire 6.
  • the motor 1 is rotationally driven by energization of the motor winding 9.
  • the housing 50 that houses the motor 1 is grounded by the earth 11.
  • the motor control device 2 includes a power supply circuit 4, a control circuit 5, a drive circuit 20, first current detection circuits 21a and 21b, and a second current detection circuit 22.
  • the first current detection circuits 21 a and 21 b constitute a current detection circuit group 21.
  • the power supply circuit 4, the control circuit 5, the drive circuit 20, the first current detection circuits 21 a and 21 b, and the second current detection circuit 22 that constitute the motor control device 2 are arranged on the printed circuit board 52.
  • the power supply circuit 4 generates a drive voltage for driving the control circuit 5 and the drive circuit 20.
  • the control circuit 5 performs control to apply an AC voltage output from the AC power supply 3 to any one of the single common line 6 and the tap lead lines 7 and 8. Thereby, the control circuit 5 controls the rotational speed of the motor 1.
  • the drive circuit 20 has a relay group 70.
  • the relay group 70 includes a c contact relay 63 and a c contact relay 64.
  • One end of the first current detection circuit 21 a is connected to the non-ground side of the AC power supply 3, and the other end of the first current detection circuit 21 a is connected to the ground side of the AC power supply 3 via the contact 23 of the c-contact relay 63. Connected to.
  • One end of the first current detection circuit 21 b is connected to the non-ground side of the AC power supply 3, and the other end of the first current detection circuit 21 b is connected to the AC power supply 3 via the contact 24 of the c-contact relay 64.
  • One end of the second current detection circuit 22 is connected to the single common line 6, and the other end of the second current detection circuit 22 is connected to the tap lead line 7. Note that the other end of the second current detection circuit 22 may be connected to the tap lead wire 8.
  • the motor 1 When an AC voltage is applied between the tap extraction line 7 and the single common line 6 via the contact 23 of the c-contact relay 63, the motor 1 is driven at the first rotational speed.
  • the motor 1 When an AC voltage is applied between the tap lead-out line 8 and the single common line 6 via the contact 24 of the c-contact relay 64, the motor 1 is driven at the second rotational speed.
  • the first rotation speed is higher than the second rotation speed, that is, the first rotation speed is “higher speed” than the second rotation speed.
  • the time when the motor 1 is driven at the first rotational speed is referred to as “high speed driving” or “high speed operation”
  • the time when the motor 1 is driven at the second rotational speed is referred to as “low speed driving” or “low speed operation”.
  • the tap lead-out line 7 is appropriately referred to as “tap lead-out line for high-speed operation”
  • the tap lead-out line 8 is appropriately referred to as “tap lead-out line for low-speed operation”.
  • Other elements may also be described with the words “for high speed operation” or “for low speed operation”.
  • FIG. 2 shows the internal configuration of the c-contact relays 63 and 64 used in the present embodiment.
  • the c contact relay 63 and the c contact relay 64 have the same configuration.
  • the c contact relay 63 is a relay for high speed operation, and includes a coil 13 and a contact 23.
  • the c contact relay 64 is a relay for low speed operation, and includes the coil 14 and the contact 24.
  • the c contact relay 63 for high speed operation includes a COM terminal 23a that is a common terminal, an NC terminal 23b that is a normally closed terminal, and an NO terminal 23c that is a normally open terminal. 3 terminals and a coil 13.
  • the c-contact relay 64 for low-speed operation includes three terminals: a COM terminal 24a that is a common terminal, an NC terminal 24b that is a normally closed terminal, and an NO terminal 24c that is a normally open terminal. And the coil 14.
  • the COM terminal 23a is connected to the ground side of the AC power supply 3
  • the NC terminal 23b is connected to one end of the first current detection circuit 21a
  • the N.O. terminal 23c is a tap lead wire. 7 is connected.
  • the COM terminal 24a is connected to the ground side of the AC power source 3
  • the NC terminal 24b is connected to one end of the first current detection circuit 21b
  • the NO terminal 24c is a tap. Connected to lead-out line 8.
  • the configuration shown in FIG. 2 is merely an example, and any configuration of relays may be used as long as the relay can be switched between the NC terminal and the NO terminal.
  • the drive circuit 20 further includes transistors 16 and 17, resistors 12a1, 12a2, 12b1, and 12b2, and diodes 15a and 15b, in addition to the c-contact relays 63 and 64 described above.
  • the coil 13 and the contact 23 are components of the c-contact relay 63
  • the coil 14 and the contact 24 are components of the c-contact relay 64.
  • the transistors 16 and 17 are controlled to be turned on or off by the output of the control circuit 5.
  • a current flows through the coil 13 and the coil 13 is in an excited state.
  • the transistor 16 is controlled to turn off, no current flows through the coil 13, and the coil 13 is in a non-excited state.
  • the transistor 17 is controlled to turn on, a current flows through the coil 14 and the coil 14 is in an excited state.
  • the transistor 17 is controlled to be off, no current flows through the coil 14, and the coil 14 is in a non-excited state.
  • Resistors 12a1 and 12a2 play a role of supplying a base current to the transistor 16 when the transistor 16 is controlled to be turned on.
  • the resistors 12b1 and 12b2 play a role of supplying a base current to the transistor 17 when the transistor 17 is controlled to be turned on.
  • the diode 15a plays a role of preventing a counter electromotive voltage generated when the coil 13 is turned on or off.
  • the diode 15b plays a role of preventing a counter electromotive voltage generated when the coil 14 is turned on or off.
  • the first current detection circuit 21a enters a non-detection state.
  • the contact 24 comes into contact with the NC terminal 24b, and the COM terminal 24a and the NC terminal 24b become conductive.
  • the contact 24 comes into contact with the NO terminal 24c, and the COM terminal 24a and the NO terminal 24c become conductive. Therefore, when the coil 14 is in the non-excited state, the other end of the first current detection circuit 21b is connected to the ground side of the AC power supply 3, and therefore the first current flows through the first current detection circuit 21b. As a result, the first current detection circuit 21b is in a detection state.
  • the first current detection circuit 21b enters a non-detection state.
  • the second current detection circuit 22 detects a second current that flows when the coils 13 and 14 are in a non-excited state and the thermal fuse 10 is blown.
  • the second current is a current on the order of several ⁇ A to several tens of ⁇ A, and is smaller than the first current. The details of the operation in which the second current detection circuit 22 detects the second current will be described later.
  • FIG. 3 is a diagram illustrating an example of a circuit configuration of the first current detection circuits 21a and 21b in the embodiment.
  • the first current detection circuit 21a and the first current detection circuit 21b can use the same circuit as illustrated. Since the circuit configuration is the same, the first current detection circuit 21a will be described below as an example.
  • the configuration shown in FIG. 3 is an example, and any configuration may be used as long as each current can be detected.
  • the first current detection circuit 21a includes a terminal J1 connected to a single common line 6, a terminal J2 connected to the NC terminal 23b of the c-contact relay 63, and a control circuit 5. And a terminal J3 to be connected.
  • a resistor 301, a diode 302, a Zener diode 303, and a light emitting diode 306a of the photocoupler 306 are connected in series in this order.
  • a capacitor 304 and a bleeder resistor 305 are connected in parallel to each other at both ends of the light emitting diode 306a.
  • the resistor 301 plays a role of suppressing a current flowing through the light emitting diode 306a.
  • the voltage drop across the resistor 301 is relatively large and generates heat. For this reason, it is preferable to use a power-type resistor with high heat resistance as the resistor 301.
  • An example of a power type resistor having high heat resistance is a metal oxide film resistor.
  • a metal film resistor or a chip resistor may be used.
  • a plurality of resistors may be used. The number of resistors may be determined by performing an evaluation in advance.
  • the diode 302 plays a role of making the current flowing through the light emitting diode 306a only in one direction.
  • the effect of suppressing the heat generation of the resistor 301 can be obtained by making the current only in one direction, that is, half-wave rectification.
  • the zener diode 303 plays a role of preventing erroneous detection of the photocoupler 306 due to an unintended voltage.
  • the first current detection circuit 21a no current is detected unless a voltage higher than the Zener voltage of the Zener diode 303 is applied between the terminals J1 and J2.
  • Both the capacitor 304 and the bleeder resistor 305 play a role of suppressing erroneous light emission of the light emitting diode 306a.
  • the bleeder resistor 305 and the light emitting diode 306a are connected in parallel, the current flowing through the terminal J1 is shunted to the bleeder resistor 305 and the light emitting diode 306a. For this reason, in order to cause the light emitting diode 306a to emit light, it is necessary to flow a current commensurate with the divided current from the terminal J1, and the light emitting diode 306a does not emit light with an unintended small current. For this reason, erroneous light emission of the light emitting diode 306a due to an unintended current is suppressed.
  • the phototransistor 306b of the photocoupler 306 and the resistor 307 are connected in series.
  • a direct current flows through the phototransistor 306b.
  • the resistor 307 limits the current flowing through the phototransistor 306b.
  • a capacitor 308 is connected to both ends of the phototransistor 306b.
  • the capacitor 308 serves to remove noise from the phototransistor 306b.
  • a resistor 309 is inserted between a connection point between the resistor 307 and the phototransistor 306b and the terminal J3. The resistor 309 plays a role for protecting the input port of the control circuit 5.
  • the first current detection circuit 21 a is configured as described above, and outputs the detection result to the control circuit 5. Specifically, the following operations are performed.
  • FIG. 4 is a diagram illustrating an example of a circuit configuration of the second current detection circuit in the embodiment. Note that the configuration shown in FIG. 4 is an example, and any configuration may be used as long as the specification can detect the current.
  • FIG. 4 the same or equivalent circuit elements as those of the first current detection circuit 21a and the first current detection circuit 21b shown in FIG. Hereinafter, differences from the first current detection circuit 21a and the first current detection circuit 21b shown in FIG. 3 will be mainly described.
  • the Zener diode 303 and the bleeder resistor 305 connected to both ends of the light emitting diode 306a of the photocoupler 306 are eliminated.
  • the second current detection circuit 22 can detect a second current having a magnitude that cannot be detected by the first current detection circuit 21a and the first current detection circuit 21b.
  • FIG. 5 is a diagram showing a current path when the thermal fuse 10 of the motor 1 is blown in the configuration of the motor control system 100 shown in FIG.
  • the contact 23 of the c-contact relay 63 comes into contact with the NC terminal 23b, and the COM terminal 23a and the NC terminal 23b become conductive. Therefore, the ground potential of the AC power supply 3 is not applied to the tap lead wire 7.
  • the second current detection circuit 22 does not detect the second current.
  • a current path 401 toward the ground 11 is generated via the stray capacitance 402 generated between the motor winding 9 of the motor 1 and the casing 50 of the motor 1.
  • the current flowing in the current path 401 is a leakage current that can flow between the motor 1 and the ground 11 via the stray capacitance 402.
  • the second current detection circuit 22 determines whether or not the thermal fuse 10 is blown based on the leakage current that can flow in the current path 401. When detecting the leakage current, the second current detection circuit 22 determines that the thermal fuse 10 is blown. Further, when the second current detection circuit 22 determines that the thermal fuse 10 is blown, it determines that the motor 1 has failed or determines that the motor 1 is abnormal.
  • the stray capacitance 402 described above varies depending on the size and capacity of the motor 1, and the value of the second current also varies. For this reason, it is preferable that the second current flowing through the current path 401 is measured in advance and it is confirmed by prior evaluation that the second current detection circuit 22 detects the second current.
  • FIG. 6 is a flowchart illustrating an example of a control flow by the control circuit 5 according to the embodiment.
  • FIG. 7 is a determination table at the time of a stop command used in the flowchart of FIG.
  • FIG. 8 is a determination table at the time of an operation command used in the flowchart of FIG.
  • control circuit 5 performs normal control (step S601).
  • the normal control in the present embodiment refers to the following control.
  • control circuit 5 controls the transistor 16 to be turned on to operate the coil 13.
  • the contact 23 comes into contact with the NO terminal 23c, the tap lead wire 7 for high speed operation and the common wire 6 are connected, and the motor 1 is driven at high speed.
  • control circuit 5 controls the transistor 17 to be turned on to operate the coil 14.
  • the contact 24 comes into contact with the N.O. terminal 24c, the tap lead wire 8 for low speed operation and the common line 6 are connected, and the motor 1 is driven at low speed.
  • control circuit 5 controls both the transistors 16 and 17 to be off, and the coils 13 and 14 are deactivated.
  • the contact 23 comes into contact with the NC terminal 23b, and the contact 24 comes into contact with the NC terminal 24b.
  • the tap extraction line 7 for high speed operation and the tap extraction line 8 for low speed operation are disconnected from the circuit, and the drive of the motor 1 is stopped.
  • control circuit 5 determines whether or not the motor 1 is stopped (step S602).
  • step S602 Yes
  • a determination process at the time of a stop command is performed (step S603).
  • the determination process of step S603 it determines according to the determination table shown, for example in FIG.
  • FIG. 7 shows the first current detection circuit 21a for high speed operation when the command to the transistor 16 of the control circuit 5 is “off” and the command to the transistor 17 is “off”. A combination pattern of detection results by the first current detection circuit 21b and the second current detection circuit 22 for low-speed operation is shown.
  • step S604 determines whether or not the determination result in step S603 is “normal” (step S604). If the determination result in step S603 is “normal” (step S604, Yes), the process returns to step S601, and the processing from step S601 to step S603 is repeated. On the other hand, when the determination result in step S603 is “abnormal” (step S604, No), the control circuit 5 prohibits the output of a signal for controlling the transistors 16 and 17 to be on (step S605), and FIG. The process ends.
  • step S606 when the control circuit 5 determines that the motor 1 is not stopped, that is, is operating (step S602, No), the control circuit 5 performs a determination process at the time of an operation command (step S606). About the determination process of step S606, it determines according to the determination table shown, for example in FIG. In FIG. 8, when the command to the transistor 16 of the control circuit 5 is “ON” and the command to the transistor 17 is “OFF”, the first current detection circuit 21a for high speed operation and the low speed A pattern of combinations of detection results by the first current detection circuit 21b for driving is shown.
  • the first current detection circuit 21a for high speed operation and the low speed operation are used.
  • a pattern of combinations of detection results by the first current detection circuit 21b is shown.
  • the control circuit 5 determines “normal” when the first current detection circuit 21a is “no current detection” and the first current detection circuit 21b is “current detection”.
  • the control circuit 5 determines “normal” when the first current detection circuit 21 a is “current detection is present” and the first current detection circuit 21 b is “no current detection”.
  • step S607 determines whether or not the determination result of step S606 is “normal” (step S607). If the determination result in step S606 is “normal” (step S607, Yes), the process returns to step S601, and the processing from step S601 to step S606 is repeated. On the other hand, when the determination result in step S606 is “abnormal” (step S607, No), the control circuit 5 controls the outputs of the transistors 16 and 17 to be off, and thereafter controls the transistors 16 and 17 to be on. The signal output is prohibited (step S608), and the process of FIG. 6 is terminated.
  • the rotational speed of the motor 1 is controlled by two tap lead lines, a tap lead line 7 for high speed operation and a tap lead line 8 for low speed operation.
  • a first current detection circuit is arranged on each of the three tap lead wires. do it.
  • the configuration in the case of using a plurality of tap lead lines is as follows. Prepare the same number of c-contact relays as the number of tap extraction lines and the same number of first current detection circuits as the number of tap extraction lines. -A c-contact relay is arranged on each tap lead-out line, and the tap lead-out line is connected to each of the NO terminals at the contact of the c-contact relay. A first current detection circuit is connected between a single common line and each of the NC terminals at the contacts of the c-contact relay.
  • the motor control device has the same number of relays as the number of tap extraction lines and the same number of first current detection circuits as the number of tap extraction lines, A first current detection circuit is connected between the common line and each of the N.C. terminals of the plurality of relays.
  • the voltage applied to the plurality of first current detection circuits is not stepped down by the motor winding, and the voltage applied to the plurality of first current detection circuits is substantially between the voltages applied to the plurality of first current detection circuits. There is no difference. This makes it possible to reliably detect failures such as welding of relay contacts regardless of the connection configuration of the current detection circuit.
  • the welding failure of the relay contact is determined based on the detection result of the first current detection circuit, and the motor failure is determined based on the detection result of the second current detection circuit. Is determined. That is, the welding failure of the relay contact and the motor failure are individually monitored by different current detection circuits. This prevents erroneous determination of a relay contact welding failure and a motor failure. Moreover, since the failure location can be identified by determining the failure location, an increase in the cost required for maintenance is suppressed.
  • the relay contact is performed by the first current detection circuit regardless of the motor operating state, that is, both when the motor is stopped and during operation. It is possible to determine whether there is a welding failure. Thereby, even if the relay contact is welded during operation, the control circuit can turn off the output of the transistor, so that it is possible to quickly detect a motor failure.
  • FIG. 9 is a block diagram showing an example of a hardware configuration when the function of the control circuit 5 shown in FIG. 1 is realized by software.
  • control circuit 5 When the functions of the control circuit 5 in the embodiment are realized by software, as shown in FIG. 9, a processor 500 that performs an operation, a memory 502 that stores a program read by the processor 500, and signal input / output The interface 504 to be performed can be included. Further, the control circuit 5 may include a display 506 for displaying the processing result of the processor 500 to the user. The display 506 may be provided outside the control circuit 5.
  • the processor 500 may be an arithmetic means such as an arithmetic device, a microprocessor, a microcomputer, a CPU (Central Processing Unit), or a DSP (Digital Signal Processor).
  • the memory 502 is a nonvolatile or volatile semiconductor memory such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable ROM), EEPROM (registered trademark) (Electrically EPROM). It can be illustrated.
  • the memory 502 stores a program for executing the processing flow of FIG. 6 and a determination table shown in FIGS. 7 and 8.
  • the processor 500 exchanges necessary information via the interface 504, the processor 500 executes the program stored in the memory 502, and the processor 500 refers to the determination table stored in the memory 502, whereby the processor 500 of FIG. A processing flow can be executed.
  • the processing result and the determination result by the processor 500 can be stored in the memory 502. Further, the processing result and determination result by the processor 500 can be displayed on the display 506.
  • terminal 50 housing, 52 printed circuit board, 63, 64 c contact relay, 70 relay group, 100 motor control system, 301 , 307, 309 resistor, 302 diode, 303 zener diode, 304,308 capacitor, 305 bleeder resistor, 306 photocoupler, 306a light emitting diode, 306b phototransistor, 401 current path, 402 stray capacitance, 500 processor, 502 memory, 504 interface, 506 display.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

This motor control device (2) comprises: a relay group (70) that has c contact relays (63, 64) for controlling application of AC voltage between a single common line (6) and individual tap extraction lines (7, 8), the number of c contact relays corresponding to the number of tap extraction lines (7, 8); a current detection circuit group (21) for which AC voltage is applied via the c contact relays (63, 64) when a motor (1) is stopped, and that has first current detection circuits (21a, 21b) for detecting current flowing by application of AC voltage, the number of first current detection circuits (21a, 21b) corresponding to the number of tap extraction lines (7, 8); and a second current detection circuit (22) that is connected between the single common line (6) and either of the tap extraction lines (7, 8), the second current detection circuit (22) detecting leakage current that can flow between the motor (1) and ground. The motor control device (2) determines whether or not to stop operation of the motor (1) based on the detection results of the first current detection circuits (21a, 21b) and the detection results of the second current detection circuit (22).

Description

モータ制御装置Motor control device
 本発明は、モータの回転速度を制御するモータ制御装置に関する。 The present invention relates to a motor control device that controls the rotation speed of a motor.
 下記特許文献1に記載のモータ制御装置は、複数のタップ取出線と、単一のコモン線を有するモータを制御する装置であり、複数のタップ取出線の任意の1つをリレー等の電磁開閉装置で制御し、交流電圧をモータへ印加することで回転速度の制御を行っている。この特許文献1では、複数のタップ取出線の何れかと、単一のコモン線との間に、フォトトランジスタカプラの発光側を接続して構成した電流検知回路を備える。モータ制御装置は、モータの停止指令時において、電流検知回路に電流が流れている場合は異常と判断し、モータの運転を停止させる制御を行っている。 The motor control device described in the following Patent Document 1 is a device that controls a motor having a plurality of tap lead wires and a single common wire, and electromagnetically opens and closes an arbitrary one of the plurality of tap lead wires such as a relay. The rotation speed is controlled by controlling with an apparatus and applying an AC voltage to the motor. In Patent Document 1, a current detection circuit configured by connecting the light emission side of a phototransistor coupler between any one of a plurality of tap extraction lines and a single common line is provided. When a motor stop command is issued, the motor control device determines that there is an abnormality if a current is flowing through the current detection circuit, and performs control to stop the motor operation.
特許第3557884号公報Japanese Patent No. 3557884
 しかしながら、特許文献1のモータ制御装置では、複数のタップ取出線のうちの任意の1つに電流検知回路を接続している。このため、電流検知回路が接続されていない側のタップ取出線とモータとが電気的に接続された場合、電流検知回路に印加される電圧は、モータ内部のモータ巻線により降圧された電圧となる。このため、特許文献1のモータ制御装置では、電流検知回路で検知できない場合があった。 However, in the motor control device of Patent Document 1, a current detection circuit is connected to any one of a plurality of tap lead wires. For this reason, when the tap extraction line on the side where the current detection circuit is not connected and the motor are electrically connected, the voltage applied to the current detection circuit is the voltage stepped down by the motor winding inside the motor. Become. For this reason, in the motor control apparatus of patent document 1, there existed a case where it could not detect with a current detection circuit.
 例えば、交流電圧100Vで駆動するモータにおいて、電流検知回路が接続されていない側のタップ取出線を制御するためのリレーをオンに制御して駆動させた場合、電流検知回路に印加される電圧は、モータ巻線で降圧されるため、40V程度となる場合がある。このような場合、入力電圧の低下によってフォトトランジスタカプラが発光せず、電流検知回路が接続されていない側のタップ取出線を制御するためのリレー接点に対し、溶着等の故障が検知できない場合があるという課題があった。 For example, in a motor driven with an AC voltage of 100 V, when the relay for controlling the tap lead line on the side where the current detection circuit is not connected is controlled to be turned on, the voltage applied to the current detection circuit is Since it is stepped down by the motor winding, it may be about 40V. In such a case, the phototransistor coupler does not emit light due to a decrease in the input voltage, and a failure such as welding may not be detected for the relay contact for controlling the tap lead wire on the side where the current detection circuit is not connected. There was a problem that there was.
 本発明は、上記に鑑みてなされたものであって、リレー接点の溶着等の故障を確実に検知することができるモータ制御装置を得ることを目的とする。 The present invention has been made in view of the above, and an object thereof is to obtain a motor control device capable of reliably detecting a failure such as welding of a relay contact.
 上述した課題を解決し、目的を達成するために、本発明に係るモータ制御装置は、モータから引き出された単一のコモン線と、モータから引き出された複数のタップ取出線とにより、モータに交流電圧を印加してモータの回転速度の制御を行う。モータ制御装置は、単一のコモン線と複数のタップ取出線の各々との間への交流電圧の印加を制御するc接点リレーをタップ取出線の数分有するリレー群を備える。また、モータ制御装置は、モータの停止時にc接点リレーを介して交流電圧が印加され、交流電圧の印加によって流れる電流を検出する第1の電流検知回路をタップ取出線の数分有する電流検知回路群を備える。更に、モータ制御装置は、単一のコモン線と複数のタップ取出線の何れかとの間に接続され、モータとアースとの間に流れうる漏れ電流を検出する第2の電流検知回路を備える。モータ制御装置は、第1の電流検知回路の検知結果及び第2の電流検知回路の検知結果に基づいて、モータの運転を停止するか否かを判定する。 In order to solve the above-described problems and achieve the object, a motor control device according to the present invention provides a motor with a single common line drawn from the motor and a plurality of tap lead lines drawn from the motor. An AC voltage is applied to control the rotational speed of the motor. The motor control device includes a relay group having c contact relays for controlling the application of an AC voltage between a single common line and each of the plurality of tap extraction lines, by the number of tap extraction lines. The motor control device also includes a current detection circuit having a first current detection circuit for detecting the current that flows when the AC voltage is applied via the c-contact relay when the motor is stopped and the AC voltage is applied. Provide a group. Furthermore, the motor control device includes a second current detection circuit that is connected between the single common line and any of the plurality of tap lead lines and detects a leakage current that can flow between the motor and the ground. The motor control device determines whether to stop the operation of the motor based on the detection result of the first current detection circuit and the detection result of the second current detection circuit.
 本発明に係るモータ制御装置によれば、電流検知回路の接続構成に依らず、リレー接点の溶着等の故障を確実に検知することができるという効果を奏する。 According to the motor control device of the present invention, there is an effect that a failure such as welding of a relay contact can be reliably detected regardless of the connection configuration of the current detection circuit.
実施の形態に係るモータ制御装置を含むモータ制御システムの回路構成を示す図The figure which shows the circuit structure of the motor control system containing the motor control apparatus which concerns on embodiment 実施の形態におけるc接点リレーの内部構成を示す図The figure which shows the internal structure of c contact relay in embodiment 実施の形態における第1の電流検知回路の回路構成の一例を示す図The figure which shows an example of the circuit structure of the 1st electric current detection circuit in embodiment 実施の形態における第2の電流検知回路の回路構成の一例を示す図The figure which shows an example of the circuit structure of the 2nd electric current detection circuit in embodiment 図1に示されるモータ制御システムの構成において、モータの温度ヒューズが溶断した場合の電流経路を示す図The figure which shows the electric current path | route when the temperature fuse of a motor fuses in the structure of the motor control system shown by FIG. 実施の形態の制御回路5による制御フローの一例を示すフローチャートThe flowchart which shows an example of the control flow by the control circuit 5 of embodiment 図6のフローチャートで用いる停止指令時の判定テーブルDetermination table for stop command used in the flowchart of FIG. 図6のフローチャートで用いる運転指令時の判定テーブルDetermination table at the time of operation command used in the flowchart of FIG. 図1に示す制御回路の機能をソフトウェアで実現する場合のハードウェア構成の一例を示すブロック図1 is a block diagram showing an example of a hardware configuration when the functions of the control circuit shown in FIG. 1 are realized by software
 以下に添付図面を参照し、本発明の実施の形態に係るモータ制御装置について詳細に説明する。なお、以下の実施の形態により、本発明が限定されるものではない。また、以下では、電気的な接続と物理的な接続とを区別せずに、単に「接続」と称して説明する。 Hereinafter, a motor control device according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. The present invention is not limited to the following embodiments. In the following description, electric connection and physical connection are not distinguished from each other and simply referred to as “connection”.
実施の形態.
 まず、実施の形態に係るモータ制御装置の回路構成について、図1及び図2を参照して説明する。図1は、実施の形態に係るモータ制御装置を含むモータ制御システムの回路構成を示す図である。図2は、実施の形態におけるc接点リレーの内部構成を示す図である。
Embodiment.
First, the circuit configuration of the motor control device according to the embodiment will be described with reference to FIGS. 1 and 2. FIG. 1 is a diagram illustrating a circuit configuration of a motor control system including a motor control device according to an embodiment. FIG. 2 is a diagram illustrating an internal configuration of the c-contact relay according to the embodiment.
 実施の形態におけるモータ制御システム100は、図1に示されるように、モータ1と、モータ1の回転速度の制御を行うモータ制御装置2とを含む。 As shown in FIG. 1, the motor control system 100 in the embodiment includes a motor 1 and a motor control device 2 that controls the rotation speed of the motor 1.
 モータ1は、モータ巻線9及び温度ヒューズ10を備える。温度ヒューズ10は、モータ1の内部の異常発熱時に溶断する保護手段である。モータ1とモータ制御装置2とは、モータ1から引き出された単一のコモン線6と、モータ1から引き出された2つのタップ取出線7,8とによって接続されている。温度ヒューズ10は、モータ1の内部において、単一のコモン線6に挿入されている。 The motor 1 includes a motor winding 9 and a thermal fuse 10. The thermal fuse 10 is a protection means that blows when abnormal heat is generated inside the motor 1. The motor 1 and the motor control device 2 are connected by a single common line 6 drawn from the motor 1 and two tap lead lines 7 and 8 drawn from the motor 1. The thermal fuse 10 is inserted into a single common line 6 inside the motor 1.
 交流電源3は、2つのタップ取出線7,8と、単一のコモン線6とにより、モータ1のモータ巻線9に交流電圧を印加する。モータ巻線9への通電によって、モータ1は回転駆動される。モータ1を収容する筐体50は、アース11によって接地される。 The AC power supply 3 applies an AC voltage to the motor winding 9 of the motor 1 through the two tap lead wires 7 and 8 and the single common wire 6. The motor 1 is rotationally driven by energization of the motor winding 9. The housing 50 that houses the motor 1 is grounded by the earth 11.
 モータ制御装置2は、電源回路4と、制御回路5と、駆動回路20と、第1の電流検知回路21a,21bと、第2の電流検知回路22とを備える。本実施の形態において、第1の電流検知回路21a,21bは、電流検知回路群21を構成する。また、モータ制御装置2を構成する電源回路4、制御回路5、駆動回路20、第1の電流検知回路21a,21b及び第2の電流検知回路22は、プリント基板52に配置されている。 The motor control device 2 includes a power supply circuit 4, a control circuit 5, a drive circuit 20, first current detection circuits 21a and 21b, and a second current detection circuit 22. In the present embodiment, the first current detection circuits 21 a and 21 b constitute a current detection circuit group 21. Further, the power supply circuit 4, the control circuit 5, the drive circuit 20, the first current detection circuits 21 a and 21 b, and the second current detection circuit 22 that constitute the motor control device 2 are arranged on the printed circuit board 52.
 電源回路4は、制御回路5及び駆動回路20を駆動するための駆動電圧を生成する。制御回路5は、単一のコモン線6と、タップ取出線7,8のうちの何れか1つに対して、交流電源3が出力する交流電圧を印加させる制御を行う。これにより、制御回路5は、モータ1の回転速度の制御を行う。 The power supply circuit 4 generates a drive voltage for driving the control circuit 5 and the drive circuit 20. The control circuit 5 performs control to apply an AC voltage output from the AC power supply 3 to any one of the single common line 6 and the tap lead lines 7 and 8. Thereby, the control circuit 5 controls the rotational speed of the motor 1.
 駆動回路20は、リレー群70を有する。リレー群70は、c接点リレー63及びc接点リレー64を有する。 The drive circuit 20 has a relay group 70. The relay group 70 includes a c contact relay 63 and a c contact relay 64.
 第1の電流検知回路21aの一端は、交流電源3の非接地側に接続され、第1の電流検知回路21aの他端は、c接点リレー63の接点23を介して交流電源3の接地側に接続される。また、第1の電流検知回路21bの一端は、交流電源3の非接地側に接続され、第1の電流検知回路21bの他端は、c接点リレー64の接点24を介して交流電源3の接地側に接続される。第2の電流検知回路22の一端は、単一のコモン線6に接続され、第2の電流検知回路22の他端は、タップ取出線7に接続される。なお、第2の電流検知回路22の他端は、タップ取出線8に接続されてもよい。 One end of the first current detection circuit 21 a is connected to the non-ground side of the AC power supply 3, and the other end of the first current detection circuit 21 a is connected to the ground side of the AC power supply 3 via the contact 23 of the c-contact relay 63. Connected to. One end of the first current detection circuit 21 b is connected to the non-ground side of the AC power supply 3, and the other end of the first current detection circuit 21 b is connected to the AC power supply 3 via the contact 24 of the c-contact relay 64. Connected to the ground side. One end of the second current detection circuit 22 is connected to the single common line 6, and the other end of the second current detection circuit 22 is connected to the tap lead line 7. Note that the other end of the second current detection circuit 22 may be connected to the tap lead wire 8.
 タップ取出線7と、単一のコモン線6との間にc接点リレー63の接点23を介して交流電圧が印加されると、モータ1は第1の回転速度で駆動される。また、タップ取出線8と、単一のコモン線6との間にc接点リレー64の接点24を介して交流電圧が印加されると、モータ1は第2の回転速度で駆動される。なお、本実施の形態において、第1の回転速度は第2の回転速度よりも大きい、即ち第1の回転速度は第2の回転速度よりも「高速である」とする。以下、モータ1を第1の回転速度で駆動するときを「高速駆動」又は「高速運転」と呼び、第2の回転速度で駆動するときを「低速駆動」又は「低速運転」と呼ぶ。また、タップ取出線7を適宜「高速運転用のタップ取出線」と呼び、タップ取出線8を適宜「低速運転用のタップ取出線」と呼ぶ。なお、その他の要素についても、「高速運転用」又は「低速運転用」という文言を付して説明する場合がある。 When an AC voltage is applied between the tap extraction line 7 and the single common line 6 via the contact 23 of the c-contact relay 63, the motor 1 is driven at the first rotational speed. When an AC voltage is applied between the tap lead-out line 8 and the single common line 6 via the contact 24 of the c-contact relay 64, the motor 1 is driven at the second rotational speed. In the present embodiment, it is assumed that the first rotation speed is higher than the second rotation speed, that is, the first rotation speed is “higher speed” than the second rotation speed. Hereinafter, the time when the motor 1 is driven at the first rotational speed is referred to as “high speed driving” or “high speed operation”, and the time when the motor 1 is driven at the second rotational speed is referred to as “low speed driving” or “low speed operation”. Further, the tap lead-out line 7 is appropriately referred to as “tap lead-out line for high-speed operation”, and the tap lead-out line 8 is appropriately referred to as “tap lead-out line for low-speed operation”. Other elements may also be described with the words “for high speed operation” or “for low speed operation”.
 図2には、本実施の形態で用いるc接点リレー63,64の内部構成が示されている。c接点リレー63及びc接点リレー64は、同一の構成である。c接点リレー63は、高速運転用のリレーであり、コイル13と、接点23とを有する。c接点リレー64は、低速運転用のリレーであり、コイル14と、接点24とを有する。 FIG. 2 shows the internal configuration of the c- contact relays 63 and 64 used in the present embodiment. The c contact relay 63 and the c contact relay 64 have the same configuration. The c contact relay 63 is a relay for high speed operation, and includes a coil 13 and a contact 23. The c contact relay 64 is a relay for low speed operation, and includes the coil 14 and the contact 24.
 図2において、高速運転用のc接点リレー63は、コモン端子であるCOM端子23aと、ノーマリークローズ端子であるN.C.端子23bと、ノーマリーオープン端子であるN.O.端子23cとの3端子と、コイル13とを含む。低速運転用のc接点リレー64は、コモン端子であるCOM端子24aと、ノーマリークローズ端子であるN.C.端子24bと、ノーマリーオープン端子であるN.O.端子24cとの3端子と、コイル14とを含む。 In FIG. 2, the c contact relay 63 for high speed operation includes a COM terminal 23a that is a common terminal, an NC terminal 23b that is a normally closed terminal, and an NO terminal 23c that is a normally open terminal. 3 terminals and a coil 13. The c-contact relay 64 for low-speed operation includes three terminals: a COM terminal 24a that is a common terminal, an NC terminal 24b that is a normally closed terminal, and an NO terminal 24c that is a normally open terminal. And the coil 14.
 c接点リレー63において、COM端子23aは交流電源3の接地側に接続され、N.C.端子23bは第1の電流検知回路21aの一端に接続され、N.O.端子23cはタップ取出線7に接続される。また、c接点リレー64において、COM端子24aは交流電源3の接地側に接続され、N.C.端子24bは第1の電流検知回路21bの一端に接続され、N.O.端子24cはタップ取出線8に接続される。 In the c-contact relay 63, the COM terminal 23a is connected to the ground side of the AC power supply 3, the NC terminal 23b is connected to one end of the first current detection circuit 21a, and the N.O. terminal 23c is a tap lead wire. 7 is connected. In the c-contact relay 64, the COM terminal 24a is connected to the ground side of the AC power source 3, the NC terminal 24b is connected to one end of the first current detection circuit 21b, and the NO terminal 24c is a tap. Connected to lead-out line 8.
 なお、図2に示す構成は一例であり、N.C.端子とN.O.端子とを切り替え可能に構成されるリレーであれば、どのような構成のリレーを用いてもよい。 The configuration shown in FIG. 2 is merely an example, and any configuration of relays may be used as long as the relay can be switched between the NC terminal and the NO terminal.
 図1に戻り、駆動回路20は、前述したc接点リレー63,64に加え、トランジスタ16,17と、抵抗器12a1,12a2,12b1,12b2と、ダイオード15a,15bとを更に備える。前述の通り、コイル13及び接点23はc接点リレー63の構成要素であり、コイル14及び接点24はc接点リレー64の構成要素である。 Returning to FIG. 1, the drive circuit 20 further includes transistors 16 and 17, resistors 12a1, 12a2, 12b1, and 12b2, and diodes 15a and 15b, in addition to the c-contact relays 63 and 64 described above. As described above, the coil 13 and the contact 23 are components of the c-contact relay 63, and the coil 14 and the contact 24 are components of the c-contact relay 64.
 トランジスタ16,17は、制御回路5の出力によりオン又はオフに制御される。トランジスタ16がオンに制御されるとコイル13に電流が流れ、コイル13は励磁状態となる。トランジスタ16がオフに制御されると、コイル13には電流が流れず、コイル13は非励磁状態となる。同様に、トランジスタ17がオンに制御されると、コイル14に電流が流れ、コイル14は励磁状態となる。トランジスタ17がオフに制御されると、コイル14には電流が流れず、コイル14は非励磁状態となる。 The transistors 16 and 17 are controlled to be turned on or off by the output of the control circuit 5. When the transistor 16 is controlled to turn on, a current flows through the coil 13 and the coil 13 is in an excited state. When the transistor 16 is controlled to turn off, no current flows through the coil 13, and the coil 13 is in a non-excited state. Similarly, when the transistor 17 is controlled to turn on, a current flows through the coil 14 and the coil 14 is in an excited state. When the transistor 17 is controlled to be off, no current flows through the coil 14, and the coil 14 is in a non-excited state.
 抵抗器12a1,12a2は、トランジスタ16がオンに制御される際に、トランジスタ16にベース電流を供給する役割を担う。抵抗器12b1,12b2は、トランジスタ17がオンに制御される際に、トランジスタ17にベース電流を供給する役割を担う。ダイオード15aは、コイル13のオン又はオフ時に発生する逆起電圧を防止する役割を担う。ダイオード15bは、コイル14のオン又はオフ時に発生する逆起電圧を防止する役割を担う。 Resistors 12a1 and 12a2 play a role of supplying a base current to the transistor 16 when the transistor 16 is controlled to be turned on. The resistors 12b1 and 12b2 play a role of supplying a base current to the transistor 17 when the transistor 17 is controlled to be turned on. The diode 15a plays a role of preventing a counter electromotive voltage generated when the coil 13 is turned on or off. The diode 15b plays a role of preventing a counter electromotive voltage generated when the coil 14 is turned on or off.
 図2において、コイル13が非励磁状態のとき、接点23はN.C.端子23bと接触し、COM端子23aとN.C.端子23bとが導通する。コイル13が励磁状態のとき、接点23はN.O.端子23cと接触し、COM端子23aとN.O.端子23cとが導通する。従って、コイル13が非励磁状態のときは、第1の電流検知回路21aの他端が交流電源3の接地側に接続されるので、第1の電流検知回路21aに第1電流が流れる。その結果、第1の電流検知回路21aは検知状態となる。一方、コイル13が励磁状態のときは、第1の電流検知回路21aの他端側が非接続となるので、第1の電流検知回路21aには電流が流れない。その結果、第1の電流検知回路21aは非検知状態となる。 In FIG. 2, when the coil 13 is in a non-excited state, the contact 23 comes into contact with the NC terminal 23b, and the COM terminal 23a and the NC terminal 23b become conductive. When the coil 13 is in an excited state, the contact 23 comes into contact with the NO terminal 23c, and the COM terminal 23a and the NO terminal 23c become conductive. Accordingly, when the coil 13 is in the non-excited state, the other end of the first current detection circuit 21a is connected to the ground side of the AC power supply 3, and thus the first current flows through the first current detection circuit 21a. As a result, the first current detection circuit 21a is in a detection state. On the other hand, when the coil 13 is in an excited state, the other end side of the first current detection circuit 21a is not connected, so that no current flows through the first current detection circuit 21a. As a result, the first current detection circuit 21a enters a non-detection state.
 また、コイル14が非励磁状態のとき、接点24はN.C.端子24bと接触し、COM端子24aとN.C.端子24bとが導通する。コイル14が励磁状態のとき、接点24はN.O.端子24cと接触し、COM端子24aとN.O.端子24cとが導通する。従って、コイル14が非励磁状態のときは、第1の電流検知回路21bの他端が交流電源3の接地側に接続されるので、第1の電流検知回路21bに第1電流が流れる。その結果、第1の電流検知回路21bは検知状態となる。一方、コイル14が励磁状態のときは、第1の電流検知回路21bの他端側が非接続となるので、第1の電流検知回路21bには電流が流れない。その結果、第1の電流検知回路21bは非検知状態となる。 Also, when the coil 14 is in a non-excited state, the contact 24 comes into contact with the NC terminal 24b, and the COM terminal 24a and the NC terminal 24b become conductive. When the coil 14 is in an excited state, the contact 24 comes into contact with the NO terminal 24c, and the COM terminal 24a and the NO terminal 24c become conductive. Therefore, when the coil 14 is in the non-excited state, the other end of the first current detection circuit 21b is connected to the ground side of the AC power supply 3, and therefore the first current flows through the first current detection circuit 21b. As a result, the first current detection circuit 21b is in a detection state. On the other hand, when the coil 14 is in an excited state, the other end side of the first current detection circuit 21b is not connected, so that no current flows through the first current detection circuit 21b. As a result, the first current detection circuit 21b enters a non-detection state.
 第2の電流検知回路22は、コイル13,14が非励磁状態であり、且つ、温度ヒューズ10が溶断したときに流れる第2電流を検出する。第2電流は、数μAから数十μAオーダの電流であり、第1電流よりも小さい。第2の電流検知回路22が第2電流を検知する動作の詳細については、後述する。 The second current detection circuit 22 detects a second current that flows when the coils 13 and 14 are in a non-excited state and the thermal fuse 10 is blown. The second current is a current on the order of several μA to several tens of μA, and is smaller than the first current. The details of the operation in which the second current detection circuit 22 detects the second current will be described later.
 次に、第1の電流検知回路21a,21bの回路構成及び動作について、図3を参照して説明する。図3は、実施の形態における第1の電流検知回路21a,21bの回路構成の一例を示す図である。第1の電流検知回路21a及び第1の電流検知回路21bは、図示のように同一の回路を用いることができる。回路構成が同一であるため、以下、第1の電流検知回路21aを例に説明する。なお、図3に示す構成は一例であり、各々の電流を検知できる仕様であれば、どのような構成でも構わない。 Next, the circuit configuration and operation of the first current detection circuits 21a and 21b will be described with reference to FIG. FIG. 3 is a diagram illustrating an example of a circuit configuration of the first current detection circuits 21a and 21b in the embodiment. The first current detection circuit 21a and the first current detection circuit 21b can use the same circuit as illustrated. Since the circuit configuration is the same, the first current detection circuit 21a will be described below as an example. The configuration shown in FIG. 3 is an example, and any configuration may be used as long as each current can be detected.
 図3において、第1の電流検知回路21aは、単一のコモン線6に接続される端子J1と、c接点リレー63のN.C.端子23bに接続される端子J2と、制御回路5に接続される端子J3とを有する。 In FIG. 3, the first current detection circuit 21a includes a terminal J1 connected to a single common line 6, a terminal J2 connected to the NC terminal 23b of the c-contact relay 63, and a control circuit 5. And a terminal J3 to be connected.
 端子J1と端子J2との間には、抵抗器301、ダイオード302、ツェナーダイオード303、及びフォトカプラ306の発光ダイオード306aがこの順序で直列に接続されている。また、発光ダイオード306aの両端には、コンデンサ304及びブリーダー抵抗器305が互いに並列に接続されている。 Between the terminal J1 and the terminal J2, a resistor 301, a diode 302, a Zener diode 303, and a light emitting diode 306a of the photocoupler 306 are connected in series in this order. A capacitor 304 and a bleeder resistor 305 are connected in parallel to each other at both ends of the light emitting diode 306a.
 抵抗器301は、発光ダイオード306aに流れる電流を抑制する役割を担う。抵抗器301での電圧降下は比較的大きく、発熱を生じる。このため、抵抗器301としては、耐熱性の高い電力型抵抗器を用いることが好ましい。耐熱性の高い電力型抵抗器の一例は、酸化金属皮膜抵抗器である。また、酸化金属皮膜抵抗器に代えて、金属皮膜抵抗器又はチップ型抵抗器を用いてもよい。金属皮膜抵抗器又はチップ型抵抗器を用いる場合、複数個を使用して構成してもよい。抵抗器の数は、事前に評価を実施して決定すればよい。 The resistor 301 plays a role of suppressing a current flowing through the light emitting diode 306a. The voltage drop across the resistor 301 is relatively large and generates heat. For this reason, it is preferable to use a power-type resistor with high heat resistance as the resistor 301. An example of a power type resistor having high heat resistance is a metal oxide film resistor. In place of the metal oxide film resistor, a metal film resistor or a chip resistor may be used. When using a metal film resistor or a chip resistor, a plurality of resistors may be used. The number of resistors may be determined by performing an evaluation in advance.
 ダイオード302は、発光ダイオード306aに流れる電流を一方向のみとする役割を担う。電流を一方向のみ、即ち半波整流とすることで、抵抗器301の発熱を抑制する効果が得られる。 The diode 302 plays a role of making the current flowing through the light emitting diode 306a only in one direction. The effect of suppressing the heat generation of the resistor 301 can be obtained by making the current only in one direction, that is, half-wave rectification.
 ツェナーダイオード303は、意図しない電圧によるフォトカプラ306の誤検知を防止する役割を担う。第1の電流検知回路21aにおいて、端子J1と端子J2との間に、ツェナーダイオード303のツェナー電圧よりも高い電圧が印加されないと電流は検知されない。 The zener diode 303 plays a role of preventing erroneous detection of the photocoupler 306 due to an unintended voltage. In the first current detection circuit 21a, no current is detected unless a voltage higher than the Zener voltage of the Zener diode 303 is applied between the terminals J1 and J2.
 コンデンサ304及びブリーダー抵抗器305は、共に発光ダイオード306aの誤発光を抑止する役割を担う。 Both the capacitor 304 and the bleeder resistor 305 play a role of suppressing erroneous light emission of the light emitting diode 306a.
 端子J1を介して流入するノイズ電流の多くは、発光ダイオード306aには向かわず、コンデンサ304に流れて端子J2から流出する。このため、ノイズ電流による発光ダイオード306aの誤発光は抑止される。 Most of the noise current that flows in through the terminal J1 does not go to the light emitting diode 306a but flows into the capacitor 304 and flows out from the terminal J2. For this reason, erroneous light emission of the light emitting diode 306a due to noise current is suppressed.
 また、ブリーダー抵抗器305と発光ダイオード306aとは並列に接続されるので、端子J1を介して流入する電流は、ブリーダー抵抗器305と発光ダイオード306aとに分流する。このため、発光ダイオード306aを発光させるためには、分流分に見合った電流を端子J1から流入させる必要があり、意図しない小さな電流では発光ダイオード306aは発光しない。このため、意図しない電流による、発光ダイオード306aの誤発光は抑止される。 Further, since the bleeder resistor 305 and the light emitting diode 306a are connected in parallel, the current flowing through the terminal J1 is shunted to the bleeder resistor 305 and the light emitting diode 306a. For this reason, in order to cause the light emitting diode 306a to emit light, it is necessary to flow a current commensurate with the divided current from the terminal J1, and the light emitting diode 306a does not emit light with an unintended small current. For this reason, erroneous light emission of the light emitting diode 306a due to an unintended current is suppressed.
 受光側では、フォトカプラ306のフォトトランジスタ306bと、抵抗器307とが直列に接続される。フォトトランジスタ306bには、直流電流が流される。抵抗器307は、フォトトランジスタ306bに流れる電流を制限する。フォトトランジスタ306bの両端には、コンデンサ308が接続される。コンデンサ308は、フォトトランジスタ306bのノイズを除去する役割を担う。抵抗器307とフォトトランジスタ306bとの接続点と端子J3との間には、抵抗器309が挿入される。抵抗器309は、制御回路5の入力ポートを保護するための役割を担う。 On the light receiving side, the phototransistor 306b of the photocoupler 306 and the resistor 307 are connected in series. A direct current flows through the phototransistor 306b. The resistor 307 limits the current flowing through the phototransistor 306b. A capacitor 308 is connected to both ends of the phototransistor 306b. The capacitor 308 serves to remove noise from the phototransistor 306b. A resistor 309 is inserted between a connection point between the resistor 307 and the phototransistor 306b and the terminal J3. The resistor 309 plays a role for protecting the input port of the control circuit 5.
 第1の電流検知回路21aは、上記のように構成され、検知結果を制御回路5に出力する。具体的には以下の動作となる。 The first current detection circuit 21 a is configured as described above, and outputs the detection result to the control circuit 5. Specifically, the following operations are performed.
 (1)第1の電流検知回路21aが電流を検出しない場合、発光ダイオード306aは発光せず、フォトトランジスタ306bは導通しない。その結果、抵抗器307には電流が流れず、端子J3には“ハイ(High)”の電位が現れる。従って、第1の電流検知回路21aが電流を検出しない場合、高電位の信号が制御回路5に出力される。 (1) When the first current detection circuit 21a does not detect a current, the light emitting diode 306a does not emit light and the phototransistor 306b does not conduct. As a result, no current flows through the resistor 307, and a “High” potential appears at the terminal J3. Therefore, when the first current detection circuit 21 a does not detect a current, a high potential signal is output to the control circuit 5.
 (2)第1の電流検知回路21aが電流を検出すると発光ダイオード306aが発光し、フォトトランジスタ306bが導通する。その結果、抵抗器307には電流が流れ、抵抗器307による電圧降下によって、端子J3には“ロー(Low)”の電位が現れる。従って、第1の電流検知回路21aが電流を検出する場合、低電位の信号が制御回路5に出力される。 (2) When the first current detection circuit 21a detects a current, the light emitting diode 306a emits light, and the phototransistor 306b becomes conductive. As a result, a current flows through the resistor 307, and a potential of “Low” appears at the terminal J3 due to a voltage drop caused by the resistor 307. Therefore, when the first current detection circuit 21 a detects a current, a low potential signal is output to the control circuit 5.
 次に、第2の電流検知回路22の回路構成及び動作について、図4を参照して説明する。図4は、実施の形態における第2の電流検知回路の回路構成の一例を示す図である。なお、図4に示す構成は一例であり、電流を検知できる仕様であれば、どのような構成でも構わない。 Next, the circuit configuration and operation of the second current detection circuit 22 will be described with reference to FIG. FIG. 4 is a diagram illustrating an example of a circuit configuration of the second current detection circuit in the embodiment. Note that the configuration shown in FIG. 4 is an example, and any configuration may be used as long as the specification can detect the current.
 図4において、図3に示される第1の電流検知回路21a及び第1の電流検知回路21bと同一又は同等の回路要素には、同一の符号を付している。以下、図3に示される第1の電流検知回路21a及び第1の電流検知回路21bとの相違点を主に説明する。 In FIG. 4, the same or equivalent circuit elements as those of the first current detection circuit 21a and the first current detection circuit 21b shown in FIG. Hereinafter, differences from the first current detection circuit 21a and the first current detection circuit 21b shown in FIG. 3 will be mainly described.
 第2の電流検知回路22では、ツェナーダイオード303と、フォトカプラ306の発光ダイオード306aの両端に接続されていたブリーダー抵抗器305とを無くしている。これにより、第1の電流検知回路21a及び第1の電流検知回路21bでは検知できない大きさの第2電流に対しても、第2の電流検知回路22では検知することができる。 In the second current detection circuit 22, the Zener diode 303 and the bleeder resistor 305 connected to both ends of the light emitting diode 306a of the photocoupler 306 are eliminated. Thereby, the second current detection circuit 22 can detect a second current having a magnitude that cannot be detected by the first current detection circuit 21a and the first current detection circuit 21b.
 次に、第2の電流検知回路22が第2電流を検知する原理について、図5を参照して説明する。図5は、図1に示されるモータ制御システム100の構成において、モータ1の温度ヒューズ10が溶断した場合の電流経路を示す図である。なお、後でも説明するが、モータ1の温度ヒューズ10が溶断したか否かの判定は、モータ1の停止中に行われる。モータ1の停止中において、c接点リレー63の接点23はN.C.端子23bと接触し、COM端子23aとN.C.端子23bとが導通する。このため、タップ取出線7には、交流電源3の接地側の電位が印加されない。 Next, the principle that the second current detection circuit 22 detects the second current will be described with reference to FIG. FIG. 5 is a diagram showing a current path when the thermal fuse 10 of the motor 1 is blown in the configuration of the motor control system 100 shown in FIG. As will be described later, whether or not the thermal fuse 10 of the motor 1 is blown is determined while the motor 1 is stopped. While the motor 1 is stopped, the contact 23 of the c-contact relay 63 comes into contact with the NC terminal 23b, and the COM terminal 23a and the NC terminal 23b become conductive. Therefore, the ground potential of the AC power supply 3 is not applied to the tap lead wire 7.
 まず、温度ヒューズ10が溶断していない場合、単一のコモン線6とタップ取出線7との間には、モータ1のモータ巻線9が存在する。また、モータ1は停止中であり、モータ巻線9には電圧が生じないか、若しくは生じても電圧は小さい。このため、単一のコモン線6とタップ取出線7との間には、第2の電流検知回路22を動作させる電位差が生じない。従って、第2の電流検知回路22は、第2電流を検出しない。 First, when the thermal fuse 10 is not blown, the motor winding 9 of the motor 1 exists between the single common wire 6 and the tap lead wire 7. Further, the motor 1 is stopped, and no voltage is generated in the motor winding 9 or the voltage is small even if it is generated. For this reason, a potential difference for operating the second current detection circuit 22 does not occur between the single common line 6 and the tap extraction line 7. Therefore, the second current detection circuit 22 does not detect the second current.
 一方、温度ヒューズ10が溶断した場合、モータ1のモータ巻線9とモータ1の筐体50との間に生じる浮遊容量402を介してアース11に向かう電流経路401が発生する。電流経路401に流れる電流は、浮遊容量402を介してモータ1とアース11との間に流れうる漏れ電流である。 On the other hand, when the thermal fuse 10 is blown, a current path 401 toward the ground 11 is generated via the stray capacitance 402 generated between the motor winding 9 of the motor 1 and the casing 50 of the motor 1. The current flowing in the current path 401 is a leakage current that can flow between the motor 1 and the ground 11 via the stray capacitance 402.
 第2の電流検知回路22は、電流経路401に流れうる漏れ電流に基づいて、温度ヒューズ10の溶断の有無を判定する。第2の電流検知回路22は、当該漏れ電流を検知すると、温度ヒューズ10が溶断したと判定する。また、第2の電流検知回路22は、温度ヒューズ10が溶断したと判定した場合、モータ1が故障したと判定し、或いはモータ1が異常であると判定する。 The second current detection circuit 22 determines whether or not the thermal fuse 10 is blown based on the leakage current that can flow in the current path 401. When detecting the leakage current, the second current detection circuit 22 determines that the thermal fuse 10 is blown. Further, when the second current detection circuit 22 determines that the thermal fuse 10 is blown, it determines that the motor 1 has failed or determines that the motor 1 is abnormal.
 なお、上述した浮遊容量402は、モータ1の大きさや容量等により異なり、第2電流の値も異なってくる。このため、電流経路401に流れる第2電流を予め測定し、第2の電流検知回路22が検知することを、事前評価によって確認しておくことが好ましい。 The stray capacitance 402 described above varies depending on the size and capacity of the motor 1, and the value of the second current also varies. For this reason, it is preferable that the second current flowing through the current path 401 is measured in advance and it is confirmed by prior evaluation that the second current detection circuit 22 detects the second current.
 次に、本実施の形態の制御回路5による制御フローについて、図6から図8の図面を参照して説明する。図6は、実施の形態の制御回路5による制御フローの一例を示すフローチャートである。図7は、図6のフローチャートで用いる停止指令時の判定テーブルである。図8は、図6のフローチャートで用いる運転指令時の判定テーブルである。 Next, a control flow by the control circuit 5 of the present embodiment will be described with reference to FIGS. FIG. 6 is a flowchart illustrating an example of a control flow by the control circuit 5 according to the embodiment. FIG. 7 is a determination table at the time of a stop command used in the flowchart of FIG. FIG. 8 is a determination table at the time of an operation command used in the flowchart of FIG.
 まず、制御回路5は、通常制御を行う(ステップS601)。本実施の形態における通常制御とは、以下の制御を指す。 First, the control circuit 5 performs normal control (step S601). The normal control in the present embodiment refers to the following control.
 (ア)高速運転の要求に対して、制御回路5は、トランジスタ16をオンに制御してコイル13を動作させる。この制御により、接点23はN.O.端子23cと接触し、高速運転用のタップ取出線7とコモン線6とが接続され、モータ1は高速駆動される。 (A) In response to a request for high-speed operation, the control circuit 5 controls the transistor 16 to be turned on to operate the coil 13. By this control, the contact 23 comes into contact with the NO terminal 23c, the tap lead wire 7 for high speed operation and the common wire 6 are connected, and the motor 1 is driven at high speed.
 (イ)低速運転の要求に対して、制御回路5は、トランジスタ17をオンに制御してコイル14を動作させる。この制御により、接点24はN.O.端子24cと接触し、低速運転用のタップ取出線8とコモン線6とが接続され、モータ1は低速駆動される。 (A) In response to a request for low speed operation, the control circuit 5 controls the transistor 17 to be turned on to operate the coil 14. By this control, the contact 24 comes into contact with the N.O. terminal 24c, the tap lead wire 8 for low speed operation and the common line 6 are connected, and the motor 1 is driven at low speed.
 (ウ)停止指令の要求に対して、制御回路5は、双方のトランジスタ16,17をオフに制御して、コイル13,14を非動作とする。この制御により、接点23はN.C.端子23bと接触し、接点24はN.C.端子24bと接触する。高速運転用のタップ取出線7及び低速運転用のタップ取出線8は回路から切り離され、モータ1の駆動は停止される。 (C) In response to the request for the stop command, the control circuit 5 controls both the transistors 16 and 17 to be off, and the coils 13 and 14 are deactivated. By this control, the contact 23 comes into contact with the NC terminal 23b, and the contact 24 comes into contact with the NC terminal 24b. The tap extraction line 7 for high speed operation and the tap extraction line 8 for low speed operation are disconnected from the circuit, and the drive of the motor 1 is stopped.
 図6のフローチャートに戻り、制御回路5は、モータ1が停止中か否かを判定する(ステップS602)。モータ1が停止中である場合(ステップS602,Yes)、停止指令時の判定処理を行う(ステップS603)。ステップS603の判定処理については、例えば図7に示される判定テーブルに従って判定を行う。 Returning to the flowchart of FIG. 6, the control circuit 5 determines whether or not the motor 1 is stopped (step S602). When the motor 1 is stopped (step S602, Yes), a determination process at the time of a stop command is performed (step S603). About the determination process of step S603, it determines according to the determination table shown, for example in FIG.
 図7において、“出力”とあるのは、制御回路5から出力される信号を意味し、“入力”とあるのは、制御回路5に入力される信号を意味している。また、図7には、制御回路5のトランジスタ16への指令が“オフ”であり、且つ、トランジスタ17への指令が“オフ”である場合において、高速運転用の第1の電流検知回路21a、低速運転用の第1の電流検知回路21b及び第2の電流検知回路22による検知結果の組合せのパターンが示されている。 In FIG. 7, “output” means a signal output from the control circuit 5, and “input” means a signal input to the control circuit 5. FIG. 7 shows the first current detection circuit 21a for high speed operation when the command to the transistor 16 of the control circuit 5 is “off” and the command to the transistor 17 is “off”. A combination pattern of detection results by the first current detection circuit 21b and the second current detection circuit 22 for low-speed operation is shown.
(パターン1-1)
 制御回路5は、第1の電流検知回路21aが“電流検知あり”、第1の電流検知回路21bが“電流検知あり”、第2の電流検知回路22が“電流検知なし”の場合、「正常」と判定する。
(Pattern 1-1)
When the first current detection circuit 21a is “current detection”, the first current detection circuit 21b is “current detection”, and the second current detection circuit 22 is “no current detection”, the control circuit 5 It is determined as “normal”.
(パターン1-2)
 制御回路5は、第1の電流検知回路21aが“電流検知あり”、第1の電流検知回路21bが“電流検知あり”、第2の電流検知回路22が“電流検知あり”の場合、モータ1の温度ヒューズ10が溶断していると判断し、「異常」と判定する。
(Pattern 1-2)
When the first current detection circuit 21a is “current detection”, the first current detection circuit 21b is “current detection”, and the second current detection circuit 22 is “current detection”, the control circuit 5 It is determined that one thermal fuse 10 is blown, and “abnormal” is determined.
(パターン1-3)
 制御回路5は、第1の電流検知回路21aが“電流検知あり”、第1の電流検知回路21bが“電流検知なし”の場合、低速運転用のc接点リレー64の接点24が溶着していると判断し、「異常」と判定する。
(Pattern 1-3)
When the first current detection circuit 21a is “current detection” and the first current detection circuit 21b is “no current detection”, the contact 24 of the c-contact relay 64 for low-speed operation is welded. It is determined that it is “abnormal”.
(パターン1-4)
 制御回路5は、第1の電流検知回路21aが“電流検知なし”、第1の電流検知回路21bが“電流検知あり”の場合、高速運転用のc接点リレー63の接点23が溶着していると判断し、「異常」と判定する。
(Pattern 1-4)
When the first current detection circuit 21a is “no current detection” and the first current detection circuit 21b is “current detection”, the control circuit 5 has the contact 23 of the c contact relay 63 for high speed operation welded. It is determined that it is “abnormal”.
 なお、c接点リレー63の接点23が溶着していた場合、接点23におけるCOM端子23aとN.O.端子23cとが導通する。このため、第2の電流検知回路22の両端には、単一のコモン線6及びタップ取出線7を介して交流電圧が印加される。また、c接点リレー64の接点24が溶着していた場合、接点24におけるCOM端子24aとN.O.端子24cとが導通する。このため、第2の電流検知回路22の両端には、単一のコモン線6、タップ取出線8、モータ巻線9及びタップ取出線7を介して交流電圧が印加される。従って、c接点リレー63の接点23及びc接点リレー64の接点24のうちの何れか一方が溶着していた場合には、第2の電流検知回路22には電流が流れる。このため、モータ1の温度ヒューズ10が溶断しているか否かの判断は、モータ1の停止中のみ行う。 When the contact 23 of the c contact relay 63 is welded, the COM terminal 23a and the N.O. terminal 23c at the contact 23 become conductive. Therefore, an AC voltage is applied to both ends of the second current detection circuit 22 via the single common line 6 and the tap lead line 7. When the contact 24 of the c-contact relay 64 is welded, the COM terminal 24a and the N.O. terminal 24c at the contact 24 become conductive. Therefore, an AC voltage is applied to both ends of the second current detection circuit 22 via the single common line 6, the tap lead wire 8, the motor winding 9, and the tap lead wire 7. Accordingly, when one of the contact 23 of the c contact relay 63 and the contact 24 of the c contact relay 64 is welded, a current flows through the second current detection circuit 22. Therefore, whether or not the temperature fuse 10 of the motor 1 is blown is determined only while the motor 1 is stopped.
 図6に戻り、ステップS603の判定処理を終えると、制御回路5は、ステップS603の判定結果が「正常」か否かを判定する(ステップS604)。ステップS603の判定結果が「正常」である場合(ステップS604,Yes)、ステップS601に戻り、ステップS601からステップS603の処理を繰り返す。一方、ステップS603の判定結果が「異常」である場合(ステップS604,No)、制御回路5は、トランジスタ16,17をオンに制御する信号の出力を禁止して(ステップS605)、図6の処理を終了する。 Returning to FIG. 6, when the determination process in step S603 is completed, the control circuit 5 determines whether or not the determination result in step S603 is “normal” (step S604). If the determination result in step S603 is “normal” (step S604, Yes), the process returns to step S601, and the processing from step S601 to step S603 is repeated. On the other hand, when the determination result in step S603 is “abnormal” (step S604, No), the control circuit 5 prohibits the output of a signal for controlling the transistors 16 and 17 to be on (step S605), and FIG. The process ends.
 ステップS602の処理に戻り、制御回路5は、モータ1が停止中ではない、即ち運転中であると判定した場合(ステップS602,No)、運転指令時の判定処理を行う(ステップS606)。ステップS606の判定処理については、例えば図8に示される判定テーブルに従って判定を行う。図8には、制御回路5のトランジスタ16への指令が“オン”であり、且つ、トランジスタ17への指令が“オフ”である場合において、高速運転用の第1の電流検知回路21a及び低速運転用の第1の電流検知回路21bによる検知結果の組合せのパターンが示されている。また、制御回路5のトランジスタ16への指令が“オフ”であり、且つ、トランジスタ17への指令が“オン”である場合において、高速運転用の第1の電流検知回路21a及び低速運転用の第1の電流検知回路21bによる検知結果の組合せのパターンが示されている。 Returning to the process of step S602, when the control circuit 5 determines that the motor 1 is not stopped, that is, is operating (step S602, No), the control circuit 5 performs a determination process at the time of an operation command (step S606). About the determination process of step S606, it determines according to the determination table shown, for example in FIG. In FIG. 8, when the command to the transistor 16 of the control circuit 5 is “ON” and the command to the transistor 17 is “OFF”, the first current detection circuit 21a for high speed operation and the low speed A pattern of combinations of detection results by the first current detection circuit 21b for driving is shown. Further, when the command to the transistor 16 of the control circuit 5 is “off” and the command to the transistor 17 is “on”, the first current detection circuit 21a for high speed operation and the low speed operation are used. A pattern of combinations of detection results by the first current detection circuit 21b is shown.
 まず、制御回路5のトランジスタ16への指令が“オン”であり、且つ、トランジスタ17への指令が“オフ”である場合における、検知結果の組合せのパターンについて説明する。 First, the detection result combination pattern when the command to the transistor 16 of the control circuit 5 is “ON” and the command to the transistor 17 is “OFF” will be described.
(パターン2-1)
 制御回路5は、第1の電流検知回路21aが“電流検知なし”、第1の電流検知回路21bが“電流検知あり”の場合、「正常」と判定する。
(Pattern 2-1)
The control circuit 5 determines “normal” when the first current detection circuit 21a is “no current detection” and the first current detection circuit 21b is “current detection”.
(パターン2-2)
 制御回路5は、第1の電流検知回路21aが“電流検知あり”、第1の電流検知回路21bが“電流検知あり”の場合、以下の3つの故障のうちの少なくとも1つが生起していると判断し、「異常」と判定する。
 (a1)トランジスタ16が故障
 (a2)c接点リレー63が故障
 (a3)第1の電流検知回路21aが故障
 上記の故障を区分すると、(a1)及び(a2)は駆動回路の故障であり、(a3)は電流検知回路の故障である。
(Pattern 2-2)
In the control circuit 5, when the first current detection circuit 21 a is “current detection is present” and the first current detection circuit 21 b is “current detection is present”, at least one of the following three failures has occurred. And determine “abnormal”.
(A1) Failure of transistor 16 (a2) Failure of contact c relay 63 (a3) Failure of first current detection circuit 21a When the above failures are classified, (a1) and (a2) are failures of the drive circuit, (A3) is a failure of the current detection circuit.
(パターン2-3)
 制御回路5は、第1の電流検知回路21aが“電流検知なし”、第1の電流検知回路21bが“電流検知なし”の場合、c接点リレー64の接点24が溶着していると判断し、「異常」と判定する。
(Pattern 2-3)
When the first current detection circuit 21a is “no current detection” and the first current detection circuit 21b is “no current detection”, the control circuit 5 determines that the contact 24 of the c-contact relay 64 is welded. , “Abnormal” is determined.
(パターン2-4)
 制御回路5は、第1の電流検知回路21aが“電流検知あり”、第1の電流検知回路21bが“電流検知なし”の場合、以下の3つの故障のうちの少なくとも1つが生起していると判断し、「異常」と判定する。
 (b1)トランジスタ16が故障し、且つ、c接点リレー64の接点24が溶着
 (b2)c接点リレー63が故障し、且つ、c接点リレー64の接点24が溶着
 (b3)第1の電流検知回路21aが故障し、且つ、c接点リレー64の接点24が溶着
(Pattern 2-4)
In the control circuit 5, when the first current detection circuit 21a is "current detection is present" and the first current detection circuit 21b is "no current detection", at least one of the following three failures has occurred. And determine “abnormal”.
(B1) The transistor 16 fails and the contact 24 of the c contact relay 64 is welded. (B2) The c contact relay 63 fails and the contact 24 of the c contact relay 64 is welded. (B3) First current detection The circuit 21a fails and the contact 24 of the c contact relay 64 is welded.
 次に、制御回路5のトランジスタ16への指令が“オフ”であり、且つ、トランジスタ17への指令が“オン”である場合における、検知結果の組合せのパターンについて説明する。 Next, a combination pattern of detection results when the command to the transistor 16 of the control circuit 5 is “OFF” and the command to the transistor 17 is “ON” will be described.
(パターン2-5)
 制御回路5は、第1の電流検知回路21aが“電流検知あり”、第1の電流検知回路21bが“電流検知なし”の場合、「正常」と判定する。
(Pattern 2-5)
The control circuit 5 determines “normal” when the first current detection circuit 21 a is “current detection is present” and the first current detection circuit 21 b is “no current detection”.
(パターン2-6)
 制御回路5は、第1の電流検知回路21aが“電流検知あり”、第1の電流検知回路21bが“電流検知あり”の場合、以下の3つの故障のうちの少なくとも1つが生起していると判断し、「異常」と判定する。
 (c1)トランジスタ17が故障
 (c2)c接点リレー64が故障
 (c3)第1の電流検知回路21bが故障
 上記の故障を区分すると、(c1)及び(c2)は駆動回路の故障であり、(c3)は電流検知回路の故障である。
(Pattern 2-6)
In the control circuit 5, when the first current detection circuit 21 a is “current detection is present” and the first current detection circuit 21 b is “current detection is present”, at least one of the following three failures has occurred. And determine “abnormal”.
(C1) Failure of the transistor 17 (c2) Failure of the c contact relay 64 (c3) Failure of the first current detection circuit 21b When the above failures are classified, (c1) and (c2) are failures of the drive circuit, (C3) is a failure of the current detection circuit.
(パターン2-7)
 制御回路5は、第1の電流検知回路21aが“電流検知なし”、第1の電流検知回路21bが“電流検知なし”の場合、c接点リレー63の接点23が溶着していると判断し、「異常」と判定する。
(Pattern 2-7)
When the first current detection circuit 21a is “no current detection” and the first current detection circuit 21b is “no current detection”, the control circuit 5 determines that the contact 23 of the c-contact relay 63 is welded. , “Abnormal” is determined.
(パターン2-8)
 制御回路5は、第1の電流検知回路21aが“電流検知なし”、第1の電流検知回路21bが“電流検知あり”の場合、以下の3つの故障のうちの少なくとも1つが生起していると判断し、「異常」と判定する。
 (d1)トランジスタ17が故障し、且つ、c接点リレー63の接点23が溶着
 (d2)c接点リレー64が故障し、且つ、c接点リレー63の接点23が溶着
 (d3)第1の電流検知回路21bが故障し、且つ、c接点リレー63の接点23が溶着
(Pattern 2-8)
In the control circuit 5, when the first current detection circuit 21a is "no current detection" and the first current detection circuit 21b is "current detection", at least one of the following three failures has occurred. And determine “abnormal”.
(D1) The transistor 17 fails and the contact 23 of the c contact relay 63 is welded. (D2) The c contact relay 64 fails and the contact 23 of the c contact relay 63 is welded. (D3) First current detection The circuit 21b fails and the contact 23 of the c contact relay 63 is welded.
 図6に戻り、ステップS606の判定処理を終えると、制御回路5は、ステップS606の判定結果が「正常」か否かを判定する(ステップS607)。ステップS606の判定結果が「正常」である場合(ステップS607,Yes)、ステップS601に戻り、ステップS601からステップS606の処理を繰り返す。一方、ステップS606の判定結果が「異常」である場合(ステップS607,No)、制御回路5は、トランジスタ16,17の出力をオフに制御すると共に、これ以降トランジスタ16,17をオンに制御する信号の出力を禁止して(ステップS608)、図6の処理を終了する。 Returning to FIG. 6, when the determination process of step S606 is completed, the control circuit 5 determines whether or not the determination result of step S606 is “normal” (step S607). If the determination result in step S606 is “normal” (step S607, Yes), the process returns to step S601, and the processing from step S601 to step S606 is repeated. On the other hand, when the determination result in step S606 is “abnormal” (step S607, No), the control circuit 5 controls the outputs of the transistors 16 and 17 to be off, and thereafter controls the transistors 16 and 17 to be on. The signal output is prohibited (step S608), and the process of FIG. 6 is terminated.
 なお、本実施の形態では、図1に示されるように、高速運転用のタップ取出線7と、低速運転用のタップ取出線8という2つのタップ取出線により、モータ1の回転速度の制御を行う例について説明したが、3つ以上のタップ取出線を用いてモータ1の回転速度の制御を行ってもよい。例えば、モータ1を、「高速運転」、「中速運転」及び「低速運転」という3種の回転速度で制御する場合には、3つのタップ取出線のそれぞれに第1の電流検知回路を配置すればよい。 In the present embodiment, as shown in FIG. 1, the rotational speed of the motor 1 is controlled by two tap lead lines, a tap lead line 7 for high speed operation and a tap lead line 8 for low speed operation. Although the example to perform was demonstrated, you may control the rotational speed of the motor 1 using three or more tap extraction lines. For example, when the motor 1 is controlled at three rotational speeds of “high speed operation”, “medium speed operation”, and “low speed operation”, a first current detection circuit is arranged on each of the three tap lead wires. do it.
 複数のタップ取出線を用いる場合の構成は、以下の通りである。
 ・タップ取出線の数と同数のc接点リレー、及びタップ取出線の数と同数の第1の電流検知回路を準備する。
 ・各々のタップ取出線上にc接点リレーを配置し、当該c接点リレーの接点におけるN.O.端子のそれぞれにタップ取出線を接続する。
 ・単一のコモン線と、c接点リレーの接点におけるN.C.端子のそれぞれとの間に第1の電流検知回路を接続する。
The configuration in the case of using a plurality of tap lead lines is as follows.
Prepare the same number of c-contact relays as the number of tap extraction lines and the same number of first current detection circuits as the number of tap extraction lines.
-A c-contact relay is arranged on each tap lead-out line, and the tap lead-out line is connected to each of the NO terminals at the contact of the c-contact relay.
A first current detection circuit is connected between a single common line and each of the NC terminals at the contacts of the c-contact relay.
 以上説明したように、実施の形態に係るモータ制御装置によれば、タップ取出線の数と同数のリレーと、タップ取出線の数と同数の第1の電流検知回路を有し、単一のコモン線と、複数のリレーのN.C.端子のそれぞれとの間に第1の電流検知回路が接続される。この構成により、複数の第1の電流検知回路に印加される電圧は、モータ巻線で降圧されることはなく、複数の第1の電流検知回路に印加される電圧間には、実質的な差異はない。これにより、電流検知回路の接続構成に依らず、リレー接点の溶着等の故障を確実に検出することが可能となる。 As described above, the motor control device according to the embodiment has the same number of relays as the number of tap extraction lines and the same number of first current detection circuits as the number of tap extraction lines, A first current detection circuit is connected between the common line and each of the N.C. terminals of the plurality of relays. With this configuration, the voltage applied to the plurality of first current detection circuits is not stepped down by the motor winding, and the voltage applied to the plurality of first current detection circuits is substantially between the voltages applied to the plurality of first current detection circuits. There is no difference. This makes it possible to reliably detect failures such as welding of relay contacts regardless of the connection configuration of the current detection circuit.
 また、実施の形態に係るモータ制御装置によれば、第1の電流検知回路の検出結果に基づいてリレー接点の溶着故障が判定され、第2の電流検知回路の検出結果に基づいてモータの故障が判定される。即ち、リレーの接点の溶着故障と、モータの故障とが異なる電流検知回路によって、個別に監視される。これにより、リレー接点の溶着故障と、モータの故障とを誤判定することが防止される。また、故障箇所を判別することで、故障箇所の特定が可能となるため、メンテナンスに要する費用の増大が抑制される。 Further, according to the motor control device according to the embodiment, the welding failure of the relay contact is determined based on the detection result of the first current detection circuit, and the motor failure is determined based on the detection result of the second current detection circuit. Is determined. That is, the welding failure of the relay contact and the motor failure are individually monitored by different current detection circuits. This prevents erroneous determination of a relay contact welding failure and a motor failure. Moreover, since the failure location can be identified by determining the failure location, an increase in the cost required for maintenance is suppressed.
 また、従来ではモータの停止時のみ、リレー接点の溶着故障を判別していた。これは、従来の回路では、停止時だけでなく運転中においても電流検知回路にて電流を検知してしまう構成であった。このため、従来の回路は、運転中においては、リレー接点の溶着故障を検出できなかった。 Also, conventionally, a relay contact welding failure was determined only when the motor was stopped. In the conventional circuit, the current is detected by the current detection circuit not only when stopped but also during operation. For this reason, the conventional circuit cannot detect the welding failure of the relay contact during operation.
 これに対し、本実施の形態では、図6のフローチャートに示されるように、モータの運転状態に関わらず、即ちモータの停止時及び運転中の双方において、第1の電流検知回路によって、リレー接点の溶着故障の判定を行うことができる。これにより、運転中にリレー接点が溶着したとしても、制御回路がトランジスタの出力をオフにすることができるので、モータの故障を速やかに検出することが可能となる。 On the other hand, in the present embodiment, as shown in the flowchart of FIG. 6, the relay contact is performed by the first current detection circuit regardless of the motor operating state, that is, both when the motor is stopped and during operation. It is possible to determine whether there is a welding failure. Thereby, even if the relay contact is welded during operation, the control circuit can turn off the output of the transistor, so that it is possible to quickly detect a motor failure.
 最後に、図1に示す制御回路5のハードウェア構成について、図9を参照して説明する。図9は、図1に示す制御回路5の機能をソフトウェアで実現する場合のハードウェア構成の一例を示すブロック図である。 Finally, the hardware configuration of the control circuit 5 shown in FIG. 1 will be described with reference to FIG. FIG. 9 is a block diagram showing an example of a hardware configuration when the function of the control circuit 5 shown in FIG. 1 is realized by software.
 実施の形態における制御回路5の機能をソフトウェアで実現する場合には、図9に示すように、演算を行うプロセッサ500、プロセッサ500によって読みとられるプログラムが保存されるメモリ502、信号の入出力を行うインタフェース504を含む構成とすることができる。また、制御回路5には、プロセッサ500の処理結果をユーザに表示するための表示器506を含んでいてもよい。表示器506は、制御回路5の外部に設けられていてもよい。 When the functions of the control circuit 5 in the embodiment are realized by software, as shown in FIG. 9, a processor 500 that performs an operation, a memory 502 that stores a program read by the processor 500, and signal input / output The interface 504 to be performed can be included. Further, the control circuit 5 may include a display 506 for displaying the processing result of the processor 500 to the user. The display 506 may be provided outside the control circuit 5.
 プロセッサ500は、演算装置、マイクロプロセッサ、マイクロコンピュータ、CPU(Central Processing Unit)、又はDSP(Digital Signal Processor)といった演算手段であってもよい。また、メモリ502には、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)といった不揮発性又は揮発性の半導体メモリを例示することができる。 The processor 500 may be an arithmetic means such as an arithmetic device, a microprocessor, a microcomputer, a CPU (Central Processing Unit), or a DSP (Digital Signal Processor). The memory 502 is a nonvolatile or volatile semiconductor memory such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable ROM), EEPROM (registered trademark) (Electrically EPROM). It can be illustrated.
 メモリ502には、図6の処理フローを実行するプログラム、並びに、図7及び図8に示される判定テーブルが格納されている。プロセッサ500は、インタフェース504を介して必要な情報を授受し、メモリ502に格納されたプログラムをプロセッサ500が実行し、メモリ502に格納された判定テーブルをプロセッサ500が参照することにより、図6の処理フローを実行することができる。プロセッサ500による処理結果及び判定結果は、メモリ502に記憶することができる。またプロセッサ500による処理結果及び判定結果は、表示器506に表示することができる。 The memory 502 stores a program for executing the processing flow of FIG. 6 and a determination table shown in FIGS. 7 and 8. The processor 500 exchanges necessary information via the interface 504, the processor 500 executes the program stored in the memory 502, and the processor 500 refers to the determination table stored in the memory 502, whereby the processor 500 of FIG. A processing flow can be executed. The processing result and the determination result by the processor 500 can be stored in the memory 502. Further, the processing result and determination result by the processor 500 can be displayed on the display 506.
 なお、以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 Note that the configurations shown in the above embodiments are examples of the contents of the present invention, and can be combined with other known techniques, and can be combined without departing from the gist of the present invention. It is also possible to omit or change a part of.
 1 モータ、2 モータ制御装置、3 交流電源、4 電源回路、5 制御回路、6 コモン線、7,8 タップ取出線、9 モータ巻線、10 温度ヒューズ、11 アース、12a1,12a2,12b1,12b2 抵抗器、13,14 コイル、15a,15b ダイオード、16,17 トランジスタ、20 駆動回路、21 電流検知回路群、21a,21b 第1の電流検知回路、22 第2の電流検知回路、23,24 接点、23a,24a COM端子、23b,24b N.C.端子、23c,24c N.O.端子、50 筐体、52 プリント基板、63,64 c接点リレー、70 リレー群、100 モータ制御システム、301,307,309 抵抗器、302 ダイオード、303 ツェナーダイオード、304,308 コンデンサ、305 ブリーダー抵抗器、306 フォトカプラ、306a 発光ダイオード、306b フォトトランジスタ、401 電流経路、402 浮遊容量、500 プロセッサ、502 メモリ、504 インタフェース、506 表示器。 1 motor, 2 motor control device, 3 AC power supply, 4 power supply circuit, 5 control circuit, 6 common wire, 7, 8 tap lead wire, 9 motor winding, 10 temperature fuse, 11 ground, 12a1, 12a2, 12b1, 12b2 Resistor, 13, 14 coil, 15a, 15b diode, 16, 17 transistor, 20 drive circuit, 21 current detection circuit group, 21a, 21b first current detection circuit, 22 second current detection circuit, 23, 24 contacts 23a, 24a COM terminal, 23b, 24b N.C. terminal, 23c, 24c N.O. terminal, 50 housing, 52 printed circuit board, 63, 64 c contact relay, 70 relay group, 100 motor control system, 301 , 307, 309 resistor, 302 diode, 303 zener diode, 304,308 capacitor, 305 bleeder resistor, 306 photocoupler, 306a light emitting diode, 306b phototransistor, 401 current path, 402 stray capacitance, 500 processor, 502 memory, 504 interface, 506 display.

Claims (8)

  1.  モータから引き出された単一のコモン線と、前記モータから引き出された複数のタップ取出線とにより、前記モータに交流電圧を印加して前記モータの回転速度を制御するモータ制御装置であって、
     単一の前記コモン線と複数の前記タップ取出線の各々との間への前記交流電圧の印加を制御するc接点リレーを前記タップ取出線の数分有するリレー群と、
     前記モータの停止時に前記c接点リレーを介して前記交流電圧が印加され、前記交流電圧の印加によって流れる電流を検出する第1の電流検知回路を前記タップ取出線の数分有する電流検知回路群と、
     単一の前記コモン線と複数の前記タップ取出線の何れかとの間に接続され、前記モータとアースとの間に流れうる漏れ電流を検出する第2の電流検知回路と、
     を備え、
     前記第1の電流検知回路の検知結果及び前記第2の電流検知回路の検知結果に基づいて、前記モータの運転を停止するか否かを判定することを特徴とするモータ制御装置。
    A motor control device for controlling the rotational speed of the motor by applying an AC voltage to the motor by a single common line drawn from the motor and a plurality of tap lead lines drawn from the motor,
    A relay group having c contact relays for controlling the application of the AC voltage between the single common line and each of the plurality of tap lead lines, by the number of the tap lead lines;
    A current detection circuit group having a first current detection circuit for detecting the current that flows when the AC voltage is applied via the c-contact relay and the AC voltage is applied when the motor is stopped; ,
    A second current detection circuit that is connected between the single common line and any of the plurality of tap lead lines and detects a leakage current that can flow between the motor and the ground;
    With
    A motor control device that determines whether or not to stop the operation of the motor based on a detection result of the first current detection circuit and a detection result of the second current detection circuit.
  2.  前記第1の電流検知回路の検知結果に基づいて、前記c接点リレーの接点の溶着を検出することを特徴とする請求項1に記載のモータ制御装置。 2. The motor control device according to claim 1, wherein welding of the contact of the c-contact relay is detected based on a detection result of the first current detection circuit.
  3.  前記c接点リレーの接点の溶着の検出は、前記モータの停止時及び運転中の双方で行われることを特徴とする請求項2に記載のモータ制御装置。 3. The motor control device according to claim 2, wherein the welding detection of the contact of the c-contact relay is performed both when the motor is stopped and during operation.
  4.  前記第2の電流検知回路の検知結果に基づいて、前記モータの故障を検出することを特徴とする請求項1から3の何れか1項に記載のモータ制御装置。 The motor control device according to any one of claims 1 to 3, wherein a failure of the motor is detected based on a detection result of the second current detection circuit.
  5.  前記漏れ電流は、前記モータのモータ巻線と、前記モータの筐体との間に生じる浮遊容量を介して前記アースに向かう電流であることを特徴とする請求項1から4の何れか1項に記載のモータ制御装置。 5. The leakage current according to claim 1, wherein the leakage current is a current directed to the ground via a stray capacitance generated between a motor winding of the motor and a casing of the motor. The motor control device described in 1.
  6.  前記漏れ電流は、前記モータに備えられる温度ヒューズが溶断したときに流れる電流であることを特徴とする請求項1から5の何れか1項に記載のモータ制御装置。 The motor control device according to any one of claims 1 to 5, wherein the leakage current is a current that flows when a thermal fuse provided in the motor is blown.
  7.  前記モータの故障の検出は、前記モータの停止時に行われることを特徴とする請求項4から6の何れか1項に記載のモータ制御装置。 The motor control device according to any one of claims 4 to 6, wherein the detection of the failure of the motor is performed when the motor is stopped.
  8.  前記第1の電流検知回路の検知結果と、前記第2の電流検知回路の検知結果との組合せに基づいて、前記c接点リレーの溶着と前記モータの故障とを判別することを特徴とする請求項4から7の何れか1項に記載のモータ制御装置。 The welding of the c-contact relay and the failure of the motor are discriminated based on a combination of a detection result of the first current detection circuit and a detection result of the second current detection circuit. Item 8. The motor control device according to any one of Items 4 to 7.
PCT/JP2018/014130 2018-04-02 2018-04-02 Motor control device WO2019193632A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/014130 WO2019193632A1 (en) 2018-04-02 2018-04-02 Motor control device
JP2020512119A JP6987216B2 (en) 2018-04-02 2018-04-02 Motor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/014130 WO2019193632A1 (en) 2018-04-02 2018-04-02 Motor control device

Publications (1)

Publication Number Publication Date
WO2019193632A1 true WO2019193632A1 (en) 2019-10-10

Family

ID=68100226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014130 WO2019193632A1 (en) 2018-04-02 2018-04-02 Motor control device

Country Status (2)

Country Link
JP (1) JP6987216B2 (en)
WO (1) WO2019193632A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05256484A (en) * 1992-03-13 1993-10-05 Mitsubishi Electric Corp Ventilator
JP3557884B2 (en) * 1997-12-24 2004-08-25 三菱電機株式会社 Motor control device
US20100171449A1 (en) * 2009-01-05 2010-07-08 Robertshaw Controls Company Washing Machine Wiring to Reduce Mechanical Timer Contact Welding

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09281171A (en) * 1996-04-18 1997-10-31 Sakai Tekkosho:Kk Contact fusion detector for electromagnetic switch
JP2012202620A (en) * 2011-03-25 2012-10-22 Fujitsu General Ltd Air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05256484A (en) * 1992-03-13 1993-10-05 Mitsubishi Electric Corp Ventilator
JP3557884B2 (en) * 1997-12-24 2004-08-25 三菱電機株式会社 Motor control device
US20100171449A1 (en) * 2009-01-05 2010-07-08 Robertshaw Controls Company Washing Machine Wiring to Reduce Mechanical Timer Contact Welding

Also Published As

Publication number Publication date
JP6987216B2 (en) 2021-12-22
JPWO2019193632A1 (en) 2020-10-22

Similar Documents

Publication Publication Date Title
EP2715385B1 (en) Detecting device and current sensor
JP4918559B2 (en) Safety switching device for fail-safe disconnection of electrical loads
JP4884478B2 (en) Safety switching device for fail-safe disconnection of electrical loads
CN101499773A (en) Motor control system including electrical insulation deterioration detecting system
US7183934B2 (en) Diagnostic circuit
KR20070007154A (en) Series motor and method for controlling the same
JP3587300B2 (en) Integrated circuit device
JP5557955B2 (en) Switch detection system
JP5520949B2 (en) Incorrect connection detection device
WO2019193632A1 (en) Motor control device
JP5485910B2 (en) Non-volatile status indicator switch
US7348690B2 (en) Preventing unsafe operation by monitoring switching means
JP6738438B2 (en) Monitoring device for monitoring safety device and method for monitoring safety device
JP5906731B2 (en) Motor drive device
US7248007B2 (en) Control system to monitor the functioning of an electromechanical drive in a vehicle
JP2010107341A (en) Power supply circuit
JP2018040278A (en) Fuel pump control device
KR20140085012A (en) Semiconductor integrated circuit and method of driving the same
JP2008292357A (en) Impedance measuring apparatus and impedance measuring method
CN109417288B (en) Power supply cut-off device
JP7397987B2 (en) integrated circuit device
KR200342993Y1 (en) A sensing circuit Of circuit Breaker trip coil
JPH11299073A (en) Emergency stop circuit
US20190391549A1 (en) Circuit Arrangement for Switching an Electrical Load and Method for Checking a Status of a Safety Output of a Circuit Arrangement
KR200342992Y1 (en) A sensing circuit Of circuit Breaker trip coil

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18913751

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020512119

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18913751

Country of ref document: EP

Kind code of ref document: A1