WO2019192396A1 - 传输方法和装置 - Google Patents

传输方法和装置 Download PDF

Info

Publication number
WO2019192396A1
WO2019192396A1 PCT/CN2019/080352 CN2019080352W WO2019192396A1 WO 2019192396 A1 WO2019192396 A1 WO 2019192396A1 CN 2019080352 W CN2019080352 W CN 2019080352W WO 2019192396 A1 WO2019192396 A1 WO 2019192396A1
Authority
WO
WIPO (PCT)
Prior art keywords
time slot
bandwidth
transmission
handover
partial bandwidth
Prior art date
Application number
PCT/CN2019/080352
Other languages
English (en)
French (fr)
Inventor
李剑
梁亚超
郝鹏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to KR1020227022911A priority Critical patent/KR102542252B1/ko
Priority to AU2019248665A priority patent/AU2019248665B2/en
Priority to EP19780901.5A priority patent/EP3780459A4/en
Priority to KR1020207031627A priority patent/KR102431629B1/ko
Priority to JP2020553638A priority patent/JP7053879B2/ja
Priority to US17/043,830 priority patent/US20210037523A1/en
Publication of WO2019192396A1 publication Critical patent/WO2019192396A1/zh
Priority to JP2022060105A priority patent/JP7417651B2/ja
Priority to AU2022204379A priority patent/AU2022204379B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0008Wavelet-division
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0012Hopping in multicarrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present application relates to communication technologies, for example, to a transmission method and apparatus.
  • 5G communication systems are considered to be implemented in higher and faster frequency bands (eg, above 3 GHz) in order to achieve higher data rates.
  • the new standard (New RAT, NR) is to ensure that the coverage introduces slot aggregation transmission, and part of the bandwidth switching occurs during the slot aggregation transmission, which causes the transmission to fail.
  • the embodiment of the present application provides a transmission method and device, which can improve the success rate of time slot aggregation transmission when BWP handover occurs during time slot aggregation transmission.
  • the embodiment of the present application provides a transmission method, including:
  • the data is stopped in the time slot that has not been transmitted in the aggregated time slot.
  • the embodiment of the present application provides a transmission method, including:
  • the part of the bandwidth before the handover is mapped to the part of the bandwidth after the handover, and the part of the bandwidth after the handover is transmitted in the time slot that has not been transmitted in the aggregated time slot. data.
  • the embodiment of the present application provides a transmission method, including:
  • the embodiment of the present application provides a transmission method, including:
  • the same partial bandwidth is used to transmit data in all time slots of the slot aggregation.
  • the embodiment of the present application provides a transmission apparatus, including:
  • a processing module configured to stop transmitting data in a time slot that has not been transmitted in the aggregated time slot when the first preset condition is met during time slot aggregation transmission;
  • the transmission of the first time slot in the time slot aggregation transmission is configured by the first downlink control information indication or the radio resource control message.
  • the embodiment of the present application provides a transmission apparatus, including:
  • mapping module configured to map a part of the bandwidth before the handover to a part of the bandwidth after the handover when part of the bandwidth switching occurs during the time slot aggregation transmission
  • the first transmission module is configured to transmit data in a time slot that has not been transmitted in the aggregated time slot by using the switched partial bandwidth.
  • the embodiment of the present application provides a transmission apparatus, including:
  • a determining module configured to determine a legal time slot of the time slot aggregation transmission according to the time domain information and the frequency domain information; the legal time slot of the time slot aggregation transmission is a time slot used for time slot aggregation transmission;
  • the second transmission module is configured to transmit data in the legal time slot.
  • the embodiment of the present application provides a transmission apparatus, including:
  • the third transmission module is configured to transmit data using the same partial bandwidth in all time slots of the slot aggregation.
  • the embodiment of the present application provides a transmission apparatus, including a processor and a computer readable storage medium, where the computer readable storage medium stores an instruction, and when the instruction is executed by the processor, implements any of the foregoing Transmission method.
  • the embodiment of the present application proposes a computer readable storage medium having stored thereon a computer program, the computer program being executed by a processor to implement the steps of any of the foregoing transmission methods.
  • FIG. 1 is a schematic diagram of slot aggregation transmission in the related art of the present application.
  • FIG. 3 is a schematic diagram of transmission of time slots that have not been transmitted in a time slot in which aggregation is stopped in an embodiment of the present application;
  • FIG. 4 is a schematic diagram of performing transmission of the time slot that has not been transmitted according to scheduling signaling according to an embodiment of the present application
  • FIG. 5 is a flowchart of a transmission method according to another embodiment of the present application.
  • 6(a) is a schematic diagram 1 of mapping a partial bandwidth before handover to a partial bandwidth after handover in an embodiment of the present application
  • 6(b) is a second schematic diagram of mapping a partial bandwidth before handover to a partial bandwidth after handover in an embodiment of the present application
  • FIG. 6(c) is a third schematic diagram of mapping a partial bandwidth before handover to a partial bandwidth after handover according to an embodiment of the present application
  • FIG. 7 is a flowchart of a transmission method according to another embodiment of the present application.
  • FIG. 8(a) is a schematic diagram 1 of determining a legal time slot of a time slot aggregation transmission according to another embodiment of the present application.
  • FIG. 8(b) is a second schematic diagram of determining a legal time slot of a slot aggregation transmission according to another embodiment of the present application.
  • FIG. 8(c) is a third schematic diagram of determining a legal time slot of a slot aggregation transmission according to another embodiment of the present application.
  • FIG. 8(d) is a fourth schematic diagram of determining a legal time slot of a slot aggregation transmission according to another embodiment of the present application.
  • FIG. 9 is a flowchart of a transmission method according to another embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a transmission device according to another embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a transmission device according to another embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a transmission device according to another embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a transmission device according to another embodiment of the present application.
  • the new system (New RAT, NR) is used to ensure the slot aggregation transmission, that is, the user equipment (User Equipment, UE) has the same time domain symbol position and frequency domain resource block in multiple time slots (Resource Block). , RB) Position Repeat Transmission Block (TB), the currently scalable time slot is 1 or 2 or 4 or 8.
  • the base station determines whether the downlink is aggregated and transmitted by using an aggregation factor (DL) in the Radio Resource Control (RRC) message, and indicates an uplink by using an aggregation factor (UL) in the RRC message. Whether the slot aggregation transmission is performed.
  • DL aggregation factor
  • RRC Radio Resource Control
  • UL aggregation factor
  • the configured aggregation factor is greater than 1, it indicates that the user equipment (User Equipment, UE) needs to perform slot aggregation transmission, and the base station will schedule the first slot in the slot aggregation transmission. (grant) message scheduling, repeating transmission of a Transmission Block (TB) in the same time domain symbol position and the same frequency domain RB position in subsequent available time slots.
  • TB Transmission Block
  • the base station configures a set of partial bandwidth (BWP) for the UE through high layer signaling, up to 4 downlink (DL) links and 4 uplink (UL) BWPs, and different BWPs can be used. Independently configure subcarrier spacing, bandwidth, and frequency domain location.
  • BWP switching in the standard can be divided into static BWP switching, dynamic BWP switching, and time-based BWP switching. For example, if a larger packet arrives, it needs to be changed. The BWP is transmitted over a large bandwidth. In this case, the BWP needs to be switched to a larger bandwidth.
  • the 5G base station gNB can dynamically switch the BWP through the BWP indication field in the Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • the UE detects the BWP indication field. Different from the previous BWP indication domain information, it is determined that the handover of the BWP needs to be completed. In addition, the current standard definition for the Time Division Duplexing (TDD) system needs to ensure that the DL BWP and the UL BWP center carrier frequency are the same, meaning that for the TDD system, if the DL BWP is switched, the UL BWP also needs to be switched.
  • TDD Time Division Duplexing
  • the square of U represents the uplink time slot
  • the square of D represents the downlink time slot
  • the length of the aggregated time slot is assumed to be 4
  • the four uplink time slots of the aggregation are interspersed with four aggregated four. If the UE performs the BWP handover in the uplink slot aggregation transmission process, if the UE continues to perform the slot aggregation transmission according to the original UL BWP, the transmission may fail.
  • an embodiment of the present application provides a transmission method, including: step 200.
  • step 200 when the first preset condition is met during the slot aggregation transmission, the data is stopped in the time slot that has not been transmitted in the aggregated time slot.
  • the transmission of the first time slot in the slot aggregation transmission is configured by the first downlink control information indication or the radio resource control message.
  • the first DCI is used for grant based transmission, and the RRC message is used for grant free transmission.
  • the first DCI dynamically indicates frequency domain resources, time domain symbols, modulation and coding schemes, number of code streams, number of transmission layers, and redundancy versions used for transmission of the first slot in the slot aggregation transmission (Redundancy Version, RV) and so on.
  • RV Redundancy Version
  • the RRC semi-statically configures the frequency domain resource used in the transmission of the first slot in the slot aggregation transmission, the used time domain symbol, the modulation coding method used, the number of code streams, the number of transmission layers, and the RV number.
  • the data is carried in any of the following:
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • PDSCH Physical Downlink Shared Channel
  • PDCCH Physical Downlink Control Channel
  • the first preset condition includes at least one of the following:
  • the part of the bandwidth indication field in the third downlink control information is different from the part of the bandwidth indication field in the first downlink control information
  • the part of the bandwidth indication field in the third downlink control information is different from the part of the bandwidth indication field in the fourth downlink control information
  • At least one newly added bit field or a bit field other than the partial bandwidth indication field in the third downlink control information satisfies a second preset condition
  • the subcarrier spacing of the part of the bandwidth after the handover is different from the subcarrier spacing of the partial bandwidth before the handover;
  • the size of the part of the bandwidth after the handover is different from the size of the part of the bandwidth before the handover;
  • the third downlink control information and the fourth downlink control information are used to indicate data transmission of a time slot of non-aggregated transmission.
  • the at least one new bit field or the other bit fields except the partial bandwidth indication field in the third downlink control information meet the second preset condition, including at least one of the following:
  • Adding a bit field or other bit fields other than the partial bandwidth indication field indicates stopping the transmission of data in a time slot that has not been transmitted in the aggregated time slot;
  • the preset status of the newly added bit field or other bit fields except the partial bandwidth indication field indicates that the transmission of data in the time slot that has not been transmitted in the aggregated time slot is stopped.
  • the data may be transmitted in a time slot that has not been transmitted in the aggregated time slot by explicitly or implicitly indicating by adding a bit field or other bit fields other than the part of the bandwidth indication field.
  • the data is stopped in the subsequent slot aggregation
  • the data is transmitted in the subsequent slot aggregation by using the preset state of the frequency domain resource allocation domain.
  • all the bits in the frequency domain resource allocation domain are configured to be 1 or all configured to be 0.
  • the UE may determine whether the BWP is handed over according to whether the BWP indication field in the third DCI sent by the gNB is the same as the BWP indication field in the first DCI. In an embodiment, when the BWP indication field in the third DCI is different from the BWP indication field in the first DCI, determining that the BWP is switched; when the BWP indication field in the third DCI and the BWP indication field in the first DCI When the same, it is determined that the BWP has not been switched.
  • the first slot of the uplink aggregation transmission is a DCI that is sent before the first U-slot (ie, an uplink slot).
  • the UL grant indicates that the first DCI indicates transmission data
  • the BWP indication field in the first DCI is, for example, 00, indicating that the BWP ID is 1, and the BWP switch occurs in the first D slot (ie, the downlink slot) in the figure.
  • the UE receives the DCI (DL grant) in the time slot, that is, the third DCI, and the BWP indication field in the third DCI is 01, for example, indicating that the BWP ID is 2, indicating that the BWP is switched, and the BWP1 is changed to BWP2.
  • the downlink BWP changes.
  • the third DCI refers to the DL grant for downlink data transmission. It is a time slot of non-uplink aggregation transmission.
  • the UE may further determine whether the BWP is switched according to whether the BWP indication field in the third DCI sent by the gNB is the same as the BWP indication field in the fourth DCI. In an embodiment, when the BWP indication field in the third DCI is different from the BWP indication field in the fourth DCI, determining that the BWP is switched; when the BWP indication field in the third DCI and the BWP indication field in the fourth DCI When the same, it is determined that the BWP has not been switched.
  • the DCI (DL grant) delivered before the first U-slot, that is, the fourth DCI indicates transmission of downlink data, and the BWP indication in the fourth DCI.
  • the domain is, for example, 10, indicating that the BWP ID is 3, and the BWP handover occurs in the first D slot in the figure.
  • the UE receives the DCI (DL grant), that is, the third DCI, and the BWP in the third DCI.
  • the indication field is, for example, 01, indicating that the BWP ID is 2, indicating that the BWP is switched from BWP3 to BWP2.
  • the downlink BWP changes.
  • the uplink BWP is also required.
  • the third DCI and the fourth DCI refer to a DL grant for downlink data transmission, which occupies a time slot of non-uplink aggregation transmission.
  • the time slot aggregation may be an uplink time slot aggregation, and the BWP may be a UL BWP; or the time slot aggregation may be a downlink time slot aggregation, and the BWP may be a DL BWP.
  • the time slot in the aggregation needs to be stopped. Data is transmitted in time slots that have not been transmitted.
  • the method further includes: step 201.
  • step 201 data is transmitted in a time slot that has not been transmitted according to the second downlink control information.
  • the data transmitted in the untransmitted time slot may be the same as or different from the data transmitted in the transmitted time slot.
  • U is an uplink time slot
  • D is a downlink time slot
  • the aggregated time slot length is 4
  • the aggregated four uplink time slots are interspersed with the aggregated four downlink time slots.
  • Two downlink time slots when BWP handover occurs during downlink time slot transmission, the UE stops transmitting data in the subsequent two uplink time slots, as shown in the figure, two uplink time slots. And, data is transmitted in a time slot that has not been transmitted according to the second downlink control information (ie, the Grant signaling in FIG. 4).
  • the embodiment of the present application includes: stopping data transmission in a time slot that has not been transmitted in the aggregated time slot when the first preset condition is met during the time slot aggregation transmission process.
  • the embodiment of the present application improves the transmission in the time slot by stopping the transmission of data in the time slots that have not been transmitted in the aggregated time slots, thereby not causing the data transmission failure in the time slots that have not been transmitted in the aggregated time slots.
  • step 500 another embodiment of the present application provides a transmission method, including: step 500.
  • step 500 when part of the bandwidth switching occurs during the slot aggregation transmission, the part of the bandwidth before the handover is mapped to the part of the bandwidth after the handover, and the part of the bandwidth after the handover is not transmitted in the aggregated time slot.
  • the data is transmitted in the time slot.
  • mapping a partial bandwidth before handover to a partial bandwidth after handover includes at least one of the following:
  • the resource block of the partial bandwidth before the handover is mapped from the lowest resource block of the switched partial bandwidth.
  • the i-th resource block of the partial bandwidth before the handover is mapped to the (i+ ⁇ ) or (i- ⁇ ) of the partial bandwidth after the handover.
  • the BWP before handover includes (n+1) RBs, which are RB0, RB1, ..., RBn, and the switched BWP includes (m+1) RBs, respectively RB0.
  • the RBs allocated to the UE include RB2, RB3, RB4, ..., RB(n-1), then the RB2 of the UE is mapped to the RB2 of the switched BWP, the UE RB3 is mapped to RB3 of the switched BWP, and so on, and the RB(n-1) of the UE is mapped to the RB(n-1) of the switched BWP. That is, the above ⁇ is 0.
  • the BWP before the handover includes (n+1) RBs, which are RB0, RB1, ..., RBn
  • the switched BWP includes (m+1) RBs.
  • RB0, RB1, ..., RBm, m is greater than n, respectively, and the RBs allocated to the UE include RB2, RB3, RB4, ..., RB(n-1), then the RB2 of the UE is mapped to the RB4 of the switched BWP.
  • the RB3 of the UE is mapped to the RB5 of the switched BWP, and so on, and the RB(n-1) of the UE is mapped to the RB(n+1) of the switched BWP. That is, the above ⁇ is 2.
  • the frequency domain resource location of the RB2 of the BWP before handover and the frequency domain resource location of the RB4 of the switched BWP are the same, the frequency domain resource location of the RB3 of the BWP before handover and the frequency of the RB5 of the switched BWP.
  • the domain resource location is the same, and so on, the frequency domain resource location of the RB (n-1) of the BWP before handover and the frequency domain resource location of the RB (n+1) of the switched BWP are the same, then the RB2 mapping of the UE To the RB4 of the switched BWP, the RB3 of the UE is mapped to the RB5 of the switched BWP, and so on, and the RB(n-1) of the UE is mapped to the RB(n+1) of the switched BWP.
  • the i th resource block of the partial bandwidth before the handover is mapped to the (i mod X) resource blocks of the switched partial bandwidth;
  • X is the number of resource blocks of the partial bandwidth after the handover.
  • the BWP before handover includes (m+1) RBs, which are RB0, RB1, ..., RBm, and the switched BWP includes (n+1) RBs, respectively RB0.
  • the RBs allocated to the UE include RB4, RB5, RB6, ..., RB(n-2), then the RB4 of the UE is mapped to the RB of the switched BWP (4mod( n+1)), the RB5 of the UE is mapped to the RB of the switched BWP (5mod(n+1)), and so on, and the RB(n-2) of the UE is mapped to the RB of the switched BWP ((n- 2) mod(n+1)).
  • the resource block of the partial bandwidth before the handover is mapped from the lowest resource block of the switched partial bandwidth.
  • the BWP1 before the handover is 50 RBs
  • the BWP2 after the handover becomes 20 RBs
  • the number of resource blocks allocated to the UE for uplink data transmission in the BWP1 is 10, occupying the frequency domain position of the RB11-RB1120, if the minimum resource is used.
  • the block mapping method maps directly to RB0-RB9 in 20 RBs in BWP2.
  • the mapping may be performed based on the BWP of the small bandwidth, and the UE or the gNB further performs rate matching and rate matching.
  • the bit on the transmission channel is punctured or retransmitted to match the carrying capacity of the physical channel, and the bit rate required for transmission is achieved when the channel is mapped; if the BWP1 before the handover is 50 RBs, the switched BWP2 becomes 10 RBs.
  • the number of resource blocks allocated to the UE for uplink data transmission in BWP1 is 20, occupying the frequency domain location of RB1-RB20, then only 10 RBs are mapped, and the other 10 RBs are not mapped.
  • the method further includes:
  • the part of the bandwidth after the frequency hopping process is used to transmit data in the time slot that has not been transmitted.
  • performing frequency hopping processing on the part of the bandwidth after the handover includes:
  • the frequency hopping calculation is performed based on the size of the partial bandwidth after the switching.
  • the frequency hopping calculation is performed based on the size of the partial bandwidth after the switching.
  • RB is the first The position of the RB before the time slot frequency hopping process
  • the RB is a resource based on the NR resource allocation mode 1 (which is consistent with the Long Term Evolved (LTE) resource allocation mode 2, and is used to indicate a group of consecutively allocated resource blocks).
  • the RB offset is the frequency domain offset between the two frequency domain hoppings. The specific values are as shown in Table 1.
  • the RB offsets of different BWPs have different value ranges, and the frequency hopping in the DCI is adopted. Indicate the domain indication, The bandwidth of the BWP after switching.
  • the method before performing the frequency hopping process on the part of the bandwidth after the switching, the method further includes:
  • the frequency hopping process for the part of the bandwidth after the handover includes:
  • the frequency hopping process is performed on the part of the bandwidth after the switching of the frequency hopping time slot counter, and the current time slot number used in the frequency hopping process of the part of the bandwidth after the switching is obtained from the time slot counter.
  • the time slot counter may be reset or not reset; for example, according to the inter-slot frequency hopping method in the current standard, even time slots do not hop, odd time slots hop, for four time slots aggregate transmission, then time slot counter (0 1 2 3) increase, if a BWP switch occurs, it can remain unchanged, or reset. If the BWP switch occurs in the third time slot, the third time slot timer starts counting from zero to (0).
  • the fourth slot timer counts from zero to (0 1 2 0), and the time slot count may also include non-uplink time.
  • the slot (such as the following line slot or special slot S), as shown in Figure 1, UUDDUU, the count is (012345), if the slot counter is reset due to BWP switching, the count may become (012012).
  • the frequency domain offset after the switching may be zero-padded or truncated by the frequency hopping indication field in the original DCI.
  • the frequency domain offset may be indicated by the frequency offset indication field in the original DCI. That is to say, the frequency domain offset before switching is indicated by 0 and 1, and the frequency domain offset after switching can be indicated by 00 and 01.
  • the frequency domain offset may be indicated by the frequency hopping indication field in the original DCI. That is to say, the frequency domain offset before switching is indicated by 00, 01, 10 and 11, and the frequency domain offset after switching can be indicated by 0 and 1.
  • the transmission of the first time slot in the slot aggregation transmission is configured by using a downlink control information indication or a radio resource control message.
  • the first DCI is used for grant based transmission, and the RRC message is used for grant free transmission.
  • the first DCI dynamically indicates frequency domain resources, time domain symbols, modulation and coding schemes, number of code streams, number of transmission layers, and redundancy versions used for transmission of the first slot in the slot aggregation transmission (Redundancy Version, RV) and so on.
  • RV Redundancy Version
  • the RRC semi-statically configures the frequency domain resource used in the transmission of the first slot in the slot aggregation transmission, the used time domain symbol, the modulation coding method used, the number of code streams, the number of transmission layers, and the RV number.
  • the data is carried in any of the following:
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • PDSCH Physical Downlink Shared Channel
  • PDCCH Physical Downlink Control Channel
  • the embodiment of the present application includes: when part of the bandwidth switching occurs during the time slot aggregation transmission, the part of the bandwidth before the handover is mapped to the part of the bandwidth after the handover, and the part of the bandwidth after the handover is not yet in the aggregated time slot. Data is transmitted in the transmitted time slot.
  • the embodiment of the present application uses the switched part of the bandwidth to transmit data in the time slot that has not been transmitted in the aggregated time slot, so that the data in the time slot that has not been transmitted is successfully transmitted, and the time slot aggregation transmission process is improved.
  • step 700 another embodiment of the present application provides a transmission method, including: step 700 and step 701.
  • a legal time slot for slot aggregation transmission is determined according to at least one of time domain information and frequency domain information.
  • the time domain information includes at least one of the following:
  • the start and length indicator (SLIV);
  • n is the time slot in which the DCI is scheduled
  • K 0 is the interval between the time slot in which the DCI is scheduled and the time slot in which the downlink data is received
  • K 2 is the interval between the time slot in which the DCI is scheduled and the time slot in which the uplink data is transmitted.
  • the ⁇ PDSCH is a subcarrier spacing used by a Physical Downlink Shared Channel (PDSCH)
  • the ⁇ PDCCH is a subcarrier spacing used by a Physical Downlink Control Channel (PDCCH).
  • the time domain symbol occupied by the transmission in the first aggregation slot is 0-4, and the start position of the time domain symbol is the 0th symbol.
  • the time domain symbol has a duration of 5 symbols.
  • U is a full downlink symbol slot
  • D is a full uplink symbol slot
  • S is a non-full uplink symbol slot. If the 0-4 symbol of the second S-slot shown in FIG. 8(a) is occupied by a downlink symbol or an unknown symbol, it indicates that the time domain data cannot be mapped, as shown in FIG. 8(b).
  • time slot is skipped to directly determine the next available time slot, and the 0-4 symbol in the next U time slot is found to be available. It is a legal time slot and can be used for time slot aggregation transmission.
  • the time domain symbol occupied by the SLIV indication in the first aggregation time slot is 0-6, the time domain symbol start position is the 0th symbol, and the time domain symbol duration is 7 symbols, if FIG. 8 ( a)
  • the 0-6 symbol of the second S-slot shown is available, indicating that the time domain data can be mapped, and the time slot is considered to be a legal time slot, which can be used for uplink time slot aggregation transmission.
  • the UE cannot receive and transmit data during the BWP conversion time due to the BWP switching delay, as shown in Figures 8(c) and 8(d), within the BWP conversion time K2 or K0.
  • These time slots are invalid time slots and cannot be used for uplink time slot aggregation transmission, and continue to judge other available time slots after the conversion time.
  • the frequency domain information includes at least one of the following:
  • the resource allocation domain is in a preset state, for example, the resource allocation domain is null (Null).
  • the BWP before the handover is different from the BWP after the handover.
  • the BWP size before the handover is 50 RBs
  • the BWP size after the handover is 20 RBs
  • the resource allocation is 25 RBs, which cannot be completely mapped to the switched BWP. It is not a legal time slot and cannot be aggregated.
  • the time slot is considered to be not a valid time slot, and the aggregation transmission cannot be performed; or the BWP before the handover is different from the frequency domain of the switched BWP.
  • the time slot is not a valid time slot and cannot be aggregated.
  • the resource allocation field of the BWP is configured to be null, the time slot is considered to be a legal time slot and cannot be aggregated.
  • the resource allocation domain of the switched BWP is configured as a preset state, the time slot is considered to be a legal time slot.
  • the resource allocation domain is configured to be all 0s or all 1s, and aggregation transmission cannot be performed.
  • the time domain information and the frequency domain information may be separately used as a judgment indicator of whether the time slot is a qualified time slot, or may be jointly used as a judgment indicator of whether the time slot is a qualified time slot.
  • step 701 data is transmitted in the legal time slot.
  • the transmission of the first time slot in the slot aggregation transmission is configured by using a downlink control information indication or a radio resource control message.
  • the first DCI is used for grant based transmission, and the RRC message is used for grant free transmission.
  • the first DCI dynamically indicates frequency domain resources, time domain symbols, modulation and coding schemes, number of code streams, number of transmission layers, and redundancy versions used for transmission of the first slot in the slot aggregation transmission (Redundancy Version, RV) and so on.
  • RV Redundancy Version
  • the RRC semi-statically configures the frequency domain resource used in the transmission of the first slot in the slot aggregation transmission, the used time domain symbol, the modulation coding method used, the number of code streams, the number of transmission layers, and the RV number.
  • the data is carried in any of the following:
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • PDSCH Physical Downlink Shared Channel
  • PDCCH Physical Downlink Control Channel
  • step 900 another embodiment of the present application provides a transmission method, including: step 900.
  • step 900 the same partial bandwidth is used to transmit data in all time slots of the slot aggregation.
  • the same partial bandwidth includes the same partial bandwidth size, the same partial bandwidth subcarrier spacing, and the same frequency domain location.
  • another embodiment of the present application provides a transmission apparatus, including: a processing module.
  • a processing module configured to stop transmitting data in a time slot that has not been transmitted in the aggregated time slot when the first preset condition is met during time slot aggregation transmission;
  • the transmission of the first time slot in the time slot aggregation transmission is configured by the first downlink control information indication or the radio resource control message.
  • the method further includes: a transmission module.
  • a transmission module configured to, according to the second downlink control information, transmit data in the time slot that has not been transmitted
  • the data transmitted in the untransmitted time slot is the same as the data transmitted in the transmitted time slot.
  • the first preset condition includes at least one of the following:
  • the part of the bandwidth indication field in the third downlink control information is different from the part of the bandwidth indication field in the first downlink control information
  • the part of the bandwidth indication field in the third downlink control information is different from the part of the bandwidth indication field in the fourth downlink control information
  • At least one other bit field in the third downlink control information satisfies a second preset condition
  • the subcarrier spacing of the part of the bandwidth after the handover is different from the subcarrier spacing of the partial bandwidth before the handover;
  • the size of the part of the bandwidth after the handover is different from the size of the part of the bandwidth before the handover;
  • the third downlink control information and the fourth downlink control information are used to indicate data transmission of a time slot of non-aggregated transmission.
  • the at least one other bit field in the third downlink control information meets the second preset condition, including at least one of the following:
  • the other bit field display indicates that the transmission of data in the time slot that has not been transmitted in the aggregated time slot is stopped
  • the other bit field implicitly indicates to stop transmitting data in a time slot that has not been transmitted in the aggregated time slot
  • the preset state of the other bit fields indicates that the transmission of data in the time slots that have not been transmitted in the aggregated time slots is stopped.
  • the other bit fields are new bit fields.
  • another embodiment of the present application provides a transmission apparatus, including: a mapping module and a first transmission module.
  • mapping module configured to map a part of the bandwidth before the handover to a part of the bandwidth after the handover when part of the bandwidth switching occurs during the time slot aggregation transmission
  • the first transmission module is configured to transmit data in a time slot that has not been transmitted in the aggregated time slot by using the switched partial bandwidth.
  • mapping module is further configured to:
  • At least one of the following methods is used to map part of the bandwidth before handover to the part of the bandwidth after handover:
  • the resource block of the partial bandwidth before the handover is mapped from the lowest resource block of the switched partial bandwidth.
  • the first transmission module is further configured to:
  • the switched partial bandwidth after the frequency hopping process is used to transmit data in the time slot that has not been transmitted.
  • the first transmission module is further configured to:
  • another embodiment of the present application provides a transmission apparatus, including: a determination module and a second transmission module.
  • a determining module configured to determine a legal time slot of the time slot aggregation transmission according to at least one of time domain information and frequency domain information; the legal time slot of the time slot aggregation transmission is a time slot used for time slot aggregation transmission;
  • the second transmission module is configured to transmit data in a legal time slot.
  • the time domain information comprises at least one of the following:
  • n is the time slot for scheduling downlink control information
  • K 0 is the interval between the time slot for scheduling downlink control information and the time slot for receiving downlink data
  • K 2 is the time slot for scheduling downlink control information to when transmitting uplink data.
  • the interval between slots, ⁇ PDSCH is the subcarrier spacing used by the physical downlink shared channel
  • ⁇ PDCCH is the subcarrier spacing used by the physical downlink control channel.
  • the frequency domain information includes at least one of the following:
  • the resource allocation field is a preset state.
  • another embodiment of the present application provides a transmission apparatus, including: a third transmission module.
  • the third transmission module transmits data in the same partial bandwidth in all time slots of the slot aggregation.
  • Another embodiment of the present application provides a transmission apparatus including a processor and a computer readable storage medium, wherein the computer readable storage medium stores instructions for implementing the foregoing when the instructions are executed by the processor A transmission method.
  • Another embodiment of the present application is directed to a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements the steps of any of the above described transmission methods.
  • computer storage medium includes volatile and nonvolatile, implemented in any method or technology for storing information, such as computer readable instructions, data structures, program modules or other data. Sex, removable and non-removable media.
  • Computer storage media include, but are not limited to, Random Access Memory (RAM), Read-Only Memory (ROM), and Electrically Erasable Programmable Read Only Memory (EEPROM). , flash memory or other memory technology, Compact Disc Read-Only Memory (CD-ROM), Digital Versatile Disc (DVD) or other optical disc storage, magnetic box, magnetic tape, disk storage or other magnetic storage A device, or any other medium that can be used to store desired information and that can be accessed by a computer.
  • communication media typically includes computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as a carrier wave or other transport mechanism, and can include any information delivery media. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公开了一种传输方法和装置,所述传输方法包括:当在进行时隙聚合传输过程中满足第一预设条件时,停止在聚合的时隙中尚未传输的时隙中传输数据。本申请实施例通过停止在聚合的时隙中尚未传输的时隙中传输数据,从而不会导致聚合的时隙中尚未传输的时隙中的数据传输失败的问题,提高了在时隙聚合传输过程中发生BWP切换时时隙聚合传输的成功率。

Description

传输方法和装置
本申请要求在2018年04月03日提交中国专利局、申请号为201810291088.5的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术,例如涉及一种传输方法和装置。
背景技术
随着无线通信技术的发展和用户对通信需求的日益增加,为了满足更高、更快和更新的通信需要,第五代移动通信(5th Generation,5G)技术已经成为未来网络发展的趋势。5G通信系统被认为是在更高更快的频带(例如3GHz以上)中实施,以便完成更高的数据速率。
新制式(New RAT,NR)为保证覆盖引入时隙聚合(slot aggregation)传输,时隙聚合传输过程中会发生部分带宽切换,从而导致传输失败。
发明内容
本申请实施例提供了一种传输方法和装置,能够提高在时隙聚合传输过程中发生BWP切换时时隙聚合传输的成功率。
本申请实施例提供了一种传输方法,包括:
当在进行时隙聚合传输过程中满足第一预设条件时,停止在聚合的时隙中尚未传输的时隙中传输数据。
本申请实施例提出了一种传输方法,包括:
当在进行时隙聚合传输过程中发生部分带宽切换时,将切换前的部分带宽映射到切换后的部分带宽,采用所述切换后的部分带宽在聚合的时隙中尚未传输的时隙中传输数据。
本申请实施例提出了一种传输方法,包括:
根据时域信息和频域信息中至少之一确定用于时隙聚合传输的合法时隙;
在所述合法时隙中传输数据。
本申请实施例提出了一种传输方法,包括:
在时隙聚合的所有时隙中采用相同的部分带宽传输数据。
本申请实施例提出了一种传输装置,包括:
处理模块,设置为当在进行时隙聚合传输过程中满足第一预设条件时,停止在聚合的时隙中尚未传输的时隙中传输数据;
所述时隙聚合传输中的第一个时隙的传输通过第一下行控制信息指示或者无线资源控制消息配置。
本申请实施例提出了一种传输装置,包括:
映射模块,设置为当在进行时隙聚合传输过程中发生部分带宽切换时,将切换前的部分带宽映射到切换后的部分带宽;
第一传输模块,设置为采用所述切换后的部分带宽在聚合的时隙中尚未传输的时隙中传输数据。
本申请实施例提出了一种传输装置,包括:
确定模块,设置为根据时域信息和频域信息确定时隙聚合传输的合法时隙;所述时隙聚合传输的合法时隙为用于时隙聚合传输的时隙;
第二传输模块,设置为在所述合法时隙中传输数据。
本申请实施例提出了一种传输装置,包括:
第三传输模块,设置为在时隙聚合的所有时隙中采用相同的部分带宽传输数据。
本申请实施例提出了一种传输装置,包括处理器和计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令被所述处理器执行时,实现上述任一种传输方法。
本申请实施例提出了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述任一种传输方法的步骤。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图概述
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1为本申请相关技术中时隙聚合传输的示意图;
图2为本申请的一个实施例提出的传输方法的流程图;
图3为本申请的一个实施例中停止聚合的时隙中尚未传输的时隙的传输的示意图;
图4为本申请的一个实施例中根据调度信令进行所述尚未传输的时隙的传输的示意图;
图5为本申请另一个实施例提出的传输方法的流程图;
图6(a)为本申请的一个实施例中将切换前的部分带宽映射到切换后的部分带宽的示意图一;
图6(b)为本申请的一个实施例中将切换前的部分带宽映射到切换后的部分带宽的示意图二;
图6(c)为本申请的一个实施例中将切换前的部分带宽映射到切换后的部分带宽的示意图三;
图7为本申请另一个实施例提出的传输方法的流程图;
图8(a)为本申请另一个实施例确定时隙聚合传输的合法时隙的示意图一;
图8(b)为本申请另一个实施例确定时隙聚合传输的合法时隙的示意图二;
图8(c)为本申请另一个实施例确定时隙聚合传输的合法时隙的示意图三;
图8(d)为本申请另一个实施例确定时隙聚合传输的合法时隙的示意图四;
图9为本申请另一个实施例提出的传输方法的流程图;
图10为本申请另一个实施例提出了传输装置的结构组成示意图;
图11为本申请另一个实施例提出了传输装置的结构组成示意图;
图12为本申请另一个实施例提出了传输装置的结构组成示意图;
图13为本申请另一个实施例提出了传输装置的结构组成示意图。
具体实施方式
下文中将结合附图对本申请的实施例进行详细说明。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
新制式(New RAT,NR)为保证覆盖引入时隙聚合(slot aggregation)传输,即用户设备(User Equipment,UE)在多个时隙中相同的时域符号位置和频域资源块(Resource Block,RB)位置重复传输传输块(Transmission Block,TB), 目前可聚合的时隙长度为1或2或4或8。基站通过配置无线资源控制(Radio Resource Control,RRC)消息中的下行聚合因子(aggregation Factor DL)表示下行链路是否进行聚合传输,通过RRC消息中的上行聚合因子(aggregation Factor UL)表示上行链路是否进行时隙聚合传输,如果配置的聚合因子大于1,则表明用户设备(User Equipment,UE)需要进行时隙聚合传输,基站会在时隙聚合传输的第一个时隙(slot)由调度(grant)消息调度,在后续的可用时隙中相同的时域符号位置和相同的频域RB位置重复传输传输块(Transmission Block,TB)。
另外,基站会通过高层信令为UE配置一组部分带宽(Bandwidth Part,BWP),至多4个下行链路(DownLink,DL)BWP和4个上行链路(UpLink,UL)BWP,不同BWP可独立配置子载波间隔、带宽和频域位置等,目前标准中BWP切换可分为静态BWP切换、动态BWP切换和基于时间(time)的BWP切换,例如有更大的数据包到达需要变到更大的带宽上发送,这时就需要切换到更大带宽的BWP,5G基站(gNB)可通过下行控制信息(Downlink Control Information,DCI)中的BWP指示域动态切换BWP,UE检测该BWP指示域与之前的BWP指示域信息不同即确定需要完成BWP的切换。另外,目前标准定义对于时分双工(Time Division Duplexing,TDD)系统,需要保证DL BWP与UL BWP中心载频相同,意味着对于TDD系统如果DL BWP发生切换,则UL BWP也需要发生切换。
如图1所示,图中,U的方块表示上行时隙,D的方块表示下行时隙,假设聚合的时隙长度为4,并且,聚合的四个上行时隙中间穿插有聚合的四个下行时隙中的两个下行时隙,当UE在进行上行时隙聚合传输过程中发生BWP切换时,如果UE继续按照原UL BWP进行时隙聚合传输,则有可能会导致传输失败。
参见图2,本申请一个实施例提出了一种传输方法,包括:步骤200。
在步骤200中,当在进行时隙聚合传输过程中满足第一预设条件时,停止在聚合的时隙中尚未传输的时隙中传输数据。
在本申请的实施例中,时隙聚合传输中的第一个时隙的传输通过第一下行控制信息指示或者无线资源控制消息配置。
其中,第一DCI用于基于调度(grant based)传输,RRC消息用于免调度(grant free)传输。
例如,第一DCI动态指示时隙聚合传输中的第一个时隙的传输使用的频域资源、时域符号、调制编码方式、码流数、传输层数目、以及冗余版本(Redundancy Version,RV)号等。
又如,RRC半静态配置时隙聚合传输中的第一个时隙的传输使用的频域资源、使用时域符号、使用的调制编码方式、码流数、传输层数目、以及RV号等。
在本申请的实施例中,数据承载在以下任一种:
物理上行控制信道(Physical Uplink Control Channel,PUCCH);
物理上行共享信道(Physical Uplink Shared Channel,PUSCH);
物理下行共享信道(Physical Downlink Shared Channel,PDSCH);
物理下行控制信道(Physical Downlink Control Channel,PDCCH)。
本申请的实施例中,第一预设条件包括以下至少一种:
发生部分带宽切换;
第三下行控制信息中部分带宽指示域与所述第一下行控制信息中部分带宽指示域不同;
第三下行控制信息中部分带宽指示域与第四下行控制信息中部分带宽指示域不同;
第三下行控制信息中至少一个新增比特域或除部分带宽指示域以外的其他比特域满足第二预设条件;
切换后的部分带宽的子载波间隔与切换前的部分带宽的子载波间隔不同;
切换后的部分带宽的大小与切换前的部分带宽的大小不同;
其中,所述第三下行控制信息和所述第四下行控制信息用于指示非聚合传输的时隙的数据传输。
其中,第三下行控制信息中至少一个新增比特域或除部分带宽指示域以外的其他比特域满足第二预设条件包括以下至少之一:
新增比特域或除部分带宽指示域以外的其他比特域指示停止在聚合的时隙中尚未传输的时隙中传输数据;
新增比特域或除部分带宽指示域以外的其他比特域的预设状态指示停止在聚合的时隙中尚未传输的时隙中传输数据。
其中,可以通过新增比特域或除部分带宽指示域以外的其他比特域显式或隐式指示停止在聚合的时隙中尚未传输的时隙中传输数据。
例如,如果发生BWP切换就停止在后续的时隙聚合中传输数据;
或者,如果发生BWP切换,且切换后的BWP的子载波间隔与切换前的子载波间隔不同就停止在后续的时隙聚合中传输数据;
或者,如果发生BWP切换,且切换后的BWP的大小与切换前的BWP的大小不同就停止在后续的时隙聚合中传输数据;
或者,如果发生BWP切换,且切换后的BWP的大小与切换前的BWP的大小不同,且切换后的BWP的子载波间隔与切换前的BWP的子载波间隔不同就停止在后续的时隙聚合中传输数据;
或者,通过新增一个比特域显式指示停止在后续的时隙聚合中传输数据;
或者,通过BWP指示域比特域来指示BWP是否发生切换,当BWP指示域指示BWP发生切换时隐式指示停止在后续的时隙聚合中传输数据;
或者,通过频域资源分配域的预设状态停止在后续的时隙聚合中传输数据,例如,将频域资源分配域中的比特全部配置为1或者全部配置为0。
在本申请的实施例中,UE可以根据gNB发送的第三DCI中的BWP指示域与第一DCI中的BWP指示域是否相同来判断BWP是否发生切换。在一实施例中,当第三DCI中的BWP指示域与第一DCI中的BWP指示域不同时,确定BWP发生切换;当第三DCI中的BWP指示域与第一DCI中的BWP指示域相同时,确定BWP未发生切换。
例如,如图3所示为4时隙上行聚合传输的示意图,该上行聚合传输的第一个时隙(slot)是通过第一个U时隙(即上行时隙)前下发的DCI(UL grant)即所述第一DCI指示传输数据,第一DCI中的BWP指示域例如为00,表示使用BWP ID为1,在图中第一个D时隙(即下行时隙)发生BWP切换,UE在该时隙接收到DCI(DL grant)即所述第三DCI,第三DCI中的BWP指示域例如为01,表示使用BWP ID为2,则表明BWP发生切换,从BWP1变为BWP2,对于TDD帧结构,下行BWP发生变化,为保证TDD上行中心频点与下行中心频点一致,则上行BWP也需要发生变化;所述第三DCI指DL grant用于下行数据传输,所占的是非上行聚合传输的时隙。
在本申请的实施例中,UE还可以根据gNB发送的第三DCI中的BWP指示域与第四DCI中的BWP指示域是否相同来判断BWP是否发生切换。在一实施例中,当第三DCI中的BWP指示域与第四DCI中的BWP指示域不同时,确定BWP发生切换;当第三DCI中的BWP指示域与第四DCI中的BWP指示域相同时,确定BWP未发生切换。
例如,如图3所示为4时隙上行聚合传输示意图,在第一个U时隙前下发的DCI(DL grant)即所述第四DCI指示传输下行数据,第四DCI中的BWP指示域例如为10,表示使用BWP ID为3,在图中第一个D时隙发生BWP切换,UE在该时隙接收到DCI(DL grant)即所述第三DCI,第三DCI中的BWP指示域例如为01,表示使用BWP ID为2,则表明BWP发生切换,从BWP3变为BWP2,对于TDD帧结构,下行BWP发生变化,为保证TDD上下行中心频点一致,则上行BWP也需要发生变化;所述第三DCI和第四DCI指DL grant,用于下行数据传输,所占的是非上行聚合传输的时隙。
在本申请的实施例中,上述时隙聚合可以是上行时隙聚合,BWP可以是UL BWP;或者,时隙聚合可以是下行时隙聚合,BWP可以是DL BWP。
例如,对于TDD系统,由于需要保证DL BWP与UL BWP中心载频相同,因此,当DL BWP发生切换时,必然导致UL BWP发生切换;同样,当UL BWP发生切换时,必然导致DL BWP发生切换,那么,可以停止在后续时隙中传输数据。如图3所示,图中,U为上行时隙,D为下行时隙,假设聚合的时隙长度为4,并且,聚合的四个上行时隙中间穿插有聚合的四个下行时隙中的两个下行时隙,当在下行时隙传输过程中发生BWP切换时,则UE停止在后续两个上行时隙中传输数据,如图中画×的两个上行时隙。
又如,当切换前的BWP大于切换后的BWP时,如果切换前的BWP的资源块(Resource Block,RB)和切换后的BWP的RB之间无法完成映射,则需要停止在聚合的时隙中尚未传输的时隙中传输数据。
在一实施例中,该方法还包括:步骤201。
在步骤201中,根据第二下行控制信息指示在尚未传输的时隙中传输数据。
本申请的实施例中,在未传输的时隙中传输的数据与在已传输的时隙中传输的数据可以相同,也可以不相同。
如图4所示图中,U为上行时隙,D为下行时隙,假设聚合的时隙长度为4,并且,聚合的四个上行时隙中间穿插有聚合的四个下行时隙中的两个下行时隙,当在下行时隙传输过程中发生BWP切换时,则UE停止在后续两个上行时隙中传输数据,如图中画×的两个上行时隙。并且,根据第二下行控制信息(即图4中的调度(Grant)信令)在尚未传输的时隙中传输数据。
本申请实施例包括:当在进行时隙聚合传输过程中满足第一预设条件时,停止在聚合的时隙中尚未传输的时隙中传输数据。本申请实施例通过停止在聚 合的时隙中尚未传输的时隙中传输数据,从而不会导致聚合的时隙中尚未传输的时隙中的数据传输失败的问题,提高了在时隙聚合传输过程中发生BWP切换时时隙聚合传输的成功率。
参见图5,本申请另一个实施例提出了一种传输方法,包括:步骤500。
在步骤500中,当在进行时隙聚合传输过程中发生部分带宽切换时,将切换前的部分带宽映射到切换后的部分带宽,采用所述切换后的部分带宽在聚合的时隙中尚未传输的时隙中传输数据。
在本申请的实施例中,将切换前的部分带宽映射到切换后的部分带宽包括以下至少一种:
将所述切换前的部分带宽的第i个资源块映射到所述切换后的部分带宽的第i个资源块,其中,i为大于或等于0的整数;
将切换前的部分带宽的第i个资源块映射到切换后的部分带宽的第(i+△)或(i-△)个资源块;其中,i,△为大于或等于0的整数;
将所述切换前的部分带宽的第一资源块映射到所述切换后的部分带宽的第二资源块;其中,第一资源块的频域位置和第二资源块的频域位置相同;
将切换前的部分带宽的第i个资源块映射到切换后的部分带宽的第(i mod X)个资源块;其中,X为切换后的部分带宽的资源块的个数;
将所述切换前的部分带宽的资源块从所述切换后的部分带宽的最低资源块开始映射。
例如,当切换前的部分带宽小于或等于切换后的部分带宽时,将切换前的部分带宽的第i个资源块映射到切换后的部分带宽的第(i+△)或(i-△)个资源块;其中,i,△为大于或等于0的整数。如图6(a)所示,假设切换前的BWP包含(n+1)个RB,分别为RB0,RB1,……,RBn,切换后的BWP包含(m+1)个RB,分别为RB0,RB1,……,RBm,m大于n,分配给UE的RB包括RB2,RB3,RB4,……,RB(n-1),那么,UE的RB2映射到切换后的BWP的RB2,UE的RB3映射到切换后的BWP的RB3,以此类推,UE的RB(n-1)映射到切换后的BWP的RB(n-1)。也就是说,上述△为0。
又如,如图6(b)所示,假设切换前的BWP包含(n+1)个RB,分别为RB0,RB1,……,RBn,切换后的BWP包含(m+1)个RB,分别为RB0,RB1,……,RBm,m大于n,分配给UE的RB包括RB2,RB3,RB4,……,RB(n-1),那么,UE的RB2映射到切换后的BWP的RB4,UE的RB3映射到切换后的 BWP的RB5,以此类推,UE的RB(n-1)映射到切换后的BWP的RB(n+1)。也就是说,上述△为2。
从另一个角度,切换前的BWP的RB2的频域资源位置和切换后的BWP的RB4的频域资源位置相同,切换前的BWP的RB3的频域资源位置和切换后的BWP的RB5的频域资源位置相同,以此类推,切换前的BWP的RB(n-1)的频域资源位置和切换后的BWP的RB(n+1)的频域资源位置相同,那么,UE的RB2映射到切换后的BWP的RB4,UE的RB3映射到切换后的BWP的RB5,以此类推,UE的RB(n-1)映射到切换后的BWP的RB(n+1)。
又如,当切换前的部分带宽大于或等于切换后的部分带宽时,将切换前的部分带宽的第i个资源块映射到切换后的部分带宽的第(i mod X)个资源块;其中,X为切换后的部分带宽的资源块的个数。如图6(c)所示,假设切换前的BWP包含(m+1)个RB,分别为RB0,RB1,……,RBm,切换后的BWP包含(n+1)个RB,分别为RB0,RB1,……,RBn,m大于n,分配给UE的RB包括RB4,RB5,RB6,……,RB(n-2),那么,UE的RB4映射到切换后的BWP的RB(4mod(n+1)),UE的RB5映射到切换后的BWP的RB(5mod(n+1)),以此类推,UE的RB(n-2)映射到切换后的BWP的RB((n-2)mod(n+1))。
又如,当切换前的部分带宽大于或等于切换后的部分带宽时,将切换前的部分带宽的资源块从切换后的部分带宽的最低资源块开始映射。
又如,切换前的BWP1为50个RB,切换后的BWP2变为20RB,BWP1中分配给UE用于上行数据传输的资源块数目为10,占用RB11-RB1120的频域位置,如果采用最低资源块映射的方法直接映射到BWP2中20RB中的RB0-RB9。
又如,当切换前的部分带宽大于或等于切换后的部分带宽时,如果资源块数量过多无法完成映射,可以以小带宽的BWP为准进行映射,UE或gNB进一步进行速率匹配,速率匹配指传输信道上的比特被打孔或重发,以匹配物理信道的承载能力,信道映射时达到传输所要求的比特速率;如切换前的BWP1为50个RB,切换后的BWP2变为10RB,BWP1中分配给UE用于上行数据传输的资源块数目为20,占用RB1-RB20的频域位置,那么只映射10RB,其他10RB不映射。
其他情况以此类推。
在一实施例中,将切换前的部分带宽映射到切换后的部分带宽后,该方法 还包括:
对所述切换后的部分带宽进行跳频(hopping)处理;
采用跳频处理后的切换后的部分带宽在所述尚未传输的时隙中传输数据。
在本申请的实施例中,对切换后的部分带宽进行跳频处理包括:
基于所述切换后的部分带宽的大小进行跳频计算。在一实施例中,
按照公式
Figure PCTCN2019080352-appb-000001
对切换后的BWP进行跳频处理;
其中,
Figure PCTCN2019080352-appb-000002
为无线帧中当前的时隙号,
Figure PCTCN2019080352-appb-000003
为第
Figure PCTCN2019080352-appb-000004
个时隙跳频处理后的RB的位置,RB为第
Figure PCTCN2019080352-appb-000005
个时隙跳频处理前的RB的位置,RB是基于NR资源分配方式1(与长期演进(Long Term Evolved,LTE)资源分配方式2一致,用于指示一组连续分配的资源块)的资源分配信息计算获得的,RB offset为两个频域跳频间的频域偏置,具体取值如表1所示,不同的BWP对应的RB offset的取值范围不同,通过DCI中的跳频指示域指示,
Figure PCTCN2019080352-appb-000006
为切换后的BWP的带宽大小。
表1
Figure PCTCN2019080352-appb-000007
在本申请的实施例中,对所述切换后的部分带宽进行跳频处理之前,还包括:
重置跳频时隙计数器,或者,不重置跳频时隙计数器;
所述对切换后的部分带宽进行跳频处理包括:
根据重置的跳频时隙计数器或不重置的跳频时隙计数器对所述切换后的部分带宽进行跳频处理。
上述根据跳频时隙计数器对切换后的部分带宽进行跳频处理是指在对切换后的部分带宽进行跳频处理过程中所用到的当前的时隙号从时隙计数器获得,BWP切换后,时隙计数器可以重置或者不重置;例如,按照目前标准中的时隙间跳频方法,偶数时隙不跳频,奇数时隙跳频,对于四个时隙聚合传输,那么时隙计数器(0 1 2 3)增加,如果发生BWP切换,则可以保持不变,或者进行重置,如果第三个时隙发生BWP切换,则第三个时隙定时器从零开始计数变为(0 1 0 1),如果第四个隙发生BWP切换,则第四个时隙定时器从零开始计数变为(0 1 2 0),另外,所述时隙计数时也可能会包括非上行时隙(如下行时隙或特殊时隙S),如图1所示的UUDDUU,计数分别为(012345),如果时隙计数器因为BWP切换导致重置,计数可能变为(012012)。
在本申请的实施例中,上述切换后的频域偏置可通过原DCI中的跳频指示域补零或者截断指示。例如,当切换前的BWP的带宽小于50,而切换后的BWP的带宽大于或等于50时,频域偏置可以通过原DCI中跳频指示域补零指示。也就是说,切换前的频域偏置采用0和1指示,那么切换后的频域偏置可以采用00和01指示。
当切换前的BWP的带宽大于或等于50,而切换后的BWP的带宽小于50时,频域偏置可通过原DCI中跳频指示域截断指示。也就是说,切换前的频域偏置采用00、01、10和11指示,那么切换后的频域偏置可以采用0和1指示。
另外,在本申请的实施例中,时隙聚合传输中的第一个时隙的传输通过下行控制信息指示或者无线资源控制消息配置。
其中,第一DCI用于基于调度(grant based)传输,RRC消息用于免调度(grant free)传输。
例如,第一DCI动态指示时隙聚合传输中的第一个时隙的传输使用的频域资源、时域符号、调制编码方式、码流数、传输层数目、以及冗余版本(Redundancy Version,RV)号等。
又如,RRC半静态配置时隙聚合传输中的第一个时隙的传输使用的频域资源、使用时域符号、使用的调制编码方式、码流数、传输层数目、以及RV号等。
在本申请的实施例中,数据承载在以下任一种:
物理上行控制信道(Physical Uplink Control Channel,PUCCH);
物理上行共享信道(Physical Uplink Shared Channel,PUSCH);
物理下行共享信道(Physical Downlink Shared Channel,PDSCH);
物理下行控制信道(Physical Downlink Control Channel,PDCCH)。
本申请实施例包括:当在进行时隙聚合传输过程中发生部分带宽切换时,将切换前的部分带宽映射到切换后的部分带宽,采用所述切换后的部分带宽在聚合的时隙中尚未传输的时隙中传输数据。本申请实施例采用切换后的部分带宽在聚合的时隙中尚未传输的时隙中传输数据,从而成功的进行所述尚未传输的时隙中的数据的传输,提高了在时隙聚合传输过程中发生BWP切换时时隙聚合传输的成功率。
参见图7,本申请另一个实施例提出了一种传输方法,包括:步骤700和步骤701。
在步骤700中,根据时域信息和频域信息中至少之一确定用于时隙聚合传输的合法时隙。
本申请的实施例中,时域信息包括以下至少之一:
起始长度指示符(the start and length indicator,SLIV);
时域符号起始位置;
时域符号持续长度;
部分带宽转换时间。
其中,部分带宽转换时间为
Figure PCTCN2019080352-appb-000008
或者
Figure PCTCN2019080352-appb-000009
其中,n为调度DCI的时隙,K 0为调度DCI的时隙到接收下行数据的时隙之间的间隔,K 2为调度DCI的时隙到发送上行数据的时隙之间的间隔,μ PDSCH为物理下行共享信道(Physical Downlink Shared Channel,PDSCH)采用的子载波间隔,μ PDCCH为物理下行控制信道(Physical Downlink Control Channel,PDCCH)采用的子载波间隔。
例如,如图8(a)所示,假设要进行4时隙上行聚合传输,在第一个聚合时隙传输占用的时域符号是0-4,时域符号起始位置为第0个符号,时域符号持续长度为5个符号。图中,U为全下行符号时隙,D为全上行符号时隙,S为非全上行符号时隙。如果图8(a)所示的第二个S时隙的0-4符号中被下行符号 或者未知(unknown)符号占用,说明时域数据无法完成映射,如图8(b)所示,则认为该时隙不是合法时隙,无法进行时隙聚合传输,则跳过该时隙直接进一步判断下一个可用时隙,发现后一个U时隙中的0-4符号可用,则认为该时隙是合法时隙,可用于进行时隙聚合传输。
又如,通过SLIV指示在第一个聚合时隙传输占用的时域符号是0-6,时域符号起始位置为第0个符号,时域符号持续长度为7个符号,如果图8(a)所示的第二个S时隙的0-6符号可用,说明时域数据可以完成映射,则认为该时隙是合法时隙,可用于进行上行时隙聚合传输。
又如,由于发生BWP切换,由于BWP切换延迟的存在,导致在BWP转换时间内UE无法接收和发送数据,如图8(c)、8(d)所示,在BWP转换时间K2或K0内这些时隙为不合法时隙,不可用于进行上行时隙聚合传输,继续判断转换时间后的其他可用时隙。
本申请的实施例中,频域信息包括以下至少之一:
部分带宽的子载波间隔;
切换后的部分带宽的子载波间隔;
部分带宽的大小;
切换后的部分带宽的大小;
部分带宽的频域位置;
切换后的部分带宽的频域位置;
资源分配域为预设状态,例如资源分配域为空(Null)。
例如,切换前的BWP与切换后的BWP大小不同,切换前的BWP大小为50RB,切换后的BWP大小为20RB,且资源分配为25RB,无法完全映射到切换后的BWP,则认为该时隙不是合法时隙,无法进行聚合传输。
又如,切换前的BWP与切换后的BWP子载波间隔不同,则认为该时隙不是合法时隙,无法进行聚合传输;或者,切换前的BWP与切换后的BWP频域位置不同,则认为该时隙不是合法时隙,无法进行聚合传输;或者,用于指示切换后的BWP的资源分配域配置为Null,则认为该时隙不是合法时隙,无法进行聚合传输;或者,用于指示切换后的BWP的资源分配域配置为预设状态,则认为该时隙不是合法时隙,例如资源分配域配置为全0或者全1,无法进行聚合传输。
在本申请的实施例中,时域信息和频域信息可以单独作为时隙是否为合格 时隙的判断指标,也可以联合作为时隙是否为合格时隙的判断指标。
在步骤701中,在所述合法时隙中传输数据。
在本申请的实施例中,时隙聚合传输中的第一个时隙的传输通过下行控制信息指示或者无线资源控制消息配置。
其中,第一DCI用于基于调度(grant based)传输,RRC消息用于免调度(grant free)传输。
例如,第一DCI动态指示时隙聚合传输中的第一个时隙的传输使用的频域资源、时域符号、调制编码方式、码流数、传输层数目、以及冗余版本(Redundancy Version,RV)号等。
又如,RRC半静态配置时隙聚合传输中的第一个时隙的传输使用的频域资源、使用时域符号、使用的调制编码方式、码流数、传输层数目、以及RV号等。
在本申请的实施例中,数据承载在以下任一种:
物理上行控制信道(Physical Uplink Control Channel,PUCCH);
物理上行共享信道(Physical Uplink Shared Channel,PUSCH);
物理下行共享信道(Physical Downlink Shared Channel,PDSCH);
物理下行控制信道(Physical Downlink Control Channel,PDCCH)。
参见图9,本申请另一个实施例提出了一种传输方法,包括:步骤900。
在步骤900中,在时隙聚合的所有时隙中采用相同的部分带宽传输数据。
本申请的实施例中,相同的部分带宽包括相同的部分带宽的大小、相同的部分带宽的子载波间隔和相同的频域位置。
参见图10,本申请另一实施例提出了一种传输装置,包括:处理模块。
处理模块,设置为当在进行时隙聚合传输过程中满足第一预设条件时,停止在聚合的时隙中尚未传输的时隙中传输数据;
所述时隙聚合传输中的第一个时隙的传输通过第一下行控制信息指示或者无线资源控制消息配置。
在一实施例中,还包括:传输模块。
传输模块,设置为根据第二下行控制信息指示在所述尚未传输的时隙中传输数据;
其中,在所述未传输的时隙中传输的数据与在已传输的时隙中传输的数据相同。
在一实施例中,第一预设条件包括以下至少一种:
发生部分带宽切换;
第三下行控制信息中部分带宽指示域与所述第一下行控制信息中部分带宽指示域不同;
第三下行控制信息中部分带宽指示域与第四下行控制信息中部分带宽指示域不同;
第三下行控制信息中至少一个其他比特域满足第二预设条件;
切换后的部分带宽的子载波间隔与切换前的部分带宽的子载波间隔不同;
切换后的部分带宽的大小与切换前的部分带宽的大小不同;
其中,所述第三下行控制信息和所述第四下行控制信息用于指示非聚合传输的时隙的数据传输。
在一实施例中,第三下行控制信息中至少一个其他比特域满足第二预设条件包括以下至少之一:
所述其他比特域显示指示停止在聚合的时隙中尚未传输的时隙中传输数据;
所述其他比特域隐式指示停止在聚合的时隙中尚未传输的时隙中传输数据;
所述其他比特域的预设状态指示停止在聚合的时隙中尚未传输的时隙中传输数据。
在一实施例中,其他比特域为新增比特域。
参见图11,本申请另一实施例提出了一种传输装置,包括:映射模块和第一传输模块。
映射模块,设置为当在进行时隙聚合传输过程中发生部分带宽切换时,将切换前的部分带宽映射到切换后的部分带宽;
第一传输模块,设置为采用所述切换后的部分带宽在聚合的时隙中尚未传输的时隙中传输数据。
在一实施例中,映射模块还设置为:
当在进行时隙聚合传输过程中发生部分带宽切换时,采用以下至少一种方法将切换前的部分带宽映射到切换后的部分带宽:
将所述切换前的部分带宽的第i个资源块映射到所述切换后的部分带宽的第i个资源块,其中,i为大于或等于0的整数;
将所述切换前的部分带宽的第i个资源块映射到所述切换后的部分带宽的第(i+△)或(i-△)个资源块;其中,i,△为大于或等于0的整数;
将所述切换前的部分带宽的第一资源块映射到所述切换后的部分带宽的第 二资源块;其中,第一资源块的频域位置和第二资源块的频域位置相同;
将所述切换前的部分带宽的第i个资源块映射到所述切换后的部分带宽的第(i mod X)个资源块;其中,X为所述切换后的部分带宽的资源块的个数;
将所述切换前的部分带宽的资源块从所述切换后的部分带宽的最低资源块开始映射。
在一实施例中,第一传输模块还设置为:
对所述切换后的部分带宽进行跳频处理;
采用跳频处理后的所述切换后的部分带宽在所述尚未传输的时隙中传输数据。
在一实施例中,第一传输模块还设置为:
重置跳频时隙计数器,或者,不重置跳频时隙计数器;
根据重置的跳频时隙计数器或不重置的跳频时隙计数器对所述切换后的部分带宽进行跳频处理。
参见图12,本申请另一实施例提出了一种传输装置,包括:确定模块和第二传输模块。
确定模块,设置为根据时域信息和频域信息中的至少之一确定时隙聚合传输的合法时隙;所述时隙聚合传输的合法时隙为用于时隙聚合传输的时隙;
第二传输模块,设置为在合法时隙中传输数据。
在一实施例中,时域信息包括以下至少之一:
起始长度指示符;
时域符号起始位置;
时域符号持续长度;
部分带宽转换时间。
其中,部分带宽转换时间为
Figure PCTCN2019080352-appb-000010
或者
Figure PCTCN2019080352-appb-000011
其中,n为调度下行控制信息的时隙,K 0为调度下行控制信息的时隙到接收下行数据的时隙之间的间隔,K 2为调度下行控制信息的时隙到发送上行数据的时隙之间的间隔,μ PDSCH为物理下行共享信道采用的子载波间隔,μ PDCCH为物理下行控制信道采用的子载波间隔。
在一实施例中,频域信息包括以下至少之一:
部分带宽的子载波间隔;
切换后的部分带宽的子载波间隔;
部分带宽的大小;
切换后的部分带宽的大小;
部分带宽的频域位置;
切换后的部分带宽的频域位置;
资源分配域为预设状态。
参见图13,本申请另一实施例提出了一种传输装置,包括:第三传输模块。
第三传输模块,在时隙聚合的所有时隙中采用相同的部分带宽传输数据。
上述过程的具体实现可以参考前述实施例的实现,这里不再赘述。
本申请另一实施例提出了一种传输装置,包括处理器和计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令被所述处理器执行时,实现上述任一种传输方法。
本申请另一实施例提出了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述任一种传输方法的步骤。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于随机存取存储器(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、电可擦除可编程只读存储器(Electrically Erasable Programmable Read Only Memory,EEPROM)、闪存或其他存储器技术、只读光盘(Compact Disc Read-Only Memory,CD-ROM)、数字多功能盘(Digital Versatile Disc,DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外, 本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。

Claims (21)

  1. 一种传输方法,包括:
    响应于在进行时隙聚合传输过程中满足第一预设条件,停止在聚合的时隙中尚未传输的时隙中传输数据。
  2. 根据权利要求1所述的方法,其中,第一预设条件包括以下至少一种:
    发生部分带宽切换;
    第三下行控制信息中部分带宽指示域与第一下行控制信息中部分带宽指示域不同;
    第三下行控制信息中部分带宽指示域与第四下行控制信息中部分带宽指示域不同;
    第三下行控制信息中至少一个新增比特域或除部分带宽指示域以外的其他比特域满足第二预设条件;
    切换后的部分带宽的子载波间隔与切换前的部分带宽的子载波间隔不同;
    切换后的部分带宽的大小与切换前的部分带宽的大小不同;
    其中,所述第三下行控制信息和所述第四下行控制信息用于指示非聚合传输的时隙的数据传输,所述第一下行控制信息用于指示所述时隙聚合传输中的第一个时隙的数据传输。
  3. 根据权利要求2所述的方法,其中,所述第三下行控制信息中至少一个新增比特域或除部分带宽指示域以外的其他比特域满足第二预设条件包括以下至少之一:
    所述新增比特域或除部分带宽指示域以外的其他比特域指示停止在聚合的时隙中尚未传输的时隙中传输数据;
    所述新增比特域或除部分带宽指示域以外的其他比特域的预设状态指示停止在聚合的时隙中尚未传输的时隙中传输数据。
  4. 根据权利要求1~3任一项所述的方法,其中,所述时隙聚合传输中的第一个时隙的数据传输通过第一下行控制信息指示或者无线资源控制消息配臵。
  5. 根据权利要求1~3任一项所述的方法,还包括:
    根据第二下行控制信息指示在所述尚未传输的时隙中传输数据;
    其中,在所述尚未传输的时隙中传输的数据与在已传输的时隙中传输的数据相同。
  6. 一种传输方法,包括:
    响应于在进行时隙聚合传输过程中发生部分带宽切换,将切换前的部分带宽映射到切换后的部分带宽,采用所述切换后的部分带宽在聚合的时隙中尚未传输的时隙中传输数据。
  7. 根据权利要求6所述的方法,其中,所述将切换前的部分带宽映射到切换后的部分带宽包括以下至少一种:
    将所述切换前的部分带宽的第i个资源块映射到所述切换后的部分带宽的第i个资源块,其中,i为大于或等于0的整数;
    将所述切换前的部分带宽的第i个资源块映射到所述切换后的部分带宽的第(i+Δ)或(i-Δ)个资源块;其中,i,Δ为大于或等于0的整数;
    将所述切换前的部分带宽的第一资源块映射到所述切换后的部分带宽的第二资源块;其中,第一资源块的频域位臵和第二资源块的频域位臵相同;
    将所述切换前的部分带宽的第i个资源块映射到所述切换后的部分带宽的第(i mod X)个资源块;其中,X为所述切换后的部分带宽的资源块的个数;
    将所述切换前的部分带宽的资源块从所述切换后的部分带宽的最低资源块开始映射。
  8. 根据权利要求6或7所述的方法,在所述将切换前的部分带宽映射到切换后的部分带宽后,还包括:
    对所述切换后的部分带宽进行跳频处理;
    采用跳频处理后的所述切换后的部分带宽在所述尚未传输的时隙中传输数据。
  9. 根据权利要求8所述的方法,其中,所述对所述切换后的部分带宽进行跳频处理包括:
    基于所述切换后的部分带宽的大小进行跳频计算。
  10. 根据权利要求8所述的方法,在所述对所述切换后的部分带宽进行跳频处理之前,还包括:
    重臵跳频时隙计数器,或者,不重臵跳频时隙计数器;
    所述对切换后的部分带宽进行跳频处理包括:
    根据重臵的跳频时隙计数器或不重臵的跳频时隙计数器对所述切换后的部分带宽进行跳频处理。
  11. 一种传输方法,包括:
    根据时域信息和频域信息中至少之一确定用于时隙聚合传输的合法时隙;
    在所述合法时隙中传输数据。
  12. 根据权利要求11所述的方法,其中,所述时域信息包括以下至少之一:
    起始长度指示符;
    时域符号起始位臵;
    时域符号持续长度;
    部分带宽转换时间。
  13. 根据权利要求12所述的方法,其中,所述部分带宽转换时间为
    Figure PCTCN2019080352-appb-100001
    或者
    Figure PCTCN2019080352-appb-100002
    其中,n为调度下行控制信息的时隙,K 0为调度下行控制信息的时隙到接收下行数据的时隙之间的间隔,K 2为调度下行控制信息的时隙到发送上行数据的时隙之间的间隔,μ PDSCH为物理下行共享信道采用的子载波间隔,μ PDCCH为物理下行控制信道采用的子载波间隔。
  14. 根据权利要求11所述的方法,其中,所述频域信息包括以下至少之一:
    部分带宽的子载波间隔;
    切换后的部分带宽的子载波间隔;
    部分带宽的大小;
    切换后的部分带宽的大小;
    部分带宽的频域位臵;
    切换后的部分带宽的频域位臵;
    资源分配域为预设状态。
  15. 一种传输方法,包括:
    在时隙聚合的所有时隙中采用相同的部分带宽传输数据。
  16. 一种传输装臵,包括:
    处理模块,设臵为响应于在进行时隙聚合传输过程中满足第一预设条件,停止在聚合的时隙中尚未传输的时隙中传输数据;
    所述时隙聚合传输中的第一个时隙的传输通过第一下行控制信息指示或者无线资源控制消息配臵。
  17. 一种传输装臵,包括:
    映射模块,设臵为响应于在进行时隙聚合传输过程中发生部分带宽切换,将切换前的部分带宽映射到切换后的部分带宽;
    传输模块,设臵为采用所述切换后的部分带宽在聚合的时隙中尚未传输的 时隙中传输数据。
  18. 一种传输装臵,包括:
    确定模块,设臵为根据时域信息和频域信息确定时隙聚合传输的合法时隙;所述时隙聚合传输的合法时隙为用于时隙聚合传输的时隙;
    传输模块,设臵为在所述合法时隙中传输数据。
  19. 一种传输装臵,包括:
    第三传输模块,设臵为在时隙聚合的所有时隙中采用相同的部分带宽传输数据。
  20. 一种传输装臵,包括处理器和计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令被所述处理器执行时,实现如权利要求1~15任一项所述的传输方法。
  21. 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1~15任一项所述的传输方法。
PCT/CN2019/080352 2018-04-03 2019-03-29 传输方法和装置 WO2019192396A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020227022911A KR102542252B1 (ko) 2018-04-03 2019-03-29 전송 방법 및 장치
AU2019248665A AU2019248665B2 (en) 2018-04-03 2019-03-29 Transmission method and apparatus
EP19780901.5A EP3780459A4 (en) 2018-04-03 2019-03-29 Transmission method and apparatus
KR1020207031627A KR102431629B1 (ko) 2018-04-03 2019-03-29 전송 방법 및 장치
JP2020553638A JP7053879B2 (ja) 2018-04-03 2019-03-29 伝送方法および装置
US17/043,830 US20210037523A1 (en) 2018-04-03 2019-03-29 Transmission method and apparatus
JP2022060105A JP7417651B2 (ja) 2018-04-03 2022-03-31 伝送方法および装置
AU2022204379A AU2022204379B2 (en) 2018-04-03 2022-06-22 Transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810291088.5A CN110380831B (zh) 2018-04-03 2018-04-03 一种传输方法和装置
CN201810291088.5 2018-04-03

Publications (1)

Publication Number Publication Date
WO2019192396A1 true WO2019192396A1 (zh) 2019-10-10

Family

ID=68099883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/080352 WO2019192396A1 (zh) 2018-04-03 2019-03-29 传输方法和装置

Country Status (7)

Country Link
US (1) US20210037523A1 (zh)
EP (1) EP3780459A4 (zh)
JP (2) JP7053879B2 (zh)
KR (2) KR102431629B1 (zh)
CN (2) CN110380831B (zh)
AU (2) AU2019248665B2 (zh)
WO (1) WO2019192396A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113453322A (zh) * 2020-03-27 2021-09-28 展讯通信(上海)有限公司 物理下行控制信道监听方法、用户终端及可读存储介质

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11330620B2 (en) * 2018-08-10 2022-05-10 Qualcomm Incorporated Beam determination for a slot aggregation
CN113395713B (zh) * 2020-03-12 2022-11-01 中国电信股份有限公司 时隙间的跳频方法、终端设备、基站和跳频系统
CN113677024A (zh) * 2020-05-15 2021-11-19 华为技术有限公司 资源确定方法及装置
WO2022104689A1 (zh) * 2020-11-20 2022-05-27 华为技术有限公司 一种小区频域带宽切换的方法、相关装置以及设备
CN116939853A (zh) * 2022-04-08 2023-10-24 大唐移动通信设备有限公司 一种信息处理方法、装置和可读存储介质

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180070369A1 (en) * 2016-09-06 2018-03-08 Samsung Electronics Co., Ltd. Coexistence of different radio access technologies or services on a same carrier

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101102298B (zh) * 2006-07-06 2011-07-27 华为技术有限公司 多载波传输系统中部分带宽的使用方法和系统
WO2008070871A2 (en) * 2006-12-07 2008-06-12 Misonimo Chi Acquisition L.L.C. System and method for timeslot and channel allocation
US9252918B2 (en) * 2011-08-15 2016-02-02 Google Technology Holdings LLC Method and apparatus for control channel transmission and reception
US9806799B2 (en) * 2013-09-17 2017-10-31 Kabushiki Kaisha Toshiba Methods and apparatus for a TDMA mesh network
CN109565862B (zh) * 2016-08-09 2022-06-10 三星电子株式会社 无线蜂窝通信系统中的信道发送方法和设备
WO2018031623A1 (en) * 2016-08-11 2018-02-15 Intel Corporation Flexible transmission time interval and on slot aggregation for data transmission for new radio
CN106385709B (zh) * 2016-10-31 2022-12-20 宇龙计算机通信科技(深圳)有限公司 资源调度方法及资源调度装置
GB2565344B (en) * 2017-08-11 2022-05-04 Tcl Communication Ltd Slot aggregation
US11025456B2 (en) * 2018-01-12 2021-06-01 Apple Inc. Time domain resource allocation for mobile communication
CN110167170B (zh) * 2018-02-13 2023-01-13 华为技术有限公司 通信方法、装置和系统
US11283583B2 (en) * 2018-02-14 2022-03-22 Panasonic Intellectual Property Corporation Of America User equipment, base station and wireless communication method
EP3547782B1 (en) * 2018-03-26 2020-10-21 ASUSTek Computer Inc. Method and apparatus for beam indication considering cross carrier scheduling in a wireless communication system
WO2019186724A1 (ja) * 2018-03-27 2019-10-03 株式会社Nttドコモ ユーザ端末及び基地局

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180070369A1 (en) * 2016-09-06 2018-03-08 Samsung Electronics Co., Ltd. Coexistence of different radio access technologies or services on a same carrier

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Efficient Wider Bandwidth Operations for NR", 3GPP TSG RAN WG1 MEETING #89 R1-1707828, 7 May 2017 (2017-05-07), XP051263128 *
HUAWEI: "On Bandwidth Part and Bandwidth Adaptation", 3GPP TSG RAN WG1 MEETING #89 RL-1706900, 6 May 2017 (2017-05-06), XP051261558 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113453322A (zh) * 2020-03-27 2021-09-28 展讯通信(上海)有限公司 物理下行控制信道监听方法、用户终端及可读存储介质

Also Published As

Publication number Publication date
CN110380831B (zh) 2022-05-17
KR102542252B1 (ko) 2023-06-13
JP7053879B2 (ja) 2022-04-12
AU2022204379B2 (en) 2024-05-16
KR20200138381A (ko) 2020-12-09
CN110380831A (zh) 2019-10-25
EP3780459A4 (en) 2021-12-29
KR102431629B1 (ko) 2022-08-11
AU2022204379A1 (en) 2022-07-14
EP3780459A1 (en) 2021-02-17
JP2021517780A (ja) 2021-07-26
CN114006686B (zh) 2023-03-24
JP7417651B2 (ja) 2024-01-18
JP2022104968A (ja) 2022-07-12
US20210037523A1 (en) 2021-02-04
KR20220101206A (ko) 2022-07-19
AU2019248665A1 (en) 2020-11-26
AU2019248665B2 (en) 2022-07-14
CN114006686A (zh) 2022-02-01

Similar Documents

Publication Publication Date Title
WO2019192396A1 (zh) 传输方法和装置
CN110419186B (zh) 用于上行链路超高可靠和低延迟通信的下行链路控制通道
CN112567802B (zh) 用于超低延迟pdsch传输的harq-ack定时和pucch资源确定的系统和方法
CN113785523B (zh) 用于确定传输块的重复的持续时间的方法和装置
US20220385432A1 (en) Flexible radio resource allocation
CN110169000B (zh) 用于上行链路超高可靠低延迟通信的信令、过程、用户设备和基站
US11818694B2 (en) Terminal and communication method
US20180092089A1 (en) Systems and methods for determining frame structure and association timing
EP3787216A1 (en) Configuration of downlink transmissions
US10616888B2 (en) Multiple slot long physical uplink control channel (PUCCH) design for 5th generation (5G) new radio (NR)
CN109428680B (zh) 发送或接收上行数据的方法和装置
EP3826216A1 (en) Information processing method and communication apparatus
US11224037B2 (en) Data transmission method, terminal device, and network device
WO2016189464A1 (en) Systems and methods for downlink scheduling that mitigate pdcch congestion
CN112690032B (zh) 用于在未授权频谱上的基于子带的信道接入的方法及设备
CN111972017A (zh) 第五代(5g)新无线电(nr)的多时隙长物理上行链路控制信道(pucch)设计
EP3520272A1 (en) Systems and methods for determining frame structure and association timing
WO2022151383A1 (zh) 一种上行传输方法及装置
WO2023004718A1 (zh) 信息反馈方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19780901

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020553638

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207031627

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019780901

Country of ref document: EP

Effective date: 20201103

ENP Entry into the national phase

Ref document number: 2019248665

Country of ref document: AU

Date of ref document: 20190329

Kind code of ref document: A