WO2019192353A1 - 资源分配方法及装置、基站和终端 - Google Patents

资源分配方法及装置、基站和终端 Download PDF

Info

Publication number
WO2019192353A1
WO2019192353A1 PCT/CN2019/079666 CN2019079666W WO2019192353A1 WO 2019192353 A1 WO2019192353 A1 WO 2019192353A1 CN 2019079666 W CN2019079666 W CN 2019079666W WO 2019192353 A1 WO2019192353 A1 WO 2019192353A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource allocation
size
indication information
resource
terminal
Prior art date
Application number
PCT/CN2019/079666
Other languages
English (en)
French (fr)
Inventor
王磊
Original Assignee
电信科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院有限公司 filed Critical 电信科学技术研究院有限公司
Priority to KR1020207030148A priority Critical patent/KR102639977B1/ko
Priority to JP2020552281A priority patent/JP7145966B2/ja
Priority to US17/042,842 priority patent/US11375532B2/en
Priority to EP19781730.7A priority patent/EP3780816B1/en
Publication of WO2019192353A1 publication Critical patent/WO2019192353A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers

Definitions

  • the present disclosure relates to the field of wireless communication technologies, and in particular, to a resource allocation method and apparatus, a base station, and a terminal.
  • DCI downlink control information
  • the bitfield length is usually determined by the size of the current scheduling band.
  • the granularity of the frequency domain resource allocation is fixed, and the flexible allocation or adjustment of the resource allocation granularity is not supported.
  • the scheduling bandwidth needs to be flexible according to the configuration of the base station, if a unified
  • the granularity of resource allocation limits the flexibility of scheduling, so different service types require different resource allocation granularities.
  • An object of the present disclosure is to provide a resource allocation method and apparatus, a base station, and a terminal, which solve the resource allocation method in the related art, and cannot support the flexible configuration or adjustment of the resource allocation granularity.
  • the present disclosure provides a resource allocation method, which is applied to a base station, where the method includes:
  • the resource allocation method where the method further includes:
  • the size of the virtual resource block VRB group is notified to the terminal by the L1 signal carried on the PDCCH by the high layer signaling or the group common physical downlink control channel PDCCH.
  • the resource allocation method where the method further includes:
  • the size of the virtual resource block VRB group is determined according to the current system bandwidth or the size of the active bandwidth portion and the preset system bandwidth or the correspondence between the active bandwidth portion and the size of the virtual resource block VRB group.
  • the method for allocating resources wherein the method further includes determining, by using Equation 1 or Equation 2, the number of bits of the resource allocation indication information:
  • G is the size of the virtual resource block VRB group; The current system bandwidth or the number of physical resource blocks PRB or VRB in the active portion; and G is an integer greater than or equal to 1.
  • the embodiment of the present disclosure further provides a resource allocation method, which is applied to a terminal, where the method includes:
  • the base station And receiving, by the base station, the downlink control information DCI, where the resource allocation indication information is used, and the resource allocation indication information is used to indicate, by using the virtual resource block VRB group as the resource location of the frequency domain resource allocated by the terminal;
  • the method for allocating resources wherein the size of the virtual resource block VRB group indicated by the base station is obtained by using a high-level signaling or an L1 signal carried on a group common physical downlink control channel PDCCH.
  • the resource allocation method where the method further includes:
  • the size of the virtual resource block VRB group is determined according to the current system bandwidth or the size of the active bandwidth portion and the preset system bandwidth or the correspondence between the active bandwidth portion and the size of the virtual resource block VRB group.
  • the resource allocation method where the determining, according to the resource allocation indication information, the determining, by the base station, the frequency domain resource allocated by the terminal includes:
  • the resource allocation method wherein, according to the size of the virtual resource block VRB group and the current system bandwidth or the size of the active bandwidth portion, determining the number of bits of the resource allocation indication information, Or formula 2 determines the number of bits of the resource allocation indication information:
  • G is the size of the virtual resource block VRB group; The current system bandwidth or the number of physical resource blocks PRB or VRB in the active portion; and G is an integer greater than or equal to 1.
  • Embodiments of the present disclosure also provide a base station, including a memory, a processor, a transceiver, and a computer program stored on the memory and operable on the processor, wherein the transceiver is configured to:
  • the base station where the transceiver is further configured to:
  • the size of the virtual resource block VRB group is notified to the terminal by the L1 signal carried on the PDCCH by the high layer signaling or the group common physical downlink control channel PDCCH.
  • the base station where the processor is used to:
  • the size of the virtual resource block VRB group is determined according to a current system bandwidth or a size of an active bandwidth portion and a preset system bandwidth or a correspondence between an active bandwidth portion and a size of the virtual resource block VRB group.
  • the base station where the processor is configured to: determine, by using Equation 1 or Equation 2, the number of bits of the resource allocation indication information:
  • G is the size of the virtual resource block VRB group; The current system bandwidth or the number of physical resource blocks PRB or VRB in the active portion; and G is an integer greater than or equal to 1.
  • Embodiments of the present disclosure also provide a terminal, including a memory, a processor, a transceiver, and a computer program stored on the memory and executable on the processor, wherein:
  • the transceiver is configured to: receive, by the base station, downlink control information (DCI) that includes resource allocation indication information, where the resource allocation indication information is used to indicate that the virtual resource block VRB group is used as the allocation granularity to allocate frequency domain resources to the terminal.
  • DCI downlink control information
  • the processor is configured to: determine, according to the resource allocation indication information, a frequency domain resource allocated by the base station to the terminal.
  • the terminal wherein the transceiver is further configured to:
  • the size of the virtual resource block VRB group indicated by the base station is obtained by the high-level signaling or the L1 signal carried on the group common physical downlink control channel PDCCH.
  • the terminal wherein the processor is further configured to:
  • the size of the virtual resource block VRB group is determined according to a current system bandwidth or a size of an active bandwidth portion and a preset system bandwidth or a correspondence between an active bandwidth portion and a size of the virtual resource block VRB group.
  • the terminal wherein the processor is further configured to:
  • the terminal wherein the processor determines the number of bits of the resource allocation indication information by using Equation 1 or Equation 2:
  • G is the size of the virtual resource block VRB group; The current system bandwidth or the number of physical resource blocks PRB or VRB in the active portion; and G is an integer greater than or equal to 1.
  • the embodiment of the present disclosure further provides a resource allocation apparatus, which is applied to a base station, where the apparatus includes:
  • a sending module configured to send downlink control information DCI, including resource allocation indication information, to the terminal, where the resource allocation indication information is used to indicate that the virtual resource block VRB group is used as the resource location of the frequency domain resource allocated by the terminal .
  • the resource allocation device wherein the sending module is further configured to:
  • the size of the virtual resource block VRB group is notified to the terminal by the L1 signal carried on the PDCCH by the high layer signaling or the group common physical downlink control channel PDCCH.
  • the resource allocation device where the base station further includes:
  • a first processing module configured to determine the virtual resource block according to a current system bandwidth or a size of an active bandwidth portion, and a preset system bandwidth or a correspondence between an active bandwidth portion and a size of the virtual resource block VRB group The size of the VRB group.
  • the resource allocation device where the base station further includes:
  • a second processing module configured to determine, by using Equation 1 or Equation 2, the number of bits of the resource allocation indication information:
  • G is the size of the virtual resource block VRB group; The current system bandwidth or the number of physical resource blocks PRB or VRB in the active portion; and G is an integer greater than or equal to 1.
  • the embodiment of the present disclosure further provides a resource allocation apparatus, which is applied to a terminal, and includes:
  • a receiving module configured to receive downlink control information (DCI) that is sent by the base station and includes resource allocation indication information, where the resource allocation indication information is used to indicate that the virtual resource block VRB group is used as a resource whose allocation granularity is a frequency domain resource allocated by the terminal position;
  • DCI downlink control information
  • a determining module configured to determine, according to the resource allocation indication information, a frequency domain resource allocated by the base station to the terminal.
  • the resource allocation device wherein the receiving module is further configured to:
  • the size of the virtual resource block VRB group indicated by the base station is obtained by the high-level signaling or the L1 signal carried on the group common physical downlink control channel PDCCH.
  • the resource allocation device wherein the determining module is further configured to:
  • the size of the virtual resource block VRB group is determined according to a current system bandwidth or a size of an active bandwidth portion and a preset system bandwidth or a correspondence between an active bandwidth portion and a size of the virtual resource block VRB group.
  • the resource allocation device wherein the determining module is further configured to:
  • the resource allocation device wherein the determining module determines the number of bits of the resource allocation indication information by using Equation 1 or Equation 2:
  • G is the size of the virtual resource block VRB group; The current system bandwidth or the number of physical resource blocks PRB or VRB in the active portion; and G is an integer greater than or equal to 1.
  • the embodiment of the present disclosure further provides a computer readable storage medium, wherein the computer readable storage medium stores a computer program, and when the computer program is executed by a processor, implements the resource allocation method according to any one of the above step.
  • the resource allocation method allocates a resource for data transmission to a terminal by using a virtual resource block (VRB) group as a unit, and indicates a size of the VRB group allocated by the terminal, and a bit of the resource allocation indication information.
  • the number can be determined according to the size of the VRB group, and can be adjusted according to the current system bandwidth or the size of the BWP. It is not limited to only the resource allocation granularity of the physical resource block (PRB) level, and thus can support the resource allocation granularity.
  • Flexible configuration or adjustment solving the resource allocation method in the related technology, and unable to support the flexible configuration or adjustment of the resource allocation granularity.
  • FIG. 1 is a flowchart of a resource allocation method according to an embodiment of the present disclosure
  • FIG. 2 is a second flowchart of a resource allocation method according to an embodiment of the present disclosure
  • FIG. 3 is a partial flowchart of a resource allocation method according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram showing a resource allocated by using the resource allocation method according to an embodiment of the present disclosure
  • FIG. 5 is a second schematic diagram showing resources allocated by using the resource allocation method according to an embodiment of the present disclosure
  • FIG. 6 is a third schematic diagram of resources allocated by using the resource allocation method according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a resource allocation apparatus according to an embodiment of the present disclosure.
  • FIG. 10 is a second schematic structural diagram of a resource allocation apparatus according to an embodiment of the present disclosure.
  • FIG. 11 shows one of the schematic diagrams of the VRB
  • Figure 12 shows the second schematic of the VRB.
  • the bitfield length of the data transmission frequency domain resource allocation indicated by the DCI in the related art is generally determined by the size of the current scheduling band, and cannot support the flexible configuration or adjustment of the resource allocation granularity, and provides a resource.
  • the allocation method allocates data transmission resources to the terminal in units of a virtual resource block (VRB) group, and indicates the size of the VRB group allocated by the terminal, so as to achieve flexible configuration or adjustment of the resource allocation granularity of the terminal.
  • VRB virtual resource block
  • FIG. 1 is a flowchart of a resource allocation method according to an embodiment of the present disclosure.
  • the resource allocation method according to the embodiment of the present disclosure when applied to a base station, includes:
  • the size of the VRB group is an integer greater than or equal to 1, indicating the size of one VRB group allocated by the base station, that is, the number of VRBs included in one VRB group.
  • the resource allocation method further includes: sending, by using an explicit signaling manner, the size of the virtual resource block VRB group to the terminal, so that the terminal acquires the size of the virtual resource block VRB group, according to the The size and resource allocation indication information of the virtual resource block VRB group determines the frequency domain resource allocated by the base station to the terminal.
  • the base station may notify the terminal of the size of the virtual resource block VRB group by using the L1 signal carried on the higher common signaling or the group common physical downlink control channel (PDCCH). .
  • the size of the virtual resource block VRB group may be a predefined value, and the current system bandwidth or the size of the active bandwidth portion (BWP) has a preset correspondence relationship with the size of the virtual resource block VRB group.
  • the size of the virtual resource block VRB group is determined according to the current system bandwidth or the size of the activated BWP and the preset correspondence.
  • the method further includes: determining the number of bits of the resource allocation indication information in step S110 by using Equation 1 or Equation 2 below:
  • G is a size of the virtual resource block VRB group; The current system bandwidth or the number of physical resource blocks PRB or VRB in the active portion.
  • the value obtained by using Equation 1 or Formula 2 is the number of bits of the resource allocation indication information in step S110.
  • the size of the m resource units allocated by the base station for the terminal is the size G of the virtual resource block VRB group, that is, each of the m resource units.
  • a VRB group is included, and each VRB group includes G VRBs; the remaining one resource unit has a size of:
  • G is the size of the virtual resource block VRB group; The current system bandwidth or the number of physical resource blocks PRB or VRB in the active portion.
  • the resource allocation method of the embodiment of the present disclosure determines the resource allocation indication included in the DCI according to the determined size of the virtual resource block VRB group according to the determined size of the virtual resource block VRB group when the resource is allocated for the terminal transmission data.
  • the number of bits of the information is used to indicate the allocation of the frequency domain resources. Therefore, the number of bits of the resource allocation indication information may be determined according to the size G of the virtual resource block VRB group, and may be adjusted according to the current system bandwidth or the size of the activated BWP, or may be based on
  • the bearer size of the DCI is adjusted, and is not limited to the resource allocation granularity of the physical resource block (PRB) level. Therefore, the flexible allocation or adjustment of the resource allocation granularity can be supported, and the resource allocation method in the related art is solved. Unable to support flexible configuration or tuning of resource allocation granularity.
  • the DCI indicates, by using the resource allocation indication information, a continuous VRB group that is allocated to the terminal data transmission.
  • the base station may pre-agreed with the terminal the manner of determining the number of bits of the resource allocation indication information in the DCI.
  • FIG. 2 is another flowchart of a resource allocation method according to an embodiment of the present disclosure.
  • the resource allocation method according to the embodiment of the present disclosure when applied to the terminal, includes:
  • the terminal determines, according to the resource allocation indication information carried in the DCI, the base station as the VRB group allocated by the terminal.
  • the terminal may pre-acquire the size of the virtual resource block VRB group of the VRB group by means of explicit signaling sent by the base station, according to the size and resources of the virtual resource block VRB group.
  • the allocation indication information is used to determine a frequency domain resource allocated by the base station to the terminal.
  • the terminal may acquire the size of the virtual resource block VRB group indicated by the base station by using the L1 signal carried on the PDCCH of the group common physical downlink control channel PDCCH.
  • the size of the virtual resource block VRB group may be a predefined value, between the current system bandwidth or the size of the active bandwidth portion (BWP) and the size of the virtual resource block VRB group.
  • BWP active bandwidth portion
  • the size of the virtual resource block VRB group is determined according to the current system bandwidth or the size of the activated BWP and the preset correspondence.
  • the method may further include:
  • the size of the virtual resource block VRB group is determined according to the current system bandwidth or the size of the active bandwidth portion and the correspondence between the preset system bandwidth or the bandwidth portion and the size of the virtual resource block VRB group.
  • the method may further include:
  • S310 Determine, according to the size of the virtual resource block VRB group and the current system bandwidth or the size of the active bandwidth portion, the number of bits of the resource allocation indication information.
  • the number of bits of the resource allocation indication information may be determined by using Equation 1 or Equation 2:
  • G is the size of the virtual resource block VRB group; The current system bandwidth or the number of PRBs or VRBs in the active band portion; and G is an integer greater than or equal to 1.
  • the value obtained by using Equation 1 or Formula 2 is the number of bits of the resource allocation indication information in step S310, and further, according to the starting position of the resource allocation indication information in the DCI, The entire resource allocation indication information.
  • the base station indicates that the frequency domain resources allocated by the terminal are consecutive VRB groups through the resource allocation indication information, and the terminal acquires the virtual resource blocks through the high layer signaling.
  • the number of bits for calculating the resource allocation indication information is 4 bits.
  • the resources allocated by the base station through the resource allocation indication information in the DCI can be determined as shown in FIG. 4, and the base station is combined with FIG.
  • the starting position and the number of the assigned VRB group are one-to-one corresponding to one number by means of joint coding.
  • the terminal determines the starting position of the VRB group and the number of allocated VRB groups according to the resource allocation indication information, so as to determine a specific resource allocation situation. In combination with FIG. 4 and FIG. 11, it can be determined that the resource allocated by the base station for the terminal is a VRB group. 3 and VRB group #4.
  • the method according to the embodiment of the present disclosure can be used according to the resource allocation indication.
  • the specific manner of determining the VRB group allocated by the base station to the terminal is not described in detail herein.
  • the length (number of digits) of the indication information can be calculated by the following formula:
  • the number of bits for obtaining the resource allocation indication information is 5 bits.
  • the resource allocated by the base station through the resource allocation indication information in the DCI can be determined as shown in FIG. 5, and the base station will be combined with FIG.
  • the starting position and the number of the allocated VRB group are corresponding to one number by means of joint coding, and the terminal determines the starting position of the VRB group and the number of allocated VRB groups according to the indication information, and can determine the specific resource allocation. In the case, as shown in FIG.
  • the resources allocated by the base station through the resource allocation indication information in the DCI can be determined. As shown in FIG. 6, according to the above principle, the resources allocated by the base station to the terminal can be determined as VRB group #4 and VRB group #5.
  • the size of the virtual resource block VRB group is obtained by using high-level signaling, and the system bandwidth of the terminal data transmission or the number of PRBs included in the activated BWP is illustrated, and the different manners are described in detail.
  • FIG. 7 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • the base station includes: a processor 700; a memory 720 coupled to the processor 700 via a bus interface 730, and a transceiver 710 coupled to the processor 700 via a bus interface; the memory 720 for storing the processor Programs and data used in performing operations; transmitting data information or pilots through the transceiver 710, and receiving an uplink control channel through the transceiver 710; when the processor 700 calls and executes the memory stored in the memory 720
  • the program and data are implemented as follows:
  • the processor 700 is configured to read a program in the memory 720, and the transceiver 710 is configured to perform the following processes:
  • the transceiver 710 is further configured to:
  • the size of the virtual resource block VRB group is notified to the terminal by the L1 signal carried on the PDCCH by the high layer signaling or the group common physical downlink control channel PDCCH.
  • the transceiver 710 is further configured to:
  • the size of the virtual resource block VRB group is determined according to a current system bandwidth or a size of an active bandwidth portion and a correspondence between a preset system bandwidth or a bandwidth portion and a size of the virtual resource block VRB group.
  • processor 700 is configured to:
  • the number of bits of the resource allocation indication information is determined by Equation 1 or Equation 2:
  • G is the size of the virtual resource block VRB group; The current system bandwidth or the number of physical resource blocks PRB or VRB in the active portion; and G is an integer greater than or equal to 1.
  • the bus architecture can include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 700 and various circuits of memory represented by memory 720.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 710 can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 700 is responsible for managing the bus architecture and general processing, and the memory 720 can store data used by the processor 700 in performing operations.
  • the base station provided by the embodiment of the present disclosure may perform the foregoing method embodiments, and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 8 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • the terminal includes a processor 801, a memory 803 connected to the processor 801 via a bus interface 802, and a transceiver 804 connected to the bus interface 802 for storing the processor 801 for performing operations.
  • Programs and data, the processor 801 calls and executes the programs and data stored in the memory 803, and the transceiver 804 is configured to receive and transmit data under the control of the processor 801,
  • the transceiver 804 is configured to: receive the downlink control information DCI that is sent by the base station and includes the resource allocation indication information, where the resource allocation indication information is used to indicate that the virtual resource block VRB group is used as the allocation granularity. a resource location of a frequency domain resource allocated by the terminal;
  • the processor 801 is configured to: determine, according to the resource allocation indication information, a frequency domain resource allocated by the base station to the terminal.
  • the transceiver 804 is further configured to:
  • the size of the virtual resource block VRB group indicated by the base station is obtained by the high-level signaling or the L1 signal carried on the group common physical downlink control channel PDCCH.
  • the processor 801 is further configured to:
  • the size of the virtual resource block VRB group is determined according to a current system bandwidth or a size of an active bandwidth portion and a correspondence between a preset system bandwidth or a bandwidth portion and a size of the virtual resource block VRB group.
  • the processor 801 is further configured to:
  • the processor 801 determines, by using Equation 1 or Equation 2, the number of bits of the resource allocation indication information:
  • G is the size of the virtual resource block VRB group; The current system bandwidth or the number of physical resource blocks PRB or VRB in the active portion; and G is an integer greater than or equal to 1.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 801 and various circuits of memory represented by memory 803.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 804 can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the user interface 805 may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 801 is responsible for managing the bus architecture and general processing, and the memory 803 can store data used by the processor 801 in performing operations.
  • the terminal provided by the embodiment of the present disclosure may perform the foregoing method embodiments, and the implementation principle and technical effects are similar, and details are not described herein again.
  • a specific embodiment of the present disclosure further provides a resource allocation apparatus, which is applied to a base station.
  • the apparatus includes:
  • the sending module 910 is configured to send the downlink control information DCI including the resource allocation indication information to the terminal, where the resource allocation indication information is used to indicate the virtual resource block VRB group as the resource whose allocation granularity is the frequency domain resource allocated by the terminal. position.
  • the sending module 910 is further configured to:
  • the size of the virtual resource block VRB group of the terminal is notified by the high-level signaling or the L1 signal carried on the group common physical downlink control channel PDCCH.
  • the base station further includes:
  • the first processing module 920 is configured to determine the virtual resource according to a current system bandwidth or a size of an active bandwidth portion, and a preset system bandwidth or a correspondence between an active bandwidth portion and a size of the virtual resource block VRB group. The size of the block VRB group.
  • the base station further includes:
  • the second processing module 920 is configured to determine the number of bits of the resource allocation indication information by using Equation 1 or Equation 2:
  • G is the size of the virtual resource block VRB group; The current system bandwidth or the number of physical resource blocks PRB or VRB in the active portion; and G is an integer greater than or equal to 1.
  • a specific embodiment of the present disclosure further provides a resource allocation apparatus, which is applied to a terminal.
  • the apparatus includes:
  • the receiving module 1001 is configured to receive downlink control information (DCI) that is sent by the base station and includes the resource allocation indication information, where the resource allocation indication information is used to indicate that the virtual resource block VRB group is used as the allocation granularity to allocate the frequency domain resource to the terminal.
  • DCI downlink control information
  • the determining module 1002 is configured to determine, according to the resource allocation indication information, a frequency domain resource allocated by the base station to the terminal.
  • the receiving module 1001 is further configured to:
  • the size of the virtual resource block VRB group indicated by the base station is obtained by the high-level signaling or the L1 signal carried on the group common physical downlink control channel PDCCH.
  • the determining module 1002 is further configured to:
  • the size of the virtual resource block VRB group is determined according to a current system bandwidth or a size of an active bandwidth portion and a preset system bandwidth or a correspondence between an active bandwidth portion and a size of the virtual resource block VRB group.
  • the determining module 1002 is further configured to:
  • the determining module 1002 determines the number of bits of the resource allocation indication information by using Equation 1 or Equation 2:
  • G is the size of the virtual resource block VRB group; The number of physical resource blocks PRB or VRB in the current system bandwidth or the band portion; and G is an integer greater than or equal to 1.
  • Another aspect of the present disclosure further provides a computer readable storage medium, wherein the computer readable storage medium stores a computer program, the computer program being executed by a processor to implement the resource allocation method as described above
  • the various processes of the example can achieve the same technical effect. To avoid repetition, no further details are provided here.
  • the computer readable storage medium such as a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • the foregoing embodiment method can be implemented by means of software plus a necessary general hardware platform, and of course, can also be through hardware, but in many cases, the former is better.
  • Implementation Based on such understanding, the technical solution of the present disclosure, which is essential or contributes to the related art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk, CD-ROM).
  • the instructions include a number of instructions for causing a terminal (which may be a cell phone, computer, server, air conditioner, or network device, etc.) to perform the methods described in various embodiments of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种资源分配方法及装置、基站和终端。所述方法包括:向终端发送包括资源分配指示信息的下行控制信息DCI,其中所述资源分配指示信息用于指示以虚拟资源块VRB组作为分配粒度为所述终端所分配频域资源的资源位置。

Description

资源分配方法及装置、基站和终端
相关申请的交叉引用
本申请主张在2018年4月4日在中国提交的中国专利申请号No.201810301996.8的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及无线通信技术领域,尤其是指一种资源分配方法及装置、基站和终端。
背景技术
相关技术的资源分配方式中,通过下行控制信息(Downlink Control Information,DCI)携带用于指示数据传输频域资源分配的位域(bitfield)长度的信息,其中DCI所指示的数据传输频域资源分配的位域(bitfield)长度通常由当前调度带度的大小确定。
按照当前的资源分配方法,频域资源分配粒度是固定的,不支持资源分配粒度的灵活配置或者调节,但在未来的移动通信系统中,调度带宽需要根据基站配置灵活多变,如果采用统一的资源分配粒度,会限制调度的灵活性,因此不同的业务类型需要不同的资源分配粒度。
发明内容
本公开的目的在于提供一种资源分配方法及装置、基站和终端,解决相关技术中的资源分配方法,无法支持资源分配粒度的灵活配置或者调节的问题。
为了达到上述目的,本公开提供一种资源分配方法,应用于基站,其中,所述方法包括:
向终端发送包括资源分配指示信息的下行控制信息DCI,其中所述资源分配指示信息用于指示以虚拟资源块VRB组作为分配粒度为所述终端所分配频域资源的资源位置。
可选地,所述的资源分配方法,其中,所述方法还包括:
通过高层信令或者组公共(group common)物理下行控制信道PDCCH上承载的L1信号通知终端所述虚拟资源块VRB组的大小。
可选地,所述的资源分配方法,其中,所述方法还包括:
根据当前系统带宽或者激活带宽部分的大小以及预先设定的系统带宽或者激活带宽部分与虚拟资源块VRB组的大小之间的对应关系,确定虚拟资源块VRB组的大小。
可选地,所述的资源分配方法,其中,所述方法还包括,通过公式一或者公式二确定所述资源分配指示信息的位数:
公式一:
Figure PCTCN2019079666-appb-000001
公式二:
Figure PCTCN2019079666-appb-000002
其中,G为虚拟资源块VRB组的大小;
Figure PCTCN2019079666-appb-000003
为当前系统带宽或者激活带度部分中的物理资源块PRB或者VRB的个数;且G为大于等于1的整数。
本公开实施例还提供一种资源分配方法,应用于终端,其中,所述方法包括:
接收基站发送的包括资源分配指示信息的下行控制信息DCI,其中所述资源分配指示信息用于指示以虚拟资源块VRB组作为分配粒度为所述终端所分配频域资源的资源位置;
根据所述资源分配指示信息,确定所述基站为所述终端所分配的频域资源。
可选地,所述的资源分配方法,其中,通过高层信令或者组公共(group common)物理下行控制信道PDCCH上承载的L1信号获取所述基站指示的所述虚拟资源块VRB组的大小。
可选地,所述的资源分配方法,其中,所述方法还包括:
根据当前系统带宽或者激活带宽部分的大小以及预先设定的系统带宽或者激活带宽部分与虚拟资源块VRB组的大小之间的对应关系,确定虚拟资源块VRB组的大小。
可选地,所述的资源分配方法,其中,所述根据所述资源分配指示信息,确定所述基站为所述终端所分配的频域资源的步骤包括:
根据虚拟资源块VRB组的大小和当前系统带宽或者激活带宽部分的大小,确定所述资源分配指示信息的位数;
根据所述资源分配指示信息,确定基站分配的VRB组。
可选地,所述的资源分配方法,其中,所述根据虚拟资源块VRB组的大小和当前系统带宽或者激活带宽部分的大小,确定所述资源分配指示信息的位数步骤中,通过公式一或者公式二确定所述资源分配指示信息的位数:
公式一:
Figure PCTCN2019079666-appb-000004
公式二:
Figure PCTCN2019079666-appb-000005
其中,G为虚拟资源块VRB组的大小;
Figure PCTCN2019079666-appb-000006
为当前系统带宽或者激活带度部分中的物理资源块PRB或者VRB的个数;且G为大于等于1的整数。
本公开实施例还提供一种基站,其中,包括存储器、处理器、收发机及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,所述收发机用于:
向终端发送包括资源分配指示信息的下行控制信息DCI,其中所述资源分配指示信息用于指示以虚拟资源块VRB组作为分配粒度为所述终端所分配频域资源的资源位置。
可选地,所述的基站,其中,所述收发机还用于:
通过高层信令或者组公共(group common)物理下行控制信道PDCCH上承载的L1信号通知终端所述虚拟资源块VRB组的大小。
可选地,所述的基站,其中,所述处理器用于:
根据当前系统带宽或者激活带宽部分的大小以及预先设定的系统带宽或者激活带宽部分与所述虚拟资源块VRB组的大小之间的对应关系,确定所述虚拟资源块VRB组的大小。
可选地,所述的基站,其中,所述处理器用于:通过公式一或者公式二确定所述资源分配指示信息的位数:
公式一:
Figure PCTCN2019079666-appb-000007
公式二:
Figure PCTCN2019079666-appb-000008
其中,G为所述虚拟资源块VRB组的大小;
Figure PCTCN2019079666-appb-000009
为当前系统带宽或者激活带度部分中的物理资源块PRB或者VRB的个数;且G为大于等于1的 整数。
本公开实施例还提供一种终端,其中,包括存储器、处理器、收发机及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中:
所述收发机用于:接收基站发送的包括资源分配指示信息的下行控制信息DCI,其中所述资源分配指示信息用于指示以虚拟资源块VRB组作为分配粒度为所述终端所分配频域资源的资源位置;
所述处理器用于:根据所述资源分配指示信息,确定所述基站为所述终端所分配的频域资源。
可选地,所述的终端,其中,所述收发机还用于:
通过高层信令或者组公共(group common)物理下行控制信道PDCCH上承载的L1信号获取所述基站指示的所述虚拟资源块VRB组的大小。
可选地,所述的终端,其中,所述处理器还用于:
根据当前系统带宽或者激活带宽部分的大小以及预先设定的系统带宽或者激活带宽部分与所述虚拟资源块VRB组的大小之间的对应关系,确定所述虚拟资源块VRB组的大小。
可选地,所述的终端,其中,所述处理器还用于:
根据所述虚拟资源块VRB组的大小和当前系统带宽或者激活带宽部分的大小,确定所述资源分配指示信息的位数;
根据所述资源分配指示信息,确定基站分配的VRB组。
可选地,所述的终端,其中,所述处理器通过公式一或者公式二确定所述资源分配指示信息的位数:
公式一:
Figure PCTCN2019079666-appb-000010
公式二:
Figure PCTCN2019079666-appb-000011
其中,G为所述虚拟资源块VRB组的大小;
Figure PCTCN2019079666-appb-000012
为当前系统带宽或者激活带度部分中的物理资源块PRB或者VRB的个数;且G为大于等于1的整数。
本公开实施例还提供一种资源分配装置,应用于基站,其中,所述装置包括:
发送模块,用于向终端发送包括资源分配指示信息的下行控制信息DCI, 其中所述资源分配指示信息用于指示以虚拟资源块VRB组作为分配粒度为所述终端所分配频域资源的资源位置。
可选地,所述的资源分配装置,其中,所述发送模块还用于:
通过高层信令或者组公共(group common)物理下行控制信道PDCCH上承载的L1信号通知终端所述虚拟资源块VRB组的大小。
可选地,所述的资源分配装置,其中,所述基站还包括:
第一处理模块,用于根据当前系统带宽或者激活带宽部分的大小以及预先设定的系统带宽或者激活带宽部分与所述虚拟资源块VRB组的大小之间的对应关系,确定所述虚拟资源块VRB组的大小。
可选地,所述的资源分配装置,其中,所述基站还包括:
第二处理模块,用于通过公式一或者公式二确定所述资源分配指示信息的位数:
公式一:
Figure PCTCN2019079666-appb-000013
公式二:
Figure PCTCN2019079666-appb-000014
其中,G为所述虚拟资源块VRB组的大小;
Figure PCTCN2019079666-appb-000015
为当前系统带宽或者激活带度部分中的物理资源块PRB或者VRB的个数;且G为大于等于1的整数。
本公开实施例还提供一种资源分配装置,应用于终端,其中,包括:
接收模块,用于接收基站发送的包括资源分配指示信息的下行控制信息DCI,其中所述资源分配指示信息用于指示以虚拟资源块VRB组作为分配粒度为所述终端所分配频域资源的资源位置;
判定模块,用于根据所述资源分配指示信息,确定所述基站为所述终端所分配的频域资源。
可选地,所述的资源分配装置,其中,所述接收模块还用于:
通过高层信令或者组公共(group common)物理下行控制信道PDCCH上承载的L1信号获取所述基站指示的所述虚拟资源块VRB组的大小。
可选地,所述的资源分配装置,其中,所述判定模块还用于:
根据当前系统带宽或者激活带宽部分的大小以及预先设定的系统带宽或者激活带宽部分与所述虚拟资源块VRB组的大小之间的对应关系,确定所述 虚拟资源块VRB组的大小。
可选地,所述的资源分配装置,其中,所述判定模块还用于:
根据所述虚拟资源块VRB组的大小和当前系统带宽或者激活带宽部分的大小,确定所述资源分配指示信息的位数;
根据所述资源分配指示信息,确定基站分配的VRB组。
可选地,所述的资源分配装置,其中,所述判定模块通过公式一或者公式二确定所述资源分配指示信息的位数:
公式一:
Figure PCTCN2019079666-appb-000016
公式二:
Figure PCTCN2019079666-appb-000017
其中,G为所述虚拟资源块VRB组的大小;
Figure PCTCN2019079666-appb-000018
为当前系统带宽或者激活带度部分中的物理资源块PRB或者VRB的个数;且G为大于等于1的整数。
本公开实施例还提供一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如上任一项所述的资源分配方法的步骤。
本公开的上述技术方案至少具有如下有益效果:
本公开实施例所述的资源分配方法,通过以虚拟资源块(Virtual Resource Block,VRB)组为单位为终端分配数据传输的资源,并指示终端所分配VRB组的大小,资源分配指示信息的位数可以依据VRB组大小确定,并可以依据当前系统带宽或者BWP的大小进行调节,并不限于仅能够为物理资源块(Physical Resource Block,PRB)级别的资源分配粒度,因此能够支持资源分配粒度的灵活配置或者调节,解决相关技术中的资源分配方法,无法支持资源分配粒度的灵活配置或者调节的问题。
附图说明
图1表示本公开实施例所述资源分配方法的流程图之一;
图2表示本公开实施例所述资源分配方法的流程图之二;
图3表示本公开实施例所述资源分配方法的部分流程图;
图4表示采用本公开实施例所述资源分配方法所分配资源的示意图之一;
图5表示采用本公开实施例所述资源分配方法所分配资源的示意图之二;
图6表示采用本公开实施例所述资源分配方法所分配资源的示意图之三;
图7表示本公开实施例所述基站的结构示意图;
图8表示本公开实施例所述终端的结构示意图;
图9表示本公开实施例所述资源分配装置的结构示意图之一;
图10表示本公开实施例所述资源分配装置的结构示意图之二;
图11表示VRB的示意图之一;
图12表示VRB的示意图之二。
具体实施方式
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
本公开针对相关技术中DCI所指示的数据传输频域资源分配的位域(bitfield)长度通常由当前调度带度的大小确定,无法支持资源分配粒度的灵活配置或者调节的问题,提供一种资源分配方法,通过以虚拟资源块(Virtual Resource Block,VRB)组为单位为终端分配数据传输的资源,并指示终端所分配VRB组的大小,达到使终端的资源分配粒度灵活配置或者调节的目的。
图1为本公开实施例所述资源分配方法的其中一流程图。参阅图1所示,本公开实施例所述资源分配方法,在应于基站时,包括:
S110,向终端发送包括资源分配指示信息的下行控制信息DCI,其中所述资源分配指示信息用于指示以虚拟资源块VRB组作为分配粒度为所述终端所分配频域资源的资源位置。
本公开实施例中,所述VRB组的大小为大于等于1的整数,表示基站所分配的一个VRB组的大小,也即一个VRB组中所包括的VRB的个数。
另一方面,本公开实施例中,所述资源分配方法还包括通过显式信令的方式向终端发送虚拟资源块VRB组的大小,使终端获取该虚拟资源块VRB组的大小,能够根据该虚拟资源块VRB组的大小和资源分配指示信息,确定 基站为终端所分配的频域资源。可选地,本公开实施例中,基站可以通过高层信令或者组公共(group common)物理下行控制信道(Physical Downlink Control Channel,PDCCH)上承载的L1信号通知终端该虚拟资源块VRB组的大小。
进一步地,虚拟资源块VRB组的大小可以为预定义的值,当前系统带宽或者激活带宽部分(Bandwidth Part,BWP)的大小与该虚拟资源块VRB组的大小之间具有预先设定的对应关系,根据当前系统带宽或者激活BWP的大小以及预先设定的对应关系,确定虚拟资源块VRB组的大小。
本公开实施例中,所述方法还包括:通过以下的公式一或者公式二确定步骤S110中资源分配指示信息的位数:
公式一:
Figure PCTCN2019079666-appb-000019
公式二:
Figure PCTCN2019079666-appb-000020
具体地,G为所述虚拟资源块VRB组的大小;
Figure PCTCN2019079666-appb-000021
为当前系统带宽或者激活带度部分中物理资源块PRB或者VRB的个数。
依据上述的设定参数的数值,采用公式一或者公式二计算获得的数值即为步骤S110中资源分配指示信息的位数。
另外,当资源分配指示信息的位数通过公式二确定时,基站为终端所分配的m个资源单元的大小为虚拟资源块VRB组的大小G,也即m个资源单元中,每一资源单元包括一个VRB组,每一VRB组包括G个VRB;剩余的1个资源单元的大小为:
Figure PCTCN2019079666-appb-000022
其中:m的计算方式为:
Figure PCTCN2019079666-appb-000023
同样,与公式一与公式二相同,G为所述虚拟资源块VRB组的大小;
Figure PCTCN2019079666-appb-000024
为当前系统带宽或者激活带度部分中的物理资源块PRB或者VRB的个数。
本公开实施例所述资源分配方法,在为终端传输数据分配资源时,以VRB组为资源分配的基本单位,根据所确定的虚拟资源块VRB组的大小G,确定DCI中所包括资源分配指示信息的位数,用于指示频域资源的分配,因此资源分配指示信息的位数可以依据虚拟资源块VRB组的大小G确定,可以依 据当前系统带宽或者激活BWP的大小进行调节,也可以依据DCI的承载大小进行调节,并不限于仅能够为物理资源块(Physical Resource Block,PRB)级别的资源分配粒度,因此能够支持资源分配粒度的灵活配置或者调节,解决相关技术中的资源分配方法,无法支持资源分配粒度的灵活配置或者调节的问题。
可选地,本公开实施例所述资源分配方法中,DCI通过资源分配指示信息指示分配至终端数据传输的连续的VRB组。
可选地,本公开实施例所述资源分配方法中,基站可以与终端预先约定DCI中资源分配指示信息的位数确定方式。
图2为本公开实施例所述资源分配方法的另一流程图。参阅图2所示,本公开实施例所述资源分配方法,在应于终端时,包括:
S210,接收基站发送的包括资源分配指示信息的下行控制信息DCI,其中所述资源分配指示信息用于指示以虚拟资源块VRB组作为分配粒度为所述终端所分配频域资源的资源位置;
S220,根据所述资源分配指示信息,确定所述基站为所述终端所分配的频域资源。
采用本公开实施例所述资源分配方法,终端根据DCI中携带的资源分配指示信息,确定基站为终端所分配的VRB组。
另外,本公开实施例的其中一实施方式中,终端可以通过基站发送的显式信令的方式预先获取VRB组的虚拟资源块VRB组的大小,以根据该虚拟资源块VRB组的大小和资源分配指示信息,确定基站为终端所分配的频域资源。
具体地,终端可以通过高层信令或者组公共(group common)物理下行控制信道PDCCH上承载的L1信号获取所述基站指示的所述虚拟资源块VRB组的大小。
本公开实施例的另一实施方式中,虚拟资源块VRB组的大小可以为预定义的值,当前系统带宽或者激活带宽部分(Bandwidth Part,BWP)的大小与虚拟资源块VRB组的大小之间具有预先设定的对应关系,根据当前系统带宽或者激活BWP的大小以及预先设定的对应关系,确定虚拟资源块VRB组的 大小。
因此,所述方法还可以包括:
根据当前系统带宽或者激活带宽部分的大小以及预先设定的系统带宽或者带宽部分与虚拟资源块VRB组的大小之间的对应关系,确定虚拟资源块VRB组的大小。
进一步地,如图3并结合图2所示,在步骤S210之后,所述方法还可以包括:
S310,根据虚拟资源块VRB组的大小和当前系统带宽或者激活带宽部分的大小,确定所述资源分配指示信息的位数;
S320,根据资源分配指示信息,确定基站分配的VRB组。
具体地,步骤S310中,可以通过公式一或者公式二确定所述资源分配指示信息的位数:
公式一:
Figure PCTCN2019079666-appb-000025
公式二:
Figure PCTCN2019079666-appb-000026
其中,G为所述虚拟资源块VRB组的大小;
Figure PCTCN2019079666-appb-000027
为当前系统带宽或者激活带度部分中的PRB或者VRB的个数;且G为大于等于1的整数。
依据上述的设定参数的数值,采用公式一或者公式二计算获得的数值即为步骤S310中资源分配指示信息的位数,进一步地,根据DCI中资源分配指示信息的起始位置,即能够获得整个资源分配指示信息。
举例说明,当终端数据传输所在的系统带宽或者BWP包含11个PRB,且基站通过资源分配指示信息指示为终端所分配的频域资源为连续的VRB组,且终端通过高层信令获取虚拟资源块VRB组的大小G=2时,根据基站所分配的虚拟资源块VRB组的大小G=2以及系统带度或者激活BWP的大小,确定资源分配指示信息的长度(位数)计算方式可以采用如下公式:
Figure PCTCN2019079666-appb-000028
也即采用上述的公式一时,计算获得资源分配指示信息的位数为4bit。
进一步地,当资源分配指示信息为1000=8时,根据VRB与PRB的资源映射关系,即能够确定基站通过DCI中的资源分配指示信息所分配的资源如图4所示,结合图11,基站将所分配的VRB组的起始位置以及个数通过 联合编码的方式一一对应一个数字。终端根据资源分配指示信息,确定VRB组的起始位置以及分配VRB组的个数,从而确定具体的资源分配情况,结合图4和图11,可以确定基站为终端所分配的资源为VRB组#3和VRB组#4。
本领域技术人员应该能够了解上述所提及的VRB与PRB的资源映射关系和VRB中的编码方式,因此能够根据本公开技术方案的内容,了解采用本公开实施例所述方法,根据资源分配指示信息,确定基站为终端所分配的VRB组的具体方式,在此不再详细说明。
本公开实施例所述方法的另一实施方式中,当终端数据传输所在的系统带宽或者激活BWP包含11个PRB,终端通过高层信令获取虚拟资源块VRB组的大小G=2,确定资源分配指示信息的长度(位数)计算方式可以采用如下公式:
Figure PCTCN2019079666-appb-000029
也即采用上述的公式二时,计算获得资源分配指示信息的位数为5bit。
此时,若资源分配指示信息为01101=13,根据VRB与PRB的资源映射关系,能够确定基站通过DCI中的资源分配指示信息所分配的资源如图5所示,结合图12,基站将所分配的VRB组的起始位置以及个数通过联合编码的方式一一对应一个数字,终端根据所述指示信息,确定VRB组的起始位置以及分配VRB组的个数,能够确定具体的资源分配情况,如图5所示,基站为终端所分配的资源为VRB组#1、VRB组#2和VRB组#3;若资源分配指示信息为01010=10时,根据VRB与PRB的资源映射关系,能够确定基站通过DCI中的资源分配指示信息所分配的资源如图6所示,依据以上的原理,可以确定基站为终端所分配的资源为VRB组#4和VRB组#5。
本公开实施例所述资源分配方法,上述以通过高层信令获取虚拟资源块VRB组的大小,并举例说明终端数据传输所在的系统带宽或者激活BWP所包含PRB的数量,详细说明了采用不同方式能够确定资源分配指示信息的长度,并进一步确定基站为终端所分配的频域资源的具体方式,基于上述原理,本领域技术人员应该能够了解采用本公开实施例所述资源分配方法时的多种不同应用场景时的具体执行过程,在此不一一详细说明。
图7为本公开实施例所述基站的结构示意图。该基站包括:处理器700; 通过总线接口730与所述处理器700相连接的存储器720,以及通过总线接口与处理器700相连接的收发机710;所述存储器720用于存储所述处理器在执行操作时所使用的程序和数据;通过所述收发机710发送数据信息或者导频,还通过所述收发机710接收上行控制信道;当处理器700调用并执行所述存储器720中所存储的程序和数据时,实现如下的功能模块:处理器700用于读取存储器720中的程序,所述收发机710用于执行下列过程:
向终端发送包括资源分配指示信息的下行控制信息DCI,其中所述资源分配指示信息用于指示以虚拟资源块VRB组作为分配粒度为所述终端所分配频域资源的资源位置。
可选地,本公开实施例中,收发机710还用于:
通过高层信令或者组公共(group common)物理下行控制信道PDCCH上承载的L1信号通知终端所述虚拟资源块VRB组的的大小。
本公开实施例中,收发机710还用于:
根据当前系统带宽或者激活带宽部分的大小以及预先设定的系统带宽或者带宽部分与所述虚拟资源块VRB组的大小之间的对应关系,确定所述虚拟资源块VRB组的大小。
进一步地,处理器700用于:
通过公式一或者公式二确定所述资源分配指示信息的位数:
公式一:
Figure PCTCN2019079666-appb-000030
公式二:
Figure PCTCN2019079666-appb-000031
其中,G为所述虚拟资源块VRB组的大小;
Figure PCTCN2019079666-appb-000032
为当前系统带宽或者激活带度部分中的物理资源块PRB或者VRB的个数;且G为大于等于1的整数。
另外,在图7中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器700代表的一个或多个处理器和存储器720代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发器710可以是多个元件,即包括发送机和收发器,提供用于在传输介质上与各种其他装置通信的单元。 处理器700负责管理总线架构和通常的处理,存储器720可以存储处理器700在执行操作时所使用的数据。
本领域技术人员可以理解,实现上述实施例的全部或者部分步骤可以通过硬件来完成,也可以通过计算机程序来指示相关的硬件来完成,所述计算机程序包括执行上述方法的部分或者全部步骤的指令;且该计算机程序可以存储于一可读存储介质中,存储介质可以是任何形式的存储介质。
本公开实施例提供的基站,可以执行上述方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
图8为本公开实施例所述终端的结构示意图。该终端包括:处理器801、通过总线接口802与处理器801相连接的存储器803以及与总线接口802连接的收发机804,所述存储器803用于存储所述处理器801在执行操作时所使用的程序和数据,处理器801调用并执行所述存储器803中所存储的程序和数据,收发机804用于在处理器801的控制下接收和发送数据,
本公开实施例中,所述收发机804用于:接收基站发送的包括资源分配指示信息的下行控制信息DCI,其中所述资源分配指示信息用于指示以虚拟资源块VRB组作为分配粒度为所述终端所分配频域资源的资源位置;
所述处理器801用于:根据所述资源分配指示信息,确定所述基站为所述终端所分配的频域资源。
可选地,所述收发机804还用于:
通过高层信令或者组公共(group common)物理下行控制信道PDCCH上承载的L1信号获取所述基站指示的所述虚拟资源块VRB组的大小。
可选地,所述处理器801还用于:
根据当前系统带宽或者激活带宽部分的大小以及预先设定的系统带宽或者带宽部分与所述虚拟资源块VRB组的大小之间的对应关系,确定所述虚拟资源块VRB组的大小。
可选地,所述处理器801还用于:
根据所述虚拟资源块VRB组的大小和当前系统带宽或者激活带宽部分的大小,确定所述资源分配指示信息的位数;
根据所述资源分配指示信息,确基站分配的VRB组。
可选地,所述处理器801通过公式一或者公式二确定所述资源分配指示信息的位数:
公式一:
Figure PCTCN2019079666-appb-000033
公式二:
Figure PCTCN2019079666-appb-000034
其中,G为所述虚拟资源块VRB组的大小;
Figure PCTCN2019079666-appb-000035
为当前系统带宽或者激活带度部分中的物理资源块PRB或者VRB的个数;且G为大于等于1的整数。
需要说明的是,在图8中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器801代表的一个或多个处理器和存储器803代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机804可以是多个元件,即包括发送机和收发器,提供用于在传输介质上与各种其他装置通信的单元。针对不同的终端,用户接口805还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。处理器801负责管理总线架构和通常的处理,存储器803可以存储处理器801在执行操作时所使用的数据。
本领域技术人员可以理解,实现上述实施例的全部或者部分步骤可以通过硬件来完成,也可以通过计算机程序来指示相关的硬件来完成,所述计算机程序包括执行上述方法的部分或者全部步骤的指令;且该计算机程序可以存储于一可读存储介质中,存储介质可以是任何形式的存储介质。
本公开实施例提供的终端,可以执行上述方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
本公开具体实施例还提供一种资源分配装置,应用于基站,如图9所示,所述装置包括:
发送模块910,用于向终端发送包括资源分配指示信息的下行控制信息DCI,其中所述资源分配指示信息用于指示以虚拟资源块VRB组作为分配粒度为所述终端所分配频域资源的资源位置。
可选地,所述发送模块910还用于:
通过高层信令或者组公共(group common)物理下行控制信道PDCCH上承载的L1信号通知所述终端所述虚拟资源块VRB组的大小。
可选地,如图9所示,所述基站还包括:
第一处理模块920,用于根据当前系统带宽或者激活带宽部分的大小以及预先设定的系统带宽或者激活带宽部分与所述虚拟资源块VRB组的大小之间的对应关系,确定所述虚拟资源块VRB组的大小。
本公开实施例中,可选地,所述基站还包括:
第二处理模块920,用于通过公式一或者公式二确定所述资源分配指示信息的位数:
公式一:
Figure PCTCN2019079666-appb-000036
公式二:
Figure PCTCN2019079666-appb-000037
其中,G为所述虚拟资源块VRB组的大小;
Figure PCTCN2019079666-appb-000038
为当前系统带宽或者激活带度部分中的物理资源块PRB或者VRB的个数;且G为大于等于1的整数。
本公开具体实施例还提供一种资源分配装置,应用于终端,如图10所示,所述装置包括:
接收模块1001,用于接收基站发送的包括资源分配指示信息的下行控制信息DCI,其中所述资源分配指示信息用于指示以虚拟资源块VRB组作为分配粒度为所述终端所分配频域资源的资源位置;
判定模块1002,用于根据所述资源分配指示信息,确定所述基站为所述终端所分配的频域资源。
本公开实施例中,可选地,所述接收模块1001还用于:
通过高层信令或者组公共(group common)物理下行控制信道PDCCH上承载的L1信号获取所述基站指示的所述虚拟资源块VRB组的大小。
可选地,所述判定模块1002还用于:
根据当前系统带宽或者激活带宽部分的大小以及预先设定的系统带宽或者激活带宽部分与所述虚拟资源块VRB组的大小之间的对应关系,确定所述虚拟资源块VRB组的大小。
可选地,所述判定模块1002还用于:
根据所述虚拟资源块VRB组的大小和当前系统带宽或者激活带宽部分的大小,确定所述资源分配指示信息的位数;
根据所述资源分配指示信息,确定基站分配的VRB组。
可选地,所述判定模块1002通过公式一或者公式二确定所述资源分配指示信息的位数:
公式一:
Figure PCTCN2019079666-appb-000039
公式二:
Figure PCTCN2019079666-appb-000040
其中,G为所述虚拟资源块VRB组的大小;
Figure PCTCN2019079666-appb-000041
为当前系统带宽或者带度部分中的物理资源块PRB或者VRB的个数;且G为大于等于1的整数。
本公开具体实施例另一方面还提供一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如上所述资源分配方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
依据以上的描述,本领域技术人员应该能够了解执行本公开所述资源分配方法的计算机可读存储介质的具体实现结构,在此不详细说明。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器, 空调器,或者网络设备等)执行本公开各个实施例所述的方法。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。
以上所述是本公开的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (28)

  1. 一种资源分配方法,应用于基站,所述方法包括:
    向终端发送包括资源分配指示信息的下行控制信息DCI,其中所述资源分配指示信息用于指示以虚拟资源块VRB组作为分配粒度为所述终端所分配频域资源的资源位置。
  2. 根据权利要求1所述的资源分配方法,还包括:
    通过高层信令或者组公共(group common)物理下行控制信道PDCCH上承载的L1信号通知终端所述虚拟资源块VRB组的大小。
  3. 根据权利要求1所述的资源分配方法,还包括:
    根据当前系统带宽或者激活带宽部分的大小以及预先设定的系统带宽或者激活带宽部分与所述虚拟资源块VRB组的大小之间的对应关系,确定所述虚拟资源块VRB组的大小。
  4. 根据权利要求1所述的资源分配方法,还包括,通过公式一或者公式二确定所述资源分配指示信息的位数:
    公式一:
    Figure PCTCN2019079666-appb-100001
    公式二:
    Figure PCTCN2019079666-appb-100002
    其中,G为所述虚拟资源块VRB组的大小;
    Figure PCTCN2019079666-appb-100003
    为当前系统带宽或者激活带度部分中的物理资源块PRB或者VRB的个数;且G为大于等于1的整数。
  5. 一种资源分配方法,应用于终端,所述方法包括:
    接收基站发送的包括资源分配指示信息的下行控制信息DCI,其中所述资源分配指示信息用于指示以虚拟资源块VRB组作为分配粒度为所述终端所分配频域资源的资源位置;
    根据所述资源分配指示信息,确定所述基站为所述终端所分配的频域资源。
  6. 根据权利要求5所述的资源分配方法,还包括:
    通过高层信令或者组公共(group common)物理下行控制信道PDCCH上承载的L1信号获取所述基站指示的所述虚拟资源块VRB组的大小。
  7. 根据权利要求5所述的资源分配方法,还包括:
    根据当前系统带宽或者激活带宽部分的大小以及预先设定的系统带宽或者激活带宽部分与所述虚拟资源块VRB组的大小之间的对应关系,确定所述虚拟资源块VRB组的大小。
  8. 根据权利要求5所述的资源分配方法,其中,所述根据所述资源分配指示信息,确定所述基站为所述终端所分配的频域资源的步骤包括:
    根据所述虚拟资源块VRB组的大小和当前系统带宽或者激活带宽部分的大小,确定所述资源分配指示信息的位数;
    根据所述资源分配指示信息,确定基站分配的VRB组。
  9. 根据权利要求8所述的资源分配方法,其中,所述根据所述虚拟资源块VRB组的大小和当前系统带宽或者激活带宽部分的大小,确定所述资源分配指示信息的位数步骤中,通过公式一或者公式二确定所述资源分配指示信息的位数:
    公式一:
    Figure PCTCN2019079666-appb-100004
    公式二:
    Figure PCTCN2019079666-appb-100005
    其中,G为所述虚拟资源块VRB组的大小;
    Figure PCTCN2019079666-appb-100006
    为当前系统带宽或者激活带度部分中的物理资源块PRB或者VRB的个数;且G为大于等于1的整数。
  10. 一种基站,包括存储器、处理器、收发机及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,所述收发机用于:
    向终端发送包括资源分配指示信息的下行控制信息DCI,其中所述资源分配指示信息用于指示以虚拟资源块VRB组作为分配粒度为所述终端所分配频域资源的资源位置。
  11. 根据权利要求10所述的基站,其中,所述收发机还用于:
    通过高层信令或者组公共(group common)物理下行控制信道PDCCH上承载的L1信号通知终端所述虚拟资源块VRB组的大小。
  12. 根据权利要求10所述的基站,其中,所述处理器用于:
    根据当前系统带宽或者激活带宽部分的大小以及预先设定的系统带宽或者激活带宽部分与虚拟资源块VRB组的大小之间的对应关系,确定虚拟资源 块VRB组的大小。
  13. 根据权利要求10所述的基站,其中,所述处理器用于:通过公式一或者公式二确定所述资源分配指示信息的位数:
    公式一:
    Figure PCTCN2019079666-appb-100007
    公式二:
    Figure PCTCN2019079666-appb-100008
    其中,G为虚拟资源块VRB组的大小;
    Figure PCTCN2019079666-appb-100009
    为当前系统带宽或者激活带度部分中的物理资源块PRB或者VRB的个数;且G为大于等于1的整数。
  14. 一种终端,包括存储器、处理器、收发机及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中:
    所述收发机用于:接收基站发送的包括资源分配指示信息的下行控制信息DCI,其中所述资源分配指示信息用于指示以虚拟资源块VRB组作为分配粒度为所述终端所分配频域资源的资源位置;
    所述处理器用于:根据所述资源分配指示信息,确定所述基站为所述终端所分配的频域资源。
  15. 根据权利要求14所述的终端,其中,所述收发机还用于:
    通过高层信令或者组公共(group common)物理下行控制信道PDCCH上承载的L1信号获取所述基站指示的所述虚拟资源块VRB组的大小。
  16. 根据权利要求14所述的终端,其中,所述处理器还用于:
    根据当前系统带宽或者激活带宽部分的大小以及预先设定的系统带宽或者激活带宽部分与所述虚拟资源块VRB组的大小之间的对应关系,确定虚拟资源块VRB组的大小。
  17. 根据权利要求14所述的终端,其中,所述处理器还用于:
    根据虚拟资源块VRB组的大小和当前系统带宽或者激活带宽部分的大小,确定所述资源分配指示信息的位数;
    根据所述资源分配指示信息,确定基站分配的VRB组。
  18. 根据权利要求17所述的终端,其中,所述处理器通过公式一或者公式二确定所述资源分配指示信息的位数:
    公式一:
    Figure PCTCN2019079666-appb-100010
    公式二:
    Figure PCTCN2019079666-appb-100011
    其中,G为虚拟资源块VRB组的大小;
    Figure PCTCN2019079666-appb-100012
    为当前系统带宽或者激活带度部分中的物理资源块PRB或者VRB的个数;且G为大于等于1的整数。
  19. 一种资源分配装置,应用于基站,所述资源分配装置包括:
    发送模块,用于向终端发送包括资源分配指示信息的下行控制信息DCI,其中所述资源分配指示信息用于指示以虚拟资源块VRB组作为分配粒度为所述终端所分配频域资源的资源位置。
  20. 根据权利要求19所述的资源分配装置,其中,所述发送模块还用于:
    通过高层信令或者组公共(group common)物理下行控制信道PDCCH上承载的L1信号通知终端所述虚拟资源块VRB组的大小。
  21. 权利要求19所述的资源分配装置,还包括:
    第一处理模块,用于根据当前系统带宽或者激活带宽部分的大小以及预先设定的系统带宽或者激活带宽部分与虚拟资源块VRB组的大小之间的对应关系,确定虚拟资源块VRB组的大小。
  22. 权利要求19所述的资源分配装置,还包括:
    第二处理模块,用于通过公式一或者公式二确定所述资源分配指示信息的位数:
    公式一:
    Figure PCTCN2019079666-appb-100013
    公式二:
    Figure PCTCN2019079666-appb-100014
    其中,G为虚拟资源块VRB组的大小;
    Figure PCTCN2019079666-appb-100015
    为当前系统带宽或者激活带度部分中的物理资源块PRB或者VRB的个数;且G为大于等于1的整数。
  23. 一种资源分配装置,应用于终端,包括:
    接收模块,用于接收基站发送的包括资源分配指示信息的下行控制信息DCI,其中所述资源分配指示信息用于指示以虚拟资源块VRB组作为分配粒度为所述终端所分配频域资源的资源位置;
    判定模块,用于根据所述资源分配指示信息,确定所述基站为所述终端所分配的频域资源。
  24. 根据权利要求23所述的资源分配装置,其中,所述接收模块还用于:
    通过高层信令或者组公共(group common)物理下行控制信道PDCCH上承载的L1信号获取所述基站指示的所述虚拟资源块VRB组的大小。
  25. 根据权利要求23所述的资源分配装置,其中,所述判定模块还用于:
    根据当前系统带宽或者激活带宽部分的大小以及预先设定的系统带宽或者激活带宽部分与虚拟资源块VRB组的大小之间的对应关系,确定虚拟资源块VRB组的大小。
  26. 根据权利要求23所述的资源分配装置,其中,所述判定模块还用于:
    根据虚拟资源块VRB组的大小和当前系统带宽或者激活带宽部分的大小,确定所述资源分配指示信息的位数;
    根据所述资源分配指示信息,确定基站分配的VRB组。
  27. 权利要求26所述的资源分配装置,其中,所述判定模块通过公式一或者公式二确定所述资源分配指示信息的位数:
    公式一:
    Figure PCTCN2019079666-appb-100016
    公式二:
    Figure PCTCN2019079666-appb-100017
    其中,G为虚拟资源块VRB组的大小;
    Figure PCTCN2019079666-appb-100018
    为当前系统带宽或者激活带度部分中的物理资源块PRB或者VRB的个数;且G为大于等于1的整数。
  28. 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至4中任一项所述的资源分配方法的步骤或者实现如权利要求5至9任一项所述的资源分配方法的步骤。
PCT/CN2019/079666 2018-04-04 2019-03-26 资源分配方法及装置、基站和终端 WO2019192353A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020207030148A KR102639977B1 (ko) 2018-04-04 2019-03-26 자원 할당 방법, 자원 할당 장치, 기지국 및 단말
JP2020552281A JP7145966B2 (ja) 2018-04-04 2019-03-26 リソース割当方法及び装置、基地局並びに端末
US17/042,842 US11375532B2 (en) 2018-04-04 2019-03-26 Resource allocation method and apparatus, base station, and user equipment
EP19781730.7A EP3780816B1 (en) 2018-04-04 2019-03-26 Resource allocation method and device, and base station and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810301996.8A CN110351849B (zh) 2018-04-04 2018-04-04 资源分配方法及装置、基站和终端
CN201810301996.8 2018-04-04

Publications (1)

Publication Number Publication Date
WO2019192353A1 true WO2019192353A1 (zh) 2019-10-10

Family

ID=68099888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/079666 WO2019192353A1 (zh) 2018-04-04 2019-03-26 资源分配方法及装置、基站和终端

Country Status (6)

Country Link
US (1) US11375532B2 (zh)
EP (1) EP3780816B1 (zh)
JP (1) JP7145966B2 (zh)
KR (1) KR102639977B1 (zh)
CN (1) CN110351849B (zh)
WO (1) WO2019192353A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021197383A1 (zh) * 2020-04-03 2021-10-07 维沃移动通信有限公司 频域资源指示的方法及设备
CN113677013A (zh) * 2020-05-15 2021-11-19 维沃移动通信有限公司 Pusch资源分配方法、装置及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102148791A (zh) * 2010-01-20 2011-08-10 日本电气株式会社 通信设备和接收方法
CN103098536A (zh) * 2010-04-22 2013-05-08 夏普株式会社 用于物理上行链路控制信道资源分配的通信方法和系统以及基站、用户设备和其中的集成电路
CN103298117A (zh) * 2012-02-29 2013-09-11 电信科学技术研究院 一种时频资源的指示及确认方法和装置
US20130343340A1 (en) * 2011-03-11 2013-12-26 Lg Electronics Inc. Method for receiving downlink signal and method for transmitting same, and device for receiving same and device for transmitting same
US20150085785A1 (en) * 2012-05-03 2015-03-26 Lg Electronics Inc. Data transmission method and data transmission device
CN104938014A (zh) * 2013-01-18 2015-09-23 高通股份有限公司 用于长期演进(lte)的基于增强型控制信道单元(ecce)的物理下行链路共享信道(pdsch)资源分配

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100921467B1 (ko) * 2008-06-19 2009-10-13 엘지전자 주식회사 셀룰라 다중반송파 시스템에서 조밀도를 조절하는 자원할당시그널링 방식
WO2009154270A1 (ja) * 2008-06-20 2009-12-23 日本電気株式会社 リソース割当方法、特定方法、無線通信システム、基地局、移動局、及びプログラム
CN101925129B (zh) * 2009-06-17 2016-04-13 夏普株式会社 下行控制信道格式配置方法
CN101801093A (zh) * 2010-02-03 2010-08-11 中兴通讯股份有限公司 资源分配方式指示方法、装置和系统
US9363805B2 (en) * 2011-04-03 2016-06-07 Lg Electronics Inc. Method and apparatus for transmitting/receiving downlink control channel in wireless communication system
KR20140051388A (ko) 2011-08-16 2014-04-30 후지쯔 가부시끼가이샤 자원 할당 방법, 기지국 및 단말기 장치
CN104144449B (zh) * 2013-05-10 2019-08-06 中兴通讯股份有限公司 一种资源配置方法、系统及相关装置
JP6996492B2 (ja) * 2016-03-31 2022-01-17 ソニーグループ株式会社 端末装置、基地局装置および通信方法
KR20170112897A (ko) * 2016-03-31 2017-10-12 삼성전자주식회사 이동 통신 시스템에서의 채널 상태 정보 보고 모드 설정 방법 및 장치
US20190174530A1 (en) * 2016-07-01 2019-06-06 Lg Electronics Inc. Method for transmitting and receiving data in wireless communication system and apparatus therefor
CN108347776B (zh) * 2017-01-25 2023-11-10 华为技术有限公司 一种通信系统中资源分配的方法及设备
US10448388B2 (en) * 2018-01-11 2019-10-15 Lg Electronics Inc. Method for receiving downlink signal in wireless communication system and terminal using the same
CN110035533B (zh) * 2018-01-12 2023-06-06 华为技术有限公司 一种资源映射方法及设备
CN114449666A (zh) * 2018-02-12 2022-05-06 维沃移动通信有限公司 一种下行控制信息dci的传输方法、装置及网络设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102148791A (zh) * 2010-01-20 2011-08-10 日本电气株式会社 通信设备和接收方法
CN103098536A (zh) * 2010-04-22 2013-05-08 夏普株式会社 用于物理上行链路控制信道资源分配的通信方法和系统以及基站、用户设备和其中的集成电路
US20130343340A1 (en) * 2011-03-11 2013-12-26 Lg Electronics Inc. Method for receiving downlink signal and method for transmitting same, and device for receiving same and device for transmitting same
CN103298117A (zh) * 2012-02-29 2013-09-11 电信科学技术研究院 一种时频资源的指示及确认方法和装置
US20150085785A1 (en) * 2012-05-03 2015-03-26 Lg Electronics Inc. Data transmission method and data transmission device
CN104938014A (zh) * 2013-01-18 2015-09-23 高通股份有限公司 用于长期演进(lte)的基于增强型控制信道单元(ecce)的物理下行链路共享信道(pdsch)资源分配

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3780816A4 *

Also Published As

Publication number Publication date
KR102639977B1 (ko) 2024-02-22
US20210022169A1 (en) 2021-01-21
US11375532B2 (en) 2022-06-28
KR20200133782A (ko) 2020-11-30
EP3780816A4 (en) 2021-06-09
CN110351849A (zh) 2019-10-18
JP2021517418A (ja) 2021-07-15
EP3780816B1 (en) 2023-05-03
JP7145966B2 (ja) 2022-10-03
EP3780816A1 (en) 2021-02-17
CN110351849B (zh) 2023-07-04

Similar Documents

Publication Publication Date Title
EP3629658B1 (en) Routing updating method and device, and scheduling request canceling method and device
CN110971421A (zh) 订阅更新方法、设备及系统
US10028293B2 (en) Method and apparatus for controlling data transmission on radio communication network
CN114270964B (zh) 通信方法、装置及系统
US20200305138A1 (en) Semi-Persistent Resource Allocation Enhancement for V2X Communication
JP2021517783A (ja) Csi報告の伝送方法、端末機器及びネットワーク機器
WO2019056943A1 (zh) 一种应用程序管理的方法及设备
CA3007290A1 (en) Control information format processing method, base station, and user equipment
CN111277361A (zh) 传输块大小确定方法和通信设备
CN110139370B (zh) 信息指示的方法、通信装置和通信系统
US20220150913A1 (en) Method and device for determining sr configuration, and storage medium
WO2019085741A1 (zh) 上行数据包资源分配方法和用户终端
WO2019192353A1 (zh) 资源分配方法及装置、基站和终端
CN111432423A (zh) 一种资源配置方法及装置
CN110972280B (zh) 一种资源配置方法、信息发送方法及装置
CN110035513B (zh) 一种coreset的分配方法、用户终端和网络侧设备
CN107567032B (zh) 无线Mesh网络中无线传输资源配置方法、装置及通信设备
CN109495965B (zh) 一种资源指示、确定方法及装置
CN108811101B (zh) 一种预编码矩阵指示方法、终端和网络侧设备
CN107666718B (zh) 一种传输资源确认方法、用户终端、基站和系统
CN111836389B (zh) 上行资源调度方法、终端及网络侧设备
WO2019192465A1 (zh) 中继资源的请求方法、调度方法及设备
JP2017517931A (ja) 情報伝送方法、装置、及びシステム
WO2017185907A1 (zh) 一种共享物理资源的方法和装置
CN112399610B (zh) 一种资源分配方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19781730

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020552281

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207030148

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019781730

Country of ref document: EP

Effective date: 20201104