WO2019192306A1 - 报文传输方法、装置和系统 - Google Patents

报文传输方法、装置和系统 Download PDF

Info

Publication number
WO2019192306A1
WO2019192306A1 PCT/CN2019/078176 CN2019078176W WO2019192306A1 WO 2019192306 A1 WO2019192306 A1 WO 2019192306A1 CN 2019078176 W CN2019078176 W CN 2019078176W WO 2019192306 A1 WO2019192306 A1 WO 2019192306A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
service
packet
uplink
information
Prior art date
Application number
PCT/CN2019/078176
Other languages
English (en)
French (fr)
Inventor
李永翠
朱方园
李岩
倪慧
辛阳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811386638.8A external-priority patent/CN110351030B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112020019997-4A priority Critical patent/BR112020019997A2/pt
Priority to EP19781830.5A priority patent/EP3764732B1/en
Priority to EP22184478.0A priority patent/EP4138363A1/en
Priority to AU2019249989A priority patent/AU2019249989B2/en
Priority to JP2020554134A priority patent/JP7135100B2/ja
Publication of WO2019192306A1 publication Critical patent/WO2019192306A1/zh
Priority to US17/033,070 priority patent/US11627628B2/en
Priority to JP2022137998A priority patent/JP7384979B2/ja
Priority to US18/182,512 priority patent/US20230217526A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/22Arrangements for detecting or preventing errors in the information received using redundant apparatus to increase reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/22Manipulation of transport tunnels

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a message transmission method, apparatus, and system.
  • a mechanism of dual connection (DC) is proposed in the 5th-Generation (5G) communication system.
  • the communication system under the dual connectivity mechanism includes two radio access network (RAN) devices: a primary access network device (master RAN, M-RAN) and a secondary access network device (secondary RAN, S-RAN). .
  • RAN radio access network
  • uplink/downlink packets there are two transmission paths for uplink/downlink packets: (1) user equipment (UE), M-RAN, and user plane function (UPF).
  • UE user equipment
  • M-RAN user equipment
  • UPF user plane function
  • Network element data network
  • DN data network
  • S-RAN S-RAN
  • UPF User Plane Function
  • the UPF NE receives the downlink packet sent by the DN, it distributes the packet according to the packet characteristics. For example, the packet conforming to a certain feature is sent to the UE through the M-RAN. Packets conforming to other characteristics are sent to the UE through the S-RAN. That is to say, different messages are sent through the two transmission paths.
  • the 5G network architecture defines an ultra-reliable low latency communication (URLLC) scenario, including low-latency, high-reliability connections such as driverless or industrial automation.
  • URLLC ultra-reliable low latency communication
  • Business Since the above URLLC scenarios are mostly life safety or production security related services, there is no mistake.
  • URLLC scenario how to improve the reliability of message transmission by using dual transmission paths in the dual connectivity mechanism has become an urgent problem to be solved.
  • the embodiment of the invention provides a message transmission method, device and system.
  • an embodiment of the present application provides a transmission control method, where the method includes: a session management function network element receives first access network tunnel information and second access network tunnel information corresponding to a first service; session management The function network element sends a downlink forwarding rule to the user plane function network element.
  • the downlink forwarding rule includes the first access network tunnel information and the second access network tunnel information, and is used to indicate that the user plane function network element replicates the received downlink packet of the first service, and respectively uses the first access network tunnel information. And sending, by the two paths corresponding to the information of the second access network tunnel, the downlink packet of the first service.
  • the two paths may refer to a first path between the user plane function network element and the primary base station, and a second path between the user plane function network element and the secondary base station.
  • the two paths may refer to a first path and a second path between the user plane function network element and the base station.
  • the session management function network element sends the first access network tunnel information and the second access network to the user plane function network element.
  • the downlink forwarding rule of the tunnel information is such that after the user plane function network element receives the downlink packet of the first service, it performs replication, and passes through two corresponding to the first access network tunnel information and the second access network tunnel information respectively.
  • the path sends the downlink packet of the first service. In this way, the reliability of message transmission of the first service is improved.
  • the downlink forwarding rule further includes a service flow identifier and a session identifier of the first service.
  • the downlink forwarding rule further includes a session identifier of the first service. Therefore, for services of different granularities, a downlink forwarding rule of a corresponding granularity can be provided, so that the user plane function network element can implement more accurate and efficient message transmission.
  • the method further includes: the session management function network element sends indication information to the base station, where the indication information is used to trigger determination of the first access network tunnel information and the second access network tunnel information. That is to say, after receiving the indication information, the base station knows that the first access network tunnel information and the second access network tunnel information need to be determined.
  • the indication information may include at least one of the following: a quality of service parameter; slice identification information; a data network name; first core network tunnel information and second core network tunnel information.
  • the method further includes: the session management function network element sends an uplink forwarding rule to the base station.
  • the uplink forwarding rule includes the first core network tunnel information and the second core network tunnel information, and is used to indicate that the base station replicates the received uplink packet of the first service, and passes the uplink packet of the first service to the first core network tunnel respectively.
  • the two paths corresponding to the information and the second core network tunnel information are sent to the user plane function network element.
  • the base station here refers to a base station in a single connection scenario.
  • the uplink forwarding rule further includes a service flow identifier and a session identifier of the first service.
  • the uplink forwarding rule further includes a session identifier of the first service.
  • the downlink packet of the first service that is sent by using the two paths corresponding to the first access network tunnel information and the second access network tunnel information respectively includes the first And a second downlink packet, where the first downlink packet and the second downlink packet have the same sequence number, and the first downlink packet further includes a first service flow identifier.
  • the second downlink packet further includes a second service flow identifier.
  • the method further includes: the session management function network element assigning the first service flow identifier and the second service flow identifier to the first service, and sending the A service flow identifier and the second service flow identifier.
  • the method further includes: the session management function network element sends an uplink forwarding rule to the user plane function network element, where the uplink forwarding rule is used to indicate that the user plane function network element will have The two uplink packets of the same sequence number and having the first service flow identifier and the second service flow identifier are deduplicated.
  • the method further includes: the session management function network element sends the indication information to the user equipment by using the non-access stratum NAS message, where the indication information is used to indicate that the user equipment copies the uplink report.
  • the first uplink packet and the second uplink packet are obtained, and the first uplink packet and the second uplink packet are sent by using different radio bearers, where the first uplink packet and the first uplink packet are The second uplink message has the same sequence number.
  • the first uplink packet corresponds to the first service flow identifier
  • the second uplink packet corresponds to the second service flow identifier.
  • an embodiment of the present application provides a packet transmission method, where the method includes: determining, by a base station, first access network tunnel information and second access network tunnel information corresponding to a first service; The network element sends the first access network tunnel information and the second access network tunnel information. The first access network tunnel information and the second access network tunnel information are used for determining the downlink forwarding rule.
  • the downlink forwarding rule is used to indicate that the user plane function network element copies the received downlink packet of the first service, and sends the first service by using two paths corresponding to the first access network tunnel information and the second access network tunnel information respectively. Downstream message.
  • the two paths may refer to a first path between the user plane function network element and the primary base station, and a second path between the user plane function network element and the secondary base station; The main base station.
  • the two paths may refer to a first path and a second path between the user plane function network element and the base station.
  • the base station sends the first access network tunnel information and the second access network tunnel information to the session management function network element, and the session management function is performed for a specific first service (for example, a URLLC service with high reliability requirement).
  • the network element sends a downlink forwarding rule including the first access network tunnel information and the second access network tunnel information to the user plane function network element, so that the user plane function network element subsequently receives the downlink packet of the first service, and then performs the downlink forwarding rule.
  • the downlink packet of the first service is sent by using two paths corresponding to the first access network tunnel information and the second access network tunnel information. In this way, the reliability of message transmission of the first service is improved.
  • the downlink forwarding rule further includes a service flow identifier and a session identifier of the first service.
  • the downlink forwarding rule further includes a session identifier of the first service. Therefore, for services of different granularities, a downlink forwarding rule of a corresponding granularity can be provided, so that the user plane function network element can implement more accurate and efficient message transmission.
  • the method further includes: the base station receiving the indication information from the session management function network element.
  • the determining, by the base station, the first access network tunnel information and the second access network tunnel information corresponding to the first service the base station determining, according to the indication information, the first access network tunnel information and the second access network tunnel information.
  • the indication information may include at least one of the following: a quality of service parameter; slice identification information; a data network name; first core network tunnel information and second core network tunnel information.
  • the method further includes: the base station receiving an uplink forwarding rule from the session management function network element, where the uplink forwarding rule includes the first core network tunnel information and the second core network tunnel information; and the base station replicates and receives according to the uplink forwarding rule.
  • the uplink packet of the first service is sent to the user plane function network element by using the two paths corresponding to the first core network tunnel information and the second core network tunnel information.
  • the base station here refers to a base station in a single connection scenario.
  • the uplink forwarding rule further includes a service flow identifier and a session identifier of the first service.
  • the uplink forwarding rule further includes a session identifier of the first service.
  • the method further includes: the base station instructing the user equipment to add a service flow identifier to the first uplink packet.
  • the method further includes: when the base station determines that the packet transmission is implemented by using the dual connectivity mode, the base station instructs the user equipment to generate two second uplink packets, where the two second uplink packets have the same serial number. And business flow identification.
  • the method further includes: the base station instructing the user equipment to de-receive the received downlink message with the same sequence number and service flow identifier.
  • the base station instructs the user equipment to de-duplicate the received downlink packet with the same sequence number and service flow identifier.
  • the method further includes: receiving, by the base station, the downlink packet of the first service by using two paths corresponding to the first access network tunnel information and the second access network tunnel information, respectively;
  • the downlink packets with the same sequence number and service flow identifier are deduplicated. For example, for a downlink scenario of a single connection (or a single base station), the downlink message with the same sequence number and service flow identifier is deduplicated by the base station.
  • the method further includes: the base station sending the indication information to the user equipment by using the access layer AS message, where the indication information is used to indicate that the user equipment copies the uplink packet, and obtains the first And transmitting, by the different radio bearers, the first uplink packet and the second uplink packet, and the second uplink packet.
  • an embodiment of the present application provides a packet transmission method, where the method includes: the base station acquires a first indication, and the user equipment, according to the first indication, adds a service flow identifier to the first uplink packet.
  • the first indication includes capability information or indication information from a session management network element. Therefore, for the UE, the single-connection and the dual-connection adopt the same protocol stack format. After subsequent handover to the dual-connection mode, the UE can directly process according to the protocol stack format, thereby avoiding complicated operations and signaling. Interaction also reduces latency, which improves the user experience.
  • the indication information is used to indicate that the user equipment indicates that the user equipment adds the service flow identifier to the uplink packet of the first session or the uplink packet of the first service flow of the first session.
  • the base station when the first indication includes the capability information, the base station indicates, according to the first indication, that the user equipment adds the service flow identifier to the first uplink packet, including: when the capability information meets the first condition, the base station The user equipment is instructed to add a service flow identifier to the first uplink packet.
  • the first condition includes at least one of the following: the capability information indicates that the base station has the capability of implementing message transmission by using the dual connectivity mode; and the capability information indicates that the neighboring base station of the base station has the capability of implementing message transmission by using the dual connectivity mode; The information indicates that other base stations having the capability of implementing message transmission by dual connectivity are deployed within the slice associated with the base station.
  • the method further includes: when the base station determines that the packet transmission is implemented by using the dual connectivity mode, the base station instructs the user equipment to generate two second uplink packets, where the two second uplink packets have the same serial number. And business flow identification.
  • the method further includes: the base station instructing the user equipment to de-receive the received downlink message with the same sequence number and service flow identifier.
  • the base station instructs the user equipment to de-duplicate the received downlink packet with the same sequence number and service flow identifier.
  • the method further includes: receiving, by the base station, the downlink packet of the first service by using two paths corresponding to the first access network tunnel information and the second access network tunnel information, respectively;
  • the downlink packets with the same sequence number and service flow identifier are deduplicated. For example, for a downlink scenario of a single connection (or a single base station), the downlink message with the same sequence number and service flow identifier is deduplicated by the base station.
  • an embodiment of the present application provides a packet transmission method, where the user equipment generates a first uplink packet and a second uplink packet according to an indication obtained by the first base station, where the first The uplink packet and the second uplink packet have the same first service flow identifier and the first sequence number; the first uplink packet is sent to the first base station, and the second uplink packet is sent to the second base station. Therefore, for the dual connectivity mode, the UE adds the service flow identifier and the sequence number to the uplink packet according to the indication of the base station. For a message of a specific service (for example, a URLLC service with high reliability requirements), the UE implements copying of the message. In this way, the reliability of message transmission for a specific service is improved.
  • a specific service for example, a URLLC service with high reliability requirements
  • the method further includes: receiving, by the user equipment, the first downlink packet and the second downlink packet, the first downlink packet and the second downlink packet, respectively, from the first base station and the second base station And including the same second service flow identifier and the same second sequence number; the user equipment de-duplicates the first downlink packet and the second downlink packet according to the indication of the base station.
  • an embodiment of the present application provides a packet transmission method, where the method includes: a first base station initiates establishing a first radio bearer between the first base station and a user equipment; and establishing a second base station and a In the process of the second radio bearer between the user equipments, the first base station or the second base station sends the indication information to the user equipment, where the indication information is used to indicate that the user equipment is to use the first
  • the radio bearer and the second radio bearer are associated to a same Packet Data Convergence Layer Protocol PDCP entity on the user equipment.
  • the first base station or the second base station sends the indication information to the user equipment, where the first base station or the second base station controls the RRC layer message through the radio resource.
  • the user equipment sends the indication information.
  • an embodiment of the present application provides a packet transmission method, where the user equipment interacts with a first base station to establish a first radio bearer between the first base station and the user equipment.
  • the user equipment receives indication information from the first base station or the second base station, where the indication information is used to indicate the
  • the user equipment associates the first radio bearer and the second radio bearer with a same packet data convergence layer protocol PDCP entity on the user equipment; the user equipment generates a first packet according to the indication information a second packet, wherein the first packet and the second packet have the same sequence number; the user equipment sends the first packet to the first base station by using the first radio bearer, Transmitting, by the second radio bearer, the second packet to the second base station.
  • the user equipment generates the first packet and the second packet according to the indication information, including: the user equipment copies the packet at the PDCP layer according to the indication information, to obtain the first a message and the second message.
  • an embodiment of the present application provides a packet transmission method, where the user equipment acquires indication information from a network side device, and the user equipment generates a first uplink packet and a second according to the indication information. And sending, by the first radio bearer, the first uplink packet to the first base station, and sending the second uplink packet to the second base station by using the second radio bearer; where the first uplink packet is The second uplink message has the same sequence number.
  • the first uplink packet corresponds to the first service flow identifier
  • the second uplink packet corresponds to the second service flow identifier
  • the user equipment generates the first uplink packet and the second uplink packet according to the indication information, where the user equipment copies the packet at the first protocol layer according to the indication information.
  • the first protocol layer includes a high reliability protocol HRP layer; the user equipment acquires the indication information from a session management function network element by using a non-access stratum NAS message.
  • the first protocol layer includes a service data adaptation protocol SDAP layer; the user equipment acquires the indication information from the first base station by using an AS message.
  • the method further includes: the user equipment receiving the first downlink packet and the second downlink packet from the first base station and the second base station, respectively, the first downlink The packet has a second sequence number corresponding to the first service flow identifier, and the second downlink packet has the second sequence number, corresponding to the second service flow identifier; The indication information is de-emphasized for the first downlink packet and the second downlink packet.
  • an embodiment of the present application provides a packet transmission method, where the user plane function network element receives an uplink forwarding rule from a session management function network element, and the user plane function network element receives the first uplink report. And the second uplink packet, where the first uplink packet has a first service flow identifier and a first sequence number, and the second uplink packet has a second service flow identifier and the first sequence number; The user plane function network element de-duplicates the first uplink packet and the second uplink packet according to the uplink forwarding rule.
  • the uplink forwarding rule is used to indicate that the user plane function network element will have the same sequence number and have two uplinks of the first service flow identifier and the second service flow identifier respectively.
  • the message is heavy.
  • the method further includes: the user plane function network element receives a downlink forwarding rule from the session management function network element; and the user plane function network element generates a first downlink according to the downlink forwarding rule. Transmitting the first downlink packet to the first base station, and sending the second downlink packet to the second base station, where the first downlink packet has the first packet a service flow identifier and a second sequence number, where the second downlink packet has the second service flow identifier and the second sequence number.
  • the method further includes: the user plane function network element generating, according to the downlink forwarding rule, a first downlink packet and a second downlink packet, including: the user plane function network element Decoding the packet in the first protocol layer according to the downlink forwarding rule, to obtain the first downlink packet and the second downlink packet, where the first protocol layer includes a high reliability protocol HRP layer or a general packet The wireless system tunneling protocol user plane part of the GTP-U layer.
  • the embodiment of the present application provides a message transmission apparatus.
  • the device may be a session management function network element or a chip.
  • the apparatus has the functionality to implement the session management function network element behavior of the first aspect or its various possible designs.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the apparatus includes a processor and a transceiver configured to perform the respective functions of the first aspect described above or various possible designs thereof.
  • the transceiver is configured to implement communication between the device and a user plane function network element and a base station.
  • the apparatus can also include a memory for coupling with a processor that retains program instructions and data necessary for the apparatus.
  • an embodiment of the present application provides a message transmission apparatus.
  • the device can be a base station or a chip.
  • the apparatus has the functionality to implement the behavior of the base station in the second aspect or its various possible designs, or to have the functionality to implement the behavior of the base station in the third aspect or its various possible designs, or to implement the fifth aspect or its various possibilities.
  • the function of the base station behavior in the design may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the apparatus includes a processor and a transceiver configured to perform the corresponding functions of the second aspect or various possible designs thereof, or to perform the third aspect described above or Corresponding functions in its various possible designs, or performing the corresponding functions of the fifth aspect described above or its various possible designs.
  • the transceiver is configured to implement communication between the device and the session management function network element and the user plane function network element.
  • the apparatus can also include a memory for coupling with a processor that retains program instructions and data necessary for the apparatus.
  • an embodiment of the present application provides a message transmission apparatus.
  • the device can be a user device or a chip.
  • the apparatus has the functionality to implement the behavior of the user equipment in the fourth aspect or its various possible designs, or to have the functionality to implement the behavior of the base station in the sixth aspect or its various possible designs, or to implement the seventh aspect or various The function of base station behavior in possible designs.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the apparatus includes a processor and a transceiver configured to perform the corresponding functions of the fourth aspect described above or various possible designs thereof, or to perform the sixth aspect described above or Corresponding functions in its various possible designs, or performing the corresponding functions of the seventh aspect described above or its various possible designs.
  • the transceiver is configured to implement communication between the device and a base station and a session management function network element.
  • the apparatus can also include a memory for coupling with a processor that retains program instructions and data necessary for the apparatus.
  • the embodiment of the present application provides a message transmission apparatus.
  • the device may be a user plane function network element or a chip.
  • the apparatus has the functionality to implement the user plane functional network element behavior in the eighth aspect or its various possible designs.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the apparatus includes a processor and a transceiver configured to perform the respective functions of the above-described eighth aspect or various possible designs thereof.
  • the transceiver is configured to implement communication between the device and the session management function network element and the base station.
  • the apparatus can also include a memory for coupling with a processor that retains program instructions and data necessary for the apparatus.
  • the embodiment of the present application provides a message transmission system, where the system includes a session management function network element for performing the first aspect or various possible design methods thereof, and for performing the second aspect A base station of its various possible methods of design.
  • the base station performing the second aspect or its various possible in-design methods is the primary base station.
  • the system may further include a secondary base station for implementing dual connectivity.
  • the embodiment of the present application further provides a computer readable storage medium, wherein the computer readable storage medium stores instructions that, when run on a computer, cause the computer to perform the methods described in the above aspects.
  • the embodiment of the present application provides a computer program product comprising instructions, which when executed on a computer, cause the computer to perform the method described in the above aspects.
  • Figure 1 shows a schematic diagram of a dual transmission path in a 5G dual connectivity mechanism.
  • Figure 2 shows a schematic diagram of a dual connection of a 5G communication system.
  • FIG. 3 is a signaling interaction diagram of a message transmission method according to an embodiment of the present application.
  • Figure 4 shows a schematic diagram of a single connection of a 5G communication system.
  • FIG. 5 is a signaling interaction diagram of a message transmission method according to another embodiment of the present application.
  • FIG. 6 is a flowchart of a message transmission method according to an embodiment of the present application.
  • FIG. 7 is another flowchart of a message transmission method according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a message transmission apparatus according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another message transmission apparatus according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of another structure of a message transmission apparatus according to an embodiment of the present application.
  • FIG. 11 is a signaling interaction diagram of a message transmission method according to another embodiment of the present application.
  • FIG. 12 is a signaling interaction diagram of a message transmission method according to another embodiment of the present application.
  • FIG. 13 is a flowchart of a message transmission method according to another embodiment of the present application.
  • FIG. 14 is a flowchart of a message transmission method according to another embodiment of the present application.
  • FIG. 15 is a signaling interaction diagram of a message transmission method according to another embodiment of the present application, which is applicable to a PDCP layer enhanced solution.
  • FIG. 16 is a flowchart of a base station side of a message transmission method according to another embodiment of the present application.
  • FIG. 17 is a flowchart of a UE side of a message transmission method according to another embodiment of the present application.
  • FIG. 18 is a signaling interaction diagram of a message transmission method according to another embodiment of the present application, which is applicable to a solution of an HRP layer.
  • FIG. 19 is a signaling interaction diagram of a packet transmission method according to another embodiment of the present application, which is applicable to a solution of an SDAP layer.
  • FIG. 20 is a flowchart of a UE side of a message transmission method according to another embodiment of the present application.
  • FIG. 21 is a flowchart of a UPF side of a message transmission method according to another embodiment of the present application.
  • the core network includes a control plane network element and a user plane network element.
  • the control plane network element is a third generation partnership project (3GPP) traditional control network element mobility management entity (MME) and service gateway (SGW) control plane function A unified control plane that combines the control plane functions of a packet data network gateway (PGW).
  • the user plane function network element can implement the user plane functions of the SGW and the PGW (SGW-U and PGW-U).
  • the unified control plane network element can be decomposed into an access and mobility management function (AMF) network element and a session management function (SMF) network element.
  • AMF access and mobility management function
  • SMF session management function
  • FIG. 2 is a schematic diagram of a 5G communication system provided by an embodiment of the present application.
  • the communication system includes at least a UE 201, a RAN device (e.g., M-RAN device 202, S-RAN device 203), an AMF network element 204, an SMF network element 205, and a UPF network element 206.
  • a RAN device e.g., M-RAN device 202, S-RAN device 203
  • AMF network element 204 e.g., M-RAN device 202, S-RAN device 203
  • SMF network element 205 e.g., SMF network element 204
  • UPF network element 206 e.g., UPF network element
  • the UE 201 involved in the system is not limited to a 5G network, and includes: a mobile phone, an Internet of Things device, a smart home device, an industrial control device, a vehicle device, and the like.
  • the user equipment may also be referred to as a terminal, a terminal device, a mobile station, a mobile station, a remote station, a remote terminal, an access terminal, and an access terminal.
  • Access Terminal User Terminal
  • User Agent User Agent
  • the user equipment may be a vehicle in a vehicle-to-vehicle (V2V) communication, a machine in a machine type communication, or the like.
  • V2V vehicle-to-vehicle
  • the RAN device is a device for providing wireless communication functions for the UE 201.
  • the M-RAN device 202 can include various forms of base stations, such as a macro base station, a micro base station (also referred to as a small station), a relay station, an access point, and the like.
  • the name of a device having a base station function may be different, for example, in a 3rd generation (3G) system, called a Node B (Node B);
  • Node B Node B
  • LTE long term evolution
  • eNB or eNodeB evolved NodeB
  • gNodeB gNodeB
  • M-RAN202 3rd generation
  • the S-RAN device 203 is similar and will not be described again.
  • the AMF network element 204 can be responsible for registration of the UE 201, mobility management, tracking area update procedures, and the like. Hereinafter, it will be simply referred to as AMF 204.
  • the SMF network element 205 can be responsible for session management of the UE 201.
  • session management includes: establishment, modification, and release of a session; selection and reselection of a UPF network element; allocation of an internet protocol (IP) address, and the like.
  • IP internet protocol
  • the UPF network element 206 can be connected to a data network (DN) 207 for implementing data message transmission of the service.
  • DN data network
  • uplink/downlink messages there are two transmission paths of uplink/downlink messages: (1) UE 201, M-RAN 202, UPF 206, DN 207; (2) UE 201, S-RAN 203, UPF 206, DN 207.
  • CP control plane
  • Each of the above network elements may also be referred to as a device or an entity.
  • an AMF network element may also be referred to as an AMF device or an AMF entity.
  • Each of the foregoing network elements may be implemented by specified hardware, or may be implemented by a software instance on a specified hardware, or may be implemented by a virtual function instantiated on a suitable platform, and the present invention is not limited thereto. .
  • the communication system can be applied to a service framework.
  • a service-based interface is used in the control plane.
  • the AMF network element 204 and the SMF network element 204 have service-based interfaces Namf, Nsmf, respectively.
  • a functional network element can open its capabilities to other authorized network elements through a service-based interface to provide network function (NF) services.
  • NF network function
  • the NF service refers to the various capabilities that can be provided.
  • the embodiments of the present application can also be applied to other communication technologies for the future.
  • the network architecture and the service scenario described in this application are for the purpose of more clearly explaining the technical solutions of the present application, and do not constitute a limitation of the technical solutions provided by the present application.
  • Those skilled in the art may know that with the evolution of the network architecture and new business scenarios, The technical solution provided by the present application is equally applicable to similar technical problems.
  • Enhanced Mobile Broadband eMBB
  • Massive Machine Type Communications mMTC
  • URLLC features high reliability and low latency, which can be applied to driverless, industrial automation, remote manufacturing, remote training, remote surgery and so on.
  • eMBB Enhanced Mobile Broadband
  • mMTC Massive Machine Type Communications
  • URLLC features high reliability and low latency, which can be applied to driverless, industrial automation, remote manufacturing, remote training, remote surgery and so on.
  • the user has a line latency target of 0.5ms and a downlink of 0.5ms.
  • the goal of reliability is that within 1ms of user plane delay, the packet loss rate of transmitting 32-byte packets does not exceed 1 ⁇ 10 ⁇ (-5).
  • the present application aims to provide a message transmission scheme with high reliability.
  • the message transmission scheme can be applied to a URLLC scenario.
  • FIG. 3 is a signaling interaction diagram of a message transmission method according to an embodiment of the present application.
  • Figure 3 relates to the interaction between the UE, the primary base station, the secondary base station, the AMF, the SMF, and the UPF.
  • the UE, the primary base station, the secondary base station, the AMF, the SMF, and the UPF may be the UE 201, the M-RAN 202, the S-RAN 203, the AMF 204, the SMF 205, and the UPF 206 in FIG. 2, respectively.
  • the method includes the following steps:
  • Step 301 The UE sends a non-access stratum (NAS) message carrying a session establishment request to the AMF by using the primary base station to request to establish a packet data unit (PDU) session for the UE.
  • NAS non-access stratum
  • the NAS message may further include a PDU session ID (Single Network Slice Selection Assistance Information, S-NSSAI) and a data network name (DNN) allocated by the UE for the session. ).
  • S-NSSAI Single Network Slice Selection Assistance Information
  • DNN data network name allocated by the UE for the session.
  • the S-NSSAI is used to indicate the slice type corresponding to the session; the DNN is used to indicate the DN corresponding to the session.
  • Step 302 performing other steps of the session establishment process.
  • the other steps described above include at least the AMF selecting the SMF, and the SMF selecting the UPF, which is not described herein.
  • step 303 the SMF transmits N2 session management information (N2 SM management information) to the AMF.
  • N2 SM management information N2 session management information
  • the SMF sends N2 SM information to the AMF by calling the service of the N1N2 message transmission of the AMF (Namf_Communication_N1N2MessageTransfer).
  • the N2 SM information includes at least a PDU session identifier and a tunnel information of the core network (CN tunnel info).
  • the N2 SM information may also include a quality of service (QoS) parameter, a QoS flow identifier (QFI), slice identification information (eg, S-NSSAI), and a session-aggregate maximum session rate (session-aggregate). Maximum bit rate, sesssion-AMBR), type of PDU session.
  • the N2 SM information may further include a data network name (DNN).
  • an N1 SM container containing a session accept message can also be sent to the AMF by calling the service.
  • step 304 the AMF sends the N2 SM information to the primary base station.
  • the AMF sends an N2 session request to the primary base station, the N2 session request including N2 SM information and NAS messages.
  • the NAS message contains the PDU session identifier and the above N1 SM container.
  • the tunnel information of the core network includes first core network tunnel information and second core network tunnel information.
  • the first core network tunnel information and the second core network tunnel information may be allocated by the SMF and sent to the primary base station through the forwarding of the AMF, or may be sent by the UPF and sent to the SMF, and then sent by the SMF to the AMF. Primary base station.
  • the first core tunnel information includes a first internet protocol (IP) address of the UPF and a first tunnel endpoint identifier (TEID) of the UPF.
  • the second core network tunnel information includes a second IP address of the UPF and a second TEID of the UPF.
  • the first IP address and the second IP address may be the same or different.
  • the first TEID is different from the second TEID.
  • the first IP address and the second IP address may be used to identify two paths that are independent of each other.
  • Two paths that are independent of each other refer to two paths that pass through different transport entities (such as switches, routers, etc.), and are not described here.
  • the N2 SM information further includes first network identification information corresponding to the first TEID, and second network identification information corresponding to the second TEID.
  • the first network identification information and the second network identification information are used to identify two paths that are independent of each other.
  • the first network identifier information may be allocated by different network elements.
  • the first network identification information may include a virtual local area network (VLAN) identifier (ID) or a multi-protocol label switching (MPLS) label.
  • VLAN virtual local area network
  • MPLS multi-protocol label switching
  • the first network identifier information corresponding to the first TEID is also sent.
  • the second network identification information corresponding to the second TEID and details are not described herein again.
  • the first core network tunnel information and the first network identifier information may be sent by the first container, and the second core network tunnel information and the second network identifier information are sent by the second container.
  • Step 305 The primary base station initiates establishment of an access network resource with the UE.
  • Step 306 The primary base station determines to add the secondary base station, and sends an additional secondary base station request to the secondary base station.
  • the primary base station may determine, according to the indication information, that the downlink packet of the first service is transmitted by using the dual path, thereby determining that the secondary base station needs to be added.
  • the first service includes the URLLC service.
  • any one or a combination of the QoS parameters, the slice identification information, the DNN, the first core network tunnel information, and the second core network tunnel information included in the foregoing N2 SM information may be used as the indication information.
  • the QoS parameter includes at least one of a 5G QoS identifier (5QI) and a QoS flow identifier (QFI).
  • the primary base station determines that the session has high reliability requirements according to the QoS parameters in the N2 SM information, thereby determining to increase the secondary base station; or, the primary base station determines the session and the extremely reliable low delay according to the slice identification information in the N2 SM information.
  • the slice association of the communication determines to increase the secondary base station; or the primary base station determines the data network association of the session with the extremely reliable low-latency communication according to the DNN in the N2 SM information, thereby determining to increase the secondary base station; or, the primary base station directly according to the N2
  • the first core network tunnel information and the second core network tunnel information in the SM information determine to use the dual path to transmit downlink packets, thereby determining to add the secondary base station.
  • the first access network tunnel information and the second access network tunnel information are used to transmit the downlink packet by using the dual path. Therefore, the indication information may also be triggered to trigger the first access network tunnel information and the second access network tunnel. Determination of information.
  • the first access network tunnel information may be determined by the primary base station, and the second access network tunnel information may be determined by the secondary base station and sent to the primary base station.
  • the first access network tunnel information includes a third IP address of the primary base station and a third TEID of the primary base station; and the second access network tunnel information includes a fourth IP address of the secondary base station and a fourth TEID of the secondary base station.
  • the primary base station finds that the current environment (such as the measurement report reported by the UE) cannot use the dual path to transmit the downlink packet of the first service, the primary base station feeds back the indication information to the AMF, and the AMF sends the indication information to the SMF.
  • the indication information is used to indicate that the downlink packet of the first service cannot be transmitted by using the dual path.
  • the SMF rejects the session establishment process or performs the subsequent steps in the prior art session establishment process.
  • Step 307 The secondary base station returns an additional secondary base station request confirmation to the primary base station.
  • adding the secondary base station request acknowledgement includes the second access network tunnel information determined by the secondary base station.
  • the request for adding the secondary base station includes the session identifier of the first service, and the second access network tunnel information determined by the secondary base station is also the session granularity, and The session identifier corresponds.
  • the first service is the traffic flow granularity
  • the QFI of the service flow of the first service included in the request of the secondary base station is increased, and the second access network tunnel information determined by the secondary base station is also the granularity of the service flow, and The QFI corresponds.
  • the primary base station determines to add the secondary base station, the primary base station generates a Packet Data Convergence Protocol (PDCP) entity for the QFI, and the secondary base station receives the request for adding the secondary base station, Generate a PDCP entity for the QFI.
  • PDCP Packet Data Convergence Protocol
  • the secondary base station receives the request for adding the secondary base station, Generate a PDCP entity for the QFI.
  • the QFI is associated with two PDCP entities. Therefore, when the primary base station determines to increase the secondary base station, that is, the dual connection mode is used for message transmission, it can also be understood that the QFI is associated with two PDCP entities.
  • the first access network tunnel information includes a third IP address of the primary base station and a third TEID of the primary base station; and the second access network tunnel information includes a fourth IP address of the secondary base station and a fourth TEID of the secondary base station.
  • the third IP address and the fourth IP address may be the same or different.
  • the third TEID is different from the fourth TEID.
  • the third IP address and the fourth IP address are used to identify two paths that are independent of each other.
  • the primary base station receives the second access network tunnel information, and allocates third network identifier information corresponding to the third TEID and the fourth TEID corresponding to the fourth Four network identification information.
  • the third network identification information and the fourth network identification information are used to identify two paths that are independent of each other.
  • For the third/fourth network identifier information reference may be made to the description of the foregoing first network identifier information, and details are not described herein again.
  • the primary base station subsequently sends the first access network tunnel information and the second access network tunnel information, the first corresponding to the third TEID is also sent.
  • the third network identification information and the fourth network identification information corresponding to the fourth TEID are not described here.
  • the primary base station may send the first access network tunnel information and the third network identifier information by using the third container, and send the second access network tunnel information and the fourth network identifier information by using the fourth container.
  • Step 308 The primary base station initiates radio resource control (RRC) connection reconfiguration to the UE.
  • RRC radio resource control
  • Step 309 The primary base station feeds back the secondary base station reconfiguration to the secondary base station to notify the secondary base station that the UE successfully completes the RRC connection reconfiguration.
  • the foregoing steps 307-309 may be replaced by:
  • the secondary base station initiates an RRC connection establishment procedure with the UE.
  • the secondary base station returns to the primary base station to increase the secondary base station request for confirmation, refer to the description of step 307, and details are not described herein.
  • Step 310 a random access procedure.
  • steps 308 and 309 and step 310 is not limited herein, and the random access procedure may be performed before steps 308 and 309 are performed.
  • the primary base station may determine whether the secondary base station needs to be added before step 305 above. For details on how to determine whether the primary base station needs to be added to the secondary base station, refer to the description of step 306, and details are not described herein again. If the primary base station determines to add the secondary base station (that is, the message transmission is performed by using the dual-connection mode), the foregoing step 305 or step 308 may be used to instruct the UE to add the service flow identifier and the serial number to the uplink packet (copying the uplink packet, copying the The uplink message has the same service flow identifier and serial number).
  • the primary base station determines whether the secondary base station is not added (that is, the packet transmission is performed by using the single connection mode). If the primary base station determines whether the acquired capability information satisfies the first condition. When the capability information meets the first condition, the primary base station may instruct the UE to add a service flow identifier for the uplink packet by using the foregoing step 305 or 308.
  • the capability information is used to indicate at least one of: whether the base station (ie, the primary base station) has the capability of implementing message transmission by dual connectivity; the neighboring base station of the base station (ie, having the Xn interface with the base station) Whether the base station, for example, the secondary base station, has the capability of implementing message transmission through the dual connectivity mode; whether other base stations having the capability of implementing message transmission by the dual connectivity mode are deployed in the slice associated with the base station (for example, the secondary base station) ).
  • the primary base station may obtain the foregoing capability information in a configuration manner or in an Xn connection establishment process and an N2 session establishment process with a neighboring base station.
  • the neighboring base station transmits its capability information to the base station.
  • the SMF sends the relevant deployment situation in the slice to the base station through the N2 session establishment procedure.
  • the base station may determine the slice associated with the base station by using the Allowed Network Slice Selection Assistance Information (allowed NSSAI) returned by the AMF in the registration process; or the base station may return the session returned by the SMF during the session establishment process.
  • the corresponding S-NSSAI is used to determine the slice associated with the base station. Therefore, the base station can determine whether the base station with the capability of implementing packet transmission by the dual connectivity mode is deployed in the slice associated with the base station according to the deployment situation of the base station in the obtained slice.
  • the first condition includes at least one of the following: the base station (ie, the primary base station) has the capability of implementing packet transmission by using the dual connectivity manner; the neighboring base station (for example, the secondary base station) of the base station has the report implemented by the dual connectivity mode.
  • the capability of the text transmission; other base stations (for example, secondary base stations) having the capability of implementing message transmission by dual connectivity are deployed in the slice associated with the primary base station.
  • the capability information indicates at least one of the following: indicating that the base station has the capability of implementing message transmission in the dual connectivity manner; the neighboring base station (eg, the secondary base station) indicating the base station has the message implemented by the dual connectivity mode Capability of transmission; when the other base station (for example, the secondary base station) having the capability of implementing message transmission by the dual connectivity mode is deployed in the slice associated with the base station, the capability information satisfies the first condition described above. It can be understood that when the capability information satisfies the foregoing first condition, it indicates that the UE has the possibility of implementing message transmission by dual connectivity. Even if the current UE adopts the single connection mode, it may switch to the dual connection mode later.
  • the base station instructs the UE to add a service flow identifier for the uplink packet.
  • the base station may instruct the UE to start a Service Data Adaptation Protocol (SDAP), thereby instructing the UE to add a service flow identifier for the uplink packet.
  • SDAP Service Data Adaptation Protocol
  • the traffic flow identifier can be included in the SDAP header.
  • the UE starts SDAP, which means that the UE adds a SDAP header to the uplink packet.
  • the service flow identifier may include at least one of a session identifier, a QFI, and a quintuple.
  • the base station instructs the UE to add the service flow identifier even in the single connection scenario.
  • the single-connection and the dual-connection adopt the same protocol stack format.
  • the UE can directly process according to the protocol stack format, thereby avoiding complicated operations and signaling. Interaction also reduces latency, which improves the user experience.
  • the primary base station instructs the UE to add a sequence number because the UE needs to perform uplink packet replication.
  • the UE can implement the processing of the uplink packet in various manners, and the processed multiple uplink packets have the same sequence number. For example, the UE may first add a sequence number to the first uplink packet, and then copy the first uplink packet after adding the sequence number to obtain a second uplink packet with the same sequence number; or, the UE may first An uplink packet is copied to obtain a second uplink packet, and then the same sequence number is added to the first uplink packet and the second uplink packet.
  • the application is not limited herein.
  • the base station further instructs the UE to perform deduplication on the received downlink packet with the same sequence number and service flow identifier.
  • the base station ie, the primary base station
  • the base station may determine whether the acquired capability information meets the first condition before step 305 above.
  • the UE may be instructed to add a service flow identifier for the uplink packet by using the foregoing step 305. If the primary base station determines in step 306 that the secondary base station needs to be added, the foregoing step 308 may be used to instruct the UE to add a sequence number to the uplink packet.
  • the base station further instructs the UE to perform deduplication on the received downlink packet with the same sequence number and service flow identifier.
  • the N2 SM information transmitted by the foregoing steps 303 and 304 further includes indication information, where the indication information is used to indicate that the base station (ie, the foregoing primary base station) indicates that the UE is the uplink of the first session.
  • the SMF determines that the session has high reliability requirements according to the QFI in the N2 SM information sent by the UE to the SMF, and/or determines the slice of the session and the extremely reliable low latency communication according to the slice identification information in the N2 SM information.
  • the SMF determines that the UE needs to add the service flow identifier to the uplink packet, so as to send the indication information to the base station, and after the base station receives the indication information, the base station instructs the UE to add the service flow identifier for the uplink packet. In this way, the base station can make no judgment, thereby simplifying the operation on the base station side.
  • the base station further instructs the UE to perform deduplication on the received downlink packet with the same sequence number and service flow identifier.
  • Step 311 The primary base station sends the first access network tunnel information and the second access network tunnel information to the AMF.
  • the primary base station returns an N2 session response to the AMF.
  • the N2 session response includes a PDU session identifier and N2 SM information.
  • the N2 SM information includes the first access network tunnel information and the second access network tunnel information.
  • the N2 SM information may further include a session identifier corresponding to the first service.
  • the N2 SM information may further include a first service corresponding to the first service. Session ID and QFI.
  • step 312 the AMF sends an update context request to the SMF.
  • the AMF invokes the SMF's update SM context service (Nsmf_PDUSession_UpdateSMContext) to send an Nsmf_PDUSession_UpdateSMContext request.
  • the AMF forwards the N2 SM information received in step 311 to the SMF.
  • step 313 the SMF sends a downlink forwarding rule to the UPF.
  • the SMF sends an N4 session modification request to the UPF, where the session modification request includes the foregoing downlink forwarding rule.
  • the UPF returns an N4 session modification response.
  • the core network tunnel information in step 303 may only include the first core network tunnel information, but the step 311 includes the first access network tunnel information and the second access network tunnel. information.
  • the SMF allocates the second core network tunnel information, sends the second core network tunnel information to the UPF through step 313, and sends the second core network through the AMF.
  • the tunnel information is sent to the primary base station; or the UPF receives the first access network tunnel information and the second access network tunnel information from the SMF, allocates the second core network tunnel information, and returns the second to the SMF through the N4 session modification response.
  • Core network tunnel information The SMF sends the second core network tunnel information to the primary base station through the AMF.
  • the primary base station sends the second core network tunnel information to the secondary base station.
  • the downlink forwarding rule includes first access network tunnel information and second access network tunnel information.
  • the downlink forwarding rule is used to instruct the UPF to copy the received downlink packet of the first service (adding a flow identifier and a sequence number to the downlink packet), respectively, by using the first access network tunnel information and the second access network tunnel information respectively.
  • the corresponding two paths send the downlink packet of the first service, that is, the downlink packet of the first service is sent to the primary base station by using the first path corresponding to the tunnel information of the first access network, and the tunnel information of the second access network is used.
  • the corresponding second path sends a downlink packet of the first service to the secondary base station.
  • the downlink forwarding rule is further used to instruct the UPF to de-receive the received uplink packet with the same flow identifier and sequence number.
  • the N2 SM information received by the SMF in the step 312 further includes the session identifier corresponding to the first service
  • the downlink forwarding rule further includes the session identifier corresponding to the first service.
  • the N2 SM information received by the SMF in the step 312 further includes the session identifier and the QFI corresponding to the first service
  • the downlink forwarding rule further includes the session identifier and the QFI corresponding to the first service.
  • the session identifier corresponding to the first service in the N2 SM information received in step 312 may be different from the session identifier corresponding to the first service in the downlink forwarding rule, but are associated with each other.
  • the session identifier corresponding to the first service in the N2 SM information received in step 312 is a PDU session identifier
  • the SMF converts the PDU session identifier into an N4 session identifier, and uses the N4 session identifier as the first service in the downlink forwarding rule.
  • the corresponding session ID is sent to the UPF.
  • the downlink forwarding rule further includes information of the first service.
  • the information of the first service includes at least a five-tuple of the first service.
  • the information of the first service may indicate that the packets with the IP addresses correspond to the packets of the first service.
  • the information of the first service is used as a message filter for filtering packets of the first service.
  • the SMF may obtain information of the first service from a network control function (PCF) network element, or configure information of the first service locally.
  • PCF network control function
  • step 314 the SMF sends an update context response to the AMF.
  • the UPF After receiving the downlink packet of the first service, the UPF passes the first path corresponding to the first access network tunnel information and the second path corresponding to the second access network tunnel information to the primary base station and the secondary device respectively according to the forwarding rule.
  • the base station sends a downlink packet of the first service.
  • the downlink message of the first service is transmitted on two paths, which also indicates that the downlink packets sent on the two paths are the same.
  • the UPF matches the packet header feature of the downlink packet with the information of the first service in the forwarding rule, so as to determine that the downlink packet is the packet of the first service.
  • the UPF may copy the packet.
  • the UPF sends the original packet to the UE by using the first path corresponding to the first access network tunnel information between the primary base station, and the second access network tunnel information between the secondary base station and the secondary base station.
  • the corresponding second path sends the copied message to the UE.
  • the UPF sends the copied message to the UE by using the first path corresponding to the first access network tunnel information between the primary base station, and the second access network between the secondary base station and the secondary base station.
  • the second path corresponding to the tunnel information sends the original packet to the UE.
  • the UPF copies two packets, and respectively passes the first path corresponding to the first access network tunnel information with the primary base station and the secondary access network with the secondary base station.
  • the second path corresponding to the tunnel information sends the copied packet to the UE.
  • the downlink packets transmitted through the dual path are the same.
  • the primary base station After receiving the first core network tunnel information and the second core network tunnel information included in the N2 SM information, the primary base station learns that the UE can also pass the first core network tunnel information. And transmitting, by the two paths corresponding to the information of the second core network tunnel, the uplink packet of the first service.
  • the primary base station corresponds to the first path corresponding to the first core network tunnel information
  • the secondary base station corresponds to the second path corresponding to the second core network tunnel information. Therefore, the primary base station may send the second core network tunnel information to the secondary base station by using the additional assistance request in step 306.
  • the primary base station After receiving the second access network tunnel information determined by the secondary base station, the primary base station sends an uplink forwarding rule to the UE through the process of RRC connection reconfiguration.
  • the uplink forwarding rule includes the first access network tunnel information and the second access network tunnel information, and is used to instruct the UE to copy the received uplink packet of the first service, and pass the uplink packet of the first service to the first interface.
  • the path corresponding to the inbound network tunnel information is sent to the primary base station, and is sent to the secondary base station through a path corresponding to the second access network tunnel information.
  • the uplink forwarding rule further includes information about the first service, and details are not described herein again.
  • the UE may copy the packet.
  • the UE sends the original packet to the primary base station by using the first path corresponding to the first access network tunnel information, and sends the original packet to the secondary base station by using the second path corresponding to the second access network tunnel information.
  • Duplicated message the UE sends the copied packet to the primary base station by using the first path corresponding to the first access network tunnel information, and the secondary path corresponding to the second access network tunnel information The base station sends the original message.
  • the UE copies two packets, and sends the copied packet to the primary base station by using the first path corresponding to the tunnel information of the first access network, and passes the tunnel information with the second access network.
  • the corresponding second path sends the copied message to the secondary base station.
  • the uplink packets transmitted through the dual path are the same.
  • the primary base station After receiving the uplink packet, the primary base station sends the uplink packet to the UPF according to the information of the first core network tunnel.
  • the secondary base station sends the uplink packet to the UPF according to the second core network tunnel information.
  • the uplink/downlink packet transmission of the first service (such as the URLLC service) can be implemented through two paths.
  • the uplink/downlink packet transmission of the first service can be implemented by using multiple (more than two) paths in the method of the embodiment of the present application, and details are not described herein. Thereby, the reliability of the URLLC service message is improved.
  • the message transmission scheme of the present application can also be applied to a single connection (or referred to as a single base station) scenario, as shown in FIG.
  • a single connection or referred to as a single base station
  • FIG. 5 is a signaling interaction diagram of a message transmission method according to another embodiment of the present application.
  • Figure 5 relates to the interaction between a UE, a base station, an AMF, an SMF, a UPF.
  • the UE, base station, AMF, SMF, UPF may be UE 201, RAN 202', AMF 204, SMF 205, and UPF 206, respectively, in FIG.
  • the method includes the following steps:
  • Step 501 The UE sends a NAS message carrying a session establishment request to the AMF through the base station, and is used to request to establish a PDU session for the UE.
  • Step 502 performing other steps of the session establishment process.
  • step 503 the SMF transmits the N2 SM information to the AMF.
  • step 504 the AMF sends the N2 SM information to the base station.
  • Step 505 The base station initiates establishment of an access network resource with the UE.
  • Steps 501 to 505 can refer to the description of steps 301 to 305 in FIG. 3, and details are not described herein again.
  • the base station of Figure 5 can perform the method steps performed by the primary base station of Figure 3.
  • the base station when the base station receives the indication information from the SMF, or determines that the capability information meets the first condition, the UE may be instructed to add the service flow identifier by using step 505.
  • the base station receives the indication information from the SMF, or determines that the capability information meets the first condition, the UE may be instructed to add the service flow identifier by using step 505.
  • Step 506 The base station determines first access network tunnel information and second access network tunnel information.
  • the base station may determine, according to the indication information, that the downlink packet of the first service is transmitted by using the dual path, so as to determine that two access network tunnel information needs to be determined.
  • the first service includes the URLLC service.
  • any one of the QoS parameters, the slice identification information, the DNN, the first core network tunnel information, and the second core network tunnel information included in the N2 SM information transmitted by the foregoing steps 503 and 504 may be used as the indication information.
  • the QoS parameter includes at least one of 5QI and QFI.
  • the base station determines that the session has a high reliability requirement according to the QoS parameter in the N2 SM information; or determines a slice association of the session with the extremely reliable low-latency communication according to the slice identification information in the N2 SM information; or, the primary base station Determining, by the DNN in the N2 SM information, the data network association of the session with the extremely reliable low-latency communication; or directly determining, according to the first core network tunnel information and the second core network tunnel information in the N2 SM information, using the dual-path transmission downlink
  • the message determines the need to determine two access network tunnel information.
  • the first access network tunnel information and the second access network tunnel information are used to transmit the downlink packet by using the dual path. Therefore, the indication information may also be triggered to trigger the first access network tunnel information and the second access network tunnel. Determination of information.
  • the base station feeds back the indication information to the AMF, and the AMF sends the indication information to the SMF, where the indication information is used to indicate that the dual path transmission cannot be used.
  • the downlink packet of the first service After receiving the indication information, the SMF rejects the session establishment process or performs the subsequent steps in the prior art session establishment process.
  • the first access network tunnel information includes a third IP address and a third TEID of the base station, and is used to identify the first path between the base station and the UPF.
  • the second access network tunnel information includes a fourth IP address and a fourth TEID of the base station, and is used to identify a second path between the base station and the UPF.
  • the third TEID is different from the fourth TEID.
  • the third IP address and the fourth IP address may be the same or different.
  • the third IP address and the fourth IP address are used to identify two paths that are independent of each other.
  • the base station When the third IP address and the fourth IP address are the same, the base station further allocates third network identification information corresponding to the third TEID, and fourth network identification information corresponding to the fourth TEID.
  • the third network identification information and the fourth network identification information are used to identify two paths that are independent of each other.
  • the base station when the third IP address and the fourth IP address are the same, when the base station subsequently sends the first access network tunnel information and the second access network tunnel information, the third uplink corresponding to the third TEID is also sent.
  • the network identification information and the fourth network identification information corresponding to the fourth TEID are not described here.
  • the base station may send the first access network tunnel information and the third network identifier information by using the third container, and send the second access network tunnel information and the fourth network identifier information by using the fourth container.
  • Step 507 The base station sends the first access network tunnel information and the second access network tunnel information to the AMF.
  • the base station returns an N2 session response to the AMF.
  • the N2 session response includes a PDU session identifier and N2 SM information.
  • the N2 SM information includes the first access network tunnel information and the second access network tunnel information.
  • the N2 SM information may further include a session identifier corresponding to the first service.
  • the N2 SM information may further include a first service corresponding to the first service. Session ID and QFI.
  • step 508 the AMF sends an update context request to the SMF.
  • the AMF invokes the service Nsmf_PDUSession_UpdateSMContext of the update SM context of the SMF, and sends an Nsmf_PDUSession_UpdateSMContext request. With this request, the AMF forwards the N2 SM information received in step 507 to the SMF.
  • step 509 the SMF sends a downlink forwarding rule to the UPF.
  • the SMF sends an N4 session modification request to the UPF, where the session modification request includes the foregoing downlink forwarding rule.
  • the UPF returns an N4 session modification response.
  • the core network tunnel information in step 503 may only include the first core network tunnel information, but the step 506 includes the first access network tunnel information and the second access network tunnel. information.
  • the SMF allocates the second core network tunnel information, sends the second core network tunnel information to the UPF through step 509, and sends the second core network through the AMF.
  • the tunnel information is sent to the base station; or the UPF receives the first access network tunnel information and the second access network tunnel information from the SMF, allocates the second core network tunnel information, and returns the second core to the SMF through the N4 session modification response.
  • Network tunnel information The SMF sends the second core network tunnel information to the base station through the AMF.
  • the downlink forwarding rule includes first access network tunnel information and second access network tunnel information.
  • the downlink forwarding rule is used to instruct the UPF to copy the received downlink packet of the first service, and send the downlink of the first service by using two paths corresponding to the first access network tunnel information and the second access network tunnel information respectively.
  • the second path of the first service is sent by the first path between the base station and the first path between the base station and the second path between the base station and the base station Send the downlink packet of the first service.
  • the N2 SM information received by the SMF in the step 508 further includes the session identifier corresponding to the first service
  • the downlink forwarding rule further includes the session identifier corresponding to the first service.
  • the N2 SM information received by the SMF in the step 508 further includes the session identifier and the QFI corresponding to the first service
  • the downlink forwarding rule further includes the session identifier and the QFI corresponding to the first service.
  • the session identifier corresponding to the first service in the N2 SM information received in step 508 may be different from the session identifier corresponding to the first service in the downlink forwarding rule, but are associated with each other.
  • the session identifier corresponding to the first service in the N2 SM information received in step 508 is a PDU session identifier
  • the SMF converts the PDU session identifier into an N4 session identifier, and uses the N4 session identifier as the first service in the downlink forwarding rule.
  • the corresponding session ID is sent to the UPF.
  • the downlink forwarding rule further includes the information of the first service (such as the URLLC service).
  • the information of the first service such as the URLLC service.
  • step 510 the SMF sends an update context response to the AMF.
  • the UPF After receiving the downlink packet of the first service, the UPF passes the first path between the base station corresponding to the first access network tunnel information and the base station corresponding to the second access network tunnel information according to the forwarding rule.
  • the second path between the two ends sends a downlink packet of the first service.
  • the downlink message of the first service is transmitted on two paths, which also indicates that the downlink packets sent on the two paths are the same.
  • the UPF After receiving a downlink packet, the UPF matches the packet header feature of the downlink packet with the information of the first service in the forwarding rule, so as to determine that the downlink packet is the packet of the first service. After determining that the downlink packet is the packet of the first service, the UPF may copy the packet. In a possible implementation manner, the UPF sends the original packet to the UE by using the first path corresponding to the first access network tunnel information between the base station, and the second access network tunnel information corresponding to the base station. The second path sends the copied message to the UE.
  • the UPF sends the copied message to the UE by using the first path corresponding to the first access network tunnel information between the base station, and the second access network tunnel information between the base station and the base station.
  • the corresponding second path sends the original packet to the UE.
  • the UPF copies two packets, and respectively passes the first path and the second path corresponding to the first access network tunnel information and the second access network tunnel information, respectively, and the base station.
  • the copied message is sent to the UE.
  • the downlink packets transmitted through the dual path are the same.
  • the base station learns that the UE can also pass the first core network tunnel information and The two paths corresponding to the second core network tunnel information transmit the uplink packet of the first service.
  • the first core network tunnel information and the second core network tunnel information may be regarded as information included in an uplink forwarding rule.
  • the uplink forwarding rule is used to instruct the base station to copy the received uplink packet of the first service, and send the uplink packet of the first service to the UPF through the first path corresponding to the tunnel information of the first access network. And sending to the UPF through the second path corresponding to the second access network tunnel information.
  • the uplink forwarding rule further includes information about the first service, and details are not described herein again.
  • the base station may copy the packet.
  • the base station sends the original packet to the UPF by using the first path corresponding to the first access network tunnel information, and sends the duplicated packet to the UPF by using the second path corresponding to the second access network tunnel information.
  • the base station sends the copied packet to the UPF by using the first path corresponding to the first access network tunnel information, and sends the second packet to the UPF by using the second path corresponding to the second access network tunnel information.
  • Original message is a possible implementation manner, the base station sends the original packet to the UPF by using the first path corresponding to the first access network tunnel information, and sends the duplicated packet to the UPF by using the second path corresponding to the second access network tunnel information.
  • the base station copies the two packets, and sends the copied packet to the UPF through the first path corresponding to the tunnel information of the first access network, and corresponds to the tunnel information of the second access network.
  • the second path sends the copied message to the UPF.
  • the uplink/downlink packet transmission of the first service (such as the URLLC service) can be implemented through two paths.
  • the uplink/downlink packet transmission of the first service can be implemented by using multiple (more than two) paths in the method of the embodiment of the present application, and details are not described herein. Thereby, the reliability of the URLLC service message is improved.
  • FIG. 11 is a signaling interaction diagram of a message transmission method according to another embodiment of the present application.
  • Figure 11 applies to a scenario of dual connectivity (dual base stations).
  • high-reliability message transmission is implemented through two paths between the primary base station and the secondary base station and the UPF.
  • the method includes steps 1101-1103 in the upstream direction and/or steps 1111-1113 in the downstream direction.
  • Step 1101 For the uplink direction of the dual connectivity, the UE generates a first uplink packet and a second uplink packet.
  • the first uplink packet and the second uplink packet have the same sequence number and service flow identifier.
  • the UE generates the first uplink packet and the second uplink packet according to the indication received by the primary base station in the foregoing step 305 or 308.
  • the UE may first copy the uplink packet and then add the same sequence number and service service flow identifier.
  • the UE may first add a sequence number and a service service flow identifier to the uplink packet, and then perform replication. In either case, the first uplink packet and the second uplink packet generated by the UE have the same sequence number and service flow identifier.
  • the UE sends a first uplink packet to the primary base station, and sends a second uplink packet to the secondary base station.
  • Step 1102 After receiving the first uplink packet, the primary base station determines that the corresponding dual base station processes the first uplink packet. Similarly, after receiving the second uplink packet, the secondary base station determines that the corresponding dual base station processes the second uplink packet.
  • the primary base station can learn the corresponding dual base station after receiving the first uplink packet, and then perform normalization processing on the first uplink packet.
  • the secondary base station as the second base station in the dual connectivity, obtains the corresponding dual base station after receiving the second uplink packet, and performs normalization processing on the second uplink packet.
  • the conventional processing here includes, but is not limited to, decapsulation of physical layer, layer 2, etc., GTP-U (General Packet Radio Service (GPRS) tunneling protocol user) layer, UDP (User Datagram Protocol, user data) Envelope protocol/IP (Internet Protocol) layer encapsulation, QoS management.
  • GTP-U General Packet Radio Service (GPRS) tunneling protocol user
  • UDP User Datagram Protocol, user data
  • Envelope protocol/IP Internet Protocol
  • the primary base station sends the processed first uplink packet to the UPF through the first tunnel in the dual tunnel.
  • the secondary base station sends the processed second uplink packet to the UPF through the second tunnel in the dual tunnel.
  • Step 1103 After receiving the first uplink packet and the second uplink packet, the UPF processes the first uplink packet according to the forwarding rule and the service flow identifier and the sequence number in the first uplink packet and the second uplink packet.
  • the second uplink packet is deduplicated.
  • the UPF de-duplicates the first uplink packet and the second uplink packet with the same service flow identifier and sequence number according to the forwarding rule.
  • the UPF may also have a forwarding rule according to the forwarding rules.
  • the first uplink packet and the second uplink packet of the same sequence number are deduplicated.
  • Step 1111 For the downlink direction of the dual connectivity, the UPF generates the first downlink packet and the second downlink packet according to the forwarding rule.
  • the UPF adds a sequence number and a service flow identifier to the downlink packet according to the forwarding rule. That is, the first uplink packet and the second uplink packet generated by the UPF have the same sequence number and service flow identifier.
  • the UPF may first copy the downlink message and then add the same sequence number and service flow identifier.
  • the UPF may first add a sequence number and a service flow identifier to the uplink packet, and then perform replication.
  • the UPF sends a first downlink packet to the primary base station, and sends a second downlink packet to the secondary base station.
  • Step 1112 After receiving the first downlink packet, the primary base station determines that the corresponding dual base station processes the first downlink packet. Similarly, after receiving the second downlink packet, the secondary base station determines that the dual base station is corresponding to the second downlink packet.
  • the processing in step 1112 includes, but is not limited to, decapsulation of layers such as UDP/IP layer, GTP-U layer, encapsulation of layer 2, physical layer, and the like, and QoS management.
  • the primary base station sends the processed first downlink packet to the UE.
  • the secondary base station sends the processed second downlink message to the UE.
  • the first downlink message and the second downlink message include the same second service flow identifier and the same second sequence number.
  • Step 1113 After receiving the first downlink packet and the second downlink packet, the UE receives the first downlink packet and the second downlink packet, respectively, according to the indication of the primary base station, and the service flow identifier in the first downlink packet and the second downlink packet.
  • the serial number is de-emphasized for the first downlink packet and the second downlink packet. For example, the UE de-duplicates the first downlink packet and the second downlink packet having the same service flow identifier and the sequence number according to the indication received from the primary base station in the foregoing step 305 or 308.
  • the UPF adds sequence numbers to the sequence numbers of different service flows in the order of the packets, and the UE may also receive the slave base stations according to the sequence.
  • the indication is that the first uplink packet and the second uplink packet with the same sequence number are deduplicated.
  • the UE decapsulates the physical layer, layer 2, and the like, and delivers the decapsulated packet to the upper layer.
  • FIG. 12 is a signaling interaction diagram of a message transmission method according to another embodiment of the present application.
  • Figure 12 applies to a single-connect (single base station) scenario.
  • high-reliability message transmission is implemented through two paths between a single base station and the UPF.
  • the method includes steps 1201-1203 in the upstream direction and/or steps 1211-1213 in the downstream direction.
  • Step 1201 For the uplink direction of the single connection, the UE adds a service flow identifier to the uplink packet.
  • the UE sends the uplink packet to the base station.
  • Step 1202 After receiving the uplink packet, the base station determines that the corresponding single base station generates the first uplink packet and the second uplink packet, and processes the first uplink packet and the second uplink packet.
  • the base station determines that the secondary base station is not added in the foregoing step, and then, after receiving the uplink packet, the base station can learn the corresponding single base station, and then generate the first uplink packet and the second uplink packet, and the first uplink packet and The second uplink packet is processed.
  • the base station may first copy the uplink packet and then add the same sequence number and service flow identifier.
  • the base station may first add a sequence number and a service flow identifier to the uplink packet, and then perform replication. Either way, the first uplink packet and the second uplink packet generated by the base station have the same sequence number and service flow identifier.
  • the processing here includes, but is not limited to, decapsulation of layers such as physical layer and layer 2, encapsulation of layers such as GTP-U layer and UDP/IP layer, and QoS management.
  • the base station sends the processed first uplink packet to the UPF through the first tunnel in the dual tunnel, and sends the processed second uplink packet to the UPF through the second tunnel in the dual tunnel.
  • Step 1203 After receiving the first uplink packet and the second uplink packet, the UPF processes the first uplink packet according to the forwarding rule and the service flow identifier and the sequence number in the first uplink packet and the second uplink packet.
  • the second uplink packet is deduplicated.
  • the UPF de-duplicates the first uplink packet and the second uplink packet with the same service flow identifier and sequence number according to the forwarding rule.
  • the UPF may also have a forwarding rule according to the forwarding rules.
  • the first uplink packet and the second uplink packet of the same sequence number are deduplicated.
  • the UPF for the downlink direction of the single connection, the UPF generates the first downlink packet and the second downlink packet according to the forwarding rule.
  • step 1111 can be referred to in step 1211, and details are not described herein again.
  • the UPF sends the first downlink packet and the second downlink packet to the base station by using the first tunnel and the second tunnel respectively.
  • Step 1212 After receiving the first downlink packet and the second downlink packet, the base station determines the corresponding single base station, and according to the indication of the base station, the service flow identifier and the serial number in the first downlink packet and the second downlink packet.
  • the first downlink packet and the second downlink packet are deduplicated, and the downlink packet after deduplication is processed.
  • the base station de-duplicates the first downlink packet and the second downlink packet according to the service flow identifier and the sequence number in the first downlink packet and the second downlink packet. For example, the base station de-duplicates the first downlink packet and the second downlink packet that have the same service flow identifier and sequence number.
  • sequence numbers between different service flows are not repeated, if the sequence number between different service flows is added by the UPF according to the sequence of the packets, the base station will have the first sequence number.
  • the uplink packet and the second uplink packet are deduplicated.
  • Subsequent processing includes, but is not limited to, decapsulation of layers such as UDP/IP layer and GTP-U layer, encapsulation of layers of layer 2, physical layer, and QoS management.
  • the base station sends the processed downlink message to the UE.
  • Step 1213 After receiving the downlink packet from the base station, the UE decapsulates the physical layer and the layer 2 layer, and delivers the decapsulated packet to the upper layer.
  • FIG. 15 is a signaling interaction diagram of another message transmission method according to an embodiment of the present application.
  • Figure 15 relates to the interaction between the UE, the primary base station, the secondary base station, the AMF, the SMF, and the UPF.
  • the UE, the primary base station, the secondary base station, the AMF, the SMF, and the UPF may be the UE 201, the M-RAN 202, the S-RAN 203, the AMF 204, the SMF 205, and the UPF 206 in FIG. 2, respectively.
  • Figure 15 will be described in conjunction with Figure 3.
  • Figure 15 is applicable to: in the uplink direction, the PDCP layer of the UE is enhanced, and the PDCP layer can be used for copying in the enhanced PDCP layer.
  • the UPF can perform packet replication on the GTP-U layer to implement dual-path reporting. Text transmission to improve the reliability of message transmission.
  • the method includes the following steps:
  • Step 1501 The UE sends a NAS message carrying a session establishment request to the AMF by using the primary base station to request to establish a PDU session for the UE.
  • Step 1502 performing other steps of the session establishment process.
  • the other steps described above include at least the AMF selecting the SMF, and the SMF selecting the UPF, which is not described herein.
  • step 1503 the SMF transmits N2 SM information to the AMF.
  • step 1504 the AMF sends N2 SM information to the primary base station.
  • steps 1501 to 1504 reference may be made to the description of steps 301 to 304 in FIG. 3, and details are not described herein again.
  • Step 1505 The primary base station initiates establishment of an access network resource with the UE.
  • the primary base station initiates establishment of a first radio bearer between the primary base station and the UE.
  • the first radio bearer is a first data radio bearer (DRB), which is hereinafter referred to as DRB1.
  • DRB1 first data radio bearer
  • the primary base station sends the identification information of the DRB1 to the UE, and through this step, the DRB1 between the primary base station and the UE is established.
  • Step 1506 The primary base station determines to add the secondary base station, and sends an additional secondary base station request to the secondary base station.
  • the primary base station may determine, according to the indication information, that the downlink packet of the first service is transmitted by using the dual path, thereby determining that the secondary base station needs to be added.
  • the first service includes the URLLC service.
  • any one or a combination of the QoS parameters, the slice identification information, the DNN, the first core network tunnel information, and the second core network tunnel information included in the foregoing N2 SM information may be used as the indication information.
  • the QoS parameter includes at least one of 5QI and QFI.
  • the primary base station determines that the session has high reliability requirements according to the QoS parameters in the N2 SM information, thereby determining to increase the secondary base station; or, the primary base station determines the session and the extremely reliable low delay according to the slice identification information in the N2 SM information.
  • the slice association of the communication determines to increase the secondary base station; or the primary base station determines the data network association of the session with the extremely reliable low-latency communication according to the DNN in the N2 SM information, thereby determining to increase the secondary base station; or, the primary base station directly according to the N2
  • the first core network tunnel information and the second core network tunnel information in the SM information determine to use the dual path to transmit downlink packets, thereby determining to add the secondary base station.
  • the first access network tunnel information and the second access network tunnel information are used to transmit the downlink packet by using the dual path. Therefore, the indication information may also be triggered to trigger the first access network tunnel information and the second access network tunnel. Determination of information.
  • the first access network tunnel information may be determined by the primary base station, and the second access network tunnel information may be determined by the secondary base station and sent to the primary base station.
  • first access network tunnel information and the second access network tunnel information For details of the first access network tunnel information and the second access network tunnel information, refer to the description of FIG. 3, and details are not described herein again.
  • Step 1507 The secondary base station returns an additional secondary base station request confirmation to the primary base station.
  • adding the secondary base station request acknowledgement includes the second access network tunnel information determined by the secondary base station.
  • the request for adding the secondary base station sent by the secondary base station includes the session identifier of the first service, and the second access network tunnel information determined by the secondary base station is also the session granularity, and The session identifier corresponds.
  • the service flow identifier (such as QFI) of the service flow including the first service in the request of the secondary base station is increased, and the second access network tunnel information determined by the secondary base station is also the service.
  • the flow granularity corresponds to the service flow identifier. From the perspective of the protocol stack, the primary base station generates a PDCP entity for the traffic flow. Thus, the traffic flow is associated with the PDCP entity. If the primary base station determines to add the secondary base station, the secondary base station also generates a PDCP entity for the service flow.
  • Step 1508 the primary base station initiates an RRC connection reconfiguration to the UE.
  • the primary base station initiates establishment of a second radio bearer between the secondary base station and the UE.
  • the second radio bearer is the DRB2.
  • the primary base station sends the identification information of the DRB2 to the UE, and through this step, the DRB2 between the secondary base station and the UE is established.
  • the primary base station sends indication information to the UE, where the indication information is used to instruct the UE to associate the first radio bearer and the second radio bearer with the same PDCP entity on the UE. That is, the first radio bearer and the second radio bearer are associated with each other.
  • the primary base station transmits the above indication information to the UE through an RRC message.
  • the indication information may be an additional cell, or may be an identifier of the DRB1, or may be other cells, which is not limited in this application.
  • the indication information is used to indicate that the UE associates the first radio bearer and the second radio bearer to the same PDCP entity on the UE, and is also understood that, after receiving the indication information, the UE copies the packet in the PDCP layer for the uplink packet. (ie, adding the same sequence number to the PDCP layer), obtaining the first uplink message and the second uplink message, and then sending the first two different radio bearers (for example, DRB1 and DRB2) associated with the PDCP entity. An uplink packet and a second uplink packet.
  • Step 1509 The primary base station feeds back the secondary base station reconfiguration to the secondary base station to notify the secondary base station that the UE successfully completes the RRC connection reconfiguration.
  • the foregoing steps 1507-1509 may be replaced by:
  • the secondary base station initiates an RRC connection establishment procedure with the UE.
  • the secondary base station initiates establishment of a second radio bearer between the secondary base station and the UE.
  • the second radio bearer is DRB2.
  • the DRB2 between the secondary base station and the UE is established.
  • the secondary base station sends indication information to the UE, the indication information is used to instruct the UE to associate the first radio bearer and the second radio bearer with the same PDCP entity on the UE. That is, the first radio bearer and the second radio bearer are associated with each other.
  • the secondary base station sends the indication information to the UE through an RRC message.
  • the indication information may be an additional cell, or may be an identifier of the DRB1, or may be other cells, which is not limited in this application.
  • the indication information indicating that the UE associates the first radio bearer and the second radio bearer to the same PDCP entity on the UE may be sent by the primary base station to the UE, or may be sent by the secondary base station to the UE.
  • the application is not limited here.
  • the secondary base station returns to the primary base station to increase the secondary base station request for confirmation, refer to the description of step 1507, and details are not described herein again.
  • Step 1510 a random access procedure.
  • the primary base station may determine whether the secondary base station needs to be added before step 1505. For details on how to determine whether the primary base station needs to be added to the secondary base station, refer to the description of step 1506, and details are not described herein again. If the primary base station determines to add the secondary base station (that is, the message transmission is performed by using the dual connectivity mode), the indication information for associating the two DRBs to one PDCP entity may be sent to the UE through the foregoing step 1508 or step 1507'.
  • the UE can implement the processing of the uplink packet in various manners, and the processed multiple uplink packets have the same sequence number. For example, the UE may first add a sequence number to the first uplink packet, and then copy the first uplink packet after adding the sequence number to obtain a second uplink packet with the same sequence number; or, the UE may first An uplink packet is copied to obtain a second uplink packet, and then the same sequence number is added to the first uplink packet and the second uplink packet.
  • the application is not limited herein.
  • the primary base station further instructs the UE to perform deduplication on the received downlink packets that have the same sequence number and are corresponding to the same service flow identifier.
  • the N2 SM information transmitted by the foregoing steps 1503 and 1504 further includes indication information, where the indication information is used to indicate that the base station (ie, the foregoing primary base station) sends the first radio bearer and the The second radio bearer is associated with the indication information of the same PDCP entity on the UE.
  • the SMF determines that the session has high reliability requirements according to the QFI in the N2 SM information sent by the UE to the SMF, and/or determines the slice of the session and the extremely reliable low latency communication according to the slice identification information in the N2 SM information.
  • the SMF sends the indication information to the base station, and after the base station receives the indication information, the base station sends the indication information that the first radio bearer and the second radio bearer are associated to the same PDCP entity on the UE. In this way, the base station can make no judgment, thereby simplifying the operation on the base station side.
  • Step 1511 The primary base station sends the first access network tunnel information and the second access network tunnel information to the AMF.
  • step 1512 the AMF sends an update context request to the SMF.
  • step 1513 the SMF sends a downlink forwarding rule to the UPF.
  • step 1514 the SMF sends an update context response to the AMF.
  • the UE may generate the first packet and the second packet according to the indication information, where the first packet and the second packet have the same sequence number; the UE sends the first packet to the primary base station by using the first radio bearer. Sending a second packet to the secondary base station by using the second radio bearer. For example, the UE copies the packet at the PDCP layer according to the indication information, and obtains the foregoing first packet and the second packet. In addition, the UE may de-assert the downlink message from the first radio bearer and the second radio bearer and have the same sequence number according to the indication information.
  • the uplink packet transmission of the first service (such as the URLLC service) can be implemented through two paths.
  • the method of the embodiment of the present application may be used to implement the transmission of the uplink packet of the first service by using multiple (more than two) paths, and details are not described herein. Thereby, the reliability of the URLLC service message is improved.
  • the embodiment of the present application provides a packet transmission method, as shown in FIG. 16, including the following steps:
  • Step 1601 The first base station initiates establishment of a first radio bearer between the first base station and the user equipment.
  • the first base station may be the primary base station in FIG. 15, and the first radio bearer may be DRB1.
  • Step 1601 can refer to the description of step 1505 in FIG. 15 and will not be described again.
  • Step 1602 In the process of establishing a second radio bearer between the second base station and the user equipment, the first base station or the second base station sends indication information to the user equipment, where the indication information is used to indicate that the user equipment uses the first radio bearer. And the second radio bearer is associated with the same PDCP entity on the user equipment.
  • the first base station or the second base station sends the indication information to the user equipment by using an RRC layer message.
  • the second base station may be the secondary base station in FIG. 15, and the second radio bearer may be DRB2.
  • Step 1602 may refer to the description of step 1508 or 11507' in FIG. 15 and will not be described again.
  • the UE After receiving the indication information, the UE will copy the packet at the PDCP layer (that is, add the same sequence number to the PDCP layer) to obtain the first uplink packet and the second uplink packet, and then pass the
  • the two different radio bearers for example, DRB1 and DRB2 associated with the PDCP entity send the first uplink packet and the second uplink packet. Therefore, according to the packet transmission method of the embodiment of the present invention, the uplink packet transmission of the first service (such as the URLLC service) can be implemented through two paths. Similarly, the method of the embodiment of the present application may be used to implement the transmission of the uplink packet of the first service by using multiple (more than two) paths, and details are not described herein. Thereby, the reliability of the URLLC service message is improved.
  • the embodiment of the present application provides a packet transmission method, as shown in FIG. 17, including the following steps:
  • Step 1701 The user equipment interacts with the first base station to establish a first radio bearer between the first base station and the user equipment.
  • the first base station may be the primary base station in FIG. 15, and the first radio bearer may be DRB1.
  • Step 1701 can refer to the description of step 1505 in FIG. 15, and details are not described herein again.
  • Step 1702 In the process of establishing a second radio bearer between the second base station and the user equipment, the user equipment receives the indication information from the first base station or the second base station, where the indication information is used to indicate that the user equipment uses the first radio bearer And the second radio bearer is associated with the same PDCP entity on the user equipment.
  • the second base station may be the secondary base station in FIG. 15, and the second radio bearer may be DRB2.
  • Step 1702 may refer to the description of step 1508 or 11507' in FIG. 15 and will not be described again.
  • the user equipment receives the indication information from the first base station or the second base station by using an RRC layer message.
  • Step 1703 The user equipment generates a first packet and a second packet according to the indication information, where the first packet and the second packet have the same sequence number.
  • the user equipment copies the packet at the PDCP layer according to the indication information, to obtain the first packet and the second packet.
  • Step 1704 The user equipment sends a first packet to the first base station by using the first radio bearer, and sends a second packet to the second base station by using the second radio bearer.
  • the UE After receiving the indication information, the UE copies the packet in the PDCP layer (that is, adds the same sequence number to the PDCP layer) to obtain the first uplink packet and the second uplink packet, and then obtain the first uplink packet and the second uplink packet respectively. Transmitting the first uplink packet and the second uplink packet by using two different radio bearers (for example, DRB1 and DRB2) associated with the PDCP entity; and downlink packets with the same sequence number from DRB1 and DRB2 are in The PDCP layer de-reposts the message. Therefore, according to the packet transmission method of the embodiment of the present invention, the uplink packet transmission of the first service (such as the URLLC service) can be implemented through two paths. Similarly, the method of the embodiment of the present application may be used to implement the transmission of the uplink packet of the first service by using multiple (more than two) paths, and details are not described herein. Thereby, the reliability of the URLLC service message is improved.
  • the uplink packet transmission of the first service such as
  • FIG. 18 is a signaling interaction diagram of another message transmission method according to an embodiment of the present application.
  • Figure 18 relates to the interaction between the UE, the primary base station, the secondary base station, the AMF, the SMF, and the UPF.
  • the UE, the primary base station, the secondary base station, the AMF, the SMF, and the UPF may be the UE 201, the M-RAN 202, the S-RAN 203, the AMF 204, the SMF 205, and the UPF 206 in FIG. 2, respectively.
  • Figure 18 will be described in conjunction with Figure 3.
  • FIG. 18 is applicable to: in the uplink direction, the UE performs packet replication on the new protocol layer on the SDAP layer; in the downlink direction, the UPF performs packet replication on the new protocol layer on the GTP-U layer to implement dual-path packet. Transmission to improve the reliability of message transmission.
  • the new protocol layer can be referred to as a high reliability protocol (HRP) layer.
  • HRP high reliability protocol
  • the method includes the following steps:
  • Step 1801 The UE sends a NAS message carrying a session establishment request to the AMF by using the primary base station, and is configured to request to establish a PDU session for the UE.
  • Step 1802 performing other steps of the session establishment process.
  • the other steps described above include at least the AMF selecting the SMF, and the SMF selecting the UPF, which is not described herein.
  • Steps 1801 and 1802 can refer to the description of steps 301 and 302 in FIG. 3, and details are not described herein again.
  • the SMF allocates two service flow identifiers, that is, a first service flow identifier and a second service flow identifier, for the first service.
  • the first service includes the URLLC service.
  • the service flow identifier may include at least one of a session identifier, a QFI, and a quintuple.
  • two traffic flow identifiers are QFI-a and QFI-b, respectively.
  • step 1804 the SMF transmits the N2 SM information and the N1 SM container to the AMF.
  • the SMF sends N2 SM information to the AMF by calling the service transmitted by the A1's N1N2 message.
  • the SMF can also send an N1 SM container containing a session accept message to the AMF by calling the service.
  • Step 1805 The AMF sends the received N2 SM information and the N1 SM container to the primary base station.
  • the AMF sends an N2 session request to the primary base station, the N2 session request including N2 SM information and NAS messages.
  • the NAS message contains the PDU session identifier and the above N1 SM container.
  • the primary base station sends a NAS message to the UE in the process of establishing an access network resource.
  • the N1 SM container includes a session accept message sent to the UE.
  • the session accept message includes a QoS rule (rule).
  • the QoS rule includes a QoS rule identifier, the foregoing first service flow identifier and the second service flow identifier, a packet filter, and indication information.
  • the N2 SM information includes at least a PDU session identifier and a tunnel information of the core network (CN tunnel info).
  • the tunnel information of the core network includes the first core network tunnel information and the second core network tunnel information.
  • the N2 SM information may also include QoS parameters, QFI-a and QFI-b, slice identification information (eg, S-NSSAI), sesssion-AMBR, type of PDU session.
  • the N2 SM information may also include a DNN.
  • the UE may receive the indication information by using the N1 SM container.
  • the UE may generate the first uplink packet and the second uplink packet according to the indication information, and send the first uplink packet by using the first radio bearer, and adopt the second radio.
  • the bearer sends a second uplink packet, and the first uplink packet has the same first sequence number as the second uplink packet.
  • the first radio bearer corresponds to QFI-a
  • the second radio bearer corresponds to QFI-b.
  • the UE may further describe that the UE sends the first uplink packet by using the radio bearer corresponding to the QFI-a; It can be described that the UE sends the second uplink packet by using the radio bearer corresponding to the QFI-b.
  • the indication information is used to instruct the UE to copy the uplink packet, obtain the first uplink packet and the second uplink packet, and send the first uplink packet and the second uplink packet by using different radio bearers.
  • the UE may de-assert the downlink packets from the first radio bearer and the second radio bearer and having the same sequence number according to the indication information.
  • the UE performs the following operations on the downlink message from the radio bearer corresponding to the QFI-a and the downlink message from the radio bearer corresponding to the QFI-b: if the downlink message has the same sequence number, De-weight it.
  • the UE uses the message filter to determine the packets corresponding to QFI-a and QFI-b, and copies the packets at the HRP layer according to the indication information.
  • the copied uplink packets have the same sequence number and are respectively associated with QFI. -a, QFI-b corresponding, thereby obtaining a first uplink packet corresponding to QFI-a and a second uplink packet corresponding to QFI-b, and then transmitting the first uplink packet and the second uplink packet to
  • the SDAP layer sends the first uplink packet to the PDCP entity 1 and the second uplink packet to the PDCP entity 2, where the PDCP entity 1 corresponds to the QFI-a, and the PDCP layer corresponds to the corresponding relationship between the QFI and the PDCP entity.
  • Entity 2 corresponds to QFI-b.
  • the UE sends the first uplink packet to the M-RAN through the DRB1 and the second uplink packet. Sent to the S-RAN through DRB2.
  • DRB1 corresponds to PDCP entity 1
  • DRB2 corresponds to PDCP entity 2.
  • the primary and secondary base stations add the QFI to the uplink packet according to the correspondence between the DRB and the QFI or the QFI carried in the uplink header.
  • the primary base station adds the QFI-a to the first uplink packet
  • the secondary base station adds the QFI-b to the second uplink packet, and sends the uplink packet to the UPF. Therefore, the UPF receives the first uplink packet and the second uplink packet, and the first uplink packet and the second uplink packet have QFI-a and QFI-b, respectively, and have the same sequence number.
  • the UE uses the packet filter to determine the packets corresponding to the QFI-a and the QFI-b.
  • the UE uses the packet filter to determine the QFI corresponding to the packet (which may be QFI- a or QFI-b or), since QFI-a and QFI-b are two service flow identifiers allocated by the SMF for the same service, it can be understood that QFI-a and QFI-b are related, then the UE according to the indication information, Copy the upstream message, one for QFI-a and one for QFI-b.
  • the first uplink packet sent by the UE corresponds to the QFI-a
  • the second uplink packet corresponds to the QFI-b
  • the first uplink packet and the second uplink packet have the same sequence number.
  • the first uplink packet received by the UPF includes the QFI-a
  • the second uplink packet includes the QFI-b
  • the first uplink packet and the second uplink packet have the same sequence number.
  • the first uplink packet and the second uplink packet received by the UPF, the sequence number and the service flow identifier may be in different protocol layers. For example, the serial number is at the HRP layer and the service flow is identified at the GTP-U layer.
  • the indication information sent by the SMF to the UE may be used to indicate that the first uplink packet corresponds to QFI-a, and the second uplink packet corresponds to QFI-b.
  • the UE may further add QFI-a to the first uplink packet and add QFI-b to the second uplink packet at the HRP layer.
  • the indication information sent by the SMF to the UE may be used to indicate that the UE adds QFI-a to the first uplink packet and QFI-b to the second uplink packet.
  • the UE associates the first uplink packet and the second uplink packet obtained after the replication to different DRBs, PDCP entities, or SDAP configurations (config).
  • the one PDCP entity or the SDAP configuration corresponds to one DRB (for example, DRB1)
  • the other PDCP entity or SDAP configuration corresponds to another DRB (for example, DRB2).
  • the SDAP configuration is a parameter of the radio bearer granularity (that is, the DRB granularity), which is allocated by the access network side according to the bearer granularity and sent to the UE in the RRC reconfiguration process.
  • the UE de-duplicates the first downlink packet and the second downlink packet according to the indication information. Therefore, the indication information sent by the SMF to the UE may be further used to instruct the UE to de-weight the first downlink packet and the second downlink packet.
  • the first downlink packet and the second downlink packet have the same sequence number and are associated with QFI-a and QFI-b, respectively.
  • Step 1806 The primary base station initiates establishment of an access network resource with the UE.
  • the primary base station initiates establishment of a first radio bearer between the primary base station and the UE.
  • the first radio bearer is DRB1.
  • the primary base station sends the identification information of the DRB1 to the UE, and through this step, the DRB1 between the primary base station and the UE is established. Additionally, in this step, the primary base station forwards the NAS message in step 1805 to the UE.
  • Step 1807 the primary base station determines to add the secondary base station, and sends an additional secondary base station request to the secondary base station.
  • the primary base station may determine, according to the indication information, that the downlink packet of the first service is transmitted by using the dual path, thereby determining that the secondary base station needs to be added.
  • the first service includes the URLLC service.
  • any one or a combination of the QoS parameters, the slice identification information, the DNN, the first core network tunnel information, and the second core network tunnel information included in the foregoing N2 SM information may be used as the indication information.
  • the QoS parameter includes at least one of 5QI and QFI.
  • the first access network tunnel information and the second access network tunnel information are used to transmit the downlink packet by using the dual path. Therefore, the indication information may also be triggered to trigger the first access network tunnel information and the second access network tunnel. Determination of information.
  • the first access network tunnel information may be determined by the primary base station, and the second access network tunnel information may be determined by the secondary base station and sent to the primary base station.
  • first access network tunnel information and the second access network tunnel information For details of the first access network tunnel information and the second access network tunnel information, refer to the description of FIG. 3, and details are not described herein again.
  • the secondary base station request carries the QFI-b and the second core network tunnel information.
  • Step 1808 The secondary base station returns an additional secondary base station request confirmation to the primary base station.
  • adding the secondary base station request acknowledgement includes the second access network tunnel information determined by the secondary base station.
  • the added secondary base station request sent in step 1807 includes the service flow identifier QFI-b of the first service, and therefore the second access network tunnel information determined by the secondary base station is also the service flow granularity, and corresponds to the QFI-b. .
  • the primary base station determines to add the secondary base station, the primary base station generates a PDCP entity for the QFI-a, and the secondary base station generates a PDCP entity for the QFI-b after receiving the request for adding the secondary base station.
  • the two PDCP entities are associated with QFI-a and QFI-b, respectively.
  • Step 1809 the primary base station initiates an RRC connection reconfiguration to the UE.
  • the primary base station initiates establishment of a second radio bearer between the secondary base station and the UE.
  • the second radio bearer is DRB2.
  • the primary base station sends the identification information of the DRB2 to the UE, and through this step, the DRB2 between the secondary base station and the UE is established.
  • Step 1810 The primary base station feeds back the secondary base station reconfiguration completion to the secondary base station to notify the secondary base station UE that the RRC connection reconfiguration is successfully completed.
  • the foregoing steps 1808-1810 may be replaced by:
  • the secondary base station initiates an RRC connection establishment procedure with the UE.
  • the secondary base station initiates establishment of a second radio bearer between the secondary base station and the UE.
  • the second radio bearer is DRB2.
  • the secondary base station sends the identifier information of the DRB2 to the UE, and through this step, the DRB2 between the secondary base station and the UE is established.
  • the secondary base station returns to the primary base station to increase the secondary base station request for confirmation, refer to the description of step 1808, and details are not described herein.
  • Step 1811 a random access procedure.
  • Step 1812 The primary base station sends the first access network tunnel information and the second access network tunnel information to the AMF.
  • the first access network tunnel information corresponds to QFI-a
  • the second access network tunnel information corresponds to QFI-b.
  • the primary base station further sends a correspondence between the QFI-a and the first access network tunnel information to the AMF, and a correspondence between the QFI-b and the second access network tunnel information.
  • the primary base station returns an N2 session response to the AMF.
  • the N2 session response includes a PDU session identifier and N2 SM information.
  • the N2 SM information includes the first access network tunnel information and the second access network tunnel information.
  • the N2 SM information may further include a correspondence between the QFI-a and the first access network tunnel information, and a correspondence between the QFI-b and the second access network tunnel information.
  • step 1813 the AMF sends an update context request to the SMF to forward the received N2 SM information to the SMF.
  • the AMF invokes the SMF's update SM context service to send an Nsmf_PDUSession_UpdateSMContext request. With this request, the AMF forwards the N2 SM information received in step 1812 to the SMF.
  • step 1814 the SMF sends a forwarding rule to the UPF.
  • the SMF sends an N4 session modification request to the UPF, and the session modification request includes the foregoing forwarding rule.
  • the UPF returns an N4 session modification response.
  • the forwarding rule may include an uplink forwarding rule and a downlink forwarding rule.
  • the uplink forwarding rule is used to instruct the UPF to de-receive two received uplink messages having QFI-a and QFI-b and the same sequence number respectively. Therefore, in the uplink direction, when the UPF receives the first uplink packet and the second uplink packet, the first uplink packet has a first service flow identifier and a first sequence number, and the second uplink packet The text has a second service flow identifier and the first serial number.
  • the UPF deduplicates the first uplink packet and the second uplink packet according to the uplink forwarding rule.
  • the downlink forwarding rule includes first access network tunnel information and second access network tunnel information.
  • the downlink forwarding rule further includes a QFI-a corresponding to the first access network tunnel information and a QFI-b corresponding to the second access network tunnel information.
  • the downlink forwarding rule is used to instruct the UPF to copy the received downlink packet of the first service (adding QFI-a and sequence number to the first downlink packet, and adding QFI-b and the same serial number to the second downlink packet) Transmitting, by the first path corresponding to the first access network tunnel information and the second access network tunnel information, the downlink packet of the first service, that is, the first path corresponding to the tunnel information of the first access network
  • the primary base station sends the first downlink packet, and sends the second downlink packet to the secondary base station by using the second path corresponding to the second access network tunnel information.
  • the UPF generates the first downlink packet and the second downlink packet according to the downlink forwarding rule (for example, the HRP layer replicates the packet, and adds the QFI-a and the sequence number to the first downlink packet, Adding the QFI-b and the same sequence number to the second downlink packet, sending the first downlink packet to the first base station, and sending the second downlink packet to the second base station, where the first The downlink packet has the first service flow identifier and the second sequence number, and the second downlink packet has the second service flow identifier and the second sequence number.
  • the downlink forwarding rule for example, the HRP layer replicates the packet, and adds the QFI-a and the sequence number to the first downlink packet, Adding the QFI-b and the same sequence number to the second downlink packet, sending the first downlink packet to the first base station, and sending the second downlink packet to the second base station, where the first The downlink packet has the first service flow identifier and the second sequence number, and the second downlink packet has the second
  • step 1815 the SMF sends an update context response to the AMF.
  • the uplink/downlink packet transmission of the first service (such as the URLLC service) can be implemented through two paths.
  • the uplink/downlink packet transmission of the first service can be implemented by using multiple (more than two) paths in the method of the embodiment of the present application, and details are not described herein. Thereby, the reliability of the URLLC service message is improved.
  • the foregoing operation at the HRP layer may also be performed by the PDU layer of the upper layer of the SDAP, which is not limited herein.
  • FIG. 19 is a signaling interaction diagram of another message transmission method according to an embodiment of the present application.
  • Figure 19 relates to the interaction between the UE, the primary base station, the secondary base station, the AMF, the SMF, and the UPF.
  • the UE, the primary base station, the secondary base station, the AMF, the SMF, and the UPF may be the UE 201, the M-RAN 202, the S-RAN 203, the AMF 204, the SMF 205, and the UPF 206 in FIG. 2, respectively.
  • Figure 19 will be described in conjunction with Figure 18.
  • Figure 19 is applicable to: in the uplink direction, the SDAP layer of the UE is enhanced, and the packet can be copied in the enhanced SDAP layer.
  • the UPF can perform packet replication on the GTP-U layer to implement dual-path reporting. Text transmission to improve the reliability of message transmission.
  • FIG. 19 The difference between FIG. 19 and FIG. 18 is that, in FIG. 18, since the access network does not perceive the HRP layer, the SMF instructs the UE to process the message of the URLLC service through the NAS message; in FIG. 19, since the SDAP layer is used for enhancement, The primary base station may instruct the UE to process the packet of the URLLC service by using the AS layer message.
  • the method includes the following steps:
  • Step 1901 The UE sends a NAS message carrying a session establishment request to the AMF by using the primary base station, and is configured to request to establish a PDU session for the UE.
  • Step 1902 performing other steps of the session establishment process.
  • the other steps described above include at least the AMF selecting the SMF, and the SMF selecting the UPF, which is not described herein.
  • Step 1903 The SMF allocates two service flow identifiers, that is, a first service flow identifier and a second service flow identifier, for the first service.
  • Steps 1901 to 1903 can be referred to the description of steps 1801 to 1803 in FIG. 18, and details are not described herein again.
  • step 1904 the SMF transmits the N2 SM information and the N1 SM container to the AMF.
  • the SMF sends N2 SM information to the AMF by calling the service transmitted by the A1's N1N2 message.
  • the N1 SM container containing the session accept message can also be sent to the AMF by calling the service.
  • Step 1905 The AMF sends the received N2 SM information and the N1 SM container to the primary base station.
  • the AMF sends an N2 session request to the primary base station, the N2 session request including N2 SM information and NAS messages.
  • the NAS message contains the PDU session identifier and the above N1 SM container.
  • the N1 SM container includes a session accept message sent to the UE.
  • the session accept message includes QoS rules.
  • the QoS rule includes a QoS rule identifier, the foregoing first service flow identifier and the second service flow identifier, and a message filter.
  • the N2 SM information includes at least a PDU session identifier and tunnel information of the core network.
  • the tunnel information of the core network includes the first core network tunnel information and the second core network tunnel information.
  • the N2 SM information may also include QoS parameters, QFI-a and QFI-b, slice identification information (eg, S-NSSAI), sesssion-AMBR, type of PDU session.
  • the N2 SM information may also include a DNN.
  • Step 1906 The primary base station initiates establishment of an access network resource with the UE.
  • the primary base station initiates establishment of a first radio bearer between the primary base station and the UE.
  • the first radio bearer is DRB1.
  • the primary base station sends the identification information of the DRB1 to the UE, and through this step, the DRB1 between the primary base station and the UE is established.
  • the primary base station further sends indication information to the UE through the AS layer message.
  • the UE may receive the indication information through the AS layer message.
  • the UE may generate the first uplink packet and the second uplink packet according to the indication information, send the first uplink packet to the primary base station, and send the second uplink packet to the secondary base station by using the second radio bearer.
  • the first uplink packet has the same first sequence number as the second uplink packet.
  • the indication information is used to instruct the UE to copy the uplink packet, obtain the first uplink packet and the second uplink packet, and send the first uplink packet and the second uplink packet by using different radio bearers.
  • the UE uses the packet filter to determine the packets corresponding to the QFI-a and the QFI-b, and performs the packet copying at the SDAP layer according to the indication information, and adds the same serial number, thereby obtaining the corresponding QFI-a.
  • the first uplink packet and the second uplink packet corresponding to the QFI-b, and the first uplink packet is sent to the PDCP entity 1 and the second uplink packet is sent by the SDAP layer according to the correspondence between the QFI and the PDCP entity.
  • PDCP entity 2 corresponds to QFI-b.
  • the first uplink packet and the second uplink packet are processed by other protocol layers, such as the RLC layer and the physical layer
  • the first uplink packet is sent to the M-RAN through the DRB1
  • the second uplink packet is passed.
  • DRB2 is sent to the S-RAN.
  • DRB1 corresponds to PDCP entity 1
  • DRB2 corresponds to PDCP entity 2.
  • the primary and secondary base stations add the QFI to the uplink packet according to the correspondence between the DRB and the QFI or the QFI carried in the uplink header.
  • the primary base station adds the QFI-a to the first uplink packet
  • the secondary base station adds the QFI-b to the second uplink packet, and sends the uplink packet to the UPF. Therefore, the UPF receives the first uplink packet and the second uplink packet, and the first uplink packet and the second uplink packet have QFI-a and QFI-b, respectively, and have the same sequence number.
  • the first uplink packet sent by the UE corresponds to the QFI-a
  • the second uplink packet corresponds to the QFI-b
  • the first uplink packet and the second uplink packet have the same sequence number.
  • the first uplink packet received by the UPF includes the QFI-a
  • the second uplink packet includes the QFI-b
  • the first uplink packet and the second uplink packet have the same sequence number.
  • the indication information sent by the SMF to the UE may be used to indicate that the first uplink packet corresponds to QFI-a, and the second uplink packet corresponds to QFI-b.
  • the UE may further add QFI-a to the first uplink packet and add QFI-b to the second uplink packet at the SDAP layer.
  • the indication information sent by the SMF to the UE may be used to indicate that the UE adds QFI-a to the first uplink packet and QFI-b to the second uplink packet.
  • the UE de-duplicates the first downlink packet and the second downlink packet according to the indication information. Therefore, the indication information sent by the SMF to the UE may be further used to instruct the UE to de-weight the first downlink packet and the second downlink packet.
  • the first downlink packet and the second downlink packet have the same sequence number and are associated with QFI-a and QFI-b, respectively.
  • the indication information may not be carried in step 1906, and the indication information may be sent to the UE by the following step 1909.
  • the indication information may also be sent to the UE through the following step 1908'. This application is not limited herein.
  • Step 1907 the primary base station determines to add the secondary base station, and sends an additional secondary base station request to the secondary base station.
  • Step 1908 the secondary base station returns an initial secondary base station request confirmation to the primary base station.
  • Step 1909 the primary base station initiates an RRC connection reconfiguration to the UE.
  • the primary base station initiates establishment of a second radio bearer between the secondary base station and the UE.
  • the second radio bearer is DRB2.
  • the secondary base station sends the identifier information of the DRB2 to the UE, and through this step, the DRB2 between the secondary base station and the UE is established.
  • Step 1910 The primary base station feeds back the secondary base station reconfiguration to the secondary base station to notify the secondary base station that the UE successfully completes the RRC connection reconfiguration.
  • Steps 1907 to 1910 may refer to the description of steps 1807 to 1810 in FIG. 18, and details are not described herein again.
  • the foregoing steps 1908-1910 can be replaced by:
  • the secondary base station initiates an RRC connection establishment process with the UE, and may refer to the description of 1808', and details are not described herein again.
  • the secondary base station returns to the primary base station to increase the secondary base station request for confirmation, refer to the description of step 1808, and details are not described herein.
  • Step 1911 a random access procedure.
  • Step 1912 The primary base station sends the first access network tunnel information and the second access network tunnel information to the AMF.
  • the primary base station further sends a correspondence between the QFI-a and the first access network tunnel information to the AMF, and a correspondence between the QFI-b and the second access network tunnel information.
  • step 1913 the AMF sends an update context request to the SMF to forward the received N2 SM information to the SMF.
  • step 1914 the SMF sends a forwarding rule to the UPF.
  • step 1915 the SMF sends an update context response to the AMF.
  • Steps 1912 to 1915 may refer to the description of steps 1812 to 1815 in FIG. 18, and details are not described herein again.
  • the uplink/downlink packet transmission of the first service (such as the URLLC service) can be implemented through two paths.
  • the uplink/downlink packet transmission of the first service can be implemented by using multiple (more than two) paths in the method of the embodiment of the present application, and details are not described herein. Thereby, the reliability of the URLLC service message is improved.
  • the embodiment of the present application provides a packet transmission method, as shown in FIG. 20, including the following steps:
  • Step 2001 The user equipment acquires indication information from the network side device.
  • the network side device is an SMF, and the UE may obtain the indication information from the SMF, and may refer to the steps 1804 to 1806 in FIG. 18; or the network side device is a base station, and the UE may obtain the indication information from the primary base station, which may be referred to in FIG. Step 1906, no further description.
  • the indication information is used to instruct the UE to copy the uplink packet, obtain the first uplink packet and the second uplink packet, and send the first uplink packet and the second uplink packet by using different radio bearers.
  • the first uplink packet and the second uplink packet have the same sequence number.
  • the user equipment In step 2002, the user equipment generates the first uplink packet and the second uplink packet according to the indication information, and sends the first uplink packet to the first base station by using the first radio bearer, and sends the first uplink packet to the second base station by using the second radio bearer.
  • the second uplink message is described.
  • the first uplink packet and the second uplink packet have the same sequence number.
  • the first uplink packet corresponds to the first service flow identifier
  • the second uplink packet corresponds to the second service flow identifier.
  • the first base station may be the primary base station in FIG. 18 or 19, and the second base station may be the secondary base station in FIG. 18 or 19.
  • the first radio bearer may be the DRB1 in FIG. 18 or 19, and the second radio bearer may be DRB2 in Figure 18 or 19.
  • the user equipment copies the packet at the first protocol layer according to the indication information, and obtains the first uplink packet and the second uplink packet.
  • the first protocol layer includes an HRP layer; the user equipment acquires the indication information from the SMF by using a NAS message, and may refer to the description of FIG. 18.
  • the first protocol layer includes a SDAP layer; the user equipment acquires the indication information from the base station by using an AS message, and may refer to the description in FIG.
  • the UE may add a first service flow identifier to the first uplink packet, and add a second service flow identifier to the second uplink packet. That is, the first uplink packet includes the first service flow identifier, and the second uplink packet includes the second service flow identifier. Further, the indication information further indicates that the user equipment adds a first service flow identifier to the first uplink packet, and adds a second service flow identifier to the second uplink packet.
  • the user equipment receives the first downlink packet and the second downlink packet from the first base station and the second base station, where the first downlink packet has a second sequence number, corresponding to the first service flow identifier.
  • the second downlink packet has a second sequence number corresponding to the second service flow identifier.
  • the user equipment de-duplicates the first downlink packet and the second downlink packet according to the indication information.
  • the indication information is further used to indicate that the user equipment de-duplicates two downlink packets that have the same sequence number and have the first service flow identifier and the second service flow identifier, respectively.
  • the operation in the downlink direction does not depend on the uplink scheme, that is, the operation on the downlink side of the UE may also constitute an independent scheme.
  • the uplink/downlink packet transmission of the first service can be implemented by using multiple (more than two) paths in the method of the embodiment of the present application, and details are not described herein. Thereby, the reliability of the URLLC service message is improved.
  • the embodiment of the present application provides a packet transmission method, as shown in FIG. 21, including the following steps:
  • Step 2101 The user plane function network element receives an uplink forwarding rule from the session management function network element.
  • the uplink forwarding rule is used to instruct the user plane function network element to de-duplicate two uplink packets having the same sequence number and having the first service flow identifier and the second service flow identifier, respectively.
  • the user plane function network element may be the UPF in FIG. 18 or 19
  • the session management function network element may be the SMF in FIG. 18 or 19.
  • Step 2101 can refer to the description in step 1814 in FIG. 18 or step 1914 in FIG. 19, and details are not described herein again.
  • Step 2102 The user plane function network element receives the first uplink packet and the second uplink packet.
  • the first uplink packet has a first service flow identifier and a first sequence number
  • the second uplink packet has a second service flow identifier and the first sequence number.
  • Step 2103 The user plane function network element deduplicates the first uplink packet and the second uplink packet according to the uplink forwarding rule.
  • the user plane function network element receives the downlink forwarding rule from the session management function network element, generates the first downlink packet and the second downlink packet according to the downlink forwarding rule, and sends the first downlink to the first base station.
  • the user plane function network element generates the first downlink packet and the second downlink packet according to the downlink forwarding rule, where the user plane function network element copies the report in the first protocol layer according to the downlink forwarding rule.
  • the first downlink packet and the second downlink packet are obtained, where the first protocol layer includes an HRP layer or a GTP-U layer.
  • the operation in the downlink direction does not depend on the uplink scheme, that is, the operation on the downstream side of the UPF may also constitute an independent scheme.
  • the uplink/downlink packet transmission of the first service can be implemented by using multiple (more than two) paths in the method of the embodiment of the present application, and details are not described herein. Thereby, the reliability of the URLLC service message is improved.
  • the embodiment of the present application provides a packet transmission method, as shown in FIG. 6, including the following steps:
  • Step 601 The session management function network element receives the first access network tunnel information and the second access network tunnel information corresponding to the first service.
  • the session management function network element can be the SMF in Figure 3 or Figure 5.
  • step 601 may refer to steps 311 and 312 in FIG. 3 or steps 507 and 508 in FIG. 5, and details are not described herein again.
  • Step 602 The session management function network element sends a downlink forwarding rule to the user plane function network element.
  • the downlink forwarding rule includes the first access network tunnel information and the second access network tunnel information, and is used to indicate that the user plane function network element replicates the received downlink packet of the first service, and respectively uses the first access network tunnel information. And sending, by the two paths corresponding to the information of the second access network tunnel, the downlink packet of the first service.
  • the user plane function network element may be the UPF in FIG. 3 or FIG. 5.
  • the two paths may refer to a first path between the user plane function network element and the primary base station, and a second path between the user plane function network element and the secondary base station.
  • the two paths may refer to a first path and a second path between the user plane function network element and the base station.
  • Step 602 may refer to step 313 in FIG. 3 or step 509 in FIG. 5, and details are not described herein again.
  • the session management function network element sends the first access network tunnel information and the second access network to the user plane function network element.
  • the downlink forwarding rule of the tunnel information is such that after the user plane function network element receives the downlink packet of the first service, it performs replication, and passes through two corresponding to the first access network tunnel information and the second access network tunnel information respectively.
  • the path sends the downlink packet of the first service. In this way, the reliability of message transmission of the first service is improved.
  • the uplink/downlink packet transmission of the first service can be implemented by using multiple (more than two) paths in the method of the embodiment of the present application, and details are not described herein. Thereby, the reliability of the URLLC service message is improved.
  • the downlink forwarding rule further includes a service flow identifier and a session identifier of the first service.
  • the downlink forwarding rule further includes a session identifier of the first service. Therefore, for services of different granularities, a downlink forwarding rule of a corresponding granularity can be provided, so that the user plane function network element can implement more accurate and efficient message transmission.
  • the method further includes: the session management function network element sends the indication information to the base station, where the indication information is used to trigger the determination of the first access network tunnel information and the second access network tunnel information. That is to say, after receiving the indication information, the base station knows that the first access network tunnel information and the second access network tunnel information need to be determined.
  • the indication information may include at least one of the following: a quality of service parameter; slice identification information; a data network name; first core network tunnel information and second core network tunnel information.
  • the service quality parameter includes at least one of 5QI and QFI.
  • the base station receiving the indication information here may be a primary base station in a dual connectivity scenario or a base station in a single connectivity scenario.
  • the method further includes: the session management function network element sends an uplink forwarding rule to the base station.
  • the uplink forwarding rule includes the first core network tunnel information and the second core network tunnel information, and is used to indicate that the base station replicates the received uplink packet of the first service, and passes the uplink packet of the first service to the first core network tunnel respectively.
  • the two paths corresponding to the information and the second core network tunnel information are sent to the user plane function network element.
  • the base station here refers to a base station in a single connection scenario.
  • the uplink forwarding rule further includes a service flow identifier and a session identifier of the first service.
  • the uplink forwarding rule further includes a session identifier of the first service.
  • the method further includes: the session management function network element assigns the first service flow identifier and the second service flow identifier to the first service, and sends the first service flow identifier and the second service to the user equipment.
  • Stream ID assigns the first service flow identifier and the second service flow identifier to the first service, and sends the first service flow identifier and the second service to the user equipment.
  • the method further includes: the session management function network element sends an uplink forwarding rule to the user plane function network element, where the uplink forwarding rule is used to indicate that the user plane function network element will have the same sequence number and have the first service flow respectively.
  • the two uplink packets of the identifier and the second service flow identifier are deduplicated. Reference may be made to the description of step 1814 in Fig. 18 or step 1914 in Fig. 19, and details are not described herein again.
  • the method further includes: the session management function network element sends the indication information to the user equipment by using the NAS message, where the indication information is used to indicate that the user equipment copies the uplink packet, and obtains the first uplink packet and the first And transmitting the first uplink packet and the second uplink packet by using different radio bearers.
  • the first uplink packet and the second uplink packet have the same sequence number.
  • the indication information is further used to indicate that the first uplink packet corresponds to QFI-a, and the second uplink packet corresponds to QFI-b. Reference may be made to the description of steps 1804 to 1806 in FIG. 18, and details are not described herein again.
  • the method further includes: adding, by the user equipment, the first service flow identifier to the first uplink packet, for example, at the HRP layer, and adding the second service flow identifier to the second uplink packet.
  • the indication information further indicates that the user equipment adds a first service flow identifier to the first uplink packet, and adds a second service flow identifier to the second uplink packet.
  • the downlink packet of the first service that is sent by using the two paths corresponding to the first access network tunnel information and the second access network tunnel information respectively includes a first downlink packet and The second downlink packet, where the first downlink packet and the second uplink packet include the same first sequence number.
  • the first uplink packet corresponds to the first service flow identifier
  • the second uplink packet corresponds to the second service flow identifier.
  • the first uplink packet sent by the UE includes the first service flow identifier
  • the second uplink packet includes the second service flow identifier.
  • the indication information is further used to indicate that the user equipment de-duplicates the first downlink packet and the second downlink packet.
  • the first downlink packet and the second downlink packet have the same sequence number, and are respectively associated with the first service flow identifier and the second service flow identifier.
  • the embodiment of the present application further provides a packet transmission method, as shown in FIG. 7, including the following steps:
  • Step 701 The base station determines first access network tunnel information and second access network tunnel information corresponding to the first service.
  • the base station can be the primary base station in FIG. 3 or the base station in FIG.
  • Step 701 can refer to the description of step 306, 307 in FIG. 3 or step 506 in FIG. 5, and details are not described herein again.
  • Step 702 The base station sends the first access network tunnel information and the second access network tunnel information to the session management function network element.
  • the first access network tunnel information and the second access network tunnel information are used for determining the downlink forwarding rule.
  • the downlink forwarding rule is used to indicate that the user plane function network element copies the received downlink packet of the first service, and sends the first service by using two paths corresponding to the first access network tunnel information and the second access network tunnel information respectively. Downstream message.
  • the session management function network element can be the SMF in Figure 3 or Figure 5.
  • the two paths may refer to a first path between the user plane function network element and the primary base station, and a second path between the user plane function network element and the secondary base station.
  • the two paths may refer to a first path and a second path between the user plane function network element and the base station.
  • Step 702 may refer to steps 311 and 312 in FIG. 3 or steps 507 and 508 in FIG. 5, and details are not described herein again.
  • the base station sends the first access network tunnel information and the second access network tunnel information to the session management function network element, and the session management function is performed for a specific first service (for example, a URLLC service with high reliability requirement).
  • the network element sends a downlink forwarding rule including the first access network tunnel information and the second access network tunnel information to the user plane function network element, so that the user plane function network element subsequently receives the downlink packet of the first service, and then performs the downlink forwarding rule. And transmitting, by the two paths corresponding to the first access network tunnel information and the second access network tunnel information, the downlink packet of the first service. In this way, the reliability of message transmission of the first service is improved.
  • the uplink/downlink packet transmission of the first service can be implemented by using multiple (more than two) paths in the method of the embodiment of the present application, and details are not described herein. Thereby, the reliability of the URLLC service message is improved.
  • the downlink forwarding rule further includes a service flow identifier and a session identifier of the first service.
  • the downlink forwarding rule further includes a session identifier of the first service. Therefore, for services of different granularities, a downlink forwarding rule of a corresponding granularity can be provided, so that the user plane function network element can implement more accurate and efficient message transmission.
  • the method further includes: the base station receiving the indication information from the session management function network element.
  • the indication information is used to trigger determination of the first access network tunnel information and the second access network tunnel information.
  • the foregoing step 701 includes: determining, by the base station, the first access network tunnel information and the second access network tunnel information according to the indication information. That is to say, after receiving the indication information, the base station knows that the first access network tunnel information and the second access network tunnel information need to be determined.
  • the indication information may include at least one of the following: a quality of service parameter; slice identification information; a data network name; first core network tunnel information and second core network tunnel information.
  • the service quality parameter includes at least one of 5QI and QFI.
  • the method further includes: the base station receiving an uplink forwarding rule from the session management function network element, where the uplink forwarding rule includes the first core network tunnel information and the second core network tunnel information; and the base station replicates the received first according to the uplink forwarding rule.
  • the uplink packet of the service is sent to the user plane function network element by using the two paths corresponding to the first core network tunnel information and the second core network tunnel information.
  • the base station here refers to a base station in a single connection scenario.
  • the uplink forwarding rule further includes a service flow identifier and a session identifier of the first service.
  • the uplink forwarding rule further includes a session identifier of the first service.
  • the method further includes: the base station sending the indication information to the user equipment by using the AS message.
  • the indication information is used to indicate that the user equipment copies the uplink packet, and obtains the first uplink packet and the second uplink packet, and sends the first uplink packet and the second packet by using different radio bearers. Upstream message.
  • the first uplink packet and the second uplink packet have the same sequence number.
  • the indication information is further used to indicate that the first uplink packet corresponds to QFI-a, and the second uplink packet corresponds to QFI-b. Reference may be made to the description of step 1906 in FIG. 19, and details are not described herein again.
  • the method further includes: the base station transmitting, to the session management function network element, the first service flow identifier corresponding to the first access network tunnel information, and corresponding to the second access network tunnel information The second service flow identifier.
  • the method further includes: the base station instructing the user equipment to add a service flow identifier to the first uplink packet.
  • the method further includes: when the base station determines that the packet transmission is implemented by using the dual connectivity mode, the base station instructs the user equipment to generate two second uplink packets, where the two second uplink packets have the same sequence number and the service flow identifier. .
  • the method further includes: the base station instructing the user equipment to de-receive the received downlink packet with the same sequence number and service flow identifier.
  • the base station instructs the user equipment to de-duplicate the received downlink packet with the same sequence number and service flow identifier.
  • the method further includes: receiving, by the base station, the downlink packet of the first service by using two paths corresponding to the first access network tunnel information and the second access network tunnel information, respectively;
  • the downlink packet of the service flow identifier is deduplicated. For example, for a downlink scenario of a single connection (or a single base station), the downlink message with the same sequence number and service flow identifier is deduplicated by the base station.
  • FIG. 13 the embodiment of the present application further provides a packet transmission method, as shown in FIG. 13, including the following steps:
  • step 1301 the base station acquires the first indication.
  • the first indication includes capability information or indication information from a session management network element.
  • the indication information is used to indicate that the user equipment indicates that the user equipment adds the service flow identifier to the uplink packet of the first session or the uplink packet of the first service flow of the first session.
  • the capability information is used to indicate at least one of: whether the base station (ie, the primary base station) has the capability of implementing message transmission by the dual connectivity mode; the neighboring base station of the base station (ie, the base station having the Xn interface with the base station) For example, the secondary base station has the capability of implementing message transmission through the dual connectivity mode; whether other base stations (eg, secondary base stations) having the capability of implementing message transmission by the dual connectivity mode are deployed in the slice associated with the base station.
  • Step 1302 The base station instructs the user equipment to add a service flow identifier to the first uplink packet according to the first indication.
  • the service flow identifier may include at least one of a session identifier, a QFI, and a quintuple.
  • the base station instructs the user equipment to add the service flow identifier for the first uplink packet according to the received indication information.
  • the base station When the first indication includes the capability information, the base station indicates, according to the first indication, that the user equipment adds the service flow identifier to the first uplink packet, that is, when the capability information meets the first condition, the base station indicates that the user equipment is the first uplink. Add a service flow identifier.
  • the first condition includes at least one of the following: the capability information indicates that the base station has the capability of implementing message transmission by using the dual connectivity mode; and the capability information indicates that the neighboring base station of the base station has the capability of implementing message transmission by using the dual connectivity mode; The information indicates that other base stations having the capability of implementing message transmission by dual connectivity are deployed within the slice associated with the base station.
  • steps 1301 and 1302 may refer to the description in FIG. 3, and details are not described herein.
  • the base station instructs the UE to add a service flow identifier for the uplink packet.
  • the single-connection and the dual-connection adopt the same protocol stack format.
  • the UE can directly process according to the protocol stack format, thereby avoiding complicated operations and signaling. Interaction also reduces latency, which improves the user experience.
  • the method further includes: when the base station determines that the packet transmission is implemented by using the dual connectivity mode, the base station instructs the user equipment to generate two second uplink packets, where the two second uplink packets have the same sequence number and the service flow identifier. .
  • the method further includes: the base station instructing the user equipment to de-receive the received downlink packet with the same sequence number and service flow identifier.
  • the base station instructs the user equipment to de-duplicate the received downlink packet with the same sequence number and service flow identifier.
  • the method further includes: receiving, by the base station, the downlink packet of the first service by using two paths corresponding to the first access network tunnel information and the second access network tunnel information, respectively;
  • the downlink packet of the service flow identifier is deduplicated.
  • the downlink message with the same sequence number and service flow identifier is deduplicated by the base station. This step can be referred to the description of step 1212 in FIG.
  • the embodiment of the present application further provides a message transmission method.
  • This method is suitable for dual-connected scenarios. As shown in FIG. 14, the method includes the following steps:
  • Step 1401 The user equipment generates a first uplink packet and a second uplink packet according to the indication obtained by the first base station, where the first uplink packet and the second uplink packet have the same first service flow identifier and the first A serial number.
  • Step 1402 The user equipment sends a first uplink packet to the first base station, and sends a second uplink packet to the second base station.
  • Steps 1401 and 1402 may refer to the description of step 1101 in FIGS. 3 and 11.
  • the UE adds the service flow identifier and the sequence number to the uplink packet according to the indication of the base station.
  • the UE implements copying of the message. In this way, the reliability of message transmission for a specific service is improved.
  • the method further includes: the user equipment receives the first downlink packet and the second downlink packet from the first base station and the second base station, where the first downlink packet and the second downlink packet include the same And the second downlink packet and the second downlink packet are de-duplicated according to the indication of the base station.
  • This step can be referred to the description of step 1113 in FIG.
  • each solution of the communication method provided by the embodiment of the present application is introduced from the perspective of the interaction between the network elements and the network elements.
  • each network element such as the above-mentioned session management function network element and base station, in order to implement the above functions, includes hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
  • the message transmission device may include a receiving module 801 and a transmitting module 802, as shown in FIG.
  • the device can be a session management function network element or chip.
  • the apparatus can be used to perform the operations of the session management function network element in the SMF of FIG. 3 or FIG. 5, or 18, FIG. 19 or FIG.
  • the receiving module 801 is configured to receive first access network tunnel information and second access network tunnel information corresponding to the first service.
  • the sending module is configured to send a downlink forwarding rule to the user plane function network element, where the downlink forwarding rule includes the first access network tunnel information and the second access network tunnel information, where the downlink forwarding rule is used to indicate
  • the user plane function network element copies the received downlink packet of the first service, and sends the downlink packet by using two paths corresponding to the first access network tunnel information and the second access network tunnel information respectively.
  • the downlink packet of the first service is configured to perform the operations of the session management function network element in the SMF of FIG. 3 or FIG. 5, or 18, FIG. 19 or FIG.
  • the receiving module 801 is configured to receive first access network tunnel information and second access network tunnel information corresponding to the first service.
  • the sending module is configured to send a down
  • the session management function network element sends the first access network tunnel information and the second access network tunnel information to the user plane function network element.
  • the downlink forwarding rule is such that after the user plane function network element receives the downlink packet of the first service, it performs replication, and adopts two paths corresponding to the first access network tunnel information and the second access network tunnel information respectively. Send the downlink packet of the first service. In this way, the reliability of message transmission of the first service is improved.
  • the first service is a service flow granularity service
  • the downlink forwarding rule further includes a service flow identifier and a session identifier of the first service; or the first service is a session granularity service, where The downlink forwarding rule further includes a session identifier of the first service.
  • the sending module 802 is further configured to send indication information to the base station, where the indication information is used to trigger determination of the first access network tunnel information and the second access network tunnel information.
  • the indication information includes at least one of the following: a quality of service parameter; a slice identification information; a data network name; first core network tunnel information and second core network tunnel information.
  • the sending module 802 is configured to send an uplink forwarding rule to the base station, where the uplink forwarding rule includes first core network tunnel information and second core network tunnel information, where the uplink forwarding rule is used to indicate that the base station replicates Receiving, by the uplink packet of the first service, the uplink packet of the first service is sent to the two paths corresponding to the first core network tunnel information and the second core network tunnel information respectively to
  • the user plane functions a network element.
  • the first service is a service flow granularity service
  • the uplink forwarding rule further includes a service flow identifier and a session identifier of the first service; or the first service is a session granularity service.
  • the uplink forwarding rule further includes a session identifier of the first service.
  • the downlink packet of the first service that is sent by using the two paths corresponding to the first access network tunnel information and the second access network tunnel information respectively includes a first downlink packet and a second downlink packet, where the first downlink packet and the second downlink packet have the same sequence number, the first downlink packet further includes a first service flow identifier, and the second The downlink message further includes a second service flow identifier.
  • the sending module 802 is further configured to send an uplink forwarding rule to the user plane function network element, where the uplink forwarding rule is used to indicate that the user plane function network element will have the same sequence number and have the first The service flow identifier and the two uplink packets of the second service flow identifier are deduplicated.
  • the sending module 802 is further configured to send the indication information to the user equipment by using the non-access stratum NAS message, where the indication information is used to indicate that the user equipment copies the uplink packet, and obtains the first uplink packet and the first Transmitting the first uplink packet and the second uplink packet by using different radio bearers, where the first uplink packet and the second uplink packet have the same sequence number .
  • the first uplink packet corresponds to the first service flow identifier
  • the second uplink packet corresponds to the second service flow identifier.
  • the device can also include a processing module 803.
  • the processing module 803 is configured to allocate the first service flow identifier and the second service flow identifier to the first service, and send the first service flow identifier and the second service flow identifier to the user equipment.
  • the receiving module 801, the sending module 802, and the processing module 803 in the device may also implement other operations or functions of the SMF or the session management function network element in the foregoing method, and details are not described herein again.
  • Another message transmission device may include a processing module 901 and a transmission module 902, as shown in FIG.
  • the device further includes a receiving module 903.
  • the device can be a base station or a chip.
  • the apparatus can be used to perform the operations of the primary base station or the base stations of FIGS. 5 and 7 in FIG. 3, FIG. 18 or FIG.
  • the processing module 901 is configured to determine first access network tunnel information and second access network tunnel information corresponding to the first service.
  • the sending module 902 is configured to send, by the session management function network element, the first access network tunnel information and the second access network tunnel information, the first access network tunnel information and the second access network tunnel The information is used for determining the downlink forwarding rule, where the downlink forwarding rule is used to indicate that the user plane function network element copies the received downlink packet of the first service and passes the tunnel information and the first access network respectively.
  • the two paths corresponding to the second access network tunnel information send the downlink packet of the first service.
  • the base station sends the first access network tunnel information and the second access network tunnel information to the session management function network element.
  • the session management function network element Sending a downlink forwarding rule that includes the first access network tunnel information and the second access network tunnel information to the user plane function network element, so that the user plane function network element subsequently receives the downlink packet of the first service, and then performs replication. And sending, by the two paths corresponding to the first access network tunnel information and the second access network tunnel information, the downlink packet of the first service. In this way, the reliability of message transmission of the first service is improved.
  • the first service is a service flow granularity service
  • the downlink forwarding rule further includes a service flow identifier and a session identifier of the first service; or the first service is a session granularity service, where The downlink forwarding rule further includes a session identifier of the first service.
  • the receiving module 903 is configured to receive an indication from the session management function network element before the processing module 901 determines the first access network tunnel information and the second access network tunnel information corresponding to the first service. information.
  • the indication information is used to trigger the base station to determine the first access network tunnel information and the second access network tunnel information.
  • the processing module 901 is configured to determine the first access network tunnel information and the second access network tunnel information according to the indication information.
  • the indication information includes at least one of the following: a quality of service parameter; a slice identification information; a data network name; first core network tunnel information and second core network tunnel information.
  • the receiving module 903 is configured to receive an uplink forwarding rule from the session management function network element, where the uplink forwarding rule includes first core network tunnel information and second core network tunnel information.
  • the processing module 901 is configured to copy, according to the uplink forwarding rule, the received uplink packet of the first service, where the sending module 902 is configured to pass the uplink packet of the first service with the first core network tunnel information. Two paths corresponding to the second core network tunnel information are sent to the user plane function network element.
  • the first service is a service flow granularity service
  • the uplink forwarding rule further includes a service flow identifier and a session identifier of the first service; or the first service is a session granularity service.
  • the uplink forwarding rule further includes a session identifier of the first service.
  • the sending module 902 is further configured to send the indication information to the user equipment by using the access layer AS message, where the indication information is used to indicate that the user equipment copies the uplink packet, and obtains the first uplink packet and the second packet.
  • the uplink packet is sent, and the first uplink packet and the second uplink packet are sent by using different radio bearers.
  • the processing module 901 is configured to control the sending module 902 to initiate establishment of the first radio bearer between the first base station and the user equipment; and establish a second radio between the second base station and the user equipment.
  • the sending module 902 or the sending module in the second base station sends the indication information to the user equipment, where the indication information is used to indicate that the user equipment uses the first radio bearer and the second
  • the radio bearer is associated with the same Packet Data Convergence Layer Protocol PDCP entity on the user equipment.
  • the first base station or the second base station sends the indication information to the user equipment by using a radio resource control RRC layer message.
  • processing module 901, the sending module 902, and the receiving module 903 in the device may also implement other operations or functions of the base station or the primary base station (for example, FIG. 11, 12, 13) in the foregoing method, and details are not described herein again.
  • the device can be a UE or a chip.
  • the apparatus can be used to perform the operations of the UE in FIG. 11, FIG. 15, FIG. 17, FIG. 18, FIG. 19 or FIG.
  • the processing module 901 is configured to generate a first uplink packet and a second uplink packet according to the indication obtained by the first base station, where the first uplink packet and the second uplink packet have the same A service flow identifier and a first serial number.
  • the sending module 902 is configured to send the first uplink packet to the first base station, and send the second uplink packet to the second base station.
  • the UE adds the service flow identifier and the sequence number to the uplink packet according to the indication of the base station.
  • the UE implements copying of the message. In this way, the reliability of message transmission for a specific service is improved.
  • the receiving module 903 is configured to receive, by the first base station and the second base station, a first downlink packet and a second downlink packet, where the first downlink packet and the second downlink are respectively The message includes the same second traffic flow identifier and the same second serial number.
  • the processing module 901 is further configured to de-weight the first downlink packet and the second downlink packet according to the indication of the base station.
  • the sending module 902 and/or the receiving module 903 are configured to interact with the first base station to establish a first radio bearer between the first base station and the user equipment; and establish a second base station and the user equipment
  • the receiving module 903 is configured to receive the indication information from the first base station or the second base station, where the indication information is used to indicate that the user equipment is to use the first radio bearer
  • the second radio bearer is associated with the same packet data convergence layer protocol PDCP entity on the user equipment
  • the processing module 901 is configured to generate a first packet and a second packet according to the indication information, where the The first packet and the second packet have the same sequence number
  • the sending module 902 is configured to send the first packet to the first base station by using the first radio bearer, by using the second radio bearer Sending the second packet to the second base station.
  • the user equipment generates the first packet and the second packet according to the indication information, including: the user equipment copies the packet at the PDCP layer according to the indication information
  • the receiving module 903 is configured to obtain the indication information from the network side device
  • the processing module 901 is configured to generate, according to the indication information, the first uplink packet and the second uplink packet, by using the first radio bearer to the first base station. Sending the first uplink packet, and sending the second uplink packet to the second base station by using the second radio bearer; where the first uplink packet and the second uplink packet have the same sequence number.
  • the first uplink packet corresponds to the first service flow identifier
  • the second uplink packet corresponds to the second service flow identifier.
  • the user equipment generates the first uplink packet and the second uplink packet according to the indication information, where the user equipment copies the packet according to the indication information at the first protocol layer, to obtain the first An uplink packet and the second uplink packet.
  • the first protocol layer includes a high reliability protocol HRP layer; the user equipment acquires the indication information from a session management function network element by using a non-access stratum NAS message.
  • the first protocol layer includes a service data adaptation protocol SDAP layer; the user equipment acquires the indication information from the first base station by using an AS message.
  • the receiving module 903 is further configured to receive, by the first base station and the second base station, a first downlink packet and a second downlink packet, where the first downlink packet has a second serial number.
  • the second downlink packet has the second sequence number, which is corresponding to the second service flow identifier, and the processing module 901 is further configured to: according to the indication information, The first downlink packet and the second downlink packet are deduplicated.
  • the device can be a UPF or a chip.
  • the apparatus can be used to perform the operations of the UPF in Figures 18, 19, 20 or 21 above.
  • the receiving module 903 is configured to receive an uplink forwarding rule from the session management function network element, and receive the first uplink packet and the second uplink packet, where the first uplink packet has the first service flow identifier and the first sequence.
  • the second uplink packet has a second service flow identifier and the first sequence number
  • the processing module 901 is configured to: the first uplink packet and the second uplink packet according to the uplink forwarding rule.
  • the text goes heavy.
  • the uplink forwarding rule is used to indicate that the user plane function network element decrements two uplink packets having the same sequence number and having the first service flow identifier and the second service flow identifier respectively. .
  • the receiving module 903 is further configured to receive a downlink forwarding rule from the session management function network element, where the processing module 901 is further configured to generate, according to the downlink forwarding rule, a first downlink packet and a second downlink packet.
  • the sending module 902 is configured to send the first downlink packet to the first base station, and send the second downlink packet to the second base station, where the first downlink packet has the first service flow identifier. And a second sequence number, where the second downlink message has the second service flow identifier and the second sequence number.
  • the processing module 901 generates the first downlink packet and the second downlink packet according to the downlink forwarding rule, where the processing module 901 copies the packet in the first protocol layer according to the downlink forwarding rule, to obtain the first a downlink packet and the second downlink packet, wherein the first protocol layer comprises a high reliability protocol HRP layer or a general packet radio system tunneling protocol user plane part GTP-U layer.
  • the first protocol layer comprises a high reliability protocol HRP layer or a general packet radio system tunneling protocol user plane part GTP-U layer.
  • FIG. 10 is a schematic diagram showing another possible structure of the message transmission apparatus involved in the above embodiment.
  • the apparatus includes a transceiver 1001 and a processor 1002, as shown in FIG.
  • the processor 1002 can be a general purpose microprocessor, a data processing circuit, an application specific integrated circuit (ASIC), or a field-programmable gate arrays (FPGA) circuit.
  • the apparatus may also include a memory 1003, for example, the memory is a random access memory (RAM).
  • the memory is for coupling with a processor 1002 that holds the computer program 10031 necessary for the device.
  • the communication method involved in the above embodiments further provides a computer readable storage medium 1004 (eg, a hard disk) in which the computer program 10041 of the above device is stored, and the computer program can be 10041 is loaded into the processor 1002.
  • a computer readable storage medium 1004 eg, a hard disk
  • the computer program 10041 of the above device is stored, and the computer program can be 10041 is loaded into the processor 1002.
  • the computer can be caused to perform the methods described above.
  • the processor 1002 is configured to perform the operations or functions of the session management function network element (eg, SMF) described above.
  • the transceiver 1004 is configured to enable communication of the apparatus with a user plane function network element, a base station (or primary base station), or other control plane network element (e.g., AMF).
  • the processor 1002 is configured to perform the operations or functions of the base station (or primary base station) described above.
  • the transceiver 1004 is configured to implement communication between the device and the user plane function network element and the session management function network element (eg, SMF).
  • SMF session management function network element
  • the processor 1002 is configured to perform the operations or functions of the UE described above.
  • the transceiver 1004 is configured to implement communication between the device and the base station and the user plane function network element.
  • the processor 1002 is configured to perform the operations or functions of the UPF described above.
  • the transceiver 1004 is configured to implement communication between the device and the base station and the session management function network element.
  • the processor for performing the message transmission apparatus of the present application may be a central processing unit (CPU), a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or Other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the steps of a method or algorithm described in connection with the present disclosure may be implemented in a hardware or may be implemented by a processor executing software instructions.
  • the software instructions may be comprised of corresponding software modules that may be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable hard disk, CD-ROM, or any other form of storage well known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in a communication device.
  • the processor and the storage medium can also reside as discrete components in the communication device.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种报文传输方法,包括:会话管理功能网元接收第一业务对应的第一接入网隧道信息和第二接入网隧道信息;向用户面功能网元发送下行转发规则。下行转发规则包括第一接入网隧道信息和第二接入网隧道信息。下行转发规则用于指示用户面功能网元复制接收到的所述第一业务的下行报文,通过分别与第一接入网隧道信息和第二接入网隧道信息对应的两条路径发送第一业务的下行报文。通过该方案,可提高报文传输的可靠性。

Description

报文传输方法、装置和系统
本申请要求于2018年4月3日提交中国国家知识产权局、申请号为201810291412.3、申请名称为“报文传输方法、装置和系统”的中国专利申请的优先权,要求于2018年5月18日提交中国国家知识产权局、申请号为201810483377.5、申请名称为“报文传输方法、装置和系统”的中国专利申请的优先权,要求于2018年11月20日提交中国国家知识产权局、申请号为201811386638.8、申请名称为“报文传输方法、装置和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,特别涉及一种报文传输方法、装置及系统。
背景技术
第五代(the 5th-Generation,5G)通信系统中提出了双连接(dual connection,DC)的机制。双连接机制下的通信系统包括两个无线接入网(radio access network,RAN)设备:主接入网设备(master RAN,M-RAN)和辅接入网设备(secondary RAN,S-RAN)。
如图1所示,在双连接机制下,上行/下行报文的传输路径有两条:(1)用户设备(user equipment,UE)、M-RAN、用户面功能(user plane function,UPF)网元、数据网络(data network,DN);(2)UE、S-RAN、UPF、DN。
以下行报文为例对传输路径进行说明,当UPF网元收到DN发送的下行报文时,按照报文特征进行分发,例如,将符合某特征的报文通过M-RAN发送至UE,将符合其它特征的报文通过S-RAN发送至UE。也就是说,通过这两条传输路径发送的是不同的报文。
随着5G的发展,5G网络架构中定义了极高可靠性低时延通信(ultra-reliable low latency communication,URLLC)场景,主要包括如无人驾驶、工业自动化等需要低时延、高可靠连接的业务。由于上述URLLC场景多为生命安全或生产安全相关的业务,因此容不得差错。在URLLC场景中,如何利用双连接机制中的双传输路径提高报文传输的可靠性成了亟需解决的问题。
发明内容
本发明实施例提供了一种报文传输方法、装置及系统。
第一方面,本申请的实施例提供了一种传输控制方法,该方法包括:会话管理功能网元接收第一业务对应的第一接入网隧道信息和第二接入网隧道信息;会话管理功能网元向用户面功能网元发送下行转发规则。下行转发规则包括第一接入网隧道信息和第二接入网隧道信息,用于指示用户面功能网元复制接收到的第一业务的下行报文,通过分别与第一接入网隧道信息和第二接入网隧道信息对应的两条路径发送第一业务 的下行报文。例如,在双连接的场景下,上述两条路径可以是指用户面功能网元与主基站之间的第一路径,以及,用户面功能网元和辅基站之间的第二路径。在单连接的场景下,上述两条路径可以是指用户面功能网元与基站之间的第一路径和第二路径。
通过上述方法,对于特定的第一业务(例如,具有高可靠性需求的URLLC业务),会话管理功能网元向向用户面功能网元发送包含第一接入网隧道信息和第二接入网隧道信息的下行转发规则,使得用户面功能网元后续收到第一业务的下行报文后,进行复制,并通过分别与第一接入网隧道信息和第二接入网隧道信息对应的两条路径发送第一业务的下行报文。这样,提高了第一业务的报文传输的可靠性。
在一种可能的设计中,如果第一业务是业务流粒度的业务,那么下行转发规则还包括第一业务的业务流标识和会话标识。或者,如果第一业务是会话粒度的业务,那么下行转发规则还包括第一业务的会话标识。因此,对于不同粒度的业务,可提供相应粒度的下行转发规则,使得用户面功能网元可以实现更加准确高效的报文传输。
在一种可能的设计中,该方法还包括:会话管理功能网元向基站发送指示信息,指示信息用于触发第一接入网隧道信息和第二接入网隧道信息的确定。也就是说,基站收到指示信息后,就知道了需要确定第一接入网隧道信息和第二接入网隧道信息。例如,指示信息可以包括以下至少一项:服务质量参数;切片标识信息;数据网络名称;第一核心网隧道信息和第二核心网隧道信息。
在一种可能的设计中,该方法还包括:会话管理功能网元向基站发送上行转发规则。上行转发规则包括第一核心网隧道信息和第二核心网隧道信息,用于指示基站复制接收到的第一业务的上行报文,将第一业务的上行报文通过分别与第一核心网隧道信息和第二核心网隧道信息对应的两条路径发送到用户面功能网元。这里的基站指的是单连接场景下的基站。
类似的,如果第一业务是业务流粒度的业务,那么上行转发规则还包括第一业务的业务流标识和会话标识。或者,如果第一业务是会话粒度的业务,那么上行转发规则还包括第一业务的会话标识。
在一种可能的设计中,通过分别与所述第一接入网隧道信息和所述第二接入网隧道信息对应的两条路径发送的所述第一业务的下行报文包括第一下行报文和第二下行报文,其中,所述第一下行报文和所述第二下行报文具有相同的序列号,所述第一下行报文还包括第一业务流标识,所述第二下行报文还包括第二业务流标识。
在一种可能的设计中,该方法还包括:所述会话管理功能网元为所述第一业务分配所述第一业务流标识和所述第二业务流标识,向用户设备发送所述第一业务流标识和所述第二业务流标识。
在一种可能的设计中,该方法还包括:所述会话管理功能网元向所述用户面功能网元发送上行转发规则,所述上行转发规则用于指示所述用户面功能网元将具有相同序列号且分别具有所述第一业务流标识和所述第二业务流标识的两个上行报文去重。
在一种可能的设计中,该方法还包括:所述会话管理功能网元通过非接入层NAS消息向用户设备发送指示信息;其中,所述指示信息用于指示所述用户设备复制上行报文,得到第一上行报文和第二上行报文,并通过不同的无线承载发送所述第一上行报文和所述第二上行报文,其中,所述第一上行报文和所述第二上行报文具有相同的 序列号。例如,所述第一上行报文与所述第一业务流标识对应,所述第二上行报文与所述第二业务流标识对应。
第二方面,本申请的实施例提供了一种报文传输方法,该方法包括:基站确定第一业务对应的第一接入网隧道信息和第二接入网隧道信息;基站向会话管理功能网元发送第一接入网隧道信息和第二接入网隧道信息。第一接入网隧道信息和第二接入网隧道信息用于下行转发规则的确定。下行转发规则用于指示用户面功能网元复制接收到的第一业务的下行报文并通过分别与第一接入网隧道信息和第二接入网隧道信息对应的两条路径发送第一业务的下行报文。例如,在双连接的场景下,上述两条路径可以是指用户面功能网元与主基站之间的第一路径,以及,用户面功能网元和辅基站之间的第二路径;基站指的是主基站。在单连接的场景下,上述两条路径可以是指用户面功能网元与基站之间的第一路径和第二路径。
通过上述方法,基站向会话管理功能网元发送第一接入网隧道信息和第二接入网隧道信息,对于特定的第一业务(例如,具有高可靠性需求的URLLC业务),会话管理功能网元向向用户面功能网元发送包含第一接入网隧道信息和第二接入网隧道信息的下行转发规则,使得用户面功能网元后续收到第一业务的下行报文后,进行复制,并通过分别与第一接入网隧道信息和第二接入网隧道信息对应的两条路径发送第一业务的下行报文。这样,提高了第一业务的报文传输的可靠性。
在一种可能的设计中,如果第一业务是业务流粒度的业务,那么下行转发规则还包括第一业务的业务流标识和会话标识。或者,如果第一业务是会话粒度的业务,那么下行转发规则还包括第一业务的会话标识。因此,对于不同粒度的业务,可提供相应粒度的下行转发规则,使得用户面功能网元可以实现更加准确高效的报文传输。
在一种可能的设计中,该方法还包括:基站从会话管理功能网元接收指示信息。相应的,基站确定第一业务对应的第一接入网隧道信息和第二接入网隧道信息,包括:基站根据指示信息确定第一接入网隧道信息和第二接入网隧道信息。例如,指示信息可以包括以下至少一项:服务质量参数;切片标识信息;数据网络名称;第一核心网隧道信息和第二核心网隧道信息。
在一种可能的设计中,该方法还包括:基站从会话管理功能网元接收上行转发规则,上行转发规则包括第一核心网隧道信息和第二核心网隧道信息;基站根据上行转发规则复制接收到的第一业务的上行报文,并将第一业务的上行报文通过与第一核心网隧道信息和第二核心网隧道信息对应的两条路径发送到用户面功能网元。这里的基站指的是单连接场景下的基站。
类似的,如果第一业务是业务流粒度的业务,那么上行转发规则还包括第一业务的业务流标识和会话标识。或者,如果第一业务是会话粒度的业务,那么上行转发规则还包括第一业务的会话标识。
在一种可能的设计中,该方法还包括:基站指示用户设备为第一上行报文添加业务流标识。
在一种可能的设计中,该方法还包括:基站确定通过双连接方式实现报文传输时,基站指示用户设备生成两份第二上行报文,两份第二上行报文具有相同的序列号和业务流标识。
在一种可能的设计中,该方法还包括:基站指示用户设备对收到的具有相同序列号和业务流标识的下行报文去重。例如,对于双连接(或双基站)的下行场景,基站指示用户设备对收到的具有相同序列号和业务流标识的下行报文去重。
在一种可能的设计中,该方法还包括:基站通过分别与第一接入网隧道信息和第二接入网隧道信息对应的两条路径接收所述第一业务的下行报文;对具有相同序列号和业务流标识的下行报文去重。例如,对于单连接(或单基站)的下行场景,由基站对具有相同序列号和业务流标识的下行报文去重。
在一种可能的设计中,该方法还包括:所述基站通过接入层AS消息向用户设备发送指示信息,其中,所述指示信息用于指示所述用户设备复制上行报文,得到第一上行报文和第二上行报文,并通过不同的无线承载发送所述第一上行报文和所述第二上行报文。
第三方面,本申请的实施例提供了一种报文传输方法,该方法包括:基站获取第一指示;根据第一指示指示用户设备为第一上行报文添加业务流标识。其中,第一指示包括能力信息或来自会话管理网元的指示信息。因此,对于UE而言,单连接和双连接采用的是相同的协议栈格式,当后续切换至双连接方式后,UE可直接根据该协议栈格式进行处理,避免了复杂的操作和信令的交互,也降低了时延,从而提升了用户体验。
在一种可能的设计中,指示信息用于指示基站指示用户设备为第一会话的上行报文或第一会话的第一业务流的上行报文添加业务流标识。
在一种可能的设计中,当第一指示包括能力信息时,所述基站根据第一指示指示用户设备为第一上行报文添加业务流标识,包括:当能力信息满足第一条件时,基站指示用户设备为第一上行报文添加业务流标识。其中,第一条件包括以下中的至少一项:能力信息指示基站具有通过双连接方式实现报文传输的能力;能力信息指示基站的相邻基站具有通过双连接方式实现报文传输的能力;能力信息指示与基站关联的切片内部署了具有通过双连接方式实现报文传输的能力的其他基站。
在一种可能的设计中,该方法还包括:基站确定通过双连接方式实现报文传输时,基站指示用户设备生成两份第二上行报文,两份第二上行报文具有相同的序列号和业务流标识。
在一种可能的设计中,该方法还包括:基站指示用户设备对收到的具有相同序列号和业务流标识的下行报文去重。例如,对于双连接(或双基站)的下行场景,基站指示用户设备对收到的具有相同序列号和业务流标识的下行报文去重。
在一种可能的设计中,该方法还包括:基站通过分别与第一接入网隧道信息和第二接入网隧道信息对应的两条路径接收所述第一业务的下行报文;对具有相同序列号和业务流标识的下行报文去重。例如,对于单连接(或单基站)的下行场景,由基站对具有相同序列号和业务流标识的下行报文去重。
第四方面,本申请的实施例提供了一种报文传输方法,该方法包括:用户设备根据从第一基站获取的指示,生成第一上行报文和第二上行报文,其中,第一上行报文和第二上行报文具有相同的第一业务流标识和第一序列号;向第一基站发送第一上行报文,向第二基站发送第二上行报文。因此,对于采用双连接方式,UE根据基站的指 示为上行报文添加业务流标识和序列号。对于特定的业务(例如,具有高可靠性需求的URLLC业务)的报文,UE实现对报文的复制。这样,提高了特定业务的报文传输的可靠性。
在一种可能的设计中,该方法还包括:用户设备分别从第一基站和第二基站接收第一下行报文和第二下行报文,第一下行报文和第二下行报文包括相同的第二业务流标识和相同的第二序列号;用户设备根据基站的指示,对第一下行报文和所述第二下行报文去重。
第五方面,本申请的实施例提供了一种报文传输方法,该方法包括:第一基站发起建立所述第一基站与用户设备之间的第一无线承载;在建立第二基站与所述用户设备之间的第二无线承载的过程中,所述第一基站或所述第二基站向所述用户设备发送指示信息,所述指示信息用于指示所述用户设备将所述第一无线承载和所述第二无线承载关联至所述用户设备上的同一个分组数据汇聚层协议PDCP实体。
在一种可能的设计中,所述第一基站或所述第二基站向所述用户设备发送指示信息,包括:所述第一基站或所述第二基站通过无线资源控制RRC层消息向所述用户设备发送所述指示信息。
第六方面,本申请的实施例提供了一种报文传输方法,该方法包括:用户设备与第一基站交互,以建立所述第一基站与所述用户设备之间的第一无线承载;在建立第二基站与所述用户设备之间的第二无线承载的过程中,所述用户设备从所述第一基站或所述第二基站接收指示信息,所述指示信息用于指示所述用户设备将所述第一无线承载和所述第二无线承载关联至所述用户设备上的同一个分组数据汇聚层协议PDCP实体;所述用户设备根据所述指示信息生成第一报文和第二报文,其中,所述第一报文和所述第二报文具有相同的序列号;所述用户设备通过所述第一无线承载向所述第一基站发送所述第一报文,通过所述第二无线承载向所述第二基站发送所述第二报文。
在一种可能的设计中,所述用户设备根据所述指示信息生成第一报文和第二报文,包括:所述用户设备根据所述指示信息在PDCP层复制报文,得到所述第一报文和所述第二报文。
第七方面,本申请的实施例提供了一种报文传输方法,该方法包括:用户设备从网络侧设备获取指示信息;所述用户设备根据所述指示信息生成第一上行报文和第二上行报文,通过第一无线承载向第一基站发送所述第一上行报文,通过第二无线承载向第二基站发送所述第二上行报文;其中,所述第一上行报文和所述第二上行报文具有相同的序列号。
在一种可能的设计中,所述第一上行报文和第一业务流标识对应,所述第二上行报文和第二业务流标识对应。
在一种可能的设计中,所述用户设备根据所述指示信息生成第一上行报文和第二上行报文,包括:所述用户设备根据所述指示信息在第一协议层复制报文,得到所述第一上行报文和所述第二上行报文。例如,所述第一协议层包括高可靠协议HRP层;所述用户设备通过非接入层NAS消息从会话管理功能网元获取所述指示信息。或者,所述第一协议层包括业务数据适配协议SDAP层;所述用户设备通过AS消息从所述第一基站获取所述指示信息。
在一种可能的设计中,该方法还包括:所述用户设备分别从所述第一基站和所述第二基站接收第一下行报文和第二下行报文,所述第一下行报文具有第二序列号,与所述第一业务流标识对应,所述第二下行报文具有所述第二序列号,与所述第二业务流标识对应;所述用户设备根据所述指示信息,对所述第一下行报文和所述第二下行报文去重。
第八方面,本申请的实施例提供了一种报文传输方法,该方法包括:用户面功能网元从会话管理功能网元接收上行转发规则;所述用户面功能网元接收第一上行报文和第二上行报文,其中,所述第一上行报文具有第一业务流标识和第一序列号,所述第二上行报文具有第二业务流标识和所述第一序列号;所述用户面功能网元根据所述上行转发规则,对所述第一上行报文和所述第二上行报文去重。
在一种可能的设计中,所述上行转发规则用于指示所述用户面功能网元将具有相同序列号且分别具有所述第一业务流标识和所述第二业务流标识的两个上行报文去重。
在一种可能的设计中,该方法还包括:用户面功能网元从所述会话管理功能网元接收下行转发规则;所述用户面功能网元根据所述下行转发规则,生成第一下行报文和第二下行报文,向第一基站发送所述第一下行报文,向第二基站发送所述第二下行报文,其中,所述第一下行报文具有所述第一业务流标识和第二序列号,所述第二下行报文具有所述第二业务流标识和所述第二序列号。
在一种可能的设计中,该方法还包括:所述用户面功能网元根据所述下行转发规则,生成第一下行报文和第二下行报文,包括:所述用户面功能网元根据所述下行转发规则在第一协议层复制报文,得到所述第一下行报文和所述第二下行报文,其中,所述第一协议层包括高可靠协议HRP层或通用分组无线系统隧道协议用户面部分GTP-U层。
第九方面,本申请实施例提供了一种报文传输装置。该装置可以是会话管理功能网元,也可以是芯片。该装置具有实现第一方面或其各种可能的设计中会话管理功能网元行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,该装置的结构中包括处理器和收发器,所述处理器被配置为执行上述第一方面或其各种可能的设计中相应的功能。所述收发器用于实现该装置与用户面功能网元、基站之间的通信。所述装置还可以包括存储器,所述存储器用于与处理器耦合,其保存该装置必要的程序指令和数据。
第十方面,本申请实施例提供了一种报文传输装置。该装置可以是基站,也可以是芯片。该装置具有实现第二方面或其各种可能的设计中基站行为的功能,或具有实现第三方面或其各种可能的设计中基站行为的功能,或具有实现第五方面或其各种可能的设计中基站行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,该装置的结构中包括处理器和收发器,所述处理器被配置为执行上述第二方面或其各种可能的设计中相应的功能,或执行上述第三方面或其各种可能的设计中相应的功能,或执行上述第五方面或其各种可能的设计中相应的功能。所述收发器用于实现该装置与会话管理功能网元、用户面功能网元之间的通信。所述装置还可以包 括存储器,所述存储器用于与处理器耦合,其保存该装置必要的程序指令和数据。
第十一方面,本申请实施例提供了一种报文传输装置。该装置可以是用户设备,也可以是芯片。该装置具有实现第四方面或其各种可能的设计中用户设备行为的功能,或具有实现第六方面或其各种可能的设计中基站行为的功能,或具有实现第七方面或其各种可能的设计中基站行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,该装置的结构中包括处理器和收发器,所述处理器被配置为执行上述第四方面或其各种可能的设计中相应的功能,或执行上述第六方面或其各种可能的设计中相应的功能,或执行上述第七方面或其各种可能的设计中相应的功能。所述收发器用于实现该装置与基站、会话管理功能网元之间的通信。所述装置还可以包括存储器,所述存储器用于与处理器耦合,其保存该装置必要的程序指令和数据。
第十二方面,本申请实施例提供了一种报文传输装置。该装置可以是用户面功能网元,也可以是芯片。该装置具有实现第八方面或其各种可能的设计中用户面功能网元行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,该装置的结构中包括处理器和收发器,所述处理器被配置为执行上述第八方面或其各种可能的设计中相应的功能。所述收发器用于实现该装置与会话管理功能网元、基站之间的通信。所述装置还可以包括存储器,所述存储器用于与处理器耦合,其保存该装置必要的程序指令和数据。
第十三方面,本申请实施例提供了一种报文传输系统,该系统包括用于执行第一方面或其各种可能的设计中方法的会话管理功能网元,以及用于执行第二方面或其各种可能的设计中方法的基站。在双连接的场景下,执行第二方面或其各种可能的设计中方法的基站为主基站。可选的,该系统还可包括用于实现双连接的辅基站。
第十四方面,本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
第十五方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
附图说明
图1所示为5G双连接机制中双传输路径的示意图。
图2所示为5G通信系统双连接的示意图。
图3所示为根据本申请实施例提供的一种报文传输方法的信令交互图。
图4所示为5G通信系统单连接的示意图。
图5所示为根据本申请另一实施例提供的一种报文传输方法的信令交互图。
图6所示为根据本申请实施例提供的一种报文传输方法的流程图。
图7所示为根据本申请实施例提供的一种报文传输方法的另一流程图。
图8所示为根据本申请实施例提供的一种报文传输装置的结构示意图。
图9所示为根据本申请实施例提供的另一种报文传输装置的结构示意图。
图10所示为根据本申请实施例提供的一种报文传输装置的另一结构示意图。
图11所示为根据本申请另一实施例提供的一种报文传输方法的信令交互图。
图12所示为根据本申请另一实施例提供的一种报文传输方法的信令交互图。
图13所示为根据本申请另一实施例提供的一种报文传输方法的流程图。
图14所示为根据本申请另一实施例提供的一种报文传输方法的流程图。
图15所示为根据本申请另一实施例提供的一种报文传输方法的信令交互图,可适用于PDCP层增强的解决方案。
图16所示为根据本申请另一实施例提供的一种报文传输方法的基站侧的流程图。
图17所示为根据本申请另一实施例提供的一种报文传输方法的UE侧的流程图。
图18所示为根据本申请另一实施例提供的一种报文传输方法的信令交互图,可适用于HRP层的解决方案。
图19所示为根据本申请另一实施例提供的一种报文传输方法的信令交互图,可适用于SDAP层的解决方案。
图20所示为根据本申请另一实施例提供的一种报文传输方法的UE侧的流程图。
图21所示为根据本申请另一实施例提供的一种报文传输方法的UPF侧的流程图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述。
在5G移动网络架构中,核心网包括控制面(control plane)网元和用户面(user plane)网元。其中,控制面网元为第三代合作伙伴计划(third generation partnership project,3GPP)传统的控制网元移动性管理实体(mobility management entity,MME)与服务网关(serving gateway,SGW)的控制面功能、分组数据网络网关(packet data network gateway,PGW)的控制面功能等合并成的统一的控制面。用户面功能网元能实现SGW和PGW的用户面功能(SGW-U和PGW-U)。进一步的,统一的控制面网元可以分解成接入和移动性管理功能(access and mobility management function,AMF)网元和会话管理功能(session management function,SMF)网元。
图2示出了本申请实施例提供的一种5G通信系统示意图。如图2所示,该通信系统至少包括UE 201、RAN设备(例如,M-RAN设备202、S-RAN设备203)、AMF网元204、SMF网元205、UPF网元206。
其中,本系统中所涉及到的UE 201不受限于5G网络,包括:手机、物联网设备、智能家居设备、工业控制设备、车辆设备等。所述用户设备也可以称为终端(terminal)、终端设备(terminal device)、移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent),在此不作限定。上述用户设备还可以是车与车(Vehicle-to-vehicle,V2V)通信中的汽车、机器类通信中的机器等。
RAN设备是用于为UE 201提供无线通信功能的装置。以M-RAN设备202为例,M-RAN设备202可以包括各种形式的基站,例如:宏基站,微基站(也称为小站),中继站,接入点等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名 称可能会有所不同,例如,在第三代(3rd generation,3G)系统中,称为节点B(Node B);在长期演进(long term evolution,LTE)系统中,称为演进的节点B(evolved NodeB,eNB或者eNodeB);在第五代系统中,称为gNB(gNodeB)。以下将简称为M-RAN202。S-RAN设备203同理,不再赘述。
AMF网元204可负责UE 201的注册、移动性管理、跟踪区更新流程等。以下将简称为AMF 204。
SMF网元205可负责UE 201的会话管理。例如,会话管理包括:会话的建立、修改、释放;UPF网元的选择、重选;网络协议(internet protocol,IP)地址的分配等。以下将简称为SMF 205。
UPF网元206可连接至数据网络(data network,DN)207,用于实现业务的数据报文的传输。以下将简称为UPF 206。
在双连接机制下,上行/下行报文的传输路径有两条:(1)UE 201、M-RAN 202、UPF 206、DN 207;(2)UE 201、S-RAN 203、UPF 206、DN 207。其中,M-RAN 202和S-RAN 203之间存在信令连接,M-RAN 202和控制面(control plane,CP)网元,例如AMF 204、SMF 205,之间存在信令连接。可选的,S-RAN和CP之间没有信令连接。
以上各网元还可以称为设备或实体。例如,AMF网元也可称为AMF设备或AMF实体。
上述各网元既可以由指定的硬件实现、或者,也可以由在指定硬件上的软件实例实现、或者,也可以由在合适的平台上实例化的虚拟功能来实现,本发明并不在此限制。
可选的,该通信系统可适用于服务化架构(service framework)。在服务化架构下,控制面内使用基于服务的接口(service-based interface)。例如,AMF网元204、SMF网元204分别具有基于服务的接口Namf、Nsmf。一个功能网元通过基于服务的接口,可以向被授权的其他功能网元开放它的能力,从而提供网络功能(network function,NF)服务。换句话说,NF服务就是指能被提供的各种能力。
此外,本申请实施例还可以适用于面向未来的其他通信技术。本申请描述的网络架构以及业务场景是为了更加清楚的说明本申请的技术方案,并不构成对本申请提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请提供的技术方案对于类似的技术问题,同样适用。
第三代合作伙伴计划(Third Generation Partnership Project,3GPP)中定义了5G的三大场景:增强移动宽带(enhanced Mobile Broadband,eMBB)、大规模物联网(massive Machine Type Communications,mMTC)和URLLC。其中,URLLC的特点包括高可靠性和低时延,可以应用于无人驾驶、工业自动化、远程制造、远程培训、远程手术等。例如,对于URLLC,用户面上行时延目标是0.5ms,下行是0.5ms。可靠性的目标是用户面时延1ms内,传送32字节包的丢包率不超过1~10^(-5)。
本申请旨在提供具有高可靠性的报文传输方案。例如,该报文传输方案可应用于URLLC场景。
图3所示为根据本申请实施例提供的一种报文传输方法的信令交互图。图3涉及UE、主基站、辅基站、AMF、SMF、UPF之间的交互。例如,UE、主基站、辅基站、AMF、SMF、UPF可以分别是图2中的UE 201、M-RAN 202、S-RAN 203、AMF 204、SMF 205和UPF 206。
如图3所示,该方法包括如下步骤:
步骤301,UE通过主基站向AMF发送携带会话建立请求的非接入层(non-access stratum,NAS)消息,用于请求为UE建立分组数据单元(packet data unit,PDU)会话。
该NAS消息中还可以包括UE为该会话分配的PDU会话标识(PDU session ID)、单网络切片选择辅助信息(Single Network Slice Selection Assistance Information,S-NSSAI)和数据网络名称(data network name,DNN)。其中,S-NSSAI用于指示该会话对应的切片类型;DNN用于指示该会话对应的DN。
步骤302,执行会话建立流程的其他步骤。
例如,上述其他步骤至少包括AMF选择SMF,SMF选择UPF,此处不赘述。
步骤303,SMF向AMF传输N2会话管理信息(N2 session management information,N2 SM information)。
例如,SMF通过调用AMF的N1N2消息传输的服务(Namf_Communication_N1N2MessageTransfer),向AMF发送N2 SM信息。其中,N2 SM信息至少包括PDU会话标识和核心网的隧道信息(CN tunnel info)。N2 SM信息还可以包括服务质量(quality of service,QoS)参数、QoS流标识(QoS flow identifier,QFI)、切片标识信息(例如,S-NSSAI)、会话粒度的聚合最大比特速率(session-aggregate maximum bit rate,sesssion-AMBR)、PDU会话的类型。可选的,N2 SM信息还可以包括数据网络名称(data network name,DNN)。此外,通过调用该服务还可以向AMF发送包含会话接受消息的N1 SM容器(container)。
步骤304,AMF向主基站发送N2 SM信息。
例如,AMF向主基站发送N2会话请求,该N2会话请求包括N2 SM信息和NAS消息。NAS消息中包含PDU会话标识和上述N1 SM容器。
其中,上述核心网的隧道信息包括第一核心网隧道信息和第二核心网隧道信息。第一核心网隧道信息和第二核心网隧道信息可以是SMF分配并通过AMF的转发发送至主基站的,或者,也可以是由UPF分配并发送给SMF后,由SMF通过AMF的转发发送至主基站的。
例如,第一核心隧道信息包括UPF的第一网络协议(internet protocol,IP)地址和UPF的第一隧道端点标识(tunnel endpoint identifier,TEID)。第二核心网隧道信息包括UPF的第二IP地址和UPF的第二TEID。第一IP地址和第二IP地址可以相同,也可以不同。第一TEID和第二TEID不同。
当第一IP地址和第二IP地址不同时,第一IP地址和第二IP地址可用于标识相互独立的两条路径。相互独立的两条路径是指经过不同的传输实体(如交换机、路由器等)的两条路径,后面不再赘述。
当第一IP地址和第二IP地址相同时,上述N2 SM信息还包括与所述第一TEID 对应的第一网络标识信息,以及,与所述第二TEID对应的第二网络标识信息。第一网络标识信息和第二网络标识信息用于标识相互独立的两条路径。以第一网络标识信息为例,第一TEID和第一网络标识信息可以由不同的网元分配。第一网络标识信息可以包括虚拟局域网(virtual local area network,VLAN)标识(identifier,ID)或多协议标记交换(multi-protocol label switching,MPLS)标签。举例来说,与第一TEID对应的网络标识信息为VLAN ID1,与第二TEID对应的网络标识信息为VLAN ID2。这样,在第一IP地址和第二IP地址相同的情况下,后续发送第一核心网隧道信息和第二核心网隧道信息的时候,还发送与所述第一TEID对应的第一网络标识信息,以及,与所述第二TEID对应的第二网络标识信息,之后不再赘述。例如,可通过第一容器发送第一核心网隧道信息和第一网络标识信息,通过第二容器发送第二核心网隧道信息和第二网络标识信息。
步骤305,主基站发起与UE之间的接入网资源的建立。
步骤306,主基站确定增加辅基站,向辅基站发送增加辅基站请求。
其中,主基站可根据指示信息确定使用双路径传输第一业务的下行报文,从而决定需要增加辅基站。第一业务包括URLLC业务。例如,上述N2 SM信息中包括的QoS参数、切片标识信息、DNN、第一核心网隧道信息和第二核心网隧道信息中的任一项或其组合可作为该指示信息。其中,QoS参数包括5G QoS标识(5G QoS identifier,5QI)和QoS流标识(QoS flow identifier,QFI)中的至少一项。举例说明,主基站根据N2 SM信息中的QoS参数确定该会话具有高可靠性需求,从而确定增加辅基站;或者,主基站根据N2 SM信息中的切片标识信息确定该会话与极可靠低时延通信的切片关联,从而确定增加辅基站;或者,主基站根据N2 SM信息中的DNN确定该会话与极可靠低时延通信的数据网络关联,从而确定增加辅基站;或者,主基站直接根据N2 SM信息中的第一核心网隧道信息和第二核心网隧道信息确定使用双路径传输下行报文,从而确定增加辅基站。由于使用双路径传输下行报文需要用到第一接入网隧道信息和第二接入网隧道信息,因此,也可以认为指示信息触发了第一接入网隧道信息和第二接入网隧道信息的确定。其中,第一接入网隧道信息可以由主基站来确定,第二接入网隧道信息可以由辅基站来确定并发送给主基站。
例如,第一接入网隧道信息包括主基站的第三IP地址和主基站的第三TEID;第二接入网隧道信息包括辅基站的第四IP地址和辅基站的第四TEID。
可选的,若主基站发现当前环境(如UE上报的测量报告)无法使用双路径传输第一业务的下行报文,则主基站向AMF反馈指示信息,AMF将该指示信息发送给SMF,该指示信息用于指示无法使用双路径传输第一业务的下行报文。SMF收到指示信息后,拒绝会话建立流程或执行现有技术中会话建立流程过程中的后续步骤。
步骤307,辅基站向主基站返回增加辅基站请求确认。
例如,增加辅基站请求确认中包括辅基站确定的第二接入网隧道信息。
可选的,若第一业务是会话粒度的,则步骤306发送的增加辅基站请求中包含第一业务的会话标识,因此辅基站确定的第二接入网隧道信息也是会话粒度的,且与该会话标识对应。若第一业务是业务流粒度的,则步骤306发送的增加辅基站请求中包含第一业务的业务流的QFI,因此辅基站确定的第二接入网隧道信息也是业务流粒度 的,且与该QFI对应。从协议栈的角度来看,若主基站确定增加辅基站,主基站为该QFI生成分组数据汇聚层协议(Packet Data Convergence Protocol,PDCP)实体(entity),辅基站收到增加辅基站请求后,为该QFI生成PDCP实体。由此,该QFI与两个PDCP实体关联。因此,当主基站确定增加辅基站,即采用双连接方式进行报文传输,也可以理解为QFI与两个PDCP实体关联。
如上所述,第一接入网隧道信息包括主基站的第三IP地址和主基站的第三TEID;第二接入网隧道信息包括辅基站的第四IP地址和辅基站的第四TEID。第三IP地址和第四IP地址可以相同,也可以不同。第三TEID和第四TEID不同。
当第三IP地址和第四IP地址不同时,第三IP地址和第四IP地址用于标识相互独立的两条路径。
当第三IP地址和第四IP地址相同时,主基站收到第二接入网隧道信息后,分配与所述第三TEID对应的第三网络标识信息和与所述第四TEID对应的第四网络标识信息。第三网络标识信息和第四网络标识信息用于标识相互独立的两条路径。第三/第四网络标识信息可参考上述第一网络标识信息的描述,此处不再赘述。这样,在第三IP地址和第四IP地址相同的情况下,主基站后续发送第一接入网隧道信息和第二接入网隧道信息的时候,还发送与所述第三TEID对应的第三网络标识信息和与所述第四TEID对应的第四网络标识信息,之后不再赘述。例如,主基站可通过第三容器发送第一接入网隧道信息和第三网络标识信息,通过第四容器发送第二接入网隧道信息和第四网络标识信息。
步骤308,主基站向UE发起无线资源控制(radio resource control,RRC)连接重配置。
步骤309,主基站向辅基站反馈辅基站重配置完成,以通知辅基站UE成功完成了RRC连接重配置。
可选的,若辅基站具有RRC功能时,上述步骤307-309可以替换为:
307’,辅基站发起与UE之间的RRC连接建立过程。
308’,辅基站向主基站返回增加辅基站请求确认,可参考步骤307的描述,不再赘述。
步骤310,随机接入流程。
需要说明的是,此处并不限定步骤308和309以及步骤310之间的先后顺序,也可以先执行随机接入过程再执行步骤308和309。
可选的,在另一个实施例中,主基站可以在上述步骤305之前判断是否需要增加辅基站。主基站如何判断是否需要增加辅基站可参考步骤306的描述,此处不再赘述。若主基站确定增加辅基站(即,采用双连接方式进行报文传输),则可以通过上述步骤305或步骤308指示UE为上行报文添加业务流标识和序列号(复制上行报文,复制的上行报文具有相同的业务流标识和序列号)。若主基站确定不增加辅基站(即,采用单连接方式进行报文传输),主基站进一步判断获取到的能力信息是否满足第一条件。当能力信息满足第一条件时,则主基站可以通过上述步骤305或308指示UE为上行报文添加业务流标识。
例如,能力信息用于指示以下中的至少一项:该基站(即,主基站)是否具有通过双连接方式实现报文传输的能力;该基站的相邻基站(即,与该基站具有Xn接口的基站,例如,辅基站)是否具有通过双连接方式实现报文传输的能力;与该基站关联的切片内是否部署了具有通过双连接方式实现报文传输的能力的其他基站(例如,辅基站)。
例如,主基站可以通过配置方式、或在与相邻基站之间的Xn连接建立过程、N2会话建立过程中获取上述能力信息。举例来说,在该基站与相邻基站的Xn连接建立过程中,相邻基站将其能力信息发送至该基站。在该基站与AMF之间的N2会话建立过程中,SMF通过N2会话建立过程将切片内关于的部署情况发送至该基站。
此外,基站可通过注册流程中AMF返回的网络切片选择辅助信息(allowed Network Slice Selection Assistance Information,allowed NSSAI)来确定与该基站关联的切片;或者,基站可通过会话建立过程中SMF返回的该会话对应的S-NSSAI来确定与该基站关联的切片。由此,基站可结合获得的切片内的基站部署情况,来确定与该基站关联的切片内是否部署了具有通过双连接方式实现报文传输的能力的其他基站。
其中,第一条件包括以下中的至少一项:基站(即,主基站)具有通过双连接方式实现报文传输的能力;基站的相邻基站(例如,辅基站)具有通过双连接方式实现报文传输的能力;主基站关联的切片内部署了具有通过双连接方式实现报文传输的能力的其他基站(例如,辅基站)。
也就是说,当能力信息指示以下中的至少一项时:指示基站具有通过双连接方式实现报文传输的能力;指示基站的相邻基站(例如,辅基站)具有通过双连接方式实现报文传输的能力;指示与基站关联的切片内部署了具有通过双连接方式实现报文传输的能力的其他基站(例如,辅基站)时,能力信息满足上述第一条件。可以理解的是,当能力信息满足上述第一条件时,则表示该UE具有通过双连接方式实现报文传输的可能性。即便当前UE采用单连接的方式,之后也可能切换至双连接的方式。
因此,对于采用双连接方式,或之后有可能采用双连接方式的情况下,基站指示UE为上行报文添加业务流标识。例如,基站可通过指示UE启动业务数据适配协议(Service Data Adaptation Protocol,SDAP),从而指示UE为上行报文添加业务流标识。业务流标识可以包含在SDAP头(header)中。UE启动SDAP指的是UE为上行报文添加SDAP头。
其中,业务流标识可以包括会话标识、QFI、五元组中的至少一项。
因此,在基站之后有可能采用双连接方式的情况下,即便在单连接的场景下,基站也指示UE添加业务流标识。这样,对于UE而言,单连接和双连接采用的是相同的协议栈格式,当后续切换至双连接方式后,UE可直接根据该协议栈格式进行处理,避免了复杂的操作和信令的交互,也降低了时延,从而提升了用户体验。
而对于采用双连接方式,由于需要UE进行上行报文的复制,所以主基站指示UE添加序列号。可以理解的是,UE可采用各种方式实现上行报文的处理,且处理后的多份上行报文具有相同的序列号。例如,UE可以先为第一上行报文添加序列号,然后将添加序列号后的第一上行报文进行复制,得到具有相同序列号的的第二上行报文;或者,UE可以先将第一上行报文进行复制得到第二上行报文,然后为第一上行报文和第 二上行报文添加相同的序列号,本申请在此并不限制。
可选的,基站还指示UE对收到的具有相同序列号和业务流标识的下行报文进行去重。
可选的,在另一个实施例中,基站(即,主基站)可以在上述步骤305之前判断获取到的能力信息是否满足第一条件。当能力信息满足第一条件时,则可以通过上述步骤305指示UE为上行报文添加业务流标识。主基站若在步骤306判断需要增加辅基站,则可以通过上述步骤308指示UE为上行报文添加序列号。如何判断能力信息是否满足第一条件,如何判断是否需要增加辅基站,如何指示UE为上行报文添加业务流标识,如何指示UE为上行报文添加序列号可参考前面的描述,此处不再赘述。
可选的,基站还指示UE对收到的具有相同序列号和业务流标识的下行报文进行去重。
可选的,在又一个实施例中,上述步骤303、304传输的N2 SM信息中还包括指示信息,该指示信息用于指示基站(即上述主基站)去指示UE为第一会话的上行报文或第一会话的第一业务流的上行报文添加业务流标识。也就是说,可以由SMF来确定UE是否需要为上行报文添加业务流标识。例如,当SMF根据UE发送给SMF的N2 SM信息中的QFI确定该会话具有高可靠性需求,和/或,根据N2 SM信息中的切片标识信息确定该会话与极可靠低时延通信的切片关联,和/或,根据N2 SM信息中的DNN确定该会话与极可靠低时延通信的数据网络关联,和/或,根据UE的签约数据确定该UE为极可靠低时延通信的UE时,SMF确定UE需要为上行报文添加业务流标识,从而向基站发送指示信息,进而在基站收到指示信息后,由基站指示UE为上行报文添加业务流标识。这样,基站可以不做判断,从而简化基站侧的操作。
可选的,基站还指示UE对收到的具有相同序列号和业务流标识的下行报文进行去重。
步骤311,主基站向AMF发送第一接入网隧道信息和第二接入网隧道信息。
例如,主基站向AMF返回N2会话响应。N2会话响应包括PDU会话标识和N2 SM信息。其中,N2 SM信息中包括第一接入网隧道信息和第二接入网隧道信息。可选的,当第一业务是会话粒度的,N2 SM信息中还可以包括第一业务对应的会话标识;当第一业务是业务流粒度的,N2 SM信息中还可以包括第一业务对应的会话标识和QFI。
步骤312,AMF向SMF发送更新上下文请求。
例如,AMF调用SMF的更新SM上下文的服务(Nsmf_PDUSession_UpdateSMContext),发送Nsmf_PDUSession_UpdateSMContext请求。通过该请求,AMF将包括步骤311中收到的的N2 SM信息转发至SMF。
步骤313,SMF向UPF发送下行转发规则。
例如,SMF向UPF发送N4会话修改请求,该会话修改请求中包括上述下行转发规则。UPF返回N4会话修改响应。
需要说明的是,在另一种实现方式中,步骤303中的核心网隧道信息可以只包含 第一核心网隧道信息,但步骤311中包含第一接入网隧道信息和第二接入网隧道信息。SMF收到第一接入网隧道信息和第二接入网隧道信息后,分配第二核心网隧道信息,通过步骤313向UPF发送该第二核心网隧道信息,并通过AMF将第二核心网隧道信息发送至主基站;或者,UPF从SMF收到第一接入网隧道信息和第二接入网隧道信息后,分配第二核心网隧道信息,通过N4会话修改响应向SMF返回该第二核心网隧道信息。SMF将第二核心网隧道信息通过AMF发送到主基站。主基站将该第二核心网隧道信息发送到辅基站。
该下行转发规则包括第一接入网隧道信息和第二接入网隧道信息。该下行转发规则用于指示UPF复制接收到的第一业务的下行报文(为下行报文添加流标识和序列号),通过分别与第一接入网隧道信息和第二接入网隧道信息对应的两条路径发送第一业务的下行报文,即,通过第一接入网隧道信息对应的第一路径向主基站发送第一业务的下行报文,并通过第二接入网隧道信息对应的第二路径向辅基站发送第一业务的下行报文。该下行转发规则还用于指示UPF将收到的具有相同流标识和序列号的上行报文进行去重。
可选的,当第一业务是会话粒度的,SMF在步骤312中收到的N2 SM信息中还包括第一业务对应的会话标识,因而下行转发规则还包括第一业务对应的会话标识。当第一业务是业务流粒度的,SMF在步骤312中收到的N2 SM信息中还包括第一业务对应的会话标识和QFI,因而下行转发规则还包括第一业务对应的会话标识和QFI。
可选的,步骤312中收到的N2 SM信息中的第一业务对应的会话标识可以与下行转发规则中的第一业务对应的会话标识不同,但是彼此关联。例如,步骤312中收到的N2 SM信息中的第一业务对应的会话标识是PDU会话标识,SMF将该PDU会话标识转换成N4会话标识,将N4会话标识作为下行转发规则中的第一业务对应的会话标识,发送至UPF。
此外,该下行转发规则还包括第一业务的信息。
例如,第一业务的信息至少包括第一业务的五元组。例如,第一业务的信息可以指示具有哪些IP地址的报文对应第一业务的报文。换句话说,第一业务的信息的作用是报文过滤器,用于过滤得到第一业务的报文。例如,SMF可以从策略控制功能(policy control function,PCF)网元获取第一业务的信息,或者,在本地配置第一业务的信息。
步骤314,SMF向AMF发送更新上下文响应。
之后,UPF收到第一业务的下行报文后,根据转发规则,通过第一接入网隧道信息对应的第一路径和第二接入网隧道信息对应的第二路径分别向主基站和辅基站发送第一业务的下行报文。该第一业务的下行报文在两条路径上传输也表示在所述两条路径上发送的下行报文相同。
例如,UPF在收到一个下行报文后,将该下行报文的报文头特征与转发规则中的第一业务的信息进行匹配,从而确定该下行报文为第一业务的报文。
UPF在确定该下行报文为第一业务的报文之后,可复制该报文。在一种可能的实现方式中,UPF通过与主基站之间与第一接入网隧道信息对应的第一路径向UE发送原报文;通过与辅基站之间与第二接入网隧道信息对应的第二路径向UE发送复制的报文。在另一种可能的实现方式中,UPF通过与主基站之间与第一接入网隧道信息对 应的第一路径向UE发送复制的报文;通过与辅基站之间与第二接入网隧道信息对应的第二路径向UE发送原报文。在又一种可能的实现方式中,UPF复制两份报文,并分别通过与主基站之间与第一接入网隧道信息对应的第一路径和与辅基站之间与第二接入网隧道信息对应的第二路径向UE发送复制的报文。在上述几种方式中,通过双路径传输的下行报文是相同的。
此外,对于上行方向而言,主基站在上述步骤304中收到N2 SM信息中包括的第一核心网隧道信息和第二核心网隧道信息后,获知UE后续也可通过第一核心网隧道信息和第二核心网隧道信息对应的两条路径传输第一业务的上行报文。例如,主基站对应第一核心网隧道信息所对应的第一路径,辅基站对应第二核心网隧道信息所对应的第二路径。因此,主基站可通过步骤306中的增加辅助请求向辅基站发送第二核心网隧道信息。在步骤308中,主基站收到辅基站确定的第二接入网隧道信息后,通过RRC连接重配置的过程向UE发送上行转发规则。该上行转发规则包括第一接入网隧道信息和第二接入网隧道信息,用于指示UE复制接收到的第一业务的上行报文,将第一业务的上行报文通过与第一接入网隧道信息对应的路径发送至主基站,并通过与第二接入网隧道信息对应的路径发送至辅基站。
类似的,该上行转发规则还包括第一业务的信息,此处不再赘述。UE根据第一业务的信息确定上行报文为第一业务的报文之后,可复制该报文。在一种可能的实现方式中,UE通过与第一接入网隧道信息对应的第一路径向主基站发送原报文;通过与第二接入网隧道信息对应的第二路径向辅基站发送复制的报文。在另一种可能的实现方式中,UE通过与第一接入网隧道信息对应的第一路径向主基站发送复制的报文;通过与第二接入网隧道信息对应的第二路径向辅基站发送原报文。在又一种可能的实现方式中,UE复制两份报文,通过与第一接入网隧道信息对应的第一路径向主基站发送复制的报文,并通过与第二接入网隧道信息对应的第二路径向辅基站发送复制的报文。在上述几种方式中,通过双路径传输的上行报文是相同的。主基站收到上行报文后,根据第一核心网隧道信息向UPF发送该上行报文。辅基站收到上行报文后,根据第二核心网隧道信息向UPF发送该上行报文。
由此,根据本发明实施例的报文传输方法,可通过两条路径实现第一业务(如URLLC业务)的上行/下行报文的传输。类似的,也可采用本申请实施例的方法通过多条(大于两条)路径实现第一业务的上行/下行报文的传输,不再赘述。由此,提高了URLLC业务报文的可靠性。
此外,本申请的报文传输方案还可适用于单连接(或者称为单基站)的场景,如图4所示。在该场景中,RAN 202’与UPF 206之间至少存在两条传输路径。
图5所示为根据本申请又一实施例提供的一种报文传输方法的信令交互图。图5涉及UE、基站、AMF、SMF、UPF之间的交互。例如,UE、基站、AMF、SMF、UPF可以分别是图4中的UE 201、RAN 202’、AMF 204、SMF 205和UPF 206。
如图5所示,该方法包括如下步骤:
步骤501,UE通过基站向AMF发送携带会话建立请求的NAS消息,用于请求为UE建立PDU会话。
步骤502,执行会话建立流程的其他步骤。
步骤503,SMF向AMF传输N2 SM信息。
步骤504,AMF向基站发送N2 SM信息。
步骤505,基站发起与UE之间的接入网资源的建立。
步骤501至505可参考图3中步骤301至305的描述,此处不再赘述。图5中的基站可执行图3中主基站执行的方法步骤。
类似的,当基站从SMF收到指示信息,或判断能力信息满足第一条件时,可通过步骤505指示UE添加业务流标识。这里可参考图3的描述,此处不再赘述。
步骤506,基站确定第一接入网隧道信息和第二接入网隧道信息。
基站可根据指示信息确定使用双路径传输第一业务的下行报文,从而决定需要确定两份接入网隧道信息。第一业务包括URLLC业务。例如,上述步骤503、504传输的N2 SM信息中包括的QoS参数、切片标识信息、DNN、第一核心网隧道信息和第二核心网隧道信息中的任一项或其组合可作为该指示信息。其中,QoS参数包括5QI和QFI中的至少一项。举例说明,基站根据N2 SM信息中的QoS参数确定该会话具有高可靠性需求;或者,根据N2 SM信息中的切片标识信息确定该会话与极可靠低时延通信的切片关联;或者,主基站根据N2 SM信息中的DNN确定该会话与极可靠低时延通信的数据网络关联;或者,直接根据N2 SM信息中的第一核心网隧道信息和第二核心网隧道信息确定使用双路径传输下行报文,从而决定需要确定两份接入网隧道信息。由于使用双路径传输下行报文需要用到第一接入网隧道信息和第二接入网隧道信息,因此,也可以认为指示信息触发了第一接入网隧道信息和第二接入网隧道信息的确定。
可选的,若基站发现当前环境无法使用双路径传输第一业务的下行报文,则基站向AMF反馈指示信息,AMF将该指示信息发送给SMF,该指示信息用于指示无法使用双路径传输第一业务的下行报文。SMF收到指示信息后,拒绝会话建立流程或执行现有技术中会话建立流程过程中的后续步骤。
类似的,第一接入网隧道信息包括基站的第三IP地址和第三TEID,用于标识基站与UPF之间的第一路径。第二接入网隧道信息包括基站的第四IP地址和第四TEID,用于标识基站与UPF之间的第二路径。其中,第三TEID和第四TEID不同。第三IP地址和第四IP地址可以相同,也可以不同。
当第三IP地址和第四IP地址不同时,第三IP地址和第四IP地址用于标识相互独立的两条路径。
当第三IP地址和第四IP地址相同时,基站还分配与所述第三TEID对应的第三网络标识信息,以及,与所述第四TEID对应的第四网络标识信息。第三网络标识信息和第四网络标识信息用于标识相互独立的两条路径。第三/第四网络标识信息可参考上述第一网络标识信息的描述,此处不再赘述。这样,在第三IP地址和第四IP地址相同的情况下,基站后续发送第一接入网隧道信息和第二接入网隧道信息的时候,还发送与所述第三TEID对应的第三网络标识信息和与所述第四TEID对应的第四网络标识信息,之后不再赘述。例如,基站可通过第三容器发送第一接入网隧道信息和第三网络标识信息,通过第四容器发送第二接入网隧道信息和第四网络标识信息。
步骤507,基站向AMF发送上述第一接入网隧道信息和第二接入网隧道信息。
例如,基站向AMF返回N2会话响应。N2会话响应包括PDU会话标识和N2 SM信息。其中,N2 SM信息中包括第一接入网隧道信息和第二接入网隧道信息。
可选的,当第一业务是会话粒度的,N2 SM信息中还可以包括第一业务对应的会话标识;当第一业务是业务流粒度的,N2 SM信息中还可以包括第一业务对应的会话标识和QFI。
步骤508,AMF向SMF发送更新上下文请求。
例如,AMF调用SMF的更新SM上下文的服务Nsmf_PDUSession_UpdateSMContext,发送Nsmf_PDUSession_UpdateSMContext请求。通过该请求,AMF将包括步骤507中收到的的N2 SM信息转发至SMF。
步骤509,SMF向UPF发送下行转发规则。
例如,SMF向UPF发送N4会话修改请求,该会话修改请求中包括上述下行转发规则。UPF返回N4会话修改响应。
需要说明的是,在另一种实现方式中,步骤503中的核心网隧道信息可以只包含第一核心网隧道信息,但步骤506中包含第一接入网隧道信息和第二接入网隧道信息。SMF收到第一接入网隧道信息和第二接入网隧道信息后,分配第二核心网隧道信息,通过步骤509向UPF发送该第二核心网隧道信息,并通过AMF将第二核心网隧道信息发送至基站;或者,UPF从SMF收到第一接入网隧道信息和第二接入网隧道信息后,分配第二核心网隧道信息,通过N4会话修改响应向SMF返回该第二核心网隧道信息。SMF将第二核心网隧道信息通过AMF发送到基站。
该下行转发规则包括第一接入网隧道信息和第二接入网隧道信息。该下行转发规则用于指示UPF复制接收到的第一业务的下行报文,通过分别与第一接入网隧道信息和第二接入网隧道信息对应的两条路径发送第一业务的下行报文,即,通过第一接入网隧道信息对应的与基站之间的第一路径发送第一业务的下行报文,并通过第二接入网隧道信息对应的与基站之间的第二路径发送第一业务的下行报文。
可选的,当第一业务是会话粒度的,SMF在步骤508中收到的N2 SM信息中还包括第一业务对应的会话标识,因而下行转发规则还包括第一业务对应的会话标识。当第一业务是业务流粒度的,SMF在步骤508中收到的N2 SM信息中还包括第一业务对应的会话标识和QFI,因而下行转发规则还包括第一业务对应的会话标识和QFI。
可选的,步骤508中收到的N2 SM信息中的第一业务对应的会话标识可以与下行转发规则中的第一业务对应的会话标识不同,但是彼此关联。例如,步骤508中收到的N2 SM信息中的第一业务对应的会话标识是PDU会话标识,SMF将该PDU会话标识转换成N4会话标识,将N4会话标识作为下行转发规则中的第一业务对应的会话标识,发送至UPF。
此外,该下行转发规则还包括第一业务(如URLLC业务)的信息,可参考图3中步骤313中的描述,此处不再赘述。
步骤510,SMF向AMF发送更新上下文响应。
之后,UPF收到第一业务的下行报文后,根据转发规则,通过第一接入网隧道信息对应的与基站之间的第一路径,以及,第二接入网隧道信息对应的与基站之间的第 二路径发送第一业务的下行报文。该第一业务的下行报文在两条路径上传输也表示在所述两条路径上发送的下行报文相同。
例如,UPF在收到一个下行报文后,将该下行报文的报文头特征与转发规则中的第一业务的信息进行匹配,从而确定该下行报文为第一业务的报文。UPF在确定该下行报文为第一业务的报文之后,可复制该报文。在一种可能的实现方式中,UPF通过与基站之间与第一接入网隧道信息对应的第一路径向UE发送原报文;通过与基站之间与第二接入网隧道信息对应的第二路径向UE发送复制的报文。在另一种可能的实现方式中,UPF通过与基站之间与第一接入网隧道信息对应的第一路径向UE发送复制的报文;通过与基站之间与第二接入网隧道信息对应的第二路径向UE发送原报文。在又一种可能的实现方式中,UPF复制两份报文,并分别通过与基站之间分别与第一接入网隧道信息和第二接入网隧道信息对应的第一路径和第二路径向UE发送复制的报文。在上述几种方式中,通过双路径传输的下行报文是相同的。
此外,对于上行方向而言,基站在上述步骤504中收到N2 SM信息中包括的第一核心网隧道信息和第二核心网隧道信息后,获知UE后续也可通过第一核心网隧道信息和第二核心网隧道信息对应的两条路径传输第一业务的上行报文。上述第一核心网隧道信息和第二核心网隧道信息可视为上行转发规则中包含的信息。该上行转发规则用于指示基站复制接收到的所述第一业务的上行报文,将所述第一业务的上行报文通过与第一接入网隧道信息对应的第一路径发送至UPF,并通过与第二接入网隧道信息对应的第二路径发送至UPF。
类似的,该上行转发规则还包括第一业务的信息,此处不再赘述。基站根据第一业务的信息确定上行报文为第一业务的报文之后,可复制该报文。在一种可能的实现方式中,基站通过与第一接入网隧道信息对应的第一路径向UPF发送原报文;通过与第二接入网隧道信息对应的第二路径向UPF发送复制的报文。在另一种可能的实现方式中,基站通过与第一接入网隧道信息对应的第一路径向UPF发送复制的报文;通过与第二接入网隧道信息对应的第二路径向UPF发送原报文。在又一种可能的实现方式中,基站复制两份报文,通过与第一接入网隧道信息对应的第一路径向UPF发送复制的报文,并通过与第二接入网隧道信息对应的第二路径向UPF发送复制的报文。在上述几种方式中,通过双路径传输的上行报文是相同的。
由此,根据本发明实施例的报文传输方法,可通过两条路径实现第一业务(如URLLC业务)的上行/下行报文的传输。类似的,也可采用本申请实施例的方法通过多条(大于两条)路径实现第一业务的上行/下行报文的传输,不再赘述。由此,提高了URLLC业务报文的可靠性。
图11所示为根据本申请另一实施例提供的一种报文传输方法的信令交互图。图11适用于双连接(双基站)的场景。在该场景下,通过主基站和辅基站与UPF之间的两条路径实现高可靠性的报文传输。如图11所示,该方法包括上行方向的步骤1101-1103和/或下行方向的步骤1111-1113。例如:
步骤1101,对于双连接的上行方向,UE生成第一上行报文和第二上行报文。
其中,第一上行报文和第二上行报文具有相同的序列号和业务流标识。例如,UE根据在前述步骤305或308从主基站收到的指示,生成第一上行报文和第二上行报文。
例如,UE可以先将上行报文进行复制,然后添加相同的序列号和业务业务流标识。或者,UE可以先为上行报文添加序列号和业务业务流标识,然后再进行复制。不管是哪一种方式,UE生成的第一上行报文和第二上行报文具有相同的序列号和业务流标识。
之后,UE向主基站发送第一上行报文,向辅基站发送第二上行报文。
步骤1102,主基站收到第一上行报文后,确定对应双基站,对第一上行报文进行处理。类似的,辅基站收到第二上行报文后,确定对应双基站,对第二上行报文进行处理。
例如,由于主基站在上述步骤S306中确定了增加辅基站,主基站在收到第一上行报文后可获知对应双基站,进而对第一上行报文做常规化的处理。辅基站作为双连接中的第二基站,在收到第二上行报文后可获取对应双基站,进而对第二上行报文做常规化的处理。
这里常规化的处理包括但不限于:物理层、层2等的解封装,GTP-U(General Packet Radio Service(GPRS)tunneling protocol user,GPRS隧道协议用户)层、UDP(User Datagram Protocol,用户数据报协议)/IP(Internet Protocol,互联网协议)层等层的封装,QoS管理。
之后,主基站通过双隧道中的第一隧道向UPF发送处理后的第一上行报文。辅基站通过双隧道中的第二隧道向UPF发送处理后的第二上行报文。
步骤1103,UPF收到第一上行报文和第二上行报文后,根据转发规则以及第一上行报文和第二上行报文中的业务流标识和序列号,对第一上行报文和第二上行报文去重。
例如,UPF根据转发规则,将具有相同业务流标识和序列号的第一上行报文和第二上行报文去重。
需要说明的是,当不同业务流之间的序列号没有重复时,如UE对不同业务流之间的序列号按照报文的先后顺序依次添加序列号,则UPF还可以根据转发规则,将具有相同序列号的第一上行报文和第二上行报文去重。
步骤1111,对于双连接的下行方向,UPF根据转发规则生成第一下行报文和第二下行报文。
例如,UPF根据转发规则,为下行报文添加序列号和业务流标识。也就是说,UPF生成的第一上行报文和第二上行报文具有相同的序列号和业务流标识。
例如,UPF可以先将下行报文进行复制,然后添加相同的序列号和业务流标识。或者,UPF可以先为上行报文添加序列号和业务流标识,然后再进行复制。
之后,UPF向主基站发送第一下行报文,向辅基站发送第二下行报文。
步骤1112,主基站收到第一下行报文后,确定对应双基站,对第一下行报文进行处理。类似的,辅基站收到第二下行报文后,确定对应双基站,对第二下行报文进行处理。
主基站和辅基站如何确定对应双基站不再赘述。
步骤1112中的处理包括包括但不限于:UDP/IP层、GTP-U层等层的解封装,层2、物理层等层的封装,QoS管理。
之后,主基站向UE发送处理后的第一下行报文。辅基站向UE发送处理后的第 二下行报文。第一下行报文和第二下行报文包括相同的第二业务流标识和相同的第二序列号。
步骤1113,UE分别从主基站和辅基站接收第一下行报文和第二下行报文后,根据主基站的指示以及第一下行报文和第二下行报文中的业务流标识和序列号,对第一下行报文和第二下行报文去重。例如,UE根据在前述步骤305或308从主基站收到的指示,将具有相同业务流标识和序列号的第一下行报文和第二下行报文去重。
需要说明的是,当不同业务流之间的序列号没有重复时,如UPF对不同业务流之间的序列号按照报文的先后顺序依次添加序列号,则UE还可以根据从主基站收到的指示,将具有相同序列号的第一上行报文和第二上行报文去重。
之后,UE进行物理层、层2等层的解封装,并将解封装后的报文传递到上层。
图12所示为根据本申请另一实施例提供的一种报文传输方法的信令交互图。图12适用于单连接(单基站)的场景。在该场景下,通过单基站与UPF之间的两条路径实现高可靠性的报文传输。如图12所示,该方法包括上行方向的步骤1201-1203和/或下行方向的步骤1211-1213。例如:
步骤1201,对于单连接的上行方向,UE为上行报文添加业务流标识。
之后,UE向基站发送该上行报文。
步骤1202,基站收到上行报文后,确定对应单基站,生成第一上行报文和第二上行报文,并对第一上行报文和第二上行报文进行处理。
例如,基站在上述步骤流程确定了不增加辅基站,那么在收到上行报文后可获知对应单基站,进而生成第一上行报文和第二上行报文,并对第一上行报文和第二上行报文进行处理。
例如,基站可以先将上行报文进行复制,然后添加相同的序列号和业务流标识。或者,基站可以先为上行报文添加序列号和业务流标识,然后再进行复制。不管哪一种方式,基站生成的第一上行报文和第二上行报文具有相同的序列号和业务流标识。
这里处理包括但不限于:物理层、层2等层的解封装,GTP-U层、UDP/IP层等层的封装,QoS管理。
之后,基站通过双隧道中的第一隧道向UPF发送处理后的第一上行报文,通过双隧道中的第二隧道向UPF发送处理后的第二上行报文。
步骤1203,UPF收到第一上行报文和第二上行报文后,根据转发规则以及第一上行报文和第二上行报文中的业务流标识和序列号,对第一上行报文和第二上行报文去重。
例如,UPF根据转发规则,将具有相同业务流标识和序列号的第一上行报文和第二上行报文去重。
需要说明的是,当不同业务流之间的序列号没有重复时,如基站对不同业务流之间的序列号按照报文的先后顺序依次添加序列号,则UPF还可以根据转发规则,将具有相同序列号的第一上行报文和第二上行报文去重。
步骤1211,对于单连接的下行方向,UPF根据转发规则生成第一下行报文和第二下行报文。
步骤1211可参考步骤1111的描述,此处不再赘述。
之后,UPF分别通过第一隧道和第二隧道向基站发送第一下行报文和第二下行报文。
步骤1212,基站收到第一下行报文和第二下行报文后,确定对应单基站,根据基站的指示以及第一下行报文和第二下行报文中的业务流标识和序列号,对第一下行报文和第二下行报文去重,并对去重后的下行报文进行处理。
基站如何确定对应单基站不再赘述。
例如,基站根据第一下行报文和第二下行报文中的业务流标识和序列号,对第一下行报文和第二下行报文去重。例如,基站将具有相同业务流标识和序列号的第一下行报文和第二下行报文去重。
需要说明的是,当不同业务流之间的序列号没有重复时,如UPF对不同业务流之间的序列号按照报文的先后顺序依次添加序列号,则基站将具有相同序列号的第一上行报文和第二上行报文去重。
之后的处理包括但不限于:UDP/IP层、GTP-U层等层的解封装,层2、物理层等层的封装,QoS管理。
之后,基站向UE发送处理后的下行报文。
步骤1213,UE分别从基站接收下行报文后,进行物理层、层2等层的解封装,并将解封装后的报文传递到上层。
图15所示为根据本申请实施例提供的另一种报文传输方法的信令交互图。图15涉及UE、主基站、辅基站、AMF、SMF、UPF之间的交互。例如,UE、主基站、辅基站、AMF、SMF、UPF可以分别是图2中的UE 201、M-RAN 202、S-RAN 203、AMF204、SMF 205和UPF 206。图15将结合图3进行描述。
例如,图15适用于:上行方向,UE的PDCP层进行增强,能够在增强后的PDCP层进行报文复制;下行方向,UPF能够在GTP-U层进行报文复制,从而实现双路径的报文传输,提高报文传输的可靠性。
如图15所示,该方法包括如下步骤:
步骤1501,UE通过主基站向AMF发送携带会话建立请求的NAS消息,用于请求为UE建立PDU会话。
步骤1502,执行会话建立流程的其他步骤。
例如,上述其他步骤至少包括AMF选择SMF,SMF选择UPF,此处不赘述。
步骤1503,SMF向AMF传输N2 SM信息。
步骤1504,AMF向主基站发送N2 SM信息。
步骤1501至1504可参考图3中步骤301至304的描述,此处不再赘述。
步骤1505,主基站发起与UE之间的接入网资源的建立。
换句话说,主基站发起建立主基站与UE之间的第一无线承载。例如,第一无线承载为第一数据无线承载(data radio bearer,DRB),后简称为DRB1。在该步骤中,主基站向UE发送DRB1的标识信息,通过该步骤,建立了主基站与UE之间的DRB1。
步骤1506,主基站确定增加辅基站,向辅基站发送增加辅基站请求。
其中,主基站可根据指示信息确定使用双路径传输第一业务的下行报文,从而决定需要增加辅基站。第一业务包括URLLC业务。例如,上述N2 SM信息中包括的QoS参数、切片标识信息、DNN、第一核心网隧道信息和第二核心网隧道信息中的任一项或其组合可作为该指示信息。其中,QoS参数包括5QI和QFI中的至少一项。举例说明,主基站根据N2 SM信息中的QoS参数确定该会话具有高可靠性需求,从而确定增加辅基站;或者,主基站根据N2 SM信息中的切片标识信息确定该会话与极可靠低时延通信的切片关联,从而确定增加辅基站;或者,主基站根据N2 SM信息中的DNN确定该会话与极可靠低时延通信的数据网络关联,从而确定增加辅基站;或者,主基站直接根据N2 SM信息中的第一核心网隧道信息和第二核心网隧道信息确定使用双路径传输下行报文,从而确定增加辅基站。由于使用双路径传输下行报文需要用到第一接入网隧道信息和第二接入网隧道信息,因此,也可以认为指示信息触发了第一接入网隧道信息和第二接入网隧道信息的确定。其中,第一接入网隧道信息可以由主基站来确定,第二接入网隧道信息可以由辅基站来确定并发送给主基站。
第一接入网隧道信息和第二接入网隧道信息具体可参考图3的描述,此处不再赘述。
步骤1507,辅基站向主基站返回增加辅基站请求确认。
例如,增加辅基站请求确认中包括辅基站确定的第二接入网隧道信息。
可选的,若第一业务是会话粒度的,则步骤1506发送的增加辅基站请求中包含第一业务的会话标识,因此辅基站确定的第二接入网隧道信息也是会话粒度的,且与该会话标识对应。若第一业务是业务流粒度的,则步骤1506发送的增加辅基站请求中包含第一业务的业务流的业务流标识(如QFI),因此辅基站确定的第二接入网隧道信息也是业务流粒度的,且与该业务流标识对应。从协议栈的角度来看,主基站为该业务流生成PDCP实体。由此,该业务流与该PDCP实体关联。若主基站确定增加辅基站,辅基站也为该业务流生成PDCP实体。
步骤1508,主基站向UE发起RRC连接重配置。
换句话说,主基站发起建立辅基站与UE之间的第二无线承载。例如,第二无线承载为第DRB2。在该步骤中,主基站向UE发送DRB2的标识信息,通过该步骤,建立了辅基站与UE之间的DRB2。
在步骤1508中,主基站向UE发送指示信息,该指示信息用于指示UE将第一无线承载和第二无线承载关联至UE上的同一个PDCP实体。即第一无线承载和第二无线承载是相互关联的。换句话说,主基站通过RRC消息向UE发送了上述指示信息。具体的,该指示信息可以是一个新增信元,也可以是DRB1的标识,还可以是其它信元,对此本申请不做限定。
该指示信息用于指示UE将第一无线承载和第二无线承载关联至UE上的同一个PDCP实体,也可以理解为,UE收到该指示信息后,对上行报文在PDCP层复制报文(即,在PDCP层添加相同的序列号),得到第一上行报文和第二上行报文,然后分别通过与该PDCP实体关联的两个不同的无线承载(例如,DRB1和DRB2)发送第一上行报文和第二上行报文。
步骤1509,主基站向辅基站反馈辅基站重配置完成,以通知辅基站UE成功完成 了RRC连接重配置。
可选的,若辅基站具有RRC功能时,上述步骤1507-1509可以替换为:
1507’,辅基站发起与UE之间的RRC连接建立过程。
换句话说,辅基站发起建立辅基站与UE之间的第二无线承载。例如,第二无线承载为DRB2。通过该步骤,建立了辅基站与UE之间的DRB2。
在步骤1507’中,辅基站向UE发送指示信息,该指示信息用于指示UE将第一无线承载和第二无线承载关联至UE上的同一个PDCP实体。即第一无线承载和第二无线承载是相互关联的。换句话说,辅基站通过RRC消息向UE发送了上述指示信息。具体的,该指示信息可以是一个新增信元,也可以是DRB1的标识,还可以是其它信元,对此本申请不做限定。因此,指示UE将第一无线承载和第二无线承载关联至UE上的同一个PDCP实体的指示信息可以是由主基站向UE发送的,或者,也可以是由辅基站向UE发送的,本申请在此并不限制。
1508’,辅基站向主基站返回增加辅基站请求确认,可参考步骤1507的描述,不再赘述。
步骤1510,随机接入流程。
可选的,在另一个实施例中,主基站可以在上述步骤1505之前判断是否需要增加辅基站。主基站如何判断是否需要增加辅基站可参考步骤1506的描述,此处不再赘述。若主基站确定增加辅基站(即,采用双连接方式进行报文传输),则可以通过上述步骤1508或步骤1507’向UE发送将两个DRB关联至一个PDCP实体的指示信息。
可以理解的是,UE可采用各种方式实现上行报文的处理,且处理后的多份上行报文具有相同的序列号。例如,UE可以先为第一上行报文添加序列号,然后将添加序列号后的第一上行报文进行复制,得到具有相同序列号的的第二上行报文;或者,UE可以先将第一上行报文进行复制得到第二上行报文,然后为第一上行报文和第二上行报文添加相同的序列号,本申请在此并不限制。
可选的,主基站还指示UE对收到的具有相同序列号且与相同业务流标识对应的下行报文进行去重。
可选的,在又一个实施例中,上述步骤1503、1504传输的N2 SM信息中还包括指示信息,该指示信息用于指示基站(即上述主基站)向UE发送将第一无线承载和第二无线承载关联至UE上的同一个PDCP实体的指示信息。例如,当SMF根据UE发送给SMF的N2 SM信息中的QFI确定该会话具有高可靠性需求,和/或,根据N2 SM信息中的切片标识信息确定该会话与极可靠低时延通信的切片关联,和/或,根据N2 SM信息中的DNN确定该会话与极可靠低时延通信的数据网络关联,和/或,根据UE的签约数据确定该UE为极可靠低时延通信的UE时,SMF向基站发送指示信息,进而在基站收到指示信息后,由基站向UE发送将第一无线承载和第二无线承载关联至UE上的同一个PDCP实体的指示信息。这样,基站可以不做判断,从而简化基站侧的操作。
步骤1511,主基站向AMF发送第一接入网隧道信息和第二接入网隧道信息。
步骤1512,AMF向SMF发送更新上下文请求。
步骤1513,SMF向UPF发送下行转发规则。
步骤1514,SMF向AMF发送更新上下文响应。
步骤1511至1514可参考图3中步骤311至314的描述,此处不再赘述。
之后,UE可根据指示信息生成第一报文和第二报文,其中,第一报文和第二报文具有相同的序列号;UE通过第一无线承载向主基站发送第一报文,通过第二无线承载向辅基站发送第二报文。例如,UE根据指示信息在PDCP层复制报文,得到上述第一报文和第二报文。另外,UE可根据指示信息对来自第一无线承载和第二无线承载,且具有相同序列号的下行报文进行去重。
由此,根据本发明实施例的报文传输方法,可通过两条路径实现第一业务(如URLLC业务)的上行报文的传输。类似的,也可采用本申请实施例的方法通过多条(大于两条)路径实现第一业务的上行报文的传输,不再赘述。由此,提高了URLLC业务报文的可靠性。
结合图15的描述,本申请实施例提供了一种报文传输方法,如图16所示,包括如下步骤:
步骤1601,第一基站发起建立第一基站与用户设备之间的第一无线承载。
例如,第一基站可以为图15中的主基站,第一无线承载可以为DRB1。步骤1601可参考图15中步骤1505的描述,不再赘述。
步骤1602,在建立第二基站与所述用户设备之间的第二无线承载的过程中,第一基站或第二基站向用户设备发送指示信息,指示信息用于指示用户设备将第一无线承载和第二无线承载关联至所述用户设备上的同一个PDCP实体。
例如,第一基站或所述第二基站通过RRC层消息向用户设备发送指示信息。
例如,第二基站可以为图15中的辅基站,第二无线承载可以为DRB2。步骤1602可参考图15中步骤1508或11507’的描述,不再赘述。
通过上述方法,UE收到该指示信息后,将在PDCP层复制报文(即,在PDCP层添加相同的序列号),得到第一上行报文和第二上行报文,然后分别通过与该PDCP实体关联的两个不同的无线承载(例如,DRB1和DRB2)发送第一上行报文和第二上行报文。由此,根据本发明实施例的报文传输方法,可通过两条路径实现第一业务(如URLLC业务)的上行报文的传输。类似的,也可采用本申请实施例的方法通过多条(大于两条)路径实现第一业务的上行报文的传输,不再赘述。由此,提高了URLLC业务报文的可靠性。
结合图15的描述,本申请实施例提供了一种报文传输方法,如图17所示,包括如下步骤:
步骤1701,用户设备与第一基站交互,以建立第一基站与用户设备之间的第一无线承载。
例如,第一基站可以为图15中的主基站,第一无线承载可以为DRB1。步骤1701可参考图15中步骤1505的描述,不再赘述。
步骤1702,在建立第二基站与用户设备之间的第二无线承载的过程中,用户设备 从第一基站或第二基站接收指示信息,指示信息用于指示用户设备将所述第一无线承载和所述第二无线承载关联至用户设备上的同一个PDCP实体。
例如,第二基站可以为图15中的辅基站,第二无线承载可以为DRB2。步骤1702可参考图15中步骤1508或11507’的描述,不再赘述。
也就是说,用户设备通过RRC层消息从所述第一基站或所述第二基站接收所述指示信息。
步骤1703,所述用户设备根据所述指示信息生成第一报文和第二报文,其中,所述第一报文和所述第二报文具有相同的序列号。
例如,用户设备根据所述指示信息在PDCP层复制报文,得到第一报文和第二报文。
步骤1704,所述用户设备通过第一无线承载向第一基站发送第一报文,通过第二无线承载向第二基站发送第二报文。
通过上述方法,UE收到该指示信息后,对上行报文在PDCP层复制报文(即,在PDCP层添加相同的序列号),得到第一上行报文和第二上行报文,然后分别通过与该PDCP实体关联的两个不同的无线承载(例如,DRB1和DRB2)发送第一上行报文和第二上行报文;对来自DRB1和DRB2的、且具有相同序列号的下行报文在PDCP层去重报文。由此,根据本发明实施例的报文传输方法,可通过两条路径实现第一业务(如URLLC业务)的上行报文的传输。类似的,也可采用本申请实施例的方法通过多条(大于两条)路径实现第一业务的上行报文的传输,不再赘述。由此,提高了URLLC业务报文的可靠性。
图18所示为根据本申请实施例提供的另一种报文传输方法的信令交互图。图18涉及UE、主基站、辅基站、AMF、SMF、UPF之间的交互。例如,UE、主基站、辅基站、AMF、SMF、UPF可以分别是图2中的UE 201、M-RAN 202、S-RAN 203、AMF 204、SMF 205和UPF 206。图18将结合图3进行描述。
例如,图18适用于:上行方向,UE在SDAP层上的新协议层进行报文复制;下行方向,UPF在GTP-U层上的新协议层进行报文复制,从而实现双路径的报文传输,提高报文传输的可靠性。例如,新协议层可以称为高可靠协议(high reliable protocol,HRP)层。
如图18所示,该方法包括如下步骤:
步骤1801,UE通过主基站向AMF发送携带会话建立请求的NAS消息,用于请求为UE建立PDU会话。
步骤1802,执行会话建立流程的其他步骤。
例如,上述其他步骤至少包括AMF选择SMF,SMF选择UPF,此处不赘述。
步骤1801和1802可参考图3中步骤301和302的描述,此处不再赘述。
步骤1803,SMF为第一业务分配两个业务流标识,即第一业务流标识和第二业务流标识。第一业务包括URLLC业务。其中,业务流标识可以包括会话标识、QFI、五元组中的至少一项。例如,两个业务流标识分别为QFI-a和QFI-b。
步骤1804,SMF向AMF传输N2 SM信息和N1 SM容器。
例如,SMF通过调用AMF的N1N2消息传输的服务,向AMF发送N2 SM信息。此外,SMF通过调用该服务还可以向AMF发送包含会话接受消息的N1 SM容器。
步骤1805,AMF向主基站发送接收到的上述N2 SM信息和N1 SM容器。
例如,AMF向主基站发送N2会话请求,该N2会话请求包括N2 SM信息和NAS消息。NAS消息中包含PDU会话标识和上述N1 SM容器。主基站在建立接入网资源的过程中向UE发送NAS消息。
其中,N1 SM容器包括发送至UE的会话接受消息。会话接受消息包括QoS规则(rule)。例如,QoS规则包括QoS规则标识、上述第一业务流标识和第二业务流标识、报文滤波器(packet filter)以及指示信息。
N2 SM信息至少包括PDU会话标识和核心网的隧道信息(CN tunnel info)。上述核心网的隧道信息包括第一核心网隧道信息和第二核心网隧道信息,具体可参考图3的描述,此处不再赘述。N2 SM信息还可以包括QoS参数、QFI-a和QFI-b、切片标识信息(例如,S-NSSAI)、sesssion-AMBR、PDU会话的类型。可选的,N2 SM信息还可以包括DNN。
通过N1 SM容器,UE可接收到指示信息,在上行方向,UE可以根据指示信息生成第一上行报文和第二上行报文,通过第一无线承载发送第一上行报文,通过第二无线承载发送第二上行报文,且第一上行报文具有和第二上行报文具有相同的第一序列号。其中,第一无线承载与QFI-a对应,第二无线承载与QFI-b对应。对于UE通过第一无线承载发送第一上行报文,还可以描述为UE通过与QFI-a对应的无线承载发送第一上行报文;对于UE通过第二无线承载发送第二上行报文,还可以描述为UE通过与QFI-b对应的无线承载发送第二上行报文。例如,该指示信息用于指示UE复制上行报文,得到第一上行报文和第二上行报文,并通过不同的无线承载发送第一上行报文和第二上行报文。另外,在下行方向,UE可以根据指示信息,对来自第一无线承载和第二无线承载的、且具有相同序列号的下行报文进行去重。还可以描述为UE对来自与QFI-a对应的无线承载下行报文、以及对来自与QFI-b对应的无线承载的下行报文进行如下操作:若该下行报文具有相同的序列号,则对其进行去重。
例如,UE利用报文滤波器确定出与QFI-a和QFI-b对应的报文,根据指示信息在HRP层进行对报文复制,复制的上行报文具有相同的序列号,并分别与QFI-a、QFI-b对应,由此得到与QFI-a对应的第一上行报文和与QFI-b对应的第二上行报文,然后将第一上行报文和第二上行报文传递至SDAP层,由SDAP层根据QFI和PDCP实体的对应关系,将第一上行报文发送至PDCP实体1,将第二上行报文发送至PDCP实体2,其中PDCP实体1与QFI-a对应,PDCP实体2与QFI-b对应。同理,第一上行报文和第二上行报文经过其它协议层的处理之后,如RLC层、物理层,UE将第一上行报文通过DRB1发送至M-RAN、将第二上行报文通过DRB2发送至S-RAN。其中DRB1与PDCP实体1对应,DRB2与PDCP实体2对应。主基站和辅基站分别通过DRB1和DRB2接收到两个上行报文后,根据DRB和QFI的对应关系或上行报文头中携带的QFI,为上行报文添加QFI。具体的,主基站为第一上行报文添加QFI-a,辅基站为第二上行报文添加QFI-b,并向UPF发送上述上行报文。由此,UPF收到了第一上行报文和第二上行报文,第一上行报文和第二上行报文分别具有QFI-a和QFI-b,且具有 相同的序列号。
需要说明的是,UE利用报文滤波器确定出与QFI-a和QFI-b对应的报文,另一种实现方式是,UE利用报文过滤器确定报文对应的QFI(可以是QFI-a或QFI-b或),由于QFI-a与QFI-b为SMF为同一业务分配的两个业务流标识,可以理解为QFI-a和QFI-b具有关联性,那么,UE根据指示信息,复制上行报文,一份对应QFI-a、另一份对应QFI-b。
也就是说,UE发送的第一上行报文与QFI-a对应,第二上行报文与QFI-b对应,且第一上行报文和第二上行报文具有相同的序列号。UPF收到的第一上行报文包括QFI-a,第二上行报文包括QFI-b,且第一上行报文和第二上行报文具有相同的序列号。其中,UPF收到的第一上行报文和第二上行报文,序列号和业务流标识可以在不同的协议层。例如,序列号在HRP层,业务流标识在GTP-U层。
在一种可能的实现方式中,SMF向UE发送的指示信息可以用于指示第一上行报文与QFI-a对应,第二上行报文与QFI-b对应。在另一种可能的实现方式中,UE在HRP层还可以为第一上行报文添加QFI-a,为第二上行报文添加QFI-b。进一步的,SMF向UE发送的指示信息可以用于指示UE为第一上行报文添加QFI-a,为第二上行报文添加QFI-b。
也可以理解为UE将复制后得到的第一上行报文和第二上行报文关联到了不同的DRB、PDCP实体或者SDAP配置(config)。其中,一个PDCP实体或者SDAP配置对应一个DRB(例如DRB1),另一个PDCP实体或者SDAP配置对应另一个DRB(例如DRB2)。其中SDAP配置是一个无线承载粒度(即DRB粒度)的参数,是由接入网侧根据承载粒度分配并在RRC重配置过程中发给UE的。
此外,对于下行方向,当UE分别从主基站和辅基站接收到第一下行报文和第二下行报文时,第一下行报文和第二下行报文具有相同的序列号,且分别与QFI-a和QFI-b对应,则UE根据指示信息对第一下行报文和第二下行报文去重。因此,进一步可选的,SMF向UE发送的指示信息还可以用于指示UE对第一下行报文和第二下行报文去重。其中,第一下行报文和第二下行报文具有相同的序列号,且分别与QFI-a和QFI-b关联。
步骤1806,主基站发起与UE之间的接入网资源的建立。
换句话说,主基站发起建立主基站与UE之间的第一无线承载。例如,第一无线承载为DRB1。在该步骤中,主基站向UE发送DRB1的标识信息,通过该步骤,建立了主基站与UE之间的DRB1。另外,在该步骤中,主基站将步骤1805中的NAS消息转发至UE。
步骤1807,主基站确定增加辅基站,向辅基站发送增加辅基站请求。
其中,主基站可根据指示信息确定使用双路径传输第一业务的下行报文,从而决定需要增加辅基站。第一业务包括URLLC业务。例如,上述N2 SM信息中包括的QoS参数、切片标识信息、DNN、第一核心网隧道信息和第二核心网隧道信息中的任一项或其组合可作为该指示信息。其中,QoS参数包括5QI和QFI中的至少一项。由于使用双路径传输下行报文需要用到第一接入网隧道信息和第二接入网隧道信息,因此,也可以认为指示信息触发了第一接入网隧道信息和第二接入网隧道信息的确定。其中, 第一接入网隧道信息可以由主基站来确定,第二接入网隧道信息可以由辅基站来确定并发送给主基站。
第一接入网隧道信息和第二接入网隧道信息具体可参考图3的描述,此处不再赘述。
在该步骤中,增加辅基站请求中携带QFI-b和第二核心网隧道信息。
步骤1808,辅基站向主基站返回增加辅基站请求确认。
例如,增加辅基站请求确认中包括辅基站确定的第二接入网隧道信息。
换句话说,步骤1807发送的增加辅基站请求中包含第一业务的业务流标识QFI-b,因此辅基站确定的第二接入网隧道信息也是业务流粒度的,且与该QFI-b对应。从协议栈的角度来看,若主基站确定增加辅基站,主基站为该QFI-a生成PDCP实体,辅基站收到增加辅基站请求后,为该QFI-b生成PDCP实体。由此,这两个PDCP实体分别与QFI-a和QFI-b关联。
步骤1809,主基站向UE发起RRC连接重配置。
换句话说,主基站发起建立辅基站与UE之间的第二无线承载。例如,第二无线承载为DRB2。在该步骤中,主基站向UE发送DRB2的标识信息,通过该步骤,建立了辅基站与UE之间的DRB2。
步骤1810,主基站向辅基站反馈辅基站重配置完成,以通知辅基站UE成功完成了RRC连接重配置。
可选的,若辅基站具有RRC功能时,上述步骤1808-1810可以替换为:
1808’,辅基站发起与UE之间的RRC连接建立过程。
换句话说,辅基站发起建立辅基站与UE之间的第二无线承载。例如,第二无线承载为DRB2。在该步骤中,辅基站向UE发送DRB2的标识信息,通过该步骤,建立了辅基站与UE之间的DRB2。
1809’,辅基站向主基站返回增加辅基站请求确认,可参考步骤1808的描述,不再赘述。
步骤1811,随机接入流程。
步骤1812,主基站向AMF发送第一接入网隧道信息和第二接入网隧道信息。其中,第一接入网隧道信息与QFI-a对应,第二接入网隧道信息与QFI-b对应。可选的,主基站还向AMF发送QFI-a与第一接入网隧道信息之间的对应关系,以及,QFI-b与第二接入网隧道信息之间的对应关系。
例如,主基站向AMF返回N2会话响应。N2会话响应包括PDU会话标识和N2 SM信息。其中,N2 SM信息中包括第一接入网隧道信息和第二接入网隧道信息。可选的,N2 SM信息中还可以包括QFI-a与第一接入网隧道信息之间的对应关系,以及,QFI-b与第二接入网隧道信息之间的对应关系。
步骤1813,AMF向SMF发送更新上下文请求,从而将收到的N2 SM信息转发至SMF。
例如,AMF调用SMF的更新SM上下文的服务,发送Nsmf_PDUSession_UpdateSMContext请求。通过该请求,AMF将包括步骤1812中收到的的N2 SM信息转发至SMF。
步骤1814,SMF向UPF发送转发规则。
例如,SMF向UPF发送N4会话修改请求,该会话修改请求中包括上述转发规则。UPF返回N4会话修改响应。其中,转发规则可以包括上行转发规则和下行转发规则。
上行转发规则用于指示UPF将收到的分别具有QFI-a和QFI-b和相同序列号的两个上行报文进行去重。由此,在上行方向,当UPF收到第一上行报文和第二上行报文,其中,所述第一上行报文具有第一业务流标识和第一序列号,所述第二上行报文具有第二业务流标识和所述第一序列号。UPF根据所述上行转发规则,对所述第一上行报文和所述第二上行报文去重。
该下行转发规则包括第一接入网隧道信息和第二接入网隧道信息。下行转发规则还包括第一接入网隧道信息对应的QFI-a和第二接入网隧道信息对应的QFI-b。该下行转发规则用于指示UPF复制接收到的第一业务的下行报文(为第一下行报文添加QFI-a和序列号,为第二下行报文添加QFI-b和相同的序列号),通过分别与第一接入网隧道信息和第二接入网隧道信息对应的两条路径发送第一业务的下行报文,即,通过第一接入网隧道信息对应的第一路径向主基站发送第一下行报文,并通过第二接入网隧道信息对应的第二路径向辅基站发送第二下行报文。由此,在下行方向,UPF根据下行转发规则生成第一下行报文和第二下行报文(例如,在HRP层复制报文,为第一下行报文添加QFI-a和序列号,为第二下行报文添加QFI-b和相同的序列号),向第一基站发送所述第一下行报文,向第二基站发送所述第二下行报文,其中,所述第一下行报文具有所述第一业务流标识和第二序列号,所述第二下行报文具有所述第二业务流标识和所述第二序列号。
步骤1815,SMF向AMF发送更新上下文响应。
由此,根据本发明实施例的报文传输方法,可通过两条路径实现第一业务(如URLLC业务)的上行/下行报文的传输。类似的,也可采用本申请实施例的方法通过多条(大于两条)路径实现第一业务的上行/下行报文的传输,不再赘述。由此,提高了URLLC业务报文的可靠性。
此外,当UE侧不包含新的协议层HRP层时,上述在HRP层的操作也可以由SDAP上层的PDU层来执行,本申请并不在此限制。
图19所示为根据本申请实施例提供的另一种报文传输方法的信令交互图。图19涉及UE、主基站、辅基站、AMF、SMF、UPF之间的交互。例如,UE、主基站、辅基站、AMF、SMF、UPF可以分别是图2中的UE 201、M-RAN 202、S-RAN 203、AMF 204、SMF 205和UPF 206。图19将结合图18进行描述。
例如,图19适用于:上行方向,UE的SDAP层进行增强,能够在增强后的SDAP层进行报文复制;下行方向,UPF能够在GTP-U层进行报文复制,从而实现双路径的报文传输,提高报文传输的可靠性。
图19和图18的差别在于:在图18中,由于接入网不感知HRP层,SMF通过NAS消息指示UE对URLLC业务的报文进行处理;在图19中,由于使用SDAP层进行增强,可由主基站通过AS层消息指示UE对URLLC业务的报文进行处理。
如图19所示,该方法包括如下步骤:
步骤1901,UE通过主基站向AMF发送携带会话建立请求的NAS消息,用于请求为UE建立PDU会话。
步骤1902,执行会话建立流程的其他步骤。
例如,上述其他步骤至少包括AMF选择SMF,SMF选择UPF,此处不赘述。
步骤1903,SMF为第一业务分配两个业务流标识,即第一业务流标识和第二业务流标识。
步骤1901至1903可参考图18中步骤1801至1803的描述,此处不再赘述。
步骤1904,SMF向AMF传输N2 SM信息和N1 SM容器。
例如,SMF通过调用AMF的N1N2消息传输的服务,向AMF发送N2 SM信息。此外,通过调用该服务还可以向AMF发送包含会话接受消息的N1 SM容器。
步骤1905,AMF向主基站发送接收到的上述N2 SM信息和N1 SM容器。
例如,AMF向主基站发送N2会话请求,该N2会话请求包括N2 SM信息和NAS消息。NAS消息中包含PDU会话标识和上述N1 SM容器。
其中,N1 SM容器包括发送至UE的会话接受消息。会话接受消息包括QoS规则。例如,QoS规则包括QoS规则标识、上述第一业务流标识和第二业务流标识、报文滤波器。
N2 SM信息至少包括PDU会话标识和核心网的隧道信息。上述核心网的隧道信息包括第一核心网隧道信息和第二核心网隧道信息,具体可参考图3的描述,此处不再赘述。N2 SM信息还可以包括QoS参数、QFI-a和QFI-b、切片标识信息(例如,S-NSSAI)、sesssion-AMBR、PDU会话的类型。可选的,N2 SM信息还可以包括DNN。
步骤1906,主基站发起与UE之间的接入网资源的建立。
换句话说,主基站发起建立主基站与UE之间的第一无线承载。例如,第一无线承载为DRB1。在该步骤中,主基站向UE发送DRB1的标识信息,通过该步骤,建立了主基站与UE之间的DRB1。此外,在一个实施例中,主基站还通过该AS层消息向UE发送了指示信息。
通过AS层消息,UE可接收到指示信息。在上行方向,UE可以根据指示信息生成第一上行报文和第二上行报文,通过第一无线承载向主基站发送第一上行报文,通过第二无线承载向辅基站发送第二上行报文,且第一上行报文具有和第二上行报文具有相同的第一序列号。例如,该指示信息用于指示UE复制上行报文,得到第一上行报文和第二上行报文,并通过不同的无线承载发送第一上行报文和第二上行报文。
例如,UE利用报文滤波器确定出与QFI-a和QFI-b对应的报文,根据指示信息在SDAP层进行对报文复制,添加相同的序列号,以此得到与QFI-a对应的第一上行报文和与QFI-b对应的第二上行报文,并由SDAP层根据QFI和PDCP实体的对应关系,将第一上行报文发送至PDCP实体1,将第二上行报文发送至PDCP实体2,其中PDCP实体1与QFI-a对应,PDCP实体2与QFI-b对应。同理,第一上行报文和第二上行报文经过其它协议层的处理之后,如RLC层、物理层,将第一上行报文通过DRB1发送至M-RAN,将第二上行报文通过DRB2发送至S-RAN。其中DRB1与PDCP实体1对应,DRB2与PDCP实体2对应。主基站和辅基站分别通过DRB1和DRB2接收到两个上行报文后,根据DRB和QFI的对应关系或上行报文头中携带的QFI,为上行报 文添加QFI。具体的,主基站为第一上行报文添加QFI-a,辅基站为第二上行报文添加QFI-b,并向UPF发送上述上行报文。由此,UPF收到了第一上行报文和第二上行报文,第一上行报文和第二上行报文分别具有QFI-a和QFI-b,且具有相同的序列号。
也就是说,UE发送的第一上行报文与QFI-a对应,第二上行报文与QFI-b对应,且第一上行报文和第二上行报文具有相同的序列号。UPF收到的第一上行报文包括QFI-a,第二上行报文包括QFI-b,且第一上行报文和第二上行报文具有相同的序列号。
在一种可能的实现方式中,SMF向UE发送的指示信息可以用于指示第一上行报文与QFI-a对应,第二上行报文与QFI-b对应。在另一种可能的实现方式中,UE在SDAP层还可以为第一上行报文添加QFI-a,为第二上行报文添加QFI-b。进一步的,SMF向UE发送的指示信息可以用于指示UE为第一上行报文添加QFI-a,为第二上行报文添加QFI-b。
此外,对于下行方向,当UE分别从主基站和辅基站接收到第一下行报文和第二下行报文时,第一下行报文和第二下行报文具有相同的序列号,且分别与QFI-a和QFI-b对应,则UE根据指示信息对第一下行报文和第二下行报文去重。因此,进一步可选的,SMF向UE发送的指示信息还可以用于指示UE对第一下行报文和第二下行报文去重。其中,第一下行报文和第二下行报文具有相同的序列号,且分别与QFI-a和QFI-b关联。
在另一个实施例中,步骤1906中可以不携带指示信息,可通过后面的步骤1909向UE发送该指示信息。在又一个实施例中,当辅基站具有RRC功能时,也可通过后面的步骤1908’向UE发送该指示信息。本申请在此并不限制。
步骤1907,主基站确定增加辅基站,向辅基站发送增加辅基站请求。
步骤1908,辅基站向主基站返回增加辅基站请求确认。
步骤1909,主基站向UE发起RRC连接重配置。
换句话说,主基站发起建立辅基站与UE之间的第二无线承载。例如,第二无线承载为DRB2。在该步骤中,辅基站向UE发送DRB2的标识信息,通过该步骤,建立了辅基站与UE之间的DRB2。
步骤1910,主基站向辅基站反馈辅基站重配置完成,以通知辅基站UE成功完成了RRC连接重配置。
步骤1907至1910可参考图18中步骤1807至1810的描述,此处不再赘述。
可选的,若辅基站具有RRC功能时,上述步骤1908-1910可以替换为:
1908’,辅基站发起与UE之间的RRC连接建立过程,可参考1808’的描述,不再赘述。
1909’,辅基站向主基站返回增加辅基站请求确认,可参考步骤1808的描述,不再赘述。
步骤1911,随机接入流程。
步骤1912,主基站向AMF发送第一接入网隧道信息和第二接入网隧道信息。可选的,主基站还向AMF发送QFI-a与第一接入网隧道信息之间的对应关系,以及,QFI-b与第二接入网隧道信息之间的对应关系。
步骤1913,AMF向SMF发送更新上下文请求,从而将收到的N2 SM信息转发至 SMF。
步骤1914,SMF向UPF发送转发规则。
步骤1915,SMF向AMF发送更新上下文响应。
步骤1912至1915可参考图18中步骤1812至1815的描述,此处不再赘述。
由此,根据本发明实施例的报文传输方法,可通过两条路径实现第一业务(如URLLC业务)的上行/下行报文的传输。类似的,也可采用本申请实施例的方法通过多条(大于两条)路径实现第一业务的上行/下行报文的传输,不再赘述。由此,提高了URLLC业务报文的可靠性。
结合图18和图19的描述,本申请实施例提供了一种报文传输方法,如图20所示,包括如下步骤:
步骤2001,用户设备从网络侧设备获取指示信息。
例如,网络侧设备为SMF,UE可从SMF获取该指示信息,可参考图18中步骤1804至1806;或者,网络侧设备为基站,UE可从主基站获取该指示信息,可参考图19中步骤1906,不再赘述。例如,该指示信息用于指示UE复制上行报文,得到第一上行报文和第二上行报文,并通过不同的无线承载发送第一上行报文和第二上行报文。其中,第一上行报文和第二上行报文具有相同的序列号。
步骤2002,用户设备根据指示信息生成第一上行报文和第二上行报文,通过第一无线承载向第一基站发送所述第一上行报文,通过第二无线承载向第二基站发送所述第二上行报文。其中,所述第一上行报文和所述第二上行报文具有相同的序列号。第一上行报文和第一业务流标识对应,第二上行报文和第二业务流标识对应。
例如,第一基站可以为图18或19中的主基站,第二基站可以为图18或19中的辅基站,第一无线承载可以为图18或19中的DRB1,第二无线承载可以为图18或19中的DRB2。
例如,用户设备根据所述指示信息在第一协议层复制报文,得到第一上行报文和第二上行报文。例如,所述第一协议层包括HRP层;所述用户设备通过NAS消息从SMF获取所述指示信息,可参考图18的描述。或者,所述第一协议层包括SDAP层;所述用户设备通过AS消息从基站获取所述指示信息,可参考图19的描述。
可选的,UE可以为所述第一上行报文添加第一业务流标识,为所述第二上行报文添加第二业务流标识。也就是说,第一上行报文包含第一业务流标识,第二上行报文包含第二业务流标识。进一步可选的,所述指示信息还指示所述用户设备为所述第一上行报文添加第一业务流标识,为所述第二上行报文添加第二业务流标识。
此外,对于下行方向,用户设备分别从第一基站和第二基站接收第一下行报文和第二下行报文,第一下行报文具有第二序列号,与第一业务流标识对应,第二下行报文具有第二序列号,与第二业务流标识对应。用户设备根据指示信息,对第一下行报文和第二下行报文去重。
可选的,所述指示信息还用于指示所述用户设备将具有相同序列号且分别具有所述第一业务流标识和所述第二业务流标识的两个下行报文去重。
需要说明的是,下行方向的操作不依赖于上行的方案,也就是说,UE下行侧的操 作也可构成一个独立的方案。
类似的,也可采用本申请实施例的方法通过多条(大于两条)路径实现第一业务的上行/下行报文的传输,不再赘述。由此,提高了URLLC业务报文的可靠性。
结合图18和图19的描述,本申请实施例提供了一种报文传输方法,如图21所示,包括如下步骤:
步骤2101,用户面功能网元从会话管理功能网元接收上行转发规则。例如,上行转发规则用于指示所述用户面功能网元将具有相同序列号且分别具有所述第一业务流标识和所述第二业务流标识的两个上行报文去重。
例如,用户面功能网元可以为图18或19中的UPF,会话管理功能网元可以为图18或19中的SMF。步骤2101可参考图18中步骤1814或图19中步骤1914的描述,不再赘述。
步骤2102,用户面功能网元接收第一上行报文和第二上行报文。其中,第一上行报文具有第一业务流标识和第一序列号,第二上行报文具有第二业务流标识和所述第一序列号。
步骤2103,用户面功能网元根据上行转发规则,对第一上行报文和第二上行报文去重。
此外,对于下行方向,用户面功能网元从会话管理功能网元接收下行转发规则,根据下行转发规则生成第一下行报文和第二下行报文,向第一基站发送所述第一下行报文,向第二基站发送所述第二下行报文,其中,第一下行报文具有所述第一业务流标识和第二序列号,第二下行报文具有所述第二业务流标识和所述第二序列号。
可选的,用户面功能网元根据所述下行转发规则,生成第一下行报文和第二下行报文,包括:用户面功能网元根据所述下行转发规则在第一协议层复制报文,得到所述第一下行报文和所述第二下行报文,其中,第一协议层包括HRP层或GTP-U层。
需要说明的是,下行方向的操作不依赖于上行的方案,也就是说,UPF下行侧的操作也可构成一个独立的方案。
类似的,也可采用本申请实施例的方法通过多条(大于两条)路径实现第一业务的上行/下行报文的传输,不再赘述。由此,提高了URLLC业务报文的可靠性。
结合图3和图5的描述,本申请实施例提供了一种报文传输方法,如图6所示,包括如下步骤:
步骤601,会话管理功能网元接收第一业务对应的第一接入网隧道信息和第二接入网隧道信息。
例如,会话管理功能网元可以为图3或图5中的SMF。
例如,接入和移动性管理网元在收到包含第一接入网隧道信息和第二接入网隧道信息的N2 SM信息后,向会话管理功能网元转发该N2 SM信息。具体的,步骤601可参考图3中步骤311、312或图5中步骤507、508的描述,此处不再赘述。
步骤602,会话管理功能网元向用户面功能网元发送下行转发规则。下行转发规则包括第一接入网隧道信息和第二接入网隧道信息,用于指示用户面功能网元复制接 收到的第一业务的下行报文,通过分别与第一接入网隧道信息和第二接入网隧道信息对应的两条路径发送第一业务的下行报文。
例如,用户面功能网元可以为图3或图5中的UPF。例如,在双连接的场景下,上述两条路径可以是指用户面功能网元与主基站之间的第一路径,以及,用户面功能网元和辅基站之间的第二路径。在单连接的场景下,上述两条路径可以是指用户面功能网元与基站之间的第一路径和第二路径。
步骤602可参考图3中步骤313或图5中步骤509的描述,此处不再赘述。
通过上述方法,对于特定的第一业务(例如,具有高可靠性需求的URLLC业务),会话管理功能网元向向用户面功能网元发送包含第一接入网隧道信息和第二接入网隧道信息的下行转发规则,使得用户面功能网元后续收到第一业务的下行报文后,进行复制,并通过分别与第一接入网隧道信息和第二接入网隧道信息对应的两条路径发送第一业务的下行报文。这样,提高了第一业务的报文传输的可靠性。
类似的,也可采用本申请实施例的方法通过多条(大于两条)路径实现第一业务的上行/下行报文的传输,不再赘述。由此,提高了URLLC业务报文的可靠性。
可选的,如果第一业务是业务流粒度的业务,那么下行转发规则还包括第一业务的业务流标识和会话标识。或者,如果第一业务是会话粒度的业务,那么下行转发规则还包括第一业务的会话标识。因此,对于不同粒度的业务,可提供相应粒度的下行转发规则,使得用户面功能网元可以实现更加准确高效的报文传输。
可选的,该方法还包括:会话管理功能网元向基站发送指示信息,指示信息用于触发第一接入网隧道信息和第二接入网隧道信息的确定。也就是说,基站收到指示信息后,就知道了需要确定第一接入网隧道信息和第二接入网隧道信息。例如,指示信息可以包括以下至少一项:服务质量参数;切片标识信息;数据网络名称;第一核心网隧道信息和第二核心网隧道信息。其中,服务质量参数包括5QI和QFI中的至少一项。这里接收指示信息的基站可以是双连接的场景下的主基站、或者单连接场景下的基站。
可选的,该方法还包括:会话管理功能网元向基站发送上行转发规则。上行转发规则包括第一核心网隧道信息和第二核心网隧道信息,用于指示基站复制接收到的第一业务的上行报文,将第一业务的上行报文通过分别与第一核心网隧道信息和第二核心网隧道信息对应的两条路径发送到用户面功能网元。这里的基站指的是单连接场景下的基站。
类似的,如果第一业务是业务流粒度的业务,那么上行转发规则还包括第一业务的业务流标识和会话标识。或者,如果第一业务是会话粒度的业务,那么上行转发规则还包括第一业务的会话标识。
可选的,该方法还包括:会话管理功能网元为所述第一业务分配第一业务流标识和第二业务流标识,向用户设备发送所述第一业务流标识和所述第二业务流标识。可参考图18中步骤1803或图19中步骤1903的描述,不再赘述。
可选的,该方法还包括:会话管理功能网元向用户面功能网元发送上行转发规则,所述上行转发规则用于指示用户面功能网元将具有相同序列号且分别具有第一业务流标识和第二业务流标识的两个上行报文去重。可参考图18中步骤1814或图19中步骤 1914的描述,不再赘述。
可选的,该方法还包括:会话管理功能网元通过NAS消息向用户设备发送指示信息;其中,所述指示信息用于指示所述用户设备复制上行报文,得到第一上行报文和第二上行报文,并通过不同的无线承载发送所述第一上行报文和所述第二上行报文。其中,所述第一上行报文和所述第二上行报文具有相同的序列号。进一步可选的,该指示信息还用于指示第一上行报文与QFI-a对应,第二上行报文与QFI-b对应。可参考图18中步骤1804至1806的描述,不再赘述。
可选的,该方法还包括:用户设备为第一上行报文(例如,在HRP层)添加第一业务流标识,为第二上行报文添加第二业务流标识。例如,所述指示信息还指示所述用户设备为所述第一上行报文添加第一业务流标识,为所述第二上行报文添加第二业务流标识。
可选的,通过分别与所述第一接入网隧道信息和所述第二接入网隧道信息对应的两条路径发送的所述第一业务的下行报文包括第一下行报文和第二下行报文,其中,所述第一下行报文和第二上行报文包括相同的第一序列号。第一上行报文与第一业务流标识对应,第二上行报文与第二业务流标识对应。可选的,UE发送的第一上行报文包括第一业务流标识,第二上行报文包括第二业务流标识。可参考图18或19的描述,不再赘述。
可选的,所述指示信息还用于指示所述用户设备对第一下行报文和第二下行报文去重。其中,所述第一下行报文和所述第二下行报文具有相同的序列号,且分别与所述第一业务流标识和所述第二业务流标识关联。
本申请实施例还提供了一种报文传输方法,如图7所示,包括如下步骤:
步骤701,基站确定第一业务对应的第一接入网隧道信息和第二接入网隧道信息。
例如,基站可以为图3中的主基站或图5中的基站。
步骤701可参考图3中步骤306、307或图5中步骤506的描述,此处不再赘述。
步骤702,基站向会话管理功能网元发送第一接入网隧道信息和第二接入网隧道信息。第一接入网隧道信息和第二接入网隧道信息用于下行转发规则的确定。下行转发规则用于指示用户面功能网元复制接收到的第一业务的下行报文并通过分别与第一接入网隧道信息和第二接入网隧道信息对应的两条路径发送第一业务的下行报文。
例如,会话管理功能网元可以为图3或图5中的SMF。在双连接的场景下,上述两条路径可以是指用户面功能网元与主基站之间的第一路径,以及,用户面功能网元和辅基站之间的第二路径。在单连接的场景下,上述两条路径可以是指用户面功能网元与基站之间的第一路径和第二路径。
步骤702可参考图3中步骤311、312或图5中步骤507、508的描述,此处不再赘述。
通过上述方法,基站向会话管理功能网元发送第一接入网隧道信息和第二接入网隧道信息,对于特定的第一业务(例如,具有高可靠性需求的URLLC业务),会话管理功能网元向向用户面功能网元发送包含第一接入网隧道信息和第二接入网隧道信息的下行转发规则,使得用户面功能网元后续收到第一业务的下行报文后,进行复制, 并通过分别与第一接入网隧道信息和第二接入网隧道信息对应的两条路径发送第一业务的下行报文。这样,提高了第一业务的报文传输的可靠性。
类似的,也可采用本申请实施例的方法通过多条(大于两条)路径实现第一业务的上行/下行报文的传输,不再赘述。由此,提高了URLLC业务报文的可靠性。
可选的,如果第一业务是业务流粒度的业务,那么下行转发规则还包括第一业务的业务流标识和会话标识。或者,如果第一业务是会话粒度的业务,那么下行转发规则还包括第一业务的会话标识。因此,对于不同粒度的业务,可提供相应粒度的下行转发规则,使得用户面功能网元可以实现更加准确高效的报文传输。
可选的,该方法还包括:基站从会话管理功能网元接收指示信息。指示信息用于触发第一接入网隧道信息和第二接入网隧道信息的确定。上述步骤701包括:基站根据指示信息确定第一接入网隧道信息和第二接入网隧道信息。也就是说,基站收到指示信息后,就知道了需要确定第一接入网隧道信息和第二接入网隧道信息。例如,指示信息可以包括以下至少一项:服务质量参数;切片标识信息;数据网络名称;第一核心网隧道信息和第二核心网隧道信息。其中,服务质量参数包括5QI和QFI中的至少一项。
可选的,该方法还包括:基站从会话管理功能网元接收上行转发规则,上行转发规则包括第一核心网隧道信息和第二核心网隧道信息;基站根据上行转发规则复制接收到的第一业务的上行报文,并将第一业务的上行报文通过与第一核心网隧道信息和第二核心网隧道信息对应的两条路径发送到用户面功能网元。这里的基站指的是单连接场景下的基站。
类似的,如果第一业务是业务流粒度的业务,那么上行转发规则还包括第一业务的业务流标识和会话标识。或者,如果第一业务是会话粒度的业务,那么上行转发规则还包括第一业务的会话标识。
可选的,该方法还包括:基站通过AS消息向用户设备发送指示信息。其中,所述指示信息用于指示所述用户设备复制上行报文,得到第一上行报文和第二上行报文,并通过不同的无线承载发送所述第一上行报文和所述第二上行报文。其中,所述第一上行报文和所述第二上行报文具有相同的序列号。进一步可选的,该指示信息还用于指示第一上行报文与QFI-a对应,第二上行报文与QFI-b对应。可参考图19中步骤1906的描述,不再赘述。
可选的,该方法还包括:基站向会话管理功能网元发送与所述第一接入网隧道信息对应的所述第一业务流标识,以及与所述第二接入网隧道信息对应的所述第二业务流标识。
可选的,该方法还包括:基站指示用户设备为第一上行报文添加业务流标识。
可选的,该方法还包括:基站确定通过双连接方式实现报文传输时,基站指示用户设备生成两份第二上行报文,两份第二上行报文具有相同的序列号和业务流标识。
可选的,该方法还包括:基站指示用户设备对收到的具有相同序列号和业务流标识的下行报文去重。例如,对于双连接(或双基站)的下行场景,基站指示用户设备对收到的具有相同序列号和业务流标识的下行报文去重。
可选的,该方法还包括:基站通过分别与第一接入网隧道信息和第二接入网隧道 信息对应的两条路径接收所述第一业务的下行报文;对具有相同序列号和业务流标识的下行报文去重。例如,对于单连接(或单基站)的下行场景,由基站对具有相同序列号和业务流标识的下行报文去重。
结合图3、图5和图12的描述,本申请实施例还提供了一种报文传输方法,如图13所示,包括如下步骤:
步骤1301,基站获取第一指示。
其中,第一指示包括能力信息或来自会话管理网元的指示信息。
例如,指示信息用于指示基站指示用户设备为第一会话的上行报文或第一会话的第一业务流的上行报文添加业务流标识。
能力信息用于指示以下中的至少一项:该基站(即,主基站)是否具有通过双连接方式实现报文传输的能力;该基站的相邻基站(即,与该基站具有Xn接口的基站,例如,辅基站)是否具有通过双连接方式实现报文传输的能力;与该基站关联的切片内是否部署了具有通过双连接方式实现报文传输的能力的其他基站(例如,辅基站)。
步骤1302,基站根据第一指示指示用户设备为第一上行报文添加业务流标识。
其中,业务流标识可以包括会话标识、QFI、五元组中的至少一项。
例如,当第一指示包括指示信息时,基站根据收到的指示信息,指示用户设备为第一上行报文添加业务流标识。
当第一指示包括能力信息时,所述基站根据第一指示指示用户设备为第一上行报文添加业务流标识,包括:当能力信息满足第一条件时,基站指示用户设备为第一上行报文添加业务流标识。其中,第一条件包括以下中的至少一项:能力信息指示基站具有通过双连接方式实现报文传输的能力;能力信息指示基站的相邻基站具有通过双连接方式实现报文传输的能力;能力信息指示与基站关联的切片内部署了具有通过双连接方式实现报文传输的能力的其他基站。
例如,步骤1301和1302可参考图3中的描述,此处不赘述。
因此,对于采用双连接方式,或之后有可能采用双连接方式的情况下,基站指示UE为上行报文添加业务流标识。这样,对于UE而言,单连接和双连接采用的是相同的协议栈格式,当后续切换至双连接方式后,UE可直接根据该协议栈格式进行处理,避免了复杂的操作和信令的交互,也降低了时延,从而提升了用户体验。
可选的,该方法还包括:基站确定通过双连接方式实现报文传输时,基站指示用户设备生成两份第二上行报文,两份第二上行报文具有相同的序列号和业务流标识。
可选的,该方法还包括:基站指示用户设备对收到的具有相同序列号和业务流标识的下行报文去重。例如,对于双连接(或双基站)的下行场景,基站指示用户设备对收到的具有相同序列号和业务流标识的下行报文去重。
可选的,该方法还包括:基站通过分别与第一接入网隧道信息和第二接入网隧道信息对应的两条路径接收所述第一业务的下行报文;对具有相同序列号和业务流标识的下行报文去重。例如,对于单连接(或单基站)的下行场景,由基站对具有相同序列号和业务流标识的下行报文去重。该步骤可参考图12中步骤1212的描述。
结合图3和图11的描述,本申请实施例还提供了一种报文传输方法。该方法适用于双连接的场景。如图14所示,该方法包括如下步骤:
步骤1401,用户设备根据从第一基站获取的指示,生成第一上行报文和第二上行报文,其中,第一上行报文和第二上行报文具有相同的第一业务流标识和第一序列号。
步骤1402,用户设备向第一基站发送第一上行报文,向第二基站发送第二上行报文。
步骤1401和1402可参考图3和图11中步骤1101的描述。
因此,对于采用双连接方式,UE根据基站的指示为上行报文添加业务流标识和序列号。对于特定的业务(例如,具有高可靠性需求的URLLC业务)的报文,UE实现对报文的复制。这样,提高了特定业务的报文传输的可靠性。
可选的,该方法还包括:用户设备分别从第一基站和第二基站接收第一下行报文和第二下行报文,第一下行报文和第二下行报文包括相同的第二业务流标识和相同的第二序列号;用户设备根据基站的指示,对第一下行报文和所述第二下行报文去重。该步骤可参考图11中步骤1113的描述。
上述本申请提供的实施例中,分别从各个网元本身、以及从各个网元之间交互的角度对本申请实施例提供的通信方法的各方案进行了介绍。可以理解的是,各个网元,例如上述会话管理功能网元、基站为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
例如,当上述网元通过软件模块来实现相应的功能。报文传输装置可包括接收模块801和发送模块802,如图8所示。该装置可以是会话管理功能网元或芯片。
该装置可用于执行上述图3或图5、或18、图19中SMF或图6中会话管理功能网元的操作。例如:接收模块801用于接收第一业务对应的第一接入网隧道信息和第二接入网隧道信息。发送模块用于向用户面功能网元发送下行转发规则,所述下行转发规则包括所述第一接入网隧道信息和所述第二接入网隧道信息,所述下行转发规则用于指示所述用户面功能网元复制接收到的所述第一业务的下行报文,通过分别与所述第一接入网隧道信息和所述第二接入网隧道信息对应的两条路径发送所述第一业务的下行报文。
因此,对于特定的第一业务(例如,具有高可靠性需求的URLLC业务),会话管理功能网元向向用户面功能网元发送包含第一接入网隧道信息和第二接入网隧道信息的下行转发规则,使得用户面功能网元后续收到第一业务的下行报文后,进行复制,并通过分别与第一接入网隧道信息和第二接入网隧道信息对应的两条路径发送第一业务的下行报文。这样,提高了第一业务的报文传输的可靠性。
可选的,所述第一业务是业务流粒度的业务,所述下行转发规则还包括所述第一业务的业务流标识和会话标识;或者,所述第一业务是会话粒度的业务,所述下行转 发规则还包括所述第一业务的会话标识。
可选的,发送模块802还用于向所述基站发送指示信息,所述指示信息用于触发所述第一接入网隧道信息和所述第二接入网隧道信息的确定。例如,指示信息包括以下至少一项:服务质量参数;切片标识信息;数据网络名称;第一核心网隧道信息和第二核心网隧道信息。
可选的,发送模块802用于向所述基站发送上行转发规则,所述上行转发规则包括第一核心网隧道信息和第二核心网隧道信息,所述上行转发规则用于指示所述基站复制接收到的所述第一业务的上行报文,将所述第一业务的上行报文通过分别与所述第一核心网隧道信息和所述第二核心网隧道信息对应的两条路径发送到所述用户面功能网元。进一步可选的,所述第一业务是业务流粒度的业务,所述上行转发规则还包括所述第一业务的业务流标识和会话标识;或者,所述第一业务是会话粒度的业务,所述上行转发规则还包括所述第一业务的会话标识。
可选的,通过分别与所述第一接入网隧道信息和所述第二接入网隧道信息对应的两条路径发送的所述第一业务的下行报文包括第一下行报文和第二下行报文,其中,所述第一下行报文和所述第二下行报文具有相同的序列号,所述第一下行报文还包括第一业务流标识,所述第二下行报文还包括第二业务流标识。
可选的,发送模块802还用于向所述用户面功能网元发送上行转发规则,所述上行转发规则用于指示所述用户面功能网元将具有相同序列号且分别具有所述第一业务流标识和所述第二业务流标识的两个上行报文去重。
可选的,发送模块802还用于通过非接入层NAS消息向用户设备发送指示信息;其中,所述指示信息用于指示所述用户设备复制上行报文,得到第一上行报文和第二上行报文,并通过不同的无线承载发送所述第一上行报文和所述第二上行报文,其中,所述第一上行报文和所述第二上行报文具有相同的序列号。例如,所述第一上行报文与所述第一业务流标识对应,所述第二上行报文与所述第二业务流标识对应。
该装置还可以包括处理模块803。例如,处理模块803用于为所述第一业务分配所述第一业务流标识和所述第二业务流标识,向用户设备发送所述第一业务流标识和所述第二业务流标识。该装置中的接收模块801、发送模块802和处理模块803还可实现上述方法中SMF或会话管理功能网元的其他操作或功能,此处不再赘述。
另一报文传输装置可包括处理模块901和发送模块902,如图9所示。可选的,该装置还包括接收模块903。
在一个实施例中,该装置可以是基站或芯片。该装置可用于执行上述图3、图18或图19中主基站或图5、图7中基站的操作。例如,处理模块901用于确定第一业务对应的第一接入网隧道信息和第二接入网隧道信息。发送模块902用于向会话管理功能网元发送所述第一接入网隧道信息和所述第二接入网隧道信息,所述第一接入网隧道信息和所述第二接入网隧道信息用于下行转发规则的确定,所述下行转发规则用于指示用户面功能网元复制接收到的所述第一业务的下行报文并通过分别与所述第一接入网隧道信息和所述第二接入网隧道信息对应的两条路径发送所述第一业务的下行报文。
因此,基站向会话管理功能网元发送第一接入网隧道信息和第二接入网隧道信息,对于特定的第一业务(例如,具有高可靠性需求的URLLC业务),会话管理功能网元向向用户面功能网元发送包含第一接入网隧道信息和第二接入网隧道信息的下行转发规则,使得用户面功能网元后续收到第一业务的下行报文后,进行复制,并通过分别与第一接入网隧道信息和第二接入网隧道信息对应的两条路径发送第一业务的下行报文。这样,提高了第一业务的报文传输的可靠性。
可选的,所述第一业务是业务流粒度的业务,所述下行转发规则还包括所述第一业务的业务流标识和会话标识;或者,所述第一业务是会话粒度的业务,所述下行转发规则还包括所述第一业务的会话标识。
可选的,接收模块903用于用于在所述处理模块901确定第一业务对应的第一接入网隧道信息和第二接入网隧道信息之前,从所述会话管理功能网元接收指示信息。所述指示信息用于触发所述基站确定所述第一接入网隧道信息和所述第二接入网隧道信息。处理模块901用于根据指示信息确定所述第一接入网隧道信息和所述第二接入网隧道信息。例如,指示信息包括以下至少一项:服务质量参数;切片标识信息;数据网络名称;第一核心网隧道信息和第二核心网隧道信息。
可选的,接收模块903用于从所述会话管理功能网元接收上行转发规则,所述上行转发规则包括第一核心网隧道信息和第二核心网隧道信息。处理模块901用于根据所述上行转发规则复制接收到的所述第一业务的上行报文,发送模块902用于将所述第一业务的上行报文通过与所述第一核心网隧道信息和所述第二核心网隧道信息对应的两条路径发送到所述用户面功能网元。进一步可选的,所述第一业务是业务流粒度的业务,所述上行转发规则还包括所述第一业务的业务流标识和会话标识;或者,所述第一业务是会话粒度的业务,所述上行转发规则还包括所述第一业务的会话标识。
可选的,发送模块902还用于通过接入层AS消息向用户设备发送指示信息,其中,所述指示信息用于指示所述用户设备复制上行报文,得到第一上行报文和第二上行报文,并通过不同的无线承载发送所述第一上行报文和所述第二上行报文。
在另一个实施例中,处理模块901用于控制发送模块902发起建立所述第一基站与用户设备之间的第一无线承载;在建立第二基站与所述用户设备之间的第二无线承载的过程中,发送模块902或所述第二基站中的发送模块向所述用户设备发送指示信息,所述指示信息用于指示所述用户设备将所述第一无线承载和所述第二无线承载关联至所述用户设备上的同一个分组数据汇聚层协议PDCP实体。例如,所述第一基站或所述第二基站通过无线资源控制RRC层消息向所述用户设备发送所述指示信息。
此外,该装置中的处理模块901、发送模块902和接收模块903还可实现上述方法中基站或主基站(例如,图11、12、13)的其他操作或功能,此处不再赘述。
在另一个实施例中,该装置可以是UE或芯片。该装置可用于执行上述图11、图15、图17、图18、图19或图20中UE的操作。例如,处理模块901用于根据从第一基站获取的指示,生成第一上行报文和第二上行报文,其中,所述第一上行报文和所述第二上行报文具有相同的第一业务流标识和第一序列号。发送模块902用于向所述第一基站发送所述第一上行报文,向第二基站发送所述第二上行报文。
因此,对于采用双连接方式,UE根据基站的指示为上行报文添加业务流标识和序列号。对于特定的业务(例如,具有高可靠性需求的URLLC业务)的报文,UE实现对报文的复制。这样,提高了特定业务的报文传输的可靠性。
可选的,接收模块903用于分别从所述第一基站和所述第二基站接收第一下行报文和第二下行报文,所述第一下行报文和所述第二下行报文包括相同的第二业务流标识和相同的第二序列号。处理模块901还用于根据所述基站的指示,对所述第一下行报文和所述第二下行报文去重。
又例如,发送模块902和/或接收模块903用于与第一基站交互,以建立所述第一基站与所述用户设备之间的第一无线承载;在建立第二基站与所述用户设备之间的第二无线承载的过程中,接收模块903用于从所述第一基站或所述第二基站接收指示信息,所述指示信息用于指示所述用户设备将所述第一无线承载和所述第二无线承载关联至所述用户设备上的同一个分组数据汇聚层协议PDCP实体;处理模块901用于根据所述指示信息生成第一报文和第二报文,其中,所述第一报文和所述第二报文具有相同的序列号;发送模块902用于通过所述第一无线承载向所述第一基站发送所述第一报文,通过所述第二无线承载向所述第二基站发送所述第二报文。例如,所述用户设备根据所述指示信息生成第一报文和第二报文,包括:所述用户设备根据所述指示信息在PDCP层复制报文,得到所述第一报文和所述第二报文。
或者,又例如,接收模块903用于从网络侧设备获取指示信息;处理模块901用于根据所述指示信息生成第一上行报文和第二上行报文,通过第一无线承载向第一基站发送所述第一上行报文,通过第二无线承载向第二基站发送所述第二上行报文;其中,所述第一上行报文和所述第二上行报文具有相同的序列号。所述第一上行报文和第一业务流标识对应,所述第二上行报文和第二业务流标识对应。
可选的,所述用户设备根据所述指示信息生成第一上行报文和第二上行报文,包括:所述用户设备根据所述指示信息在第一协议层复制报文,得到所述第一上行报文和所述第二上行报文。例如,所述第一协议层包括高可靠协议HRP层;所述用户设备通过非接入层NAS消息从会话管理功能网元获取所述指示信息。或者,所述第一协议层包括业务数据适配协议SDAP层;所述用户设备通过AS消息从所述第一基站获取所述指示信息。
可选的,接收模块903还用于分别从所述第一基站和所述第二基站接收第一下行报文和第二下行报文,所述第一下行报文具有第二序列号,与所述第一业务流标识对应,所述第二下行报文具有所述第二序列号,与所述第二业务流标识对应;处理模块901还用于根据所述指示信息,对所述第一下行报文和所述第二下行报文去重。
在另一个实施例中,该装置可以是UPF或芯片。该装置可用于执行上述图18、图19、图20或图21中UPF的操作。例如,接收模块903用于从会话管理功能网元接收上行转发规则;接收第一上行报文和第二上行报文,其中,所述第一上行报文具有第一业务流标识和第一序列号,所述第二上行报文具有第二业务流标识和所述第一序列号;处理模块901用于根据所述上行转发规则,对所述第一上行报文和所述第二上行报文去重。
可选的,所述上行转发规则用于指示所述用户面功能网元将具有相同序列号且分 别具有所述第一业务流标识和所述第二业务流标识的两个上行报文去重。
可选的,接收模块903还用于从所述会话管理功能网元接收下行转发规则;处理模块901还用于根据所述下行转发规则,生成第一下行报文和第二下行报文,发送模块902用于向第一基站发送所述第一下行报文,向第二基站发送所述第二下行报文,其中,所述第一下行报文具有所述第一业务流标识和第二序列号,所述第二下行报文具有所述第二业务流标识和所述第二序列号。例如,处理模块901根据所述下行转发规则,生成第一下行报文和第二下行报文,包括:处理模块901根据所述下行转发规则在第一协议层复制报文,得到所述第一下行报文和所述第二下行报文,其中,所述第一协议层包括高可靠协议HRP层或通用分组无线系统隧道协议用户面部分GTP-U层。
图10示出了上述实施例中所涉及的报文传输装置的另一种可能的结构示意图。该装置包括收发器1001和处理器1002,如图10所示。
例如,处理器1002可以为通用微处理器、数据处理电路、专用集成电路(application specific integrated circuit,ASIC)或者现场可编程门阵列(field-programmable gate arrays,FPGA)电路。所述装置还可以包括存储器1003,例如,存储器为随机存取存储器(random access memory,RAM)。所述存储器用于与处理器1002耦合,其保存该装置必要的计算机程序10031。
此外,上述实施例中所涉及的通信方法还提供了一种计算机可读存储介质1004(例如,硬盘),所述计算机可读存储介质内保存有该上述装置的计算机程序10041,可以将计算机程序10041加载到处理器1002中。
当上述计算机程序10031或10041在计算机(例如,处理器1002)上运行时,可使得计算机执行上述的方法。
例如,在一个实施例中,处理器1002被配置为执行上述会话管理功能网元(例如,SMF)的操作或功能。收发器1004用于实现该装置与用户面功能网元、基站(或主基站)或其他控制面网元(例如AMF)的通信。
在另一个实施例中,处理器1002被配置为执行上述基站(或主基站)的操作或功能。收发器1004用于实现该装置与用户面功能网元、会话管理功能网元(例如,SMF)的通信。
在又一个实施例中,处理器1002被配置为执行上述UE的操作或功能。收发器1004用于实现该装置与基站、用户面功能网元的通信。
在又一个实施例中,处理器1002被配置为执行上述UPF的操作或功能。收发器1004用于实现该装置与基站、会话管理功能网元的通信。
用于执行本申请的报文传输装置的处理器可以是中央处理器(CPU),通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC),现场可编程门阵列(FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于通信装置中。当然,处理器和存储介质也可以作为分立组件存在于通信装置中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (72)

  1. 一种报文传输方法,其特征在于,包括:
    会话管理功能网元接收第一业务对应的第一接入网隧道信息和第二接入网隧道信息;
    所述会话管理功能网元向用户面功能网元发送下行转发规则,所述下行转发规则包括所述第一接入网隧道信息和所述第二接入网隧道信息,所述下行转发规则用于指示所述用户面功能网元复制接收到的所述第一业务的下行报文,通过分别与所述第一接入网隧道信息和所述第二接入网隧道信息对应的两条路径发送所述第一业务的下行报文。
  2. 根据权利要求1所述的方法,其特征在于,所述第一业务是业务流粒度的业务,所述下行转发规则还包括所述第一业务的业务流标识和会话标识;或者,
    所述第一业务是会话粒度的业务,所述下行转发规则还包括所述第一业务的会话标识。
  3. 根据权利要求1或2所述的方法,其特征在于,还包括:
    所述会话管理功能网元向基站发送指示信息,所述指示信息用于触发所述第一接入网隧道信息和所述第二接入网隧道信息的确定。
  4. 根据权利要求3所示的方法,其特征在于,所述指示信息包括以下至少一项:
    服务质量参数;
    切片标识信息;
    数据网络名称;
    第一核心网隧道信息和第二核心网隧道信息。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,还包括:
    所述会话管理功能网元向基站发送上行转发规则,所述上行转发规则包括第一核心网隧道信息和第二核心网隧道信息,所述上行转发规则用于指示所述基站复制接收到的所述第一业务的上行报文,将所述第一业务的上行报文通过分别与所述第一核心网隧道信息和所述第二核心网隧道信息对应的两条路径发送到所述用户面功能网元。
  6. 根据权利要求5所述的方法,其特征在于,所述第一业务是业务流粒度的业务,所述上行转发规则还包括所述第一业务的业务流标识和会话标识;或者,
    所述第一业务是会话粒度的业务,所述上行转发规则还包括所述第一业务的会话标识。
  7. 根据权利要求1所述的方法,其特征在于,通过分别与所述第一接入网隧道信息和所述第二接入网隧道信息对应的两条路径发送的所述第一业务的下行报文包括第一下行报文和第二下行报文,其中,所述第一下行报文和所述第二下行报文具有相同的序列号,所述第一下行报文还包括第一业务流标识,所述第二下行报文还包括第二业务流标识。
  8. 根据权利要求7所述的方法,其特征在于,还包括:
    所述会话管理功能网元为所述第一业务分配所述第一业务流标识和所述第二业务流标识,向用户设备发送所述第一业务流标识和所述第二业务流标识。
  9. 根据权利要求7或8所述的方法,其特征在于,还包括:
    所述会话管理功能网元向所述用户面功能网元发送上行转发规则,所述上行转发规则用于指示所述用户面功能网元将具有相同序列号且分别具有所述第一业务流标识和所述第二业务流标识的两个上行报文去重。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,还包括:
    所述会话管理功能网元通过非接入层NAS消息向用户设备发送指示信息;
    其中,所述指示信息用于指示所述用户设备复制上行报文,得到第一上行报文和第二上行报文,并通过不同的无线承载发送所述第一上行报文和所述第二上行报文,其中,所述第一上行报文和所述第二上行报文具有相同的序列号。
  11. 根据权利要求10所述的方法,其特征在于,所述第一上行报文与所述第一业务流标识对应,所述第二上行报文与所述第二业务流标识对应。
  12. 一种报文传输方法,其特征在于,包括:
    基站确定第一业务对应的第一接入网隧道信息和第二接入网隧道信息;
    所述基站向会话管理功能网元发送所述第一接入网隧道信息和所述第二接入网隧道信息,所述第一接入网隧道信息和所述第二接入网隧道信息用于下行转发规则的确定,所述下行转发规则用于指示用户面功能网元复制接收到的所述第一业务的下行报文并通过分别与所述第一接入网隧道信息和所述第二接入网隧道信息对应的两条路径发送所述第一业务的下行报文。
  13. 根据权利要求12所述的方法,其特征在于,所述第一业务是业务流粒度的业务,所述下行转发规则还包括所述第一业务的业务流标识和会话标识;或者,
    所述第一业务是会话粒度的业务,所述下行转发规则还包括所述第一业务的会话标识。
  14. 根据权利要求12或13所述的方法,其特征在于,所述方法包括:
    所述基站从所述会话管理功能网元接收指示信息;
    所述基站确定第一业务对应的第一接入网隧道信息和第二接入网隧道信息,包括:
    所述基站根据所述指示信息确定所述第一接入网隧道信息和所述第二接入网隧道信息。
  15. 根据权利要求14所述的方法,其特征在于,所述指示信息包括以下至少一项:
    服务质量参数;
    切片标识信息;
    数据网络名称;
    第一核心网隧道信息和第二核心网隧道信息。
  16. 根据权利要求12-15任一项所述的方法,其特征在于,所述方法包括:
    所述基站从所述会话管理功能网元接收上行转发规则,所述上行转发规则包括第一核心网隧道信息和第二核心网隧道信息;
    所述基站根据所述上行转发规则复制接收到的所述第一业务的上行报文,并将所述第一业务的上行报文通过与所述第一核心网隧道信息和所述第二核心网隧道信息对应的两条路径发送到所述用户面功能网元。
  17. 根据权利要求16所述的方法,其特征在于,所述第一业务是业务流粒度的业务,所述上行转发规则还包括所述第一业务的业务流标识和会话标识;或者,
    所述第一业务是会话粒度的业务,所述上行转发规则还包括所述第一业务的会话标识。
  18. 根据权利要求12所述的方法,其特征在于,还包括:
    所述基站通过接入层AS消息向用户设备发送指示信息,其中,所述指示信息用于指示所述用户设备复制上行报文,得到第一上行报文和第二上行报文,并通过不同的无线承载发送所述第一上行报文和所述第二上行报文。
  19. 根据权利要求12-17任一项所述的方法,其特征在于,还包括:
    所述基站指示用户设备为第一上行报文添加业务流标识。
  20. 一种报文传输方法,其特征在于,包括:
    基站获取第一指示;
    基站根据所述第一指示指示用户设备为第一上行报文添加业务流标识;
    其中,所述第一指示包括能力信息或来自会话管理网元的指示信息。
  21. 根据权利要求20所述的方法,其特征在于,所述指示信息用于指示所述基站指示所述用户设备为第一会话的上行报文或第一会话的第一业务流的上行报文添加业务流标识。
  22. 根据权利要求21所述的方法,其特征在于,当所述第一指示包括所述能力信息时,所述基站根据所述第一指示指示用户设备为第一上行报文添加业务流标识,包括:
    当所述能力信息满足第一条件时,所述基站指示所述用户设备为所述第一上行报文添加业务流标识;
    其中,所述第一条件包括以下中的至少一项:
    所述能力信息指示所述基站具有通过双连接方式实现报文传输的能力;
    所述能力信息指示所述基站的相邻基站具有通过双连接方式实现报文传输的能力;
    所述能力信息指示与所述基站关联的切片内部署了具有通过双连接方式实现报文传输的能力的其他基站。
  23. 根据权利要求19至22任一所述的方法,其特征在于,还包括:
    所述基站确定通过双连接方式实现报文传输时,所述基站指示所述用户设备生成两份第二上行报文,所述两份第二上行报文具有相同的序列号和所述业务流标识。
  24. 根据权利要求23所述的方法,其特征在于,还包括:
    所述基站指示所述用户设备对收到的具有相同序列号和业务流标识的下行报文去重。
  25. 根据权利要求12-22任一项所述的方法,其特征在于,还包括:
    所述基站通过分别与所述第一接入网隧道信息和所述第二接入网隧道信息对应的两条路径接收所述第一业务的下行报文;
    所述基站对具有相同序列号和业务流标识的所述下行报文去重。
  26. 一种报文传输方法,其特征在于,包括:
    用户设备根据从第一基站获取的指示,生成第一上行报文和第二上行报文,其中,所述第一上行报文和所述第二上行报文具有相同的第一业务流标识和第一序列号;
    所述用户设备向所述第一基站发送所述第一上行报文,向第二基站发送所述第二 上行报文。
  27. 根据权利要求26所述的方法,其特征在于,所述方法还包括:
    所述用户设备分别从所述第一基站和所述第二基站接收第一下行报文和第二下行报文,所述第一下行报文和所述第二下行报文包括相同的第二业务流标识和相同的第二序列号;
    所述用户设备根据所述基站的指示,对所述第一下行报文和所述第二下行报文去重。
  28. 一种报文传输方法,其特征在于,包括:
    第一基站发起建立所述第一基站与用户设备之间的第一无线承载;
    在建立第二基站与所述用户设备之间的第二无线承载的过程中,所述第一基站或所述第二基站向所述用户设备发送指示信息,所述指示信息用于指示所述用户设备将所述第一无线承载和所述第二无线承载关联至所述用户设备上的同一个分组数据汇聚层协议PDCP实体。
  29. 根据权利要求28所述的方法,其特征在于,所述第一基站或所述第二基站向所述用户设备发送指示信息,包括:
    所述第一基站或所述第二基站通过无线资源控制RRC层消息向所述用户设备发送所述指示信息。
  30. 一种报文传输方法,其特征在于,包括:
    用户设备与第一基站交互,以建立所述第一基站与所述用户设备之间的第一无线承载;
    在建立第二基站与所述用户设备之间的第二无线承载的过程中,所述用户设备从所述第一基站或所述第二基站接收指示信息,所述指示信息用于指示所述用户设备将所述第一无线承载和所述第二无线承载关联至所述用户设备上的同一个分组数据汇聚层协议PDCP实体;
    所述用户设备根据所述指示信息生成第一报文和第二报文,其中,所述第一报文和所述第二报文具有相同的序列号;
    所述用户设备通过所述第一无线承载向所述第一基站发送所述第一报文,通过所述第二无线承载向所述第二基站发送所述第二报文。
  31. 根据权利要求30所述的方法,其特征在于,所述用户设备根据所述指示信息生成第一报文和第二报文,包括:
    所述用户设备根据所述指示信息在PDCP层复制报文,得到所述第一报文和所述第二报文。
  32. 一种报文传输方法,其特征在于,包括:
    用户设备从网络侧设备获取指示信息;
    所述用户设备根据所述指示信息生成第一上行报文和第二上行报文,通过第一无线承载向第一基站发送所述第一上行报文,通过第二无线承载向第二基站发送所述第二上行报文;
    其中,所述第一上行报文和所述第二上行报文具有相同的序列号。
  33. 根据权利要求32所述的方法,其特征在于,所述第一上行报文和第一业务流 标识对应,所述第二上行报文和第二业务流标识对应。
  34. 根据权利要求32或33所述的方法,其特征在于,所述用户设备根据所述指示信息生成第一上行报文和第二上行报文,包括:
    所述用户设备根据所述指示信息在第一协议层复制报文,得到所述第一上行报文和所述第二上行报文。
  35. 根据权利要求34所述的方法,其特征在于,所述第一协议层包括高可靠协议HRP层;
    所述用户设备从网络侧设备获取指示信息,包括:所述用户设备通过非接入层NAS消息从会话管理功能网元获取所述指示信息。
  36. 根据权利要求34所述的方法,其特征在于,所述第一协议层包括业务数据适配协议SDAP层;
    所述用户设备从网络侧设备获取指示信息,包括:所述用户设备通过AS消息从所述第一基站获取所述指示信息。
  37. 根据权利要求32至36任一所述的方法,其特征在于,所述方法还包括:
    所述用户设备分别从所述第一基站和所述第二基站接收第一下行报文和第二下行报文,所述第一下行报文具有第二序列号,与所述第一业务流标识对应,所述第二下行报文具有所述第二序列号,与所述第二业务流标识对应;
    所述用户设备根据所述指示信息,对所述第一下行报文和所述第二下行报文去重。
  38. 一种报文传输方法,其特征在于,包括:
    用户面功能网元从会话管理功能网元接收上行转发规则;
    所述用户面功能网元接收第一上行报文和第二上行报文,其中,所述第一上行报文具有第一业务流标识和第一序列号,所述第二上行报文具有第二业务流标识和所述第一序列号;
    所述用户面功能网元根据所述上行转发规则,对所述第一上行报文和所述第二上行报文去重。
  39. 根据权利要求38所述的方法,其特征在于,所述上行转发规则用于指示所述用户面功能网元将具有相同序列号且分别具有所述第一业务流标识和所述第二业务流标识的两个上行报文去重。
  40. 根据权利要求38或39所述的方法,其特征在于,还包括:
    用户面功能网元从所述会话管理功能网元接收下行转发规则;
    所述用户面功能网元根据所述下行转发规则,生成第一下行报文和第二下行报文,向第一基站发送所述第一下行报文,向第二基站发送所述第二下行报文,其中,所述第一下行报文具有所述第一业务流标识和第二序列号,所述第二下行报文具有所述第二业务流标识和所述第二序列号。
  41. 根据权利要求40所述的方法,其特征在于,所述用户面功能网元根据所述下行转发规则,生成第一下行报文和第二下行报文,包括:
    所述用户面功能网元根据所述下行转发规则在第一协议层复制报文,得到所述第一下行报文和所述第二下行报文,其中,所述第一协议层包括高可靠协议HRP层或通用分组无线系统隧道协议用户面部分GTP-U层。
  42. 一种计算机可读存储介质,其特征在于,所述存储介质上存储有程序,当程序运行时,实现如权利要求1-41任一项所述的报文传输的方法。
  43. 一种更新用户面网关的装置,其特征在于,包括:
    与程序指令相关的硬件,所述硬件用于执行权1至41中任一项所述的方法步骤。
  44. 一种报文传输装置,其特征在于,包括:
    接收模块,用于接收第一业务对应的第一接入网隧道信息和第二接入网隧道信息;
    发送模块,用于向用户面功能网元发送下行转发规则,所述下行转发规则包括所述第一接入网隧道信息和所述第二接入网隧道信息,所述下行转发规则用于指示所述用户面功能网元复制接收到的所述第一业务的下行报文,通过分别与所述第一接入网隧道信息和所述第二接入网隧道信息对应的两条路径发送所述第一业务的下行报文。
  45. 根据权利要求44所述的装置,其特征在于,所述第一业务是业务流粒度的业务,所述下行转发规则还包括所述第一业务的业务流标识和会话标识;或者,
    所述第一业务是会话粒度的业务,所述下行转发规则还包括所述第一业务的会话标识。
  46. 根据权利要求44或45所述的装置,其特征在于,所述发送模块还用于向所述基站发送指示信息,所述指示信息用于触发所述第一接入网隧道信息和所述第二接入网隧道信息的确定。
  47. 根据权利要求46所述的装置,其特征在于,所述指示信息包括以下至少一项:
    服务质量参数;
    切片标识信息;
    数据网络名称;
    第一核心网隧道信息和第二核心网隧道信息。
  48. 根据权利要求44至47中任一项所述的装置,其特征在于,所述发送模块用于向所述基站发送上行转发规则,所述上行转发规则包括第一核心网隧道信息和第二核心网隧道信息,所述上行转发规则用于指示所述基站复制接收到的所述第一业务的上行报文,将所述第一业务的上行报文通过分别与所述第一核心网隧道信息和所述第二核心网隧道信息对应的两条路径发送到所述用户面功能网元。
  49. 根据权利要求48所述的装置,其特征在于,所述第一业务是业务流粒度的业务,所述上行转发规则还包括所述第一业务的业务流标识和会话标识;或者,
    所述第一业务是会话粒度的业务,所述上行转发规则还包括所述第一业务的会话标识。
  50. 根据权利要求44所述的装置,其特征在于,通过分别与所述第一接入网隧道信息和所述第二接入网隧道信息对应的两条路径发送的所述第一业务的下行报文包括第一下行报文和第二下行报文,其中,所述第一下行报文和所述第二下行报文具有相同的序列号,所述第一下行报文还包括第一业务流标识,所述第二下行报文还包括第二业务流标识。
  51. 根据权利要求50所述的装置,其特征在于,还包括:处理模块,用于为所述第一业务分配所述第一业务流标识和所述第二业务流标识;
    所述发送模块还用于向用户设备发送所述第一业务流标识和所述第二业务流标识。
  52. 根据权利要求50或51所述的装置,其特征在于,所述发送模块还用于向所述用户面功能网元发送上行转发规则,所述上行转发规则用于指示所述用户面功能网元将具有相同序列号且分别具有所述第一业务流标识和所述第二业务流标识的两个上行报文去重。
  53. 根据权利要求44至52中任一项所述的装置,其特征在于,所述发送模块还用于通过非接入层NAS消息向用户设备发送指示信息;
    其中,所述指示信息用于指示所述用户设备复制上行报文,得到第一上行报文和第二上行报文,并通过不同的无线承载发送所述第一上行报文和所述第二上行报文,其中,所述第一上行报文和所述第二上行报文具有相同的序列号。
  54. 根据权利要求53所述的装置,其特征在于,所述第一上行报文与所述第一业务流标识对应,所述第二上行报文与所述第二业务流标识对应。
  55. 一种报文传输装置,其特征在于,包括:
    处理模块,用于确定第一业务对应的第一接入网隧道信息和第二接入网隧道信息;
    发送模块,用于向会话管理功能网元发送所述第一接入网隧道信息和所述第二接入网隧道信息,所述第一接入网隧道信息和所述第二接入网隧道信息用于下行转发规则的确定,所述下行转发规则用于指示用户面功能网元复制接收到的所述第一业务的下行报文并通过分别与所述第一接入网隧道信息和所述第二接入网隧道信息对应的两条路径发送所述第一业务的下行报文。
  56. 根据权利要求55所述的装置,其特征在于,所述第一业务是业务流粒度的业务,所述下行转发规则还包括所述第一业务的业务流标识和会话标识;或者,
    所述第一业务是会话粒度的业务,所述下行转发规则还包括所述第一业务的会话标识。
  57. 根据权利要求55或56所述的装置,其特征在于,还包括:
    接收模块,用于在所述处理模块确定第一业务对应的第一接入网隧道信息和第二接入网隧道信息之前,从所述会话管理功能网元接收指示信息;
    所述处理模块用于根据所述指示信息确定所述第一接入网隧道信息和所述第二接入网隧道信息。
  58. 根据权利要求57所述的装置,其特征在于,所述指示信息包括以下至少一项:
    服务质量参数;
    切片标识信息;
    数据网络名称;
    第一核心网隧道信息和第二核心网隧道信息。
  59. 根据权利要求55至58中任一项所述的装置,其特征在于,还包括:
    接收模块,用于从所述会话管理功能网元接收上行转发规则,所述上行转发规则包括第一核心网隧道信息和第二核心网隧道信息;
    所述处理模块用于根据所述上行转发规则复制接收到的所述第一业务的上行报文,所述发送模块用于将所述第一业务的上行报文通过与所述第一核心网隧道信息和所述第二核心网隧道信息对应的两条路径发送到所述用户面功能网元。
  60. 根据权利要求59所述的装置,其特征在于,所述第一业务是业务流粒度的业 务,所述上行转发规则还包括所述第一业务的业务流标识和会话标识;或者,
    所述第一业务是会话粒度的业务,所述上行转发规则还包括所述第一业务的会话标识。
  61. 根据权利要求55所述的装置,其特征在于,所述发送模块还用于通过接入层AS消息向用户设备发送指示信息,其中,所述指示信息用于指示所述用户设备复制上行报文,得到第一上行报文和第二上行报文,并通过不同的无线承载发送所述第一上行报文和所述第二上行报文。
  62. 根据权利要求55至60中任一项上所述的装置,其特征在于,所述处理模块还用于指示用户设备为第一上行报文添加业务流标识。
  63. 一种报文传输装置,其特征在于,用于执行如权利要求20至25中任一项所述的方法。
  64. 一种报文传输装置,其特征在于,用于执行如权利要求26或27所述的方法。
  65. 一种报文传输装置,其特征在于,用于执行如权利要求28或29所述的方法。
  66. 一种报文传输装置,其特征在于,用于执行如权利要求30或31所述的方法。
  67. 一种报文传输装置,其特征在于,用于执行如权利要求32至37中任一项所述的方法。
  68. 一种报文传输装置,其特征在于,用于执行如权利要求38至41中任一项所述的方法。
  69. 根据权利要求4至6中任一项或15至17中任一项所述的方法、或权利要求47至49中任一项或58至60中任一项所述的装置,其特征在于,所述第一核心网隧道信息包括所述用户面功能网元的第一网络协议IP地址和所述用户面功能网元的第一隧道端点标识,所述第二核心网隧道信息包括所述用户面功能网元的第二IP地址和所述用户面功能网元的第二隧道端点标识。
  70. 根据权利要求5、6、16、17中任一项所述的方法、或权利要求48、49、59、60中任一项所述的装置,其特征在于,所述第一核心网隧道信息包括所述用户面功能网元的第一IP地址和所述用户面功能网元的第一隧道端点标识,所述第二核心网隧道信息包括所述用户面功能网元的所述第一IP地址和所述用户面功能网元的第二隧道端点标识,所述上行转发规则还包括与所述第一隧道端点标识对应的第一网络标识信息和与所述第二隧道端点标识对应的第二网络标识信息。
  71. 根据权利要求1至17任一项所述的方法、或权利要求44至60任一项所述的装置,其特征在于,所述第一接入网隧道信息包括所述基站的第三IP地址和所述基站的第三隧道端点标识,所述第二接入网隧道信息包括所述基站的第四IP地址和所述基站的第四隧道端点标识。
  72. 根据权利要求1至17任一项所述的方法、或权利要求44至60任一项所述的装置,其特征在于,所述第一接入网隧道信息包括所述基站的第三地址和所述基站的第三隧道端点标识,所述第二接入网隧道信息包括所述第三IP地址和所述基站的第四隧道端点标识,所述下行转发规则还包括与所述第三隧道端点标识对应的第三网络标识信息和与所述第四隧道端点标识对应的第四网络标识信息。
PCT/CN2019/078176 2018-04-03 2019-03-14 报文传输方法、装置和系统 WO2019192306A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
BR112020019997-4A BR112020019997A2 (pt) 2018-04-03 2019-03-14 método e aparelho de transmissão de pacote
EP19781830.5A EP3764732B1 (en) 2018-04-03 2019-03-14 Packet transmission methods and apparatus using two network tunnels
EP22184478.0A EP4138363A1 (en) 2018-04-03 2019-03-14 Packet transmission method and system
AU2019249989A AU2019249989B2 (en) 2018-04-03 2019-03-14 Message transmission method, apparatus and system
JP2020554134A JP7135100B2 (ja) 2018-04-03 2019-03-14 パケット伝送方法、装置、およびシステム
US17/033,070 US11627628B2 (en) 2018-04-03 2020-09-25 Packet transmission method, apparatus, and system
JP2022137998A JP7384979B2 (ja) 2018-04-03 2022-08-31 パケット伝送方法、装置、およびシステム
US18/182,512 US20230217526A1 (en) 2018-04-03 2023-03-13 Packet Transmission Method, Apparatus, and System

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201810291412.3 2018-04-03
CN201810291412 2018-04-03
CN201810483377 2018-05-18
CN201810483377.5 2018-05-18
CN201811386638.8A CN110351030B (zh) 2018-04-03 2018-11-20 报文传输方法、装置和系统
CN201811386638.8 2018-11-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/033,070 Continuation US11627628B2 (en) 2018-04-03 2020-09-25 Packet transmission method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2019192306A1 true WO2019192306A1 (zh) 2019-10-10

Family

ID=68099941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/078176 WO2019192306A1 (zh) 2018-04-03 2019-03-14 报文传输方法、装置和系统

Country Status (1)

Country Link
WO (1) WO2019192306A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4090126A4 (en) * 2020-02-12 2023-11-22 Huawei Technologies Co., Ltd. DATA TRANSMISSION METHOD AND DEVICE

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8134963B1 (en) * 2007-04-05 2012-03-13 Ericsson Ab Method and system for reducing connection set-up time
CN104602256A (zh) * 2015-01-21 2015-05-06 大唐移动通信设备有限公司 一种报文传输的方法和系统
CN106034089A (zh) * 2015-03-20 2016-10-19 中兴通讯股份有限公司 基于调度流标识的报文调度方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8134963B1 (en) * 2007-04-05 2012-03-13 Ericsson Ab Method and system for reducing connection set-up time
CN104602256A (zh) * 2015-01-21 2015-05-06 大唐移动通信设备有限公司 一种报文传输的方法和系统
CN106034089A (zh) * 2015-03-20 2016-10-19 中兴通讯股份有限公司 基于调度流标识的报文调度方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3764732A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4090126A4 (en) * 2020-02-12 2023-11-22 Huawei Technologies Co., Ltd. DATA TRANSMISSION METHOD AND DEVICE

Similar Documents

Publication Publication Date Title
CN110351030B (zh) 报文传输方法、装置和系统
JP7394940B2 (ja) 伝送方法およびネットワークデバイス
TWI757621B (zh) 處理qos 操作錯誤的方法及使用者設備
EP4109850A1 (en) Control plane based configuration for time sensitive networking
EP3598840B1 (en) Relay communication method and apparatus
WO2019184651A1 (zh) 一种通信方法及装置
WO2019242747A1 (zh) 数据包的发送、接收方法及装置和数据包的传输系统
WO2020169021A1 (en) Handling of mapped eps bearer context with duplicate eps bearer id
WO2018127018A1 (zh) 多链接通信方法、设备和终端
US20220377598A1 (en) Method and apparatus for supporting ue-to-network relay communication in a wireless communication system
CN114600508A (zh) Iab节点双连接建立的方法和通信装置
CN114982289A (zh) 下一代移动通信系统中支持条件切换和双栈协议切换期间数据转发的方法
WO2017080266A1 (zh) 一种网关信息更新的方法及装置
US20230199607A1 (en) Sidelink adaptation protocol for remote ue connectivity
WO2021174377A1 (zh) 切换方法和通信装置
WO2019192306A1 (zh) 报文传输方法、装置和系统
WO2019098143A1 (ja) 端末装置、基地局装置、および方法
WO2015096150A1 (zh) 一种rrc消息的处理方法、用户设备及基站
WO2020192250A1 (zh) 无线承载建立方法及装置
CN117793958A (zh) 终端装置、基站装置以及方法
WO2015135125A1 (zh) 无线连接建立方法和装置
WO2023124822A1 (zh) 一种通信协作方法及装置
CN115696385A (zh) 用户面安全策略配置方法及相关设备
TW202420788A (zh) Iab通訊系統中節點的遷移
WO2024094687A2 (en) Migration of nodes in an iab communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19781830

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020554134

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019249989

Country of ref document: AU

Date of ref document: 20190314

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019781830

Country of ref document: EP

Effective date: 20201009

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020019997

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020019997

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200929