WO2019192047A1 - 一种显示屏集成红外像素的光侦测装置 - Google Patents

一种显示屏集成红外像素的光侦测装置 Download PDF

Info

Publication number
WO2019192047A1
WO2019192047A1 PCT/CN2018/085783 CN2018085783W WO2019192047A1 WO 2019192047 A1 WO2019192047 A1 WO 2019192047A1 CN 2018085783 W CN2018085783 W CN 2018085783W WO 2019192047 A1 WO2019192047 A1 WO 2019192047A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
semiconductor layer
pixel
infrared
source
Prior art date
Application number
PCT/CN2018/085783
Other languages
English (en)
French (fr)
Inventor
黄建东
Original Assignee
上海耕岩智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海耕岩智能科技有限公司 filed Critical 上海耕岩智能科技有限公司
Publication of WO2019192047A1 publication Critical patent/WO2019192047A1/zh
Priority to US17/035,772 priority Critical patent/US11334195B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1443Devices controlled by radiation with at least one potential jump or surface barrier
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • G02F1/13318Circuits comprising a photodetector
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13454Drivers integrated on the active matrix substrate
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • G06F3/0421Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means by interrupting or reflecting a light beam, e.g. optical touch-screen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1446Devices controlled by radiation in a repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/351Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels comprising more than three subpixels, e.g. red-green-blue-white [RGBW]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/11Function characteristic involving infrared radiation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/163Wearable computers, e.g. on a belt
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/30Authentication, i.e. establishing the identity or authorisation of security principals
    • G06F21/31User authentication
    • G06F21/32User authentication using biometric data, e.g. fingerprints, iris scans or voiceprints

Definitions

  • the present invention relates to the field of optical devices, and in particular to a light detecting device for integrating infrared pixels in a display screen.
  • a liquid crystal display (LCD) screen or an active array organic light emitting diode (AMOLED) display screen scans and drives a single pixel in a thin film transistor (TFT) structure to realize the display function of the on-screen pixel array.
  • the main structure for forming the TFT switching function is a metal oxide semiconductor field effect transistor (MOSFET).
  • MOSFET metal oxide semiconductor field effect transistor
  • the well-known semiconductor layer is mainly made of amorphous silicon, polycrystalline silicon, indium gallium zinc oxide (IGZO), or organic mixed with carbon nanomaterials. Compounds and so on.
  • the TFT photodetecting diode Since the structure of the photodiode can also be prepared by using such a semiconductor material, and the production equipment is also compatible with the production equipment of the TFT array, in recent years, the TFT photodetecting diode has been produced by the TFT array preparation method, and It is widely used in X-ray sensing flat panel devices, such as those described in the patents CN103829959B and CN102903721B of the People's Republic of China.
  • the light energy gap (Bandgap) of the TFT photo-sensing array film material has visible light as the main absorption range, so it is more susceptible to interference from ambient visible light to form noise, resulting in signal-to-noise ratio. (SNR) is low. Due to this limitation, the initial application of the TFT light sensing array is mainly based on the application of the X-ray sensing tablet device. The main cause is that the X-ray is a short-wavelength light and the collimation is high, and the X-ray image is first incident on the sensing plate.
  • the light wavelength conversion material disposed on the X-ray image converts the X-ray image into a longer-wavelength visible light and transmits it directly to the TFT light sensing array film directly inside the sensing plate, thereby avoiding noise interference caused by visible light in the surrounding environment, such as the above-mentioned People's Republic of China Patented by CN103829959B and CN102903721B.
  • the real image sensed by the photodetecting diode array is an image of optical distortion such as diffraction
  • the optical signal penetrates the multi-layer structure of the display screen, and in the case where the optical display signal and the touch sensing signal coexist, it is very difficult to extract the useful optical signal from the low SNR scene, and the technical difficulty level reaches nearly single photon.
  • the degree of imaging must be reconstructed by the algorithm based on the optical wave theory to resolve the original image.
  • the arrangement of the visible light sensor film in the original display screen structure may require additional optical enhancement devices, or only the light sensor film may be disposed in the side of the display screen, and the non-vertical reflection is used to reach the side edges.
  • Light is reconstructed by light image, for example, as described in Patent No. CN101359369B of the People's Republic of China.
  • the existing photodetecting device has a problem that the photoelectric conversion rate is low and the large-area thin film array device cannot be satisfied.
  • Improvements in the photodetection structure are required to extend the detection of the photosensitive wavelength range and to increase its corresponding photoelectric conversion quantum efficiency.
  • the existing light detecting device is configured to recognize an eyeball or an iris image through an off-screen camera structure when performing operations such as eye tracking and iris recognition.
  • the inventors provide a light detecting device for integrating infrared pixels of a display screen, the device comprising a display unit, a light detecting device and a processing chip from top to bottom;
  • the display unit includes PxQ display pixel regions, and each of the display pixel regions is provided with an R component pixel light emitting layer, a G component pixel light emitting layer, and a B component pixel light emitting layer; at least one of the PxQ display pixel regions is further present.
  • An infrared pixel illuminating layer is disposed in the display pixel area, and the infrared pixel illuminating layer is configured to emit an infrared light signal after receiving the infrared display driving signal sent by the processing chip;
  • the photodetecting device is configured to detect an infrared light signal
  • the processing chip is configured to generate infrared light image information according to the infrared light signal
  • the infrared light device includes MxN pixel detecting regions, and each pixel detecting region corresponds to Configuring a pixel detection structure, each pixel detection structure comprises a group of pixel film circuits composed of one or more thin film transistors and a light detecting unit; the light detecting unit comprises an infrared photodiode or an infrared photosensitive device Crystal tube.
  • the number of display pixel regions in which the infrared pixel light emitting layer is disposed is plural, and is evenly distributed on the display unit.
  • the thin film transistor is an organic thin film transistor including any one of low temperature polysilicon, indium gallium zinc oxide, and carbon nanometer, and an array of thin film transistors has an electron mobility of more than 0.5 cm 2 /Vs.
  • the photodetecting unit is an array formed by photodiodes, the array formed by the photodiodes includes a photodiode sensing region, the photodiode sensing region includes a photodiode layer, and the photodiode layer includes a p-type a semiconductor layer, an i-type semiconductor layer, an n-type semiconductor layer, a p-type semiconductor layer, an i-type semiconductor layer, and an n-type semiconductor layer are stacked from top to bottom, and the i-type semiconductor layer is a microcrystalline silicon structure or an amorphous silicon germanium structure.
  • the microcrystalline silicon structure is a semiconductor layer formed by chemical vapor deposition of silane and hydrogen, the crystallinity of the microcrystalline silicon is greater than 40%, and the forbidden band width is less than 1.7 eV.
  • the amorphous silicon germanium structure is an amorphous semiconductor layer formed by chemical vapor deposition of silane, hydrogen and germane, and has a forbidden band width of less than 1.7 eV.
  • the upper end surface of the p-type semiconductor layer is provided with a first optical device for reducing the reflectance of light on the upper end surface of the p-type semiconductor layer or reducing the light in the p-type semiconductor The angle of refraction of the layer to increase the amount of light incident.
  • the lower end surface of the n-type semiconductor layer is further provided with a second optical device for improving the reflectance of light at the lower end surface of the n-type semiconductor layer.
  • the photodetecting unit is an array formed by a photosensitive electroplating tube, and the array formed by the photoelectron transistor comprises a photosensitive electromagnet sensing region, and the photosensitive electromagnet sensing region is provided with a photosensitive thin film transistor.
  • the photosensitive thin film transistor includes a gate, a source, a drain, an insulating layer, and a light absorbing semiconductor layer;
  • the photosensitive thin film transistor is an inverted coplanar structure, and the inverted coplanar structure includes: the gate, The insulating layer and the source are vertically disposed from the bottom to the top, and the drain is laterally coplanar with the source; the insulating layer encloses the gate such that the gate and the source, the gate and the drain are both No contact; a gap fit between the source and the drain, a photosensitive leakage current path formed between the source and the drain, and the light absorbing semiconductor layer is disposed in the photosensitive leakage current channel.
  • the number of the source and the drain are both plural, the source and the source are connected in parallel with each other, and the drain and the drain are connected in parallel with each other; the source and the drain are matched with each other, and the source Forming a photosensitive leakage current path between the pole and the drain lateral direction includes: forming a first gap between adjacent sources, one drain being disposed in the first gap, and forming a second gap between adjacent drains A source is disposed in the second gap, and a source and a drain are staggered and a gap fit.
  • the invention provides a photodetecting device under the display unit, so that the photodetecting device is located at an optical axis position or a paraxial position of the physiological characteristic information of the user, and is disposed on the peripheral edge of the display screen independently of the display screen.
  • the invention can timely capture the physiological characteristic information of the user (such as eyeball activity information), reduce the image detection response time, and improve the user experience.
  • the photodetecting device is disposed under the display unit, and emits infrared light through the display unit integrated with the infrared pixel, which can effectively reduce the overall thickness of the mobile device compared to the structure in which the camera is independently protruded from the display screen area. Make wearable devices or mobile devices thinner and lighter, more suitable for flexible wearable devices or mobile devices, to meet the needs of the market.
  • FIG. 1 is a schematic diagram of a light detecting device for integrating an infrared pixel of a display screen according to an embodiment of the present invention
  • FIG. 2 is a circuit diagram of a pixel detection area according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a pixel detection structure according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a pixel detection structure according to another embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a structure of a source and a drain according to an embodiment of the present invention.
  • FIG. 6 is a schematic view showing a distribution mode of an optical device according to an embodiment of the present invention.
  • FIG. 7 is a flowchart of a method of fabricating a photodetecting device according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a photodetecting device during a preparation process according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a photodetecting device during a preparation process according to another embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a photodetecting device during a preparation process according to another embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a photodetecting device during a preparation process according to another embodiment of the present invention.
  • FIG. 12 is a schematic diagram of an application scenario of a light detecting device for integrating an infrared pixel in a display screen according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a photodetecting device according to an embodiment of the present invention.
  • the device is a device with a touch display screen, such as a smart mobile device such as a mobile phone, a tablet computer, a personal digital assistant, and the like, and may also be an electronic device such as a personal computer or a computer for industrial equipment.
  • the device includes a display unit 102, a photo detecting device 104, and a processing chip 109 from top to bottom.
  • the processing chip 109 is an electronic component having a data processing function such as a CPU (Central Processing Unit), a DSP (Digital Signal Processor), a DSP (Microprocessor), or the like.
  • the processing chip is electrically connected to the photo detecting device and the display unit respectively, and the processing chip can be integrally disposed on the main electric board 106, and the main circuit board 106 is disposed under the display unit.
  • the display unit 102 is a display screen for driving and transmitting data by using an active array thin film transistor, and the display unit comprises an MOLED display screen, an LCD liquid crystal display, a micro light emitting diode display screen, a quantum dot display screen, or an electronic device. Ink display.
  • the display unit 102 is an LCD liquid crystal display or an electronic ink display
  • the display unit further includes a backlight unit disposed under the light detecting device, and the light detecting device is disposed on the backlight unit and the LCD liquid crystal display or the electronic ink display.
  • the backlight unit is integrated with a visible light or an infrared light source. Since the LCD liquid crystal display and the electronic ink display are not self-illuminating components, it is necessary to add a backlight unit under the photodetecting device during installation, thereby realizing a scheme in which the display unit can emit an infrared light source.
  • the backlight unit may be an LCD backlight module or other electronic components having a self-luminous function.
  • the display unit 102 is any one of an AMOLED display, a micro-light-emitting diode display, and a quantum dot display
  • the AMOLED display, the micro-light-emitting diode display, and the quantum dot display are self-luminous components, they can be displayed.
  • a visible light self-illuminating pixel or a self-illuminating infrared light pixel is integrated on the unit, thereby realizing a scheme in which the display unit can emit an infrared light source.
  • the display unit 102 includes PxQ display pixel regions, and each of the display pixel regions is provided with an R component pixel light emitting layer, a G component pixel light emitting layer, and a B component pixel light emitting layer; and the PxQ display pixel regions are further At least one display pixel region is provided with an infrared pixel light-emitting layer for emitting an infrared light signal after receiving the infrared display driving signal from the processing chip.
  • the integration of the R component pixel illuminating layer, the G component pixel illuminating layer and the B component pixel illuminating layer on the display screen has been widely promoted.
  • One innovation of the present invention lies in the integration of the infrared pixel illuminating layer on the display screen, the integrated method and integration.
  • the methods of the R component pixel illuminating layer, the G component pixel illuminating layer, and the B component pixel illuminating layer are similar, and are not described herein again.
  • the material of the infrared pixel luminescent layer may be a ring metal ruthenium complex or a ruthenium complex.
  • the following paper may be referred to: “Mohammad taghi sharbati, Farhad panahi, Alireza gharavi, Farzin emami, and Khodabakhsh niknam, "Fabrication of a near infrared OLED," IEEE LEOS Annual Meeting Conference Proceedings, p90 (2009).
  • the number of display pixel regions in which the infrared pixel light-emitting layer is disposed is plural, and is evenly distributed on the display unit.
  • a display pixel structure (including a display pixel light-emitting layer) is disposed, and each display pixel structure corresponds to one pixel on the display image, and a conventional display pixel structure is integrated with an R component.
  • a pixel light emitting layer, a G component pixel light emitting layer, and a B component pixel light emitting layer is integrated with an R component.
  • the invention further improves on the basis of the above, and selects part (at least one) of the display pixel structure to integrate not only the RGB three pixels but also the infrared pixels, so that the display screen can realize the function of emitting infrared light.
  • the display pixel structure integrated with the infrared pixel light-emitting layer can be either all display pixel structures on the display screen or only partial display pixel structures.
  • the display pixel structure integrated with the infrared pixel light-emitting layer is a partial display pixel structure in consideration of production cost.
  • a display screen includes 1000 ⁇ 800 display pixel areas, and the corresponding display pixel structure is 1000 ⁇ 800.
  • the display pixel structure of the layer is 10x80 in total, so that the display screen realizes the function of emitting infrared light.
  • a touch screen or cover glass 101 is further disposed above the display unit 102 to meet the requirements of different end products.
  • the transmittance of the display screen is greater than 3%, so that in the process of implementing the light detection function, the light flux of the light transmitted through the display screen is sufficiently large, and is thus received by the light detecting device disposed under the display screen, thereby realizing Light detection function.
  • the lower end surface of the display unit 102 and the upper end surface of the photodetecting device 104 are bonded by a low refractive index adhesive 103 having a refractive index of less than 1.4.
  • the low refractive index adhesive can play a bonding role, so that the light detecting unit is fastened to the bottom surface of the display unit, and is not easy to be sent off; on the other hand, a low refractive index glue is used, and the light is transmitted through the display unit into the light detection.
  • the refractive index of the adhesive is lower than the refractive index of the portion of the photodetecting unit that is in contact with it, the portion of the photodetecting unit that is normally in contact with the low refractive index adhesive
  • the refractive index is above 1.4, so that the light can be incident on the photodetecting device in the vertical direction as much as possible after being refracted at the position of the low refractive index adhesive, which can effectively improve the photoelectric conversion rate.
  • the material of the low refractive index adhesive is an organic compounded rubber material having a carbon-fluorine bond.
  • the photodetecting device 104 is connected to the main circuit board 106 via a flexible circuit board 105, which includes a chip having an image signal reading and recognition function.
  • the chip for the identification function includes a fingerprint image reading chip, a fingerprint recognition algorithm chip, and the like, and the chip type is an ADAS1256 chip of Analog Devices.
  • Flexible circuit board also known as flexible circuit board, flexible circuit board, referred to as soft board or FPC, is a flexible circuit board with high wiring density, light weight, thin thickness and wiring compared with ordinary hard resin circuit board. Less space constraints and higher flexibility. The setting of the flexible circuit board can make the overall light detecting device thinner and lighter, and meet the market demand.
  • a package barrier layer 107 is disposed between the photo detecting device 104 and the main circuit board 106.
  • the package barrier layer (hereinafter referred to as a "water blocking oxygen barrier layer”) can function as a water blocking resistor.
  • the water-blocking oxygen barrier layer comprises a plurality of inorganic layer coating films and a material formed by alternately stacking organic layer coating films, and the water-blocking oxygen barrier layer is formed on the polymer substrate.
  • the inorganic layer comprises: aluminum oxide (Al 2 O 3 ), silicon oxide (SiOX), silicon nitride (SiNX);
  • the organic layer comprises: a polymer material based on acrylic resin (Acrylic) or based on parylene (Parylene) polymer material.
  • the above scheme can enable low-light imaging to be realized in a structure having a barrier layer, and the integrated photodetecting device is fabricated on a substrate suitable for flexible display equipment.
  • the photodetecting device 104 is a TFT image sensing array film, the photo detecting device 104 is configured to detect an infrared light signal, and the processing chip 109 is configured to generate infrared light according to the infrared light signal.
  • Image information; the infrared light device includes MxN pixel detection areas. Each pixel detection area is correspondingly provided with a pixel detection structure, and each pixel detection structure comprises a group of pixel film circuits composed of one or more thin film transistors and a light detecting unit. Each pixel detection structure correspondingly detects one pixel, and thus the TFT image sensing array film can be used to detect MXN pixels to form a corresponding image.
  • the photodetecting unit includes an infrared photodiode or an infrared photoelectron transistor.
  • the wavelength range detected by the light detecting device includes a visible light band or an infrared light band.
  • the basic circuit composition of the pixel detecting structure corresponding to each pixel detecting area is as shown in FIG. 2 .
  • the photodiode is a main sensor component forming a photodetecting unit, and the gate scan line operates the thin film transistor (TFT) in an open mode at a fixed frame rate, and when the photodetecting device detects the optical signal, The thin film transistor is turned on to transfer the capacitor voltage data to the read chip.
  • TFT thin film transistor
  • the thin film transistor is an organic thin film transistor including any one of low temperature polysilicon, indium gallium zinc oxide, and carbon nanometer, and the electron mobility of the array composed of the thin film transistor is greater than 0.5 cm 2 / Vs.
  • the full name of low-temperature polysilicon is "Low Temperature Poly-Silicon (LTPS, also referred to as p-Si, the same below)", which is a branch of polysilicon technology.
  • LTPS Low Temperature Poly-Silicon
  • p-Si the same below
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the TFT image sensing array film (ie, the photodetecting device) is an array formed by photodiodes, and each pixel detecting structure includes a photodiode sensing region.
  • LCD liquid crystal display
  • OLED organic light emitting diode
  • the main structure for forming the TFT switching function is a semiconductor field effect transistor (FET), and the well-known semiconductor layer material mainly includes amorphous silicon, polycrystalline silicon, indium gallium zinc oxide (IGZO), or an organic compound mixed with carbon nano materials. .
  • the TFT photodetecting diode (ie, the photodiode) has been produced by the TFT array preparation method.
  • the specific structure of the existing photodiode reference may be made to the description of the structure of the photodetecting device in US Pat. No. 6,943,070 B2 and the Patent No. CN204808361U of the People's Republic of China.
  • the production process of the TFT image sensing array film is different from that of the display panel TFT in that the pixel opening area of the display panel is changed to the light sensing area in the production process.
  • the TFT can be prepared by using a thin glass substrate or a high temperature resistant plastic material as described in US Pat. No. 6,943,070 B2.
  • the existing TFT image sensing array film is susceptible to reflection or refraction of visible light emitted by ambient light or display pixels, causing optical interference, which seriously affects the TFT image sensing array film embedded under the display panel.
  • Signal-to-Noise Ratio SNR
  • the present invention further improves the light detecting unit in each pixel detecting structure, so that the improved TFT image sensing array film can be Detects infrared signals that are reflected back by the user's physiological features, such as the eyeball.
  • SNR Signal-to-Noise Ratio
  • the photodiode layer includes a p-type semiconductor layer, an i-type semiconductor layer, an n-type semiconductor layer, a p-type semiconductor layer, an i-type semiconductor layer, and an n-type semiconductor layer stacked from top to bottom, and the i-type semiconductor layer is micro A crystalline silicon structure or an amorphous silicon germanium structure.
  • the microcrystalline silicon structure is a semiconductor layer formed by chemical vapor deposition of silane and hydrogen. The crystallinity of the microcrystalline silicon is greater than 40%, and the forbidden band width is less than 1.7 eV.
  • the amorphous silicon germanium structure is an amorphous semiconductor layer formed by chemical vapor deposition of silane, hydrogen and germane, and has a forbidden band width of less than 1.7 eV.
  • Band gap refers to the width of a band gap (in electron volts (eV)).
  • the energy of electrons in a solid cannot be continuously valued, but some discontinuous energy bands.
  • the existence of free electrons, the energy band in which free electrons exist is called the conduction band (which can conduct electricity). If the bound electrons become free electrons, they must obtain enough energy to jump from the valence band to the conduction band.
  • the minimum value of this energy is the forbidden band width. .
  • the forbidden band width is an important characteristic parameter of the semiconductor, and its size is mainly determined by the band structure of the semiconductor, that is, the crystal structure and the bonding property of the atoms.
  • the forbidden band width of ruthenium is about 0.66 ev.
  • the silane contains yttrium element. When the yttrium element is doped, the forbidden band width of the i-type semiconductor layer is decreased. When less than 1.7 eV is satisfied, The i-type semiconductor layer can receive optical signals in the wavelength range of visible light to infrared light (or near-infrared light).
  • concentration of GeH4 deposited by chemical weather the operating wavelength range of a photodiode containing an amorphous or microcrystalline silicon germanium structure can be extended to a wavelength range of 600 nm to 2000 nm.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the photodiode of the amorphous silicon germanium structure can also be formed by stacking a p-type/i-type/n-type structure having a double junction or more.
  • the first junction p-type/i-type/n-type material of the photodiode is still an amorphous silicon structure, and the p-type/i-type/n-type material above the second junction layer may be a microcrystalline structure, a polycrystalline structure or a doped Compound materials that extend the range of photosensitive wavelengths.
  • a plurality of sets of p-type/i-type/n-type structures can be stacked on top of each other to realize a photodiode structure.
  • the photodiode structure described in Embodiment 1 is used. .
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the p-type semiconductor layer included therein may be a multilayer structure of more than two layers.
  • the p-type semiconductor layer has a three-layer structure, and includes a first p-type semiconductor layer (p1 layer), a second p-type semiconductor layer (p2 layer), and a third p-type semiconductor layer (p3 layer) from top to bottom.
  • the p1 layer can adopt an amorphous structure and is heavily doped with boron (the boron concentration is more than twice that of the standard process); p2 and p3 adopt a microcrystalline structure, and the normal doping boron (doped according to the standard process concentration) depends on
  • the thinned p2 layer and p3 layer reduce the absorption of light, so that the light enters the i layer as much as possible and is absorbed by the i layer, thereby increasing the photoelectric conversion rate; on the other hand, the p2 layer and the p3 layer are doped with normal boron. It is possible to effectively avoid deterioration of the built-in potential due to heavy doping of the p1 layer.
  • the p-type semiconductor layer includes a multilayer structure which is other layers, it is similar here, and will not be described herein.
  • the n-type semiconductor layer may also be a multilayer structure of more than two layers.
  • the n-type semiconductor layer has a three-layer structure, and includes a first n-type semiconductor layer (n1 layer), a second n-type semiconductor layer (n2 layer), and a third n-type semiconductor layer (n3 layer) from top to bottom.
  • the n3 layer can adopt an amorphous structure and is heavily doped with phosphorus (the phosphorus content is more than twice that of the standard process); n1 and n2 adopt a microcrystalline structure, and the normal doped phosphorus (according to the standard production process) depends on the thickness reduction
  • the n1 layer and the n2 layer reduce the absorption of light, so that the light enters the i layer as much as possible and is absorbed by the i layer, thereby improving the photoelectric conversion rate; on the other hand, the normal phosphorus doping of the n1 layer and the n2 layer can effectively avoid The built-in potential is degraded due to heavy doping of the n3 layer.
  • the n-type semiconductor layer includes a multilayer structure which is other layers, it is similar here, and will not be described again here.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • This embodiment is a further improvement of the first or second or third embodiment, as shown in FIG. 7 (a), specifically including: providing a first optical device on an upper end surface of the p-type semiconductor layer, the first An optical device is used to reduce the reflectance of light on the upper end surface of the p-type semiconductor layer or to reduce the angle of refraction of the light in the p-type semiconductor layer to increase the amount of light incident. Reducing the angle of refraction of the light in the p-type semiconductor layer allows the light to be incident into the p-type semiconductor layer as close as possible to the vertical direction, so that the light is absorbed as much as possible by the i-type semiconductor layer under the p-type semiconductor layer, thereby Further increase the photoelectric conversion rate of the photodiode.
  • the first optical device is disposed on the upper end surface of the uppermost p-type semiconductor layer.
  • the first optical device includes a photonic crystal structure or a microlens array structure in which the refractive index changes periodically, or a diffuse scattering structure in which the refractive index changes non-periodically.
  • the refractive index of the first optical device is smaller than the refractive index of the p-type semiconductor layer, so that the incident angle of the light after the first optical device is refracted is smaller than the angle of refraction, that is, the light is incident into the p-type as close as possible to the vertical direction.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • This embodiment is a further improvement for the first or second or third or fourth embodiment.
  • the lower end surface of the n-type semiconductor layer is further provided with a second optical device.
  • the second optical device is for increasing the multiple reflectance of light at the lower end surface of the n-type semiconductor layer.
  • the multiple reflectance means that the light enters the i-type semiconductor layer after being reflected by the second optical device, and is again absorbed by the i-type semiconductor layer, and the absorbed light is again reflected by the second optical device and enters the i-type semiconductor layer. This is repeated several times to increase the photoelectric conversion ratio of the i-type semiconductor layer.
  • the second optical device is disposed on the lower end surface of the lowermost one of the n-type semiconductor layers.
  • the second optical device includes a photonic crystal structure whose refractive index changes periodically, or a diffuse scattering structure whose refractive index changes non-periodically, and the refractive index of the second optical device is smaller than that of the n-type semiconductor layer .
  • the light can be reflected as much as possible on the lower end surface of the n-type semiconductor layer, so that the reflected light is again absorbed by the i-type semiconductor layer, thereby appropriately amplifying the signal in the wavelength range of light that can be absorbed by the i-type semiconductor layer. Increase the photoelectric flow rate in this wavelength range.
  • the TFT image sensing array film (ie, the photodetecting device) is an array formed by a photosensitive electro-optic transistor, and the photo detecting unit in each pixel detecting structure includes a phototransistor transistor.
  • the photosensitive thin film transistor includes a gate 1, a source 2, a drain 3, an insulating layer 4, and a light absorbing semiconductor layer 5;
  • the photosensitive thin film transistor is an inverted coplanar structure, and the inverted coplanar structure includes:
  • the gate 1, the insulating layer 4, and the source 2 are longitudinally disposed from bottom to top, and the drain 3 is laterally coplanar with the source 2;
  • the insulating layer 4 wraps the gate 1 so that the gate 1 No contact is made between the source 2, the gate 1 and the drain 3; the gap between the source 2 and the drain 3 is matched, and a photosensitive leakage current path is formed between the source 2 and the drain 3 in the lateral direction, and the light absorption
  • the semiconductor layer 5 is disposed in the photosensitive leakage current channel.
  • the TFT when the TFT is operated in the off state by the gate voltage, no current flows between the source and the drain; however, when the TFT is irradiated by the light source, the electron-hole pair is excited by the energy of the light in the semiconductor, and the TFT The field effect of the structure separates the electron-hole pairs, which in turn causes the TFT to generate a photosensitive leakage current.
  • photosensitive leakage current characteristics allow the TFT array to be applied to the technology of light detection or light detection.
  • the present invention arranges a light absorbing semiconductor layer on an uppermost light absorbing layer in an inverted coplanar field effect transistor structure, which greatly increases photoelectron excitation and improves photoelectric conversion efficiency.
  • FIG. 7 is a flowchart of a method of fabricating a photodetecting unit according to an embodiment of the present invention. The method is used to prepare the photosensitive thin film transistor included in the photodetecting unit of the sixth embodiment, and specifically includes the following steps:
  • step S801 deposit a gate electrode by magnetron sputtering on the substrate of the pixel thin film transistor.
  • the substrate of the pixel thin film transistor may be a hard plate or a flexible material such as polyimide;
  • the insulating layer is coated by chemical vapor deposition or magnetron sputtering on the gate;
  • the n-type doped semiconductor layer of the source and the drain is deposited by chemical vapor deposition over the insulating layer, and the metal layer of the source and the drain is plated by magnetron sputtering, and the yellow light is passed through the yellow light.
  • the etching process defines a source and a drain of the predetermined structure, and the source and the drain are laterally coplanar, and the gap is matched, and a photosensitive leakage current path is formed between the source and the drain;
  • step S804 a light absorbing semiconductor layer is deposited by chemical vapor deposition in the photosensitive leakage current channel.
  • the TFT as the scan driving and data transfer switch does not need to be specially designed for the structure of collecting photocurrent between the source and the drain; however, the field effect transistor is applied to the detection of the photosensitive leakage current.
  • the drift path driven by the electric field is too long, and it is very likely that the photoelectrons will re-enter the holes before they reach the electrode smoothly. Recombination, or the Dangling Bond defect of the light absorbing semiconductor layer itself, cannot effectively contribute to the photocurrent output for photodetection.
  • the source and the drain of the fourth embodiment are used in this embodiment.
  • a new step was made to propose a new structure of source and drain.
  • the source and the drain are both in plurality, the source and the source are connected in parallel with each other, and the drain and the drain are connected in parallel; the gap between the source and the drain is Cooperating, forming a photosensitive leakage current channel between the source and the drain lateral direction includes: forming a first gap between adjacent sources, one drain being disposed in the first gap, and forming a first gap between adjacent drains Two gaps, one source is placed in the second gap, and the source and the drain are staggered and gap-fitted. The distance between each source and the adjacent drain is less than the electron drift distance, which is the distance that the electron can survive under field effect.
  • the plurality of sources belonging to the same pixel are connected in parallel, and the plurality of drains belonging to the same pixel are also connected in parallel, which can effectively reduce the probability of recombination of the photoexcited electrons and holes.
  • the successful probability of collecting photoelectrons by the electrodes under the effect of field effect is improved, and the photosensitivity of the TFT leakage current photosensitive thin film transistor is maximized.
  • the process of preparing the photosensitive thin film transistor included in the photodetecting unit of the seventh embodiment is substantially the same as that of the photosensitive thin film transistor of the sixth embodiment.
  • the difference is that, in preparing the source and the drain, in step S803, “the source and the drain of the predetermined structure are defined by a yellow etching process, and the source and the drain are laterally coplanar, and the gap is matched, and the source is made.
  • Forming a photosensitive leakage current path between the pole and the drain lateral direction includes: defining a source electrode group and a drain electrode group by a yellow etching process, each of the source electrode groups including a plurality of sources, a source and a source Parallel to each other; each of the drain electrode groups includes a plurality of drains, and the drain and the drain are connected in parallel with each other; a first gap is formed between adjacent sources, and a drain is disposed in the first gap, A second gap is formed between adjacent drains, one source is disposed in the second gap, and the source and the drain are staggered and gap-fitted.
  • the photodetecting device is configured to receive a detection trigger signal, is in a light detecting state, and receives an optical signal reflected by a detecting portion (such as a fingerprint, an eyeball, an iris, etc.) to capture a user's detection.
  • a detecting portion such as a fingerprint, an eyeball, an iris, etc.
  • the part information is measured and the corresponding image is output.
  • the detection trigger signal is an infrared light detection signal, and when the light detecting device receives the signal, the infrared light that is reflected and reflected into the light detecting device is detected.
  • the infrared pixel illuminating layer on the display screen is used for receiving the infrared display driving signal to emit infrared light; and can also be used to stop the infrared pixel illuminating layer after receiving the infrared display driving off signal, and the display unit only plays RGB pixels.
  • Component display function is used for receiving the infrared display driving signal to emit infrared light; and can also be used to stop the infrared pixel illuminating layer after receiving the infrared display driving off signal, and the display unit only plays RGB pixels.
  • the display unit is provided with a light detecting sensing area, and the light detecting sensing area includes a plurality of light detecting sensing sub-areas, and a corresponding one of each of the light detecting sensing sub-areas is disposed.
  • Light detection device The apparatus also includes a storage medium storing a computer program. Taking the tracking eye activity recognition as an example, when the computer program is executed by the processor, the following steps are implemented: receiving a start command for the eye recognition sub-region (ie, the light detecting sensing sub-region), and the detecting control circuit turns on the eyeball recognition.
  • the area of the photodetecting device can cover the entire display screen, and can occupy 1/2 to 3/4 of the total area of the display screen, and is specifically set according to actual needs, and the entire center of each photodetecting device is provided. It coincides with the center position of the display to ensure that the optical axis does not deviate when physiological characteristic information is detected.
  • the invention provides a photodetecting device under the display unit, so that the photodetecting device is located at an optical axis position or a paraxial position of the physiological characteristic information of the user, and is disposed on the peripheral edge of the display screen independently of the display screen.
  • the invention can timely capture the physiological characteristic information of the user (such as eyeball activity information), reduce the image detection response time, and improve the user experience.
  • the photodetecting device is disposed under the display unit, and emits infrared light through the display unit integrated with the infrared pixel, which can effectively reduce the overall thickness of the mobile device compared to the structure in which the camera is independently protruded from the display screen area. Make wearable devices or mobile devices thinner and lighter, more suitable for flexible wearable devices or mobile devices, to meet the needs of the market.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Human Computer Interaction (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

一种显示屏集成红外像素的光侦测装置,在显示单元(102)的下方设置光侦测器件(104),使得光侦测器件(104)位于用户的生理特征信息成像的光轴位置或是近轴位置,相较于摄像头独立于显示屏设置在显示屏外围边缘的结构,可以及时捕捉到用户的生理特征信息(如眼球活动信息),减少影像侦测响应时间,提高用户体验。此外,将光侦测器件(104)设置于显示单元(102)的下方,并通过集成红外像素的显示单元(102)发出红外光,相较于摄像头独立突出设置于显示屏区域外的结构,可以有效缩小移动设备的整体厚度,使得穿戴式设备或是移动设备更加轻薄、更适用于柔性穿戴式设备或是移动设备。

Description

一种显示屏集成红外像素的光侦测装置 技术领域
本发明涉及光学器件领域领域,特别涉及一种显示屏集成红外像素的光侦测装置。
背景技术
目前,液晶显示(LCD)屏或有源阵列式有机发光二极管(AMOLED)显示屏,皆是以薄膜电晶管(TFT)结构扫描并驱动单一像素,以实现屏上像素阵列之显示功能。形成TFT开关功能的主要结构为金属氧化物半导体场效晶体管(MOSFET),其中熟知的半导体层主要材料有非晶硅、多晶硅、氧化铟镓锌(IGZO)、或是混有碳纳米材料之有机化合物等等。由于光侦测二极管(Photo Diode)的结构亦可采用此类半导体材料制备,且生产设备也兼容于TFT阵列的生产设备,因此近年来TFT光侦测二极管开始以TFT阵列制备方式作生产,并广泛应用在X光感测平板器件,如中华人民共和国专利CN103829959B、CN102903721B所描述。
相较于传统结晶材料制备之影像传感器件,上述TFT光感测阵列薄膜材料之光能隙(Bandgap)皆以可见光为主要吸收范围,因此较易受环境可见光之干扰形成噪声,导致信号噪声比(SNR)较低。受限于此,TFT光感测阵列初期的应用乃是以X光感测平板器件应用为主,主因即为X光属短波长光且准直性高,X光影像先入射到感测平板上配置之光波长转换材料,将X光影像转换较长波长之可见光再直接于感测平板内部传输至TFT光感测阵列薄膜上,避免了周围环境之可见光形成噪声干扰,如上述中华人民共和国专利CN103829959B、CN102903721B所描述。
若欲将此类熟知的可见光传感器薄膜配置在原显示屏结构内,受限于显示像素开口孔径等问题,光侦测二极管阵列感测的真实影像已是发生绕射等 光学失真的影像,且因光学信号穿透显示屏多层结构,并且在光学显示信号、触摸感测信号并存的情况下,欲从低信噪比场景提取有用光学信号具备很高的困难度,技术困难等级达到近乎单光子成像之程度,必须需藉由算法依光波理论运算重建方能解析出原始影像。为了避开此一技术难点,熟知将可见光传感器薄膜配置在原显示屏结构内会需要额外的光学增强器件,或是仅将光传感器薄膜配置在显示屏侧边内,利用非垂直反射到达侧边之光线进行光影像重建,例如:中华人民共和国专利CN101359369B所述。
由上述熟知光传感器薄膜的现有技术可以看出,现有的光侦测装置存在光电转换率低、无法满足大面积薄膜阵列器件的问题,欲配置光侦测阵列薄膜在显示屏结构内,需要对光侦测结构进行改善以使得拓展侦测的光敏波长范围以及提高其对应的光电转换量子效率。此外,现有的光侦测装置在进行眼球追踪、虹膜识别等操作时,其结构是通过屏外摄像头结构来识别眼球或虹膜影像。以眼球追踪为例,由于屏外摄像头位置偏离光轴,其在采集眼球信息时存在精确度不高、响应时间慢、画面延迟等问题,给用户带来了不良的感官体验,甚至引发头晕、呕吐等症状。
发明内容
为此,需要提供一种光侦测的技术方案,用于解决现有的光侦测装置在应用于眼球追踪等应用场景时,存在的采集影像信息精准度不高、响应时间慢、画面延迟、用户体验差等问题。
为实现上述目的,发明人提供了一种显示屏集成红外像素的光侦测装置,所述装置自上而下包括显示单元、光侦测器件和处理芯片;
所述显示单元包括PxQ个显示像素区,每一显示像素区内设置有R分量像素发光层、G分量像素发光层和B分量像素发光层;所述PxQ个显示像素区中还至少存在着一个显示像素区内设置有红外像素发光层,所述红外像素发光层用于在接收到处理芯片发出的红外显示驱动信号后,发出红外光信号;
所述光侦测器件用于侦测红外光信号,所述处理芯片用于根据红外光信号生成红外光影像信息;所述红外光器件包括MxN个像素侦测区,每一像素侦测区对应设置一像素侦测结构,每一像素侦测结构包括由一个以上薄膜电晶管所组成的一组像素薄膜电路以及一个光侦测单元;所述光侦测单元包括红外光敏二极管或红外光敏电晶管。
进一步地,设置有红外像素发光层的显示像素区的数量为多个,且均匀分布于所述显示单元上。
进一步地,所述薄膜电晶管为包含有低温多晶硅、铟镓锌氧化物、碳纳米中任意一种的有机薄膜晶体管,薄膜电晶管组成的阵列的电子迁移率大于0.5cm 2/Vs。
进一步地,所述光侦测单元为光敏二极管所形成的阵列,所述光敏二极管所形成的阵列包括光敏二极管感应区,所述光敏二极管感应区包括光敏二极管层,所述光敏二极管层包括p型半导体层、i型半导体层、n型半导体层,p型半导体层、i型半导体层、n型半导体层自上而下堆叠设置,所述i型半导体层为微晶硅结构或非结晶硅化锗结构。
进一步地,所述微晶硅结构为硅烷与氢气通过化学气相沉积成膜的半导体层,微晶硅的结构的结晶度大于40%,且其禁带宽度小于1.7eV。
进一步地,所述非结晶硅化锗结构为硅烷、氢气与锗烷通过化学气相沉积成膜的非结晶半导体层,且其禁带宽度小于1.7eV。
进一步地,所述p型半导体层的上端面设置有第一光学器件,所述第一光学器件用于降低光线在p型半导体层的上端面的反射率、或是减小光线在p型半导体层的折射角度以增加光入射量。
进一步地,所述n型半导体层的下端面还设置有第二光学器件,所述第二光学器件用于提高光线在n型半导体层的下端面的反射率。
进一步地,所述光侦测单元为光敏电晶管所形成的阵列,所述光敏电晶管所形成的阵列包括光敏电晶管感应区,所述光敏电晶管感应区设置有光敏 薄膜晶体管,所述光敏薄膜晶体管包括栅极、源极、漏极、绝缘层、光吸收半导体层;所述光敏薄膜晶体管为倒立共平面式结构,所述倒立共平面式结构包括:所述栅极、绝缘层、源极纵向自下而上设置,所述漏极与所述源极横向共面设置;绝缘层包裹所述栅极,以使得栅极与源极、栅极与漏极之间均不接触;源极和漏极之间间隙配合,源极和漏极横向之间形成光敏漏电流通道,所述光吸收半导体层设置于光敏漏电流通道内。
进一步地,所述源极和漏极的数量均为多个,源极和源极之间相互并联,漏极和漏极之间相互并联;所述源极和漏极之间间隙配合,源极和漏极横向之间形成光敏漏电流通道包括:相邻的源极之间形成第一间隙,一个漏极置于所述第一间隙内,相邻的漏极之间形成第二间隙,一个源极置于所述第二间隙内,源极和漏极之间交错设置且间隙配合。
本发明通过在显示单元的下方设置光侦测器件,使得光侦测器件位于用户的生理特征信息成像的光轴位置或是近轴位置,相较于摄像头独立于显示屏设置在显示屏外围边缘的结构,本发明可以及时捕捉到用户的生理特征信息(如眼球活动信息),减少影像侦测响应时间,提高用户体验。此外,将光侦测器件设置于显示单元的下方,并通过集成红外像素的显示单元发出红外光,相较于摄像头独立突出设置于显示屏区域外的结构,可以有效缩小移动设备的整体厚度,使得穿戴式设备或是移动设备更加轻薄、更适用于柔性穿戴式设备或是移动设备、满足市场的需求。
附图说明
图1为本发明一实施方式涉及的显示屏集成红外像素的光侦测装置的示意图;
图2为本发明一实施方式涉及的像素侦测区的电路示意图;
图3为本发明一实施方式涉及的像素侦测结构的示意图;
图4为本发明另一实施方式涉及的像素侦测结构的示意图;
图5为本发明一实施方式涉及的源极和漏极结构配合的示意图;
图6为本发明一实施方式涉及的光学器件的分布方式的示意图;
图7为本发明一实施方式涉及的光侦测器件的制备方法的流程图;
图8为本发明一实施方式所述的光侦测器件制备过程中的示意图;
图9为本发明另一实施方式所述的光侦测器件制备过程中的示意图;
图10为本发明另一实施方式所述的光侦测器件制备过程中的示意图;
图11为本发明另一实施方式所述的光侦测器件制备过程中的示意图;
图12为本发明一实施方式涉及的显示屏集成红外像素的光侦测装置的应用场景的示意图。
附图标记:
1、栅极;
2、源极;
3、漏极;
4、绝缘层;
5、光吸收半导体层;
101、触摸屏或盖板玻璃;
102、显示单元;
103、低折射率胶;
104、光侦测器件;
105、软性电路板;
106、主电路板;109、处理芯片;
107、封装阻隔层。
具体实施方式
为详细说明技术方案的技术内容、构造特征、所实现目的及效果,以下 结合具体实施例并配合附图详予说明。
请参阅图1,为本发明一实施方式涉及的光侦测装置的示意图。所述装置为具有触摸显示屏的设备,如手机、平板电脑、个人数字助理等智能移动设备,还可以是个人计算机、工业装备用计算机等电子设备。
所述装置自上而下包括显示单元102、光侦测器件104和处理芯片109。所述处理芯片109为具有数据处理功能的电子元件,如CPU(中央处理器)、DSP(数字信号处理器)、DSP(微处理器)等。处理芯片分别与光侦测器件、显示单元电连接,处理芯片可以集成设置于主电板板106,主电路板106设于显示单元的下方。所述显示单元102为以有源阵列薄膜晶体管作为扫描驱动与传输数据的显示屏,所述显示单元包括MOLED显示屏、LCD液晶显示屏、微发光二极管显示屏、量子点显示屏、或是电子墨水显示屏。
当显示单元102为LCD液晶显示屏或电子墨水显示屏时,显示单元还包括设置于光侦测器件下方的背光单元,光侦测器件设置于背光单元和LCD液晶显示屏或电子墨水显示屏之间,所述背光单元集成有可见光或是红外光光源。由于LCD液晶显示屏和电子墨水显示屏不属于自发光元件,因而在安装时需要在光侦测器件的下方增加背光单元,从而实现显示单元能够发出红外光源的方案。背光单元可以为LCD背光模组,也可以为其他具有自发光功能的电子元件。
当显示单元102为AMOLED显示屏、微发光二极管显示屏、量子点显示屏中的任意一种时,由于AMOLED显示屏、微发光二极管显示屏、量子点显示屏属于自发光元件,因而可以在显示单元上集成可见光自发光像素或自发光红外光像素,从而实现显示单元能够发出红外光源的方案。
具体地,所述显示单元102包括PxQ个显示像素区,每一显示像素区内设置有R分量像素发光层、G分量像素发光层和B分量像素发光层;所述PxQ个显示像素区中还至少存在着一个显示像素区内设置有红外像素发光层,所述红外像素发光层用于在接收到处理芯片发出的红外显示驱动信号后,发出 红外光信号。
显示屏上集成R分量像素发光层、G分量像素发光层和B分量像素发光层已得到大量推广使用,本发明的一个创新点是在于在显示屏上集成红外像素发光层,集成的方法与集成R分量像素发光层、G分量像素发光层和B分量像素发光层的方法类似,此处不再赘述。
在本实施方式中,红外像素发光层的材质可以采用环金属铱配合物或锇配合物,关于这两种配合物生产红外像素发光层的方案可以参考以下论文:“Mohammad taghi sharbati,Farhad panahi,Alireza gharavi,Farzin emami,and Khodabakhsh niknam,“Fabrication of a near infrared OLED,”IEEE LEOS Annual Meeting Conference Proceedings,p90(2009)。
在本实施方式中,设置有红外像素发光层的显示像素区的数量为多个,且均匀分布于所述显示单元上。简言之,对于每个显示像素区内设置有一个显示像素结构(包括显示像素发光层),每一个显示像素结构对应显示图像上的一个像素,而传统的一个显示像素结构中集成有R分量像素发光层、G分量像素发光层和B分量像素发光层。本发明在此基础上作出进一步改进,选取其中的部分(至少为一个)显示像素结构不仅集成RGB三者像素,还集成有红外像素,以使得显示屏可以实现发出红外光功能。
集成有红外像素发光层的显示像素结构既可以是显示屏上的所有全部显示像素结构,也可以只是部分显示像素结构。优选的,考虑到生产成本,集成有红外像素发光层的显示像素结构为部分显示像素结构。例如某个显示屏包含1000x800个显示像素区,对应的显示像素结构为1000x800个,则在设计时可以每100个显示像素结构中具有一个显示像素结构集成有红外像素发光层,即具有红外像素发光层的显示像素结构共有10x80个,以使得显示屏实现发出红外光功能。
在某些实施例中,所述显示单元102的上方还设置有触摸屏或盖板玻璃101,从而满足不同终端产品的需求。优选的,显示屏的透光率大于3%,从而 在实现光侦测功能过程中,透过显示屏的光线的光通量足够大,进而被设置于显示屏下方的光侦测器件接收,从而实现光侦测功能。
在某些实施例中,所述显示单元102的下端面与光侦测器件104的上端面通过低折射率胶103粘合,所述低折射率胶的折射率小于1.4。低折射率胶一方面可以起到粘合作用,使得光侦测单元紧固于显示单元的底面,不易发送脱落;另一方面采用低折射率的胶,当光线透过显示单元照射入光侦测器件时,由于低折射率胶的折射作用(胶的折射率低于光侦测单元上与之接触的部位的折射率,通常情况下光侦测单元上与低折射率胶接触的部位的折射率在1.4以上),使得光线在低折射率胶位置发生折射后,可以尽可能以垂直方向入射至光侦测器件,可以有效提高光电转换率。在本实施方式中,所述低折射率胶的材质为具有碳-氟键的有机化合胶材。
在某些实施例中,所述光侦测器件104与主电路板106通过软性电路板105进行连接,所述软性电路板105包括具有影像信号读取识别功能的芯片。所述识别功能的芯片包括指纹影像读取芯片、指纹识别算法芯片等,芯片型号如Analog Devices公司的ADAS1256芯片。软性电路板又称柔性线路板、挠性线路板,简称软板或FPC,是相对于普通硬树脂线路板而言,软性电路板具有配线密度高、重量轻、厚度薄、配线空间限制较少、灵活度高等优点。软性电路板的设置可以使得光侦测装置整体更加轻薄化,满足市场需求。
在某些实施例中,所述光侦测器件104和主电路板106之间还设置有封装阻隔层107,封装阻隔层(以下称为“阻水阻氧层”)可以起到阻水阻氧的作用,所述阻水阻氧层包括多层无机层镀膜以及有机层镀膜交替堆叠形成的材料,所述阻水阻氧层成膜于聚合物基材上。优选的,所述无机层包括:氧化铝(Al2O3)、氧化硅(SiOX)、氮化硅(SiNX);所述有机层包括:基于丙烯酸树脂(Acrylic)的高分子材料或基于聚对二甲苯(Parylene)的高分子材料。上述方案可以使得弱光成像得以在具备阻隔层的结构下实现,并集成光侦测器件在适合柔性显示装备的基材上制备。
在本实施方式中,所述光侦测器件104为TFT影像感测阵列薄膜,所述光侦测器件104用于侦测红外光信号,所述处理芯片109用于根据红外光信号生成红外光影像信息;所述红外光器件包括MxN个像素侦测区。每一像素侦测区对应设置一像素侦测结构,每一像素侦测结构包括由一个以上薄膜电晶管所组成的一组像素薄膜电路以及一个光侦测单元。每一像素侦测结构对应侦测一个像素,因而TFT影像感测阵列薄膜可以用于侦测MXN个像素,以形成相应影像。所述光侦测单元包括红外光敏二极管或红外光敏电晶管。光侦测器件侦测的波长范围包含可见光波段或是红外光波段。
以光侦测器件为光敏二极管阵列薄膜为例,每一个像素侦测区对应的像素侦测结构的基本电路组成如图2所示。光敏二极管为形成光侦测单元之主要传感器件,栅极扫描线以固定之帧速率(Frame Rate)将薄膜晶体管(TFT)操作在打开模式,当所述光侦测器件侦测到光信号,打开之薄膜晶体管即可将电容电压数据传输到读取芯片。具体可以参考以下文献:M.J.Powell,I.D.French,J.R.Hughes,N.C.Bird,O.S.Davies,C.Glasse,and J.E.Curran,“Amorphous silicon image sensor arrays,”Mater.Res.Soc.Symp.Proc.,vol.258,pp.1127(1992,)、【2】B.Razavi,“Design of Analog CMOS Integrated Circuits,”McGraw-Hill,2000。
在本实施方式中,所述薄膜电晶管为包含有低温多晶硅、铟镓锌氧化物、碳纳米中任意一种的有机薄膜晶体管,薄膜电晶管组成的阵列的电子迁移率大于0.5cm2/Vs。低温多晶硅的全称是“Low Temperature Poly-Silicon(LTPS,多晶硅又简称为p-Si,下同)”,它是多晶硅技术的一个分支。对LCD显示器来说,采用多晶硅液晶材料有许多优点,如薄膜电路可以做得更薄更小、功耗更低等等。
对于每一个像素侦测结构而言,有以下几种实现方式:
实施例一:
所述TFT影像感测阵列薄膜(即光侦测器件)为光敏二极管所形成的阵列,每一像素侦测结构包括光敏二极管感应区。现有的液晶显示(LCD)面板或有机发光二极管(OLED)显示面板,皆是以TFT结构驱动扫描单一像素,以实现面板上像素阵列的显示功能。形成TFT开关功能的主要结构为半导体场效晶体管(FET),其中熟知的半导体层材料主要有非晶硅、多晶硅、氧化铟镓锌(IGZO)、或是混有碳纳米材料之有机化合物等等。由于光感测二极管的结构亦可采用此类半导体材料制备,且生产设备也兼容于TFT阵列的生产设备,因此近年来TFT光侦测二极管(即光敏二极管)开始以TFT阵列制备方式进行生产。现有的光敏二极管的具体结构可以参考美国专利US6943070B2、中华人民共和国专利CN204808361U中对光侦测器件结构的描述。TFT影像感测阵列薄膜的生产工艺与显示面板TFT结构不同的是:原本在显示面板的像素开口区域,在生产工艺上改为光感测区域。其TFT制备方式可以采用薄型玻璃为基材,亦可采用耐高温塑性材料为基材,如美国专利US6943070B2所述。
现有的TFT影像感测阵列薄膜易受周围环境光或者显示屏像素所发出的可见光的反射、折射等因素影响,造成光学干扰,严重影响内嵌于显示面板下方的TFT影像感测阵列薄膜的信号噪声比(SNR),为了提高信号噪声比,如图3所示,本发明对每个像素侦测结构中的光侦测单元做了进一步改进,使得改进后的TFT影像感测阵列薄膜可以侦测识别用户生理特征(如眼球)反射回的红外信号。具体结构如下:
所述光敏二极管层包括p型半导体层、i型半导体层、n型半导体层,p型半导体层、i型半导体层、n型半导体层自上而下堆叠设置,所述i型半导体层为微晶硅结构或非结晶硅化锗结构。所述微晶硅结构为硅烷与氢气通过化学气相沉积成膜的半导体层,微晶硅的结构的结晶度大于40%,且其禁带宽度小于1.7eV。所述非结晶硅化锗结构为硅烷、氢气与锗烷通过化学气相沉积成膜的非结晶半导体层,且其禁带宽度小于1.7eV。
禁带宽度(Band gap)是指一个带隙宽度(单位是电子伏特(eV)),固体中 电子的能量是不可以连续取值的,而是一些不连续的能带,要导电就要有自由电子存在,自由电子存在的能带称为导带(能导电),被束缚的电子要成为自由电子,就必须获得足够能量从价带跃迁到导带,这个能量的最小值就是禁带宽度。禁带宽度是半导体的一个重要特征参量,其大小主要决定于半导体的能带结构,即与晶体结构和原子的结合性质等有关。
在室温下(300K),锗的禁带宽度约为0.66ev,硅烷中含有锗元素,当掺入锗元素后,会使得i型半导体层的禁带宽度下降,当满足小于1.7eV时,说明i型半导体层可以接收可见光至红外光(或近红外光)波长范围内的光信号。通过调整化学气象沉积的GeH4浓度,可以将含有非晶或微晶硅化锗结构的光敏二极管的操作波长范围扩展到光波长600nm到2000nm的范围。
实施例二:
在采用实施例一的基础上,为了提高光电转换之量子效率,非结晶硅化锗结构的光电二极管也可采用双结以上p型/i型/n型结构堆叠形成。该光电二极管第一结层p型/i型/n型材料仍然为非晶硅结构,第二结层以上p型/i型/n型材料可以为微晶结构、多晶结构或是掺有可扩展光敏波长范围之化合物材料。简言之,可以采用多组p型/i型/n型结构上下堆叠来实现组成光敏二极管结构,对于每一个p型/i型/n型结构,则采用实施例一所描述的光敏二极管结构。
实施例三:
在采用实施例一或实施例二的基础上,对于每一个p型/i型/n型结构而言,其所包含的p型半导体层可以为大于两层的多层结构。例如p型半导体层为三层结构,自上而下包括第一p型半导体层(p1层)、第二p型半导体层(p2层)、第三p型半导体层(p3层)。其中,p1层可以采用非结晶结构且重掺杂硼(含硼浓度为标准工艺的两倍以上);p2和p3采用微晶结构,且正常掺杂硼(按照标准工艺浓度掺杂),依靠厚度减薄的p2层和p3层减少对光线的吸收,使得光线尽可能多地进入i层并被i层所吸收,提高光电转 换率;另一方面p2层和p3层采用正常的硼掺杂可以有效避免由于p1层的重掺杂导致劣化内建电位。当p型半导体层包括为其他层数的多层结构与此类似,此处不再赘述。
同样的,n型半导体层也可以为大于两层的多层结构。例如n型半导体层为三层结构,自上而下包括第一n型半导体层(n1层)、第二n型半导体层(n2层)、第三n型半导体层(n3层)。其中,n3层可以采用非结晶结构且重掺杂磷(含磷量为标准工艺两倍以上);n1和n2采用微晶结构,且正常掺杂磷(按照标准生产工艺),依靠厚度减薄的n1层和n2层减少对光线的吸收,使得光线尽可能多地进入i层并被i层所吸收,提高光电转换率;另一方面n1层和n2层采用正常的磷掺杂可以有效避免由于n3层的重掺杂导致劣化内建电位。当n型半导体层包括为其他层数的多层结构与此类似,此处不再赘述。
实施例四:
本实施例是针对实施例一或二或三的进一步改进,如图7中的(a)所示,具体包括:在所述p型半导体层的上端面设置有第一光学器件,所述第一光学器件用于降低光线在p型半导体层的上端面的反射率、或是减小光线在p型半导体层的折射角度以增加光入射量。减小光线在p型半导体层的折射角度,可以让光线尽可能地以接近于垂直方向射入p型半导体层,使得光线尽可能地被p型半导体层下方的i型半导体层所吸收,从而进一步提高光敏二极管的光电转换率。当p型半导体层为多层结构时,第一光学器件设置于最上方的一层p型半导体层的上端面。
所述第一光学器件包括折射率呈周期性变化的光子晶体结构或微透镜阵列结构、或是折射率呈非周期性变化的漫散射结构。所述第一光学器件的折射率小于p型半导体层的折射率,可以使得光线在第一光学器件发生折射后,入射角小于折射角,即光线尽可能地以接近于垂直方向射入p型半导体层。
实施例五:
本实施例是针对实施例一或二或三或四的进一步改进,如图6中的(b)(c)所示,所述n型半导体层的下端面还设置有第二光学器件,所述第二光学器件用于提高光线在n型半导体层的下端面的多重反射率。所述多重反射率是指光线在经过第二光学器件反射后进入i型半导体层,再次被i型半导体层所吸收,吸收后的光线又再次经过第二光学器件反射后进入i型半导体层,如此反复多次,提高i型半导体层的光电转换率。当n型半导体层为多层结构时,第二光学器件设置于最下方的一层n型半导体层的下端面。
所述第二光学器件包括折射率呈周期性变化的光子晶体结构、或是折射率呈非周期性变化的漫散射结构,且所述第二光学器件的折射率小于n型半导体层的折射率。这样,可以使得光线在n型半导体层的下端面尽可能发生反射,以便反射后的光线再次被i型半导体层所吸收,进而适量放大属于i型半导体层可吸收的光波长范围内的信号,提高该波长范围内的光电流量。
实施例六:
如图4所示,所述TFT影像感测阵列薄膜(即光侦测器件)为光敏电晶管所形成的阵列,每一像素侦测结构中的光侦测单元包括设置有光敏薄膜晶体管,所述光敏薄膜晶体管包括栅极1、源极2、漏极3、绝缘层4、光吸收半导体层5;所述光敏薄膜晶体管为倒立共平面式结构,所述倒立共平面式结构包括:所述栅极1、绝缘层4、源极2纵向自下而上设置,所述漏极3与所述源极2横向共面设置;绝缘层4包裹所述栅极1,以使得栅极1与源极2、栅极1与漏极3之间均不接触;源极2和漏极3之间间隙配合,源极2和漏极3横向之间形成光敏漏电流通道,所述光吸收半导体层5设置于光敏漏电流通道内。
一般藉由栅极电压控制TFT操作在关闭状态时,源极到漏极之间不会有电流通过;然而当TFT受光源照射时,由于光的能量在半导体激发出电子-空穴对,TFT结构的场效应作用会使电子-空穴对分离,进而使TFT产生光敏漏电流。这样的光敏漏电流特性让TFT阵列可应用在光侦测或光侦测之技术上。 相较于一般采用TFT漏电流作光敏薄膜晶体管之器件,本发明以倒立共平面型场效晶体管结构将光吸收半导体层配置于最上方吸光层,大幅增加了光电子的激发,提高了光电转换效率。
如图7所示,为本发明一实施方式涉及的光侦测单元的制备方法的流程图。所述方法用于制备实施例六的光侦测单元所包含的光敏薄膜晶体管,具体包括以下步骤:
首先进入步骤S801在像素薄膜晶体管的基材上通过化磁控溅射镀膜出栅极。像素薄膜晶体管的基材可以采用硬板,也可以采用柔性材料(如聚酰亚胺);
而后进入步骤S802在所述栅极的上方通过化学气相沉积或是磁控溅射镀膜出绝缘层;
而后进入步骤S803在所述绝缘层的上方通过化学气相沉积镀膜出源极和漏极的n型掺杂半导体层,并通过磁控溅射镀膜出源极和漏极的金属层,通过黄光蚀刻工艺定义出预设结构的源极和漏极,得到源极和漏极横向共面,且间隙配合,并使得源极和漏极横向之间形成光敏漏电流通道;
而后进入步骤S804在所述光敏漏电流通道内化学气相沉积镀膜出光吸收半导体层。
实施例七:
以熟知的场效晶体管结构而言,作为扫描驱动与数据传输开关的TFT不需特别针对源极和漏极之间收集光电流的结构作设计;然而对场效晶体管应用在光敏漏电流的侦测上,如果被光线激发的电子-空穴对被场效分离后,受电场驱动的飘移(Drift)路径太长,极有可能在光电子未能顺利抵达电极之前,就已经与空穴作再结合(Recombination),或是被光吸收半导体层本身的悬空键结(Dangling Bond)缺陷给捕获,无法有效地贡献作光侦测的光电流输出。
为了改善光敏漏电流受源极与漏极之间通道长度的影响,以达到可增加 吸收光半导体面积却不致于劣化光电转换效率的目的,本实施例中对实施例四的源极和漏极进行一步改进,提出了一源极与漏极的新型结构。
如图5所示,所述源极和漏极的数量均为多个,源极和源极之间相互并联,漏极和漏极之间相互并联;所述源极和漏极之间间隙配合,源极和漏极横向之间形成光敏漏电流通道包括:相邻的源极之间形成第一间隙,一个漏极置于所述第一间隙内,相邻的漏极之间形成第二间隙,一个源极置于所述第二间隙内,源极和漏极之间交错设置且间隙配合。每一源极与相邻的漏极之间的距离小于电子飘移距离,所述电子飘移距离为电子在场效作用下能够生存的距离。这样,在每一个侦测像素里,所属同一像素的多个源极都相互并联,且所属同一像素的多个漏极也都相互并联,可以有效降低光激发电子与空穴再复合的机率,提高了场效应作用下电极收集光电子的成功机率,最大化地改善了TFT漏电流光敏薄膜晶体管的光敏度。
如图8至11所示,为逐步制备实施例七涉及的光侦测单元所包含的光敏薄膜晶体管的过程,其大体步骤与制备实施例六的光敏薄膜晶体管类似。区别在于,在制备源极和漏极时,步骤S803中“通过黄光蚀刻工艺定义出预设结构的源极和漏极,得到源极和漏极横向共面,且间隙配合,并使得源极和漏极横向之间形成光敏漏电流通道”包括:通过黄光蚀刻工艺定义出源极电极组和漏极电极组,每一个源极电极组包括多个源极,源极和源极之间相互并联;每一个漏极电极组包括多个漏极,漏极和漏极之间相互并联;相邻的源极之间形成第一间隙,一个漏极置于所述第一间隙内,相邻的漏极之间形成第二间隙,一个源极置于所述第二间隙内,源极和漏极之间交错设置且间隙配合。
在某些实施例中,所述光侦测器件用于接收侦测触发信号,处于光侦测状态,并接收侦测部位(如指纹、眼球、虹膜等)反射的光信号以捕捉用户的侦测部位信息,并输出相应影像。优选的,侦测触发信号为红外光侦测信号,当光侦测器件接收到该信号后,将处于侦测反射进入光侦测器件的红外 光。显示屏上的红外像素发光层用于接收到红外显示驱动信号,发出红外光;也可以用于接收到红外显示驱动关闭信号后,停止红外像素发光层工作,此时显示单元只起到RGB像素分量显示功能。
在某些实施例中,所述显示单元上设置有光侦测感应区,所述光侦测感应区包括多个光侦测感应子区域,每一光侦测感应子区域的下方对应设置一个光侦测器件。所述装置还包括存储介质,所述存储介质存储有计算机程序。以追踪眼球活动识别为例,所述计算机程序被处理器执行时实现以下步骤:接收到对眼球识别子区域(即光侦测感应子区域)的启动指令,侦测控制电路开启所述眼球识别子区域(即光侦测感应子区域)的下方的光侦测器件;或者,接收到对眼球识别子区域的关闭指令,侦测控制电路开启所述眼球识别子区域的下方的光侦测器件。如图12所述,光侦测器件的面积既可以覆盖整个显示屏,也可以占显示屏总面积的1/2至3/4,具体根据实际需要进行设置,各个光侦测器件整体的中心与显示屏的中心位置重合,以保证在进行生理特征信息侦测时,光轴不会偏离。
本发明通过在显示单元的下方设置光侦测器件,使得光侦测器件位于用户的生理特征信息成像的光轴位置或是近轴位置,相较于摄像头独立于显示屏设置在显示屏外围边缘的结构,本发明可以及时捕捉到用户的生理特征信息(如眼球活动信息),减少影像侦测响应时间,提高用户体验。此外,将光侦测器件设置于显示单元的下方,并通过集成红外像素的显示单元发出红外光,相较于摄像头独立突出设置于显示屏区域外的结构,可以有效缩小移动设备的整体厚度,使得穿戴式设备或是移动设备更加轻薄、更适用于柔性穿戴式设备或是移动设备、满足市场的需求。
需要说明的是,尽管在本文中已经对上述各实施例进行了描述,但并非因此限制本发明的专利保护范围。因此,基于本发明的创新理念,对本文所述实施例进行的变更和修改,或利用本发明说明书及附图内容所作的等效结构或等效流程变换,直接或间接地将以上技术方案运用在其他相关的技术领 域,均包括在本发明的专利保护范围之内。

Claims (10)

  1. 一种显示屏集成红外像素的光侦测装置,其特征在于,所述装置自上而下包括显示单元、光侦测器件和处理芯片;
    所述显示单元包括PxQ个显示像素区,每一显示像素区内设置有R分量像素发光层、G分量像素发光层和B分量像素发光层;所述PxQ个显示像素区中还至少存在着一个显示像素区内设置有红外像素发光层,所述红外像素发光层用于在接收到处理芯片发出的红外显示驱动信号后,发出红外光信号;
    所述光侦测器件用于侦测红外光信号,所述处理芯片用于根据红外光信号生成红外光影像信息;所述红外光器件包括MxN个像素侦测区,每一像素侦测区对应设置一像素侦测结构,每一像素侦测结构包括由一个以上薄膜电晶管所组成的一组像素薄膜电路以及一个光侦测单元;所述光侦测单元包括红外光敏二极管或红外光敏电晶管。
  2. 如权利要求1所述的显示屏集成红外像素的光侦测装置,其特征在于,设置有红外像素发光层的显示像素区的数量为多个,且均匀分布于所述显示单元上。
  3. 如权利要求1所述的显示屏集成红外像素的光侦测装置,其特征在于,所述薄膜电晶管为包含有低温多晶硅、铟镓锌氧化物、碳纳米中任意一种的有机薄膜晶体管,薄膜电晶管组成的阵列的电子迁移率大于0.5cm 2/Vs。
  4. 如权利要求1所述的显示屏集成红外像素的光侦测装置,其特征在于,所述光侦测单元为光敏二极管所形成的阵列,所述光敏二极管所形成的阵列包括光敏二极管感应区,所述光敏二极管感应区包括光敏二极管层,所述光敏二极管层包括p型半导体层、i型半导体层、n型半导体层,p型半导体层、i型半导体层、n型半导体层自上而下堆叠设置,所述i型半导体层为微晶硅结构或非结晶硅化锗结构。
  5. 如权利要求4所述的显示屏集成红外像素的光侦测装置,其特征在于,所述微晶硅结构为硅烷与氢气通过化学气相沉积成膜的半导体层,微晶硅的结构的结晶度大于40%,且其禁带宽度小于1.7eV。
  6. 如权利要求4所述的显示屏集成红外像素的光侦测装置,其特征在于,所述非结晶硅化锗结构为硅烷、氢气与锗烷通过化学气相沉积成膜的非结晶半导体层,且其禁带宽度小于1.7eV。
  7. 如权利要求4所述的显示屏集成红外像素的光侦测装置,其特征在于,所述p型半导体层的上端面设置有第一光学器件,所述第一光学器件用于降低光线在p型半导体层的上端面的反射率、或是减小光线在p型半导体层的折射角度以增加光入射量。
  8. 如权利要求4所述的显示屏集成红外像素的光侦测装置,其特征在于,所述n型半导体层的下端面还设置有第二光学器件,所述第二光学器件用于提高光线在n型半导体层的下端面的反射率。
  9. 如权利要求1所述的显示屏集成红外像素的光侦测装置,其特征在于,所述光侦测单元为光敏电晶管所形成的阵列,所述光敏电晶管所形成的阵列包括光敏电晶管感应区,所述光敏电晶管感应区设置有光敏薄膜晶体管,所述光敏薄膜晶体管包括栅极、源极、漏极、绝缘层、光吸收半导体层;所述光敏薄膜晶体管为倒立共平面式结构,所述倒立共平面式结构包括:所述栅极、绝缘层、源极纵向自下而上设置,所述漏极与所述源极横向共面设置;绝缘层包裹所述栅极,以使得栅极与源极、栅极与漏极之间均不接触;源极和漏极之间间隙配合,源极和漏极横向之间形成光敏漏电流通道,所述光吸收半导体层设置于光敏漏电流通道内。
  10. 如权利要求9所述的显示屏集成红外像素的光侦测装置,其特征在于,所述源极和漏极的数量均为多个,源极和源极之间相互并联,漏极和漏极之间相互并联;所述源极和漏极之间间隙配合,源极和漏极横向之间形成光敏漏电流通道包括:相邻的源极之间形成第一间隙,一个漏极置于所述第一间隙内,相邻的漏极之间形成第二间隙,一个源极置于所述第二间隙内,源极和漏极之间交错设置且间隙配合。
PCT/CN2018/085783 2018-04-02 2018-05-07 一种显示屏集成红外像素的光侦测装置 WO2019192047A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/035,772 US11334195B2 (en) 2018-04-02 2020-09-29 Optical detection apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810283651.4 2018-04-02
CN201810283651.4A CN110349981B (zh) 2018-04-02 2018-04-02 一种显示屏集成红外像素的光侦测装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/035,772 Continuation US11334195B2 (en) 2018-04-02 2020-09-29 Optical detection apparatus

Publications (1)

Publication Number Publication Date
WO2019192047A1 true WO2019192047A1 (zh) 2019-10-10

Family

ID=68100069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085783 WO2019192047A1 (zh) 2018-04-02 2018-05-07 一种显示屏集成红外像素的光侦测装置

Country Status (4)

Country Link
US (1) US11334195B2 (zh)
CN (1) CN110349981B (zh)
TW (1) TWI667801B (zh)
WO (1) WO2019192047A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112713142A (zh) * 2020-08-24 2021-04-27 錼创显示科技股份有限公司 发光显示单元及显示装置
CN112864172A (zh) * 2021-01-04 2021-05-28 Tcl华星光电技术有限公司 光敏晶体管、彩膜基板及其制作方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210086907A (ko) * 2019-12-31 2021-07-09 삼성디스플레이 주식회사 표시 장치
CN112086526B (zh) * 2020-09-01 2023-11-28 深圳市华星光电半导体显示技术有限公司 显示面板和显示装置
CN112014975A (zh) * 2020-10-12 2020-12-01 业成科技(成都)有限公司 头戴式显示器
US11609671B2 (en) * 2020-11-23 2023-03-21 Lg Display Co., Ltd. Touch display apparatus
CN113938546A (zh) * 2021-11-15 2022-01-14 Oppo广东移动通信有限公司 电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102630341A (zh) * 2009-09-17 2012-08-08 西奥尼克斯股份有限公司 光敏成像器件和相关方法
US20140145976A1 (en) * 2012-11-27 2014-05-29 Chunghwa Picture Tubes, Ltd. Color filter substrate, in-cell optical touch display panel including the same and materials of infrared filter layer
US20150015478A1 (en) * 2013-07-11 2015-01-15 Samsung Display Co., Ltd. Ir emissive display facilitating remote eye tracking
CN107292216A (zh) * 2016-03-31 2017-10-24 上海箩箕技术有限公司 光学指纹传感器模组
CN107422907A (zh) * 2017-05-27 2017-12-01 京东方科技集团股份有限公司 光学触控装置以及具有其的显示器和电子设备
CN107515435A (zh) * 2017-09-11 2017-12-26 京东方科技集团股份有限公司 显示面板和显示装置
CN107770309A (zh) * 2017-10-18 2018-03-06 苏州大学 近红外发光像素在oled屏幕移动终端结构的应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6747290B2 (en) * 2000-12-12 2004-06-08 Semiconductor Energy Laboratory Co., Ltd. Information device
US7924272B2 (en) * 2006-11-27 2011-04-12 Microsoft Corporation Infrared sensor integrated in a touch panel
US8674964B2 (en) * 2009-07-02 2014-03-18 Au Optronics Corp. Organic light emitting diode touch display
US8692198B2 (en) * 2010-04-21 2014-04-08 Sionyx, Inc. Photosensitive imaging devices and associated methods
CN103066087B (zh) * 2012-12-20 2016-03-02 格科微电子(上海)有限公司 图像传感器模组和手持式电子装置
WO2015143011A1 (en) * 2014-03-19 2015-09-24 Bidirectional Display Inc. Image sensor panel and method for capturing graphical information using same
KR102205856B1 (ko) * 2014-06-11 2021-01-21 삼성디스플레이 주식회사 센서를 포함하는 유기 발광 표시 장치
CN104009067A (zh) * 2014-06-16 2014-08-27 信利(惠州)智能显示有限公司 集成触控功能的有机发光二极管显示装置及其制作方法
TWM549453U (zh) * 2017-05-17 2017-09-21 Keycore Tech Corp Led面板顯示器結構

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102630341A (zh) * 2009-09-17 2012-08-08 西奥尼克斯股份有限公司 光敏成像器件和相关方法
US20140145976A1 (en) * 2012-11-27 2014-05-29 Chunghwa Picture Tubes, Ltd. Color filter substrate, in-cell optical touch display panel including the same and materials of infrared filter layer
US20150015478A1 (en) * 2013-07-11 2015-01-15 Samsung Display Co., Ltd. Ir emissive display facilitating remote eye tracking
CN107292216A (zh) * 2016-03-31 2017-10-24 上海箩箕技术有限公司 光学指纹传感器模组
CN107422907A (zh) * 2017-05-27 2017-12-01 京东方科技集团股份有限公司 光学触控装置以及具有其的显示器和电子设备
CN107515435A (zh) * 2017-09-11 2017-12-26 京东方科技集团股份有限公司 显示面板和显示装置
CN107770309A (zh) * 2017-10-18 2018-03-06 苏州大学 近红外发光像素在oled屏幕移动终端结构的应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112713142A (zh) * 2020-08-24 2021-04-27 錼创显示科技股份有限公司 发光显示单元及显示装置
US11652077B2 (en) 2020-08-24 2023-05-16 PlayNitride Display Co., Ltd. Light-emitting display unit and display apparatus
CN112864172A (zh) * 2021-01-04 2021-05-28 Tcl华星光电技术有限公司 光敏晶体管、彩膜基板及其制作方法

Also Published As

Publication number Publication date
US20210141487A1 (en) 2021-05-13
TWI667801B (zh) 2019-08-01
US11334195B2 (en) 2022-05-17
TW201943092A (zh) 2019-11-01
CN110349981B (zh) 2022-11-18
CN110349981A (zh) 2019-10-18

Similar Documents

Publication Publication Date Title
WO2019192047A1 (zh) 一种显示屏集成红外像素的光侦测装置
EP2490264B1 (en) Photoelectric conversion device and electronic apparatus
CN109891487B (zh) 显示基板、显示面板、显示基板的制备方法及驱动方法
KR101022651B1 (ko) 광센서, 광센서를 포함하는 광센서 장치, 및 이를 포함하는디스플레이 장치
US11911133B2 (en) Operation method and device for physiological health detection
TWI672544B (zh) 紅外光偵測薄膜、紅外光偵測器件、紅外光偵測顯示裝置及紅外光偵測薄膜的製備方法
TWI673884B (zh) 光偵測裝置和光偵測器件
TWI755525B (zh) 光偵測薄膜、光偵測器件、光偵測顯示裝置及光偵測薄膜的製備方法
US11205673B2 (en) Image sensor and image sensing-enabled display apparatus including the same, and method of making image sensor
US11393857B2 (en) Image sensor and image sensing-enabled display apparatus including the same, and method of making the image sensor
US11532263B2 (en) Method and device for monitoring luminous intensity of display pixel
US11646330B2 (en) Unit cell of display panel including integrated TFT photodetector
TW201901945A (zh) 光偵測薄膜、光偵測器件、光偵測顯示裝置及光敏二極體的製備方法
TWI837182B (zh) 影像偵測顯示裝置、器件及其製備方法
TWI692093B (zh) 電磁波檢測裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18913446

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09-02-2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18913446

Country of ref document: EP

Kind code of ref document: A1