WO2019191809A1 - Shredding device for textured protein foodstuff - Google Patents

Shredding device for textured protein foodstuff Download PDF

Info

Publication number
WO2019191809A1
WO2019191809A1 PCT/AU2019/050296 AU2019050296W WO2019191809A1 WO 2019191809 A1 WO2019191809 A1 WO 2019191809A1 AU 2019050296 W AU2019050296 W AU 2019050296W WO 2019191809 A1 WO2019191809 A1 WO 2019191809A1
Authority
WO
WIPO (PCT)
Prior art keywords
roller
rollers
speed
foodstuff
projections
Prior art date
Application number
PCT/AU2019/050296
Other languages
French (fr)
Inventor
Charlie Chessari
Original Assignee
ProForm Innovation Pty Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2018901111A external-priority patent/AU2018901111A0/en
Application filed by ProForm Innovation Pty Limited filed Critical ProForm Innovation Pty Limited
Publication of WO2019191809A1 publication Critical patent/WO2019191809A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C4/00Crushing or disintegrating by roller mills
    • B02C4/02Crushing or disintegrating by roller mills with two or more rollers
    • B02C4/08Crushing or disintegrating by roller mills with two or more rollers with co-operating corrugated or toothed crushing-rollers
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/22Working-up of proteins for foodstuffs by texturising
    • A23J3/225Texturised simulated foods with high protein content
    • A23J3/227Meat-like textured foods
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/22Working-up of proteins for foodstuffs by texturising
    • A23J3/26Working-up of proteins for foodstuffs by texturising using extrusion or expansion
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P30/00Shaping or working of foodstuffs characterised by the process or apparatus
    • A23P30/20Extruding
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/22Working-up of proteins for foodstuffs by texturising
    • A23J3/24Working-up of proteins for foodstuffs by texturising using freezing
    • A23J3/245Texturising casein using freezing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C4/00Crushing or disintegrating by roller mills
    • B02C4/28Details
    • B02C4/30Shape or construction of rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C4/00Crushing or disintegrating by roller mills
    • B02C4/28Details
    • B02C4/32Adjusting, applying pressure to, or controlling the distance between, milling members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C4/00Crushing or disintegrating by roller mills
    • B02C4/28Details
    • B02C4/42Driving mechanisms; Roller speed control

Definitions

  • the invention relates to the field of commercial extruded food manufacture.
  • the invention relates to a device for shredding an extruded high moisture texturised protein food product.
  • a solution to reduce the impact of meat production on the environment is offered by partial replacement of meat protein with plant protein products in the human diet.
  • these protein products have favourable organoleptic properties, such as flavour and texture, when compared with meat.
  • HMEC High Moisture Extrusion Cooking
  • Simple‘slicing’ technology tends to be unable to satisfactorily expose the internally fibrous texture of the product.
  • Known ‘shredding’ technologies tend to produce an unacceptably high rate of ‘fines’ that result from high-speed tearing of the product. They also tend to produce sizes that are too randomly distributed and uncontrolled, necessitating sieving or the like in order to achieve the target size, whereupon the off-size pieces are wasted.
  • the invention is characterised by a shredding device that incorporates relatively low-speed rotors that are run at differential speeds, and which can provide a controlled shredding of the extruded proteinaceous foodstuff.
  • a device for performing size-reduction on an extruded proteinaceous foodstuff including at least a first and a second adjacently mounted shredding roller, said rollers adapted to be counter-rotating, said rollers having complementary surfaces adapted to compress and shear said foodstuff as it passes therebetween; wherein the second roller is rotated at a speed equal to or greater than the speed of the first roller.
  • rollers that can compress and grip the extrudate while rotating at relatively low, but differential, speeds can provide the type of controlled ‘tear’ of the material that adequately exposes the internal texturisation without generating an unacceptable level of randomness or excessive fines.
  • the first roller rotates at a speed in the range of 3 rpm to 14.5 rpm
  • the second roller rotates at a speed in the range 6 rpm to 29 rpm.
  • the ratio of rotational speed of the second roller to rotational speed of the first roller is between 1 .8 and 4.0.
  • the gearbox ratio governing the speed of the second roller to the first roller is typically a ratio of approximately 2.0.
  • independent variation of roller rotational speeds is obtained by variable frequency drive’s (VFD’s) for each roller motor. With both rollers at the same frequency setting, the ratio of rotational speed of the second roller to rotational speed of the first roller is exactly the gearbox ratio of approximately 2.0.
  • said surfaces include an array of projections outward from the roller that are arranged to allow intermeshing of said projections from the respective first and second rollers. More preferably, said projections are arranged in a series of transverse rows across the surface of said rollers, each row defining a series of peaks and troughs in profile, and wherein the rollers are disposed such that the peaks of the projections of the first roller are co-operatively adjacent the corresponding troughs of the second roller.
  • Figure 1 is a photograph of a device according to the invention.
  • Figure 2 is a photograph of the device of figure 1 , viewed from above.
  • Figure 3 is a diagram of a roller adapted for use in a device according to the invention.
  • Figure 4 is a diagram of two rollers adapted for use in a device according to the invention.
  • the invention may be embodied as a commercial scale shredding device, having at least two co-operating counter-rotating rollers between which cooled, extruded protein passes.
  • the rollers operate at differential rotational speeds and simultaneously tear and compress the protein in order to produce a controlled size distribution of protein pieces with exposed internal fibrous texture.
  • FIG. 1 there is shown a device 5 according to an embodiment of the invention.
  • This device is capable of shredding at least 1000 kg/hr of cooled, extruded protein from a FIMEC process.
  • the device 5 has two rollers: a first roller 10 and a second roller 15 (one not visible).
  • the cooled extruded protein‘rope’ is fed into the hopper 20 and passes between the rollers.
  • FIG 2 there is shown a view of the device 5 of figure 1 , as seen from above the feed hopper 20.
  • the two rollers (10, 15) are visible and the gap 35 between the rollers is also visible.
  • the rollers each have several projections (or ‘teeth’) 40 that extend outwardly and are formed such that they can be seen to resemble a series of peaks 45 and troughs 50 in profile. It will also be seen that the rollers are arranged such that the peaks of the projections of one roller will‘mesh’ with the troughs between projections of the other roller. This is seen in clearer detail in Figure 3.
  • the projections have peaks 45 are approximately 38mm apart across the roller, and there are 14 rows of these projections 40 arranged around the circumference of the rollers.
  • the projections are asymmetrical: the leading, or‘cutting’, face 55 of each projection 40 is rendered in a plane that is approximately co-planar with the centre-line 60 of the roller, whereas the trailing face 65 of the projection forms an approximate 60° angle with the adjacent leading face 55.
  • FIG. 4 The views of two co-operating rollers (10, 15) in Figure 4 illustrates the relative positioning of the first and second rollers in operation. It will be noted that the leading face 55 of the projections 40 are arranged to face forward in the direction of rotation when in operation.
  • rollers and/or projections are preferably made from 316 stainless steel, but could also be made from other suitable materials, such as a hard FDA-approved food grade plastic as shown in the figures.
  • the first roller 10 is located in an‘upstream’ position relative to the flow of the extrudate towards the device, and the second roller 15 is located in a relatively‘downstream’ position.
  • the first roller 10 is set to rotate at a speed that is slower than the second roller 15, typically at around half of the speed of the second roller, or less.
  • the first roller rotates at about 8 rpm and the second roller rotates at about 23 rpm. These can each be adjusted to anywhere in the range 3rpm to 14.5 rpm for the first roller and between 6rpm to 29 rpm for the second roller.
  • the ratio of first roller to second roller rotational speed would be at least 1 :2 but may be set as high as 1 :4 for different products.
  • the actuation of the rollers is preferably done by conventional mechanical coupling to dedicated variable speed electric motors for each roller.
  • the direction of rotation is indicated by the curved arrows in Figure 4.
  • the first roller 10 is preferred to have a fixed position, while the second roller’s position relative to the first roller can be adjusted, to modify the gap between the rollers. This will allow different shredding effects to be created and controlled.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Nutrition Science (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Manufacturing & Machinery (AREA)
  • Crushing And Pulverization Processes (AREA)

Abstract

A device for performing size-reduction on an extruded proteinaceous foodstuff, said device including at least a first and a second adjacently mounted shredding roller, said rollers adapted to be co-rotating, said rollers having complementary surfaces adapted to compress and shear said foodstuff as it passes therebetween; wherein the second roller is rotated at a speed equal to or greater than the speed of the first roller.

Description

SHREDDING DEVICE FOR TEXTURED PROTEIN FOODSTUFF
Technical Field
[0001 ] The invention relates to the field of commercial extruded food manufacture. In particular, the invention relates to a device for shredding an extruded high moisture texturised protein food product.
Background of the Invention
[0002] By 2050 the world’s population is projected to reach 9 billion and it has been suggested that 70% more food will be required to sustain this population. Between 1950 and 2000 meat production increased from 45 to 229 million tons and this is expected to further increase to 465 million tons by 2050.
[0003] The relatively inefficient conversion of plant protein into animal protein via animal metabolism makes meat production responsible for a disproportionate share of environmental pressures such as land use, freshwater depletion, global warming and biodiversity loss.
[0004] A solution to reduce the impact of meat production on the environment is offered by partial replacement of meat protein with plant protein products in the human diet. However, there is a desire that these protein products have favourable organoleptic properties, such as flavour and texture, when compared with meat.
[0005] Both the food industry and food scientists have been interested in creating fibrous food textures for several decades. High Moisture Extrusion Cooking (HMEC) technology as a concept has been established since the early 1980’s. It is a technology for texturising protein-rich materials having a moisture content of greater than about 30% by mass.
[0006] In a typical HMEC process according to the prior art, the raw materials are heated under pressure in an extrusion cooker until molten; the resulting melt is cooled and solidified in-situ by a cooling die to produce aligned protein fibres from the melt, giving a product with a meaty internal texture that satisfies organoleptic requirements. [0007] However, for the product to fulfil its purpose of accurately resembling cooked muscle meat to the consumer, there remains the need to expose the internal texture of the product while reducing the extruded‘rope’ to a usable size.
[0008] Simple‘slicing’ technology tends to be unable to satisfactorily expose the internally fibrous texture of the product. Known ‘shredding’ technologies tend to produce an unacceptably high rate of ‘fines’ that result from high-speed tearing of the product. They also tend to produce sizes that are too randomly distributed and uncontrolled, necessitating sieving or the like in order to achieve the target size, whereupon the off-size pieces are wasted.
[0009] Accordingly, it is an object of the invention to provide a size-reduction step for HMEC technology that ameliorates at least some of the problems associated with the prior art.
Summary of the Invention
[0010] The invention is characterised by a shredding device that incorporates relatively low-speed rotors that are run at differential speeds, and which can provide a controlled shredding of the extruded proteinaceous foodstuff.
[001 1 ] According to a first aspect of the invention, there is provided a device for performing size-reduction on an extruded proteinaceous foodstuff, said device including at least a first and a second adjacently mounted shredding roller, said rollers adapted to be counter-rotating, said rollers having complementary surfaces adapted to compress and shear said foodstuff as it passes therebetween; wherein the second roller is rotated at a speed equal to or greater than the speed of the first roller.
[0012] The inventors have fond that the use of a rollers that can compress and grip the extrudate while rotating at relatively low, but differential, speeds can provide the type of controlled ‘tear’ of the material that adequately exposes the internal texturisation without generating an unacceptable level of randomness or excessive fines.
[0013] Preferably, the first roller rotates at a speed in the range of 3 rpm to 14.5 rpm, and the second roller rotates at a speed in the range 6 rpm to 29 rpm. Typically, the ratio of rotational speed of the second roller to rotational speed of the first roller is between 1 .8 and 4.0. [0014] The gearbox ratio governing the speed of the second roller to the first roller is typically a ratio of approximately 2.0. However, independent variation of roller rotational speeds is obtained by variable frequency drive’s (VFD’s) for each roller motor. With both rollers at the same frequency setting, the ratio of rotational speed of the second roller to rotational speed of the first roller is exactly the gearbox ratio of approximately 2.0.
[0015] Preferably, said surfaces include an array of projections outward from the roller that are arranged to allow intermeshing of said projections from the respective first and second rollers. More preferably, said projections are arranged in a series of transverse rows across the surface of said rollers, each row defining a series of peaks and troughs in profile, and wherein the rollers are disposed such that the peaks of the projections of the first roller are co-operatively adjacent the corresponding troughs of the second roller.
[0016] This arrangement has been found to provide the best product appearance, as it allows the extruded protein to be gripped and compressed whilst being separated ‘pulling’ in the direction of rotation of the rollers. Typically, the first roller is placed in a relatively upstream position with respect to the flow of foodstuff. For the best results, the first roller’s position is fixed and the position of the second roller may be adjusted relative to the clearance between the rollers.
[0017] According to another aspect of the invention, there is provided a process for the shredding of extruded proteinaceous foodstuff, including the use of a device as defined above.
[0018] According to another aspect of the invention, there is provided a proteinaceous foodstuff produced by a process according to that described above.
[0019] Now will be described, by way of a specific, non-limiting example, a preferred embodiment of the invention with reference to the drawings.
Brief Description of the Drawings
[0020] Figure 1 is a photograph of a device according to the invention.
[0021 ] Figure 2 is a photograph of the device of figure 1 , viewed from above. [0022] Figure 3 is a diagram of a roller adapted for use in a device according to the invention.
[0023] Figure 4 is a diagram of two rollers adapted for use in a device according to the invention.
Detailed Description of the Invention
[0024] The invention may be embodied as a commercial scale shredding device, having at least two co-operating counter-rotating rollers between which cooled, extruded protein passes. The rollers operate at differential rotational speeds and simultaneously tear and compress the protein in order to produce a controlled size distribution of protein pieces with exposed internal fibrous texture.
[0025] Turning to figure 1 , there is shown a device 5 according to an embodiment of the invention. This device is capable of shredding at least 1000 kg/hr of cooled, extruded protein from a FIMEC process.
[0026] The device 5 has two rollers: a first roller 10 and a second roller 15 (one not visible). A feed hopper 20 and two electric motors 25 and 30 attached to each roller. The cooled extruded protein‘rope’ is fed into the hopper 20 and passes between the rollers.
[0027] Turning to Figure 2, there is shown a view of the device 5 of figure 1 , as seen from above the feed hopper 20. The two rollers (10, 15) are visible and the gap 35 between the rollers is also visible. The rollers each have several projections (or ‘teeth’) 40 that extend outwardly and are formed such that they can be seen to resemble a series of peaks 45 and troughs 50 in profile. It will also be seen that the rollers are arranged such that the peaks of the projections of one roller will‘mesh’ with the troughs between projections of the other roller. This is seen in clearer detail in Figure 3.
[0028] In this example, the projections have peaks 45 are approximately 38mm apart across the roller, and there are 14 rows of these projections 40 arranged around the circumference of the rollers.
[0029] In profile, as seen in Figure 3, the projections are asymmetrical: the leading, or‘cutting’, face 55 of each projection 40 is rendered in a plane that is approximately co-planar with the centre-line 60 of the roller, whereas the trailing face 65 of the projection forms an approximate 60° angle with the adjacent leading face 55.
[0030] The views of two co-operating rollers (10, 15) in Figure 4 illustrates the relative positioning of the first and second rollers in operation. It will be noted that the leading face 55 of the projections 40 are arranged to face forward in the direction of rotation when in operation.
[0031 ] The rollers and/or projections are preferably made from 316 stainless steel, but could also be made from other suitable materials, such as a hard FDA-approved food grade plastic as shown in the figures.
[0032] In operation, the first roller 10 is located in an‘upstream’ position relative to the flow of the extrudate towards the device, and the second roller 15 is located in a relatively‘downstream’ position. The first roller 10 is set to rotate at a speed that is slower than the second roller 15, typically at around half of the speed of the second roller, or less. In the present example, the first roller rotates at about 8 rpm and the second roller rotates at about 23 rpm. These can each be adjusted to anywhere in the range 3rpm to 14.5 rpm for the first roller and between 6rpm to 29 rpm for the second roller.
[0033] Typically, the ratio of first roller to second roller rotational speed would be at least 1 :2 but may be set as high as 1 :4 for different products.
[0034] The actuation of the rollers is preferably done by conventional mechanical coupling to dedicated variable speed electric motors for each roller. The direction of rotation is indicated by the curved arrows in Figure 4.
[0035] It is this speed differential that allows the device to shred the extrudate into pieces of a relatively controlled size, whilst exposing the internal fibrous texture created in the FIMEC process.
[0036] The first roller 10 is preferred to have a fixed position, while the second roller’s position relative to the first roller can be adjusted, to modify the gap between the rollers. This will allow different shredding effects to be created and controlled.
[0037] It will be appreciated by those skilled in the art that the above described embodiment is merely one example of how the inventive concept can be implemented. It will be understood that other embodiments may be conceived that, while differing in their detail, nevertheless fall within the same inventive concept and represent the same invention.

Claims

Claims
1 . A device for performing size-reduction on an extruded proteinaceous foodstuff, said device including at least a first and a second adjacently mounted shredding roller, said rollers adapted to be co-rotating, said rollers having complementary surfaces adapted to compress and shear said foodstuff as it passes therebetween; wherein the second roller is rotated at a speed equal to or greater than the speed of the first roller.
2. The device of claim 1 , wherein the first roller rotates at a speed in the range of 3 rpm to 14.5 rpm, and the second roller rotates at a speed in the range 6 rpm to 29 rpm.
3. The device of claim 2, wherein the ratio of rotational speed of the second roller to rotational speed of the first roller is between 1 .8 and 4.0.
4. The device of any preceding claim wherein said surfaces include an array of projections outward from the roller that are arranged to allow intermeshing of said projections from the respective first and second rollers.
5. The device of claim 4, wherein said projections are arranged in a series of transverse rows across the surface of said rollers, each row defining a series of peaks and troughs in profile, and wherein the rollers are disposed such that the peaks of the projections of the first roller are co-operatively adjacent the corresponding troughs of the second roller.
6. The device of any preceding claim, wherein the first roller is placed in a relatively upstream position with respect to the flow of foodstuff.
7. The device of claim 6, wherein the first rollers position is fixed and the position of the second roller may be adjusted relative to the clearance between the rollers.
8. A process for the shredding of extruded proteinaceous foodstuff, including the use of a device as defined in any preceding claim.
9. A proteinaceous foodstuff produced by a process according to claim 8.
PCT/AU2019/050296 2018-04-04 2019-04-04 Shredding device for textured protein foodstuff WO2019191809A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AU2018901111A AU2018901111A0 (en) 2018-04-04 Shredding device for textured protein foodstuff
AU2018901111 2018-04-04

Publications (1)

Publication Number Publication Date
WO2019191809A1 true WO2019191809A1 (en) 2019-10-10

Family

ID=68099676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AU2019/050296 WO2019191809A1 (en) 2018-04-04 2019-04-04 Shredding device for textured protein foodstuff

Country Status (1)

Country Link
WO (1) WO2019191809A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112808444A (en) * 2021-01-04 2021-05-18 中冶长天国际工程有限责任公司 Crusher and crushing roller abrasion detection device and detection method thereof
WO2022157584A3 (en) * 2021-01-20 2022-10-13 Bevo, Biotehnološke Rešitve D.O.O. Method of producing a meat analogue
GB2605746A (en) * 2021-01-20 2022-10-19 Bevo Biotehnoloske Resitve D O O Method of producing a meat analogue
EP4353360A1 (en) * 2022-10-14 2024-04-17 Eric Favre Method and device for grinding grains

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3512990A (en) * 1967-02-03 1970-05-19 Kellog Co Production of snack product
GB1432278A (en) * 1973-05-11 1976-04-14 Battelle Development Corp Proteinaceous food product having a meat-like structure and process of forming same
US5071665A (en) * 1988-02-09 1991-12-10 Nadreph Limited Process for preparing a proteinaceous food product
WO2017169207A1 (en) * 2016-03-28 2017-10-05 日清食品ホールディングス株式会社 Method for manufacturing textured protein material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3512990A (en) * 1967-02-03 1970-05-19 Kellog Co Production of snack product
GB1432278A (en) * 1973-05-11 1976-04-14 Battelle Development Corp Proteinaceous food product having a meat-like structure and process of forming same
US5071665A (en) * 1988-02-09 1991-12-10 Nadreph Limited Process for preparing a proteinaceous food product
WO2017169207A1 (en) * 2016-03-28 2017-10-05 日清食品ホールディングス株式会社 Method for manufacturing textured protein material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112808444A (en) * 2021-01-04 2021-05-18 中冶长天国际工程有限责任公司 Crusher and crushing roller abrasion detection device and detection method thereof
WO2022157584A3 (en) * 2021-01-20 2022-10-13 Bevo, Biotehnološke Rešitve D.O.O. Method of producing a meat analogue
GB2605746A (en) * 2021-01-20 2022-10-19 Bevo Biotehnoloske Resitve D O O Method of producing a meat analogue
EP4353360A1 (en) * 2022-10-14 2024-04-17 Eric Favre Method and device for grinding grains

Similar Documents

Publication Publication Date Title
WO2019191809A1 (en) Shredding device for textured protein foodstuff
US8679560B2 (en) Apparatus, systems and methods for manufacturing food products
JPH0247269B2 (en)
US5216946A (en) Precooked filled pasta products made by co-extrusion
US5296247A (en) Method of making pre-cooked filled pasta products by co-extrusion
US20170355161A1 (en) Compression screw for producing animal feed
CN102806131A (en) Bamboo shoot full-pulverizer and production process of bamboo shoot powder
CN112056506A (en) Preparation process of instant brewing instant rice
US20050123663A1 (en) Shredded food products and methods of producing and applying shredded food products
AU2005273116A1 (en) Extrusion apparatus and method for extruding high protein foodstuffs
KR100361221B1 (en) Method and apparatus for linking coextruded foodstuffs
US20170361485A9 (en) Apparatus for manufacturing food products
JPH0775529B2 (en) Method for producing structured product of seafood meat surimi
AU711572B2 (en) Manufacture of cooked cereals
US4022918A (en) Method for producing irregularly shaped expanded food products
CN117461799A (en) Puffed meat particles, puffed meat food prepared from puffed meat particles and preparation method of puffed meat food
US4771666A (en) Food processing machine for producing long fibers of food
AU677655B2 (en) Precooked filled pasta products made by co-extrusion
CN211794274U (en) Food puffing and mold stripping device
WO2019217234A1 (en) Apparatus for production of snack food pellets
JP2005245432A (en) Apparatus for cutting extrusion-molded food
RU2366277C2 (en) Production method of multicereal flakes
JPS63202361A (en) Preparation of fibrous food
GB2613604A (en) Method and apparatus for continuous production of a structured protein product
CA2846527C (en) A cheese shred product and method of making

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19781009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19781009

Country of ref document: EP

Kind code of ref document: A1