WO2019190152A1 - Flexible heating sheet using fiber electrode - Google Patents

Flexible heating sheet using fiber electrode Download PDF

Info

Publication number
WO2019190152A1
WO2019190152A1 PCT/KR2019/003478 KR2019003478W WO2019190152A1 WO 2019190152 A1 WO2019190152 A1 WO 2019190152A1 KR 2019003478 W KR2019003478 W KR 2019003478W WO 2019190152 A1 WO2019190152 A1 WO 2019190152A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
electrode
layer
fiber electrode
heating
Prior art date
Application number
PCT/KR2019/003478
Other languages
French (fr)
Korean (ko)
Inventor
조병현
Original Assignee
주식회사 히톨로지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 히톨로지 filed Critical 주식회사 히톨로지
Publication of WO2019190152A1 publication Critical patent/WO2019190152A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/03Electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/34Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/013Heaters using resistive films or coatings

Definitions

  • the present invention relates to a flexible heating sheet using a fiber electrode, and more particularly, to form a heating paste and a conductive paste in a predetermined pattern on the flexible thin film, respectively, and then attaching the conductive fiber electrode on the conductive paste.
  • the present invention relates to a flexible heating sheet using a fiber electrode which maximizes current flow and durability while being flexible.
  • the flexible heating sheet prints a conductive carbon paste in a predetermined pattern to form a heating layer on a PET film having heat resistance and insulation, and a metal such as a copper thin plate to apply electricity to the heating layer.
  • the electrode is inserted into a structure that is not adhered to the material on the bottom, and is then manufactured by thermally compressing the PET film on the bottom. Since the flexible heating sheet is manufactured in the form of a thin film, the floor heating or the electric heating panel, the mat It is applied to various fields.
  • Korean Patent Laid-Open Publication No. 10-2011-0104247 discloses a conductive carbon black paste on the surface of a TPU sheet to form a heat generating portion, and conducts a conductive portion by screen printing conductive silver powder on both ends of the heat generating portion. ), And then attaching a silver piece on the conductive portion (conductive layer) to form a terminal portion, connecting an electric wire to the terminal portion end, and forming a lamination portion on the TPU sheet (PTL) flexible planar heating element (Patent Document 1) Has been proposed.
  • Patent Document 1 in the case of an electrode form in which a silver sheet or a metal thin plate such as copper or aluminum is attached to a conductive portion (conductive layer) formed by printing a conductive paste such as silver powder, the heat between the conductive portion (the conductive layer) and the metal thin plate electrode Various problems occur due to the difference in shrinkage and expansion coefficient.
  • the flexible heating sheet is repeatedly bent, heated and cooled in use, and the conductive portion (conductive layer) printed on the paste (silver powder) and the metal thin plate electrode have a partial difference between the two elements because of the difference in thermal expansion and contraction. Or it is lifted or voids are generated as a whole, the conductance is not good, and further, there is a risk that an arc (spark) phenomenon occurs in the gap generating part may cause a fire.
  • arc spark
  • the paste printing conductive part and the metal thin plate electrode are not attached to each other, but the electrode is formed in a structure that is placed on top of each other.
  • the two release elements are simply faced to each other, they are bent in use where flexibility is required.
  • As the bending or bending of the electrode occurs due to a physical external action there is no circular restoring force due to the characteristics of the thin metal plate electrode, so that a gap is formed by the separation between the two electrodes, thereby generating an arc (spark) phenomenon as described above.
  • the structure of two electrodes is in close contact with each other because of weak adhesion between each element, when the incoming voltage is low or when using a DC power supply, the vertical and vertical (between) vertical conduction between each electrode layer is not enough to lose heat generation ability and serious problems in terms of electrical safety. Cause.
  • the thin metal electrode is excluded and the conductive paste is formed only by printing the conductive paste.
  • the conductive paste electrode layer made of a thin film has a limited amount of current and high heat is generated in the electrode layer. Since the heat generation temperature variation per distance of the heat generating layer is severe, it is not only applicable to the large heat generating sheet, but also difficult to apply to the small heating element.
  • Patent Document 2 in the Republic of Korea Patent No. 10-0641693 (Patent Document 2) as an example of the prior art for maximizing flexibility, in the planar heating element provided with a fabric-like heating portion woven with a fiber yarn and a string, the fabric type A pair of conductive parts for supplying power to one side of the heat generating part are woven at regular intervals in a plain weave, and the pair of conductive parts are provided in a row direction in which a plurality of electrode yarns are woven in a plurality of rows.
  • the heating element such as Patent Document 2 is excellent in flexibility because both the heat generating portion and the conductive portion are woven in the form of a fabric, but the heat generating structure connecting the heat generating material and the electrode portion in a woven manner has a heat generating portion as described above. Since the adhesion force is woven together without attaching to each other and the conductive part is attached to each other, this electrode structure also generates gaps due to spacing when bending or bending occurs due to contraction and expansion by heat or physical force. In addition, since the voltage is lowered or there is no adhesion between the heat generating portion and the conductive portion when using a DC power supply, the amount of energization is lowered, which may cause a loss of heat generating ability.
  • the present invention for solving the problems inherent in the prior art, it is possible to ensure sufficient electrical conductivity of the thin film electrode, and also to prevent the thin film electrode from being easily peeled off by repeated bending and bending, or repeated heating and cooling. , To protect the paste-type heating layer and / or conductive layer to prevent cracks, scratches, oxidation, etc. to improve the durability, as well as to prevent a decrease in the amount of power supply when the power is applied with high adhesion The purpose is to provide a flexible heating sheet used.
  • a heat generating layer capable of generating heat during energization is disposed on a base substrate of a thin film having flexibility and heat resistance, and is connected to the heating layer to apply electricity
  • the electrode is made of a conductive fiber electrode manufactured in the form of a surface using a conductive yarn, characterized in that the conductive fiber electrode is in contact with the surface of the heating layer.
  • the heating layer may be formed by printing a heating paste on the base substrate, and the conductive fiber electrodes may be in surface contact with each other at different portions of the heating layer.
  • a heat generating layer capable of generating heat during energization and a conductive layer connected to the heat generating layer are respectively disposed on the base substrate of the thin film having flexibility and heat resistance, and the electricity is supplied to the conductive layer.
  • the heating layer is formed by printing a heating paste on the base substrate
  • the conductive layer is made by printing a conductive paste on the base substrate, and a pair is connected to different portions of the heating layer, respectively, and the conductive fiber electrode
  • Each pair of silver may be in surface contact on the conductive layer.
  • the thickness of the conductive fiber electrode is characterized in that 0.001 ⁇ 0.5mm.
  • the number of threads per one inch each of the width and length is characterized in that 10 to 2500.
  • the conductive fiber electrode is characterized in that the surface attached via a conductive adhesive or a conductive adhesive.
  • the conductive fiber electrode having the predetermined area on the conductive layer having the predetermined area is surface contacted (attached) through the mutual conductive adhesive, so that the electrical conductivity can be improved,
  • the flexible fiber electrode prevents surface contact from being easily lifted or separated under any conditions or conditions such as repeated bending and repeated heating and cooling, improving the electrical safety and durability of the heating element.
  • the initial heat generation performance can be maintained as it is.
  • FIG. 1 is a plan view of a heating sheet according to an embodiment of the present invention.
  • FIG. 2 is an enlarged cross-sectional view taken along line A-A of FIG.
  • Figure 3 is a real picture of the conductive fiber electrode of the heating sheet according to an embodiment of the present invention.
  • FIG. 4 is a structural diagram of a conductive fiber electrode of the heating sheet according to an embodiment of the present invention.
  • FIG. 5 is a real picture of a state in which the unspecified point is freely bent to show the flexibility of the heating sheet according to the embodiment of the present invention.
  • the flexible heating sheet using the fiber electrode of the present invention is a flexible heating sheet comprising a heating layer capable of generating heat when energized on a base substrate of a thin film having flexibility and heat resistance, and comprising an electrode connected to the heating layer to apply electricity.
  • the electrode is made of a conductive fiber electrode manufactured in the form of a plane using a conductive yarn, the conductive fiber electrode is in contact with the surface of the heat generating layer.
  • the heating layer may be formed by printing a heating paste on the base substrate, and the conductive fiber electrodes may be in surface contact with each other at different portions of the heating layer.
  • a heat generating layer capable of generating heat during energization and a conductive layer connected to the heat generating layer are respectively disposed on the base substrate of the thin film having flexibility and heat resistance, and the electricity is supplied to the conductive layer.
  • the heating layer is formed by printing a heating paste on the base substrate
  • the conductive layer is made by printing a conductive paste on the base substrate, and a pair is connected to different portions of the heating layer, respectively, and the conductive fiber electrode
  • Each pair of silver may be in surface contact on the conductive layer.
  • the thickness of the conductive fiber electrode may be 0.001 ⁇ 0.5mm.
  • the number of threads per 1 inch each of the width and length may be 10 to 2500.
  • the conductive fiber electrode may be surface-attached via a conductive adhesive or a conductive adhesive.
  • FIG. 1 is a plan view of a heat generating sheet according to an embodiment of the present invention
  • FIG. 2 is an enlarged cross-sectional view taken along line AA of FIG. 1
  • FIG. 3 is a physical picture of a conductive fiber electrode of a heat generating sheet according to an embodiment of the present invention
  • 4 is a structure of the conductive fiber electrode of the heating sheet according to an embodiment of the present invention
  • Figure 5 is a real picture of the state unrefractively bent to show the flexibility of the heating sheet according to an embodiment of the present invention .
  • the flexible heating sheet of the present invention includes a base substrate 10, a heating layer 20, a conductive layer 30, and a conductive fiber electrode 40.
  • the base substrate 10 is in the form of a thin film having flexibility and heat resistance, and may be a known PET film or TPU film as an example of the material, and may also be a synthetic resin film, fiber, nonwoven fabric, paper, and the like.
  • flexibility and heat resistance is not limited to the material, material and form.
  • the heat generating layer 20 may be screened, gravure printed, etched, offset, photogravure, impregnated, or coated with a paste or ink material having a property of self-heating when electricity is applied, such as conductive carbon paste. It is formed in a predetermined area and a predetermined pattern with respect to the surface of the base substrate 10 through.
  • the conductive layer 30 is in contact with the heat-generating layer 20 to enable electricity, screen printing, gravure printing, etching, offset, photogravure, paste containing a conductive metal powder such as gold, silver, copper, It is formed in a predetermined area and a predetermined pattern with respect to the surface of the base substrate 10 through various methods such as impregnation and coating, wherein the conductive layer 30 is a pair of electrically separated, each conductive layer 30 has an electrode function of applying electricity to the heat generating layer 20 by being connected to different portions of the heat generating layer 20.
  • the conductive fiber electrode 40 is formed of a non-woven fabric by weaving a yarn-shaped conductive yarn having electrical conductivity properties in a known manner such as weaving or knitting, or binding the fiber assembly through a mechanical, chemical or heat treatment process.
  • the surface-conducting conductive fiber electrode 40 is also attached to the electrically conductive pair 30 is a pair of electrically separated.
  • the conductive fiber electrode 40 may be manufactured in the form of a surface having a predetermined area and may be surface-adhered to the surface of the conductive layer 30 to enable vertical vertical energization through the conductive adhesive 41 or the adhesive.
  • the conductive fiber electrode 40 may be manufactured in a band shape having a predetermined width and a predetermined length, and the conductive adhesive 41 may be formed on one side of the conductive fiber electrode 40.
  • the release paper 42 may be attached to the surface of the conductive adhesive 41 to be manufactured in the form of a kind of tape.
  • the conductive adhesive 41 generally refers to a conductive adhesive or adhesive composition, and has conductive properties because the conductive powder is mixed in the composition and has heat resistance.
  • the manufacturing method of the conductive adhesive 41 is, for example, Korean Patent Publication No. 1990-A. Since it is known from many patent documents such as 0001014, detailed description thereof will be omitted.
  • the thickness of the conductive fiber electrode 40 is preferably manufactured to 0.1 ⁇ 0.2mm.
  • the minimum thickness can be reduced to 0.001mm, and the maximum thickness can be increased to 0.5mm within a range that does not impair flexibility.
  • the purpose of the present invention is that it is not easy to manufacture the conductive fiber electrode 40 to a thickness of 0.001 mm or less through a weaving, knitting, or nonwoven fabric manufacturing method such as woven fabric. In other words, it does not serve the purpose of providing a flexible heating sheet.
  • the thickness is 0.14mm, as a result of manufacturing a flexible heating sheet using the conductive fiber electrode 40 of this thickness, unlike the general metal thin film electrode and As described above, sufficient flexibility was secured, and even when heating and cooling were repeated, the separation of the conductive layer and the fiber electrode did not occur, and thus stable power supply was confirmed.
  • the thickness of the conductive fiber electrode 40 is preferably manufactured within the range of 0.1 ⁇ 0.2mm.
  • the conductive fiber electrode 40 when the conductive fiber electrode 40 is in surface contact with the conductive layer 30, the vertical vertical conductance between the two elements can be sufficiently secured, and at the same time it is important to maximize the contact area between the two elements, the conductive fiber It is necessary to consider the density of the electrode 40.
  • the density of the conductive fiber electrode 40 does not need to be taken into consideration when manufacturing the aforementioned nonwoven fabric, but it is necessary to take into consideration since it affects the adhesion with the conductive layer when weaving by the weaving method.
  • the density of the conductive fiber electrode 40 manufactured by the weaving method can be expressed by, for example, the number of warp yarns and weft yarns within 1 inch of width and length.
  • the number of threads per one inch of the width and length of the conductive fiber electrode 40 can be prepared in the range of 10 to 2500, as described above, the preferred thickness of the conductive fiber electrode 40 (0.1 ⁇ 0.2 mm) is applied, the density of the conductive fiber electrode 40 may be 100 ⁇ 260.
  • the density of the conductive fiber electrode 40 is 10 or less, the density is low, so that the electrical conduction and adhesion with the conductive layer 30 are lowered. On the contrary, if the density is 2500 or more, the process such as weaving or knitting is difficult, which is not preferable.
  • the heating layer 20 and the conductive layer 30 are disposed together on the base substrate 10, the conductive layer 30 may be omitted according to the purpose of the heating sheet. have. That is, even when the heat generating layer 20 is disposed on the base substrate 10 and the conductive fiber electrode 40 is directly connected to the heat generating layer 20 via the conductive adhesive 41, the heat generating layer 20 can generate heat. Do.
  • the heating layer 20 may be formed by printing a heating paste on the base substrate 10 in a predetermined pattern, and the conductive fiber electrode 40 may have a pair of surfaces at different portions of the heating layer 20, respectively. Can be contacted.

Landscapes

  • Surface Heating Bodies (AREA)

Abstract

The present invention relates to a flexible heating sheet using a fiber electrode and, more specifically, the present invention provides, in order to ensure sufficient electroconductivity of a thin film electrode and improve durability by preventing a thin film electrode from being easily peeled off even after repeated bending or flexing, or repeated heating and cooling, a flexible heating sheet comprising: heating layers (20), which can be heated when current is applied to a thin film base substrate (10) having flexibility and heat resistance; and electrodes connected to the heating layers (20) so as to apply electricity thereto, wherein the electrodes have conductive fiber electrodes (40) manufactured in a planar form by using a conductive yarn, and the conductive fiber electrodes (40) come in contact with the surfaces of the heating layers (20).

Description

섬유 전극을 이용한 유연성 발열 시트Flexible heating sheet using fiber electrode
본 발명은 섬유 전극을 이용한 유연성 발열 시트에 관한 것으로, 더욱 구체적으로는 유연성 박막 필름 상에 발열 페이스트 및 도전성 페이스트를 각각 소정 패턴으로 형성한 다음, 상기 도전성 페이스트 상에 도전성 섬유 전극을 부착함으로써 유연성(flexible)이 있으면서 통전(通電)성과 내구성을 극대화시킨 섬유 전극을 이용한 유연성 발열 시트에 관한 것이다.The present invention relates to a flexible heating sheet using a fiber electrode, and more particularly, to form a heating paste and a conductive paste in a predetermined pattern on the flexible thin film, respectively, and then attaching the conductive fiber electrode on the conductive paste. The present invention relates to a flexible heating sheet using a fiber electrode which maximizes current flow and durability while being flexible.
일반적으로 유연성 발열 시트는 내열성 및 절연성을 가지는 피이티(PET; Polyethyleneterephthalate) 필름에 발열층을 형성하기 위해 전도성 카본 페이스트를 일정 패턴으로 인쇄하고, 상기 발열층에 전기를 인가하기 위해 구리 박판 등의 금속전극이 하단부의 물질 위에 접착되지 않고 얹혀져 있는 구조로 삽입된 후 그 위에 다시 PET 필름을 열압착하여 제조되며, 이러한 유연성 발열 시트는 두께가 얇은 박막 형태로 제조되기 때문에 바닥 난방이나 전기 온돌 패널, 매트 등 다양한 분야에 적용되고 있다.In general, the flexible heating sheet prints a conductive carbon paste in a predetermined pattern to form a heating layer on a PET film having heat resistance and insulation, and a metal such as a copper thin plate to apply electricity to the heating layer. The electrode is inserted into a structure that is not adhered to the material on the bottom, and is then manufactured by thermally compressing the PET film on the bottom. Since the flexible heating sheet is manufactured in the form of a thin film, the floor heating or the electric heating panel, the mat It is applied to various fields.
이러한 기술과 관련된 일 예로서 대한민국 공개특허 제10-2011-0104247호에서는 TPU 시트 표면에 전도성 카본 블랙 페이스트를 스크린 인쇄하여 발열부를 형성하고, 상기 발열부 양단에 전도성 은분을 스크린 인쇄하여 전도부(도전층)를 형성한 다음, 은편을 상기 전도부(도전층) 위에 부착하여 단자부를 형성하고, 상기 단자부 끝단에 전선을 연결하며, 상기 TPU 시트에 합지부를 형성하여서 된 피티씨 유연 면상발열체(특허문헌 1)를 제안한 바 있다.As an example related to this technology, Korean Patent Laid-Open Publication No. 10-2011-0104247 discloses a conductive carbon black paste on the surface of a TPU sheet to form a heat generating portion, and conducts a conductive portion by screen printing conductive silver powder on both ends of the heat generating portion. ), And then attaching a silver piece on the conductive portion (conductive layer) to form a terminal portion, connecting an electric wire to the terminal portion end, and forming a lamination portion on the TPU sheet (PTL) flexible planar heating element (Patent Document 1) Has been proposed.
그러나 특허문헌 1과 같이 은분과 같은 도전성 페이스트를 인쇄하여 형성한 전도부(도전층) 위에 은편 또는 동이나 알루미늄과 같은 금속 박판을 부착한 전극 형태의 경우, 전도부(도전층)와 금속 박판 전극 간의 열에 의한 수축 및 팽창계수의 차이에 따라 여러 가지 문제점이 발생한다.However, as in Patent Document 1, in the case of an electrode form in which a silver sheet or a metal thin plate such as copper or aluminum is attached to a conductive portion (conductive layer) formed by printing a conductive paste such as silver powder, the heat between the conductive portion (the conductive layer) and the metal thin plate electrode Various problems occur due to the difference in shrinkage and expansion coefficient.
즉, 유연성 발열 시트는 그 사용상 구부러짐과 가열 및 냉각이 반복적으로 일어나는데, 페이스트(은분)를 인쇄한 전도부(도전층)와 금속 박판 전극은 열에 의한 팽창과 수축량이 차이가 있기 때문에 두 개 요소 간에 부분적 혹은 전체적으로 들뜨거나 공극이 발생하여 통전성이 양호하지 않게 되고, 나아가 공극 발생 부분에서 아크(스파크) 현상이 발생하여 화재가 발생할 수 있는 위험성을 내포한다.In other words, the flexible heating sheet is repeatedly bent, heated and cooled in use, and the conductive portion (conductive layer) printed on the paste (silver powder) and the metal thin plate electrode have a partial difference between the two elements because of the difference in thermal expansion and contraction. Or it is lifted or voids are generated as a whole, the conductance is not good, and further, there is a risk that an arc (spark) phenomenon occurs in the gap generating part may cause a fire.
이러한 문제점을 해결하기 위해 일부에서는 페이스트 인쇄 전도부와 금속 박판 전극을 서로 부착하지 않고, 얹혀 놓는 구조로 전극을 형성하고 있으나, 이와 같이 두 개의 이형 요소를 단순히 맞대어 놓으면, 유연성이 필요한 곳에서 사용시 구부림 등 물리적인 외부 작용에 의해 전극의 꺾임이나 휨이 발생함에 따라 금속 박판 전극의 특성상 원형 복원력이 없어서 두 전극 간의 이격에 의해 공극이 형성되어 전술한 바와 같이 아크(스파크) 현상이 발생하게 된다.In order to solve this problem, in some cases, the paste printing conductive part and the metal thin plate electrode are not attached to each other, but the electrode is formed in a structure that is placed on top of each other. However, when the two release elements are simply faced to each other, they are bent in use where flexibility is required. As the bending or bending of the electrode occurs due to a physical external action, there is no circular restoring force due to the characteristics of the thin metal plate electrode, so that a gap is formed by the separation between the two electrodes, thereby generating an arc (spark) phenomenon as described above.
더욱이 두 개의 전극을 맞댄 구조는 각 요소 간에 밀착력이 약하기 때문에 인입 전압이 낮거나 직류 전원을 사용할 경우 각 전극층 간의 상하(수직) 통전성이 부족하게 되어 발열 능력을 상실할 뿐 아니라 전기적 안전성 측면에서 심각한 문제점을 야기한다.In addition, the structure of two electrodes is in close contact with each other because of weak adhesion between each element, when the incoming voltage is low or when using a DC power supply, the vertical and vertical (between) vertical conduction between each electrode layer is not enough to lose heat generation ability and serious problems in terms of electrical safety. Cause.
따라서, 일부에서는 금속 박판 전극을 배제하고, 도전성 페이스트를 인쇄한 것만으로 통전용 전극을 형성하고 있으나, 이 경우 박막 형태로 이루어진 도전성 페이스트 전극층만으로는 통전량에 한계가 있어 통전시 전극층에 고열이 발생하고, 발열층의 거리당 발열 온도 편차가 심하기 때문에 대형 발열 시트에 적용하는 것이 불가능할 뿐 아니라 소형 발열체에도 적용하는 것이 곤란하다.Therefore, in some cases, the thin metal electrode is excluded and the conductive paste is formed only by printing the conductive paste. However, in this case, only the conductive paste electrode layer made of a thin film has a limited amount of current and high heat is generated in the electrode layer. Since the heat generation temperature variation per distance of the heat generating layer is severe, it is not only applicable to the large heat generating sheet, but also difficult to apply to the small heating element.
또한, 크랙이나 스크래치, 산화 등으로 인한 페이스트 전극층의 손상 발생시시 발열 능력이 저하됨은 물론 화재의 위험성을 내포하는 문제점도 있다.In addition, when damage to the paste electrode layer due to cracks, scratches, oxidation, etc. occurs, the heat generating ability is lowered, and there is a problem that includes a risk of fire.
한편, 유연성을 극대화하기 위한 종래 기술의 일 예로서 대한민국 등록특허 제10-0641693호(특허문헌 2)에서는, 섬유사가 씨줄 및 날줄로서 직조된 직물형 발열부를 구비한 면상발열체에 있어서, 상기 직물형 발열부의 일측에 전원인가를 위한 한 쌍의 도전부가 평직으로 소정치 간격지게 직조되고, 상기 한 쌍의 도전부는 다수의 전극사가 다수 열로 직조되어 날줄방향으로 마련되어, 소정 간격으로 다열 직조되는 발열사가 씨줄로서 교차되어 섞어 짜여져 상기 한 쌍의 도전부와 통전 가능하게 직조되되, 상기 발열사는 상기 한 쌍의 도전부의 타측의 평면 직물에 일정 간격으로 지그재그 형상으로 섬유사에 섞어 짜여져 직조되고, 상기 발열사의 일단부는 상기 한 쌍의 도전부 중 한쪽의 도전부에 섞어 짜여져 직조되고, 상기 발열사의 타단부는 상기 한쪽의 도전부와의 전기적인 비연결관계를 달성하도록 상기 한 쪽의 도전부의 너비 이상의 비직조되도록 점핑된 점핑부를 구비하여서 된 면상발열체가 제안된 바 있다.On the other hand, in the Republic of Korea Patent No. 10-0641693 (Patent Document 2) as an example of the prior art for maximizing flexibility, in the planar heating element provided with a fabric-like heating portion woven with a fiber yarn and a string, the fabric type A pair of conductive parts for supplying power to one side of the heat generating part are woven at regular intervals in a plain weave, and the pair of conductive parts are provided in a row direction in which a plurality of electrode yarns are woven in a plurality of rows. Interweave and interweave as being woven so as to conduct electricity with the pair of conductive parts, wherein the heating yarn is woven and mixed with the fiber yarn in a zigzag shape at regular intervals to the flat fabric on the other side of the pair of conductive parts, The part is interwoven and woven into one of the conductive parts of the pair of conductive parts, and the other end of the heat generating yarn is the one of the conductive parts. An electrical connection comprising a ratio of hayeoseo jumping to a jumping to the one or more conductive portion width non-woven on the side so as to achieve the relationship of the planar heating element and the conductive parts have been proposed.
특허문헌 2와 같은 발열체는 발열부와 도전부 등이 모두 직물 형태로 제직된 것이기 때문에 유연성이 우수하기는 하나, 직조 방식으로 발열소재와 전극부위를 연결한 발열체 구조는 전술한 내용과 같이 발열부와 도전부를 서로 부착하지 않고 얹어놓은 구조로써 그 밀착력이 상호 엮어져 있는 구조이므로 이 전극 구조 또한 열에 의한 수축 및 팽창이나 물리적 힘에 의해 굽힘 또는 휨 발생시 이격에 의한 공극이 발생하게 되어 아크(스파크)가 발생하게 되고, 또한 전압이 낮아지거나 직류 전원 사용시 발열부와 도전부 간의 밀착력이 없기 때문에 통전량이 저하되어 발열 능력을 상실하는 문제점을 내포한다.The heating element such as Patent Document 2 is excellent in flexibility because both the heat generating portion and the conductive portion are woven in the form of a fabric, but the heat generating structure connecting the heat generating material and the electrode portion in a woven manner has a heat generating portion as described above. Since the adhesion force is woven together without attaching to each other and the conductive part is attached to each other, this electrode structure also generates gaps due to spacing when bending or bending occurs due to contraction and expansion by heat or physical force. In addition, since the voltage is lowered or there is no adhesion between the heat generating portion and the conductive portion when using a DC power supply, the amount of energization is lowered, which may cause a loss of heat generating ability.
[특허문헌 1] 대한민국 공개특허 제10-2011-0104247호[Patent Document 1] Republic of Korea Patent Publication No. 10-2011-0104247
[특허문헌 2] 대한민국 등록특허 제10-0641693호[Patent Document 2] Republic of Korea Patent No. 10-0641693
상기의 종래 기술이 내포한 문제점을 해결하기 위한 본 발명은, 박막 전극의 충분한 통전성을 확보할 수 있고, 또한 반복적인 구부림이나 휨, 또는 가열과 냉각의 반복에 의해서도 박막 전극이 쉽게 박리되지 않도록 하며, 페이스트 형태의 발열층 및/또는 도전층을 보호하여 크랙, 스크래치, 산화 등을 방지함으로써 내구성을 향상시킬 수 있음은 물론, 높은 밀착력으로 통전시 통전량의 저하를 방지할 수 있도록 하는 섬유 전극을 이용한 유연성 발열 시트를 제공하는데 그 목적이 있다.The present invention for solving the problems inherent in the prior art, it is possible to ensure sufficient electrical conductivity of the thin film electrode, and also to prevent the thin film electrode from being easily peeled off by repeated bending and bending, or repeated heating and cooling. , To protect the paste-type heating layer and / or conductive layer to prevent cracks, scratches, oxidation, etc. to improve the durability, as well as to prevent a decrease in the amount of power supply when the power is applied with high adhesion The purpose is to provide a flexible heating sheet used.
상기의 목적을 달성하기 위한 본 발명의 섬유 전극을 이용한 유연성 발열 시트는, 유연성 및 내열성을 가진 박막의 베이스 기재에 통전시 발열 가능한 발열층이 배치되고, 상기 발열층에 연결되어 전기를 인가하는 전극을 포함하는 유연성 발열 시트에 있어서, 상기 전극은 도전사를 이용하여 면 형태로 제조한 도전성 섬유 전극으로 이루어지고, 상기 도전성 섬유 전극이 상기 발열층의 표면에 접촉된 것을 특징으로 한다.In the flexible heating sheet using the fiber electrode of the present invention for achieving the above object, a heat generating layer capable of generating heat during energization is disposed on a base substrate of a thin film having flexibility and heat resistance, and is connected to the heating layer to apply electricity In the flexible heating sheet comprising a, the electrode is made of a conductive fiber electrode manufactured in the form of a surface using a conductive yarn, characterized in that the conductive fiber electrode is in contact with the surface of the heating layer.
이때 상기 발열층은 발열 페이스트를 상기 베이스 기재에 인쇄하여 이루어지고, 상기 도전성 섬유 전극은 한 쌍이 각각 상기 발열층의 서로 다른 부분에서 면 접촉된 것일 수 있다.In this case, the heating layer may be formed by printing a heating paste on the base substrate, and the conductive fiber electrodes may be in surface contact with each other at different portions of the heating layer.
다른 관점에서 본 발명의 섬유 전극을 이용한 유연성 발열 시트는, 유연성과 내열성을 가진 박막의 베이스 기재에 통전 시 발열 가능한 발열층 및 상기 발열층에 연결된 도전층이 각각 배치되고, 상기 도전층에 전기를 인가하는 박막 전극을 더 포함하되, 상기 박막 전극은 도전사를 직조한 직물이나 편성물 또는 부직포와 같은 면 형태로 제조된 도전성 섬유 전극으로 이루어지고, 이러한 섬유 전극을 상기 도전층 상에 도전성 접착제를 매개로 부착하여 상호 통전이 가능하도록 면 접촉된 것을 특징으로 한다.In another aspect, in the flexible heating sheet using the fiber electrode of the present invention, a heat generating layer capable of generating heat during energization and a conductive layer connected to the heat generating layer are respectively disposed on the base substrate of the thin film having flexibility and heat resistance, and the electricity is supplied to the conductive layer. It further comprises a thin film electrode to be applied, wherein the thin film electrode is made of a conductive fiber electrode made of a surface form such as a woven fabric or knitted fabric or non-woven fabric of the conductive yarn, the fiber electrode on the conductive layer via a conductive adhesive It is characterized in that the surface contact to be attached to each other to enable electricity.
이때 상기 발열층은 발열 페이스트를 상기 베이스 기재에 인쇄하여 이루어지고, 상기 도전층은 도전성 페이스트를 상기 베이스 기재에 인쇄하여 이루어지되 한 쌍이 각각 상기 발열층의 서로 다른 부분에 연결되며, 상기 도전성 섬유 전극은 한 쌍이 각각 상기 도전층 상에 면 접촉된 것일 수 있다.In this case, the heating layer is formed by printing a heating paste on the base substrate, and the conductive layer is made by printing a conductive paste on the base substrate, and a pair is connected to different portions of the heating layer, respectively, and the conductive fiber electrode Each pair of silver may be in surface contact on the conductive layer.
바람직한 실시 예로서, 상기 도전성 섬유 전극의 두께는 0.001~0.5mm인 것을 특징으로 한다.As a preferred embodiment, the thickness of the conductive fiber electrode is characterized in that 0.001 ~ 0.5mm.
또한, 상기 도전성 섬유 전극이 직물 형태인 경우, 가로 및 세로 각 1인치당 실의 올 수는 10~2500인 것을 특징으로 한다.In addition, when the conductive fiber electrode is in the form of a fabric, the number of threads per one inch each of the width and length is characterized in that 10 to 2500.
또한. 상기 도전성 섬유 전극은 도전성 접착제 또는 도전성 점착제를 매개로 면 부착된 것을 특징으로 한다.Also. The conductive fiber electrode is characterized in that the surface attached via a conductive adhesive or a conductive adhesive.
본 발명의 섬유 전극을 이용한 유연성 발열 시트에 의하면, 소정 면적을 가진 도전층 위에 소정 면적을 가진 도전성 섬유 전극이 상호 도전성 접착제를 매개로 면 접촉(부착)되므로 통전성을 향상시킬 수 있고, 일정 정도의 신축성을 가진 섬유 전극을 통해 반복적인 구부림 및 가열과 냉각의 반복 등 어떤 조건이나 환경 하에서도 면 접촉 부분이 쉽게 들뜨거나 분리되지 않게 되어 발열체의 전기적 안전성과 발열 내구성을 향상시킬 수 있으며, 장시간 사용 후라도 최초의 발열 성능을 그대로 유지할 수 있다.According to the flexible heating sheet using the fiber electrode of the present invention, the conductive fiber electrode having the predetermined area on the conductive layer having the predetermined area is surface contacted (attached) through the mutual conductive adhesive, so that the electrical conductivity can be improved, The flexible fiber electrode prevents surface contact from being easily lifted or separated under any conditions or conditions such as repeated bending and repeated heating and cooling, improving the electrical safety and durability of the heating element. The initial heat generation performance can be maintained as it is.
이에 따라, 상용 교류 전류를 인가시키는 것 외에 저전압 직류 전류를 안정적으로 인가시킬 수 있게 되어 휴대용 발열체로의 적용이 가능할 뿐 아니라, 소형 발열체를 비롯하여 기존 대비 보다 넓은 대형 발열체에 직류 전류를 인가시키는 것이 가능하여 다양한 발열 제품에 적용할 수 있는 범용성을 가지는 이점이 있으며, 기존에는 불가능하였던 직류 방식의 발열체를 롤투롤 공정으로 대량생산이 가능하게 되어 보다 안정적인 품질의 발열체를 보다 낮은 단가로 제공할 수 있게 되는 등의 효과를 가진다.Accordingly, in addition to applying a commercial alternating current, it is possible to stably apply a low voltage DC current, which can be applied to a portable heating element, and also to apply a DC current to a larger heating element, which is smaller than the conventional one, including a small heating element. Therefore, there is an advantage that it can be applied to various heating products, and it is possible to mass-produce a DC-type heating element, which was previously impossible, by a roll-to-roll process, thereby providing a more stable quality heating element at a lower unit cost. Has the same effect.
도 1은 본 발명의 일 실시예에 따른 발열 시트의 평면도.1 is a plan view of a heating sheet according to an embodiment of the present invention.
도 2는 도 1의 A-A선을 절개한 확대 단면도.2 is an enlarged cross-sectional view taken along line A-A of FIG.
도 3은 본 발명의 일 실시예에 따른 발열 시트 중 도전성 섬유 전극의 실물 사진.Figure 3 is a real picture of the conductive fiber electrode of the heating sheet according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 발열 시트 중 도전성 섬유 전극의 구조도.4 is a structural diagram of a conductive fiber electrode of the heating sheet according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 발열 시트의 유연성을 보이기 위해 불특정 지점을 자유롭게 굴절시킨 상태의 실물 사진.5 is a real picture of a state in which the unspecified point is freely bent to show the flexibility of the heating sheet according to the embodiment of the present invention.
[도면 부호의 설명][Description of Drawing Reference]
10... 베이스 기재10 ... Base Base
20... 발열층20 ... heating layer
30... 도전층30 ... conductive layer
40... 도전성 섬유 전극40 ... conductive fiber electrode
41... 도전성 접착제41 ... conductive adhesive
42... 박리지42 ... release paper
본 발명의 섬유 전극을 이용한 유연성 발열 시트는, 유연성 및 내열성을 가진 박막의 베이스 기재에 통전시 발열 가능한 발열층이 배치되고, 상기 발열층에 연결되어 전기를 인가하는 전극을 포함하는 유연성 발열 시트에 있어서, 상기 전극은 도전사를 이용하여 면 형태로 제조한 도전성 섬유 전극으로 이루어지고, 상기 도전성 섬유 전극이 상기 발열층의 표면에 접촉된다.The flexible heating sheet using the fiber electrode of the present invention is a flexible heating sheet comprising a heating layer capable of generating heat when energized on a base substrate of a thin film having flexibility and heat resistance, and comprising an electrode connected to the heating layer to apply electricity. In the above, the electrode is made of a conductive fiber electrode manufactured in the form of a plane using a conductive yarn, the conductive fiber electrode is in contact with the surface of the heat generating layer.
이때 상기 발열층은 발열 페이스트를 상기 베이스 기재에 인쇄하여 이루어지고, 상기 도전성 섬유 전극은 한 쌍이 각각 상기 발열층의 서로 다른 부분에서 면 접촉된 것일 수 있다.In this case, the heating layer may be formed by printing a heating paste on the base substrate, and the conductive fiber electrodes may be in surface contact with each other at different portions of the heating layer.
다른 관점에서 본 발명의 섬유 전극을 이용한 유연성 발열 시트는, 유연성과 내열성을 가진 박막의 베이스 기재에 통전 시 발열 가능한 발열층 및 상기 발열층에 연결된 도전층이 각각 배치되고, 상기 도전층에 전기를 인가하는 박막 전극을 더 포함하되, 상기 박막 전극은 도전사를 직조한 직물이나 편성물 또는 부직포와 같은 면 형태로 제조된 도전성 섬유 전극으로 이루어지고, 이러한 섬유 전극을 상기 도전층 상에 도전성 접착제를 매개로 부착하여 상호 통전이 가능하도록 면 접촉된다.In another aspect, in the flexible heating sheet using the fiber electrode of the present invention, a heat generating layer capable of generating heat during energization and a conductive layer connected to the heat generating layer are respectively disposed on the base substrate of the thin film having flexibility and heat resistance, and the electricity is supplied to the conductive layer. It further comprises a thin film electrode to be applied, wherein the thin film electrode is made of a conductive fiber electrode made of a surface form such as a woven fabric or knitted fabric or non-woven fabric of the conductive yarn, the fiber electrode on the conductive layer via a conductive adhesive It is attached and is in surface contact with each other to enable energization.
이때 상기 발열층은 발열 페이스트를 상기 베이스 기재에 인쇄하여 이루어지고, 상기 도전층은 도전성 페이스트를 상기 베이스 기재에 인쇄하여 이루어지되 한 쌍이 각각 상기 발열층의 서로 다른 부분에 연결되며, 상기 도전성 섬유 전극은 한 쌍이 각각 상기 도전층 상에 면 접촉된 것일 수 있다.In this case, the heating layer is formed by printing a heating paste on the base substrate, and the conductive layer is made by printing a conductive paste on the base substrate, and a pair is connected to different portions of the heating layer, respectively, and the conductive fiber electrode Each pair of silver may be in surface contact on the conductive layer.
바람직한 실시 예로서, 상기 도전성 섬유 전극의 두께는 0.001~0.5mm일 수 있다.As a preferred embodiment, the thickness of the conductive fiber electrode may be 0.001 ~ 0.5mm.
또한, 상기 도전성 섬유 전극이 직물 형태인 경우, 가로 및 세로 각 1인치당 실의 올 수는 10~2500일 수 있다.In addition, when the conductive fiber electrode is in the form of a fabric, the number of threads per 1 inch each of the width and length may be 10 to 2500.
또한. 상기 도전성 섬유 전극은 도전성 접착제 또는 도전성 점착제를 매개로 면 부착될 수 있다.Also. The conductive fiber electrode may be surface-attached via a conductive adhesive or a conductive adhesive.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는바, 이하에서는 본 발명의 바람직한 양태를 예시하고, 이에 기하여 본 발명을 상세하게 설명한다. 그러나 이는 본 발명을 예시된 양태에만 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위는 예시된 형태의 통상적인 변경이나 균등물 내지 대체물까지 포함한다.The present invention may be modified in various ways and may have various embodiments. Hereinafter, the present invention will be described in detail with reference to preferred embodiments of the present invention. However, this is not intended to limit the present invention only to the illustrated embodiments, and the spirit and scope of the present invention include ordinary modifications and equivalents or substitutes of the illustrated forms.
또한, 명세서 전체에서, 어떤 부분이 다른 부분과 '연결'된다는 것은 '직접적으로 연결'되거나 어떠한 요소를 두고 '간접적으로 연결'된 경우를 포함하며, 어떤 구성요소를 '포함'한다는 것은 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아닌, 다른 구성요소가 추가될 수 있는 것을 의미한다.In addition, throughout the specification, the fact that a part is 'connected' to another part includes 'directly connected' or 'indirectly connected' with an element, and 'comprising' to include an element is particularly contrary. Unless otherwise stated, it means that other components can be added, not to exclude other components.
도 1은 본 발명의 일 실시예에 따른 발열 시트의 평면도, 도 2는 도 1의 A-A선을 절개한 확대 단면도, 도 3은 본 발명의 일 실시예에 따른 발열 시트 중 도전성 섬유 전극의 실물 사진, 도 4는 본 발명의 일 실시예에 따른 발열 시트 중 도전성 섬유 전극의 구조, 도 5는 본 발명의 일 실시예에 따른 발열 시트의 유연성을 보이기 위해 불특정 지점을 자유롭게 굴절시킨 상태의 실물 사진이다.1 is a plan view of a heat generating sheet according to an embodiment of the present invention, FIG. 2 is an enlarged cross-sectional view taken along line AA of FIG. 1, and FIG. 3 is a physical picture of a conductive fiber electrode of a heat generating sheet according to an embodiment of the present invention. 4 is a structure of the conductive fiber electrode of the heating sheet according to an embodiment of the present invention, Figure 5 is a real picture of the state unrefractively bent to show the flexibility of the heating sheet according to an embodiment of the present invention .
도 1 및 도 2를 참조하는 바와 같이 본 발명의 유연성 발열 시트는, 크게 베이스 기재(10), 발열층(20), 도전층(30), 도전성 섬유 전극(40)을 포함하여 구성된다.As shown in FIG. 1 and FIG. 2, the flexible heating sheet of the present invention includes a base substrate 10, a heating layer 20, a conductive layer 30, and a conductive fiber electrode 40.
상기 베이스 기재(10)는, 유연성 및 내열성을 가진 박막 필름 형태로서, 그 재질의 일 예로서 공지의 PET 필름 또는 TPU 필름일 수 있고, 또한, 합성수지 필름, 섬유, 부직포, 종이 등일 수 있으며, 그 외에 유연성 및 내열성을 가진 것이면 그 소재나 재질 및 형태에 제한은 없다.The base substrate 10 is in the form of a thin film having flexibility and heat resistance, and may be a known PET film or TPU film as an example of the material, and may also be a synthetic resin film, fiber, nonwoven fabric, paper, and the like. In addition to the flexibility and heat resistance is not limited to the material, material and form.
상기 발열층(20)은 도전성 카본 페이스트와 같이 전기가 인가되었을 때 자체적으로 발열하는 특성을 가진 페이스트 또는 잉크 상 물질을 스크린 인쇄, 그라비아 인쇄, 에칭, 옵셋, 포토그라비, 함침, 코팅 등 다양한 방식을 통해 상기 베이스 기재(10)의 표면에 대하여 소정의 면적과 소정의 패턴으로 형성된다.The heat generating layer 20 may be screened, gravure printed, etched, offset, photogravure, impregnated, or coated with a paste or ink material having a property of self-heating when electricity is applied, such as conductive carbon paste. It is formed in a predetermined area and a predetermined pattern with respect to the surface of the base substrate 10 through.
상기 도전층(30)은 상기 발열층(20)과 접촉되어 통전 가능하게 된 것으로, 금, 은, 동과 같은 도전성 금속분이 함유된 페이스트를 스크린 인쇄, 그라비아 인쇄, 에칭, 옵셋, 포토그라비, 함침, 코팅 등 다양한 방식을 통해 상기 베이스 기재(10)의 표면에 대하여 소정의 면적과 소정의 패턴으로 형성되며, 이때 상기 도전층(30)은 전기적으로 분리된 한 쌍이 배치되고, 각각의 도전층(30)은 상기 발열층(20)의 서로 다른 부분에 연결됨으로써 상기 발열층(20)에 전기를 인가하는 전극 기능을 가진다.The conductive layer 30 is in contact with the heat-generating layer 20 to enable electricity, screen printing, gravure printing, etching, offset, photogravure, paste containing a conductive metal powder such as gold, silver, copper, It is formed in a predetermined area and a predetermined pattern with respect to the surface of the base substrate 10 through various methods such as impregnation and coating, wherein the conductive layer 30 is a pair of electrically separated, each conductive layer 30 has an electrode function of applying electricity to the heat generating layer 20 by being connected to different portions of the heat generating layer 20.
상기 도전성 섬유 전극(40)은 전기 도전 성질을 가지는 실 형태의 도전사를 제직(製織)이나 편성(編成)과 같은 공지의 방식으로 직조하거나 기계적, 화학적 또는 열처리 과정을 통해 섬유집합체를 결속시켜서 부직포 형태로 제조된 것으로, 이러한 면 형태의 도전성 섬유 전극(40) 역시 전기적으로 분리된 한 쌍을 각각 상기 도전층(30)에 부착한다. 이때 상기 도전성 섬유 전극(40)은 소정 면적을 가진 면 형태로 제조되고 도전성 접착제(41) 또는 점착제를 매개로 상하 수직 통전이 가능하도록 상기 도전층(30)의 표면에 면 접착될 수 있다.The conductive fiber electrode 40 is formed of a non-woven fabric by weaving a yarn-shaped conductive yarn having electrical conductivity properties in a known manner such as weaving or knitting, or binding the fiber assembly through a mechanical, chemical or heat treatment process. The surface-conducting conductive fiber electrode 40 is also attached to the electrically conductive pair 30 is a pair of electrically separated. In this case, the conductive fiber electrode 40 may be manufactured in the form of a surface having a predetermined area and may be surface-adhered to the surface of the conductive layer 30 to enable vertical vertical energization through the conductive adhesive 41 or the adhesive.
도 3 및 도 4를 참조하는 바와 같이 상기 도전성 섬유 전극(40)은, 소정 폭과 소정 길이를 가진 띠 형태로 제조될 수 있고, 도전성 섬유 전극(40)의 일측 면에 도전성 접착제(41)를 도포한 다음, 상기 도전성 접착제(41)의 표면에 박리지(42)를 점착시켜서 일종의 테이프 형태로 제조된 것일 수 있다.As shown in FIGS. 3 and 4, the conductive fiber electrode 40 may be manufactured in a band shape having a predetermined width and a predetermined length, and the conductive adhesive 41 may be formed on one side of the conductive fiber electrode 40. After application, the release paper 42 may be attached to the surface of the conductive adhesive 41 to be manufactured in the form of a kind of tape.
상기 도전성 접착제(41)는 도전성 점착 또는 접착 조성물을 통칭하는 것으로서 조성물 내에 도전성 분말이 혼합되어 있고 내열성을 가지기 때문에 통전성을 가지는데, 이러한 도전성 접착제(41)의 제조방법은 예컨대 대한민국 공개특허 제1990-0001014호 등 다수의 특허문헌에서 공지된 것이므로 그에 관한 상세한 설명은 생략한다.The conductive adhesive 41 generally refers to a conductive adhesive or adhesive composition, and has conductive properties because the conductive powder is mixed in the composition and has heat resistance. The manufacturing method of the conductive adhesive 41 is, for example, Korean Patent Publication No. 1990-A. Since it is known from many patent documents such as 0001014, detailed description thereof will be omitted.
본 발명에서, 상기 도전성 섬유 전극(40)에 유연성을 부여하기 위해서 상기 도전성 섬유 전극(40)의 두께는 0.1~0.2mm로 제조하는 것이 바람직하다. 물론 도전성 섬유 전극(40)의 유연성을 더 극대화하기 위해서 그 최소 두께를 0.001mm까지 감소시킬 수 있고, 또한 유연성을 해치지 않는 범위 내에서 그 최대 두께를 0.5mm까지 증가시킬 수 있다.In the present invention, in order to give flexibility to the conductive fiber electrode 40, the thickness of the conductive fiber electrode 40 is preferably manufactured to 0.1 ~ 0.2mm. Of course, in order to further maximize the flexibility of the conductive fiber electrode 40, the minimum thickness can be reduced to 0.001mm, and the maximum thickness can be increased to 0.5mm within a range that does not impair flexibility.
직물과 같은 제직이나 편성 또는 부직포 제조 방식을 통해 도전성 섬유 전극(40)의 두께를 0.001mm 이하로 하는 것은 그 제조가 용이하지 않고, 반대로 0.5mm 이상으로 제조하면 유연성이 저하되기 때문에 본 발명이 목적하는바, 즉 유연성을 가진 발열 시트를 제공하는 목적과 부합하지 않는다.The purpose of the present invention is that it is not easy to manufacture the conductive fiber electrode 40 to a thickness of 0.001 mm or less through a weaving, knitting, or nonwoven fabric manufacturing method such as woven fabric. In other words, it does not serve the purpose of providing a flexible heating sheet.
도 3은 도전성 섬유 전극(40)의 실물 사진으로서, 그 두께는 0.14mm이며, 이러한 두께의 도전성 섬유 전극(40)을 이용하여 유연성 발열 시트를 제조한 결과, 일반 금속 박막 전극과 달리 도 5와 같이 충분한 유연성을 확보할 수 있었으며, 통전하여 가열과 냉각을 반복하였을 경우에도 도전층과 섬유 전극의 이격이 발생하지 않아 안정적인 전력 공급을 확인할 수 있었다.3 is a real picture of the conductive fiber electrode 40, the thickness is 0.14mm, as a result of manufacturing a flexible heating sheet using the conductive fiber electrode 40 of this thickness, unlike the general metal thin film electrode and As described above, sufficient flexibility was secured, and even when heating and cooling were repeated, the separation of the conductive layer and the fiber electrode did not occur, and thus stable power supply was confirmed.
따라서, 앞서 설명한 바와 같이 도전성 섬유 전극(40)의 제조의 용이성, 충분한 통전량 및 유연성 확보를 동시에 고려할 때 상기 도전성 섬유 전극(40)의 두께는 0.1~0.2mm 범위 내에서 제조하는 것이 바람직하다.Therefore, as described above, considering the ease of manufacture of the conductive fiber electrode 40, sufficient energization amount, and ensuring the flexibility at the same time, the thickness of the conductive fiber electrode 40 is preferably manufactured within the range of 0.1 ~ 0.2mm.
한편, 상기 도전성 섬유 전극(40)이 상기 도전층(30)에 면 접촉될 때 두 요소 간의 상하 수직 통전성을 충분히 확보할 수 있고, 동시에 두 요소 간의 접촉 면적을 최대화하는 것이 중요하기 때문에, 도전성 섬유 전극(40)의 밀도를 고려할 필요가 있다.On the other hand, when the conductive fiber electrode 40 is in surface contact with the conductive layer 30, the vertical vertical conductance between the two elements can be sufficiently secured, and at the same time it is important to maximize the contact area between the two elements, the conductive fiber It is necessary to consider the density of the electrode 40.
다만, 도전성 섬유 전극(40)의 밀도는 상기에서 언급한 부직포 형태로 제조할 때 고려할 필요가 없으나, 제직 방식으로 직조할 때 도전층과의 밀착력에 영향을 미치기 때문에 고려할 필요가 있다.However, the density of the conductive fiber electrode 40 does not need to be taken into consideration when manufacturing the aforementioned nonwoven fabric, but it is necessary to take into consideration since it affects the adhesion with the conductive layer when weaving by the weaving method.
직조 방식으로 제조된 도전성 섬유 전극(40)의 밀도는 예를 들면 가로 및 세로 1인치 내에 있는 경사와 위사의 올 수로 표현할 수 있다.The density of the conductive fiber electrode 40 manufactured by the weaving method can be expressed by, for example, the number of warp yarns and weft yarns within 1 inch of width and length.
본 발명에서 상기 도전성 섬유 전극(40)의 가로 및 세로 각 1인치당 실의 올 수는 10~2500의 범위로 제조할 수 있으며, 전술한 바와 같이 도전성 섬유 전극(40)의 바람직한 두께(0.1~0.2mm)가 적용된 경우에는 도전성 섬유 전극(40)의 밀도가 100~260일 수 있다.In the present invention, the number of threads per one inch of the width and length of the conductive fiber electrode 40 can be prepared in the range of 10 to 2500, as described above, the preferred thickness of the conductive fiber electrode 40 (0.1 ~ 0.2 mm) is applied, the density of the conductive fiber electrode 40 may be 100 ~ 260.
도전성 섬유 전극(40)의 밀도가 10 이하이면 밀도가 낮기 때문에 도전층(30)과의 통전성 및 접착성이 저하되고, 반대로 2500 이상이면 제직이나 편성 등의 공정이 까다롭기 때문에 바람직하지 않다.If the density of the conductive fiber electrode 40 is 10 or less, the density is low, so that the electrical conduction and adhesion with the conductive layer 30 are lowered. On the contrary, if the density is 2500 or more, the process such as weaving or knitting is difficult, which is not preferable.
한편, 전술한 실시예에서는 베이스 기재(10) 상에 발열층(20)과 도전층(30)이 함께 배치된 실시예를 들었으나, 발열 시트의 용도에 따라 도전층(30)이 생략될 수 있다. 즉 베이스 기재(10) 위에 발열층(20)이 배치되고, 도전성 섬유 전극(40)이 도전성 접착제(41)를 매개로 발열층(20)에 직접 연결되는 경우에도 발열층(20)이 발열 가능하다.Meanwhile, in the above-described embodiment, although the heating layer 20 and the conductive layer 30 are disposed together on the base substrate 10, the conductive layer 30 may be omitted according to the purpose of the heating sheet. have. That is, even when the heat generating layer 20 is disposed on the base substrate 10 and the conductive fiber electrode 40 is directly connected to the heat generating layer 20 via the conductive adhesive 41, the heat generating layer 20 can generate heat. Do.
여기서 상기 발열층(20)은 발열 페이스트를 상기 베이스 기재(10)에 소정 패턴으로 인쇄하여 이루어질 수 있고, 상기 도전성 섬유 전극(40)은 한 쌍이 각각 상기 발열층(20)의 서로 다른 부분에서 면 접촉될 수 있다.Here, the heating layer 20 may be formed by printing a heating paste on the base substrate 10 in a predetermined pattern, and the conductive fiber electrode 40 may have a pair of surfaces at different portions of the heating layer 20, respectively. Can be contacted.
이와 같이 상술한 설명은 본 발명의 기술 사상을 보인 한정된 실시 예에 따라 설명하였으나, 본 발명은 특정의 실시예나 형상 및 수치에 한정되지 아니하며, 실시 예들의 구성요소 일부를 변경, 혼합하는 등, 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 다양한 수정 및 변형 실시가 가능하고, 그러한 수정 및 변형 실시는 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어서는 안 될 것이다.As described above, the above description has been made according to a limited embodiment showing the technical idea of the present invention. However, the present invention is not limited to a specific embodiment, shape, and numerical value, and a part of the embodiments may be changed and mixed. Various modifications and changes can be made by those skilled in the art without departing from the gist of the invention, and such modifications and changes may be separately understood from the technical spirit or the prospect of the present invention. I will not.

Claims (7)

  1. 유연성 및 내열성을 가진 박막의 베이스 기재에 통전시 발열 가능한 발열층이 배치되고, 상기 발열층에 연결되어 전기를 인가하는 전극을 포함하는 유연성 발열 시트에 있어서,In the flexible heating sheet comprising an electrode for heating the heat generation layer is disposed on the base substrate of the thin film having flexibility and heat resistance, the electrode is connected to the heating layer to apply electricity,
    상기 전극은 도전사를 이용하여 면 형태로 제조한 도전성 섬유 전극으로 이루어지고, 상기 도전성 섬유 전극이 상기 발열층의 표면에 접촉된 것을 특징으로 하는 섬유 전극을 이용한 유연성 발열 시트.The electrode is made of a conductive fiber electrode manufactured in the form of a surface using a conductive yarn, the flexible heating sheet using a fiber electrode, characterized in that the conductive fiber electrode is in contact with the surface of the heat generating layer.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 발열층은 발열 페이스트를 상기 베이스 기재에 인쇄하여 이루어지고,The heating layer is made by printing a heating paste on the base substrate,
    상기 도전성 섬유 전극은 한 쌍이 각각 상기 발열층의 서로 다른 부분에서 면 접촉된 것을 특징으로 하는 섬유 전극을 이용한 유연성 발열 시트.The conductive fiber electrode is a flexible heating sheet using a fiber electrode, characterized in that the pair is in surface contact with each other at different portions of the heating layer.
  3. 유연성 및 내열성을 가진 박막의 베이스 기재에 통전시 발열 가능한 발열층 및 상기 발열층에 연결된 도전층이 각각 배치되고, 상기 도전층에 전기를 인가하는 전극을 더 포함하는 유연성 발열 시트에 있어서,A flexible heating sheet further comprising a heat generating layer capable of generating heat during energization and a conductive layer connected to the heat generating layer, and an electrode for applying electricity to the conductive layer, respectively, on the base substrate of the thin film having flexibility and heat resistance.
    상기 전극은 도전사를 이용하여 면 형태로 제조한 도전성 섬유 전극으로 이루어지고, 상기 도전성 섬유 전극이 상기 도전층의 표면에 접촉된 것을 특징으로 하는 섬유 전극을 이용한 유연성 발열 시트.The electrode is made of a conductive fiber electrode manufactured in the form of a surface using a conductive yarn, the flexible heating sheet using a fiber electrode, characterized in that the conductive fiber electrode is in contact with the surface of the conductive layer.
  4. 청구항 3에 있어서,The method according to claim 3,
    상기 발열층은 발열 페이스트를 상기 베이스 기재에 인쇄하여 이루어지고,The heating layer is made by printing a heating paste on the base substrate,
    상기 도전층은 도전성 페이스트를 상기 베이스 기재에 인쇄하여 이루어지되 한 쌍이 각각 상기 발열층의 서로 다른 부분에 연결되며,The conductive layer is made by printing a conductive paste on the base substrate, each pair is connected to different portions of the heating layer,
    상기 도전성 섬유 전극은 한 쌍이 각각 상기 도전층 상에 면 접촉된 것을 특징으로 하는 섬유 전극을 이용한 유연성 발열 시트.And a pair of conductive fiber electrodes are in surface contact with each other on the conductive layer.
  5. 청구항 1 또는 청구항 3에 있어서,The method according to claim 1 or 3,
    상기 도전성 섬유 전극의 두께는 0.001~0.5mm인 것을 특징으로 하는 섬유 전극을 이용한 유연성 발열 시트.Flexible conductive sheet using a fiber electrode, characterized in that the thickness of the conductive fiber electrode is 0.001 ~ 0.5mm.
  6. 청구항 1 또는 청구항 3에 있어서,The method according to claim 1 or 3,
    상기 도전성 섬유 전극이 직물 형태인 경우, 가로 및 세로 각 1인치당 실의 올 수는 10~2500인 것을 특징으로 하는 섬유 전극을 이용한 유연성 발열 시트.When the conductive fiber electrode is in the form of a fabric, the flexible heating sheet using a fiber electrode, characterized in that the number of threads per 1 inch each of the width and length is 10 to 2500.
  7. 청구항 1 또는 청구항 3에 있어서,The method according to claim 1 or 3,
    상기 도전성 섬유 전극은 도전성 접착제 또는 도전성 점착제를 매개로 면 부착된 것을 특징으로 하는 섬유 전극을 이용한 유연성 발열 시트.The conductive fiber electrode is a flexible heating sheet using a fiber electrode, characterized in that the surface attached via a conductive adhesive or conductive adhesive.
PCT/KR2019/003478 2018-03-29 2019-03-26 Flexible heating sheet using fiber electrode WO2019190152A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0036240 2018-03-29
KR20180036240 2018-03-29

Publications (1)

Publication Number Publication Date
WO2019190152A1 true WO2019190152A1 (en) 2019-10-03

Family

ID=68059312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/003478 WO2019190152A1 (en) 2018-03-29 2019-03-26 Flexible heating sheet using fiber electrode

Country Status (2)

Country Link
KR (1) KR102318691B1 (en)
WO (1) WO2019190152A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111698802A (en) * 2020-06-28 2020-09-22 苏州捷迪纳米科技有限公司 Flexible electrode and surface heater with same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100828735B1 (en) * 2007-09-27 2008-05-09 주식회사 코스모센추리 Flexible heat generation sheet and method for manufacturing the same
KR101316964B1 (en) * 2013-02-06 2013-10-11 주식회사 성도 Heat linoleum and manufacture method consisting of planar heating element
KR20140099476A (en) * 2011-12-09 2014-08-12 가부시키가이샤 산키 콘시스 Fabric heater
KR101753271B1 (en) * 2016-08-19 2017-07-05 주식회사 히톨로지 Flexible heating element and manufacturing method thereof
KR20170133061A (en) * 2016-05-25 2017-12-05 (주)다이유진코리아 Manufacturing method of flexible plane heating element and flexible plane heating element manufactured thereby

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR870003198Y1 (en) * 1985-07-11 1987-09-26 한국식품공업 주식회사 Cooling system for doling material
KR100641693B1 (en) 2004-11-22 2006-11-08 주식회사 태평양의료기 Heating fabric and manufacturing method thereof
KR20110104247A (en) 2010-03-16 2011-09-22 김종수 Manufacturing method of face type heating element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100828735B1 (en) * 2007-09-27 2008-05-09 주식회사 코스모센추리 Flexible heat generation sheet and method for manufacturing the same
KR20140099476A (en) * 2011-12-09 2014-08-12 가부시키가이샤 산키 콘시스 Fabric heater
KR101316964B1 (en) * 2013-02-06 2013-10-11 주식회사 성도 Heat linoleum and manufacture method consisting of planar heating element
KR20170133061A (en) * 2016-05-25 2017-12-05 (주)다이유진코리아 Manufacturing method of flexible plane heating element and flexible plane heating element manufactured thereby
KR101753271B1 (en) * 2016-08-19 2017-07-05 주식회사 히톨로지 Flexible heating element and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111698802A (en) * 2020-06-28 2020-09-22 苏州捷迪纳米科技有限公司 Flexible electrode and surface heater with same

Also Published As

Publication number Publication date
KR102318691B1 (en) 2021-11-03
KR20190114819A (en) 2019-10-10

Similar Documents

Publication Publication Date Title
WO2018034488A1 (en) Flexible planar heating element and method for manufacturing same
US4912306A (en) Electric resistance heater
WO2010095844A2 (en) Carbon nanotube sheet heater
KR101734378B1 (en) Preparation method of heating unit of carbon textile, and heating unit of carbon textile prepared thereby
WO2019190152A1 (en) Flexible heating sheet using fiber electrode
KR101691381B1 (en) Heating fabric and method for fabricating the same
WO2019066173A1 (en) Carbon felt heating apparatus and manufacturing method therefor
KR101938214B1 (en) Flexible printed electrically conductive fabric and method for fabricating the same
WO2017222192A1 (en) Heating element
CN111278176A (en) Graphene heating film and graphene heating device
EP1645166B1 (en) Conductive materials
WO2017183808A1 (en) Heating film having riveted power terminal
WO2021010579A1 (en) Planar metal fiber heating element
JPH1140329A (en) Flat heating body
KR102090192B1 (en) Heating fabric
JPH1197160A (en) Sheet heater
WO2021096235A4 (en) Elastic electrical contact terminal
WO2017018673A1 (en) Electromagnetic wave offset planar heater
WO2017122875A1 (en) Flame-retardant electromagnetic wave shielding heat transfer sheet
EP0563919B1 (en) Electrically conducting set of fibers in sheet form
KR100665705B1 (en) Electric conductive metal fiber and functional compound using seat type heater and preparing thereof
KR200283298Y1 (en) Heating substance
KR200435898Y1 (en) flat type pyrogen using with conducted yarn
KR20230073425A (en) Method of manufacturing fiber planar heating element and fiber planar heating element manufactured thereby
KR200195313Y1 (en) Heating mat

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19777702

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021502677

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 19777702

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/04/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19777702

Country of ref document: EP

Kind code of ref document: A1