WO2019189952A1 - Apparatus and method for measuring total phosphorus and total nitrogen - Google Patents

Apparatus and method for measuring total phosphorus and total nitrogen Download PDF

Info

Publication number
WO2019189952A1
WO2019189952A1 PCT/KR2018/003629 KR2018003629W WO2019189952A1 WO 2019189952 A1 WO2019189952 A1 WO 2019189952A1 KR 2018003629 W KR2018003629 W KR 2018003629W WO 2019189952 A1 WO2019189952 A1 WO 2019189952A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
common channel
sample
multiport valve
measuring
Prior art date
Application number
PCT/KR2018/003629
Other languages
French (fr)
Korean (ko)
Inventor
홍금용
신승희
문경호
Original Assignee
비엘프로세스(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 비엘프로세스(주) filed Critical 비엘프로세스(주)
Priority to PCT/KR2018/003629 priority Critical patent/WO2019189952A1/en
Publication of WO2019189952A1 publication Critical patent/WO2019189952A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • G01N1/14Suction devices, e.g. pumps; Ejector devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water

Definitions

  • the present invention relates to an apparatus and method for measuring total phosphorus total nitrogen, and more particularly, to reduce consumable material of total phosphorus total nitrogen measuring apparatus through a multiport valve, a metering pump, and a common channel located therebetween, and to reduce reagent consumption and waste liquid generation amount.
  • the present invention relates to an apparatus and method for minimizing total phosphorus total nitrogen.
  • Total phosphorus and total nitrogen are one of the indicators of eutrophication of rivers, lakes, etc., and refer to the total amount of phosphorus and nitrogen contained in water. Phosphorus, together with nitrogen, causes the algae to eutrophicate.
  • Gross phosphorus is known as the primary cause of stream and lake eutrophication, which is a major factor in gross volume regulation.
  • Phosphorus is present in the form of organic phosphorus, which is a phosphate group and inorganic in nature and in waste water.
  • Organic phosphorus and inorganic phosphorus can be decomposed or oxidized and analyzed in the form of phosphate phosphorus.
  • phosphorus concentration analysis generally uses the ascorbic acid reduction method. This method quantifies phosphorus concentration by measuring the absorbance of molybdate blue produced by reducing phosphorus ammonium molybdate produced by reaction of phosphate with ammonium molybdate to ascorbic acid at 880 nm.
  • total nitrogen is the sum of organic nitrogen and inorganic nitrogen
  • total nitrogen analysis methods include ultraviolet absorbance method, cadmium reduction method, and distillation-kjeldahl method.
  • Ultraviolet absorption spectroscopy is a simple and rapid method of quantifying total nitrogen by directly oxidizing nitrogen compounds in a sample with nitrate nitrogen and measuring nitrate nitrogen at 220 nm.
  • Most conventional analyzers are a system for transferring samples and reagents through a peristaltic pump, which is connected to a plurality of pumps equipped with one or more pump tubes, or a plurality of pump tubes are applied to a single pump. have.
  • Such a method has a problem in deterioration of precision by applying a plurality of pumps and a plurality of pump tubes by changing the injection amount according to the aging of the pump tube.
  • the present invention is to provide a total nitrogen measuring device that is low in manufacturing cost and easy to maintain compared to the measuring device using a peristaltic pump.
  • the present invention provides a total phosphorus total nitrogen measurement apparatus that reduces consumable materials and minimizes reagent consumption and waste liquid generation.
  • the present invention is to provide a total nitrogen measurement apparatus that is a total number of pumps, valves and the like and simplify the process.
  • a common channel connected to the suction discharge part of the pump and extending;
  • a multiport valve including a first port coupled to the common channel and a plurality of second ports forming pipes and channels respectively connected to a sample, a reagent, a reactor, and a detector;
  • a storage supply unit providing a sample or a reagent to at least one of the second ports of the multiport valve
  • An oxidation reactor connected to any one of the second ports of the multiport valve and oxidizing a sample
  • a detection unit connected to one of the second ports of the multiport valve and measuring nitrogen or phosphorus concentration in the sample mixture discharged from the oxidation reactor after completion of oxidation of the sample;
  • It relates to a total phosphorus total nitrogen measuring device comprising a control unit for controlling the operation of the pump, multi-port valve, oxidation reactor and detector.
  • Driving a pump to suck water into a part of the common channel driving the pump and the multiport valve to suck a sample and an oxidant into the rear end of the water of the shared channel, driving the pump and the multiport valve Supplying the fluid sucked into the common channel to the oxidation reactor, activating an ultraviolet lamp of the oxidation reactor to oxidize the sample, driving the pump and the multiport valve to oxidize the fluid and the color reagent And suctioning a reducing agent into the common channel, supplying the mixed agent to the mixing unit, and mixing and feeding the mixed fluid from the mixing unit to the common channel by driving the pump and the multiport valve. It relates to a total phosphorus or total nitrogen measurement method comprising the step of measuring the phosphorus concentration in the detector.
  • the total nitrogen measuring method and apparatus of the present invention sequentially fills a common channel located between a multiport valve and a metering pump by inhaling water, a sample, a reagent, and the like, and sends the same to an oxidation reactor, or an oxidation reactant and a coloring substance. Sequentially sucks and fills the common channel and sends it to the detector to simplify the process.
  • the measuring device of the present invention can significantly reduce the number and length of pumps and pipes (tubes) required for the operation of the equipment, the manufacturing cost is low, and the maintenance is easy.
  • the present invention reduces the number and length of pipes (tubes) and at the same time by filling the sample and reagent in the common channel by suction, and by increasing the precision by using a minimum amount of sample through a precision pump waste reagent consumption is wasted It can also reduce the amount of waste fluid generated.
  • FIG. 1 is a conceptual diagram of a total nitrogen measuring apparatus of the present invention.
  • FIG. 2 is a conceptual diagram of a measuring apparatus which is a gun of the present invention.
  • FIG. 4 is a photograph of a loop used in the present invention.
  • FIG. 5 is a conceptual diagram in which a sample, a reagent, and the like are filled in a common channel including a loop.
  • unit for processing at least one function or operation, which may be implemented by hardware or software or a combination of hardware and software.
  • FIG. 1 is a conceptual diagram of a total nitrogen measuring apparatus of the present invention
  • Figure 2 is a conceptual diagram of a measuring apparatus which is a gun of the present invention
  • a block diagram of the control unit of Figure 3
  • Figure 4 is a photograph of a loop used in the present invention
  • Figure 5 is a conceptual diagram in which samples, reagents, and the like are filled in a common channel including a loop.
  • the total nitrogen measuring apparatus of the present invention includes a pump 10, a common channel 20, a multiport valve 30, a storage supply unit 40, an oxidation reactor 50, and a detection unit ( 60) and a controller 70.
  • the pump 10 may use a metering pump for sucking or discharging fluid. More specifically, the pump may be a bidirectional syringe pump. The pump sucks reagents or samples from each storage supply and fills them in the common channel 20 and provides them to the reactor or the detector.
  • the common channel 20 is located between the pump 10 and the multiport valve 30. That is, one end of the common channel 20 is connected to the discharge part of the pump, and the other end is connected to the first port 31 of the multi-port valve.
  • the common channel 20 should be able to be filled with a sufficient amount of water, reagent or sample sucked by the pump, it is preferable to have a predetermined length and capacity.
  • the common channel 20 may be tubular or tubular.
  • the length or thickness of the common channel can be adjusted by the detection capacity of the measuring device or the operating pressure of the pump.
  • the shared channel may have a length of several cm to several tens of meters, or 0.5m to 20m, or 10m to 20m.
  • the measuring device of the present invention may include a loop 21 (LOOP) extending the shared channel. 4 and 5, the loop is a coiled tube, which can reduce the volume of the common channel. Considering the loop of FIG. 4 spreading in a straight line, the tube length is about 9 m and a capacity of about 18 mL. However, the loop of FIG. 4 is only 10 cm in length.
  • LOOP loop 21
  • the common channel including the loop is first filled with distilled water (Carrier), even when the reagent, sample, and the like are suctioned as much as possible, they do not directly contact the syringe pump. In this way, as the length of the common channel is extended to the loop 21, a sufficient amount of deionized water is first sucked and filled (there is no problem that residues such as sample reagents remain in the pump). The fall of precision can be prevented.
  • distilled water Carrier
  • the syringe pump when the syringe pump capacity is 10mL and the loop capacity is about 18mL, the syringe pump can inhale sample reagent up to 10mL, so the desired sample or reagent can be filled and filled in the common channel including the loop.
  • the present invention increases the capacity of the common channel including the loop (total length of the tube) and inhales and fills a plurality of samples, reagents, and the like with one pump and one pipe.
  • the measurement system can be simplified by reducing process steps.
  • the multiport valve 30 includes a first port 31 coupled to the common channel, and a plurality of second ports 32 forming pipes and channels respectively connected to a sample, a reagent, a reactor, and a detector. 1 and 2, the second port has 10 ports, and each port may be connected to a reagent, a drain, a sample, a reactor, and a detector to form a channel.
  • the multiport valve and the common channel may reduce the number of pumps required for the measuring device, simplify the flow path, reduce malfunction or failure, and improve convenience of management.
  • the multiport valve may use a known product.
  • the storage supply unit 40 includes a storage container for storing reagents such as an oxidizing agent, a reducing agent, a buffer, a span, a standard solution, a sample, and the like, and a pipe connecting the second container to the second port of the multi-port valve. .
  • the oxidation reactor 50 may include an ultraviolet lamp inserted therein, an injection part through which samples and reagents are introduced and discharged, and an overflow part capable of discharging air.
  • the oxidation reactor 50 may use a known oxidation reactor, and may use an oxidation reactor described in Korean Patent No. 10-1194333.
  • the detection unit 60 is connected to any one of the second ports of the multiport valve and measures nitrogen or phosphorus concentration in the sample mixture discharged from the oxidation reactor after completion of the oxidation reaction of the sample.
  • the total nitrogen concentration may be measured by the detection unit without adding a coloring reagent after oxidizing the sample in the pretreatment apparatus. That is, the total nitrogen can immediately measure the absorbance at 220 nm after the oxidation reaction is completed in the pretreatment apparatus. More specifically, the total nitrogen is measured using a multi-wavelength detector, wherein the wavelength used may be applied to the concentration compensation function according to the degree of influence of the interfering substance using one or more measured wavelengths within 220-240 nm. .
  • the sample when the total phosphorus is measured, the sample is oxidized in the oxidation reactor 50 using an oxidizing agent, a buffer, and sulfuric acid as a pretreatment reagent, and then a coloring reagent is added to measure the total phosphorus concentration in the detection unit.
  • the detection unit When measuring the total phosphorus concentration, a device using a conventionally known molybdenum blue absorbance method can be used as the detection unit. Or in the case of measuring the total phosphorus concentration, the detection unit includes a color reagent supplying unit which provides a color reagent comprising molybdenum ammonium and a reducing agent.
  • a color reagent supplying unit which provides a color reagent comprising molybdenum ammonium and a reducing agent.
  • ammonium molybdate may be used as the coloring reagent
  • ascorbic acid or methol, preferably methol which has strong reducing power and can be used as a reducing agent, may be used.
  • the detector may quantify phosphorus concentration by measuring absorbance at a wavelength of 650 nm or 880 nm.
  • the controller 70 may control the operation of the pump 10, the multiport valve 30, the oxidation reactor 50, and the detector 60.
  • the controller 70 may include a hardware interface unit 71, a processor 72, a storage unit 73, a total nitrogen measurement module 74, and a total phosphorus measurement module 75.
  • the controller 70 may include a wireless communication module and a display module such as a Bluetooth and a Wi-Fi module.
  • the hardware interface unit 71 may include a serial interface such as RS232, a DC power supply unit, a digital I / O unit, an analog I / O unit, and the like.
  • the storage unit 73 stores information received from a pump, a multiport valve, a detector, or the like, and measurement information calculated by the controller.
  • the total nitrogen measurement module and the total phosphorus measurement module 75 are software programs in which the total phosphorus and total nitrogen measurement method described below are programmed, and are processed and executed by the processor.
  • the total nitrogen measurement method or the total nitrogen measurement module may include the following processing steps.
  • the processor drives the pump to suck water into a portion of the common channel. Subsequently, the pump and the multiport valve are driven to suck the sample and the oxidant into the rear end of the water (deionized water) of the common channel (b of FIG. 4). As shown in b of FIG. 4, water, reagents (oxidants, buffers) and samples are sequentially filled in the common channel.
  • the processor then drives the pump and the multiport valve (opening channel 8 of the second port) to supply fluid (water, sample, reagent, etc.) sucked into the common channel to the oxidation reactor.
  • the processor operates an ultraviolet lamp of the oxidation reactor to oxidize the sample.
  • the processor drives the pump and the multiport valve (opening channel 8 again) to draw the oxidized fluid into the common channel and to supply it to the detector (channel 8 and channel 7). Open).
  • the detector measures the nitrogen concentration
  • the processor may store the measured data.
  • the phosphorus measurement method or the phosphorus measurement module may include the following processing steps.
  • the processor drives the pump to suck water into a portion of the common channel. Subsequently, the processor drives the pump and the multiport valve to suck the sample and the oxidant after the water (deionized water) of the common channel (b of FIG. 4). As shown in b of FIG. 4, water, reagents (oxidants, buffers) and samples are sequentially filled in the common channel.
  • the processor then drives the pump and the multiport valve (opening channel 8 of the second port) to supply fluid (water, sample, reagent, etc.) sucked into the common channel to the oxidation reactor.
  • the processor operates an ultraviolet lamp of the oxidation reactor to oxidize the sample.
  • the processor drives the pump and the multiport valve (opening channel 8 again) to suck the oxidized fluid into the common channel, and further, a coloring reagent (ammonium molybdate) and a reducing agent. It is sucked into the single channel supply pipe from the storage supply.
  • a coloring reagent ammonium molybdate
  • the order of filling the oxidized fluid, the coloring reagent, and the reducing agent filled in the common channel is not particularly limited.
  • the processor supplies the oxidation-reacted fluid, the coloring reagent and the reducing agent filled in the common channel to the mixing unit 80 (opens the channel 6 times), and then operates the blower 90 to force air to the mixing unit. Can be.
  • the processor may suck the fluid of the mixing portion forcedly mixed by the blower into a single channel supply pipe by driving a pump and the multiport valve, and supply the fluid to the detector.
  • the detector measures the nitrogen concentration
  • the processor may store the measured data.
  • the present invention can be used to determine total nitrogen in the apparatus and method.
  • the present invention can reduce reagent consumption while reducing the number and length of pipes (tubes) entering the measuring device.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

The present invention relates to an apparatus and a method for measuring total phosphorus and total nitrogen, wherein a consumable material of the apparatus for measuring total phosphorus and total nitrogen is reduced and reagent consumption and waste liquid generation are minimized through a multi-port valve, a metering pump, and a common channel located therebetween. In the apparatus and the method for measuring total phosphorus and total nitrogen according to the present invention, water, a sample, a regent, and the like are sequentially suctioned and filled in the common channel located between the multi-port valve and the metering pump and then sent to an oxidation reactor, or an oxidation reactant and a coloring material are suctioned and filled in the common channel and then sent to a detector, and thus a process can be simplified. In addition, the measurement apparatus of the present invention can remarkably reduce the number and the length of pumps and pipes (tubes) required for facility operation and thus is manufactured at a low cost and easily maintained and managed. Further, the present invention sequentially suctions and fills a sample and a regent in the common channel and increases preciseness by using a minimum amount of sample through a precise pump, while reducing the number and the length of pipes (tubes), and thus can reduce the amount of reagent consumed wastefully and accordingly reduce waste liquid generation.

Description

총인 총질소 측정 장치 및 방법Total nitrogen measurement device and method
본 발명은 총인 총질소 측정 장치 및 방법에 관한 것으로, 보다 상세하게는 멀티포트 밸브, 정량 펌프 및 이들 사이에 위치하는 공용 채널 을 통해 총인 총질소 측정 장치의 소모성 자재를 줄이고 시약 소모 및 폐액 발생량을 최소화한 총인 총질소 측정 장치 및 방법에 관한 것이다.The present invention relates to an apparatus and method for measuring total phosphorus total nitrogen, and more particularly, to reduce consumable material of total phosphorus total nitrogen measuring apparatus through a multiport valve, a metering pump, and a common channel located therebetween, and to reduce reagent consumption and waste liquid generation amount. The present invention relates to an apparatus and method for minimizing total phosphorus total nitrogen.
총인(total phosphorus), 총질소(total nitrogen)는 하천, 호수 등의 부영양화를 나타내는 지표 중의 하나로서, 수중에 포함된 인, 질소의 총량을 말한다. 인은 질소와 함께 부영양화시키는 녹조의 원인이 된다.Total phosphorus and total nitrogen are one of the indicators of eutrophication of rivers, lakes, etc., and refer to the total amount of phosphorus and nitrogen contained in water. Phosphorus, together with nitrogen, causes the algae to eutrophicate.
이러한 총인, 총질소에 대한 분석은 하수 페수 처리장의 공정 효율을 파악하는 중요한 지표임과 동시에 하천 및 해양의 생태 환경에서도 영양염류의 부하량을 파악하는 중요한 지표로 널리 이용되고 있다.The analysis of total phosphorus and total nitrogen is an important indicator for understanding the process efficiency of sewage and wastewater treatment plants, and is widely used as an important indicator for nutrient loads in the ecological environment of rivers and oceans.
총인은 하천 및 호소 부영양화의 일차적인 원인으로 알려져 있어 총량 규제의 주요 항목이다. 인은 자연계 내에서 그리고 폐수에서 인산염기과 무기인, 유기인의 형태로 존재한다. 유기인과 무기인은 분해 혹은 산화되어 인산염인의 형태로 분석이 가능하다.Gross phosphorus is known as the primary cause of stream and lake eutrophication, which is a major factor in gross volume regulation. Phosphorus is present in the form of organic phosphorus, which is a phosphate group and inorganic in nature and in waste water. Organic phosphorus and inorganic phosphorus can be decomposed or oxidized and analyzed in the form of phosphate phosphorus.
현재, 인 농도 분석은 아스코르빈산환원법을 일반적으로 사용하고 있다. 이 방법은 인산이온이 몰리브덴산암모늄과 반응하여 생성된 몰리브덴산인암모늄을 아스코르빈산으로 환원하여 생성된 몰리브덴산청의 흡광도를 880nm에서 측정하여 인농도를 정량한다.At present, phosphorus concentration analysis generally uses the ascorbic acid reduction method. This method quantifies phosphorus concentration by measuring the absorbance of molybdate blue produced by reducing phosphorus ammonium molybdate produced by reaction of phosphate with ammonium molybdate to ascorbic acid at 880 nm.
한편, 총 질소는 유기성질소와 무기성질소의 합으로서, 총질소 분석방법으로는 자외선 흡광광도법, 카드뮴 환원법, 환원증류-킬달법이 있다. 자외선 흡광광도법은 시료중의 질소화합물을 질산성 질소로 산화시킨 후 220nm에서 직접 질산성 질소를 측정하여 총질소를 정량하는 방법으로 간편하고 신속한 방법이다. On the other hand, total nitrogen is the sum of organic nitrogen and inorganic nitrogen, and total nitrogen analysis methods include ultraviolet absorbance method, cadmium reduction method, and distillation-kjeldahl method. Ultraviolet absorption spectroscopy is a simple and rapid method of quantifying total nitrogen by directly oxidizing nitrogen compounds in a sample with nitrate nitrogen and measuring nitrate nitrogen at 220 nm.
종래의 대부분의 분석기는 연동펌프를 통하여 시료 및 시약을 이송하는 시스템으로 하나 혹은 두 개이상의 펌프튜브를 탑재한 펌프를 다수 연결하여 이송하거나 단일 펌프에 다수의 펌프튜브를 적용하여 이송하는 형태를 취하고 있다. 이러한 방식은 다수의 펌프 및 다수의 펌프튜브를 적용하여 펌프튜브의 노후화에 따른 주입량의 변화 등으로 정밀도 저하에 문제가 있었다. Most conventional analyzers are a system for transferring samples and reagents through a peristaltic pump, which is connected to a plurality of pumps equipped with one or more pump tubes, or a plurality of pump tubes are applied to a single pump. have. Such a method has a problem in deterioration of precision by applying a plurality of pumps and a plurality of pump tubes by changing the injection amount according to the aging of the pump tube.
본 발명은 연동펌프를 사용한 측정장치에 비해 제조비용이 저렴하고 유지관리가 용이한 총인 총질소 측정장치를 제공하는 것이다.The present invention is to provide a total nitrogen measuring device that is low in manufacturing cost and easy to maintain compared to the measuring device using a peristaltic pump.
본 발명은 소모성 자재를 줄이고 시약 소모 및 폐액 발생량을 최소화한 총인 총질소 측정 장치를 제공하는 것이다.The present invention provides a total phosphorus total nitrogen measurement apparatus that reduces consumable materials and minimizes reagent consumption and waste liquid generation.
본 발명은 펌프나 밸브 등의 개수를 줄이고 공정을 단순화시킨 총인 총질소 측정 장치를 제공하는 것이다. The present invention is to provide a total nitrogen measurement apparatus that is a total number of pumps, valves and the like and simplify the process.
본 발명의 하나의 양상은 One aspect of the present invention
유체를 흡입 또는 배출하는 펌프 ;A pump for sucking or discharging fluid;
상기 펌프의 흡입 토출부에 연결되어 연장되는 공용 채널 ;A common channel connected to the suction discharge part of the pump and extending;
상기 공용 채널에 체결되는 제 1 포트와 시료, 시약, 반응기 및 검출기와 각각 연결된 배관과 채널을 형성하는 복수개의 제 2 포트를 포함하는 멀티포트 밸브 ;A multiport valve including a first port coupled to the common channel and a plurality of second ports forming pipes and channels respectively connected to a sample, a reagent, a reactor, and a detector;
상기 멀티포트 밸브의 제 2 포트 중 어느 하나 이상에 시료 또는 시약을 제공하는 저장 공급부 ;A storage supply unit providing a sample or a reagent to at least one of the second ports of the multiport valve;
상기 멀티포트 밸브의 제 2 포트 중 어느 하나에 연결되고, 시료를 산화시키는 산화반응기 ;An oxidation reactor connected to any one of the second ports of the multiport valve and oxidizing a sample;
상기 멀티포트 밸브의 제 2 포트 중 어느 하나에 연결되고, 시료의 산화 반응 완료 후 상기 산화반응기에서 배출되는 시료 혼합물에서 질소 또는 인 농도를 측정하는 검출부 : 및A detection unit connected to one of the second ports of the multiport valve and measuring nitrogen or phosphorus concentration in the sample mixture discharged from the oxidation reactor after completion of oxidation of the sample; and
상기 펌프, 멀티포트 밸브, 산화반응기 및 검출기의 작동을 컨트롤하는 제어부를 포함하는 것을 특징으로 하는 총인 총질소 측정장치에 관련된다.It relates to a total phosphorus total nitrogen measuring device comprising a control unit for controlling the operation of the pump, multi-port valve, oxidation reactor and detector.
다른 양상에서, 본 발명은 In another aspect, the present invention
펌프를 구동시켜 상기 공용 채널 연결포트의 일부에 물을 흡입하는 단계, 상기 펌프와 상기 멀티포트 밸브를 구동시켜 상기 공용채널의 물 후단에 시료와 산화제를 흡입하는 단계, 상기 펌프와 상기 멀티포트 밸브를 구동시켜 상기 산화반응기로 상기 공용채널에 흡입된 유체를 공급하는 단계, 상기 산화 반응기의 자외선 램프를 가동하여 시료를 산화반응하는 단계, 상기 펌프와 상기 멀티포트 밸브를 구동시켜 산화반응된 유체를 상기 공용채널에 흡입한 후 상기 검출기로 공급하는 단계 및 상기 검출기에서 질소 농도를 측정하는 단계를 포함하는 총인 또는 총질소 측정 방법에 관련된다.Driving a pump to suck water into a portion of the common channel connection port, driving the pump and the multiport valve to suck a sample and an oxidant into a water rear end of the shared channel, the pump and the multiport valve Supplying the fluid sucked into the common channel to the oxidation reactor by activating the oxidizing reaction by operating an ultraviolet lamp of the oxidation reactor, driving the pump and the multiport valve to oxidize the oxidized fluid. It relates to a total phosphorus or total nitrogen measurement method comprising the step of inhaling the common channel and feeding it to the detector and measuring the nitrogen concentration in the detector.
또 다른 양상에서, 본 발명은In another aspect, the present invention
펌프를 구동시켜 상기 공용채널의 일부에 물을 흡입하는 단계, 상기 펌프와 상기 멀티포트 밸브를 구동시켜 상기 공용채널의 물 후단에 시료와 산화제를 흡입하는 단계, 상기 펌프와 상기 멀티포트 밸브를 구동시켜 상기 산화반응기로 상기 공용채널에 흡입된 유체를 공급하는 단계, 상기 산화 반응기의 자외선 램프를 가동하여 시료를 산화반응하는 단계, 상기 펌프와 상기 멀티포트 밸브를 구동시켜 산화반응된 유체와 발색시약 및 환원제를 상기 공용채널에 흡입하고, 이를 혼합부로 공급하여 혼합시키는 단계 및 상기 펌프와 상기 멀티포트 밸브를 구동시켜 혼합부로부터 혼합 유체를 상기 공용채널에 흡입한 후 상기 검출기로 공급하는 단계, 및 상기 검출기에서 인 농도를 측정하는 단계를 포함하는 총인 또는 총질소 측정 방법에 관련된다.Driving a pump to suck water into a part of the common channel, driving the pump and the multiport valve to suck a sample and an oxidant into the rear end of the water of the shared channel, driving the pump and the multiport valve Supplying the fluid sucked into the common channel to the oxidation reactor, activating an ultraviolet lamp of the oxidation reactor to oxidize the sample, driving the pump and the multiport valve to oxidize the fluid and the color reagent And suctioning a reducing agent into the common channel, supplying the mixed agent to the mixing unit, and mixing and feeding the mixed fluid from the mixing unit to the common channel by driving the pump and the multiport valve. It relates to a total phosphorus or total nitrogen measurement method comprising the step of measuring the phosphorus concentration in the detector.
본 발명의 총인 총질소 측정 방법 및 장치는 멀티포트 밸브, 정량 펌프 사이에 위치하는 공용채널에 물, 시료, 시약, 등을 순차로 흡입하여 채운 다음 이를 산화반응기로 보내거나, 산화 반응물과 발색물질을 순차로 흡입하여 공용채널에 채운 후 이를 검출기로 보내므로 공정을 단순화 할 수 있다. 또한, 본 발명의 측정 장치는 설비 가동에 필요한 펌프와 배관(튜브)의 개수와 길이를 현저히 줄일 수 있으므로 제조비용이 저렴하고 유지관리가 용이하다.The total nitrogen measuring method and apparatus of the present invention sequentially fills a common channel located between a multiport valve and a metering pump by inhaling water, a sample, a reagent, and the like, and sends the same to an oxidation reactor, or an oxidation reactant and a coloring substance. Sequentially sucks and fills the common channel and sends it to the detector to simplify the process. In addition, the measuring device of the present invention can significantly reduce the number and length of pumps and pipes (tubes) required for the operation of the equipment, the manufacturing cost is low, and the maintenance is easy.
또한, 본 발명은 배관(튜브)의 개수와 길이를 줄임과 동시에 공용채널에 순차로 시료와 시약을 흡입하여 충진하고, 정밀펌프를 통하여 최소량의 시료를 이용하여 정밀성을 높이므로 낭비되는 시약 소모량을 줄이고 이에 따라 폐액 발생량도 감소시킬 수 있다. In addition, the present invention reduces the number and length of pipes (tubes) and at the same time by filling the sample and reagent in the common channel by suction, and by increasing the precision by using a minimum amount of sample through a precision pump waste reagent consumption is wasted It can also reduce the amount of waste fluid generated.
도 1은 본 발명의 총질소 측정 장치의 개념도이다.1 is a conceptual diagram of a total nitrogen measuring apparatus of the present invention.
도 2는 본 발명의 총인 측정 장치의 개념도이다.2 is a conceptual diagram of a measuring apparatus which is a gun of the present invention.
도 3의 제어부의 블록도이다.It is a block diagram of the control part of FIG.
도 4는 본 발명에 사용된 루프의 사진이다.4 is a photograph of a loop used in the present invention.
도 5는 루프를 포함한 공용채널에 시료, 시약 등이 충진된 개념도이다. 5 is a conceptual diagram in which a sample, a reagent, and the like are filled in a common channel including a loop.
이하에서, 본 발명의 바람직한 실시 태양을 도면을 들어 설명한다. 그러나 본 발명의 범위는 하기 실시 태양에 대한 설명 또는 도면에 제한되지 아니한다. 즉, 본 명세서에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 또한, 본 명세서에서 기술되는 "포함 한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. However, the scope of the present invention is not limited to the description or the drawings for the following embodiments. In other words, the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In addition, the terms "comprises" or "having" described herein are intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, and one or the same. It is to be understood that the present invention does not exclude in advance the possibility of the presence or the addition of other features, numbers, steps, operations, components, parts, or a combination thereof.
또한, 명세서에 기재된 "부", "기", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다. In addition, the terms "unit", "group", "module", and the like described in the specification mean a unit for processing at least one function or operation, which may be implemented by hardware or software or a combination of hardware and software.
도 1은 본 발명의 총질소 측정 장치의 개념도이고, 도 2는 본 발명의 총인 측정 장치의 개념도이고, 도 3의 제어부의 블록도이고, 도 4는 본 발명에 사용된 루프의 사진이고, 도 5는 루프를 포함한 공용채널에 시료, 시약 등이 충진된 개념도이다. 1 is a conceptual diagram of a total nitrogen measuring apparatus of the present invention, Figure 2 is a conceptual diagram of a measuring apparatus which is a gun of the present invention, a block diagram of the control unit of Figure 3, Figure 4 is a photograph of a loop used in the present invention, Figure 5 is a conceptual diagram in which samples, reagents, and the like are filled in a common channel including a loop.
도 1과 도 2를 참고하면, 본 발명의 총인 총질소 측정 장치는 펌프(10), 공용채널(20), 멀티포트 밸브(30), 저장 공급부(40), 산화반응기(50), 검출부(60) 및 제어부(70)를 포함한다.1 and 2, the total nitrogen measuring apparatus of the present invention includes a pump 10, a common channel 20, a multiport valve 30, a storage supply unit 40, an oxidation reactor 50, and a detection unit ( 60) and a controller 70.
상기 펌프(10)는 유체를 흡입 또는 배출하는 정량 펌프를 사용할 수 있다. 좀 더 구체적으로는, 상기 펌프는 양방향 시린지 펌프일 수 있다. 상기 펌프는 각 저장 공급부의 시약이나 시료를 흡입하여 공용채널(20)에 충진한 후 이를 반응기나 검출기로 제공한다.The pump 10 may use a metering pump for sucking or discharging fluid. More specifically, the pump may be a bidirectional syringe pump. The pump sucks reagents or samples from each storage supply and fills them in the common channel 20 and provides them to the reactor or the detector.
상기 공용채널(20)은 상기 펌프(10)와 상기 멀티포트 밸브(30) 사이에 위치한다. 즉, 상기 공용채널(20)은 일단은 상기 펌프의 토출부에 연결되고, 타단은 상기 멀티 포트 밸브의 제 1 포트(31)에 연결된다. The common channel 20 is located between the pump 10 and the multiport valve 30. That is, one end of the common channel 20 is connected to the discharge part of the pump, and the other end is connected to the first port 31 of the multi-port valve.
상기 공용채널(20)에는 펌프에 의해 흡입된 물, 시약이나 시료 등이 충분한 양으로 충진될 수 있어야 하므로 소정의 길이와 용량을 가지는 것이 바람직하다. Since the common channel 20 should be able to be filled with a sufficient amount of water, reagent or sample sucked by the pump, it is preferable to have a predetermined length and capacity.
또한, 상기 공용채널(20)은 튜브 형태이거나 관 형태 일 수 있다. In addition, the common channel 20 may be tubular or tubular.
상기 공용채널의 길이나 두께는 측정장치의 검출 용량이나 펌프의 사용압력 등에 의해 조절될 수 있다. 일예로서, 상기 공용채널의 길이는 수cm~수십m 범위일 수 있고, 또는 0.5m~20m, 또는 10m~20m일 수 있다.The length or thickness of the common channel can be adjusted by the detection capacity of the measuring device or the operating pressure of the pump. For example, the shared channel may have a length of several cm to several tens of meters, or 0.5m to 20m, or 10m to 20m.
본 발명의 측정 장치는 상기 공용채널을 연장하는 루프(21, LOOP)를 포함할 수 있다. 도 4와 도 5를 참고하면, 상기 루프(Loop)는 코일형태의 튜브로서, 공용채널의 부피를 축소시킬 수 있다. 도 4의 루프가 일직선으로 펼쳐져 있다고 본다면 튜브 길이는 약 9m 정도이고, 약 18mL의 용량이다. 하지만, 도 4의 Loop는 길이는 10cm에 불과하다. The measuring device of the present invention may include a loop 21 (LOOP) extending the shared channel. 4 and 5, the loop is a coiled tube, which can reduce the volume of the common channel. Considering the loop of FIG. 4 spreading in a straight line, the tube length is about 9 m and a capacity of about 18 mL. However, the loop of FIG. 4 is only 10 cm in length.
도 5를 참고하면, 루프를 포함한 공용채널을 먼저 증류수(Carrier)로 채운다면, 시약, 샘플 등을 최대한 흡입하여도 직접 시린지 펌프에 이들이 접촉하지 않는다. 이와 같이, 또한, 상기 루프(21)로 공용채널의 길이가 연장됨에 따라 충분한 양의 탈이온수가 먼저 흡입되어 충진되므로 (시료 시약 등의 잔존물이 펌프에 잔류하는 문제가 발생하지 않아) 펌프 내구성이나 정밀도 저하를 방지할 수 있다. Referring to FIG. 5, if the common channel including the loop is first filled with distilled water (Carrier), even when the reagent, sample, and the like are suctioned as much as possible, they do not directly contact the syringe pump. In this way, as the length of the common channel is extended to the loop 21, a sufficient amount of deionized water is first sucked and filled (there is no problem that residues such as sample reagents remain in the pump). The fall of precision can be prevented.
또한, 시린지 펌프 용량이 10mL이고, Loop의 용량은 약 18mL 인 경우, 시린지 펌프는 최대 10mL까지만 시료 시약을 흡입할 수 있으므로 루프를 포함한 공용채널에 원하는 시료나 시약을 흡입하여 채울 수 있다. In addition, when the syringe pump capacity is 10mL and the loop capacity is about 18mL, the syringe pump can inhale sample reagent up to 10mL, so the desired sample or reagent can be filled and filled in the common channel including the loop.
이와 같이, 본 발명은 루프를 포함한 공용채널의 용량(튜브의 총 길이)을 증가시킴에 따라 하나의 펌프와 하나의 배관으로 복수개의 시료, 시약 등의 반응물을 흡입 충진한 후 일시에 반응기나 검출기로 제공할 수 있으므로 공정 단계가 줄어 측정 시스템이 단순화될 수 있다. As described above, the present invention increases the capacity of the common channel including the loop (total length of the tube) and inhales and fills a plurality of samples, reagents, and the like with one pump and one pipe. As a result, the measurement system can be simplified by reducing process steps.
상기 멀티포트 밸브(30)는 상기 공용채널에 체결되는 제 1 포트(31)와 시료, 시약, 반응기 및 검출기와 각각 연결된 배관과 채널을 형성하는 복수개의 제 2 포트(32)를 포함한다. 도 1과 도 2를 참고하면, 상기 제 2 포트는 10개의 포트로 있으며, 각 포트는 시약, 드레인, 시료, 반응기, 검출기 등과 연결되어 채널을 형성할 수 있다. The multiport valve 30 includes a first port 31 coupled to the common channel, and a plurality of second ports 32 forming pipes and channels respectively connected to a sample, a reagent, a reactor, and a detector. 1 and 2, the second port has 10 ports, and each port may be connected to a reagent, a drain, a sample, a reactor, and a detector to form a channel.
상기 멀티포트 밸브와 공용채널은 측정기에 필요한 펌프 개수를 줄이고, 유로를 단순화하여 오작동이나 고장을 줄이고, 관리의 편의성을 향상시킬 수 있다. 상기 멀티포트 밸브는 공지된 제품을 사용할 수 있다.The multiport valve and the common channel may reduce the number of pumps required for the measuring device, simplify the flow path, reduce malfunction or failure, and improve convenience of management. The multiport valve may use a known product.
상기 저장 공급부(40)는 산화제, 환원제, 버퍼 등의 시약과 스팬(span), 표준액, 시료 등을 저장하는 저장용기 및 상기 저장용기와 상기 멀티 포트 밸브의 제 2 포트를 연결하는 배관을 포함한다.The storage supply unit 40 includes a storage container for storing reagents such as an oxidizing agent, a reducing agent, a buffer, a span, a standard solution, a sample, and the like, and a pipe connecting the second container to the second port of the multi-port valve. .
상기 산화 반응기(50)는 내부에 삽입된 자외선 램프, 시료와 시약이 유입 및 유출되는 주입부, 공기를 배출할 수 있는 오버플로우부를 포함할 수 있다. 상기 산화 반응기(50)는 공지된 산화반응기를 사용할 수 있으며, 본 출원인의 등록 특허인 10-1194333호에 기재된 산화반응기를 사용할 수 있다.The oxidation reactor 50 may include an ultraviolet lamp inserted therein, an injection part through which samples and reagents are introduced and discharged, and an overflow part capable of discharging air. The oxidation reactor 50 may use a known oxidation reactor, and may use an oxidation reactor described in Korean Patent No. 10-1194333.
상기 검출부(60)는 상기 멀티포트 밸브의 제 2 포트 중 어느 하나에 연결되고, 시료의 산화 반응 완료 후 상기 산화반응기에서 배출되는 시료 혼합물에서 질소 또는 인 농도를 측정한다.The detection unit 60 is connected to any one of the second ports of the multiport valve and measures nitrogen or phosphorus concentration in the sample mixture discharged from the oxidation reactor after completion of the oxidation reaction of the sample.
도 1 과 같이, 총질소를 측정하는 경우, 상기 전처리 장치에서 시료를 산화시킨 후 발색시약을 첨가하지 않고 총질소 농도를 검출부로 측정할 수 있다. 즉, 총질소는 전처리 장치에서 산화반응 완료된 후 220nm에서 흡광도를 바로 측정할 수 있다. 좀 더 구체적으로는 총질소의 경우 다파장 검출기를 사용하여 측정하며, 이때 사용되는 파장은 220-240nm내에서 하나 이상의 측정된 파장을 이용하여 방해물질의 영향 정도에 따라 농도 보상 기능이 적용될 수 있다.As shown in FIG. 1, when the total nitrogen is measured, the total nitrogen concentration may be measured by the detection unit without adding a coloring reagent after oxidizing the sample in the pretreatment apparatus. That is, the total nitrogen can immediately measure the absorbance at 220 nm after the oxidation reaction is completed in the pretreatment apparatus. More specifically, the total nitrogen is measured using a multi-wavelength detector, wherein the wavelength used may be applied to the concentration compensation function according to the degree of influence of the interfering substance using one or more measured wavelengths within 220-240 nm. .
본 발명에서 총인을 측정하는 경우 전처리 시약으로 산화제, 버퍼 및 황산을 사용하여 시료를 산화반응기(50)에서 산화시킨 다음 발색시약을 첨가하여 검출부에서 총인 농도를 측정한다.In the present invention, when the total phosphorus is measured, the sample is oxidized in the oxidation reactor 50 using an oxidizing agent, a buffer, and sulfuric acid as a pretreatment reagent, and then a coloring reagent is added to measure the total phosphorus concentration in the detection unit.
총인 농도를 측정하는 경우에는 검출부로서 종래 공지된 몰리브덴청 흡광광도법을 이용하는 장비를 사용할 수 있다. 또는 총인 농도를 측정하는 경우에, 상기 검출부는 몰리브덴암모늄 및 환원제를 포함하는 발색시약을 제공하는 발색시약 공급부를 포함한다. 예를 들면, 상기 발색시약으로 몰리브덴산암모늄을 사용할 수 있으며, 환원제로 아스코르빈산 또는 메톨, 바람직하게는 환원력이 강하고 장기간 사용할 수 있는 메톨을 사용할 수 있다.When measuring the total phosphorus concentration, a device using a conventionally known molybdenum blue absorbance method can be used as the detection unit. Or in the case of measuring the total phosphorus concentration, the detection unit includes a color reagent supplying unit which provides a color reagent comprising molybdenum ammonium and a reducing agent. For example, ammonium molybdate may be used as the coloring reagent, and ascorbic acid or methol, preferably methol, which has strong reducing power and can be used as a reducing agent, may be used.
예를 들면, 상기 검출기는 파장 650nm 또는 880nm에서 흡광도를 측정하여 인농도를 정량할 수 있다.For example, the detector may quantify phosphorus concentration by measuring absorbance at a wavelength of 650 nm or 880 nm.
상기 제어부(70)는 상기 펌프(10), 멀티포트 밸브(30), 산화반응기 (50) 및 검출기(60)의 작동을 컨트롤할 수 있다.The controller 70 may control the operation of the pump 10, the multiport valve 30, the oxidation reactor 50, and the detector 60.
상기 제어부(70)는 하드웨어 인터페이스부(71), 프로세서(72), 저장부(73), 총질소 측정모듈(74) 및 총인 측정모듈(75)을 포함할 수 있다. 상기 제어부(70)는 블루투스, 와이파이 모듈 등 무선통신 모듈과 디스플레이모듈을 포함할 수 있다. The controller 70 may include a hardware interface unit 71, a processor 72, a storage unit 73, a total nitrogen measurement module 74, and a total phosphorus measurement module 75. The controller 70 may include a wireless communication module and a display module such as a Bluetooth and a Wi-Fi module.
상기 하드웨어 인터페이스부(71)는 RS232 등의 시리얼 인터페이스, 직류 전원 공급부, 디지털 I/O부, 아날로그 I/O 부 등을 포함할 수 있다. The hardware interface unit 71 may include a serial interface such as RS232, a DC power supply unit, a digital I / O unit, an analog I / O unit, and the like.
상기 저장부(73)는 펌프, 멀티포트 밸브, 검출기 등에서 수신된 정보나 제어부에서 연산된 측정정보를 저장한다.The storage unit 73 stores information received from a pump, a multiport valve, a detector, or the like, and measurement information calculated by the controller.
상기 총질소 측정모듈과 총인 측정모듈(75)은 하기에서 후술하는 총인과 총질소 측정 방법이 프로그래밍된 소프트웨어 프로그램으로서, 상기 프로세서에 의해 처리되어 실행된다. The total nitrogen measurement module and the total phosphorus measurement module 75 are software programs in which the total phosphorus and total nitrogen measurement method described below are programmed, and are processed and executed by the processor.
먼저, 총질소 측정방법이나 총질소 측정 모듈은 하기의 처리 단계를 포함할 수 있다. First, the total nitrogen measurement method or the total nitrogen measurement module may include the following processing steps.
상기 프로세서는 상기 펌프를 구동시켜 상기 공용채널의 일부에 물을 흡입한다. 이어서, 상기 펌프와 상기 멀티포트 밸브를 구동시켜 상기 공용채널의 물(탈이온수) 후단에 시료와 산화제를 흡입한다(도 4의 b). 도 4의 b와 같이, 물, 시약(산화제, 버퍼) 및 시료가 순차로 공용채널에 충진된다. The processor drives the pump to suck water into a portion of the common channel. Subsequently, the pump and the multiport valve are driven to suck the sample and the oxidant into the rear end of the water (deionized water) of the common channel (b of FIG. 4). As shown in b of FIG. 4, water, reagents (oxidants, buffers) and samples are sequentially filled in the common channel.
이어서 상기 프로세서는 상기 펌프와 상기 멀티포트 밸브(제 2 포트의 채널 8을 열어줌)를 구동시켜 상기 산화반응기로 상기 공용채널에 흡입된 유체(물, 시료, 시약 등)를 공급한다. The processor then drives the pump and the multiport valve (opening channel 8 of the second port) to supply fluid (water, sample, reagent, etc.) sucked into the common channel to the oxidation reactor.
상기 프로세서는 상기 산화 반응기의 자외선 램프를 가동하여 시료를 산화시킨다. 산화 반응이 완료되면, 상기 프로세서는 상기 펌프와 상기 멀티포트 밸브(채널 8을 다시 열어줌)를 구동시켜 산화반응된 유체를 상기 공용채널에 흡입한 후 상기 검출기로 공급한다(채널 8을 닫고 채널 7을 열어줌).The processor operates an ultraviolet lamp of the oxidation reactor to oxidize the sample. When the oxidation reaction is complete, the processor drives the pump and the multiport valve (opening channel 8 again) to draw the oxidized fluid into the common channel and to supply it to the detector (channel 8 and channel 7). Open).
상기 검출기는 질소 농도를 측정하고, 상기 프로세서는 측정된 데이터를 저장할 수 있다.The detector measures the nitrogen concentration, and the processor may store the measured data.
총인 측정방법이나 총인 측정 모듈은 하기의 처리 단계를 포함할 수 있다. The phosphorus measurement method or the phosphorus measurement module may include the following processing steps.
상기 프로세서는 상기 펌프를 구동시켜 상기 공용채널의 일부에 물을 흡입한다. 이어서, 상기 프로세서는 상기 펌프와 상기 멀티포트 밸브를 구동시켜 상기 공용채널의 물(탈이온수) 후단에 시료와 산화제를 흡입한다(도 4의 b). 도 4의 b와 같이, 물, 시약(산화제, 버퍼) 및 시료가 순차로 공용채널에 충진된다. The processor drives the pump to suck water into a portion of the common channel. Subsequently, the processor drives the pump and the multiport valve to suck the sample and the oxidant after the water (deionized water) of the common channel (b of FIG. 4). As shown in b of FIG. 4, water, reagents (oxidants, buffers) and samples are sequentially filled in the common channel.
이어서 상기 프로세서는 상기 펌프와 상기 멀티포트 밸브(제 2 포트의 채널 8을 열어줌)를 구동시켜 상기 산화반응기로 상기 공용채널에 흡입된 유체(물, 시료, 시약 등)를 공급한다. The processor then drives the pump and the multiport valve (opening channel 8 of the second port) to supply fluid (water, sample, reagent, etc.) sucked into the common channel to the oxidation reactor.
상기 프로세서는 상기 산화 반응기의 자외선 램프를 가동하여 시료를 산화시킨다. The processor operates an ultraviolet lamp of the oxidation reactor to oxidize the sample.
산화 반응이 완료되면, 상기 프로세서는 상기 펌프와 상기 멀티포트 밸브(채널 8을 다시 열어줌)를 구동시켜 산화반응된 유체를 상기 공용채널에 흡입하고, 또한, 발색시약(몰리브덴산암모늄)과 환원제를 상기 저장 공급부로부터 단일채널 공급관에 흡입한다. 상기 공용채널에 충진되는 산화반응된 유체, 발색시약 및 환원제의 충진 순서는 특별한 제한이 없다.When the oxidation reaction is completed, the processor drives the pump and the multiport valve (opening channel 8 again) to suck the oxidized fluid into the common channel, and further, a coloring reagent (ammonium molybdate) and a reducing agent. It is sucked into the single channel supply pipe from the storage supply. The order of filling the oxidized fluid, the coloring reagent, and the reducing agent filled in the common channel is not particularly limited.
상기 프로세서는 공용채널에 충진된 산화반응된 유체, 발색시약 및 환원제를 혼합부(80)으로 공급 한 후(채널 6번 열어줌), 상기 블로어(90)를 가동시켜 혼합부에 공기를 강제 주입할 수 있다. The processor supplies the oxidation-reacted fluid, the coloring reagent and the reducing agent filled in the common channel to the mixing unit 80 (opens the channel 6 times), and then operates the blower 90 to force air to the mixing unit. Can be.
상기 프로세서는 블로어에 의해 강제 혼합된 혼합부의 유체를 펌프와 상기 멀티포트 밸브를 구동시켜 단일채널 공급관으로 흡입하고, 이를 상기 검출기로 공급할 수 있다.The processor may suck the fluid of the mixing portion forcedly mixed by the blower into a single channel supply pipe by driving a pump and the multiport valve, and supply the fluid to the detector.
상기 검출기는 질소 농도를 측정하고, 상기 프로세서는 측정된 데이터를 저장할 수 있다.The detector measures the nitrogen concentration, and the processor may store the measured data.
본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 따라서 본 발명의 범위는 전술한 실시예에 한정되지 않고 특허청구범위에 기재된 내용 및 그와 동등한 범위 내에 있는 다양한 실시 형태가 포함되도록 해석되어야 할 것이다. Those skilled in the art will understand that the present invention may be implemented in a modified form without departing from the essential characteristics of the present invention. Therefore, the disclosed embodiments should be considered in descriptive sense only and not for purposes of limitation. Therefore, the scope of the present invention should not be construed as being limited to the above-described examples, but should be construed to include various embodiments within the scope and equivalents of the claims.
본 발명은 장치와 방법은 총인 총질소 측정에 사용될 수 있다.The present invention can be used to determine total nitrogen in the apparatus and method.
본 발명은 측정 장치에 들어가는 배관(튜브)의 개수와 길이를 줄임과 동시에 시약 소모량을 줄일 수 있다. The present invention can reduce reagent consumption while reducing the number and length of pipes (tubes) entering the measuring device.

Claims (4)

  1. 유체를 흡입 또는 배출하는 펌프 ;A pump for sucking or discharging fluid;
    상기 펌프의 토출부에 연결되어 연장되는 충진 채널 공급관 ;A filling channel supply pipe connected to the discharge part of the pump and extending;
    상기 공용채널에 체결되는 제 1 포트와 시료, 시약, 반응기 및 검출기와 각각 연결된 배관과 채널을 형성하는 복수개의 제 2 포트를 포함하는 멀티포트 밸브 ;A multiport valve including a first port coupled to the common channel and a plurality of second ports forming pipes and channels respectively connected to a sample, a reagent, a reactor, and a detector;
    상기 멀티포트 밸브의 제 2 포트 중 어느 하나 이상에 시료 또는 시약을 제공하는 저장 공급부 ;A storage supply unit providing a sample or a reagent to at least one of the second ports of the multiport valve;
    상기 멀티포트 밸브의 제 2 포트 중 어느 하나에 연결되고, 시료를 산화시키는 산화반응기 ;An oxidation reactor connected to any one of the second ports of the multiport valve and oxidizing a sample;
    상기 멀티포트 밸브의 제 2 포트 중 어느 하나에 연결되고, 시료의 산화 반응 완료 후 상기 산화반응기에서 배출되는 시료 혼합물에서 질소 또는 인 농도를 측정하는 검출부 : 및A detection unit connected to one of the second ports of the multiport valve and measuring nitrogen or phosphorus concentration in the sample mixture discharged from the oxidation reactor after completion of oxidation of the sample; and
    상기 펌프, 멀티포트 밸브, 산화반응기 및 검출기의 작동을 컨트롤하는 제어부를 포함하는 것을 특징으로 하는 총인 총질소 측정장치.Total nitrogen measuring device comprising a control unit for controlling the operation of the pump, multi-port valve, oxidation reactor and detector.
  2. 제 1 항에 있어서, 상기 측정장치는 상기 공용채널을 연장하는 루프(LOOP)를 포함하는 것을 특징으로 하는 총인 총질소 측정장치.The total nitrogen measurement apparatus according to claim 1, wherein the measuring apparatus includes a loop extending the common channel.
  3. 제 1항 또는 제 2항의 장치를 이용하여 총인 또는 총질소를 측정하는 방법에 있어서, 상기 방법은 A method of measuring total phosphorus or total nitrogen using the apparatus of claim 1 or 2, wherein the method
    상기 펌프를 구동시켜 상기 공용채널의 일부에 물을 흡입하는 단계 ;Driving the pump to suck water into a part of the common channel;
    상기 펌프와 상기 멀티포트 밸브를 구동시켜 상기 공용채널의 물 후단에 시료와 산화제를 흡입하는 단계 ; Driving the pump and the multiport valve to suck a sample and an oxidant into a water rear end of the common channel;
    상기 펌프와 상기 멀티포트 밸브를 구동시켜 상기 산화반응기로 상기 공용채널에 흡입된 유체를 공급하는 단계 ;Driving the pump and the multiport valve to supply fluid sucked into the common channel to the oxidation reactor;
    상기 산화 반응기의 자외선 램프를 가동하여 시료를 산화반응하는 단계 ;Oxidizing a sample by operating an ultraviolet lamp of the oxidation reactor;
    상기 펌프와 상기 멀티포트 밸브를 구동시켜 산화반응된 유체를 상기 공용채널에 흡입한 후 상기 검출기로 공급하는 단계 ; 및Driving the pump and the multiport valve to suck the oxidized fluid into the common channel and to supply the oxidized fluid to the detector; And
    상기 검출기에서 질소 농도를 측정하는 단계를 포함하는 것을 특징으로 하는 총인 또는 총질소 측정 방법.Total phosphorus or total nitrogen measurement method comprising the step of measuring the nitrogen concentration in the detector.
  4. 제 1항 또는 제 2항의 장치를 이용하여 총 인 또는 총질소를 측정하는 방법에 있어서, 상기 방법은 A method for measuring total phosphorus or total nitrogen using the apparatus of claim 1 or 2, wherein the method
    상기 펌프를 구동시켜 상기 공용채널의 일부에 물을 흡입하는 단계 ;Driving the pump to suck water into a part of the common channel;
    상기 펌프와 상기 멀티포트 밸브를 구동시켜 상기 공용채널의 물 후단에 시료와 산화제를 흡입하는 단계 ; Driving the pump and the multiport valve to suck a sample and an oxidant into a water rear end of the common channel;
    상기 펌프와 상기 멀티포트 밸브를 구동시켜 상기 산화반응기로 상기 공용채널에 흡입된 유체를 공급하는 단계 ;Driving the pump and the multiport valve to supply fluid sucked into the common channel to the oxidation reactor;
    상기 산화 반응기의 자외선 램프를 가동하여 시료를 산화반응하는 단계 ;Oxidizing a sample by operating an ultraviolet lamp of the oxidation reactor;
    상기 펌프와 상기 멀티포트 밸브를 구동시켜 산화반응된 유체와 발색시약 및 환원제를 상기 공용채널에 흡입하고, 및 이를 혼합부로 공급하여 혼합시키는 단계 ; 및Driving the pump and the multiport valve to inhale the oxidized reaction fluid, the coloring reagent and the reducing agent into the common channel, and supplying the mixed part to the mixing unit for mixing; And
    상기 펌프와 상기 멀티포트 밸브를 구동시켜 혼합부로부터 혼합 유체를 상기 공용채널에 흡입한 후 상기 검출기로 공급하는 단계 ; 및Driving the pump and the multiport valve to suck mixed fluid from the mixing unit into the common channel and to supply the mixed fluid to the detector; And
    상기 검출기에서 인 농도를 측정하는 단계를 포함하는 것을 특징으로 하는 총인 또는 총질소 측정 방법.Total phosphorus or total nitrogen measurement method comprising the step of measuring the phosphorus concentration in the detector.
PCT/KR2018/003629 2018-03-28 2018-03-28 Apparatus and method for measuring total phosphorus and total nitrogen WO2019189952A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2018/003629 WO2019189952A1 (en) 2018-03-28 2018-03-28 Apparatus and method for measuring total phosphorus and total nitrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2018/003629 WO2019189952A1 (en) 2018-03-28 2018-03-28 Apparatus and method for measuring total phosphorus and total nitrogen

Publications (1)

Publication Number Publication Date
WO2019189952A1 true WO2019189952A1 (en) 2019-10-03

Family

ID=68058223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/003629 WO2019189952A1 (en) 2018-03-28 2018-03-28 Apparatus and method for measuring total phosphorus and total nitrogen

Country Status (1)

Country Link
WO (1) WO2019189952A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111707651A (en) * 2020-06-22 2020-09-25 自然资源部第二海洋研究所 In-situ seawater nutrition enrichment experiment device and application method thereof
CN111982843A (en) * 2020-08-24 2020-11-24 上海洗霸科技股份有限公司 Online monitoring system and method for organic phosphonate in circulating water system
CN113029955A (en) * 2021-03-29 2021-06-25 江苏省环境监测中心 Multichannel multithreading CODcr measurement system
CN114088648A (en) * 2021-12-07 2022-02-25 广东盈峰科技有限公司 Gas-liquid dual isolation method for multi-ported valve micro-reagent sampling
CN114354588A (en) * 2021-12-07 2022-04-15 浙江工业大学 Total nitrogen online detection method based on advanced oxidation technology and dual-environment digestion scheme

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000266677A (en) * 1999-01-14 2000-09-29 Shimadzu Corp Analyzer for nitrogen compound, phosphorus compound and organic contaminant
KR20030064573A (en) * 2002-01-28 2003-08-02 (주)백년기술 Microbatch Chemical Analyzer
KR100877810B1 (en) * 2008-06-12 2009-01-12 (주)백년기술 Batch type chemical analyzer
KR101194333B1 (en) * 2012-02-27 2012-10-24 비엘프로세스(주) Device and method for measuring total concentration of phosphorus and nitrogen
KR20150070081A (en) * 2015-06-05 2015-06-24 주식회사 엘가 Total nitrogen and total phosphorus measuring device which has low measurement error and which is easy to make maintenance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000266677A (en) * 1999-01-14 2000-09-29 Shimadzu Corp Analyzer for nitrogen compound, phosphorus compound and organic contaminant
KR20030064573A (en) * 2002-01-28 2003-08-02 (주)백년기술 Microbatch Chemical Analyzer
KR100877810B1 (en) * 2008-06-12 2009-01-12 (주)백년기술 Batch type chemical analyzer
KR101194333B1 (en) * 2012-02-27 2012-10-24 비엘프로세스(주) Device and method for measuring total concentration of phosphorus and nitrogen
KR20150070081A (en) * 2015-06-05 2015-06-24 주식회사 엘가 Total nitrogen and total phosphorus measuring device which has low measurement error and which is easy to make maintenance

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111707651A (en) * 2020-06-22 2020-09-25 自然资源部第二海洋研究所 In-situ seawater nutrition enrichment experiment device and application method thereof
CN111982843A (en) * 2020-08-24 2020-11-24 上海洗霸科技股份有限公司 Online monitoring system and method for organic phosphonate in circulating water system
CN113029955A (en) * 2021-03-29 2021-06-25 江苏省环境监测中心 Multichannel multithreading CODcr measurement system
CN114088648A (en) * 2021-12-07 2022-02-25 广东盈峰科技有限公司 Gas-liquid dual isolation method for multi-ported valve micro-reagent sampling
CN114354588A (en) * 2021-12-07 2022-04-15 浙江工业大学 Total nitrogen online detection method based on advanced oxidation technology and dual-environment digestion scheme
CN114088648B (en) * 2021-12-07 2024-03-01 广东盈峰科技有限公司 Gas-liquid dual isolation method for sampling micro-reagent of multi-way valve

Similar Documents

Publication Publication Date Title
WO2019189952A1 (en) Apparatus and method for measuring total phosphorus and total nitrogen
JP4305438B2 (en) Analytical aqueous solution metering / feeding mechanism and water quality analyzer using the same
CN101226153B (en) Colorimetric assay apparatus for testing flow injection ammonia nitrogen
JPS5887464A (en) Automatic analyzing method of continuous flow system
DE102011088959A1 (en) Method and device for degassing a liquid and analyzer with the device
CN105466740B (en) Mercury automatic detection system and preprocessing device thereof
KR102219833B1 (en) Automatic measurement apparatus for analysis of liquid samples and sample analysis method using the same
JP3216584U (en) Water quality analyzer
CN102788762A (en) Syringe pump sample injection gas phase molecule absorption spectrometer
CN101806744B (en) Method for rapid analysis of fluoride through flowing injection and device thereof
CN110221027B (en) Nitrogen dioxide standard gas real-time generator, generating device and generating method
CN210465237U (en) Online water quality monitoring and analyzing system
JP2002048782A (en) Metering/feeding mechanism of aqueous solution for analysis and water quality analyzer using the same
CN105319206B (en) Water quality purification detection device and water quality purification detection method
CN212008633U (en) Automatic sample feeding and preparing device for algae photosynthesis inhibition method water quality toxicity monitor
CN116067957B (en) Device and method for online water quality monitoring
JP2021047196A (en) Water quality analysis meter
KR101365939B1 (en) Cartridge for measuring biological sample component and apparatus for measuring biological sample component
CN111426663A (en) Active oxygen content automatic detection system suitable for cell microenvironment
US6123119A (en) Method of transferring a liquid specimen in one container on a centrifugal rotor into another container on the same rotor
CN112986485B (en) Titration apparatus and titration method
CN204882360U (en) Quality of water on line analyzer
CN211697478U (en) Online detection system for effective chlorine in water quality disinfection process
CN212410450U (en) Active oxygen content automatic detection system suitable for cell microenvironment
CN208043668U (en) A kind of test device of direct injected colorimetric determination detection nitrate content

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18912087

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18912087

Country of ref document: EP

Kind code of ref document: A1