WO2019189882A1 - Monoclonal antibody specifically reacting with ncc-st-439 antigen and method for producing same - Google Patents

Monoclonal antibody specifically reacting with ncc-st-439 antigen and method for producing same Download PDF

Info

Publication number
WO2019189882A1
WO2019189882A1 PCT/JP2019/014335 JP2019014335W WO2019189882A1 WO 2019189882 A1 WO2019189882 A1 WO 2019189882A1 JP 2019014335 W JP2019014335 W JP 2019014335W WO 2019189882 A1 WO2019189882 A1 WO 2019189882A1
Authority
WO
WIPO (PCT)
Prior art keywords
antigen
antibody
ncc
sugar chain
present
Prior art date
Application number
PCT/JP2019/014335
Other languages
French (fr)
Japanese (ja)
Inventor
知啓 三浦
宮崎 修
Original Assignee
積水メディカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811031188.0A external-priority patent/CN110317274A/en
Application filed by 積水メディカル株式会社 filed Critical 積水メディカル株式会社
Priority to JP2020509355A priority Critical patent/JPWO2019189882A1/en
Priority to CN201980022654.5A priority patent/CN112424232A/en
Priority to US17/043,287 priority patent/US20210017290A1/en
Priority to EP19776519.1A priority patent/EP3778645A4/en
Publication of WO2019189882A1 publication Critical patent/WO2019189882A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer

Definitions

  • the present invention relates to a monoclonal antibody that specifically reacts with the NCC-ST-439 antigen and a method for producing the same.
  • NCC-ST-439 antigen recognized by an antibody recognizing esophageal cancer tissue is a sugar chain antigen containing sialic acid, and is known to be elevated in gastric cancer, lung cancer, breast cancer, pancreatic cancer and the like (Non-patent Document 1). .
  • the monoclonal antibody DUPAN-2 prepared using human pancreatic cancer cell culture HPAF-1 as an immunizing antigen is known to react with a mucin-like protein produced at a higher rate than pancreatic adenocarcinoma cells. Is considered to be related to sialic acid (Non-Patent Documents 2 and 3).
  • This antigen is called DUPAN-2 antigen and is used as a marker for digestive system cancer such as pancreatic cancer and biliary tract cancer.
  • antibodies that recognize sugar chain antigens used as tumor markers are generally isolated as those that recognize specific cancer cells as antigens, and their antigen specificity is not sufficient. Can react with a plurality of sugar chain antigens. Detection of a tumor marker using such an antibody has a problem that detection specificity is lowered and accuracy of cancer diagnosis is lowered.
  • An object of the present invention is to provide an antibody that specifically reacts with the sugar chain of NCC-ST-439 antigen used as a tumor marker and a method for producing the same.
  • the present inventors succeeded in obtaining an antibody that specifically recognizes the NCC-ST-439 antigen sugar chain itself as an antigen.
  • the antibody obtained by this method recognizes the NCC-ST-439 antigen highly specifically among mucin antigens used as various tumor markers and does not react with other tumor marker antigens such as DUPAN-2.
  • this invention provides the following in one aspect
  • [5] A method for producing the antibody or antigen-binding fragment thereof according to any one of [1] to [4], The method comprising the step of immunizing an animal with the polymer compound bound with the NCC-ST-439 antigen.
  • [6] A method for producing a cell that produces the antibody or antigen-binding fragment thereof according to any one of [1] to [4], The method comprising the step of immunizing an animal with the polymer compound bound with the NCC-ST-439 antigen.
  • [7] The method described in [5] or [6] above, wherein the polymer compound bound to the NCC-ST-439 antigen does not contain the peptide portion of the NCC-ST-439 antigen-binding peptide.
  • An immunoassay method comprising using the antibody or antigen-binding fragment thereof according to any one of [1] to [3].
  • An immunoassay reagent comprising the antibody or antigen-binding fragment thereof according to any one of [1] to [3].
  • the antibody of the present invention recognizes the NCC-ST-439 antigen highly specifically among mucin antigens used as tumor markers and does not react with other tumor marker antigens such as DUPAN-2. Therefore, cancer cells expressing the NCC-ST-439 antigen, such as pancreatic cancer cells, can be specifically detected, and a more accurate cancer diagnosis is possible.
  • FIG. 1 is a diagram showing an outline of a method for producing an antibody that specifically reacts with the NCC-ST-439 antigen.
  • FIG. 2 is a diagram showing the test results of the antigen-immobilized ELISA method.
  • FIG. 3 is a figure which shows the result of the epitope analysis of the monoclonal antibody of this invention.
  • FIG. 4a is a diagram showing the results of specificity analysis of the monoclonal antibody of the present invention.
  • FIG. 4b is a diagram showing the result of specificity analysis of the monoclonal antibody of the present invention.
  • FIG. 4c is a diagram showing the results of the specificity analysis of the monoclonal antibody of the present invention.
  • FIG. 1 is a diagram showing an outline of a method for producing an antibody that specifically reacts with the NCC-ST-439 antigen.
  • FIG. 2 is a diagram showing the test results of the antigen-immobilized ELISA method.
  • FIG. 3 is a figure which shows the result of the epi
  • FIG. 4d is a diagram showing the result of specificity analysis of the monoclonal antibody of the present invention.
  • FIG. 4e shows the results of specificity analysis of the monoclonal antibody of the present invention.
  • FIG. 5 is a diagram showing a schematic diagram of the sugar chain used for the specificity evaluation of the monoclonal antibody of the present invention.
  • FIG. 6a is a view showing the result of a specificity analysis of a monoclonal antibody S18201R of the present invention using a free purified sugar chain.
  • FIG. 6b is a view showing the result of a specificity analysis of the monoclonal antibody S1822R of the present invention using a free purified sugar chain.
  • FIG. 6c is a view showing the results of a specificity analysis of the monoclonal antibody S18203R of the present invention using a free purified sugar chain.
  • FIG. 6d is a view showing the result of a specificity analysis of a monoclonal antibody S18204R of the present invention using a free purified sugar chain.
  • FIG. 7a is a graph showing the reactivity of the monoclonal antibody S18201R of the present invention against NCC-ST-439 standard products.
  • FIG. 7b shows the reactivity of the monoclonal antibody S1822R of the present invention against NCC-ST-439 standard.
  • FIG. 7c is a graph showing the reactivity of the monoclonal antibody S18203R of the present invention with respect to NCC-ST-439 standard products.
  • FIG. 7d shows the reactivity of the monoclonal antibody S18204R of the present invention against NCC-ST-439 standard.
  • FIG. 7e is a graph showing the correlation between the absorbance measured using the monoclonal antibody S18201R of the present invention and the value of NCC-ST-439 measured with a commercially available ELISA kit in a test using cancer patient serum. .
  • an antibody and a compound “react” can be confirmed by an antigen-immobilized ELISA method, a competitive ELISA method, a sandwich ELISA method or the like well-known to those skilled in the art, as well as surface plasmon resonance (surface plasmon resonance). It can be performed by a method using the principle of resonance (SPR method).
  • the SPR method can be performed using an apparatus, a sensor, and reagents that are commercially available under the name Biacore (registered trademark).
  • “Substantially does not react” means that, for example, in the antigen-immobilized ELISA method, the binding between the antibody and the immobilized antigen is not substantially affected by the addition of the compound. It can be confirmed that "substantially does not react” by methods and means well known to those skilled in the art other than the above-described antigen-immobilized ELISA method.
  • an antibody “reacts specifically”, or “specificity” of an antibody is the ability of the antibody to detectably react with an epitope presented on an antigen, while other antigens The detectable reactivity with is relatively small or substantially no reactivity is detected. For example, when an antibody “reacts specifically” with a particular antigen, the antibody reacts with the antigen but does not react with other antigens. In a preferred embodiment, when an antibody “reacts specifically” with a specific antigen, for example, the interaction between the antibody immobilized on the antigen-immobilized ELISA method and the antibody is inhibited by the free antigen. It is not inhibited by other free antigens.
  • IC 50 of nonspecific antigen when showing the inhibition by the antigen-immobilized ELISA method with an IC 50 of free antigen for IC 50 of the specific antigen, IC 50 of nonspecific antigen, 10-fold, 100-fold, It may be 200 times, 300 times, 400 times, 500 times, 1000 times, or 10,000 times.
  • the IC 50 of a specific antigen when the IC 50 of a specific antigen is 1 / X of that of another antigen, the reactivity of the specific antigen can be expressed as X times the reactivity with respect to the other antigen.
  • the reactivity of the other antigen is less than 20%, 15%, 10%, 5%, 4%, 3%, 2% or 1% to the specific antigen.
  • the antibody of the invention reacts with the NCC-ST-439 antigen and does not react with the DUPAN-2 antigen.
  • antibody refers to an immunoglobulin molecule comprising four polypeptide chains, two heavy chains (H) and two light chains (L) linked together by disulfide bonds.
  • Each heavy chain comprises a changeable region of the heavy chain ( "HCVR” or “VH”) and a heavy chain constant region (including CH 1, CH 2 and CH 3 domains).
  • Each light chain includes a light chain changeable region (“LCVR” or “VL”) and a light chain constant region (CL).
  • the VH and VL regions can be further divided into hypermutable regions termed complementarity determining regions (CDRs) and interspersed in many conserved regions termed frameworks (FR).
  • CDRs complementarity determining regions
  • Each VH and VL contains 3 CDRs and 4 FRs and is arranged from the amine terminus to the carboxy terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4.
  • the changeable regions of the heavy and light chains contain binding domains that interact with antigens.
  • the term “antibody” also includes all genetically modified antibodies, eg, prokaryotic expressed antibodies, non-glycosylated antibodies.
  • an “antigen-binding fragment” of an antibody refers to one or more fragments of an antibody that retain the ability to specifically bind to an antigen (eg, NCC-ST-439).
  • binding fragments encompassed within an “antigen-binding fragment” of an antibody are: (i) a Fab fragment that is a monovalent fragment consisting of VL, VH, CL, and CH domains; (ii) hinge region A F (ab ′) 2 fragment, which is a divalent fragment comprising two Fab fragments joined by a disulfide bridge in FIG.
  • An “antigen-binding fragment” also includes (i) a binding domain polypeptide fused to an immunoglobulin hinge region polypeptide; (ii) an immunoglobulin heavy chain CH2 constant region fused to the hinge region; and (iii) a CH2 constant.
  • a binding domain immunoglobulin fusion protein comprising an immunoglobulin heavy chain CH3 constant region fused to the region.
  • the antibody or antigen-binding fragment thereof that can be used in the present invention may be of any animal origin including birds and mammals.
  • the antibody or fragment is human, chimpanzee, rodent (eg, mouse, rat, guinea pig or rabbit), chicken, turkey, pig, sheep, goat, camel, cow, horse, donkey, cat or dog. Is the origin.
  • the antibodies of the present invention comprise chimeric molecules in which the constant region of an antibody derived from one species is combined with an antigen binding site derived from another species.
  • the antibodies of the invention include humanized molecules that combine antigen-binding sites of antibodies derived from non-human species (eg, mouse origin) and constant and framework regions of human origin.
  • the antibody of the present invention can be obtained from a hybridoma that expresses the antibody or a host cell that expresses the antibody by genetic recombination.
  • host cells for example, CHO cells, lymphocyte cells, bacterial cells such as E. coli, and fungal cells such as yeast can be used.
  • the antibody of the present invention can be produced in a non-human animal or plant that has been gene-transferred using a gene recombination technique.
  • hybridoma S18201R a monoclonal antibody produced by hybridoma S18201R, hybridoma S18202R, hybridoma S18203R or hybridoma S18204R is preferable.
  • the hybridoma is deposited internationally based on the Budapest Treaty as follows.
  • alkyl or alkyl group may be any of an aliphatic hydrocarbon group composed of a straight chain, a branched chain, a ring, or a combination thereof.
  • the number of carbon atoms of the alkyl group is not particularly limited, and examples thereof include 1 to 20 carbon atoms (C1 to 20), 1 to 15 carbon atoms (C1 to 15), and 1 to 10 carbon atoms (C1 to 10). obtain.
  • the alkyl group may have one or more arbitrary substituents.
  • C1-8 alkyl includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, neo-pentyl, n-hexyl, isohexyl, n -Heptyl, n-octyl and the like are included.
  • substituents examples include an alkoxy group, a halogen atom (which may be a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom), an amino group, a mono- or di-substituted amino group, a substituted silyl group, or Although acyl etc. can be mentioned, it is not limited to these. When the alkyl group has two or more substituents, they may be the same or different.
  • alkylene means a divalent group consisting of a linear or branched saturated hydrocarbon.
  • a functional group when a functional group is defined as “may be substituted”, the type of substituent, the substitution position, and the number of substituents are not particularly limited, and two or more substitutions are made. If they have groups, they may be the same or different.
  • the substituent group include, but are not limited to, an alkyl group, an alkoxy group, a hydroxyl group, a carboxyl group, a halogen atom, a sulfo group, an amino group, an alkoxycarbonyl group, and an oxo group. These substituents may further have a substituent. Examples of such include, but are not limited to, a halogenated alkyl group.
  • NCC-ST-439 antigen is reported to be recognized by the NCC-ST-439 antibody (Kumamoto. K. et. Al. Biochem. Biophys. Res. Commun. (1998), 247. (2): 514-17) Means a sugar chain having the following structure.
  • DUPAN-2 antigen has been reported to be recognized by the DUPAN-2 antibody (Kawa. S. et al. Pancreas (1994), 9 (6): 692-697). It means a sugar chain having
  • NCC-ST-439 antigen-binding peptide means a peptide to which an NCC-ST-439 antigen is bound, which is found in a tumor cell or the like in a living body.
  • Antibodies that specifically recognize the NCC-ST-439 antigen of the present invention are obtained by the method outlined in FIG. Specifically, while the conventional tumor marker-reactive antibody was isolated using the tumor cell itself as an antigen (FIG. 1A), the NCC-ST-439 antigen according to the present invention was specifically used. In the method of producing a reactive antibody (FIG. 1B), a sugar chain constituting the NCC-ST-439 antigen is supported on a polymer compound via a linker, and this is immunized to a mammal such as a mouse.
  • a hybridoma is prepared by extracting spleen cells or lymph node cells of the animal and fusing them with myeloma cells by a known method described in Antibodies, A Laboratory Manual (Cold Spring Harbor Laboratory Press, (1988)). To do. From the prepared hybridoma cell population, those producing antibodies that react specifically with cancer cells are isolated. In the conventional method, it was necessary to analyze the epitope after the antibody was finally obtained, whereas in the method of the present invention, since the immunogen and the epitope match, the antibody can be efficiently produced. An antibody that specifically reacts with a specific sugar chain antigen can be obtained. However, advanced techniques are required in sugar chain synthesis.
  • the structure of the linker is not particularly limited, and for example, a C1-C12 optionally substituted alkyl group, alkylene group, ethylene glycol, polyethylene glycol, amino acid, peptide and the like can be used.
  • the high molecular compound is not particularly limited. Proteins such as blast growth factor, transferrin, platelet-derived growth factor, poly-L-lysine, poly-L-glutamine can be used.
  • the polymer compound bound with the NCC-ST-439 antigen of the present invention may or may not contain a part of the NCC-ST-439 antigen-binding peptide.
  • the polymer compound to which the NCC-ST-439 antigen of the present invention is bound does not contain an NCC-ST-439 antigen-binding peptide moiety.
  • the hybridoma can be produced according to a method known in the art. For example, a polyethylene glycol method, a method using Sendai virus, a method using current, and the like can be employed.
  • the obtained hybridoma can be propagated according to a known method, and a desired hybridoma can be selected while confirming the properties of the produced antibody.
  • the hybridoma can be cloned by a known method such as a limiting dilution method or a soft agar method.
  • the obtained antibody can be obtained from the host cell by preparing a host cell that expresses the antibody by genetic recombination in addition to directly producing it from the hybridoma.
  • host cells for example, CHO cells, lymphocyte cells, bacterial cells such as E. coli, and fungal cells such as yeast can be used.
  • the above antibody production method is not limited to the NCC-ST-439 antigen, and can be used to produce an antibody specific to a sugar chain antigen of another known sugar chain protein.
  • a monoclonal antibody that specifically reacts with the above DUPAN-2 antigen could be prepared by the same method.
  • the antibody of the present invention can be used in an immunoassay method for detecting NCC-ST-439 antigen in a biological sample as a tumor marker.
  • various known methods for detecting mucin tumor markers in a biological sample using an antibody can be used, such as enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), Immunofluorescence, immunoprecipitation, equilibrium dialysis, immunodiffusion, and other techniques can be used, but are not limited to these (eg, Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988; Weir, DM, Handbook of Experimental Immunology, 1986, Blackwell Scientific, Boston).
  • the antibody of the present invention can be used as an immobilized (solid phase) antibody immobilized on an insoluble carrier or a labeled antibody labeled with a labeling substance. Any of such immobilized antibodies and labeled antibodies are included in the scope of the present invention.
  • an immobilized antibody can be produced by physically adsorbing the antibody of the present invention to an insoluble carrier or by chemically binding it (may be via an appropriate spacer).
  • an insoluble carrier an insoluble carrier made of a polymer substrate such as polystyrene resin, an inorganic substrate such as glass, a polysaccharide substrate such as cellulose or agarose, or the like can be used.
  • the shape is not particularly limited, and any shape such as a plate shape (for example, a microplate or a membrane), a bead or fine particle shape (for example, latex particles or magnetic particles), or a tubular shape (for example, a test tube) can be selected.
  • a plate shape for example, a microplate or a membrane
  • a bead or fine particle shape for example, latex particles or magnetic particles
  • a tubular shape for example, a test tube
  • Examples of the labeling substance for producing the labeled antibody include enzymes, fluorescent substances, chemiluminescent substances, biotin, avidin, or radioisotopes, colloidal gold particles, and colored latex.
  • methods such as a glutaraldehyde method, a maleimide method, a pyridyl disulfide method, or a periodic acid method that can be used by those skilled in the art can be used.
  • an enzyme such as peroxidase or alkaline phosphatase (hereinafter sometimes referred to as ALP) can be used as the labeling substance. .
  • the enzyme when the enzyme is a specific substrate (horseradish peroxidase (hereinafter sometimes referred to as HRP)), for example, 1,2-phenylenediamine (hereinafter sometimes referred to as OPD) or 3, 3
  • HRP horseradish peroxidase
  • OPD 1,2-phenylenediamine
  • 3 3
  • the enzyme activity can be measured using p-nitrophenyl phosphate or the like.
  • biotin is used as a labeling substance, avidin or enzyme-modified avidin is generally reacted.
  • the antibody of the present invention can be provided as an immunoassay reagent for use in the above immunoassay method.
  • the reagent may contain other components necessary for carrying out the immunoassay method, such as a buffer solution and a preservative.
  • the antibody of the present invention when it contains an enzyme as a labeling substance, it may be provided in the form of a kit together with a reagent containing the specific substrate.
  • NCC-ST-439 modified maleimide for immunogen or NCC-ST-439 glycosylated peptide cross-linked protein cross-linking of sugar chain-modified maleimide reduces human transferrin, and reduces reduced human transferrin and sugar chain maleimide by weight.
  • PBS PBS at a ratio of 4: 1
  • maleimide-activated OVA and glycopeptide were mixed at a weight ratio of 4: 1 in PBS, reacted at room temperature for 2 hours, and the buffer was replaced with PBS by dialysis to obtain a conjugate solution for immunization.
  • PBS PH 7.2; hereinafter referred to as PBS
  • 50 ⁇ L of the lysate was dispensed into each well of a 96-well microplate and allowed to stand at room temperature for 2 hours or at 4 ° C. overnight.
  • Each well was washed three times with 400 ⁇ L of PBS containing 0.05% Tween® 20 (hereinafter referred to as PBST), and then 100 ⁇ L of PBST containing 1% bovine serum albumin (hereinafter referred to as BSA-PBST) was added. Blocking was performed for 1 hour at room temperature or overnight at 4 ° C. This was used as an ELISA plate.
  • PBST PBS containing 0.05% Tween® 20
  • BSA-PBST bovine serum albumin
  • hybridoma antigen-immobilized ELISA method
  • the same method was performed except that the culture supernatant of the fused cells was used instead of the immunized animal antiserum.
  • a well having a high absorbance was selected as a well in which an anti-NCC-ST-439 antibody-producing hybridoma was present (positive well).
  • S18201R The monoclonal antibodies produced by these four types of hybridomas S18201R, S1822R, S1823R, and S18204R are referred to as S18201R antibody, S1822R antibody, S18203R antibody, and S18204R antibody, respectively.
  • Test Method S18201R, S1822R, S18203R, S18204R It was confirmed by competitive ELISA described below whether the epitope of NCC-ST-439 that reacts with the antibody is similar to that of the existing antibody.
  • an ELISA plate was prepared in the same manner as the above-described antigen-immobilized ELISA method.
  • each well was washed three times with 400 ⁇ L of PBST, 50 ⁇ L of citrate buffer (pH 5.0) containing 0.2% orthophenylenediamine and 0.02% hydrogen peroxide was added, and the mixture was allowed to stand at room temperature for 10 minutes. Thereafter, 50 ⁇ L of 1.5 N sulfuric acid was added to stop the enzyme reaction, and the absorbance at a wavelength of 492 nm was measured.
  • citrate buffer pH 5.0
  • the decrease in absorbance due to the addition of S18201R, S1822R, S1823R, and S18204R antibodies means that the S18201R, S1822R, S1823R, and S18204R antibodies in the solution are bound in the vicinity of the binding site between the existing antibody and the conjugate. It shows that the binding of the conjugated to the conjugate is inhibited. Therefore, it was found that the S18201R, S1822R, S1823R, and S18204R antibodies recognize an epitope similar to that of the existing antibody.
  • Test Example 3 Specificity analysis of the monoclonal antibody of the present invention 1. The specificity of the test methods S18201R, S1822R, S18203R, S18204R antibodies was confirmed by competitive ELISA described below. First, an ELISA plate was prepared in the same manner as the above-described antigen-immobilized ELISA method.
  • the wells into which the S18201R, S1822R, S1823R, S18204R antibody-producing hybridoma culture supernatant and each sugar chain-related compound mixture were dispensed were washed three times with PBST 400 ⁇ L, and then HRP diluted 5000 times with BSA-PBST.
  • Labeled rat IgG (H & L) was dispensed at 50 ⁇ L / well and allowed to stand at room temperature for 1 hour.
  • 50 ⁇ L / well of a mixture of the existing antibody and each sugar chain-related compound was dispensed into wells into which BSA-PBST was dispensed at 50 ⁇ L / well, and allowed to stand at room temperature for 1 hour.
  • each well was washed three times with 400 ⁇ L of PBST, 50 ⁇ L of citrate buffer (pH 5.0) containing 0.2% orthophenylenediamine and 0.02% hydrogen peroxide was added, and the mixture was allowed to stand at room temperature for 10 minutes. Thereafter, 50 ⁇ L of 1.5 N sulfuric acid was added to stop the enzyme reaction, and the absorbance at a wavelength of 492 nm was measured.
  • citrate buffer pH 5.0
  • the absorbance depends on the amount of antibody bound to the conjugate of NCC-ST-439 and BSA immobilized on the plate.
  • the decrease in absorbance due to the addition of each sugar chain-related compound means that the free sugar chain-related compound in the solution reacts with the antibody in the solution and inhibits the binding between the antibody and the immobilized conjugate. It shows that Therefore, it is shown that the S18201R, S1822R, S1823R, and S18204R antibodies do not react with DUPAN-2 but react specifically with NCC-ST-439.
  • test methods S18201R, S1822R, S18203R, S18204R antibodies was confirmed by competitive ELISA described below.
  • an ELISA plate was prepared in the same manner as the aforementioned antigen-immobilized ELISA method. Further, S18201R, S1822R, S1823R, and S18204R antibodies diluted to 225 to 500 ng / mL using BSA-PBST as a solvent were mixed with sugar chains (FIG. 5) serially diluted with BSA-PBST. These are mixed liquids.
  • Each well of the ELISA plate was washed 3 times with 400 ⁇ L of PBST, and 50 ⁇ L / well of each of the above-described hybridoma culture supernatants of S18201R, S1822R, S1823R, and S18204R antibody-producing hybridomas and each sugar chain was dispensed at room temperature. Let stand for hours. After washing 3 times with 400 ⁇ L of PBST, HRP-labeled rat IgG (H & L) diluted 5000 times with BSA-PBST was dispensed at 50 ⁇ L / well and allowed to stand at room temperature for 1 hour.
  • each well was washed three times with 400 ⁇ L of PBST, 50 ⁇ L of citrate buffer (pH 5.0) containing 0.2% orthophenylenediamine and 0.02% hydrogen peroxide was added, and the mixture was allowed to stand at room temperature for 10 minutes. Thereafter, 50 ⁇ L of 1.5 N sulfuric acid was added to stop the enzyme reaction, the absorbance at a wavelength of 492 nm was measured, and the reaction rate was calculated with the absorbance when no sugar chain was added as 100%.
  • citrate buffer pH 5.0
  • Each well was washed 3 times with 400 ⁇ L PBST, and then biotinylated S18201R, S1822R, S18203R, S18204R antibodies diluted to 2 ⁇ g / mL with BSA-PBST were dispensed into the wells on the same plate with 50 ⁇ L each well. And allowed to stand at room temperature for 1 hour.
  • Each well was washed with 400 ⁇ L of PBST three times, and then 50 ⁇ L of HRP-labeled streptavidin diluted to 0.2 ⁇ g / mL with BSA-PBST was dispensed into each well and allowed to stand at room temperature for 1 hour.
  • the test results are shown in FIGS. 7a, b, c, d, and e.
  • the absorbance increases depending on the NCC-ST-439 standard product concentration (FIGS. 7a, b, c and d). That is, this indicates that the antibody is reacting with the NCC-ST-439 antigen contained in the standard product.
  • the absorbance when using serum from cancer patients in this study was proportional to the value of NCC-ST-439 measured with a commercial ELISA kit as an approximate line with a correlation coefficient of 0.99 or more (FIG. 7e). That is, it was shown that the antibody of the present invention can measure NCC-ST-439 in cancer patient serum in the same manner as the existing NCC-ST-439 antibody.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Cell Biology (AREA)
  • Oncology (AREA)
  • Hospice & Palliative Care (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

A conventional antibody recognizing a sugar chain antigen, said sugar chain antigen being to be used as a tumor marker, shows an insufficient antigen specificity. When such an antibody is used in detecting a tumor marker, there arises a problem that the detection specificity is lowered and thus cancer diagnosis accuracy is also lowered. To solve this problem, the present invention provides an antibody that specifically reacts with the sugar chain of NCC-ST-439 antigen to be used as a tumor marker and a method for producing the antibody.

Description

NCC-ST-439抗原と特異的に反応するモノクローナル抗体およびその製造方法。Monoclonal antibody specifically reacting with NCC-ST-439 antigen and method for producing the same.
 本発明は、NCC-ST-439抗原と特異的に反応するモノクローナル抗体およびその製造方法に関する。 The present invention relates to a monoclonal antibody that specifically reacts with the NCC-ST-439 antigen and a method for producing the same.
 近年、腫瘍マーカーとして使用される糖鎖抗原に対する抗体が多数報告されている。
 食道癌組織を認識する抗体が認識するNCC-ST-439抗原はシアル酸を含む糖鎖抗原であり、胃癌、肺癌、乳癌、膵癌などで上昇することが知られている(非特許文献1)。
In recent years, many antibodies against sugar chain antigens used as tumor markers have been reported.
NCC-ST-439 antigen recognized by an antibody recognizing esophageal cancer tissue is a sugar chain antigen containing sialic acid, and is known to be elevated in gastric cancer, lung cancer, breast cancer, pancreatic cancer and the like (Non-patent Document 1). .
 また、ヒト膵癌培養細胞HPAF-1を免疫抗原として作製したモノクローナル抗体DUPAN-2は、膵腺癌細胞より高率に産生されるムチン様タンパク質と反応することが知られており、その抗原決定基にはシアル酸が関係していると考えられている(非特許文献2、3)。当該抗原は、DUPAN-2抗原と呼ばれ、特に膵癌、胆道系癌などの消化器系癌のマーカーとして用いられている。 In addition, the monoclonal antibody DUPAN-2 prepared using human pancreatic cancer cell culture HPAF-1 as an immunizing antigen is known to react with a mucin-like protein produced at a higher rate than pancreatic adenocarcinoma cells. Is considered to be related to sialic acid (Non-Patent Documents 2 and 3). This antigen is called DUPAN-2 antigen and is used as a marker for digestive system cancer such as pancreatic cancer and biliary tract cancer.
 一方、これらの腫瘍マーカーとして使用される糖鎖抗原を認識する抗体は、一般的に特定の癌細胞全体を抗原として認識するものとして単離されたものであり、その抗原特異性は十分ではなく、複数の糖鎖抗原と反応し得る。このような抗体を用いた腫瘍マーカーの検出では、検出特異性が低下し、癌診断の正確性が低下する問題があった。 On the other hand, antibodies that recognize sugar chain antigens used as tumor markers are generally isolated as those that recognize specific cancer cells as antigens, and their antigen specificity is not sufficient. Can react with a plurality of sugar chain antigens. Detection of a tumor marker using such an antibody has a problem that detection specificity is lowered and accuracy of cancer diagnosis is lowered.
 したがって、腫瘍マーカーを利用した、より正確な診断を行うためには、特定の糖鎖抗原に特異的に反応する抗体を得ることが必要とされていた。 Therefore, in order to perform a more accurate diagnosis using a tumor marker, it has been necessary to obtain an antibody that specifically reacts with a specific sugar chain antigen.
 本発明は、腫瘍マーカーとして利用されるNCC-ST-439抗原の糖鎖に特異的に反応する抗体およびその製造方法を提供することを目的とする。 An object of the present invention is to provide an antibody that specifically reacts with the sugar chain of NCC-ST-439 antigen used as a tumor marker and a method for producing the same.
 本発明者らは、上記課題を解決するべく鋭意検討を行った結果、NCC-ST-439抗原の糖鎖自体を抗原として使用し、これを特異的に認識する抗体を得ることに成功した。当該方法で得られた抗体は、各種腫瘍マーカーとして用いられるムチン抗原の中でも、NCC-ST-439抗原を高度に特異的に認識し、DUPAN-2等の他の腫瘍マーカー抗原と反応しない。 As a result of intensive studies to solve the above-mentioned problems, the present inventors succeeded in obtaining an antibody that specifically recognizes the NCC-ST-439 antigen sugar chain itself as an antigen. The antibody obtained by this method recognizes the NCC-ST-439 antigen highly specifically among mucin antigens used as various tumor markers and does not react with other tumor marker antigens such as DUPAN-2.
 すなわち、本発明は一態様において以下のものを提供する。
[1]下記糖鎖構造を有するNCC-ST-439抗原
Figure JPOXMLDOC01-appb-I000003
と反応し、かつ
 下記糖鎖構造を有するDUPAN-2抗原
Figure JPOXMLDOC01-appb-I000004
と反応しない抗体およびその抗原結合フラグメント。
[2]DUPAN-2抗原に対する反応性が、NCC-ST-439抗原に対する反応性の10%未満である、前記[1]に記載の抗体またはその抗原結合フラグメント。
[3]DUPAN-2抗原に対する反応性が、NCC-ST-439抗原に対する反応性の1%未満である、前記[1]に記載の抗体またはその抗原結合フラグメント。
[4]ラット抗体である、前記[1]~[3]のいずれか一項に記載の抗体またはその抗原結合フラグメント。
[5]前記[1]~[4]のいずれか一項に記載の抗体またはその抗原結合フラグメントを製造する方法であって、
 前記NCC-ST-439抗原を結合した高分子化合物を動物に免疫する工程を含む、前記方法。
[6]前記[1]~[4]のいずれか一項に記載の抗体またはその抗原結合フラグメントを産生する細胞を製造する方法であって、
 前記NCC-ST-439抗原を結合した高分子化合物を動物に免疫する工程を含む、前記方法。
[7]前記NCC-ST-439抗原と結合した高分子化合物が、NCC-ST-439抗原結合ペプチドのペプチド部分を含まない、前記[5]または[6]に記載の方法。
[8]前記[1]~[3]のいずれか一項に記載の抗体またはその抗原結合フラグメントを用いることを特徴とする、免疫測定方法。
[9]前記[1]~[3]のいずれか一項に記載の抗体またはその抗原結合フラグメントを含む、免疫測定試薬。
That is, this invention provides the following in one aspect | mode.
[1] NCC-ST-439 antigen having the following sugar chain structure
Figure JPOXMLDOC01-appb-I000003
And DUPAN-2 antigen having the following sugar chain structure
Figure JPOXMLDOC01-appb-I000004
Antibodies and antigen-binding fragments thereof that do not react with.
[2] The antibody or antigen-binding fragment thereof according to [1], wherein reactivity to DUPAN-2 antigen is less than 10% of reactivity to NCC-ST-439 antigen.
[3] The antibody or antigen-binding fragment thereof according to [1], wherein reactivity to DUPAN-2 antigen is less than 1% of reactivity to NCC-ST-439 antigen.
[4] The antibody or antigen-binding fragment thereof according to any one of [1] to [3], which is a rat antibody.
[5] A method for producing the antibody or antigen-binding fragment thereof according to any one of [1] to [4],
The method comprising the step of immunizing an animal with the polymer compound bound with the NCC-ST-439 antigen.
[6] A method for producing a cell that produces the antibody or antigen-binding fragment thereof according to any one of [1] to [4],
The method comprising the step of immunizing an animal with the polymer compound bound with the NCC-ST-439 antigen.
[7] The method described in [5] or [6] above, wherein the polymer compound bound to the NCC-ST-439 antigen does not contain the peptide portion of the NCC-ST-439 antigen-binding peptide.
[8] An immunoassay method comprising using the antibody or antigen-binding fragment thereof according to any one of [1] to [3].
[9] An immunoassay reagent comprising the antibody or antigen-binding fragment thereof according to any one of [1] to [3].
 本発明の抗体は、腫瘍マーカーとして用いられるムチン抗原の中でも、NCC-ST-439抗原を高度に特異的に認識し、DUPAN-2等の他の腫瘍マーカー抗原と反応しない。したがって、NCC-ST-439抗原を発現する癌細胞、例えば膵癌細胞などを特異的に検出することが可能であり、より正確ながん診断を可能とする。 The antibody of the present invention recognizes the NCC-ST-439 antigen highly specifically among mucin antigens used as tumor markers and does not react with other tumor marker antigens such as DUPAN-2. Therefore, cancer cells expressing the NCC-ST-439 antigen, such as pancreatic cancer cells, can be specifically detected, and a more accurate cancer diagnosis is possible.
 また、本発明の腫瘍マーカーとして用いられるムチン抗原を特異的に認識する抗体の作製方法を利用することにより、特定の腫瘍マーカーに高度に特異的に反応する抗体を取得することが可能となる。 Furthermore, by using a method for producing an antibody that specifically recognizes a mucin antigen used as a tumor marker of the present invention, it is possible to obtain an antibody that reacts highly specifically with a specific tumor marker.
図1は、NCC-ST-439抗原と特異的に反応する抗体の作製方法の概略を示す図である。FIG. 1 is a diagram showing an outline of a method for producing an antibody that specifically reacts with the NCC-ST-439 antigen. 図2は、抗原固相化ELISA法の試験結果を示す図である。FIG. 2 is a diagram showing the test results of the antigen-immobilized ELISA method. 図3は、本発明のモノクローナル抗体のエピトープ分析の結果を示す図である。FIG. 3 is a figure which shows the result of the epitope analysis of the monoclonal antibody of this invention. 図4aは、本発明のモノクローナル抗体の特異性分析の結果を示す図である。FIG. 4a is a diagram showing the results of specificity analysis of the monoclonal antibody of the present invention. 図4bは、本発明のモノクローナル抗体の特異性分析の結果を示す図である。FIG. 4b is a diagram showing the result of specificity analysis of the monoclonal antibody of the present invention. 図4cは、本発明のモノクローナル抗体の特異性分析の結果を示す図である。FIG. 4c is a diagram showing the results of the specificity analysis of the monoclonal antibody of the present invention. 図4dは、本発明のモノクローナル抗体の特異性分析の結果を示す図である。FIG. 4d is a diagram showing the result of specificity analysis of the monoclonal antibody of the present invention. 図4eは、本発明のモノクローナル抗体の特異性分析の結果を示す図である。FIG. 4e shows the results of specificity analysis of the monoclonal antibody of the present invention. 図5は、本発明のモノクローナル抗体の特異性評価に用いた糖鎖の模式図を示す図である。FIG. 5 is a diagram showing a schematic diagram of the sugar chain used for the specificity evaluation of the monoclonal antibody of the present invention. 図6aは、本発明のモノクローナル抗体S18201Rの、遊離精製糖鎖を用いた特異性分析の結果を示す図である。FIG. 6a is a view showing the result of a specificity analysis of a monoclonal antibody S18201R of the present invention using a free purified sugar chain. 図6bは、本発明のモノクローナル抗体S18202Rの、遊離精製糖鎖を用いた特異性分析の結果を示す図である。FIG. 6b is a view showing the result of a specificity analysis of the monoclonal antibody S1822R of the present invention using a free purified sugar chain. 図6cは、本発明のモノクローナル抗体S18203Rの、遊離精製糖鎖を用いた特異性分析の結果を示す図である。FIG. 6c is a view showing the results of a specificity analysis of the monoclonal antibody S18203R of the present invention using a free purified sugar chain. 図6dは、本発明のモノクローナル抗体S18204Rの、遊離精製糖鎖を用いた特異性分析の結果を示す図である。FIG. 6d is a view showing the result of a specificity analysis of a monoclonal antibody S18204R of the present invention using a free purified sugar chain. 図7aは、本発明のモノクローナル抗体S18201RのNCC-ST-439標準品に対する反応性を示す図である。FIG. 7a is a graph showing the reactivity of the monoclonal antibody S18201R of the present invention against NCC-ST-439 standard products. 図7bは、本発明のモノクローナル抗体S18202RのNCC-ST-439標準品に対する反応性を示す図である。FIG. 7b shows the reactivity of the monoclonal antibody S1822R of the present invention against NCC-ST-439 standard. 図7cは、本発明のモノクローナル抗体S18203RのNCC-ST-439標準品に対する反応性を示す図である。FIG. 7c is a graph showing the reactivity of the monoclonal antibody S18203R of the present invention with respect to NCC-ST-439 standard products. 図7dは、本発明のモノクローナル抗体S18204RのNCC-ST-439標準品に対する反応性を示す図である。FIG. 7d shows the reactivity of the monoclonal antibody S18204R of the present invention against NCC-ST-439 standard. 図7eは、癌患者血清を用いた試験における、本発明のモノクローナル抗体S18201Rを使用して測定した場合の吸光度と、市販ELISAキットで測定したNCC-ST-439の値の相関を示す図である。FIG. 7e is a graph showing the correlation between the absorbance measured using the monoclonal antibody S18201R of the present invention and the value of NCC-ST-439 measured with a commercially available ELISA kit in a test using cancer patient serum. .
 以下、本発明の実施形態について説明する。以下の説明は単なる例示であり、本発明の範囲はこれらの説明に拘束されることはなく、本発明の趣旨を損なわない範囲で適宜変更し実施することができる。 Hereinafter, embodiments of the present invention will be described. The following description is merely an example, and the scope of the present invention is not limited to these descriptions, and can be appropriately modified and implemented without departing from the spirit of the present invention.
 (定義)
 特に指示がない場合、本明細書に用いられる全ての技術的及び科学的用語は、本発明が属する当業者により一般に理解される意味を有する。
(Definition)
Unless defined otherwise, all technical and scientific terms used herein have the meaning commonly understood by one of ordinary skill in the art to which this invention belongs.
 本明細書において、複数の数値の範囲が示された場合、それら複数の範囲の任意の下限値および上限値の組み合わせからなる範囲も同様に意味する。 In the present specification, when a range of a plurality of numerical values is indicated, a range composed of a combination of an arbitrary lower limit value and upper limit value of the plurality of ranges is also meant in the same manner.
 本明細書において、抗体とある化合物が「反応する」、「反応性を示す」、「反応性を有する」、「結合する」、あるいは抗体がある化合物を「認識する」と表現する場合、本発明の分野で通常使用される意味を含み、いずれも同義で用いる。抗体とある化合物とが「反応する」か否かの確認は、当業者に周知の抗原固相化ELISA法、競合ELISA法、サンドイッチELISA法などにより行うことができるほか、表面プラズモン共鳴(surface plasmon resonance)の原理を利用した方法(SPR法)などにより行うことができる。SPR法は、Biacore(登録商標)の名称で市販されている、装置、センサー、試薬類を使用して行うことができる。 In this specification, when a compound with an antibody “reacts”, “shows reactivity”, “reactivity”, “binds”, or “recognizes” a compound with an antibody, The meanings commonly used in the field of the invention are included, and all are used synonymously. Whether or not an antibody and a compound “react” can be confirmed by an antigen-immobilized ELISA method, a competitive ELISA method, a sandwich ELISA method or the like well-known to those skilled in the art, as well as surface plasmon resonance (surface plasmon resonance). It can be performed by a method using the principle of resonance (SPR method). The SPR method can be performed using an apparatus, a sensor, and reagents that are commercially available under the name Biacore (registered trademark).
 本明細書において、本発明の抗体と、ある化合物が「反応しない」とは、本発明の抗体とある化合物とが実質的に反応しないことをいう。「実質的に反応しない」とは、例えば、抗原固相化ELISA法において、当該化合物の添加によって、抗体と固相化抗原の結合が実質的に影響を受けないことを意味する。上記抗原固相化ELISA法以外の当業者に周知の方法・手段によっても「実質的に反応しない」ことを確認できる。 In the present specification, “the antibody does not react” with the antibody of the present invention means that the antibody of the present invention and the compound do not substantially react. “Substantially does not react” means that, for example, in the antigen-immobilized ELISA method, the binding between the antibody and the immobilized antigen is not substantially affected by the addition of the compound. It can be confirmed that "substantially does not react" by methods and means well known to those skilled in the art other than the above-described antigen-immobilized ELISA method.
 本明細書において、抗体が「特異的に反応する」こと、または抗体の「特異性」は、抗体が検出可能に抗原上に提示されたエピトープに反応する能力であって、一方でその他の抗原との検出可能な反応性が比較的小さいか実質的に反応性が検出されないことをいう。例えば、抗体が特定の抗原に「特異的に反応する」場合、当該抗体は当該抗原に反応する一方、他の抗原には反応しない。好ましい態様において、抗体が特定の抗原に「特異的に反応する」場合、例えば抗原固相化ELISA法において固定化された当該抗原と当該抗体の相互作用が遊離の当該抗原によって阻害される一方で、他の遊離抗原によっては阻害されない。例えば、上記抗原固相化ELISA法による阻害を遊離抗原のIC50で表した場合、当該特異的な抗原のIC50に対して、非特異的な抗原のIC50は、10倍、100倍、200倍、300倍、400倍、500倍、1000倍、10000倍であってもよい。また、特異的な抗原のIC50が他の抗原の1/Xである場合、当該特異的な抗原の反応性を、他の抗原に対する反応性のX倍であると表現することもできる。好ましくは、他の抗原の反応性は、特異的な抗原に対して20%、15%、10%、5%、4%、3%、2%または1%未満である。本発明の好ましい態様において、本発明の抗体は、NCC-ST-439抗原に反応し、DUPAN-2抗原に反応しない。 As used herein, that an antibody “reacts specifically”, or “specificity” of an antibody, is the ability of the antibody to detectably react with an epitope presented on an antigen, while other antigens The detectable reactivity with is relatively small or substantially no reactivity is detected. For example, when an antibody “reacts specifically” with a particular antigen, the antibody reacts with the antigen but does not react with other antigens. In a preferred embodiment, when an antibody “reacts specifically” with a specific antigen, for example, the interaction between the antibody immobilized on the antigen-immobilized ELISA method and the antibody is inhibited by the free antigen. It is not inhibited by other free antigens. For example, when showing the inhibition by the antigen-immobilized ELISA method with an IC 50 of free antigen for IC 50 of the specific antigen, IC 50 of nonspecific antigen, 10-fold, 100-fold, It may be 200 times, 300 times, 400 times, 500 times, 1000 times, or 10,000 times. In addition, when the IC 50 of a specific antigen is 1 / X of that of another antigen, the reactivity of the specific antigen can be expressed as X times the reactivity with respect to the other antigen. Preferably, the reactivity of the other antigen is less than 20%, 15%, 10%, 5%, 4%, 3%, 2% or 1% to the specific antigen. In a preferred embodiment of the invention, the antibody of the invention reacts with the NCC-ST-439 antigen and does not react with the DUPAN-2 antigen.
 本明細書において、「抗体」は、4つのポリペプチド鎖、ジスルフィド結合で相互に連結された2つの重鎖(H)と2つの軽鎖(L)を含む免疫グロブリン分子を意味する。各重鎖は、重鎖の変更可能領域(「HCVR」又は「VH」)及び重鎖の定常領域(CH、CH及びCHドメインを含む)を含む。各軽鎖は、軽鎖の変更可能領域(「LCVR」又は「VL」)及び軽鎖の定常領域(CL)を含む。VH及びVL領域は、更に、相補性決定領域(CDR)と命名される超変異性の領域に分割され、フレームワーク(FR)と命名される多く保存できる領域に散在され得る。各VH及びVLは、3つのCDRと4つのFRを含み、アミン末端からカルボキシ末端に次の順で配置される:FR1、CDR1、FR2、CDR2、FR3、CDR3、FR4。重鎖及び軽鎖の変更可能領域は、抗原と相互作用する結合ドメインを含む。用語「抗体」は、また、抗体の全ての遺伝子組替え体、例えば、原核生物で発現する抗体、グリコシル化されていない抗体を含む。 As used herein, “antibody” refers to an immunoglobulin molecule comprising four polypeptide chains, two heavy chains (H) and two light chains (L) linked together by disulfide bonds. Each heavy chain comprises a changeable region of the heavy chain ( "HCVR" or "VH") and a heavy chain constant region (including CH 1, CH 2 and CH 3 domains). Each light chain includes a light chain changeable region ("LCVR" or "VL") and a light chain constant region (CL). The VH and VL regions can be further divided into hypermutable regions termed complementarity determining regions (CDRs) and interspersed in many conserved regions termed frameworks (FR). Each VH and VL contains 3 CDRs and 4 FRs and is arranged from the amine terminus to the carboxy terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4. The changeable regions of the heavy and light chains contain binding domains that interact with antigens. The term “antibody” also includes all genetically modified antibodies, eg, prokaryotic expressed antibodies, non-glycosylated antibodies.
 また、Padlan(1995 FASEB J. 9:133-139)、Vajdos et al. 2002 J Mol Biol 320:415-428に示されるように、実際にはCDR残基の一部のみが抗原に接触することが知られており、抗原に接触しないCDR残基は、ChothiaのCDRの外側に存在するKabatのCDRの領域から、分子モデリングにより、または経験的に特定できる。CDR又はその一つ又は複数の残基が除去される場合、それは、普通は、別のヒト抗体配列又はそのような配列のコンセンサスにおいて対応する位置を占めるアミノ酸で置換される。CDR及びアミノ酸内で置換する位置は、また、経験的に選択できる。経験的置換は保存的又は非保存的置換であってもよい。 Also, Padlan (1995 FASEB J. 9: 133-139), Vajdos et al. As shown in 2002 J Mol Biol 320: 415-428, it is known that only a part of the CDR residues actually contact the antigen, and the CDR residues that do not contact the antigen are those of the Chothia CDR. It can be identified by molecular modeling or empirically from the outer region of Kabat CDRs. When a CDR or one or more residues thereof is removed, it is usually replaced with another human antibody sequence or an amino acid that occupies the corresponding position in the consensus of such a sequence. Positions for substitution within CDRs and amino acids can also be selected empirically. Empirical substitutions may be conservative or non-conservative substitutions.
 本明細書において、抗体の「抗原結合フラグメント」は、抗原(例えば、NCC-ST-439)に特異的に結合する能力を保持する抗体の1つ又はそれ以上のフラグメントを意味する。抗体の「抗原結合フラグメント」内に包含される結合フラグメントの非限定的な例は:(i)VL、VH、CL及びCHドメインより成る1価のフラグメントである、Fabフラグメント;(ii)ヒンジ領域におけるジスルフィド橋により結合された2つのFabフラグメントを含む2価のフラグメントである、F(ab′)フラグメント;(iii)VH及びCHドメインより成るFdフラグメント;(iv)抗体の単一アームのVL及びVHドメインより成るFvフラグメント;(v)VHドメインより成るdAbフラグメント(Ward et al., (1989) Nature 341: 544-546);(vi)単離された相補性決定領域(CDR);及び(vii)合成リンカーで、場合により、結合されてもよい2つ又はそれ以上の単離されたCDRの組合せ;を含む。また、単一鎖Fv(scFv)として知られるように、遺伝子組み換え法を用いて、合成リンカーによりVL及びVH領域を対に形成する単一タンパク質鎖として作ることもできる(Bird et al. (1988) Science 242: 423-426; and Huston et al. (1988) Proc. Natl. Acad. Sci. USA 85: 5879-5883)。また、「抗原結合フラグメント」は、(i)免疫グロブリンヒンジ領域ポリペプチドに融合された結合ドメインポリペプチド;(ii)ヒンジ領域に融合された免疫グロブリン重鎖CH2定常領域;及び(iii)CH2定常領域に融合された免疫グロブリン重鎖CH3定常領域;を含む結合ドメイン免疫グロブリン融合タンパク質であってもよい。これらの抗体フラグメントは、当業者に公知の従来技術を用いて得られる。 As used herein, an “antigen-binding fragment” of an antibody refers to one or more fragments of an antibody that retain the ability to specifically bind to an antigen (eg, NCC-ST-439). Non-limiting examples of binding fragments encompassed within an “antigen-binding fragment” of an antibody are: (i) a Fab fragment that is a monovalent fragment consisting of VL, VH, CL, and CH domains; (ii) hinge region A F (ab ′) 2 fragment, which is a divalent fragment comprising two Fab fragments joined by a disulfide bridge in FIG. 5; (iii) an Fd fragment consisting of VH and CH domains; (iv) a single arm VL of an antibody And an Fv fragment consisting of the VH domain; (v) a dAb fragment consisting of the VH domain (Ward et al., (1989) Nature 341: 544-546); (vi) an isolated complementarity determining region (CDR); (Vii) a synthetic linker, optionally bifurcated Includes further combinations of isolated CDRs. Alternatively, as known as single chain Fv (scFv), it can also be made as a single protein chain that pairs VL and VH regions with a synthetic linker using genetic recombination (Bird et al. (1988). ) Science 242: 423-426; and Huston et al. (1988) Proc. Natl. Acad. Sci. USA 85: 5879-5883). An “antigen-binding fragment” also includes (i) a binding domain polypeptide fused to an immunoglobulin hinge region polypeptide; (ii) an immunoglobulin heavy chain CH2 constant region fused to the hinge region; and (iii) a CH2 constant. A binding domain immunoglobulin fusion protein comprising an immunoglobulin heavy chain CH3 constant region fused to the region. These antibody fragments are obtained using conventional techniques known to those skilled in the art.
 本発明に使用可能な抗体又はその抗原結合フラグメントは、鳥、哺乳類を含むいかなる動物起源であってもよい。好ましくは、抗体又はフラグメントは、ヒト、チンパンジ、齧歯動物(例えば、マウス、ラット、モルモット、又はウサギ)、ニワトリ、シチメンチョウ、ブタ、ヒツジ、ヤギ、ラクダ、ウシ、ウマ、ロバ、ネコ、又はイヌ起源である。本発明の抗体は、ある種から誘導された抗体の定常領域が、他種から誘導された抗原結合サイトと組み合わされたキメラ分子を含む。更に、本発明の抗体は、非ヒト種(例えば、マウス起源)から誘導された抗体の抗原結合サイトと、ヒト起源の定常領域とフレームワーク領域を組合せたヒト化分子を含む。 The antibody or antigen-binding fragment thereof that can be used in the present invention may be of any animal origin including birds and mammals. Preferably, the antibody or fragment is human, chimpanzee, rodent (eg, mouse, rat, guinea pig or rabbit), chicken, turkey, pig, sheep, goat, camel, cow, horse, donkey, cat or dog. Is the origin. The antibodies of the present invention comprise chimeric molecules in which the constant region of an antibody derived from one species is combined with an antigen binding site derived from another species. In addition, the antibodies of the invention include humanized molecules that combine antigen-binding sites of antibodies derived from non-human species (eg, mouse origin) and constant and framework regions of human origin.
 本発明の抗体は、当該抗体を発現するハイブリドーマ、または、遺伝子組み換えにより当該抗体を発現するホスト細胞から得ることができる。ホスト細胞として、例えば、CHO細胞、リンパ球細胞、大腸菌などの細菌細胞、及び酵母などの真菌細胞を用いることができる。 The antibody of the present invention can be obtained from a hybridoma that expresses the antibody or a host cell that expresses the antibody by genetic recombination. As host cells, for example, CHO cells, lymphocyte cells, bacterial cells such as E. coli, and fungal cells such as yeast can be used.
 また、本発明の抗体は、遺伝子組み換え技術を用いて遺伝子導入された非ヒト動物又は植物において製造することができる。 In addition, the antibody of the present invention can be produced in a non-human animal or plant that has been gene-transferred using a gene recombination technique.
 本発明における抗体として、例えばハイブリドーマS18201R、ハイブリドーマS18202R、ハイブリドーマS18203RまたはハイブリドーマS18204Rが産生するモノクローナル抗体が好ましい。上記ハイブリドーマは下記のようにブダペスト条約に基づき国際寄託されている。 As the antibody in the present invention, for example, a monoclonal antibody produced by hybridoma S18201R, hybridoma S18202R, hybridoma S18203R or hybridoma S18204R is preferable. The hybridoma is deposited internationally based on the Budapest Treaty as follows.
 寄託機関の名称:独立行政法人製品評価技術基盤機構 特許微生物寄託センター、寄託機関の住所:千葉県木更津市かずさ鎌足2-5-8 122号室(郵便番号292-0818)、寄託日:2018年5月17日。
 受託番号:NITE BP-02717(ハイブリドーマ S18201R)
 受託番号:NITE BP-02718(ハイブリドーマ S18202R)
 受託番号:NITE BP-02719(ハイブリドーマ S18203R)
 受託番号:NITE BP-02720(ハイブリドーマ S18204R)
Name of depositary institution: National Institute for Product Evaluation Technology Patent Microorganism Depositary Center, Address of depositary institution: Room 2-5-8 Kazusa Kamashi, Kisarazu City, Chiba Prefecture (Zip 292-0818), Date of deposit: 2018 May 17th.
Accession Number: NITE BP-02717 (Hybridoma S18201R)
Accession Number: NITE BP-02718 (Hybridoma S18202R)
Accession Number: NITE BP-02719 (Hybridoma S18203R)
Accession Number: NITE BP-02720 (Hybridoma S18204R)
 本明細書において、「アルキル又はアルキル基」は直鎖状、分枝鎖状、環状、又はそれらの組み合わせからなる脂肪族炭化水素基のいずれであってもよい。アルキル基の炭素数は特に限定されないが、例えば、炭素数1~20個(C1~20)、炭素数1~15個(C1~15)、炭素数1~10個(C1~10)であり得る。 In the present specification, the “alkyl or alkyl group” may be any of an aliphatic hydrocarbon group composed of a straight chain, a branched chain, a ring, or a combination thereof. The number of carbon atoms of the alkyl group is not particularly limited, and examples thereof include 1 to 20 carbon atoms (C1 to 20), 1 to 15 carbon atoms (C1 to 15), and 1 to 10 carbon atoms (C1 to 10). obtain.
 アルキル基は任意の置換基を1個以上有していてもよい。例えば、C1~8アルキルには、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、sec-ブチル、tert-ブチル、n-ペンチル、イソペンチル、neo-ペンチル、n-ヘキシル、イソヘキシル、n-ヘプチル、n-オクチル等が含まれる。該置換基としては、例えば、アルコキシ基、ハロゲン原子(フッ素原子、塩素原子、臭素原子、又はヨウ素原子のいずれであってもよい)、アミノ基、モノ若しくはジ置換アミノ基、置換シリル基、又はアシルなどを挙げることができるが、これらに限定されることはない。アルキル基が2個以上の置換基を有する場合には、それらは同一でも異なっていてもよい。 The alkyl group may have one or more arbitrary substituents. For example, C1-8 alkyl includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, neo-pentyl, n-hexyl, isohexyl, n -Heptyl, n-octyl and the like are included. Examples of the substituent include an alkoxy group, a halogen atom (which may be a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom), an amino group, a mono- or di-substituted amino group, a substituted silyl group, or Although acyl etc. can be mentioned, it is not limited to these. When the alkyl group has two or more substituents, they may be the same or different.
 本明細書中において、「アルキレン」とは、直鎖状または分枝状の飽和炭化水素からなる二価の基を意味する。 In the present specification, “alkylene” means a divalent group consisting of a linear or branched saturated hydrocarbon.
 本明細書において、ある官能基について「置換されていてもよい」と定義されている場合には、置換基の種類、置換位置、及び置換基の個数は特に限定されず、2個以上の置換基を有する場合には、それらは同一でも異なっていてもよい。置換基としては、例えば、アルキル基、アルコキシ基、水酸基、カルボキシル基、ハロゲン原子、スルホ基、アミノ基、アルコキシカルボニル基、オキソ基などを挙げることができるが、これらに限定されることはない。これらの置換基にはさらに置換基が存在していてもよい。このような例として、例えば、ハロゲン化アルキル基などを挙げることができるが、これらに限定されることはない。 In the present specification, when a functional group is defined as “may be substituted”, the type of substituent, the substitution position, and the number of substituents are not particularly limited, and two or more substitutions are made. If they have groups, they may be the same or different. Examples of the substituent group include, but are not limited to, an alkyl group, an alkoxy group, a hydroxyl group, a carboxyl group, a halogen atom, a sulfo group, an amino group, an alkoxycarbonyl group, and an oxo group. These substituents may further have a substituent. Examples of such include, but are not limited to, a halogenated alkyl group.
 本明細書において、「NCC-ST-439抗原」は、NCC-ST-439抗体が認識すると報告されている(Kumamoto. K. et.al. Biochem. Biophys. Res. Commun. (1998), 247(2): 514-17)下記の構造を有する糖鎖を意味する。
Figure JPOXMLDOC01-appb-I000005
In the present specification, the “NCC-ST-439 antigen” is reported to be recognized by the NCC-ST-439 antibody (Kumamoto. K. et. Al. Biochem. Biophys. Res. Commun. (1998), 247. (2): 514-17) Means a sugar chain having the following structure.
Figure JPOXMLDOC01-appb-I000005
 本明細書において、「DUPAN-2抗原」は、DUPAN-2抗体が認識すると報告されている(Kawa. S. et.al. Pancreas(1994), 9(6): 692-697)下記の構造を有する糖鎖を意味する。
Figure JPOXMLDOC01-appb-I000006
 本明細書において、「NCC-ST-439抗原結合ペプチド」とは、生体内の腫瘍細胞などで発見される、NCC-ST-439抗原が結合したペプチドを意味する。
In the present specification, “DUPAN-2 antigen” has been reported to be recognized by the DUPAN-2 antibody (Kawa. S. et al. Pancreas (1994), 9 (6): 692-697). It means a sugar chain having
Figure JPOXMLDOC01-appb-I000006
In the present specification, the “NCC-ST-439 antigen-binding peptide” means a peptide to which an NCC-ST-439 antigen is bound, which is found in a tumor cell or the like in a living body.
(NCC-ST-439抗原と特異的に反応する抗体の作製方法)
 本発明のNCC-ST-439抗原を特異的に認識する抗体は、図1に概要を示す方法で取得される。具体的には、従来の腫瘍マーカー反応性抗体が、腫瘍細胞自体を抗原として単離されたものであったのに対して(図1A)、本発明によるNCC-ST-439抗原と特異的に反応する抗体を作製する方法では(図1B)、NCC-ST-439抗原を構成する糖鎖をリンカーを介して高分子化合物に担持させ、これをマウス等の哺乳動物に免疫する。Antibodies,A Laboratory Manual(Cold Spring Harbor Laboratory Press,(1988))などに記載される既知の方法により、当該動物の脾臓細胞あるいはリンパ節細胞を摘出し、ミエローマ細胞と細胞融合させることによりハイブリドーマを作製する。作製したハイブリドーマ細胞集団から、癌細胞と特異的に反応する抗体を産生するものを単離する。
 従来の方法では、最終的に抗体が取得されてからエピトープを解析する必要があったのに対して、本件発明の方法では免疫原とエピトープが一致しているため効率的に抗体作製可能であり、特定の糖鎖抗原と特異的に反応する抗体を取得することができる。但し、糖鎖合成において高度な技術を必要とする。
(Method for producing antibody specifically reacting with NCC-ST-439 antigen)
Antibodies that specifically recognize the NCC-ST-439 antigen of the present invention are obtained by the method outlined in FIG. Specifically, while the conventional tumor marker-reactive antibody was isolated using the tumor cell itself as an antigen (FIG. 1A), the NCC-ST-439 antigen according to the present invention was specifically used. In the method of producing a reactive antibody (FIG. 1B), a sugar chain constituting the NCC-ST-439 antigen is supported on a polymer compound via a linker, and this is immunized to a mammal such as a mouse. A hybridoma is prepared by extracting spleen cells or lymph node cells of the animal and fusing them with myeloma cells by a known method described in Antibodies, A Laboratory Manual (Cold Spring Harbor Laboratory Press, (1988)). To do. From the prepared hybridoma cell population, those producing antibodies that react specifically with cancer cells are isolated.
In the conventional method, it was necessary to analyze the epitope after the antibody was finally obtained, whereas in the method of the present invention, since the immunogen and the epitope match, the antibody can be efficiently produced. An antibody that specifically reacts with a specific sugar chain antigen can be obtained. However, advanced techniques are required in sugar chain synthesis.
 リンカーの構造は特に限定されないが、例えば、C1~C12の置換されてもよいアルキル基、アルキレン基、エチレングリコール、ポリエチレングリコール、アミノ酸、ペプチドなどを用いることができる。 The structure of the linker is not particularly limited, and for example, a C1-C12 optionally substituted alkyl group, alkylene group, ethylene glycol, polyethylene glycol, amino acid, peptide and the like can be used.
 高分子化合物は特に限定されないが、例えば、アルブミン、オボアルブミン、緑膿菌外毒素、破傷風毒素、リシン毒素、ジフテリア毒素、コレラ毒素、易熱性エンテロトキシン、キーホールリンペットヘモシアニン、上皮細胞増殖因子、線維芽細胞増殖因子、トランスフェリン、血小板由来増殖因子、ポリ-L-リジン、ポリ-L-グルタミンなどのタンパク質を用いることができる。 The high molecular compound is not particularly limited. Proteins such as blast growth factor, transferrin, platelet-derived growth factor, poly-L-lysine, poly-L-glutamine can be used.
 本発明のNCC-ST-439抗原が結合した高分子化合物は、NCC-ST-439抗原結合ペプチドの一部を含んでいてもよく、含んでいなくてもよい。好ましい態様において、本発明のNCC-ST-439抗原が結合した高分子化合物は、NCC-ST-439抗原結合ペプチド部分を含まない。 The polymer compound bound with the NCC-ST-439 antigen of the present invention may or may not contain a part of the NCC-ST-439 antigen-binding peptide. In a preferred embodiment, the polymer compound to which the NCC-ST-439 antigen of the present invention is bound does not contain an NCC-ST-439 antigen-binding peptide moiety.
 ハイブリドーマの作製は、当該分野で公知の方法に従って行うことができ、例えば、ポリエチレングリコール法、センダイウイルスを用いた方法、電流を利用する方法などを採用することができる。得られたハイブリドーマは、公知の方法に従って増殖させることができ、産生される抗体の性質を確認しつつ所望のハイブリドーマを選択することができる。ハイブリドーマのクローニングは、例えば限界希釈法や軟寒天法などの公知の方法により行うことが可能である。 The hybridoma can be produced according to a method known in the art. For example, a polyethylene glycol method, a method using Sendai virus, a method using current, and the like can be employed. The obtained hybridoma can be propagated according to a known method, and a desired hybridoma can be selected while confirming the properties of the produced antibody. The hybridoma can be cloned by a known method such as a limiting dilution method or a soft agar method.
 得られた抗体は、上記ハイブリドーマから直接産生する以外に、遺伝子組み換えにより当該抗体を発現するホスト細胞を調製し、当該ホスト細胞から得ることができる。ホスト細胞として、例えば、CHO細胞、リンパ球細胞、大腸菌などの細菌細胞、及び酵母などの真菌細胞を用いることができる。 The obtained antibody can be obtained from the host cell by preparing a host cell that expresses the antibody by genetic recombination in addition to directly producing it from the hybridoma. As host cells, for example, CHO cells, lymphocyte cells, bacterial cells such as E. coli, and fungal cells such as yeast can be used.
 なお、上記抗体の作製方法は、NCC-ST-439抗原に限定されず、他の公知の糖鎖タンパク質の糖鎖抗原に対して特異的な抗体を作製するために用いることができる。例えば、同様の方法により、上記DUPAN-2抗原と特異的に反応するモノクローナル抗体を作製することができた。 The above antibody production method is not limited to the NCC-ST-439 antigen, and can be used to produce an antibody specific to a sugar chain antigen of another known sugar chain protein. For example, a monoclonal antibody that specifically reacts with the above DUPAN-2 antigen could be prepared by the same method.
(本発明の抗体の用途)
 本発明の抗体は、腫瘍マーカーの検出として、生体試料中のNCC-ST-439抗原を検出するための免疫測定方法に用いることができる。具体的には、抗体を用いて生体試料中のムチン腫瘍マーカーを検出するための様々な公知の方法を利用することができ、例えば、酵素結合イムノソルベントアッセイ(ELISA)、ラジオイムノアッセイ(RIA)、免疫蛍光測定法、免疫沈降法、平衡透析、免疫拡散法およびその他の技法をもちいることができるが、これらに限定されない(例えばHarlow and Lane,Antibodies:A Laboratory Manual,Cold Spring Harbor Laboratory,1988;Weir,D.M.,Handbook of Experimental Immunology,1986,Blackwell Scientific,Boston参照)。一つの態様において、本発明の抗体は、不溶性担体上に固定された固定(固相)化抗体や、標識物質で標識した標識抗体として使用することができる。このような固定化抗体や標識抗体はいずれも本発明の範囲に包含される。例えば、不溶性担体に本発明の抗体を物理的に吸着させ、あるいは化学的に結合(適当なスペーサーを介してもよい)させることにより固定化抗体を製造することができる。不溶性担体としては、ポリスチレン樹脂などの高分子基材、ガラスなどの無機基材、セルロースやアガロースなどの多糖類基材などからなる不溶性担体を用いることがでる。その形状は特に限定されず、板状(例えば、マイクロプレートやメンブレン)、ビーズあるいは微粒子状(例えば、ラテックス粒子や磁性粒子)、筒状(例えば、試験管)など任意の形状を選択できる。
(Use of the antibody of the present invention)
The antibody of the present invention can be used in an immunoassay method for detecting NCC-ST-439 antigen in a biological sample as a tumor marker. Specifically, various known methods for detecting mucin tumor markers in a biological sample using an antibody can be used, such as enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), Immunofluorescence, immunoprecipitation, equilibrium dialysis, immunodiffusion, and other techniques can be used, but are not limited to these (eg, Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988; Weir, DM, Handbook of Experimental Immunology, 1986, Blackwell Scientific, Boston). In one embodiment, the antibody of the present invention can be used as an immobilized (solid phase) antibody immobilized on an insoluble carrier or a labeled antibody labeled with a labeling substance. Any of such immobilized antibodies and labeled antibodies are included in the scope of the present invention. For example, an immobilized antibody can be produced by physically adsorbing the antibody of the present invention to an insoluble carrier or by chemically binding it (may be via an appropriate spacer). As the insoluble carrier, an insoluble carrier made of a polymer substrate such as polystyrene resin, an inorganic substrate such as glass, a polysaccharide substrate such as cellulose or agarose, or the like can be used. The shape is not particularly limited, and any shape such as a plate shape (for example, a microplate or a membrane), a bead or fine particle shape (for example, latex particles or magnetic particles), or a tubular shape (for example, a test tube) can be selected.
 標識抗体を製造するための標識物質としては、例えば酵素、蛍光物質、化学発光物質、ビオチン、アビジン、又は放射性同位体、金コロイド粒子、着色ラテックスなどが挙げられる。標識物質と抗体との結合法としては、当業者に利用可能なグルタルアルデヒド法、マレイミド法、ピリジルジスルフィド法、又は過ヨウ素酸法などの方法を用いることができる。固定化抗体や標識抗体の種類、及びそれらの製造方法は特に限定されることはなく、例えば、パーオキシダーゼやアルカリホスファターゼ(以下、ALPということがある)などの酵素を標識物質として用いることができる。この場合、当該酵素の特異的基質(酵素が西洋ワサビパーオキシダーゼ(以下、HRPということがある)の場合には、例えば1,2-フェニレンジアミン(以下、OPDということがある)あるいは3,3’,5,5’-テトラメチルベンジジン、ALPの場合には、p-ニトロフェニルホスフェートなど)を用いて酵素活性を測定することができる。ビオチンを標識物質として用いる場合にはアビジンあるいは酵素修飾アビジンを反応させるのが一般的である。 Examples of the labeling substance for producing the labeled antibody include enzymes, fluorescent substances, chemiluminescent substances, biotin, avidin, or radioisotopes, colloidal gold particles, and colored latex. As a method for binding the labeling substance and the antibody, methods such as a glutaraldehyde method, a maleimide method, a pyridyl disulfide method, or a periodic acid method that can be used by those skilled in the art can be used. There are no particular limitations on the type of immobilized antibody or labeled antibody and the method for producing them, and for example, an enzyme such as peroxidase or alkaline phosphatase (hereinafter sometimes referred to as ALP) can be used as the labeling substance. . In this case, when the enzyme is a specific substrate (horseradish peroxidase (hereinafter sometimes referred to as HRP)), for example, 1,2-phenylenediamine (hereinafter sometimes referred to as OPD) or 3, 3 In the case of ', 5,5'-tetramethylbenzidine or ALP, the enzyme activity can be measured using p-nitrophenyl phosphate or the like. When biotin is used as a labeling substance, avidin or enzyme-modified avidin is generally reacted.
 本発明の抗体は、上記免疫測定方法に用いるための免疫測定試薬として提供され得る。当該試薬は、本発明の抗体に加えて、当該免疫測定方法の実施に必要な他の構成要素、例えば、緩衝液、保存剤等を含んでもよい。 The antibody of the present invention can be provided as an immunoassay reagent for use in the above immunoassay method. In addition to the antibody of the present invention, the reagent may contain other components necessary for carrying out the immunoassay method, such as a buffer solution and a preservative.
 一態様において、例えば本発明の抗体が酵素を標識物質として含む場合には、その特異的基質を含む試薬と共に、キットの形態で提供されてもよい。 In one embodiment, for example, when the antibody of the present invention contains an enzyme as a labeling substance, it may be provided in the form of a kit together with a reagent containing the specific substrate.
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらによって限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
〔試験例1〕NCC-ST-433抗原特異的なモノクローナル抗体の製造
1.材料
(1)NCC-ST-439修飾マレイミド、NCC-ST-439糖ペプチド、各種糖鎖関連化合物
(2)フロインド完全アジュバント:和光純薬工業社製,014-09541
(3)ミエローマ細胞(SP2/O)
(4)RPMI1640, GlutaMAX:GIBCO社製,61870-036
(5)Fetal Bovine Serum (FBS):BIOLOGICAL INDUSTRIES社製,04-001-1A
(6)HAT 培地:コスモバイオ社製,16213004
(7)96穴プレート:NUNC,167008
(8)HRP標識ヤギ抗ラットIgG (H & L)抗体:Southern Biotech社 製,3050-05
(9)「ラナザイム(登録商標)ST-439プレート」:カイノス/日本化薬;HRP標識NCC-ST-439抗体(既存抗体)および標準液(NCC-ST-439標準品)を構成試薬として含む
[Test Example 1] Production of monoclonal antibody specific for NCC-ST-433 antigen
1. Materials (1) NCC-ST-439 modified maleimide, NCC-ST-439 glycopeptide, various sugar chain-related compounds (2) Freund's complete adjuvant: Wako Pure Chemical Industries, 014-09541
(3) Myeloma cells (SP2 / O)
(4) RPMI 1640, GlutaMAX: GIBCO, 61870-036
(5) Fetal Bovine Serum (FBS): manufactured by BIOLOGICAL INDUSTRIES, 04-001-1A
(6) HAT medium: Cosmo Bio, 16231004
(7) 96-well plate: NUNC, 167008
(8) HRP-labeled goat anti-rat IgG (H & L) antibody: manufactured by Southern Biotech, 3050-05
(9) “Ranazyme (registered trademark) ST-439 plate”: Kainos / Nippon Kayaku; HRP-labeled NCC-ST-439 antibody (existing antibody) and standard solution (NCC-ST-439 standard product) are included as constituent reagents
2.免疫原用NCC-ST-439修飾マレイミド又はNCC-ST-439糖鎖付加ペプチド架橋タンパク質の調製
 糖鎖修飾マレイミドの架橋は、ヒトトランスフェリンを還元し、還元されたヒトトランスフェリンと糖鎖マレイミドとを重量比4:1にてPBS中で混合し、室温で2時間反応させ、4℃で一晩放置した。その後、透析によりバッファーをPBSに置換した。
 糖ペプチドの架橋は、マレイミド活性化OVAと糖ペプチドを重量比4:1でPBS中で混合し、室温で2時間反応させ、透析によりバッファーをPBSに置換し、免疫用コンジュゲート液とした。
2. Preparation of NCC-ST-439 modified maleimide for immunogen or NCC-ST-439 glycosylated peptide cross-linked protein Cross-linking of sugar chain-modified maleimide reduces human transferrin, and reduces reduced human transferrin and sugar chain maleimide by weight. Mixed in PBS at a ratio of 4: 1, reacted at room temperature for 2 hours and left at 4 ° C. overnight. Thereafter, the buffer was replaced with PBS by dialysis.
For cross-linking of glycopeptide, maleimide-activated OVA and glycopeptide were mixed at a weight ratio of 4: 1 in PBS, reacted at room temperature for 2 hours, and the buffer was replaced with PBS by dialysis to obtain a conjugate solution for immunization.
3.抗NCC-ST-439モノクローナル抗体産生ハイブリドーマの作製
(3-1)動物への免疫
 前記免疫用コンジュゲート液(0.2~2mg/ml)とフロインド完全アジュバンドを等量ずつ混合して調製したエマルジョンを用い、F344ラットに1匹あたり10~40μgを注射した。さらに、1週間の間隔で7~8回、該エマルジョンの注射を繰り返した。尾部静脈より採血して得た抗血清中の抗体価を、後述する抗原固相化ELISA法にて測定した。
3. Preparation of hybridoma producing anti-NCC-ST-439 monoclonal antibody (3-1) Immunization to animals Prepared by mixing equal amounts of the immunization conjugate solution (0.2-2 mg / ml) and Freund's complete adjuvant. Using the emulsion, F344 rats were injected with 10-40 μg per animal. In addition, the emulsion injection was repeated 7-8 times at weekly intervals. The antibody titer in the antiserum obtained by collecting blood from the tail vein was measured by the antigen-immobilized ELISA method described later.
(3-2)1次スクリーニング(抗原固相化ELISA法)
 前記免疫動物抗血清中の抗NCC-ST-439抗体の存在を、免疫用コンジュゲート液と同様の方法で作製した、NCC-ST-439とBSAとのコンジュゲート液を固相化したELISA法(抗原固相化ELISA法)で確認した。抗原固相化ELISA法の詳細は以下の通りである。
(3-2-1)抗原固相化ELISA用プレートの作製
 NCC-ST-439糖ペプチドとBSAとのコンジュゲート液を0.1μg/mLになるよう、150mM塩化ナトリウムを含む20mMリン酸緩衝液(pH7.2;以下、PBSという)に溶解し、該溶解液50μLを96穴マイクロプレートの各ウエルに分注して、室温で2時間又は4℃で一晩静置した。
 前記各ウエルを0.05%Tween(登録商標)20を含むPBS(以下、PBSTという)400μLで3回洗浄した後、1%牛血清アルブミンを含むPBST(以下、BSA-PBSTという)100μLを加え、室温で1時間又は4℃で一晩ブロッキングを行った。これをELISA用プレートとした。
(3-2-2)抗原固相化ELISA法
 前記ELISA用プレートの各ウエルをPBST400μLで3回洗浄した後、BSA-PBSTで1500倍から13500倍に希釈した免疫動物抗血清及び非免疫動物血清50μLを前記各ウエルに添加し、室温で1時間静置した。 前記各ウエルをPBST400μLで3回洗浄した後、BSA-PBSTで5000倍希釈したHRP標識ラットIgG(H&L)を50μL前記各ウエルに分注し、室温で1時間静置した。前記各ウエルをPBST400μLで3回洗浄した後、0.2%オルトフェニレンジアミン及び0.02%過酸化水素を含むクエン酸緩衝液(pH5.0)50μLを加え、室温で10分間放置後、1.5N硫酸50μLを加えて酵素反応を停止させ、波長492nmにおける吸光度を測定した。測定の結果、抗体価の高かったマウスから、脾臓もしくはリンパ節を摘出して、脾臓由来細胞もしくはリンパ節由来細胞を調製し、細胞融合に用いた。
(3-2) Primary screening (antigen-immobilized ELISA method)
The presence of the anti-NCC-ST-439 antibody in the immunized animal antiserum was prepared by the same method as the conjugate solution for immunization, and the ELISA method in which the conjugate solution of NCC-ST-439 and BSA was immobilized This was confirmed by (antigen-immobilized ELISA method). Details of the antigen-immobilized ELISA method are as follows.
(3-2-1) Preparation of ELISA-immobilized ELISA plate 20 mM phosphate buffer containing 150 mM sodium chloride so that the conjugate solution of NCC-ST-439 glycopeptide and BSA is 0.1 μg / mL. (PH 7.2; hereinafter referred to as PBS), 50 μL of the lysate was dispensed into each well of a 96-well microplate and allowed to stand at room temperature for 2 hours or at 4 ° C. overnight.
Each well was washed three times with 400 μL of PBS containing 0.05% Tween® 20 (hereinafter referred to as PBST), and then 100 μL of PBST containing 1% bovine serum albumin (hereinafter referred to as BSA-PBST) was added. Blocking was performed for 1 hour at room temperature or overnight at 4 ° C. This was used as an ELISA plate.
(3-2-2) Antigen-immobilized ELISA method Each well of the ELISA plate was washed three times with 400 μL of PBST, and then diluted with BSA-PBST from 1500 times to 13500 times. 50 μL was added to each well and allowed to stand at room temperature for 1 hour. Each well was washed 3 times with 400 μL PBST, and then 50 μL of HRP-labeled rat IgG (H & L) diluted 5000 times with BSA-PBST was dispensed into each well and allowed to stand at room temperature for 1 hour. Each well was washed with 400 μL of PBST three times, 50 μL of citrate buffer (pH 5.0) containing 0.2% orthophenylenediamine and 0.02% hydrogen peroxide was added, and the mixture was allowed to stand at room temperature for 10 minutes. The enzyme reaction was stopped by adding 50 μL of 5N sulfuric acid, and the absorbance at a wavelength of 492 nm was measured. As a result of the measurement, spleen or lymph node was extracted from a mouse having a high antibody titer, and spleen-derived cells or lymph node-derived cells were prepared and used for cell fusion.
(3-2)試験結果
 結果を図2に示す。非免疫動物血清と比較して免疫動物抗血清は何れも希釈倍率が低いほど、高い吸光度を示した。この測定系では、吸光度は動物の血清中に含まれるNCC-ST-439に対する抗体濃度に依存する。つまり、前述の結果は、免疫動物抗血清には非免疫動物の血清と比較して、より高い濃度のNCC-ST-439に対する抗体を含み、抗体価が高い、ということを示している。測定の結果、抗体価の高かったラットから、脾臓もしくはリンパ節を摘出して、脾臓由来細胞もしくはリンパ節由来細胞を調製し、細胞融合に用いた。
(3-2) Test results The results are shown in FIG. As compared with non-immunized animal serum, the immunized animal antisera showed higher absorbance as the dilution factor was lower. In this measurement system, the absorbance depends on the antibody concentration against NCC-ST-439 contained in the animal serum. That is, the above-mentioned results indicate that the immunized animal antiserum contains a higher concentration of antibody against NCC-ST-439 and has a higher antibody titer than the sera of nonimmunized animals. As a result of the measurement, spleen or lymph node was extracted from a rat having a high antibody titer to prepare spleen-derived cells or lymph node-derived cells and used for cell fusion.
(4)細胞融合
 前記脾臓由来細胞もしくはリンパ節由来細胞のいずれかとミエローマ細胞を細胞数で1対1の割合で混合し、電気融合した。該融合させた細胞をHAT培地に懸濁し、COインキュベータ内で37℃、5%COにて8日間培養して、融合細胞(ハイブリドーマ)を得た。 
(4) Cell fusion One of the spleen-derived cells or lymph node-derived cells and myeloma cells were mixed at a cell number ratio of 1: 1, and electrofused. The fused cells were suspended in HAT medium and cultured in a CO 2 incubator at 37 ° C. and 5% CO 2 for 8 days to obtain fused cells (hybridomas).
(5)ハイブリドーマの選別 (抗原固相化ELISA法)
 上述の抗原固相化ELISA法において、免疫動物抗血清の代わりに融合細胞の培養上清を用いた以外は、同様の方法を行った。測定の結果、吸光度の高いウエルを抗NCC-ST-439抗体産生ハイブリドーマの存在するウエル(陽性ウエル)として選択した。
(5) Selection of hybridoma (antigen-immobilized ELISA method)
In the antigen-immobilized ELISA method described above, the same method was performed except that the culture supernatant of the fused cells was used instead of the immunized animal antiserum. As a result of the measurement, a well having a high absorbance was selected as a well in which an anti-NCC-ST-439 antibody-producing hybridoma was present (positive well).
(6)クローニング
 上述の1次スクリーニング及び2次スクリーニングで選択された抗NCC-ST-439抗体産生株ハイブリドーマを用いて、ハイブリドーマの単クローン化とモノクローナル抗体の精製を行った。 
 単クローン化は定法(限界希釈法)で行い、上述の抗原固相化ELISA法と同様の方法で陽性ウエルを選別し、最終的に4種の抗NCC-ST-439モノクローナル抗体産生ハイブリドーマを得た。これら4種のハイブリドーマS18201R、S18202R、S18203R、S18204Rが産生するモノクローナル抗体を、それぞれS18201R抗体、S18202R抗体、S18203R抗体、S18204R抗体と呼ぶ。
(6) Cloning Using the anti-NCC-ST-439 antibody-producing hybridoma selected in the primary screening and secondary screening described above, single cloning of the hybridoma and purification of the monoclonal antibody were performed.
Monocloning is performed by a standard method (limit dilution method), and positive wells are selected in the same manner as in the above-described antigen-immobilized ELISA method. Finally, four types of anti-NCC-ST-439 monoclonal antibody-producing hybridomas are obtained. It was. The monoclonal antibodies produced by these four types of hybridomas S18201R, S1822R, S1823R, and S18204R are referred to as S18201R antibody, S1822R antibody, S18203R antibody, and S18204R antibody, respectively.
〔試験例2〕本発明のモノクローナル抗体のエピトープ分析
1.試験方法
 S18201R、S18202R、S18203R、S18204R抗体と反応するNCC-ST-439のエピトープが、既存抗体と近似であるかについて、以下に記述する競合ELISAにより確認した。先ず、上述の抗原固相化ELISA法と同様の方法でELISA用プレートを作製した。また、BSA-PBSTを溶媒として、2倍希釈した既存抗体と2-8倍希釈したS18201R、S18202R、S18203R、S18204R抗体産生ハイブリドーマ培養上清及びNCC-ST-439に反応しないコントロール抗体を産生するハイブリドーマ培養上清を混合した。これらを混合液とする。ELISA用プレートの各ウエルをPBST400μLで3回洗浄した後、上述の混合液をそれぞれ50μL/wellずつ分注し、室温で1時間静置した。
 次いで、前記各ウエルをPBST400μLで3回洗浄した後、0.2%オルトフェニレンジアミン及び0.02%過酸化水素を含むクエン酸緩衝液(pH5.0)50μLを加え、室温で10分間静置後、1.5N硫酸50μLを加えて酵素反応を停止させ、波長492nmにおける吸光度を測定した。
[Test Example 2] Epitope analysis of the monoclonal antibody of the present invention
1. Test Method S18201R, S1822R, S18203R, S18204R It was confirmed by competitive ELISA described below whether the epitope of NCC-ST-439 that reacts with the antibody is similar to that of the existing antibody. First, an ELISA plate was prepared in the same manner as the above-described antigen-immobilized ELISA method. In addition, with BSA-PBST as a solvent, existing antibodies diluted 2 times, hybridomas producing S18201R, S1822R, S1823R, S18204R antibody-producing hybridoma cultures diluted 2-8 times, and hybridomas producing a control antibody that does not react with NCC-ST-439 The culture supernatant was mixed. These are mixed liquids. Each well of the ELISA plate was washed 3 times with 400 μL of PBST, and then the above-mentioned mixed solution was dispensed at 50 μL / well and allowed to stand at room temperature for 1 hour.
Next, each well was washed three times with 400 μL of PBST, 50 μL of citrate buffer (pH 5.0) containing 0.2% orthophenylenediamine and 0.02% hydrogen peroxide was added, and the mixture was allowed to stand at room temperature for 10 minutes. Thereafter, 50 μL of 1.5 N sulfuric acid was added to stop the enzyme reaction, and the absorbance at a wavelength of 492 nm was measured.
2.試験結果
 結果を図3に示す。NCC-ST-439に反応しないコントロール抗体と既存抗体を混合した場合には、吸光度の減少が観察されなかった。一方、S18201R、S18202R、S18203R、S18204R抗体と既存抗体を混合した場合には、吸光度の減少が観察された。この測定系では、吸光度は、プレートに固相化したNCC-ST-439とBSAとのコンジュゲートに結合した既存抗体の量に依存する。つまり、S18201R、S18202R、S18203R、S18204R抗体の添加により吸光度が減少するということは、溶液中のS18201R、S18202R、S18203R、S18204R抗体が、既存抗体とコンジュゲートとの結合部位近傍に結合し、既存抗体とコンジュゲートとの結合を阻害していることを示す。従って、S18201R、S18202R、S18203R、S18204R抗体は、既存抗体と近似のエピトープを認識することがわかった。
2. The test result is shown in FIG. When a control antibody that does not react with NCC-ST-439 was mixed with an existing antibody, no decrease in absorbance was observed. On the other hand, when the S18201R, S1822R, S1823R, and S18204R antibodies were mixed with existing antibodies, a decrease in absorbance was observed. In this measurement system, the absorbance depends on the amount of existing antibody bound to the conjugate of NCC-ST-439 and BSA immobilized on the plate. In other words, the decrease in absorbance due to the addition of S18201R, S1822R, S1823R, and S18204R antibodies means that the S18201R, S1822R, S1823R, and S18204R antibodies in the solution are bound in the vicinity of the binding site between the existing antibody and the conjugate. It shows that the binding of the conjugated to the conjugate is inhibited. Therefore, it was found that the S18201R, S1822R, S1823R, and S18204R antibodies recognize an epitope similar to that of the existing antibody.
〔試験例3〕本発明のモノクローナル抗体の特異性分析
1.試験方法
 S18201R、S18202R、S18203R、S18204R抗体の特異性を、以下に記述する競合ELISAにより確認した。先ず、上述の抗原固相化ELISA法と同様の方法でELISA用プレートを作製した。また、BSA-PBSTを溶媒として、80-125倍希釈したS18201R、S18202R、S18203R、S18204R抗体産生ハイブリドーマ培養上清及び30倍希釈したHRP標識既往NCC-ST-439抗体を、0.1-10μg/mLに調製したNCC-ST-439の糖マレイミドとBSAのコンジュゲート、DUPAN-2の糖マレイミドとBSAのコンジュゲート及び精製糖鎖Sialyl Lewis X(sLex)と混合した。これらを混合液とする。ELISA用プレートの各ウエルをPBST400μLで3回洗浄した後、上述、S18201R、S18202R、S18203R、S18204R抗体産生ハイブリドーマ培養上清と各糖鎖関連化合物の混合液をそれぞれ50μL/wellずつ分注し、室温で1時間静置した。その他のウエルにはBSA-PBSTを50μL/wellずつ分注し、室温で1時間静置した。前記各ウエルのうちS18201R、S18202R、S18203R、S18204R抗体産生ハイブリドーマ培養上清と各糖鎖関連化合物の混合液を分注したウエルはPBST400μLで3回洗浄した後、BSA-PBSTで5000倍希釈したHRP標識ラットIgG(H&L)を50μL/wellずつ分注し、室温で1時間静置した。前記各ウエルのうち、BSA-PBSTを50μL/wellずつ分注したウエルには既存抗体と各糖鎖関連化合物の混合液を50μL/wellずつ分注し、室温で1時間静置した。
 次いで、前記各ウエルをPBST400μLで3回洗浄した後、0.2%オルトフェニレンジアミン及び0.02%過酸化水素を含むクエン酸緩衝液(pH5.0)50μLを加え、室温で10分間静置後、1.5N硫酸50μLを加えて酵素反応を停止させ、波長492nmにおける吸光度を測定した。
[Test Example 3] Specificity analysis of the monoclonal antibody of the present invention
1. The specificity of the test methods S18201R, S1822R, S18203R, S18204R antibodies was confirmed by competitive ELISA described below. First, an ELISA plate was prepared in the same manner as the above-described antigen-immobilized ELISA method. Further, S18201R, S1822R, S1823R, S18204R antibody-producing hybridoma culture supernatant diluted with BSA-PBST as a solvent, and HRP-labeled NCC-ST-439 antibody diluted 30 times with 0.1-10 μg / NCC-ST-439 sugar maleimide / BSA conjugate, DUPAN-2 sugar maleimide / BSA conjugate and purified sugar chain Siaryl Lewis X (sLex) prepared in mL were mixed. These are mixed liquids. After washing each well of the ELISA plate with PBST 400 μL three times, 50 μL / well each of the above-mentioned S18201R, S1822R, S1823R, S18204R antibody-producing hybridoma culture supernatant and each sugar chain-related compound mixture was dispensed at room temperature. And left for 1 hour. To other wells, 50 μL / well of BSA-PBST was dispensed and allowed to stand at room temperature for 1 hour. Of the wells, the wells into which the S18201R, S1822R, S1823R, S18204R antibody-producing hybridoma culture supernatant and each sugar chain-related compound mixture were dispensed were washed three times with PBST 400 μL, and then HRP diluted 5000 times with BSA-PBST. Labeled rat IgG (H & L) was dispensed at 50 μL / well and allowed to stand at room temperature for 1 hour. Of each well, 50 μL / well of a mixture of the existing antibody and each sugar chain-related compound was dispensed into wells into which BSA-PBST was dispensed at 50 μL / well, and allowed to stand at room temperature for 1 hour.
Next, each well was washed three times with 400 μL of PBST, 50 μL of citrate buffer (pH 5.0) containing 0.2% orthophenylenediamine and 0.02% hydrogen peroxide was added, and the mixture was allowed to stand at room temperature for 10 minutes. Thereafter, 50 μL of 1.5 N sulfuric acid was added to stop the enzyme reaction, and the absorbance at a wavelength of 492 nm was measured.
2.試験結果
 結果を図4a,b,c,d,eに示す。既存抗体を用いた場合には、NCC-ST-439のコンジュゲートを混合した場合に吸光度の減少が観察された。また、DUPAN-2のコンジュゲートを高濃度で混合した場合にNCC-ST-439の場合よりは軽度の吸光度の減少が観察された(図4a)。一方、S18201R、S18202R、S18203R、S18204R抗体を用いた場合には、NCC-ST-439のみで吸光度の減少が観察された(図4b,c,d,e)。この測定系では、吸光度は、プレートに固相化したNCC-ST-439とBSAとのコンジュゲートに結合した抗体の量に依存する。つまり、各糖鎖関連化合物の添加により吸光度が減少するということは、溶液中の遊離の糖鎖関連化合物が、溶液中の抗体と反応し、抗体と固相化したコンジュゲートとの結合を阻害することを示している。従って、S18201R、S18202R、S18203R、S18204R抗体はDUPAN-2に反応せず、NCC-ST-439特異的に反応することを示している。
2. The test results are shown in FIGS. 4a, b, c, d and e. When the existing antibody was used, a decrease in absorbance was observed when the NCC-ST-439 conjugate was mixed. In addition, when the DUPAN-2 conjugate was mixed at a high concentration, a slight decrease in absorbance was observed compared to NCC-ST-439 (FIG. 4a). On the other hand, when the S18201R, S1822R, S1823R, and S18204R antibodies were used, a decrease in absorbance was observed only with NCC-ST-439 (FIGS. 4b, c, d, and e). In this measurement system, the absorbance depends on the amount of antibody bound to the conjugate of NCC-ST-439 and BSA immobilized on the plate. In other words, the decrease in absorbance due to the addition of each sugar chain-related compound means that the free sugar chain-related compound in the solution reacts with the antibody in the solution and inhibits the binding between the antibody and the immobilized conjugate. It shows that Therefore, it is shown that the S18201R, S1822R, S1823R, and S18204R antibodies do not react with DUPAN-2 but react specifically with NCC-ST-439.
〔試験例4〕精製糖鎖に対する競合ELISAによる特異性評価
1.材料
  各種糖鎖
[Test Example 4] Specificity evaluation by competitive ELISA for purified sugar chain
1. Material various sugar chains
2.試験方法
  S18201R、S18202R、S18203R、S18204R抗体の特異性を、以下に記述する競合ELISAにより確認した。先ず、前述の抗原固相化ELISA法と同様の方法でELISA用プレートを作製した。また、BSA-PBSTを溶媒として225から500ng/mLに希釈したS18201R、S18202R、S18203R、S18204R抗体をBSA-PBSTで段階希釈した糖鎖(図5)と混合した。これらを混合液とする。ELISA用プレートの各ウエルをPBST400μLで3回洗浄した後、上述、S18201R、S18202R、S18203R、S18204R抗体産生ハイブリドーマ培養上清と各糖鎖の混合液をそれぞれ50μL/wellずつ分注し、室温で1時間静置した。PBST400μLで3回洗浄した後、BSA-PBSTで5000倍希釈したHRP標識ラットIgG(H&L)を50μL/wellずつ分注し、室温で1時間静置した。
 次いで、前記各ウエルをPBST400μLで3回洗浄した後、0.2%オルトフェニレンジアミン及び0.02%過酸化水素を含むクエン酸緩衝液(pH5.0)50μLを加え、室温で10分間静置後、1.5N硫酸50μLを加えて酵素反応を停止させ、波長492nmにおける吸光度を測定し、糖鎖を加えていない場合の吸光度を100%として反応率を算出した。
2. The specificity of the test methods S18201R, S1822R, S18203R, S18204R antibodies was confirmed by competitive ELISA described below. First, an ELISA plate was prepared in the same manner as the aforementioned antigen-immobilized ELISA method. Further, S18201R, S1822R, S1823R, and S18204R antibodies diluted to 225 to 500 ng / mL using BSA-PBST as a solvent were mixed with sugar chains (FIG. 5) serially diluted with BSA-PBST. These are mixed liquids. Each well of the ELISA plate was washed 3 times with 400 μL of PBST, and 50 μL / well of each of the above-described hybridoma culture supernatants of S18201R, S1822R, S1823R, and S18204R antibody-producing hybridomas and each sugar chain was dispensed at room temperature. Let stand for hours. After washing 3 times with 400 μL of PBST, HRP-labeled rat IgG (H & L) diluted 5000 times with BSA-PBST was dispensed at 50 μL / well and allowed to stand at room temperature for 1 hour.
Next, each well was washed three times with 400 μL of PBST, 50 μL of citrate buffer (pH 5.0) containing 0.2% orthophenylenediamine and 0.02% hydrogen peroxide was added, and the mixture was allowed to stand at room temperature for 10 minutes. Thereafter, 50 μL of 1.5 N sulfuric acid was added to stop the enzyme reaction, the absorbance at a wavelength of 492 nm was measured, and the reaction rate was calculated with the absorbance when no sugar chain was added as 100%.
3.試験結果
 結果を図6a,b,c,dに示す。S18201R、S18202R、S18203R、S18204R抗体を用いた場合には、NCC-ST-439のみで吸光度の減少が観察された(図6a、b、c、d)。この測定系では、吸光度は、プレートに固相化したNCC-ST-439とBSAとのコンジュゲートに結合した抗体の量に依存する。つまり、各糖鎖の添加により吸光度が減少するということは、溶液中の遊離の糖鎖が、溶液中の抗体と反応し、抗体と固相化したコンジュゲートとの結合を阻害することを示している。つまり、S18201R、S18202R、S18203R、S18204R抗体は、NCC-ST-439特異的に反応することを示している。
3. The test results are shown in FIGS. 6a, b, c and d. When the S18201R, S1822R, S1823R, and S18204R antibodies were used, a decrease in absorbance was observed only with NCC-ST-439 (FIGS. 6a, b, c, and d). In this measurement system, the absorbance depends on the amount of antibody bound to the conjugate of NCC-ST-439 and BSA immobilized on the plate. That is, the decrease in absorbance due to the addition of each sugar chain indicates that the free sugar chain in the solution reacts with the antibody in the solution and inhibits the binding between the antibody and the immobilized conjugate. ing. That is, the antibodies S18201R, S1822R, S18203R, and S18204R react specifically with NCC-ST-439.
〔試験例5〕検体及びNCC-ST-439標準品に対する反応性
1.材料
 HRP標識ストレプトアビジン(Thermo Fisher社製、21126)
[Test Example 5] Reactivity to specimen and NCC-ST-439 standard
1. Materials HRP-labeled streptavidin (Thermo Fisher, 21126)
2.試験方法
 各抗体を用いたサンドウィッチELISAにより、血清検体中に含まれるNCC-ST-439を測定できるか試験した。サンドウィッチELISAの詳細は以下である。
(2-1)サンドウィッチELISA用プレートの作製
 S18201R、S18202R、S18203R、S18204R抗体含有液をそれぞれ5μg/mLになるよう、150mM塩化ナトリウムを含む20mMリン酸緩衝液(pH7.2;以下、PBSという)に溶解し、該溶解液50μLをそれぞれ96穴マイクロプレートの各ウエルに分注して、室温で2時間静置した。
 前記各ウエルを0.05%Tween(登録商標)20を含むPBS(以下、PBSTという)400μLで3回洗浄した後、1%牛血清アルブミンを含むPBST(以下、BSA-PBSTという)100μLを加え、室温で1時間ブロッキングを行った。これをELISA用プレートとした。
(2-2)サンドウィッチELISA法
 前記ELISA用プレートの各ウエルをPBST400μLで3回洗浄した後、BSA-PBSTで段階希釈した10例の癌患者血清50μL及びBSA-PBSTで段階希釈したNCC-ST-439標準品を前記各ウエルに添加し、室温で1時間静置した。
 前記各ウエルをPBST400μLで3回洗浄した後、BSA-PBSTで2μg/mLに希釈したビオチン標識したS18201R、S18202R、S18203R、S18204R抗体を同一の抗体を固相した前記プレートに50μL各ウエルに分注し、室温で1時間静置した。前記各ウエルをPBST400μLで3回洗浄した後、BSA-PBSTで0.2μg/mLに希釈したHRP標識ストレプトアビジンを50μL前記各ウエルに分注し、室温で1時間静置した。前記各ウエルをPBST400μLで3回洗浄した後、0.2%オルトフェニレンジアミン及び0.02%過酸化水素を含むクエン酸緩衝液(pH5.0)50μLを加え、室温で10分間放置後、1.5N硫酸50μLを加えて酵素反応を停止させ、波長492nmにおける吸光度を測定した。癌患者血清を用いた場合には、NCC-ST-439標準品を用いて測定した吸光度を検量線として、NCC-ST-439濃度を測定した。
2. Test Method It was tested whether NCC-ST-439 contained in serum samples could be measured by sandwich ELISA using each antibody. Details of the sandwich ELISA are as follows.
(2-1) Preparation of sandwich ELISA plate 20 mM phosphate buffer containing 150 mM sodium chloride (pH 7.2; hereinafter referred to as PBS) so that the S18201R, S1822R, S1823R, and S18204R antibody-containing solutions are each 5 μg / mL. And 50 μL of the lysate was dispensed into each well of a 96-well microplate and allowed to stand at room temperature for 2 hours.
Each well was washed three times with 400 μL of PBS containing 0.05% Tween® 20 (hereinafter referred to as PBST), and then 100 μL of PBST containing 1% bovine serum albumin (hereinafter referred to as BSA-PBST) was added. Blocking was performed at room temperature for 1 hour. This was used as an ELISA plate.
(2-2) Sandwich ELISA Method Each well of the ELISA plate was washed 3 times with PBST 400 μL, and then serially diluted with BSA-PBST 50 cancer serums of 10 cases and BSA-PBST serially diluted NCC-ST- 439 standard was added to each well and allowed to stand at room temperature for 1 hour.
Each well was washed 3 times with 400 μL PBST, and then biotinylated S18201R, S1822R, S18203R, S18204R antibodies diluted to 2 μg / mL with BSA-PBST were dispensed into the wells on the same plate with 50 μL each well. And allowed to stand at room temperature for 1 hour. Each well was washed with 400 μL of PBST three times, and then 50 μL of HRP-labeled streptavidin diluted to 0.2 μg / mL with BSA-PBST was dispensed into each well and allowed to stand at room temperature for 1 hour. Each well was washed with 400 μL of PBST three times, 50 μL of citrate buffer (pH 5.0) containing 0.2% orthophenylenediamine and 0.02% hydrogen peroxide was added, and the mixture was allowed to stand at room temperature for 10 minutes. The enzyme reaction was stopped by adding 50 μL of 5N sulfuric acid, and the absorbance at a wavelength of 492 nm was measured. When cancer patient serum was used, the NCC-ST-439 concentration was measured using the absorbance measured with the NCC-ST-439 standard as a calibration curve.
3.試験結果
 結果を図7a,b,c,d,eに示す。NCC-ST-439標準品濃度依存的に吸光度が増大している(図7a,b,c,d)。つまりこのことは、抗体が標準品に含まれるNCC-ST-439抗原と反応していることを示す。更に、本試験の癌患者血清を用いた際の吸光度と市販ELISAキットで測定したNCC-ST-439の値は、相関係数0.99以上の近似直線として比例していた(図7e)。つまり、本発明の抗体は既存のNCC-ST-439抗体と同様に、癌患者血清中のNCC-ST-439を測定できることが示された。
3. The test results are shown in FIGS. 7a, b, c, d, and e. The absorbance increases depending on the NCC-ST-439 standard product concentration (FIGS. 7a, b, c and d). That is, this indicates that the antibody is reacting with the NCC-ST-439 antigen contained in the standard product. Furthermore, the absorbance when using serum from cancer patients in this study was proportional to the value of NCC-ST-439 measured with a commercial ELISA kit as an approximate line with a correlation coefficient of 0.99 or more (FIG. 7e). That is, it was shown that the antibody of the present invention can measure NCC-ST-439 in cancer patient serum in the same manner as the existing NCC-ST-439 antibody.
 以上具体例を用いて本発明を説明したが、本発明の範囲は上記具体例に限定されるものではない。当業者は本発明の要旨を逸脱することなくその他種々の構成を採り得ることを理解する。 Although the present invention has been described above using specific examples, the scope of the present invention is not limited to the above specific examples. Those skilled in the art will appreciate that various other configurations can be employed without departing from the spirit of the invention.

Claims (9)

  1.  下記糖鎖構造を有するNCC-ST-439抗原
    Figure JPOXMLDOC01-appb-I000001
    と反応し、かつ
     下記糖鎖構造を有するDUPAN-2抗原
    Figure JPOXMLDOC01-appb-I000002
    と反応しない抗体およびその抗原結合フラグメント。
    NCC-ST-439 antigen having the following sugar chain structure
    Figure JPOXMLDOC01-appb-I000001
    And DUPAN-2 antigen having the following sugar chain structure
    Figure JPOXMLDOC01-appb-I000002
    Antibodies and antigen-binding fragments thereof that do not react with.
  2.  DUPAN-2抗原に対する反応性が、NCC-ST-439抗原に対する反応性の10%未満である、請求項1に記載の抗体またはその抗原結合フラグメント。 The antibody or antigen-binding fragment thereof according to claim 1, wherein the reactivity to DUPAN-2 antigen is less than 10% of the reactivity to NCC-ST-439 antigen.
  3.  DUPAN-2抗原に対する反応性が、NCC-ST-439抗原に対する反応性の1%未満である、請求項1に記載の抗体またはその抗原結合フラグメント。 The antibody or antigen-binding fragment thereof according to claim 1, wherein the reactivity to DUPAN-2 antigen is less than 1% of the reactivity to NCC-ST-439 antigen.
  4.  ラット抗体である、請求項1~3のいずれか一項に記載の抗体またはその抗原結合フラグメント。 The antibody or antigen-binding fragment thereof according to any one of claims 1 to 3, which is a rat antibody.
  5.  請求項1~4のいずれか一項に記載の抗体またはその抗原結合フラグメントを製造する方法であって、
     前記NCC-ST-439抗原を結合した高分子化合物を動物に免疫する工程を含む、前記方法。
    A method for producing the antibody or antigen-binding fragment thereof according to any one of claims 1 to 4, comprising
    The method comprising the step of immunizing an animal with the polymer compound bound with the NCC-ST-439 antigen.
  6.  請求項1~4のいずれか一項に記載の抗体またはその抗原結合フラグメントを産生する細胞を製造する方法であって、
     前記NCC-ST-439抗原を結合した高分子化合物を動物に免疫する工程を含む、前記方法。
    A method for producing a cell that produces the antibody or antigen-binding fragment thereof according to any one of claims 1 to 4, comprising:
    The method comprising the step of immunizing an animal with the polymer compound bound with the NCC-ST-439 antigen.
  7.  前記NCC-ST-439抗原と結合した高分子化合物が、NCC-ST-439抗原結合ペプチドのペプチド部分を含まない、請求項5または6に記載の方法。 The method according to claim 5 or 6, wherein the polymer compound bound to the NCC-ST-439 antigen does not contain a peptide portion of the NCC-ST-439 antigen-binding peptide.
  8.  請求項1~3のいずれか一項に記載の抗体またはその抗原結合フラグメントを用いることを特徴とする、免疫測定方法。 An immunoassay method comprising using the antibody or antigen-binding fragment thereof according to any one of claims 1 to 3.
  9.  請求項1~3のいずれか一項に記載の抗体またはその抗原結合フラグメントを含む、免疫測定試薬。 An immunoassay reagent comprising the antibody or antigen-binding fragment thereof according to any one of claims 1 to 3.
PCT/JP2019/014335 2018-03-30 2019-03-29 Monoclonal antibody specifically reacting with ncc-st-439 antigen and method for producing same WO2019189882A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020509355A JPWO2019189882A1 (en) 2018-03-30 2019-03-29 A monoclonal antibody that specifically reacts with the NCC-ST-439 antigen and a method for producing the same.
CN201980022654.5A CN112424232A (en) 2018-03-30 2019-03-29 Monoclonal antibody specifically reactive with NCC-ST-439 antigen and method for producing same
US17/043,287 US20210017290A1 (en) 2018-03-30 2019-03-29 Monoclonal antibody specifically reacting with ncc-st-439 antigen and method for producing same
EP19776519.1A EP3778645A4 (en) 2018-03-30 2019-03-29 Monoclonal antibody specifically reacting with ncc-st-439 antigen and method for producing same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018069132 2018-03-30
JP2018-069132 2018-03-30
JP2018100970 2018-05-25
JP2018-100970 2018-05-25
CN201811031188.0A CN110317274A (en) 2018-03-30 2018-09-05 The monoclonal antibody and its manufacturing method reacted with NCC-ST-439 antigentic specificity
CN201811031188.0 2018-09-05

Publications (1)

Publication Number Publication Date
WO2019189882A1 true WO2019189882A1 (en) 2019-10-03

Family

ID=68060627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014335 WO2019189882A1 (en) 2018-03-30 2019-03-29 Monoclonal antibody specifically reacting with ncc-st-439 antigen and method for producing same

Country Status (1)

Country Link
WO (1) WO2019189882A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110317274A (en) * 2018-03-30 2019-10-11 积水医疗株式会社 The monoclonal antibody and its manufacturing method reacted with NCC-ST-439 antigentic specificity

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009541259A (en) * 2006-06-20 2009-11-26 ブラッコ・イメージング・ソシエタ・ペル・アチオニ Method for producing specific antibody against saccharide antigen
WO2010122232A1 (en) * 2009-04-23 2010-10-28 Suomen Punainen Risti, Veripalvelu An antibody-glycan complex targeting the disialyl core ii and sialyl lewis x structures, and uses thereof involving analysis of stem cells or cancer cells

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009541259A (en) * 2006-06-20 2009-11-26 ブラッコ・イメージング・ソシエタ・ペル・アチオニ Method for producing specific antibody against saccharide antigen
WO2010122232A1 (en) * 2009-04-23 2010-10-28 Suomen Punainen Risti, Veripalvelu An antibody-glycan complex targeting the disialyl core ii and sialyl lewis x structures, and uses thereof involving analysis of stem cells or cancer cells

Non-Patent Citations (33)

* Cited by examiner, † Cited by third party
Title
BIRD ET AL., SCIENCE, vol. 242, 1988, pages 423 - 426
BRAZIL , J.C. ET AL.: "a3/4 Fucosyltransferase 3-Dependent Synthesis of Sialyl Lewis A on CD 44 Variant Containing Exon 6 Mediates Polymorphonuclear Leukocyte Detachment from Intestinal Epithelium during Transepithelial Migration", J. IMMUNOL., vol. 191, no. 9, 25 September 2013 (2013-09-25) - 1 November 2013 (2013-11-01), pages 4804 - 4817, XP055639105 *
ERTEKIN, O. ET AL.: "Biological Activity of the Carrier as a Factor in Immunogen Design for Haptens", MOLECULES, vol. 23, no. 2977, 14 November 2018 (2018-11-14), pages 1 - 10, XP055639108 *
FUKUDA, M.: "Roles of mucin-type O-glycans in cell adhesion", BIOCHIM. BIOPHYS. ACTA, vol. 1573, 2002, pages 394 - 405, XP004391594, DOI: 10.1016/S0304-4165(02)00409-9 *
GAN TO KAGAKU RYOHO, CANCER AND CHEMICAL THERAPY, vol. 13, no. 11, 1986, pages 3207 - 3214
GANN JAPANESE JOURNAL OF CANCER RESEARCH, vol. 75, no. 6, 1984, pages 485 - 488
HARLOWLANE: "Antibodies: A Laboratory Manual", 1988, COLD SPRING HARBOR LABORATORY PRESS
HEIMBURG-MOLINARO, J. ET AL.: "Cancer vaccines and carbohydrate epitopes", VACCINE, vol. 29, 2011, pages 8802 - 8826, XP028326010, DOI: 10.1016/j.vaccine.2011.09.009 *
HIROHASHI, S. ET AL.: "Monoclonal Antibody Reactive with the Sialyl-Sugar Residue of a High Molecular Weight Glyco-Protein in Sera of Cancer Patients", GANN ( JAPANESE JOURNAL OF CANCER RESEARCH, vol. 75, June 1984 (1984-06-01), pages 485 - 488, XP055740727 *
HU , Y. ET AL.: "Fuctional differences in IgG anti-polysaccharide antibodies elicited by immunization of mice with C3d versus ovalbumin conjugates of pneumococcal serotype 14 capsular polysaccharide", VACCINE, vol. 23, 2004, pages 21 - 28, XP004618118, DOI: 10.1016/j.vaccine.2004.06.039 *
HUSTON ET AL., PROC. NATL. ACAD. SCI. USA, vol. 85, 1988, pages 5879 - 5883
KANNAGI, R. ET AL.: "Glycobiology of Sialyl 6-Sulfo Lewis x, a New Carbohydrate Ligand for Selectins", TRENDS IN GLYCOSCIENCE AND GLYCOTECHNOLOGY, vol. 11, no. 62, November 1999 (1999-11-01), pages 329 - 344, XP055639070 *
KAWA. S., PANCREAS, vol. 9, no. 6, 1994, pages 692 - 697
KOBAYASHI, M. ET AL.: "Prominent expression of sialyl Lewis X-capped core 2-branched O-glycans on high endothelial venule-like vessels in gastric MALT lymphoma", THE JOURNAL OF PATHOLOGY, vol. 224, no. 1, 2011 - 1 May 2012 (2012-05-01), pages 67 - 77, XP055639101 *
KOBAYASHI, M. ET AL.: "Role of Sulfated O-Glycans Expressed by High Endothelial Venule-Like Vessels in Pathogenesis of Chronic Inflammatory Gastrointenstinal Diseases", BIOL. PHARM. BULL., vol. 32, no. 5, 2009, pages 774 - 779, XP055639089 *
KUMAMOTO, K. ET AL.: "Specific Detection of Sialyl Lewis X Determinant Carried on the Mucin GlcNac beta 1?6GalNac alpha Core Structure as a Tumor-Associated Antigen", BIOCHEM. BIOPHYS. RES. COMMUN., vol. 247, no. 2, 18 June 1998 (1998-06-18), pages 514 - 517, XP055027328 *
KUMAMOTO. K., BIOCHEM. BIOPHYS. RES. COMMUN., vol. 247, no. 2, 1998, pages 514 - 17
NAKAGOE, T. ET AL.: "Serological and immunohistochemical studies on sialylated carbohydrate antigens in colorectal carcinoma", GASTROENTEROL. JPN., vol. 26, no. 3, 1991, pages 303 - 311, XP009523515, DOI: 10.1007/BF02781918 *
NISHAT, S. ET AL.: "Entirely Carbohydrate-Based Vaccines: An Emerging Field for Specific and Selective Immune Responses", VACCINES, vol. 4, no. 2, 20 May 2016 (2016-05-20), pages 1 - 16, XP055639119 *
OTSUBO, N. ET AL.: "Design and synthesis of a novel neo-glycolipid containing sialyl Lewis X determinant carried on the mucin GlcNAc beta 1-6GalNAc a core structure", TETRAHEDRON ASYMMETRY, vol. 16, no. 7, 4 April 2005 (2005-04-04), pages 1321 - 1327, XP027675982 *
PADLAN, FASEB J, vol. 9, 1995, pages 133 - 139
PANDEY, R.N. ET AL.: "Photochemical linking of primary aromatic amines to carrier proteins to elicit antibody response against the amine haptens", J. IMMUNOL. METHODS, vol. 94, 1986, pages 237 - 246, XP025806534, DOI: 10.1016/0022-1759(86)90238-3 *
RAGUPATHI, G. ET AL.: "Synthesis of sialyl Lewis3 (sLea CA 19-9) and construction of an immunogenic sLea vaccine", CANCER IMMUNOL. IMMUNOTHER., vol. 58, no. 9, 2009, pages 1397 - 1405, XP019706368 *
RINSHO BYORI, CLINICOPATHOLOGY, vol. 34, no. 6, 1986, pages 705 - 710
See also references of EP3778645A4
TANG HUIYUAN, HSUEH PETER, KLETTER DORON, BERN MARSHALL, HAAB BRIAN: "The Detection and Discovery of Glycan Motifs in Biological Samples Using Lectins and Antibodies: New Methods and Opportunities", ADV. CANCER RES., vol. 126, 2015, pages 167 - 202, XP009523547, DOI: 10.1016/bs.acr.2014.11.003 *
TANG, H. ET AL.: "Glycan Motif Profiling Reveals Plasma Sialyl-Lewis X Elevations in Pancreatic Cancers that are Negative for Sialyl-Lewis A", MOL. CELL . PROTEOMICS, vol. 14, no. 5, 2 March 2015 (2015-03-02) - May 2015 (2015-05-01), pages 1323 - 1333, XP055639046 *
VAJDOS ET AL., J MOL BIOL, vol. 320, 2002, pages 415 - 428
WALCHECK, B. ET AL.: "The monoclonal antibody CHO-131 binds to a core 2 O-glycan terminated with sialyl-Lewis x, which is a functional glycan ligand for P-selectin", BLOOD, vol. 99, no. 11, 2002, pages 4063 - 4069, XP003027112, DOI: 10.1182/BLOOD-2001-12-0265 *
WARD ET AL., NATURE, vol. 341, 1989, pages 544 - 546
WEIR, D. M.: "Handbook of Experimental Immunology", 1986, BLACKWELL SCIENTIFIC
YAMASHITA, J. ET AL.: "Sandwich ELISA Using a Mouse/Human Chimeric CSLEX-1 Antibody", CLIN. CHEM., vol. 62, no. 11, October 2016 (2016-10-01) - November 2016 (2016-11-01), pages 1516 - 1523, XP055639080 *
ZALIAUSKIENE, L. ET AL.: "Enhancement of MHC Class II-Restricted Responses by Receptor-Mediated Uptake of Peptide Antigens", J. IMMUNOL., vol. 169, no. 5, 1 September 2002 (2002-09-01), pages 2337 - 2345, XP055639125 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110317274A (en) * 2018-03-30 2019-10-11 积水医疗株式会社 The monoclonal antibody and its manufacturing method reacted with NCC-ST-439 antigentic specificity
CN112424232A (en) * 2018-03-30 2021-02-26 积水医疗株式会社 Monoclonal antibody specifically reactive with NCC-ST-439 antigen and method for producing same

Similar Documents

Publication Publication Date Title
CN112250763B (en) Antibody targeting SARS-CoV-2 coronavirus and its diagnosis and detection use
EP2871189A1 (en) High-affinity monoclonal anti-strep-tag antibody
US11372001B2 (en) Anti-human IgG4 monoclonal antibody and methods of making and using same
JP6324970B2 (en) Anti-uroplakin II antibody system and method
CN112533958A (en) Proteins recognizing drug moieties of antibody-drug conjugates
US20210380707A1 (en) Anti-cd70 antibodies and uses thereof
US20140243265A1 (en) Antibodies to modified human igf-1/e peptides
JP6749901B2 (en) Monoclonal anti-GPC-1 antibody and uses thereof
WO2019189874A1 (en) Monoclonal antibody specifically reacting with dupan-2 antigen and method for producing same
CN109336973B (en) Anti-transferrin antibodies and uses thereof
US20210017263A1 (en) Monoclonal antibody specifically reacting with dupan-2 antigen and method for producing same
WO2019189882A1 (en) Monoclonal antibody specifically reacting with ncc-st-439 antigen and method for producing same
US20210017290A1 (en) Monoclonal antibody specifically reacting with ncc-st-439 antigen and method for producing same
KR102029394B1 (en) Monoclonal antibody for diagnosis of chikungunya virus infection, hybribodma producing the monoclonal antibody, and diagnosis method using the same
JP7424718B2 (en) How to process antigens.
WO2022029629A1 (en) Anti-idiotype antibodies targeting anti-cd70 chimeric antigen receptor
CN110579610A (en) Kit for detecting V-domain immunosuppressive factor activated by T cells
TW201915016A (en) Monoclonal antibody or antigen-binding fragment and use of the same
US20230296605A1 (en) Antibody for porcine reproductive and respiratory syndrome virus and uses thereof
JP2020162572A (en) Antigen treatment method
JP2017109965A (en) Anti-pancreatic polypeptide monoclonal antibody
JP2011160696A (en) Antibody against modified human igf-1/e peptide
CN110794144A (en) Kit for detecting induced immune co-stimulatory molecules and application thereof
CN114702585A (en) anti-CD 22 monoclonal antibody 4F6, and preparation method and application thereof
CN114478779A (en) Humanized phosphatidylinositolglycan 3 monoclonal antibody and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776519

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020509355

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2019776519

Country of ref document: EP