WO2019189594A1 - Intermediate glass plate manufacturing method, glass plate manufacturing method, and intermediate glass plate - Google Patents

Intermediate glass plate manufacturing method, glass plate manufacturing method, and intermediate glass plate Download PDF

Info

Publication number
WO2019189594A1
WO2019189594A1 PCT/JP2019/013636 JP2019013636W WO2019189594A1 WO 2019189594 A1 WO2019189594 A1 WO 2019189594A1 JP 2019013636 W JP2019013636 W JP 2019013636W WO 2019189594 A1 WO2019189594 A1 WO 2019189594A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
glass
base plate
glass base
thickness
Prior art date
Application number
PCT/JP2019/013636
Other languages
French (fr)
Japanese (ja)
Inventor
将徳 玉置
豊 多田
直之 樋口
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Publication of WO2019189594A1 publication Critical patent/WO2019189594A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing

Definitions

  • the present invention relates to an intermediate glass plate production method for producing an intermediate glass plate from a glass base plate, a glass plate production method for producing a glass plate using the intermediate glass plate, and an intermediate glass plate.
  • a hard disk device for data recording uses a magnetic disk in which a magnetic layer is provided on a disk-shaped nonmagnetic magnetic glass substrate.
  • grinding lapping
  • polishing is performed on a main surface of a glass plate that is a base of the glass substrate for a magnetic disk that is a final product.
  • the main surface of the glass plate is ground so as to have a predetermined thickness, and then the fine cracks formed by grinding are removed and the surface irregularities after grinding are smoothed. Is called.
  • the surface quality includes, for example, surface irregularities of a glass substrate that allows a hard disk to be read and written without error in a hard disk drive device.
  • the glass plate that is the base of such a glass substrate is formed by forming the molten glass into a sheet glass using a float method or a downdraw method, cutting out the glass base plate from the sheet glass, or forming a lump of molten glass as a mold, A glass base plate is produced by pressing from above and below, and the glass base plate can be obtained by shape processing.
  • a glass substrate for a magnetic disk is produced from a glass base plate produced by a float process, the surface roughness of the main surface after precision polishing of the glass substrate is sufficiently low, and the occurrence of defects and foreign matter is remarkable. Polishing processing using colloidal silica slurry which can be controlled is known (patent document 1).
  • the thickness of the glass base plate made by the float process is distributed with a variation of about several tens of ⁇ m among a plurality of glass base plates.
  • grinding in which the plate thickness is kept within a predetermined range before polishing
  • Lapping it is necessary to increase the grinding allowance by setting the average thickness of the glass base plates to be thick in advance in consideration of the variation in the thickness of the glass base plates.
  • grinding for example, fixed abrasive grains and the main surface of the glass base plate are brought into contact with each other and rubbed. Therefore, in grinding with a large grinding allowance, the grinding time until the predetermined grinding allowance is reached is long. The productivity of the glass plate is low.
  • the average plate thickness of each lot is measured. Therefore, the grinding conditions including the grinding time had to be adjusted as appropriate, which was a factor in reducing the production efficiency of the final product glass plate.
  • the thickness of the glass base plate made from the float process may vary greatly within a single glass base plate. In such a case, it is necessary to perform grinding with a large grinding allowance, and the grinding time is long. For this reason, the productivity of the glass plate as the final product may be low.
  • the average plate thickness varies between the glass base plates, and the fact that there is a large thickness distribution within one glass base plate and the plate thickness varies within one plate is the target plate thickness. It is not preferable in terms of productivity when producing a glass plate.
  • the present invention can suppress the variation of the thickness of the intermediate glass plate before becoming the glass plate as the final product, and can omit the grinding treatment performed before the polishing treatment of the main surface, or the grinding treatment
  • An object of the present invention is to provide a method for producing an intermediate glass plate capable of reducing the time required for the production, a method for producing a glass plate as a final product from the intermediate glass plate, and an intermediate glass plate .
  • One embodiment of the present invention is a method for producing an intermediate glass plate from a glass base plate.
  • the method is While supporting the glass base plate using a jig, heat treatment is performed using the heating source with the main surfaces on both sides of the glass base plate not in contact with the heating source, while supporting the heated glass base plate using the jig, the main surfaces on both sides of the heated glass base plate are simultaneously brought into contact with a pair of molds and pressed to form an intermediate glass plate. Pressure treatment to Is provided.
  • the glass base plate is preferably heated by radiant heat from a heating source provided on both sides of the glass base plate.
  • the minimum temperature of the main surface of the pressure-treated portion of the main surface that is pressurized by the pressure treatment is a glass transition temperature Tg + 330 ° C. or higher and a glass transition temperature Tg + 430 ° C. or lower, and the temperature distribution of the pressure-treated portion.
  • the heating rate of the main surface in the heat treatment is preferably 55 ° C./second or more. Furthermore, the temperature rising rate is more preferably 70 ° C./second or more.
  • a part of the main surface of the glass base plate is pressed against the mold and the remaining part is not pressed with the mold.
  • the glass base plate is pressurized by gradually reducing the distance between the pair of molds until the pressure received by the mold from the glass base plate reaches a predetermined upper limit. Is preferred.
  • the glass base plate is pressurized by gradually reducing the distance between the pair of molds until the distance between the pair of molds reaches a preset distance. preferable.
  • the decrease in the same place of the temperature on the main surface of the glass base plate to be subjected to the pressurization treatment is 100 ° C. or less from the temperature heated by the heat treatment.
  • the decrease is more preferably 60 ° C. or lower.
  • the glass base plate is disposed so that the main surface of the glass base plate faces in the horizontal direction, and the pair of molds are sandwiched between the glass base plates from both sides in the horizontal direction. It is preferable to pressurize the glass base plate.
  • the glass base plate that performs the pressure treatment moves from the processing device that performs the heat treatment to the processing device that performs the pressure treatment,
  • the pressure treatment is preferably performed when the glass base plate stops moving.
  • the edge of the glass base plate is supported by being fixed by the jig so that the glass base plate is not displaced during the heat treatment and the pressure treatment.
  • the difference between the maximum plate thickness and the minimum plate thickness in the pressure-treated portion of the glass base plate pressed by the mold is 2 ⁇ m or less. Is preferable.
  • the difference between the maximum plate thickness and the minimum plate thickness in the plate thickness distribution of the glass base plate before the heat treatment is preferably 0.5 to 20 ⁇ m.
  • Another embodiment of the present invention is a method for producing a glass plate.
  • the manufacturing method is The intermediate glass plate manufactured by the method for manufacturing the intermediate glass plate, a process of cutting out the pressure-treated portion pressed by the mold into a predetermined shape, and the main surface of the cut-out pressure-treated portion.
  • a polishing process for polishing is included.
  • the difference in plate thickness at the same place between the pressure-treated portion before the post-treatment first performed after the pressure treatment and the glass plate after the polishing treatment is 40 ⁇ m or less. It is preferable.
  • Yet another embodiment of the present invention is an intermediate glass plate.
  • Each of the main surfaces on both sides of the intermediate glass plate includes a peripheral region, and a central region provided surrounded by the peripheral region, The plate thickness in the central region is thinner than the plate thickness in the peripheral region, The central regions of the main surfaces on both sides are provided to face each other.
  • Yet another embodiment of the present invention is also an intermediate glass plate.
  • Each of the main surfaces on both sides of the intermediate glass plate includes a peripheral region, and a central region provided surrounded by the peripheral region,
  • the plate thickness in the central region is thinner than the plate thickness in the peripheral region,
  • the central region is a press surface, and the peripheral region is a non-press surface.
  • the difference between the maximum plate thickness and the minimum plate thickness in the central region is preferably 2 ⁇ m or less.
  • the difference between the maximum plate thickness and the minimum plate thickness in the central region is preferably smaller than the difference between the maximum plate thickness and the minimum plate thickness in the peripheral region.
  • the above-described method for producing an intermediate glass plate it is possible to provide a glass plate that suppresses variations in plate thickness. Therefore, by using the intermediate glass plate manufacturing method, the glass plate manufacturing method, and the intermediate glass plate, the grinding process of the main surface performed before the polishing process can be omitted, or the time taken for the grinding process Can be reduced.
  • (A), (b) is a figure which shows an example of the intermediate body glass plate which is one Embodiment. It is an external appearance perspective view of an example of the glass base plate which is one Embodiment. It is a figure explaining an example of the method of supporting the glass base plate which is one Embodiment. It is a figure explaining an example of the heat processing which is one Embodiment. It is a figure explaining an example of the pressurization process which is one Embodiment.
  • FIG. 1 is a perspective view of an example of a glass plate manufactured as a final product according to an embodiment.
  • a glass plate 1 shown in FIG. 1 is an annular thin glass plate having a circular hole in the center.
  • the glass plate 1 can be used as a glass substrate for a magnetic disk.
  • the size of the magnetic disk glass substrate is not limited, but the magnetic disk glass substrate is, for example, a magnetic disk glass having a nominal diameter of 2.5 inches or 3.5 inches.
  • the size of the substrate In the case of a glass substrate for a magnetic disk having a nominal diameter of 2.5 inches, for example, the outer diameter is 65 mm, the inner diameter of the circular hole is 20 mm, and the plate thickness is 0.3 to 1.3 mm.
  • the glass plate 1 includes a chamfered surface interposed between the main surface and the side wall surface formed on each of the pair of main surfaces, the outer end surface, and the inner end surface.
  • the side wall surface includes the center position of the glass plate 1 in the thickness direction.
  • the inclination angle of the chamfered surface with respect to the main surface is not particularly limited, and is 45 °, for example.
  • a magnetic layer is formed on the main surface of the glass plate 1 to produce a magnetic disk.
  • such a glass plate 1 is cut out into a circular shape from a glass base plate as shown in FIG. 3, and by performing shape processing to open a circular hole concentric with the circular shape, A disk-shaped glass plate similar to the glass plate 1 is produced. Further, end face polishing is performed on the inner end face and the outer end face of the disk-shaped glass plate. Thereafter, the main surface is ground and further polished on the end-polished glass plate. At this time, for example, one grinding and two polishings (rough polishing and fine polishing) are performed. Thereby, the target board thickness and the surface quality of a glass plate which are requested
  • the processing time for grinding and polishing is short.
  • the time required for grinding and polishing is determined according to the average plate thickness and surface quality of the glass plate before grinding or polishing. For example, for a glass plate with an average thickness that is thicker than the target thickness, the grinding time is lengthened, the amount of machining allowance by grinding is increased, and polishing is performed to remove large cracks and the like caused by grinding. Time also has to be increased. Therefore, it is desirable that the surface of the glass plate before grinding is close to the target plate thickness and the required surface quality.
  • the surface quality includes, for example, flatness and surface roughness.
  • the plate thickness of the glass sheet produced by the conventional float method and down draw method varies depending on the location, and the variation in the average plate thickness between the glass base plates cut into a predetermined shape from the glass sheet is large.
  • the glass plate produced by pressing a lump of molten glass also has a large variation in the average plate thickness between the glass plates. For this reason, the deviation of the average plate thickness with respect to the target plate thickness is large. Therefore, the time for grinding and polishing the glass plate so that the average plate thickness becomes the target plate thickness is extremely long.
  • an intermediate glass plate serving as a base of the glass plate for polishing the main surface is manufactured by the manufacturing method described below.
  • Intermediate glass plate and glass base plate 2A and 2B are views showing an example of the intermediate glass plate produced in the present embodiment.
  • the intermediate glass 10 shown in the figure has a rectangular outer shape.
  • the outer shape may be circular or elliptical, and the outer shape is not particularly limited.
  • the depth of the depression in the central region 14 is shown in an emphasized manner for easy understanding.
  • the intermediate glass plate 10 is a plate-like glass plate, and each of the main surfaces on both sides of the intermediate glass plate 10 includes a peripheral region 12 and a central region 14 that is recessed with respect to the peripheral region 12. Except for the inner edge of the peripheral region 12 in contact with the central region 14, the intermediate glass plate 10 has a substantially constant plate thickness.
  • the substantially constant plate thickness in the peripheral region 12 means that the difference between the maximum plate thickness and the minimum plate thickness in the peripheral region 12 is within an allowable range. “Within an allowable range” means, for example, 100 ⁇ m or less.
  • the inner edge of the peripheral region 12 is provided with an annularly raised portion with respect to the peripheral region 12 having a substantially constant thickness so as to surround the peripheral region 12.
  • the central region 14 is provided surrounded by the peripheral region 12.
  • the plate thickness between the main surfaces in the central region 14 is thinner than the plate thickness between the main surfaces in the peripheral region 12.
  • the surface of the central region 14 is recessed at a certain depth with respect to the surface of the peripheral region portion 12.
  • the constant depth means that it is depressed in the range of, for example, 10 ⁇ m to 30 ⁇ m from the average main surface position (center line of surface irregularities) of the central region 14. That is, the recess depth of the central region 14 is, for example, 10 ⁇ m to 30 ⁇ m.
  • the central region 14 is circular, but may be rectangular or elliptical.
  • region 14 is provided in the main surface of the both sides of the intermediate body 10, and fixed hollow depth is mutually the same in the main surface of both sides.
  • the depths of the recesses are the same means that it is within an allowable range, and the allowable range is, for example, 6 ⁇ m or less.
  • region 14 in the main surface of both sides is provided so that it may mutually oppose.
  • the difference between the maximum plate thickness and the minimum plate thickness in the plate thickness distribution of the central region 14 is preferably 2 ⁇ m or less, and more preferably 1 ⁇ m or less.
  • the difference between the maximum plate thickness and the minimum plate thickness in the central region 14 is preferably smaller than the difference between the maximum plate thickness and the minimum plate thickness in the peripheral region 12.
  • a glass plate is cut out circularly from such a central region 14 to form a glass plate. This glass plate has little variation in thickness between glass plates, and the average plate thickness of any glass plate is close to the target plate thickness. There are few glass plates.
  • the arithmetic average roughness Ra (JIS B0601: 2001), which is an index of the surface roughness in the central region 14, is preferably 300 nm or less, and more preferably 200 nm or less. More preferably, it is 100 nm or less. Moreover, it is preferable that there is no surface defect having a depth of 5 ⁇ m or more at any location in the central region 14. Moreover, by producing the intermediate glass plate 10 using an intermediate glass plate manufacturing method described later, the central region 14 becomes a pressed surface and the peripheral region 12 becomes a non-pressed surface.
  • Such an intermediate glass 10 is produced from the glass base plate 20 shown in FIG.
  • FIG. 3 is an external perspective view of an example of the glass base plate 20 according to the embodiment.
  • the glass base plate 20 is a plate-like glass plate, and the outer shape of the glass base plate 20 shown in the figure is a rectangular shape, but it may be circular or elliptical, and the outer shape is not particularly limited.
  • the difference between the maximum plate thickness and the minimum plate thickness in the plate thickness distribution of the glass base plate 20 is preferably 0.5 ⁇ m to 20 ⁇ m. More preferably, the thickness is 0.5 ⁇ m to 10 ⁇ m.
  • the glass base plate 20 is easily obtained from the glass base plate 20 because the central region 14 whose average plate thickness is in a predetermined range and whose surface quality of the main surface is improved is produced by the method described below.
  • a glass plate that can be used is preferable.
  • the surface quality of the easily available glass base plate 20 may be inferior to some extent to the surface quality of the main surface of the central region 14.
  • a glass plate produced by a float method, a down draw method, or a press method is used as the glass base plate 20.
  • the arithmetic average roughness Ra of the glass base plate 20 by the float method or the downdraw method is 10 to 20 nm
  • the arithmetic average roughness Ra of the glass base plate 20 by the press method is 0.1 to 1.0 ⁇ m.
  • the glass transition temperature Tg of the glass base plate 20, the intermediate glass plate 10, or the glass plate 1 is 450 to 800 ° C., which is achieved by efficiently heating the glass base plate 20 by the manufacturing method described later. It is preferable from the viewpoint of obtaining surface quality, and more preferably 480 to 750 ° C.
  • aluminosilicate glass soda lime glass, borosilicate glass, or the like can be used.
  • an aluminosilicate glass that can be chemically strengthened and that can provide a glass substrate for a magnetic disk that is excellent in the flatness of the main surface and the strength of the substrate. it can. More preferably, it is an amorphous aluminosilicate glass.
  • the glass composition of the glass base plate 20, the intermediate glass plate 10, and the glass plate 1 is not limited, but according to one embodiment, converted to oxide standards and expressed in mol%, 50 to 75% of SiO 2 Al 2 O 3 1-15%, A total of 5 to 35% of at least one component selected from Li 2 O, Na 2 O and K 2 O; 0-20% in total of at least one component selected from MgO, CaO, SrO, BaO and ZnO; 0 to 10% in total of at least one component selected from ZrO 2 , TiO 2 , La 2 O 3 , Y 2 O 3 , Ta 2 O 5 , Nb 2 O 5 and HfO 2 ; An amorphous aluminosilicate glass having a composition having
  • SiO 2 , Li 2 O, Na 2 O, and one or more alkaline earth metal oxides selected from the group consisting of MgO, CaO, SrO, and BaO are included.
  • the molar ratio of the CaO content to the total content of MgO, CaO, SrO and BaO (CaO / (MgO + CaO + SrO + BaO)) may be 0.20 or less and the glass transition temperature may be 650 ° C. or more.
  • the glass having such a composition is suitable for a glass substrate for a magnetic disk used for a magnetic disk for energy-assisted magnetic recording.
  • the production method of the intermediate glass plate 10 is as follows: (1) While supporting the glass base plate 20 using a jig, heat treatment is performed using the heating source so that both sides of the main surface of the glass base plate 20 are not in contact with the heating source; (2) While supporting the heat-treated glass base plate 20 using a jig, the main glass surfaces on both sides of the heat-treated glass base plate 20 are simultaneously brought into contact with a pair of molds to pressurize the intermediate glass plate. Pressure treatment for molding 10.
  • FIG. 4 is a diagram illustrating an example of a method for supporting the glass base plate 20 before performing the heat treatment.
  • FIG. 4 is a view of the main surface of the rectangular glass base plate 20 as viewed from the front.
  • the glass base plate 20 is fixed to the carrier 30 by fixing the edge of the glass base plate 20 by the carrier 30 so that the glass base plate 20 is not displaced during the heat treatment and further during the pressure treatment.
  • the carrier 30 is composed of a pair of carrier plates 30a and 30b, and the glass base plate 20 is sandwiched from both sides of the glass base plate 20 by the carrier plates 30a and 30b.
  • Each of the carrier plates 30a and 30b is provided with a through-hole 32 that is larger than the outer shape of the glass base plate 20 at a location facing each other when the glass base plate 20 is sandwiched between the carrier plates 30a and 30b. .
  • Each of the carrier plates 30a and 30b protrudes from the inner edge of the hole 32 and has a pressing portion 34 for holding the glass base plate 20 at a location facing each other when the glass base plate 20 is sandwiched between the carrier plates 30a and 30b. Is provided. Therefore, by sandwiching the glass base plate 20 by the carrier plates 30a and 30b, the glass base plate 20 is sandwiched from both sides of the main surface of the glass base plate 20 by the pressing portions 34, and the edges of the glass base plate 20 are fixed.
  • the Each of the main surfaces of the glass base plate 20 sandwiched between the carrier plates 30a and 30b is exposed from the holes 32.
  • the glass base plate 20 supported by the carrier 30 is subjected to heat treatment and pressure treatment.
  • a part of the glass base plate 20 becomes viscous due to heat and contracts due to the surface tension of the glass, and the glass base plate 20 is displaced. Can be suppressed. Further, it is possible to prevent the glass base plate 20 from being displaced by being pressed by the mold during the pressure treatment.
  • the edges of the glass base plate 20 are fixed by a total of twelve pressing portions 34. 30.
  • the number of the pressing portions 34 is not particularly limited, and may be 16 or 8, for example.
  • the shape of the pressing portion 34 is not limited to that having a circular arc shape as illustrated. If the holding part 34 fixes the edge of the glass base plate 20, the fixing part of the glass base plate 20 can be positioned outside the area where the mold presses in the pressurizing process described later.
  • the position of the tip where the pressing portion 34 fixes the glass base plate 20 is preferably within a range of 0.5 to 4 mm from the edge of the glass base plate 20.
  • the size of the hole 32 is preferably determined according to the size of the glass base plate 20 so that the clearance distance between the edge of the glass base plate 20 and the edge of the hole 32 is in a predetermined range.
  • the clearance distance is equal to or less than the predetermined distance, the temperature difference between the edge of the glass base plate 20 and the central portion of the glass base plate 20 becomes large due to cooling by heat conduction from the carrier 30 to the outside during the heat treatment.
  • the plate 20 is easily broken.
  • the clearance distance is preferably at least 3 mm.
  • the support of the glass base plate 20 by the carrier 30 is not limited to a method of pressing and fixing the edges of the glass base plate 20 at discrete positions in the form of the pressing portion 34, but pressing the glass base plate 20 continuously in a linear shape.
  • edge of the glass base plate 20 is a chamfered surface when a chamfered surface is provided on the outer end surface of the glass base plate 20 at a location that is a certain distance from the outer peripheral edge of the main surface to the main surface side. including.
  • the carrier 30 supporting the glass base plate 20 is set in a moving device (not shown) and moves to a heating device that performs heat treatment.
  • FIG. 5 is a diagram for explaining an example of the heat treatment.
  • the carrier 30 sandwiching the glass base plate 20 moves downward from the top in the drawing. During this movement, the glass base plate 20 is heated by passing through a position between the pair of heating sources 40a and 40b that is a fixed distance away from the heating sources 40a and 40b.
  • the heating sources 40a and 40b are constituted by heaters, for example.
  • the heat sources 40a and 40b are arranged so as to heat the glass base plate 20 in a non-contact manner at a position equidistant from the moving path of the glass base plate 20. 40b is provided.
  • variations in thickness between the intermediate glass plates 10 can be suppressed.
  • heating the glass base plate 20 uniformly does not increase the maximum temperature of the glass base plate 20 more than necessary in order to secure the minimum temperature of the glass base plate 20 suitable for the pressure treatment, It is also preferable in that energy consumption for heat generation of the sources 40a and 40b can be suppressed.
  • the heat generating elements generate heat so that the temperature of the main surface of the glass base plate 20 has a desired temperature distribution and generate radiant heat.
  • the arrangement has been adjusted.
  • the temperature of the main surface can be measured using an infrared radiation thermometer, and the arrangement of the heating elements is adjusted based on the measurement result.
  • the temperature demonstrated below can be obtained using an infrared radiation thermometer.
  • the heating sources 40a and 40b generate a large amount of heat in order to rapidly raise the temperature of the main surface of the moving glass base plate 20, and the distance between the heating sources 40a and 40b and the main surface of the glass base plate 20 is as follows. narrow. It is preferable to raise the temperature of the main surface of the glass base plate 20 at a heating rate of 55 ° C./second or more. The temperature rising rate is more preferably 70 ° C./second or more. Since the temperature of the main surface of the glass base plate 20 is raised so that the glass is in a viscous state, the glass on the surface layer including the main surface tends to flow and tends to flow vertically downward according to gravity. Such a flow is not preferable for the intermediate glass plate 10 for obtaining a constant plate thickness.
  • the main surface of the glass base plate 20 is heated in a short time.
  • the main surface is heated.
  • the heating time at each position of the glass base plate 20 is preferably within 15 seconds, and more preferably within 10 seconds.
  • the temperature increase rate of the glass base plate 20 is extremely high, so that there is a temperature difference between the surface layer including the main surface of the glass base plate 20 and the central portion of the glass base plate 20 in the thickness direction.
  • the glass in the surface layer of the heated glass base plate 20 is in a viscous state, but the glass in the center is in an elastic state or a viscoelastic state. In this way, by differentiating the state of the surface layer and the central glass, at least a part of the glass in the viscous state is forced to flow by the mold in the pressurizing process so that the plate thickness approaches the target plate thickness.
  • the surface quality can be improved by eliminating cracks and scratches on the surface layer of the glass base plate 20 before the heat treatment.
  • the glass base plate 20 passes through the gap between the heating source 40a and the heating source 40b, the glass base plate 20 is separated from the heating sources 40a and 40b by the same distance in order to receive heat evenly from the heating sources 40a and 40b. And let it pass. Thereby, the temperature of the main surface of the both sides of the glass base plate 20 can be made substantially the same. If there is a difference in the temperatures of the main surfaces on both sides of the glass base plate 20, the pressure treatment cannot be performed uniformly on the surface layers on both sides, and variations in the plate thickness between the plates are likely to be induced.
  • the temperature difference between the maximum temperature and the minimum temperature in the temperature distribution of the temperature of the main surface of the glass base plate 20 to be heated is preferably 50 ° C. or less, more preferably 20 ° C. or less, and more preferably 10 ° C. or less. Is even more preferable.
  • the temperature of the main surface of the heated glass base plate 20 is preferably at least the glass transition temperature Tg (° C.) + 330 ° C. and the glass transition temperature Tg (° C.) + 430 ° C. at the lowest temperature, and the glass transition temperature Tg (° C. ) + 360 ° C. or higher, and glass transition temperature Tg (° C.) + 400 ° C. or lower is more preferable. Further, in the heat treatment, as shown in FIG.
  • the example of the heat treatment shown in FIG. 5 is a mode in which the glass base plate 20 is moved downward from above and passed between the heating sources 40a and 40b, but the movement direction of the glass base plate 20 is downward.
  • the movement is not limited to the direction, and may be a movement from the bottom to the top, or may be a horizontal direction or a direction inclined with respect to the horizontal.
  • the heat treatment of the glass base plate 20 is not limited to a method of heating the glass base plate 20 while moving, but may be a method of heating the stationary glass base plate 20.
  • the heat-treated glass base plate 20 is subjected to pressure treatment.
  • the intermediate glass plate 10 is formed by pressing the glass base plate 20 by simultaneously contacting the main surfaces on both sides of the glass base plate 20 with a pair of molds.
  • FIG. 5 in the case of a system in which the glass base plate 20 is heated while moving the carrier 30 sandwiching the glass base plate 20, the movement of the carrier 30 that has come to the place of the pressurizing device is stopped and pressurized. It is preferable to start the process.
  • FIG. 6 is a diagram for explaining an example of the pressurizing process.
  • the molds 50a and 50b on both sides of the main surface of the glass base plate 20 that has stopped moving are brought into contact with the main surface until a predetermined pressure is reached, or the molds 50a and 50b
  • the glass base plate 20 is pressurized by bringing the molds 50a and 50b closer to each other until the distance reaches a predetermined distance.
  • the press surfaces of the molds 50a and 50b are flat surfaces, the flatness is 3 ⁇ m or less, and the arithmetic average roughness Ra of the surface irregularities is a plane of 300 nm or less, preferably 200 nm or less, more preferably 100 nm or less. ing.
  • the press surfaces of such dies 50a and 50b are preferably formed of a material such as WC (tungsten carbide) or SiC.
  • the temperature of the glass base plate 20 immediately before the start of the pressure treatment is a temperature at which the glass on the surface layer including the main surface is maintained in a viscous state by the heat treatment. Therefore, it is preferable to quickly move from the position of the heating sources 40a, 40b to the position of the molds 50a, 50b.
  • the temperature of the main surface of the glass base plate 20 is at least the glass transition temperature Tg (° C.) + 220 ° C.
  • the temperature is preferably Tg (° C.) + 270 ° C. to glass transition temperature Tg (° C.) + 370 ° C.
  • the central portion of the glass base plate 20 maintains the temperature from the elastic state to the viscoelastic state from the time of the heat treatment.
  • the time interval from the end of heating by the heating sources 40a and 40b to the start of the pressurizing process may be 1.6 seconds or less. Preferably, it is 0.5 seconds or less.
  • the pressing of the glass base plates 50a and 50b may press the entire glass base plate 20, but according to one embodiment, the molds 50a and 50b may press a part of the glass base plate 20. preferable. For this reason, each type
  • the glass in the central portion is in an elastic state to a viscoelastic state, the flow of the glass due to the pressurization of the molds 50a and 50b is less or hardly compared to the glass on the main surface. That is, in the pressure treatment, at least a part of the glass on the surface layer flows to adjust the plate thickness of the glass base plate 20, whereby the flatness is high, the plate thickness distribution approaches a constant value, and is the target. It approaches the plate thickness. For this reason, it is preferable that the temperature distribution on the main surface at the time when the pressure treatment is disclosed is nearly uniform, and the temperatures on the main surfaces on both sides are preferably the same. The same temperature means that the temperature difference is within 5 ° C.
  • the temperature of the press surface in contact with the glass base plate 20 of the molds 50a and 50b is preferably (Tg ⁇ 20 ° C.) or more and (Tg + 20 ° C.) or less, more preferably centered on the glass transition point Tg.
  • the temperature is from (Tg ⁇ 10 ° C.) to (Tg + 10 ° C.) with the glass transition point Tg as the center. Therefore, the temperature of the press surfaces of the molds 50 a and 50 b is lower than the temperature of the surface layer of the glass base plate 20. For this reason, the molds 50a and 50b are configured to cool while flowing at least a part of the glass in a viscous state on the surface layer of the glass base plate 20.
  • the molds 50a and 50b are cooled by taking heat from the main surface of the glass base plate 20, but it is preferable that the cooling process at this time is substantially the same on both sides (they can be cooled substantially uniformly). Therefore, it is preferable that the heat conduction of the molds 50a and 50b be configured to be substantially the same. That is, it is preferable that the amounts of heat flowing from the glass base plate 20 to the mold 50a and the mold 50b are approximately equal to each other from the viewpoint of increasing flatness and reducing variation in plate thickness between the plates.
  • the glass base plate 20 is disposed so that the molds 50a and 50b are in contact with the glass base plate 20 at the same time, and the movement operation of the molds 50a and 50b is controlled.
  • the pressurizing process from the time when the molds 50a and 50b contact the glass base plate 20 until the molds 50a and 50b come closest, that is, until the pushing operation of the molds 50a and 50b into the glass base plate 20 is completed.
  • the time is preferably 50 milliseconds or less, and more preferably 10 milliseconds or less.
  • Duration of time during which the glass base plate 20 is in contact with the press surfaces of the molds 50a, 50b Is preferably 50 milliseconds to 10 seconds.
  • the molds 50a and 50b gradually reduce the distance between the molds 50a and 50b until the pressure received by the molds 50a and 50b from the glass base plate 20 reaches a predetermined upper limit.
  • the glass base plate 20 is pressurized by a so-called pressure control method in that it can be realized by simple control of the molds 50a and 50b.
  • the glass base plate 20 is made by gradually narrowing the distance between the molds 50a and 50b until the distance between the molds 50a and 50b becomes a preset distance. It is preferable to pressurize by the so-called position control method from the viewpoint that the average plate thickness can be a target plate thickness.
  • the operation of the molds 50a and 50b can be controlled by controlling the rotational torque of a servo motor that is a drive source of the molds 50a and 50b. Since the rotational torque of the servo motor is proportional to the current flowing through the servo motor, the operation of the molds 50a and 50b can be controlled by controlling this current.
  • the position control method can be performed, for example, by controlling the current of the servo motor while monitoring the distance between the molds 50a and 50b. Further, the position control system is provided with a guide pin protruding from one of the molds 50a and 50b with respect to the other mold, and when approaching a predetermined distance, the guide pin comes into contact with the other mold. The position control method can also be performed by preventing the molds 50a and 50b from physically approaching.
  • the main surface of the glass base plate 20 may be arranged so as to face the vertical direction, and the mold may sandwich the glass base plate 20 from both sides in the vertical direction, but as shown in FIG. Placing the glass base plate 20 so that the main surface of the glass base plate 20 faces in the horizontal direction, and pressing the glass base plate 20 by sandwiching the glass base plate 20 from both sides of the molds 50a and 50b in the horizontal direction. Is preferred.
  • the glass base plate 20 By pressurizing the glass base plate 20 in this way, the glass in the viscous state on the surface layer including the main surfaces on both sides is subjected to gravity in the same direction until pressurization is started, and pressurization treatment by the molds 50a and 50b In this case, since the glass behaves symmetrically on both sides of the main surface, it is possible to reduce the factor that the surface quality of the main surface varies between the plates.
  • the glass base plate 20 thus pressure-treated can be removed from the carrier 30 to obtain the intermediate glass plate 10 shown in FIG.
  • the glass plate 1 is produced from the intermediate glass plate 10 as described above.
  • the manufacturing method of the glass plate 1 which produces the glass plate 1 from the intermediate body glass plate 10 is demonstrated.
  • a part of the central region 14 of the intermediate glass plate 10 is cut into a circular shape with respect to the intermediate glass plate 10 as shown in FIG.
  • a concentric inner hole is formed, and a shape processing process is performed to form a disk-shaped glass plate.
  • the shape processing process further includes a chamfering process for forming a chamfered surface on the end surface of the disk-shaped glass plate.
  • cutting using a scriber and chamfering using a general grindstone may be performed, but cutting using laser light and chamfering using laser light are preferably performed.
  • cutting using laser light By performing cutting using laser light, the surface quality of the cut end face (outer end face, inner end face) can be improved, so there is no need for end face polishing or the end face polishing time can be greatly shortened. it can.
  • the method of cutting out the circular glass plate by the laser beam is not particularly limited.
  • the focal position of the laser beam is located in the thickness direction of the intermediate glass plate 10 and the focal position is the intermediate body.
  • a method of forming a crack start portion in the intermediate glass plate 10 by moving the laser light relative to the intermediate glass plate 10 so as to draw a circle as viewed from the surface of the glass plate 10 can be mentioned.
  • heating or the like is carried out from the formed crack starting portion, the crack is propagated toward the main surface of the intermediate glass plate 10, the glass plate is split, and the intermediate glass plate 10 is formed into a circular shape. cut.
  • the chamfering process using the laser beam is not particularly limited, and examples thereof include a method of chamfering the corner portion between the end surface and the main surface with a laser beam of a type different from the laser beam used for cutting out the glass plate.
  • the laser beam to be used can be chamfered by irradiating the corner from a direction inclined at 30 to 60 degrees with respect to the main surface, and heating and softening the corner to evaporate. it can.
  • the laser light used for cutting out the glass plate for example, a YAG laser or a solid-state laser such as an ND: YAG laser is used.
  • the wavelength of the laser light is in the range of 1030 nm to 1070 nm, for example.
  • the laser beam is a pulse laser, and the pulse width of the laser beam is 10 ⁇ 12 seconds or less (1 picosecond or less), so that excessive alteration of the glass at the focal position of the laser beam can be suppressed. It is preferable from the point.
  • the optical energy of the laser light can be appropriately adjusted according to the pulse width and the repetition frequency of the pulse width. Providing excessive light energy with respect to the pulse width and repetition frequency tends to excessively alter the glass and tends to leave residue at the focal point.
  • a CO 2 laser is preferably used as the laser beam used for the chamfering process.
  • a laser beam having a repetition period of 5 KHz or more and a power density per pulse per unit area of 100 W / cm 2 or less can be used.
  • the polishing treatment includes first polishing and second polishing of the glass plate.
  • first polishing the main surfaces on both sides of the glass plate are polished while the glass plate is held in a holding hole provided in a polishing carrier of a known double-side polishing apparatus.
  • the purpose of the first polishing is to adjust minute surface irregularities (microwaveness, roughness).
  • the main surface of the glass plate is polished using a double-side polishing apparatus equipped with a planetary gear mechanism. Specifically, the main surfaces on both sides of the glass plate are polished while the glass plate is held in the holding holes provided in the holding member of the double-side polishing apparatus.
  • the double-side polishing apparatus has a pair of upper and lower surface plates (upper surface plate and lower surface plate), and an annular plate-shaped polishing pad (for example, as a whole on the upper surface of the lower surface plate and the bottom surface of the upper surface plate) Resin polisher) is attached. A glass plate is sandwiched between the upper surface plate and the lower surface plate.
  • the glass plate and each surface plate are relatively moved while supplying a polishing slurry containing free abrasive grains. Both main surfaces of the plate can be polished.
  • abrasive grains such as cerium oxide or zirconia are used.
  • the size of the abrasive grains is preferably in the range of 0.5 to 3 ⁇ m in terms of average particle diameter (D50).
  • the glass plate may be chemically strengthened after the first polishing.
  • a mixed melt of potassium nitrate and sodium sulfate or the like is used as the chemical strengthening liquid, and the glass plate is immersed in the chemical strengthening liquid.
  • a compressive-stress layer can be formed on the surface of a glass plate by ion exchange.
  • the second polishing is performed on the glass plate.
  • the second polishing treatment aims at mirror polishing of the main surface.
  • a double-side polishing apparatus having the same configuration as the double-side polishing apparatus used for the first polishing is used. Specifically, the main surfaces on both sides of the glass plate are polished while the glass plate is held in the holding holes provided in the polishing carrier of the double-side polishing apparatus.
  • the type and particle size of loose abrasive grains are different from those in the first polishing process, and the hardness of the resin polisher is different.
  • the hardness of the resin polisher is preferably smaller than that during the first polishing process.
  • a polishing liquid containing colloidal silica as free abrasive grains is supplied between the polishing pad of the double-side polishing apparatus and the main surface of the glass plate, and the main surface of the glass plate is polished.
  • the size of the abrasive grains used for the second polishing is preferably in the range of 5 to 50 nm in terms of average particle diameter (D50).
  • D50 average particle diameter
  • whether or not the chemical strengthening treatment is necessary may be appropriately selected in consideration of the glass composition and necessity.
  • another polishing may be added, and the two main surfaces may be polished by one polishing process. In this way, the final surface of the glass plate 1 satisfying the conditions required for the magnetic disk glass substrate or the like can be obtained by polishing the main surface of the glass plate.
  • the disk-shaped glass plate obtained by performing the shape processing treatment may be subjected to a grinding treatment before the first polishing.
  • the variation in the plate thickness is small, and the difference between the average plate thickness and the target plate thickness can be reduced, so the machining allowance by grinding is less than the machining allowance in conventional grinding, and the grinding time must be shortened.
  • the main surface is polished.
  • the difference between the maximum plate thickness and the minimum plate thickness in the plate thickness distribution in the pressure-treated portion before the polishing treatment can be 2 ⁇ m or less. For this reason, grinding is not performed, or even if it is performed, the machining allowance is small.
  • the difference in plate thickness between the pressure-treated portion processed into a disk shape and the polished glass plate at the same place should be 40 ⁇ m or less. it can. Further, the machining allowance can be reduced to 20 ⁇ m or less by polishing one side of the main surface.
  • the machining allowance by grinding can be reduced, so the difference in plate thickness at the same place between the pressure-processed portion processed into a disk shape and the glass plate after polishing treatment can be reduced to 40 ⁇ m. It can be: The average plate thickness in the central region 14 of the intermediate glass plate 10 can be brought close to the target plate thickness to the extent that it is not necessary to grind the main surface of the glass plate. Since the variation can be reduced, it is not necessary to perform grinding, and the productivity when manufacturing the glass plate 1 that satisfies the target plate thickness and required quality is higher.
  • both sides of the main surface of the glass base plate 20 are supported by the heating sources 40a and 40b while supporting the glass base plate 20 using a jig. Heat without contact. Thereafter, while supporting the glass base plate 20 using a jig, the main surfaces on both sides of the heat-treated glass base plate 20 are simultaneously brought into contact with the pair of molds 50a and 50b to pressurize the intermediate glass plate 10. Is molded. For this reason, in the pressurization process part of the intermediate body glass plate 10, the dispersion
  • the variation in the average plate thickness between the plates in the pressure-treated portion (central region 14) of the intermediate glass plate 10 before the polishing treatment can be reduced to 1 ⁇ m or less.
  • the difference between the maximum plate thickness and the minimum plate thickness can be 2 ⁇ m or less, and the flatness can be 4 ⁇ m or less.
  • the distortion of the pressure-treated portion can be suppressed, and the retardation value can be made less than 5 nm.
  • the glass base plate 20 is heated by radiant heat from a heating source provided on both sides of the glass base plate 20, so that the main surface of the glass base plate 20 is efficiently and rapidly heated regardless of heat conduction. can do.
  • the minimum temperature of the main surface of the glass base plate 20 is the glass transition temperature Tg + 330 ° C. or more and the glass transition temperature Tg + 430 ° C. or less, and the temperature difference between the maximum temperature and the minimum temperature on the main surface is 50 ° C. or less. Therefore, the glass on the surface layer including the main surface of the glass base plate 20 can be brought into a viscous state, and can be made into a nearly uniform viscous state, and variations in plate thickness between the plates can be further suppressed. .
  • the heating rate of the main surface in the heat treatment is 55 ° C./second or more, so that the glass on the surface layer including the main surface of the glass base plate 20 becomes viscous and easily flows, according to gravity.
  • the time to flow vertically downward is very short. For this reason, the change of the plate
  • the glass base plate 20 In the pressurizing process, a part of the main surface of the glass base plate 20 is pressed against the molds 50a and 50b and the remaining part is not pressed by the molds 50a and 50b.
  • the glass base plate 20 can be supported using a portion that is not pressurized during the pressure treatment, so that the glass base plate 20 is prevented from being displaced at the start of the pressure treatment. Can do.
  • the method in which a part of the main surface of the glass base plate 20 is pressed against the molds 50 a and 50 b can perform a stable pressurizing process on the glass base plate 20.
  • the distance between the molds 50a and 50b is gradually reduced until the pressure received by the molds 50a and 50b from the glass base plate 20 reaches a predetermined upper limit. It is preferable to pressurize the base plate 20. Thereby, control of the plate
  • the decrease in the temperature on the main surface of the glass base plate 20 to be subjected to the pressure treatment from the temperature in the heat treatment is 100 ° C. or less. More preferably, it is 60 degrees C or less.
  • Such a temperature decrease has a small amount of decrease from the temperature of the glass base plate 20 heated higher than the glass transition temperature Tg, and while maintaining the viscosity state of the glass in the surface layer including the main surface of the glass base plate 20, The pressure treatment of the glass base plate 20 can be performed effectively.
  • the glass base plate 20 is arranged so that the main surface of the glass base plate 20 faces the horizontal direction, and the glass base plate 20 is sandwiched between the molds 50a and 50b from both sides in the horizontal direction. It is preferable to pressurize the plate 20.
  • the glass base plate 20 by pressing the glass base plate 20 from both sides in the horizontal direction, the glass in the viscous state on the surface layer including the main surfaces on both sides receives gravity in the same direction until pressing is started. Factors in which the surface quality varies between plates can be reduced.
  • the glass base plate 20 is moved from a heating device that performs heat treatment to a pressure device that performs pressure treatment, and the pressure treatment is preferably performed when the glass base plate 20 stops moving. Thereby, the dispersion
  • pressure treatment is performed during the movement of the glass base plate 20
  • the main surface of the glass base plate 20 comes into contact with the molds 50a and 50b, a part of the glass on the surface layer is displaced by the inertia due to the movement, and the plate The variation in the plate thickness along the moving direction is likely to increase.
  • the edge of the glass base plate 20 is preferably supported by the carrier 30 by being fixed by the carrier 30 (jigs) so that the glass base plate 20 is not displaced during the heat treatment and the pressure treatment. Thereby, it can suppress that the glass base plate 20 displaces by the thermal contraction of the glass base plate 20 during heat processing, and increases the dispersion
  • 50b abuts on the glass base plate 20, the position of the glass base plate 20 does not change and the glass base plate 20 is pressurized, so that the plate thickness between the plates is larger than when the glass base plate 20 is not supported. Can be suppressed.
  • the edges of the glass base plate 20 are not fixed during the heat treatment, the glass base plate 20 is shrunk by heating, which increases the variation in the plate thickness within the plate, and further increases the plate thickness variation between the plates. Absent.
  • the maximum plate thickness and the minimum plate thickness in the plate thickness distribution of the pressed portion of the glass base plate 20 pressed by the molds 50a and 50b after the pressing process and before the first post-processing performed after the pressing process. Can be reduced to 2 ⁇ m or less by the pressure treatment.
  • the difference between the maximum plate thickness and the minimum plate thickness in the plate thickness distribution of the glass base plate 20 before the heat treatment is 0.5 to 20 ⁇ m.
  • the difference between the maximum plate thickness and the minimum plate thickness in the plate thickness distribution of the glass base plate 20 can be reduced by the pressurizing process, and thereafter, it is necessary to perform grinding so that the plate thickness is within a predetermined range.
  • the productivity of the glass plate 1 satisfying a predetermined surface quality can be improved.
  • the pressurization process part of the intermediate glass plate 1 0 produced through the said heat processing and pressurization process is made into predetermined shape. And the main surface of the cut-out processed portion is polished.
  • the difference in plate thickness at the same place between the cut-out pressure-treated portion and the polished glass plate can be 40 ⁇ m or less.
  • the variation in the thickness between the plates of the pressure treatment part of the intermediate glass plate 20 is small and can approach the target plate thickness, so there is no need to grind, and even if grinding, the amount of machining allowance is Less than conventional.
  • the machining allowance in polishing can be reduced, and the difference in plate thickness at the same place between the cut-out pressure-treated portion and the glass plate after polishing can be made 40 ⁇ m or less.
  • the machining allowance on one side by polishing can be set to 20 ⁇ m or less.
  • the intermediate glass plate 10 is produced from the glass base plate 20 using the method for manufacturing the intermediate glass plate 10 shown in FIGS. The variation of the plate thickness within the plate was examined.
  • the target plate thickness in the central region 14 of the intermediate glass plate 10 to be produced is 820 ⁇ m
  • An 80 mm ⁇ 80 mm rectangular glass plate (average plate thickness: 830 ⁇ m to 870 ⁇ m, glass transition temperature Tg: 500 ° C.) was prepared as the glass base plate 20.
  • the intermediate glass plate 10 was produced by using 10 glass base plates 20 in each of the following examples.
  • Variation in the plate thickness between the glass base plates 20 (average plate thickness variation between glass plates) is more than 20 ⁇ m, variation in plate thickness (maximum difference between maximum plate thickness and minimum plate thickness) was over 4.0 ⁇ m.
  • the heating sources 40a and 40b a Kanthal wire heater adjusted so that the heating of the glass base plate 20 is uniform is used, and the temperature of the main surface of the place that becomes the pressurizing process part by the heating process of the heating time of 10 seconds from the room temperature. And heated to at least 780 ° C. or higher.
  • the pressing surfaces of the molds 50a and 50b were circular with a diameter of 70 mm.
  • the pressure applied in the pressure treatment was 30 MPa, and the temperature of the pressure surface was 480 ° C.
  • the edge of the glass base plate 20 was fixed at 12 places on the circumference as shown in FIG.
  • Table 1 below shows the specifications and evaluation results of each example.
  • “Temperature of the main surface after heat treatment (° C.)” in Table 1 is a value measured by an infrared radiation thermometer provided in the heat treatment apparatus. Indicates the minimum temperature.
  • “Temperature difference between maximum temperature and minimum temperature (° C.)” in Table 1 indicates the temperature difference between the maximum temperature and the minimum temperature of the pressure-treated portion of the main surface to be pressed.
  • Heating rate of heat treatment (° C./second) represents a value obtained by dividing the temperature increase due to the heat treatment by the heat treatment time.
  • the “decrease of the pre-pressurization temperature from the temperature immediately after the heat treatment (° C.)” in Table 1 is obtained by measuring with an infrared radiation thermometer provided in the vicinity of the pressurization surfaces of the molds 50a and 50b. It shows the decrease in the same place from the temperature heated by the heat treatment of the temperature on the main surface of the pressurized treatment portion to be pressurized just before the pressure treatment.
  • “Evaluation of variation in plate thickness” in the evaluation results in Table 1 is the difference between the maximum value and the minimum value of the average plate thickness in the central region 14 (pressurized portion) in the 10 intermediate glass plates 10 (plate The result of dividing the sheet thickness variation) between the following levels.
  • “Evaluation of difference between maximum plate thickness and minimum plate thickness” is the largest difference among the difference between the maximum plate thickness and the minimum plate thickness in the central region 14 (pressurized portion) of each of the 10 intermediate glass plates. The result of dividing (variation in plate thickness within the plate) by the following levels is shown. Level C is rejected, and levels AA, A, and B are acceptable. Level AA: 0.5 ⁇ m or less Level A: More than 0.5 ⁇ m, 1 ⁇ m or less Level B: More than 1 ⁇ m, 2 ⁇ m or less Level C: More than 2 ⁇ m
  • Examples 1 to 5 All evaluations in Examples 1 to 5 are levels AA, A, and B, and there is no level C.
  • Variation in the plate thickness between the intermediate glass plates 10 in any of Examples 1 to 5 (“plate thickness”) Evaluation of variation in the sheet thickness)) and variation in the plate thickness (“Evaluation of difference between the maximum plate thickness and the minimum plate thickness”) are also caused by variations in the plate thickness of the glass base plate 20 exceeding 4.0 ⁇ m and in the plate. It was smaller than the variation of the plate thickness.
  • the minimum temperature of the main surface of the pressure treatment portion of the main surface is the glass transition temperature Tg + 330 ° C. or more and the glass transition temperature Tg + 430 ° C.
  • the plate thickness variation (“Evaluation of plate thickness variation”) between the plates of Example 1 in which the heating rate of the main surface in the heat treatment is 55 ° C./second or more and Variations in the plate thickness within the plate (“Evaluation of difference between maximum plate thickness and minimum plate thickness”) are the variations in the plate thickness between the plates of Example 4 where the rate of temperature increase is less than 55 ° C./second, and the plates in the plate. It was smaller than the thickness variation.
  • the decrease in the same place from the temperature heated by the heat treatment of the main surface of the glass base plate subjected to the pressure treatment is 100 ° C. or less.

Abstract

In the present invention, when manufacturing an intermediate glass plate from a glass raw plate, the principal surfaces on both sides of the glass raw plate are heated while the glass raw plate is supported using a jig so that the glass raw plate does not contact a heating source. While the glass raw plate which has been heated is being supported using the jig, the principal surfaces on both sides of the glass raw plate which has been heated are pressurized by being brought into contact simultaneously with a pair of dies so as to mold the intermediate glass plate. Each of the principal surfaces on both sides of the intermediate glass plate includes a peripheral region and a center region which is provided so as to be surrounded by the peripheral region. The plate thickness in the center regions is thinner than the plate thickness in the peripheral regions. The center regions are provided so as to oppose each other.

Description

中間体ガラス板の製造方法、ガラス板の製造方法、及び中間体ガラス板Intermediate glass plate manufacturing method, glass plate manufacturing method, and intermediate glass plate
 本発明は、ガラス素板から中間体ガラス板を製造する中間体ガラス板の製造方法、中間体ガラス板を用いてガラス板を製造するガラス板の製造方法、及び中間体ガラス板に関する。 The present invention relates to an intermediate glass plate production method for producing an intermediate glass plate from a glass base plate, a glass plate production method for producing a glass plate using the intermediate glass plate, and an intermediate glass plate.
 データ記録のためのハードディスク装置には、円盤状の非磁性体の磁気ディスク用ガラス基板に磁性層が設けられた磁気ディスクが用いられる。
 磁気ディスク用ガラス基板を製造するとき、最終製品である磁気ディスク用ガラス基板の素となるガラス板の主表面に対して研削(ラッピング)あるいは研磨が行われる。ガラス板の主表面には、予め定めた一定の板厚になるように研削が行われ、その後、研削によってできた微小クラックを除去し、研削後の表面凹凸が平滑になるように研磨が行われる。この研磨されたガラス板に磁性層を設けることで、ハードディスクの基板の表面品質を満たす磁気ディスク用ガラス基板が得られる。表面品質は、例えば、ハードディスクが、ハードディスクドライブ装置において、エラーなく読み取り、書き込みができるようなガラス基板の表面凹凸を含む。
A hard disk device for data recording uses a magnetic disk in which a magnetic layer is provided on a disk-shaped nonmagnetic magnetic glass substrate.
When manufacturing a glass substrate for a magnetic disk, grinding (lapping) or polishing is performed on a main surface of a glass plate that is a base of the glass substrate for a magnetic disk that is a final product. The main surface of the glass plate is ground so as to have a predetermined thickness, and then the fine cracks formed by grinding are removed and the surface irregularities after grinding are smoothed. Is called. By providing a magnetic layer on the polished glass plate, a magnetic disk glass substrate satisfying the surface quality of the hard disk substrate can be obtained. The surface quality includes, for example, surface irregularities of a glass substrate that allows a hard disk to be read and written without error in a hard disk drive device.
 このようなガラス基板の素となるガラス板は、熔融ガラスをフロート法、ダウンドロー法を用いてシートガラスに成形し、このシートガラスからガラス素板を切り出し、あるいは熔融ガラスの塊を型で、上下方向からプレスを行ってガラス素板を作製し、このガラス素板を形状加工することにより、得ることができる。
 例えば、フロート法で作製されたガラス素板から磁気ディスク用ガラス基板を作製するとき、ガラス基板の精密研磨後の主表面の表面粗さが十分に低く、且つ、欠陥および異物の発生も顕著に抑制することができる、コロイダルシリカスラリーを用いた研磨処理が知られている(特許文献1)。
The glass plate that is the base of such a glass substrate is formed by forming the molten glass into a sheet glass using a float method or a downdraw method, cutting out the glass base plate from the sheet glass, or forming a lump of molten glass as a mold, A glass base plate is produced by pressing from above and below, and the glass base plate can be obtained by shape processing.
For example, when a glass substrate for a magnetic disk is produced from a glass base plate produced by a float process, the surface roughness of the main surface after precision polishing of the glass substrate is sufficiently low, and the occurrence of defects and foreign matter is remarkable. Polishing processing using colloidal silica slurry which can be controlled is known (patent document 1).
特開2017-190395号公報JP 2017-190395 A
 しかし、フロート法から作られるガラス素板の板厚は、複数のガラス素板間で、数10μm程度のばらつきを持って分布するため、研磨の前に板厚を所定の範囲内に抑える研削(ラッピング)を行う必要がある。このとき、ガラス素板間の板厚のばらつきを考慮してガラス素板の平均板厚を予め厚めに設定して研削取り代量を大きくしなければならない。研削では、例えば固定砥粒とガラス素板の主表面を当接させて擦るので、研削取り代量の大きい研削では、所定の研削取り代量になるまでの研削時間は長く、このため最終製品であるガラス板の生産性は低い。
 また、研削を行う前の複数のガラス素板からなるロット間でも、平均板厚がばらつくため(ロット間で、平均板厚が異なるため)、ロット毎に、板厚の平均板厚を計測して研削時間を含む研削条件を適宜調整することをしなければならず、最終製品であるガラス板の生産効率の低下の要因となっていた。
 さらに、フロート法から作られるガラス素板の板厚は、一枚のガラス素板内で板厚が大きくばらつく場合もある。このような場合、研削取り代量の大きい研削をしなければならず、研削時間は長く、このため最終製品であるガラス板の生産性は低い場合があった。
 このように、平均板厚がガラス素板間でばらつくこと、及び、1つのガラス素板内で大きな板厚分布があって板厚が1つの板内でばらつくことは、目標とする板厚のガラス板を作製する際の生産性の点で好ましくない。
However, since the thickness of the glass base plate made by the float process is distributed with a variation of about several tens of μm among a plurality of glass base plates, grinding (in which the plate thickness is kept within a predetermined range before polishing) Lapping) is required. At this time, it is necessary to increase the grinding allowance by setting the average thickness of the glass base plates to be thick in advance in consideration of the variation in the thickness of the glass base plates. In grinding, for example, fixed abrasive grains and the main surface of the glass base plate are brought into contact with each other and rubbed. Therefore, in grinding with a large grinding allowance, the grinding time until the predetermined grinding allowance is reached is long. The productivity of the glass plate is low.
Also, since the average plate thickness varies between lots consisting of multiple glass base plates before grinding (because the average plate thickness varies between lots), the average plate thickness of each lot is measured. Therefore, the grinding conditions including the grinding time had to be adjusted as appropriate, which was a factor in reducing the production efficiency of the final product glass plate.
Furthermore, the thickness of the glass base plate made from the float process may vary greatly within a single glass base plate. In such a case, it is necessary to perform grinding with a large grinding allowance, and the grinding time is long. For this reason, the productivity of the glass plate as the final product may be low.
As described above, the average plate thickness varies between the glass base plates, and the fact that there is a large thickness distribution within one glass base plate and the plate thickness varies within one plate is the target plate thickness. It is not preferable in terms of productivity when producing a glass plate.
 そこで、本発明は、最終製品であるガラス板となる前の中間体ガラス板の板厚のばらつきを抑えて、主表面の研磨処理の前に行う研削処理を省略することができ、あるいは研削処理にかける時間を低減することができる中間体ガラス板の製造方法、中間体ガラス板から最終製品であるガラス板を製造するガラス板の製造方法、及び中間体ガラス板を提供することを目的とする。 Therefore, the present invention can suppress the variation of the thickness of the intermediate glass plate before becoming the glass plate as the final product, and can omit the grinding treatment performed before the polishing treatment of the main surface, or the grinding treatment An object of the present invention is to provide a method for producing an intermediate glass plate capable of reducing the time required for the production, a method for producing a glass plate as a final product from the intermediate glass plate, and an intermediate glass plate .
 本発明の一態様は、ガラス素板から中間体ガラス板を製造する方法である。当該方法は、
 前記ガラス素板を、治具を用いて支持しながら、前記ガラス素板の両側の主表面を加熱源と非接触にして前記加熱源を用いて加熱する加熱処理と、
 加熱された前記ガラス素板を、前記治具を用いて支持しながら、加熱された前記ガラス素板の両側の前記主表面を一対の型に同時に接触させて加圧して中間体ガラス板を成形する加圧処理と、
 を備える。
One embodiment of the present invention is a method for producing an intermediate glass plate from a glass base plate. The method is
While supporting the glass base plate using a jig, heat treatment is performed using the heating source with the main surfaces on both sides of the glass base plate not in contact with the heating source,
While supporting the heated glass base plate using the jig, the main surfaces on both sides of the heated glass base plate are simultaneously brought into contact with a pair of molds and pressed to form an intermediate glass plate. Pressure treatment to
Is provided.
 前記加熱処理では、前記ガラス素板の両側に設けられる加熱源からの輻射熱により前記ガラス素板を加熱する、ことが好ましい。 In the heat treatment, the glass base plate is preferably heated by radiant heat from a heating source provided on both sides of the glass base plate.
 前記加圧処理で加圧される前記主表面の加圧処理部分の、前記主表面の最低温度は、ガラス転移温度Tg+330℃以上ガラス転移温度Tg+430℃以下であり、前記加圧処理部分の温度分布における温度差は50℃以下になるように、前記加熱処理では、前記ガラス素板の両側の主表面を加熱する、ことが好ましい。前記加圧処理部分の前記温度分布における温度差は、20℃以下であることがより好ましい。前記加圧処理部分の前記温度分布における温度差は、10℃以下であることがより一層好ましい。 The minimum temperature of the main surface of the pressure-treated portion of the main surface that is pressurized by the pressure treatment is a glass transition temperature Tg + 330 ° C. or higher and a glass transition temperature Tg + 430 ° C. or lower, and the temperature distribution of the pressure-treated portion. In the heat treatment, it is preferable to heat the main surfaces on both sides of the glass base plate so that the temperature difference at 50 ° C. or less. More preferably, the temperature difference in the temperature distribution of the pressure-treated portion is 20 ° C. or less. It is even more preferable that the temperature difference in the temperature distribution of the pressure-treated portion is 10 ° C. or less.
 前記加熱処理における前記主表面の昇温速度は、55℃/秒以上である、ことが好ましい。さらに、前記昇温速度は、70℃/秒以上であることがより好ましい。 The heating rate of the main surface in the heat treatment is preferably 55 ° C./second or more. Furthermore, the temperature rising rate is more preferably 70 ° C./second or more.
 前記加圧処理では、前記ガラス素板の前記主表面の一部を前記型と当接させて加圧し、残りの部分を前記型で加圧しない、ことが好ましい。 In the pressurizing treatment, it is preferable that a part of the main surface of the glass base plate is pressed against the mold and the remaining part is not pressed with the mold.
 前記加圧処理では、前記型が前記ガラス素板から受ける圧力が、予め定めた上限に達するまで前記一対の型の間の距離を徐々に狭くすることにより、前記ガラス素板を加圧する、ことが好ましい。 In the pressurizing process, the glass base plate is pressurized by gradually reducing the distance between the pair of molds until the pressure received by the mold from the glass base plate reaches a predetermined upper limit. Is preferred.
 前記加圧処理では、前記一対の型の間の距離が、予め設定された距離になるまで前記一対の型の間の距離を徐々に狭くすることにより、前記ガラス素板を加圧する、ことが好ましい。 In the pressurizing process, the glass base plate is pressurized by gradually reducing the distance between the pair of molds until the distance between the pair of molds reaches a preset distance. preferable.
 前記加圧処理を行う前記ガラス素板の前記主表面における温度の、前記加熱処理により加熱された温度からの、同じ場所における低下は、100℃以下である、ことが好ましい。
前記低下は、60℃以下であることがより好ましい。
It is preferable that the decrease in the same place of the temperature on the main surface of the glass base plate to be subjected to the pressurization treatment is 100 ° C. or less from the temperature heated by the heat treatment.
The decrease is more preferably 60 ° C. or lower.
 前記加圧処理では、前記ガラス素板の前記主表面が水平方向を向くように前記ガラス素板を配置して、前記一対の型を水平方向の両側から前記ガラス素板を挟むことにより、前記ガラス素板を加圧する、ことが好ましい。 In the pressure treatment, the glass base plate is disposed so that the main surface of the glass base plate faces in the horizontal direction, and the pair of molds are sandwiched between the glass base plates from both sides in the horizontal direction. It is preferable to pressurize the glass base plate.
 前記加圧処理を行う前記ガラス素板は、前記加熱処理をする処理装置から前記加圧処理を行う処理装置に移動し、
 前記加圧処理は、前記ガラス素板が移動を停止したときに行う、ことが好ましい。
The glass base plate that performs the pressure treatment moves from the processing device that performs the heat treatment to the processing device that performs the pressure treatment,
The pressure treatment is preferably performed when the glass base plate stops moving.
 前記ガラス素板の縁は、前記加熱処理中及び前記加圧処理中、前記ガラス素板が変位しないように前記治具により固定されることにより、支持される、ことが好ましい。 It is preferable that the edge of the glass base plate is supported by being fixed by the jig so that the glass base plate is not displaced during the heat treatment and the pressure treatment.
 前記加圧処理後に最初に行う後処理前の前記中間体ガラス板において、前記型によって加圧された前記ガラス素板の加圧処理部分における最大板厚と最小板厚の差は2μm以下である、ことが好ましい。 In the intermediate glass plate before post-processing that is performed first after the pressure treatment, the difference between the maximum plate thickness and the minimum plate thickness in the pressure-treated portion of the glass base plate pressed by the mold is 2 μm or less. Is preferable.
 前記加熱処理前の前記ガラス素板の板厚分布における最大板厚と最小板厚の差は0.5~20μmである、ことが好ましい。 The difference between the maximum plate thickness and the minimum plate thickness in the plate thickness distribution of the glass base plate before the heat treatment is preferably 0.5 to 20 μm.
 本発明の他の一態様は、ガラス板の製造方法である。当該製造方法は、
 前記中間体ガラス板の製造方法で製造された前記中間体ガラス板の、前記型によって加圧された加圧処理部分を所定の形状に切り出す処理と、切り出した前記加圧処理部分の主表面を研磨する研磨処理を含む。
Another embodiment of the present invention is a method for producing a glass plate. The manufacturing method is
The intermediate glass plate manufactured by the method for manufacturing the intermediate glass plate, a process of cutting out the pressure-treated portion pressed by the mold into a predetermined shape, and the main surface of the cut-out pressure-treated portion. A polishing process for polishing is included.
 前記加圧処理後に最初に行う後処理前の前記加圧処理部分と、前記研磨処理後の前記ガラス板との、同じ場所における板厚の差は、40μm以下である、
 ことが好ましい。
The difference in plate thickness at the same place between the pressure-treated portion before the post-treatment first performed after the pressure treatment and the glass plate after the polishing treatment is 40 μm or less.
It is preferable.
 本発明のさらに他の一態様は、中間体ガラス板である。
 前記中間体ガラス板の両側の主表面のそれぞれは、周辺領域と、前記周辺領域に囲まれて設けられた中央領域と、を備え、
 前記中央領域における板厚は、前記周辺領域の板厚よりも薄く、
 前記両側の主表面それぞれの前記中央領域は、互いに対向するように設けられている。
Yet another embodiment of the present invention is an intermediate glass plate.
Each of the main surfaces on both sides of the intermediate glass plate includes a peripheral region, and a central region provided surrounded by the peripheral region,
The plate thickness in the central region is thinner than the plate thickness in the peripheral region,
The central regions of the main surfaces on both sides are provided to face each other.
 本発明のさらに他の一態様も、中間体ガラス板である。
 前記中間体ガラス板の両側の主表面のそれぞれは、周辺領域と、前記周辺領域に囲まれて設けられた中央領域と、を備え、
 前記中央領域における板厚は、前記周辺領域の板厚よりも薄く、
 前記中央領域はプレス面であり、前記周辺領域は非プレス面である。
 前記中央領域における最大板厚と最小板厚の差は2μm以下である、ことが好ましい。
 前記中央領域における最大板厚と最小板厚の差は、前記周辺領域における最大板厚と最小板厚の差よりも小さい、ことが好ましい。
Yet another embodiment of the present invention is also an intermediate glass plate.
Each of the main surfaces on both sides of the intermediate glass plate includes a peripheral region, and a central region provided surrounded by the peripheral region,
The plate thickness in the central region is thinner than the plate thickness in the peripheral region,
The central region is a press surface, and the peripheral region is a non-press surface.
The difference between the maximum plate thickness and the minimum plate thickness in the central region is preferably 2 μm or less.
The difference between the maximum plate thickness and the minimum plate thickness in the central region is preferably smaller than the difference between the maximum plate thickness and the minimum plate thickness in the peripheral region.
 上述の中間体ガラス板の製造方法によれば、板厚のばらつきを抑えたガラス板を提供することができる。したがって、中間体ガラス板の製造方法、ガラス板の製造方法、及び中間体ガラス板を用いることで、研磨処理の前に行う主表面の研削処理を省略することができ、あるいは研削処理にかける時間を低減することができる。 According to the above-described method for producing an intermediate glass plate, it is possible to provide a glass plate that suppresses variations in plate thickness. Therefore, by using the intermediate glass plate manufacturing method, the glass plate manufacturing method, and the intermediate glass plate, the grinding process of the main surface performed before the polishing process can be omitted, or the time taken for the grinding process Can be reduced.
一実施形態である最終製品として作製されるガラス板の一例の斜視図である。It is a perspective view of an example of the glass plate produced as a final product which is one embodiment. (a),(b)は、一実施形態である中間体ガラス板の一例を示す図である。(A), (b) is a figure which shows an example of the intermediate body glass plate which is one Embodiment. 一実施形態であるガラス素板の一例の外観斜視図である。It is an external appearance perspective view of an example of the glass base plate which is one Embodiment. 一実施形態であるガラス素板を支持する方法の一例を説明する図である。It is a figure explaining an example of the method of supporting the glass base plate which is one Embodiment. 一実施形態である加熱処理の一例を説明する図である。It is a figure explaining an example of the heat processing which is one Embodiment. 一実施形態である加圧処理の一例を説明する図である。It is a figure explaining an example of the pressurization process which is one Embodiment.
 図1は、一実施形態である最終製品として作製されるガラス板の一例の斜視図である。図1に示すガラス板1は、中心部に円孔を有する円環状の薄板のガラス板である。ガラス板1は磁気ディスク用ガラス基板として用いることができる。ガラス板1を磁気ディスク用ガラス基板として用いる場合、磁気ディスク用ガラス基板のサイズは問わないが、磁気ディスク用ガラス基板は、例えば、公称直径2.5インチや3.5インチの磁気ディスク用ガラス基板のサイズである。公称直径2.5インチの磁気ディスク用ガラス基板の場合、例えば、外径が65mm、円孔の内径が20mm、板厚が0.3~1.3mmである。ガラス板1は、図示されないが、一対の主表面、外側端面及び内側端面のそれぞれに形成された側壁面と主表面の間に介在する面取り面を、備える。側壁面は、ガラス板1の板厚方向の中心位置を含む。面取り面の主表面に対する傾斜角度は、特に制限されず、例えば45°である。このガラス板1の主表面上に磁性層が形成されて磁気ディスクが作られる。 FIG. 1 is a perspective view of an example of a glass plate manufactured as a final product according to an embodiment. A glass plate 1 shown in FIG. 1 is an annular thin glass plate having a circular hole in the center. The glass plate 1 can be used as a glass substrate for a magnetic disk. When the glass plate 1 is used as a magnetic disk glass substrate, the size of the magnetic disk glass substrate is not limited, but the magnetic disk glass substrate is, for example, a magnetic disk glass having a nominal diameter of 2.5 inches or 3.5 inches. The size of the substrate. In the case of a glass substrate for a magnetic disk having a nominal diameter of 2.5 inches, for example, the outer diameter is 65 mm, the inner diameter of the circular hole is 20 mm, and the plate thickness is 0.3 to 1.3 mm. Although not shown, the glass plate 1 includes a chamfered surface interposed between the main surface and the side wall surface formed on each of the pair of main surfaces, the outer end surface, and the inner end surface. The side wall surface includes the center position of the glass plate 1 in the thickness direction. The inclination angle of the chamfered surface with respect to the main surface is not particularly limited, and is 45 °, for example. A magnetic layer is formed on the main surface of the glass plate 1 to produce a magnetic disk.
 このようなガラス板1は、従来のガラス板の製造方法によれば、図3に示すようなガラス素板から円形状に切り出し、円形状と同心円の円孔をあける形状加工を行うことにより、ガラス板1と同様の円盤形状のガラス板が作製される。さらに、この円盤形状のガラス板の内側端面及び外側端面に端面研磨が行われる。この後、端面研磨したガラス板に対して、主表面の研削さらには研磨が行われる。このとき、例えば、1回の研削及び2回の研磨(粗研磨、及び精研磨)が行われる。これにより、磁気ディスク用ガラス基板等に要求される目標の板厚及びガラス板の表面品質を達成することができる。しかし、ガラス板の研削及び研磨に要する時間は長く、最終製品のガラス板の生産性は低いため、研削及び研磨の処理時間は短い方が好ましい。研削及び研磨に要する時間は、研削あるいは研磨を行う前のガラス板の平均板厚及び表面品質に応じて定まる。例えば、目標の板厚に対して平均板厚が厚いガラス板では、研削時間を長くし、研削による取り代量を大きくし、これに伴って研削によってできた大きなクラック等を除去するために研磨時間も大きくしなければならない。したがって、研削を行う前のガラス板の表面は目標とする板厚及び要求される表面品質に近いことが望まれる。表面品質は、例えば平坦度及び表面粗さを含む。 According to the conventional glass plate manufacturing method, such a glass plate 1 is cut out into a circular shape from a glass base plate as shown in FIG. 3, and by performing shape processing to open a circular hole concentric with the circular shape, A disk-shaped glass plate similar to the glass plate 1 is produced. Further, end face polishing is performed on the inner end face and the outer end face of the disk-shaped glass plate. Thereafter, the main surface is ground and further polished on the end-polished glass plate. At this time, for example, one grinding and two polishings (rough polishing and fine polishing) are performed. Thereby, the target board thickness and the surface quality of a glass plate which are requested | required of the glass substrate for magnetic discs, etc. can be achieved. However, since the time required for grinding and polishing of the glass plate is long and the productivity of the glass plate of the final product is low, it is preferable that the processing time for grinding and polishing is short. The time required for grinding and polishing is determined according to the average plate thickness and surface quality of the glass plate before grinding or polishing. For example, for a glass plate with an average thickness that is thicker than the target thickness, the grinding time is lengthened, the amount of machining allowance by grinding is increased, and polishing is performed to remove large cracks and the like caused by grinding. Time also has to be increased. Therefore, it is desirable that the surface of the glass plate before grinding is close to the target plate thickness and the required surface quality. The surface quality includes, for example, flatness and surface roughness.
 上述したように、従来のフロート法、ダウンドロー法で作製されるガラスシートの板厚は、場所によって異なり、ガラスシートから所定の形状に切り出されたガラス素板間の平均板厚のばらつきは大きく、また、熔融ガラスの塊をプレスして作製したガラス素板についてもガラス素板間の平均板厚のばらつきも大きい。このため、目標板厚に対する平均板厚の偏差も大きい。したがって、平均板厚が目標の板厚になるようにガラス板を研削及び研磨する時間は極めて長くなる。 As described above, the plate thickness of the glass sheet produced by the conventional float method and down draw method varies depending on the location, and the variation in the average plate thickness between the glass base plates cut into a predetermined shape from the glass sheet is large. Also, the glass plate produced by pressing a lump of molten glass also has a large variation in the average plate thickness between the glass plates. For this reason, the deviation of the average plate thickness with respect to the target plate thickness is large. Therefore, the time for grinding and polishing the glass plate so that the average plate thickness becomes the target plate thickness is extremely long.
 そこで、本実施形態では、以下説明する製造方法により、主表面の研磨を行うガラス板の素となる中間体ガラス板を作製する。 Therefore, in the present embodiment, an intermediate glass plate serving as a base of the glass plate for polishing the main surface is manufactured by the manufacturing method described below.
(中間体ガラス板及びガラス素板)
 図2(a),(b)は、本実施形態で作製される中間体ガラス板の一例を示す図である。図示する中間体ガラス10は、外形が矩形形状である。しかし、外形は、円形状や楕円形状であってもよく、外形は特に制限されない。また、図2   (a),(b)では、わかり易くするために、中央領域14の窪み深さは強調して示されている。
(Intermediate glass plate and glass base plate)
2A and 2B are views showing an example of the intermediate glass plate produced in the present embodiment. The intermediate glass 10 shown in the figure has a rectangular outer shape. However, the outer shape may be circular or elliptical, and the outer shape is not particularly limited. In FIGS. 2A and 2B, the depth of the depression in the central region 14 is shown in an emphasized manner for easy understanding.
 中間体ガラス板10は、板状ガラス板であり、中間体ガラス板10の両側の主表面のそれぞれは、周辺領域12と周辺領域12に対して凹んだ中央領域14とを備える。中央領域14に接する周辺領域12の内縁を除き、中間体ガラス板10は略一定の板厚を有する。周辺領域12における略一定の板厚とは、周辺領域12における最大板厚と最小板厚の差が許容範囲内であることをいう。許容範囲内とは、例えば100μm以下であることをいう。周辺領域12の上記内縁には、周辺領域12を囲むように、略一定の板厚の周辺領域12に対して環状に盛り上がった部分が設けられている場合がある。中央領域14は、周辺領域12に囲まれて設けられる。中央領域14における主表面間の板厚は、周辺領域12における主表面間の板厚よりも薄い。具体的には、中央領域14は、周辺領域部12の表面に対して一定の深さで表面が窪んでいる。一定の深さとは、中央領域14の平均の主表面の位置(表面凹凸の中心線)から、例えば10μm~30μmの範囲で窪んでいることをいう。すなわち、中央領域14の窪み深さは、例えば10μm~30μmである。
 中央領域14は円形状であるが、矩形形状あるいは楕円形状であってもよい。
 中央領域14は、中間体10の両側の主表面に設けられ、両側の主表面において、一定の窪み深さは、互いに同じであることが好ましい。ここで、窪み深さが互いに同じとは、許容範囲内であることをいい、許容範囲内は、例えば6μm以下である。
また、両側の主表面にある中央領域14は、互いに対向するように設けられていることが好ましい。
The intermediate glass plate 10 is a plate-like glass plate, and each of the main surfaces on both sides of the intermediate glass plate 10 includes a peripheral region 12 and a central region 14 that is recessed with respect to the peripheral region 12. Except for the inner edge of the peripheral region 12 in contact with the central region 14, the intermediate glass plate 10 has a substantially constant plate thickness. The substantially constant plate thickness in the peripheral region 12 means that the difference between the maximum plate thickness and the minimum plate thickness in the peripheral region 12 is within an allowable range. “Within an allowable range” means, for example, 100 μm or less. In some cases, the inner edge of the peripheral region 12 is provided with an annularly raised portion with respect to the peripheral region 12 having a substantially constant thickness so as to surround the peripheral region 12. The central region 14 is provided surrounded by the peripheral region 12. The plate thickness between the main surfaces in the central region 14 is thinner than the plate thickness between the main surfaces in the peripheral region 12. Specifically, the surface of the central region 14 is recessed at a certain depth with respect to the surface of the peripheral region portion 12. The constant depth means that it is depressed in the range of, for example, 10 μm to 30 μm from the average main surface position (center line of surface irregularities) of the central region 14. That is, the recess depth of the central region 14 is, for example, 10 μm to 30 μm.
The central region 14 is circular, but may be rectangular or elliptical.
It is preferable that the center area | region 14 is provided in the main surface of the both sides of the intermediate body 10, and fixed hollow depth is mutually the same in the main surface of both sides. Here, that the depths of the recesses are the same means that it is within an allowable range, and the allowable range is, for example, 6 μm or less.
Moreover, it is preferable that the center area | region 14 in the main surface of both sides is provided so that it may mutually oppose.
 ここで、中央領域14の板厚分布における最大板厚と最小板厚の差は、2μm以下であることが好ましく、1μm以下であることがより好ましい。この中央領域14における最大板厚と最小板厚の差は、周辺領域12における最大板厚と最小板厚の差よりも小さいことが好ましい。このような中央領域14から円形状にガラス板を切り出してガラス板を形成する。このガラス板は、ガラス板間の板厚のばらつきが小さく、いずれのガラス板の平均板厚も目標とする板厚に近いので、研削が不要であり、あるいは研削による取り代量が従来よりも少ないガラス板である。
 中央領域14における表面粗さの一指標である算術平均粗さRa(JIS B0601:2001)は、300nm以下であることが好ましく、200nm以下であることがより好ましい。さらに好ましくは100nm以下である。
 また、中央領域14のいずれの場所でも、深さが5μm以上の表面欠陥を有さないことが好ましい。
 また、後述する中間体ガラス板の製造方法を用いて中間体ガラス板10を作製することにより、中央領域14はプレス面となり、周辺領域12は非プレス面となる。
Here, the difference between the maximum plate thickness and the minimum plate thickness in the plate thickness distribution of the central region 14 is preferably 2 μm or less, and more preferably 1 μm or less. The difference between the maximum plate thickness and the minimum plate thickness in the central region 14 is preferably smaller than the difference between the maximum plate thickness and the minimum plate thickness in the peripheral region 12. A glass plate is cut out circularly from such a central region 14 to form a glass plate. This glass plate has little variation in thickness between glass plates, and the average plate thickness of any glass plate is close to the target plate thickness. There are few glass plates.
The arithmetic average roughness Ra (JIS B0601: 2001), which is an index of the surface roughness in the central region 14, is preferably 300 nm or less, and more preferably 200 nm or less. More preferably, it is 100 nm or less.
Moreover, it is preferable that there is no surface defect having a depth of 5 μm or more at any location in the central region 14.
Moreover, by producing the intermediate glass plate 10 using an intermediate glass plate manufacturing method described later, the central region 14 becomes a pressed surface and the peripheral region 12 becomes a non-pressed surface.
 このような中間体ガラス10は、図3に示すガラス素板20から作製される。図3は、一実施形態であるガラス素板20の一例の外観斜視図である。
 ガラス素板20は、板状ガラス板であり、図示するガラス素板20の外形は矩形形状であるが、円形状や楕円形状であってもよく、外形は特に制限されない。
 ガラス素板20の板厚分布における最大板厚と最小板厚の差は0.5μm~20μmであることが好ましい。より好ましくは、0.5μm~10μmである。本実施形態では、ガラス素板20から、平均板厚が所定の範囲にあり、主表面の表面品質が向上した中央領域14を以下説明する方法で作製するので、ガラス素板20は容易に入手できるガラス板であることが好ましい。このため、容易に入手できるガラス素板20の表面品質は、ある程度、中央領域14の主表面の表面品質よりも劣っていてもよい。ガラス素板20として、例えば、フロート法、ダウンドロー法、あるいはプレス法により作製したガラス板が用いられる。フロート法、ダウンドロー法によるガラス素板20の算術平均粗さRaは、10~20nmであり、プレス法によるガラス素板20の算術平均粗さRaは、0.1~1.0μmである。
Such an intermediate glass 10 is produced from the glass base plate 20 shown in FIG. FIG. 3 is an external perspective view of an example of the glass base plate 20 according to the embodiment.
The glass base plate 20 is a plate-like glass plate, and the outer shape of the glass base plate 20 shown in the figure is a rectangular shape, but it may be circular or elliptical, and the outer shape is not particularly limited.
The difference between the maximum plate thickness and the minimum plate thickness in the plate thickness distribution of the glass base plate 20 is preferably 0.5 μm to 20 μm. More preferably, the thickness is 0.5 μm to 10 μm. In the present embodiment, the glass base plate 20 is easily obtained from the glass base plate 20 because the central region 14 whose average plate thickness is in a predetermined range and whose surface quality of the main surface is improved is produced by the method described below. A glass plate that can be used is preferable. For this reason, the surface quality of the easily available glass base plate 20 may be inferior to some extent to the surface quality of the main surface of the central region 14. As the glass base plate 20, for example, a glass plate produced by a float method, a down draw method, or a press method is used. The arithmetic average roughness Ra of the glass base plate 20 by the float method or the downdraw method is 10 to 20 nm, and the arithmetic average roughness Ra of the glass base plate 20 by the press method is 0.1 to 1.0 μm.
 ガラス素板20、中間体ガラス板10、あるいはガラス板1のガラス転移温度Tgは、450~800℃であることが、後述する製造方法で効率よくガラス素板20を加熱して、目標とする表面品質を得る点で好ましく、480~750℃であることがより好ましい。 The glass transition temperature Tg of the glass base plate 20, the intermediate glass plate 10, or the glass plate 1 is 450 to 800 ° C., which is achieved by efficiently heating the glass base plate 20 by the manufacturing method described later. It is preferable from the viewpoint of obtaining surface quality, and more preferably 480 to 750 ° C.
 ガラス素板20のガラスの材料、すなわち、中間体ガラス板10及びガラス板1のガラスの材料として、アルミノシリケートガラス、ソーダライムガラス、ボロシリケートガラスなどを用いることができる。磁気ディスク用ガラス基板を作製する場合、化学強化を施すことができ、また主表面の平坦度及び基板の強度において優れた磁気ディスク用ガラス基板を得ることができるアルミノシリケートガラスを好適に用いることができる。アモルファスのアルミノシリケートガラスとするとさらに好ましい。 As the glass material of the glass base plate 20, that is, the glass material of the intermediate glass plate 10 and the glass plate 1, aluminosilicate glass, soda lime glass, borosilicate glass, or the like can be used. When producing a glass substrate for a magnetic disk, it is preferable to use an aluminosilicate glass that can be chemically strengthened and that can provide a glass substrate for a magnetic disk that is excellent in the flatness of the main surface and the strength of the substrate. it can. More preferably, it is an amorphous aluminosilicate glass.
 ガラス素板20、中間体ガラス板10、及びガラス板1のガラスの組成は、限定するものではないが、一実施形態によれば、酸化物基準に換算し、モル%表示で、
SiOを50~75%、
Alを1~15%、
LiO,NaO及びKOから選択される少なくとも1種の成分を合計で5~35%、
MgO,CaO,SrO,BaO及びZnOから選択される少なくとも1種の成分を合計で0~20%、
ZrO,TiO,La,Y,Ta,Nb及びHfOから選択される少なくとも1種の成分を合計で0~10%、
 有する組成からなるアモルファスのアルミノシリケートガラスである。
The glass composition of the glass base plate 20, the intermediate glass plate 10, and the glass plate 1 is not limited, but according to one embodiment, converted to oxide standards and expressed in mol%,
50 to 75% of SiO 2
Al 2 O 3 1-15%,
A total of 5 to 35% of at least one component selected from Li 2 O, Na 2 O and K 2 O;
0-20% in total of at least one component selected from MgO, CaO, SrO, BaO and ZnO;
0 to 10% in total of at least one component selected from ZrO 2 , TiO 2 , La 2 O 3 , Y 2 O 3 , Ta 2 O 5 , Nb 2 O 5 and HfO 2 ;
An amorphous aluminosilicate glass having a composition having
 また、一実施形態によれば、質量%表示にて、
SiOを57~75%、
Alを5~20%、(ただし、SiOとAlの合計量が74%以上)、
ZrO,HfO,Nb,Ta,La,YおよびTiOを合計で0%を超え6%以下、
LiOを、1%を超え9%以下、
NaOを5~28%(ただし、質量比LiO/NaOが0.5以下)、
Oを0~6%、
MgOを0~4%、
CaOを、0%を超え5%以下(ただし、MgOとCaOの合計量は5%以下であり、かつCaOの含有量はMgOの含有量よりも多い)、SrO+BaOを0~3%、
 有する組成からなるアモルファスのアルミノシリケートガラスである。
Moreover, according to one embodiment, in mass% display,
SiO 2 57-75%,
Al 2 O 3 5-20% (however, the total amount of SiO 2 and Al 2 O 3 is 74% or more),
ZrO 2 , HfO 2 , Nb 2 O 5 , Ta 2 O 5 , La 2 O 3 , Y 2 O 3 and TiO 2 in total exceeding 0% and not more than 6%,
Li 2 O exceeds 1% and is 9% or less,
Na 2 O 5 to 28% (however, the mass ratio Li 2 O / Na 2 O is 0.5 or less),
0 to 6% of K 2 O,
MgO 0-4%,
CaO exceeding 0% and 5% or less (however, the total amount of MgO and CaO is 5% or less, and the content of CaO is larger than the content of MgO), SrO + BaO is 0 to 3%,
An amorphous aluminosilicate glass having a composition having
 また、一実施形態によれば、必須成分として、SiO,LiO,NaO、ならびに、MgO,CaO,SrOおよびBaOからなる群から選ばれる一種以上のアルカリ土類金属酸化物を含み、MgO,CaO,SrOおよびBaOの合計含有量に対するCaOの含有量のモル比(CaO/(MgO+CaO+SrO+BaO))が0.20以下であって、ガラス転移温度が650℃以上であってもよい。このような組成のガラスは、磁気ディスク用ガラス基板に用いる場合、エネルギーアシスト磁気記録用磁気ディスクに使用される磁気ディスク用ガラス基板に好適である。 According to one embodiment, as an essential component, SiO 2 , Li 2 O, Na 2 O, and one or more alkaline earth metal oxides selected from the group consisting of MgO, CaO, SrO, and BaO are included. The molar ratio of the CaO content to the total content of MgO, CaO, SrO and BaO (CaO / (MgO + CaO + SrO + BaO)) may be 0.20 or less and the glass transition temperature may be 650 ° C. or more. When used in a glass substrate for a magnetic disk, the glass having such a composition is suitable for a glass substrate for a magnetic disk used for a magnetic disk for energy-assisted magnetic recording.
(中間体ガラス板の製造方法)
 以下、ガラス素板20から中間体ガラス板10を製造(作製)する方法を説明する。
 中間体ガラス板10の製造方法は、
(1)ガラス素板20を、冶具を用いて支持しながら、ガラス素板20の主表面の両側を加熱源と非接触にして加熱源を用いて加熱する加熱処理と、
(2)加熱処理されたガラス素板20を、冶具を用いて支持しながら、加熱処理されたガラス素板20の両側の主表面を一対の型に同時に接触させて加圧して中間体ガラス板10を成形する加圧処理と、を含む。
(Method for producing intermediate glass plate)
Hereinafter, a method of manufacturing (manufacturing) the intermediate glass plate 10 from the glass base plate 20 will be described.
The production method of the intermediate glass plate 10 is as follows:
(1) While supporting the glass base plate 20 using a jig, heat treatment is performed using the heating source so that both sides of the main surface of the glass base plate 20 are not in contact with the heating source;
(2) While supporting the heat-treated glass base plate 20 using a jig, the main glass surfaces on both sides of the heat-treated glass base plate 20 are simultaneously brought into contact with a pair of molds to pressurize the intermediate glass plate. Pressure treatment for molding 10.
 図4は、加熱処理を行う前にガラス素板20を支持する方法の一例を説明する図である。図4は、矩形形状のガラス素板20の主表面を正面から見た図である。ガラス素板20は、加熱処理中、さらには、加圧処理中、ガラス素板20が変位しないようにキャリア30によってガラス素板20の縁が固定されることにより、ガラス板20はキャリア30に支持される。具体的には、キャリア30は、一対のキャリア板30a,30bで構成され、キャリア板30a,30bでガラス素板20を、ガラス素板20の両側から挟む。キャリア板30a,30bのそれぞれには、キャリア板30a,30bでガラス素板20を挟んだ時、互いに対向する場所に、ガラス素板20の外形形状よりも大きな貫通した孔32が設けられている。キャリア板30a,30bそれぞれには、孔32の内縁から突出して、ガラス素板20を押さえるための押さえ部34が、キャリア板30a,30bでガラス素板20を挟んだ時にお互いに対向する場所に設けられている。したがって、キャリア板30a,30bによってガラス素板20を挟むことにより、ガラス素板20は、押さえ部34によってガラス素板20の主表面の両側から挟まれて、ガラス素板20の縁が固定される。キャリア板30a,30bによって挟まれたガラス素板20は、孔32から主表面それぞれが露出するようになっている。このようにキャリア30によって支持されたガラス素板20に、加熱処理及び加圧処理が施される。
 押さえ部34によってガラス素板20の縁を固定することにより、加熱処理時、ガラス素板20の一部は熱によって粘性状態となりガラスの表面張力によって収縮し、ガラス素板20が変位することを抑制することができる。また、加圧処理時、型に押されてガラス素板20が変位しないようにすることができる。
FIG. 4 is a diagram illustrating an example of a method for supporting the glass base plate 20 before performing the heat treatment. FIG. 4 is a view of the main surface of the rectangular glass base plate 20 as viewed from the front. The glass base plate 20 is fixed to the carrier 30 by fixing the edge of the glass base plate 20 by the carrier 30 so that the glass base plate 20 is not displaced during the heat treatment and further during the pressure treatment. Supported. Specifically, the carrier 30 is composed of a pair of carrier plates 30a and 30b, and the glass base plate 20 is sandwiched from both sides of the glass base plate 20 by the carrier plates 30a and 30b. Each of the carrier plates 30a and 30b is provided with a through-hole 32 that is larger than the outer shape of the glass base plate 20 at a location facing each other when the glass base plate 20 is sandwiched between the carrier plates 30a and 30b. . Each of the carrier plates 30a and 30b protrudes from the inner edge of the hole 32 and has a pressing portion 34 for holding the glass base plate 20 at a location facing each other when the glass base plate 20 is sandwiched between the carrier plates 30a and 30b. Is provided. Therefore, by sandwiching the glass base plate 20 by the carrier plates 30a and 30b, the glass base plate 20 is sandwiched from both sides of the main surface of the glass base plate 20 by the pressing portions 34, and the edges of the glass base plate 20 are fixed. The Each of the main surfaces of the glass base plate 20 sandwiched between the carrier plates 30a and 30b is exposed from the holes 32. In this way, the glass base plate 20 supported by the carrier 30 is subjected to heat treatment and pressure treatment.
By fixing the edge of the glass base plate 20 with the pressing portion 34, during the heat treatment, a part of the glass base plate 20 becomes viscous due to heat and contracts due to the surface tension of the glass, and the glass base plate 20 is displaced. Can be suppressed. Further, it is possible to prevent the glass base plate 20 from being displaced by being pressed by the mold during the pressure treatment.
 図4に示す例では、矩形形状の孔32の一辺のそれぞれに3つの押さえ部34が設けられ、合計12個の押さえ部34により、ガラス素板20の縁が固定されてガラス板20はキャリア30に支持される。しかし、押さえ部34の数は、特に制限されず、例えば16本、あるいは8本であってもよい。また、押さえ部34の形状も図示するような先端が円弧形状のものに限定されない。
 押さえ部34がガラス素板20の縁を固定する時のガラス素板20の固定部分は、後述する加圧処理において型が加圧する領域の外側に位置することができれば、上記固定部分の位置は特に制限されないが、例えば、上記押さえ部34がガラス素板20を固定する先端の位置は、ガラス素板20のエッジから0.5~4mmの範囲内にあることが好ましい。
In the example shown in FIG. 4, three pressing portions 34 are provided on each side of the rectangular hole 32, and the edges of the glass base plate 20 are fixed by a total of twelve pressing portions 34. 30. However, the number of the pressing portions 34 is not particularly limited, and may be 16 or 8, for example. Further, the shape of the pressing portion 34 is not limited to that having a circular arc shape as illustrated.
If the holding part 34 fixes the edge of the glass base plate 20, the fixing part of the glass base plate 20 can be positioned outside the area where the mold presses in the pressurizing process described later. Although not particularly limited, for example, the position of the tip where the pressing portion 34 fixes the glass base plate 20 is preferably within a range of 0.5 to 4 mm from the edge of the glass base plate 20.
 なお、孔32のサイズは、ガラス素板20のエッジと孔32の縁との間のクリアランス距離を所定の範囲にするために、ガラス素板20のサイズに応じて定めることが好ましい。クリアランス距離が所定距離以下である場合、加熱処理時、キャリア30から外部への熱伝導による冷却によって、ガラス素板20のエッジとガラス素板20の中心部分との温度差が大きくなってガラス素板20は割れ易くなる。クリアランス距離は、少なくとも3mm以上であることが好ましい。
 また、キャリア30によるガラス素板20の支持は、押さえ部34のような形態でガラス素板20の縁を離散的な位置で押さえて固定する方式に限られず、線状に連続的に押さえて固定する方式であってもよい。なお、ガラス素板20の縁は、主表面の外周のエッジから主表面の側に一定の距離入った場所、及び、ガラス素板20の外側端面に面取り面が設けられている場合、面取り面を含む。
The size of the hole 32 is preferably determined according to the size of the glass base plate 20 so that the clearance distance between the edge of the glass base plate 20 and the edge of the hole 32 is in a predetermined range. When the clearance distance is equal to or less than the predetermined distance, the temperature difference between the edge of the glass base plate 20 and the central portion of the glass base plate 20 becomes large due to cooling by heat conduction from the carrier 30 to the outside during the heat treatment. The plate 20 is easily broken. The clearance distance is preferably at least 3 mm.
Further, the support of the glass base plate 20 by the carrier 30 is not limited to a method of pressing and fixing the edges of the glass base plate 20 at discrete positions in the form of the pressing portion 34, but pressing the glass base plate 20 continuously in a linear shape. A fixed method may be used. In addition, the edge of the glass base plate 20 is a chamfered surface when a chamfered surface is provided on the outer end surface of the glass base plate 20 at a location that is a certain distance from the outer peripheral edge of the main surface to the main surface side. including.
 ガラス素板20を支持したキャリア30は、図示されない移動装置にセットされて、加熱処理を行う加熱装置に移動する。 The carrier 30 supporting the glass base plate 20 is set in a moving device (not shown) and moves to a heating device that performs heat treatment.
 図5は、加熱処理の一例を説明する図である。図5に示す例では、ガラス素板20を挟んだキャリア30は、図中上から下方向に移動する。この移動中に、ガラス素板20は、一対の加熱源40a,40bの間の、加熱源40a,40bから一定の距離離れた位置を通過して加熱される。 FIG. 5 is a diagram for explaining an example of the heat treatment. In the example shown in FIG. 5, the carrier 30 sandwiching the glass base plate 20 moves downward from the top in the drawing. During this movement, the glass base plate 20 is heated by passing through a position between the pair of heating sources 40a and 40b that is a fixed distance away from the heating sources 40a and 40b.
 加熱源40a,40bは、例えばヒータで構成される。加熱源40a,40bは、ガラス素板20を均一に加熱するために、ガラス素板20の移動経路から等距離離れた位置に、ガラス素板20を非接触で加熱するように加熱源40a,40bは設けられている。ガラス素板20を均一に加熱することにより、中間体ガラス板10間の板厚のばらつきを抑制することができる。また、ガラス素板20を均一に加熱することは、加圧処理に適したガラス素板20の最低温度を確保するためにガラス素板20の最高温度を必要以上に高くすることがなくなり、加熱源40a,40bの発熱のための消費エネルギを抑えることができる点でも好ましい。このため、加熱源40a,40bが発熱素子で構成される場合、発熱素子は、ガラス素板20の主表面の温度が所望する温度分布となるように発熱して輻射熱を発するように発熱素子の配置は調整されている。なお、主表面の温度は、赤外線放射温度計を用いて計測することができ、この計測結果に基づいて、発熱素子の配置等は調整される。また、以降で説明する温度は、赤外線放射温度計を用いて得ることができる。 The heating sources 40a and 40b are constituted by heaters, for example. In order to heat the glass base plate 20 uniformly, the heat sources 40a and 40b are arranged so as to heat the glass base plate 20 in a non-contact manner at a position equidistant from the moving path of the glass base plate 20. 40b is provided. By uniformly heating the glass base plate 20, variations in thickness between the intermediate glass plates 10 can be suppressed. Further, heating the glass base plate 20 uniformly does not increase the maximum temperature of the glass base plate 20 more than necessary in order to secure the minimum temperature of the glass base plate 20 suitable for the pressure treatment, It is also preferable in that energy consumption for heat generation of the sources 40a and 40b can be suppressed. For this reason, when the heating sources 40a and 40b are configured by heat generating elements, the heat generating elements generate heat so that the temperature of the main surface of the glass base plate 20 has a desired temperature distribution and generate radiant heat. The arrangement has been adjusted. The temperature of the main surface can be measured using an infrared radiation thermometer, and the arrangement of the heating elements is adjusted based on the measurement result. Moreover, the temperature demonstrated below can be obtained using an infrared radiation thermometer.
 加熱源40a,40bは、移動中のガラス素板20の主表面を急激に昇温させるために、発熱量は大きく、加熱源40a,40bとガラス素板20の主表面との間の間隔は狭い。ガラス素板20の主表面の温度は、55℃/秒以上の昇温速度で上昇させることが好ましい。昇温速度は、70℃/秒以上であることがより好ましい。ガラス素板20の主表面の温度は、ガラスが粘性状態になるように上昇させるので、主表面を含む表層にあるガラスは流動し易くなり、重力に従って鉛直下方に流れようとする。このような流動は、一定な板厚を得ようとする中間体ガラス板10にとって好ましくない。このため、短時間にガラス素板20の主表面は昇温される。また、主表面を含む表層にあるガラスを粘性状態にし、表層に挟まれた、ガラス素板20の厚さ方向の中央部のガラスを粘性状態にしないために、短時間にガラス素板20の主表面は昇温される。例えば、ガラス素板20の各位置における加熱を受ける時間は15秒以内であることが好ましく、10秒以内であることがより好ましい。 The heating sources 40a and 40b generate a large amount of heat in order to rapidly raise the temperature of the main surface of the moving glass base plate 20, and the distance between the heating sources 40a and 40b and the main surface of the glass base plate 20 is as follows. narrow. It is preferable to raise the temperature of the main surface of the glass base plate 20 at a heating rate of 55 ° C./second or more. The temperature rising rate is more preferably 70 ° C./second or more. Since the temperature of the main surface of the glass base plate 20 is raised so that the glass is in a viscous state, the glass on the surface layer including the main surface tends to flow and tends to flow vertically downward according to gravity. Such a flow is not preferable for the intermediate glass plate 10 for obtaining a constant plate thickness. For this reason, the main surface of the glass base plate 20 is heated in a short time. Moreover, in order to make the glass in the surface layer including the main surface into a viscous state and not to make the glass in the central portion in the thickness direction of the glass base plate 20 sandwiched between the surface layers into a viscous state, The main surface is heated. For example, the heating time at each position of the glass base plate 20 is preferably within 15 seconds, and more preferably within 10 seconds.
 加熱処理では、ガラス素板20の昇温速度は極めて高いので、ガラス素板20の主表面を含む表層とガラス素板20の厚さ方向の中央部との間では温度差がある。加熱されたガラス素板20の表層にあるガラスは、粘性状態にあるが、中央部のガラスは、弾性状態あるいは粘弾性状態にある。このように表層と中央部のガラスの状態を異ならせることで、加圧処理において、上記粘性状態のガラスの少なくとも一部を型によって強制的に流動させて板厚を目標とする板厚に近づけることができる他、加熱処理前のガラス素板20の表層にあるクラックや傷を消滅させて表面品質を向上させることができる。 In the heat treatment, the temperature increase rate of the glass base plate 20 is extremely high, so that there is a temperature difference between the surface layer including the main surface of the glass base plate 20 and the central portion of the glass base plate 20 in the thickness direction. The glass in the surface layer of the heated glass base plate 20 is in a viscous state, but the glass in the center is in an elastic state or a viscoelastic state. In this way, by differentiating the state of the surface layer and the central glass, at least a part of the glass in the viscous state is forced to flow by the mold in the pressurizing process so that the plate thickness approaches the target plate thickness. In addition, the surface quality can be improved by eliminating cracks and scratches on the surface layer of the glass base plate 20 before the heat treatment.
 ガラス素板20は、加熱源40aと加熱源40bとの間の隙間を通過するとき、加熱源40a,40bから均等に熱を受けるために、加熱源40a,40bのそれぞれから同じ距離、離間して通過させる。これにより、ガラス素板20の両側の主表面の温度を略同じにすることができる。ガラス素板20の両側の主表面の温度に差があると、加圧処理が両側の表層に対して均等に行えず、板間の板厚のばらつきを誘発させ易い。 When the glass base plate 20 passes through the gap between the heating source 40a and the heating source 40b, the glass base plate 20 is separated from the heating sources 40a and 40b by the same distance in order to receive heat evenly from the heating sources 40a and 40b. And let it pass. Thereby, the temperature of the main surface of the both sides of the glass base plate 20 can be made substantially the same. If there is a difference in the temperatures of the main surfaces on both sides of the glass base plate 20, the pressure treatment cannot be performed uniformly on the surface layers on both sides, and variations in the plate thickness between the plates are likely to be induced.
 加熱されるガラス素板20の主表面の温度の温度分布における最高温度と最低温度の温度差は50℃以下であることが好ましく、20℃以下であることがより好ましく、10℃以下であることがより一層好ましい。加熱されたガラス素板20の主表面の温度は、最低温度でもガラス転移温度Tg(℃)+330℃以上、ガラス転移温度Tg(℃)+430℃以下であることが好ましく、ガラス転移温度Tg(℃)+360℃以上、ガラス転移温度Tg(℃)+400℃以下であることがより好ましい。
 また、加熱処理において、図5に示すように、ガラス素板20を鉛直方向に沿って上から下方向に移動させるとき、上方にあるガラス素板20の温度を下方にあるガラス素板20の温度よりも低くなるように、許容範囲内でわずかに温度差をつけることも好ましい。これにより、粘性状態のガラスが下方向に流れることを抑制することができ、加熱されたガラス素板20内で板厚が大きくばらつかないようにすることができる。
The temperature difference between the maximum temperature and the minimum temperature in the temperature distribution of the temperature of the main surface of the glass base plate 20 to be heated is preferably 50 ° C. or less, more preferably 20 ° C. or less, and more preferably 10 ° C. or less. Is even more preferable. The temperature of the main surface of the heated glass base plate 20 is preferably at least the glass transition temperature Tg (° C.) + 330 ° C. and the glass transition temperature Tg (° C.) + 430 ° C. at the lowest temperature, and the glass transition temperature Tg (° C. ) + 360 ° C. or higher, and glass transition temperature Tg (° C.) + 400 ° C. or lower is more preferable.
Further, in the heat treatment, as shown in FIG. 5, when the glass base plate 20 is moved from the top to the bottom along the vertical direction, the temperature of the glass base plate 20 on the upper side is reduced. It is also preferable to make a slight temperature difference within an allowable range so as to be lower than the temperature. Thereby, it can suppress that the glass of a viscous state flows downward, and can prevent a plate | board thickness from fluctuating large within the heated glass base plate 20. FIG.
 なお、図5に示す加熱処理の例は、ガラス素板20を上から下方向に移動させて、加熱源40a,40bの間を通過させる形態であるが、ガラス素板20の移動方向は下方向に限らず、下から上方向への移動であってもよいし、さらには、水平方向、あるいは、水平に対して傾斜した方向であってもよい。また、ガラス素板20の加熱処理は、ガラス素板20を移動しながら加熱する方式に限らず、静止したガラス素板20に対して加熱する方式であってもよい。しかし、加熱処理をした後、主表面の温度が許容範囲を超えて低下しないように短時間内に加圧処理を開始するためには、ガラス素板20を移動しながら加熱することが好ましい。 The example of the heat treatment shown in FIG. 5 is a mode in which the glass base plate 20 is moved downward from above and passed between the heating sources 40a and 40b, but the movement direction of the glass base plate 20 is downward. The movement is not limited to the direction, and may be a movement from the bottom to the top, or may be a horizontal direction or a direction inclined with respect to the horizontal. The heat treatment of the glass base plate 20 is not limited to a method of heating the glass base plate 20 while moving, but may be a method of heating the stationary glass base plate 20. However, after the heat treatment, in order to start the pressure treatment within a short time so that the temperature of the main surface does not decrease beyond the allowable range, it is preferable to heat the glass base plate 20 while moving.
 次に、加熱処理されたガラス素板20は加圧処理される。加圧処理では、ガラス素板20の両側の主表面に一対の型に同時に接触させてガラス素板20を加圧して中間体ガラス板10を成形する。ここで、「同時に接触」には、接触のタイミングのずれが全くない場合のほか、ガラス素板20が金型50a,50bのプレス面と接触する継続時間の100分の時間および1m秒のうちの短い方の時間以下のタイミングのずれも許容範囲として含まれることが好ましい。
 図5に示すように、ガラス素板20を挟んだキャリア30を移動しながらガラス素板20を加熱処理する方式の場合、加圧装置の場所に来たキャリア30の移動を停止して加圧処理を開始することが好ましい。
Next, the heat-treated glass base plate 20 is subjected to pressure treatment. In the pressurizing process, the intermediate glass plate 10 is formed by pressing the glass base plate 20 by simultaneously contacting the main surfaces on both sides of the glass base plate 20 with a pair of molds. Here, in the “simultaneous contact”, in addition to the case where there is no shift in the timing of contact, the duration of 100 minutes and 1 ms of the duration of time during which the glass base plate 20 contacts the press surface of the mold 50a, 50b. It is preferable that a deviation in timing equal to or shorter than the shorter time is included as an allowable range.
As shown in FIG. 5, in the case of a system in which the glass base plate 20 is heated while moving the carrier 30 sandwiching the glass base plate 20, the movement of the carrier 30 that has come to the place of the pressurizing device is stopped and pressurized. It is preferable to start the process.
 図6は、加圧処理の一例を説明する図である。図6に示すように、移動を停止したガラス素板20の主表面の両側にある型50a,50bを主表面と当接させて、所定の圧力になるまで、あるいは、型50aと型50bの距離が所定の距離になるまで、型50a,50bを近づけてガラス素板20を加圧する。
 型50a,50bのプレス面は、平坦な面であり、平坦度は3μm以下であり、表面凹凸の算術平均粗さRaは300nm以下、好ましくは、200nm以下、さらに好ましくは100nm以下の平面となっている。このような型50a,50bのプレス面は、WC(タングステン・カーバイド)あるいはSiC等の材料で形成されていることが好ましい。
FIG. 6 is a diagram for explaining an example of the pressurizing process. As shown in FIG. 6, the molds 50a and 50b on both sides of the main surface of the glass base plate 20 that has stopped moving are brought into contact with the main surface until a predetermined pressure is reached, or the molds 50a and 50b The glass base plate 20 is pressurized by bringing the molds 50a and 50b closer to each other until the distance reaches a predetermined distance.
The press surfaces of the molds 50a and 50b are flat surfaces, the flatness is 3 μm or less, and the arithmetic average roughness Ra of the surface irregularities is a plane of 300 nm or less, preferably 200 nm or less, more preferably 100 nm or less. ing. The press surfaces of such dies 50a and 50b are preferably formed of a material such as WC (tungsten carbide) or SiC.
 加圧処理開始直前のガラス素板20の温度は、加熱処理により主表面を含む表層にあるガラスを粘性状態に維持する温度である。したがって、加熱源40a,40bの位置から型50a,50bの位置に素早く移動することが好ましい。加圧処理開示時点(金型がガラス素板20と始めて当接する時点)で、ガラス素板20の主表面の温度は最低温度でも、ガラス転移温度Tg(℃)+220℃以上であり、ガラス転移温度Tg(℃)+270℃~ガラス転移温度Tg(℃)+370℃であることが好ましい。
 一方、ガラス素板20の中央部は、加熱処理時から、弾性状態~粘弾性状態の温度を維持する。
The temperature of the glass base plate 20 immediately before the start of the pressure treatment is a temperature at which the glass on the surface layer including the main surface is maintained in a viscous state by the heat treatment. Therefore, it is preferable to quickly move from the position of the heating sources 40a, 40b to the position of the molds 50a, 50b. At the time when the pressure treatment is disclosed (when the mold first comes into contact with the glass base plate 20), the temperature of the main surface of the glass base plate 20 is at least the glass transition temperature Tg (° C.) + 220 ° C. The temperature is preferably Tg (° C.) + 270 ° C. to glass transition temperature Tg (° C.) + 370 ° C.
On the other hand, the central portion of the glass base plate 20 maintains the temperature from the elastic state to the viscoelastic state from the time of the heat treatment.
 加圧処理開始時、このようなガラス素板20の温度を得るには、加熱源40a,40bによる加熱終了時点から加圧処理開始時点までの時間間隔は、1.6秒以下であることが好ましく、0.5秒以下であることがより好ましい。 In order to obtain such a temperature of the glass base plate 20 at the start of the pressurizing process, the time interval from the end of heating by the heating sources 40a and 40b to the start of the pressurizing process may be 1.6 seconds or less. Preferably, it is 0.5 seconds or less.
 ガラス素板50a,50bの加圧は、ガラス素板20の全体を加圧してもよいが、一実施形態によれば、型50a,50bは、ガラス素板20の一部を加圧することが好ましい。このため、型50a,50bそれぞれは、ガラス素板20に同時に接触し、同じ圧力でガラス素板20を加圧することができるように構成されている。型50a,50bによる加圧では、主表面を含む表層にある粘性状態のガラスを加圧し、型50a,50bの外側に向かって押し出すように流動させる。一方、中央部にあるガラスは、弾性状態~粘弾性状態であるので、型50a,50bの加圧によるガラスの流動は、主表面のガラスに比べて少なく、あるいはほとんどない。すなわち、加圧処理では、表層にあるガラスの少なくとも一部が流動してガラス素板20の板厚を調整する、これにより、平坦度は高く、板厚分布は一定に近づき、かつ目標とする板厚に近づく。このため、加圧処理開示時点の主表面の温度分布は、均一に近いことが好ましく、両側の主表面における温度も同じであることが好ましい。温度が同じとは、温度差が5℃以内であることをいう。 The pressing of the glass base plates 50a and 50b may press the entire glass base plate 20, but according to one embodiment, the molds 50a and 50b may press a part of the glass base plate 20. preferable. For this reason, each type | mold 50a, 50b is comprised so that the glass base plate 20 can be simultaneously contacted and the glass base plate 20 can be pressurized with the same pressure. In the pressurization by the molds 50a and 50b, the glass in a viscous state on the surface layer including the main surface is pressurized and fluidized so as to be pushed out of the molds 50a and 50b. On the other hand, since the glass in the central portion is in an elastic state to a viscoelastic state, the flow of the glass due to the pressurization of the molds 50a and 50b is less or hardly compared to the glass on the main surface. That is, in the pressure treatment, at least a part of the glass on the surface layer flows to adjust the plate thickness of the glass base plate 20, whereby the flatness is high, the plate thickness distribution approaches a constant value, and is the target. It approaches the plate thickness. For this reason, it is preferable that the temperature distribution on the main surface at the time when the pressure treatment is disclosed is nearly uniform, and the temperatures on the main surfaces on both sides are preferably the same. The same temperature means that the temperature difference is within 5 ° C.
 一方、金型50a,50bのガラス素板20と当接するプレス面の温度は、ガラス転移点Tgを中心とした(Tg-20℃)以上(Tg+20℃)以下であることが好ましく、より好ましくは、ガラス転移点Tgを中心とした(Tg-10℃)以上(Tg+10℃)以下である。したがって、金型50a,50bのプレス面の温度は、ガラス素板20の表層の温度に比べて低い。このため、金型50a,50bは、ガラス素板20の表層にある粘性状態のガラスの少なくとも一部を流動させながら冷却する構成となっている。また、金型50a,50bは、ガラス素板20の主表面から熱を奪って冷却するが、このときの冷却の過程も両側で略同じであることが好ましいので(略均等に冷却することが好ましいので)、金型50a,50bの熱伝導も、略同じになるように構成されることが好ましい。すなわち、ガラス素板20から金型50a及び金型50bに流れる熱量がお互いに略等しいことが、平坦度を高め、板間の板厚のばらつきを小さくする点から好ましい。 On the other hand, the temperature of the press surface in contact with the glass base plate 20 of the molds 50a and 50b is preferably (Tg−20 ° C.) or more and (Tg + 20 ° C.) or less, more preferably centered on the glass transition point Tg. The temperature is from (Tg−10 ° C.) to (Tg + 10 ° C.) with the glass transition point Tg as the center. Therefore, the temperature of the press surfaces of the molds 50 a and 50 b is lower than the temperature of the surface layer of the glass base plate 20. For this reason, the molds 50a and 50b are configured to cool while flowing at least a part of the glass in a viscous state on the surface layer of the glass base plate 20. The molds 50a and 50b are cooled by taking heat from the main surface of the glass base plate 20, but it is preferable that the cooling process at this time is substantially the same on both sides (they can be cooled substantially uniformly). Therefore, it is preferable that the heat conduction of the molds 50a and 50b be configured to be substantially the same. That is, it is preferable that the amounts of heat flowing from the glass base plate 20 to the mold 50a and the mold 50b are approximately equal to each other from the viewpoint of increasing flatness and reducing variation in plate thickness between the plates.
 加圧装置は、金型50a,50bがガラス素板20に同時に接触するように、ガラス素板20は配置され、金型50a,50bの移動動作は制御されている。加圧処理では、金型50a,50bがガラス素板20に当接する時点から金型50a,50bが最も近づくまで、すなわち金型50a,50bのガラス素板20への押し込み動作が終了するまでの時間は50m秒以下であることが好ましく、10m秒以下であることがより好ましい。 In the pressurizing apparatus, the glass base plate 20 is disposed so that the molds 50a and 50b are in contact with the glass base plate 20 at the same time, and the movement operation of the molds 50a and 50b is controlled. In the pressurizing process, from the time when the molds 50a and 50b contact the glass base plate 20 until the molds 50a and 50b come closest, that is, until the pushing operation of the molds 50a and 50b into the glass base plate 20 is completed. The time is preferably 50 milliseconds or less, and more preferably 10 milliseconds or less.
 ガラス素板20が金型50a,50bのプレス面と接触する継続時間(金型50a,50bがガラス素板20に当接する時点から金型50a,50bがガラス素板20から離れる時点までの時間)は、50m秒~10秒であることが好ましい。金型50a,50bがガラス素板20から離れた時点で、ガラス素板20の表層にあるガラスは弾性状態になっている。 Duration of time during which the glass base plate 20 is in contact with the press surfaces of the molds 50a, 50b (time from when the molds 50a, 50b abut on the glass base plate 20 to when the molds 50a, 50b are separated from the glass base plate 20) ) Is preferably 50 milliseconds to 10 seconds. When the molds 50a and 50b are separated from the glass base plate 20, the glass on the surface layer of the glass base plate 20 is in an elastic state.
 一実施形態によれば、金型50a,50bは、ガラス素板20から金型50a,50bが受ける圧力が予め定めた上限に達するまで、型50a,50bの間の距離を徐々に狭くすることにより、ガラス素板20を加圧する、いわゆる圧力制御方式で加圧することが、金型50a,50bの簡易な制御で実現できる点からが好ましい。
 また、一実施形態によれば、金型50a,50bの間の距離が、予め設定された距離になるまで金型50a,50bの間の距離を徐々に狭くすることにより、ガラス素板20を加圧する、いわゆる位置制御方式で加圧することが、平均板厚を目標の板厚にできる点から好ましい。
According to one embodiment, the molds 50a and 50b gradually reduce the distance between the molds 50a and 50b until the pressure received by the molds 50a and 50b from the glass base plate 20 reaches a predetermined upper limit. Thus, it is preferable that the glass base plate 20 is pressurized by a so-called pressure control method in that it can be realized by simple control of the molds 50a and 50b.
Moreover, according to one embodiment, the glass base plate 20 is made by gradually narrowing the distance between the molds 50a and 50b until the distance between the molds 50a and 50b becomes a preset distance. It is preferable to pressurize by the so-called position control method from the viewpoint that the average plate thickness can be a target plate thickness.
 圧力制御方式では、例えば、金型50a,50bの駆動源となるサーボモータの回転トルクを制御することで金型50a,50bの動作を制御することができる。サーボモータの回転トルクはサーボモータに流れる電流に比例することからこの電流を制御することにより、金型50a,50bの動作の制御を行うことができる。位置制御方式は、例えば、金型50a,50bの間の距離を監視しながらサーボモータの電流を制御することにより、行うことができる。また、位置制御方式は、金型50a,50bのいずれか一方から他方の金型に対して突出したガイドピンを設け、予め定めた距離まで近づくと、ガイドピンが他方の金型と当接して、金型50a,50bが物理的に近づくことを阻止することにより、上記位置制御方式を行うこともできる。 In the pressure control method, for example, the operation of the molds 50a and 50b can be controlled by controlling the rotational torque of a servo motor that is a drive source of the molds 50a and 50b. Since the rotational torque of the servo motor is proportional to the current flowing through the servo motor, the operation of the molds 50a and 50b can be controlled by controlling this current. The position control method can be performed, for example, by controlling the current of the servo motor while monitoring the distance between the molds 50a and 50b. Further, the position control system is provided with a guide pin protruding from one of the molds 50a and 50b with respect to the other mold, and when approaching a predetermined distance, the guide pin comes into contact with the other mold. The position control method can also be performed by preventing the molds 50a and 50b from physically approaching.
 加圧処理では、ガラス素板20の主表面が上下方向を向くように配置して、上下方向の両側から金型がガラス素板20を挟む構成としてもよいが、図5に示すように、ガラス素板20の主表面が水平方向を向くようにガラス素板20を配置して、型50a,50bを水平方向の両側からガラス素板20を挟むことにより、ガラス素板20を加圧することが好ましい。このようにガラス素板20を加圧することにより、加圧が開始されるまで両側の主表面それぞれを含む表層にある粘性状態のガラスは重力を同じ方向に受け、型50a,50bによる加圧処理の際に主表面の両側でガラスは左右対称の挙動をするので、主表面の表面品質が板間でばらつく要因を少なくすることができる。
 こうして加圧処理されたガラス素板20は、キャリア30から外されて、図2(a)に示す中間体ガラス板10を得ることができる。
In the pressure treatment, the main surface of the glass base plate 20 may be arranged so as to face the vertical direction, and the mold may sandwich the glass base plate 20 from both sides in the vertical direction, but as shown in FIG. Placing the glass base plate 20 so that the main surface of the glass base plate 20 faces in the horizontal direction, and pressing the glass base plate 20 by sandwiching the glass base plate 20 from both sides of the molds 50a and 50b in the horizontal direction. Is preferred. By pressurizing the glass base plate 20 in this way, the glass in the viscous state on the surface layer including the main surfaces on both sides is subjected to gravity in the same direction until pressurization is started, and pressurization treatment by the molds 50a and 50b In this case, since the glass behaves symmetrically on both sides of the main surface, it is possible to reduce the factor that the surface quality of the main surface varies between the plates.
The glass base plate 20 thus pressure-treated can be removed from the carrier 30 to obtain the intermediate glass plate 10 shown in FIG.
 本実施形態では、以上のように、中間体ガラス板10からガラス板1を作製する。以下、中間体ガラス板10からガラス板1を作製するガラス板1の製造方法について説明する。
 ガラス板1の製造方法では、図2(a)に示すような中間体ガラス板10に対して、中間体ガラス板10の中央領域14の一部を円形状に切り出し、さらに、この円形状に合わせて同心円の内孔をあけて、円盤形状のガラス板を形成する形状加工処理を行う。形状加工処理は、さらに、円盤形状のガラス板の端面に面取り面を形成する面取り処理も含む。
In this embodiment, the glass plate 1 is produced from the intermediate glass plate 10 as described above. Hereinafter, the manufacturing method of the glass plate 1 which produces the glass plate 1 from the intermediate body glass plate 10 is demonstrated.
In the manufacturing method of the glass plate 1, a part of the central region 14 of the intermediate glass plate 10 is cut into a circular shape with respect to the intermediate glass plate 10 as shown in FIG. In addition, a concentric inner hole is formed, and a shape processing process is performed to form a disk-shaped glass plate. The shape processing process further includes a chamfering process for forming a chamfered surface on the end surface of the disk-shaped glass plate.
 上記形状加工処理では、例えば、スクライバーを用いた切り出し及び総型砥石を用いた面取り面の形成を行ってもよいが、レーザ光を用いた切り出し及びレーザ光を用いた面取り処理を行うことが好ましい。レーザ光を用いた切り出しを行うことにより、切り出し端面(外側端面、内側端面)の表面品質は高めることができるので、端面研磨を行う必要がなく、あるいは、端面研磨時間を大幅に短縮させることができる。
 レーザ光による円形状のガラス板の切り出しの方法は、特に制限されないが、例えば、レーザ光の焦点位置が中間体ガラス板10の板厚方向の内部に位置し、かつその焦点位置が、中間体ガラス板10の表面から見て円を描くように、レーザ光を中間体ガラス板10に対して相対移動させることにより、中間体ガラス板10の内部にクラック開始部を形成する方法が挙げられる。この場合、形成されたクラック開始部から、加熱等を行って、中間体ガラス板10の主表面に向けてクラックを進展させ、ガラス板を割段して、中間体ガラス板10を円形状に切り出す。
 レーザ光による面取り処理は、特に制限されないが、例えば、端面と主表面との間の角部を、ガラス板の切り出しに用いるレーザ光と異なる種類のレーザ光で面取り加工する方法が挙げられる。この場合、用いるレーザ光は、角部を、主表面に対して30~60度傾斜させた方向から照射し、角部を加熱して軟化させて蒸発させることにより、角部を面取りすることができる。
In the shape processing, for example, cutting using a scriber and chamfering using a general grindstone may be performed, but cutting using laser light and chamfering using laser light are preferably performed. . By performing cutting using laser light, the surface quality of the cut end face (outer end face, inner end face) can be improved, so there is no need for end face polishing or the end face polishing time can be greatly shortened. it can.
The method of cutting out the circular glass plate by the laser beam is not particularly limited. For example, the focal position of the laser beam is located in the thickness direction of the intermediate glass plate 10 and the focal position is the intermediate body. A method of forming a crack start portion in the intermediate glass plate 10 by moving the laser light relative to the intermediate glass plate 10 so as to draw a circle as viewed from the surface of the glass plate 10 can be mentioned. In this case, heating or the like is carried out from the formed crack starting portion, the crack is propagated toward the main surface of the intermediate glass plate 10, the glass plate is split, and the intermediate glass plate 10 is formed into a circular shape. cut.
The chamfering process using the laser beam is not particularly limited, and examples thereof include a method of chamfering the corner portion between the end surface and the main surface with a laser beam of a type different from the laser beam used for cutting out the glass plate. In this case, the laser beam to be used can be chamfered by irradiating the corner from a direction inclined at 30 to 60 degrees with respect to the main surface, and heating and softening the corner to evaporate. it can.
 ガラス板の切り出しに用いるレーザ光については、例えば、YAGレーザ、あるいは、ND:YAGレーザ等の固体レーザが用いられる。この場合、レーザ光の波長は、例えば、1030nm~1070nmの範囲にある。また、レーザ光は、パルスレーザであり、レーザ光によるパルス幅を10-12秒以下(1ピコ秒以下)であることが、レーザ光の焦点位置におけるガラスの過度な変質を抑制することができる点から好ましい。レーザ光の光エネルギは、パルス幅及びパルス幅の繰り返し周波数に応じて適宜調整することができる。パルス幅及び繰り返し周波数に対して過度な光エネルギを提供すると、ガラスが過度に変質し易くなり、焦点位置に残渣が存在し易い。
 面取り処理に用いるレーザ光については、例えば、COレーザを好適に用いられる。この場合、例えば、パルスレーザであり、繰り返し周期が5KHz以上であって、単位面積当たりの1パルスあたりのパワー密度が100W/cm以下のレーザ光を用いることができる。
For the laser light used for cutting out the glass plate, for example, a YAG laser or a solid-state laser such as an ND: YAG laser is used. In this case, the wavelength of the laser light is in the range of 1030 nm to 1070 nm, for example. The laser beam is a pulse laser, and the pulse width of the laser beam is 10 −12 seconds or less (1 picosecond or less), so that excessive alteration of the glass at the focal position of the laser beam can be suppressed. It is preferable from the point. The optical energy of the laser light can be appropriately adjusted according to the pulse width and the repetition frequency of the pulse width. Providing excessive light energy with respect to the pulse width and repetition frequency tends to excessively alter the glass and tends to leave residue at the focal point.
As the laser beam used for the chamfering process, for example, a CO 2 laser is preferably used. In this case, for example, a laser beam having a repetition period of 5 KHz or more and a power density per pulse per unit area of 100 W / cm 2 or less can be used.
 次に、得られた円盤形状のガラス板は、主表面の研磨処理が行われる。
 研磨処理は、ガラス板の第1研磨及び第2研磨を含む。
 第1研磨では、ガラス板を、公知の両面研磨装置の研磨用キャリアに設けられた保持孔内に保持させながらガラス板の両側の主表面の研磨が行われる。第1研磨は、微小な表面凹凸(マイクロウェービネス、粗さ)の調整を目的とする。
Next, the obtained disk-shaped glass plate is subjected to polishing of the main surface.
The polishing treatment includes first polishing and second polishing of the glass plate.
In the first polishing, the main surfaces on both sides of the glass plate are polished while the glass plate is held in a holding hole provided in a polishing carrier of a known double-side polishing apparatus. The purpose of the first polishing is to adjust minute surface irregularities (microwaveness, roughness).
 第1研磨処理では、遊星歯車機構を備えた両面研磨装置を用いて、ガラス板の主表面に対して研磨を行う。具体的には、ガラス板を、両面研磨装置の保持部材に設けられた保持孔内に保持させながらガラス板の両側の主表面の研磨を行う。両面研磨装置は、上下一対の定盤(上定盤および下定盤)を有しており、下定盤の上面及び上定盤の底面には、全体として円環形状の平板の研磨パッド(例えば、樹脂ポリッシャ)が取り付けられている。この上定盤および下定盤の間にガラス板が狭持される。そして、上定盤または下定盤のいずれか一方、または、双方を移動操作させ、遊離砥粒を含んだ研磨スラリを供給しながらガラス板と各定盤とを相対的に移動させることにより、ガラス板の両主表面を研磨することができる。第1研磨に用いる遊離砥粒として、例えば、酸化セリウム、あるいはジルコニア等の砥粒が用いられる。研磨砥粒の大きさは、平均粒径(D50)で0.5~3μmの範囲内であることが好ましい。 In the first polishing treatment, the main surface of the glass plate is polished using a double-side polishing apparatus equipped with a planetary gear mechanism. Specifically, the main surfaces on both sides of the glass plate are polished while the glass plate is held in the holding holes provided in the holding member of the double-side polishing apparatus. The double-side polishing apparatus has a pair of upper and lower surface plates (upper surface plate and lower surface plate), and an annular plate-shaped polishing pad (for example, as a whole on the upper surface of the lower surface plate and the bottom surface of the upper surface plate) Resin polisher) is attached. A glass plate is sandwiched between the upper surface plate and the lower surface plate. Then, either the upper surface plate or the lower surface plate, or both of them are moved, and the glass plate and each surface plate are relatively moved while supplying a polishing slurry containing free abrasive grains. Both main surfaces of the plate can be polished. As the free abrasive grains used for the first polishing, for example, abrasive grains such as cerium oxide or zirconia are used. The size of the abrasive grains is preferably in the range of 0.5 to 3 μm in terms of average particle diameter (D50).
 第1研磨後、ガラス板を化学強化してもよい。この場合、化学強化液として、例えば硝酸カリウムと硫酸ナトリウムの混合熔融液等を用い、ガラス板を化学強化液中に浸漬する。これにより、イオン交換によってガラス板の表面に圧縮応力層を形成することができる。 The glass plate may be chemically strengthened after the first polishing. In this case, for example, a mixed melt of potassium nitrate and sodium sulfate or the like is used as the chemical strengthening liquid, and the glass plate is immersed in the chemical strengthening liquid. Thereby, a compressive-stress layer can be formed on the surface of a glass plate by ion exchange.
 次に、ガラス板に第2研磨が施される。第2研磨処理は、主表面の鏡面研磨を目的とする。第2研磨においても、第1研磨に用いる両面研磨装置と同様の構成を有する両面研磨装置が用いられる。具体的には、ガラス板を、両面研磨装置の研磨用キャリアに設けられた保持孔内に保持させながら、ガラス板の両側の主表面の研磨が行われる。第2研磨処理では、第1研磨処理に対して、遊離砥粒の種類及び粒子サイズが異なり、樹脂ポリッシャの硬度が異なる。樹脂ポリッシャの硬度は第1研磨処理時よりも小さいことが好ましい。例えばコロイダルシリカを遊離砥粒として含む研磨液が両面研磨装置の研磨パッドとガラス板の主表面との間に供給され、ガラス板の主表面が研磨される。第2研磨に用いる研磨砥粒の大きさは、平均粒径(D50)で5~50nmの範囲内であることが好ましい。
 本実施形態では、化学強化処理の要否については、ガラス組成や必要性を考慮して適宜選択すればよい。第1研磨及び第2研磨の他にさらに別の研磨を加えてもよく、2つの主表面の研磨処理を1つの研磨処理で済ませてもよい。
 こうして、ガラス板の主表面を研磨して、磁気ディスク用ガラス基板等に要求される条件を満足した最終製品のガラス板1を得ることができる。
Next, the second polishing is performed on the glass plate. The second polishing treatment aims at mirror polishing of the main surface. Also in the second polishing, a double-side polishing apparatus having the same configuration as the double-side polishing apparatus used for the first polishing is used. Specifically, the main surfaces on both sides of the glass plate are polished while the glass plate is held in the holding holes provided in the polishing carrier of the double-side polishing apparatus. In the second polishing process, the type and particle size of loose abrasive grains are different from those in the first polishing process, and the hardness of the resin polisher is different. The hardness of the resin polisher is preferably smaller than that during the first polishing process. For example, a polishing liquid containing colloidal silica as free abrasive grains is supplied between the polishing pad of the double-side polishing apparatus and the main surface of the glass plate, and the main surface of the glass plate is polished. The size of the abrasive grains used for the second polishing is preferably in the range of 5 to 50 nm in terms of average particle diameter (D50).
In the present embodiment, whether or not the chemical strengthening treatment is necessary may be appropriately selected in consideration of the glass composition and necessity. In addition to the first polishing and the second polishing, another polishing may be added, and the two main surfaces may be polished by one polishing process.
In this way, the final surface of the glass plate 1 satisfying the conditions required for the magnetic disk glass substrate or the like can be obtained by polishing the main surface of the glass plate.
 なお、形状加工処理が施されて得られた円盤形状のガラス板は、第1研磨を行う前に、研削処理を行ってもよいが、研削処理を行う場合でも、従来に比べて板間の板厚のばらつきが小さく、しかも、平均板厚が目標とする板厚との差を小さくできるので、研削による取り代量は、従来の研削における取り代量よりも少なく、研削時間を短くすることができる。また、第1研磨を行う前に、円盤形状のガラス板の内側端面及び外側端面に対して端面研磨を行ってもよい。 In addition, the disk-shaped glass plate obtained by performing the shape processing treatment may be subjected to a grinding treatment before the first polishing. The variation in the plate thickness is small, and the difference between the average plate thickness and the target plate thickness can be reduced, so the machining allowance by grinding is less than the machining allowance in conventional grinding, and the grinding time must be shortened. Can do. Moreover, you may perform end surface grinding | polishing with respect to the inner side end surface and outer side end surface of a disk-shaped glass plate before performing 1st grinding | polishing.
 このように、図2(a)に示す中間体ガラス板10から、切り出し及び面取り面の形成を含む形状加工処理を行って円盤形状のガラス板を得た後、主表面の研磨処理が行われる。研磨処理前の加圧処理部分における板厚分布における最大板厚と最小板厚の差は2μm以下にすることができる。このため、研削は行われないか、行われても研削の取り代量は少ない。主表面の研削をすることなく、主表面の研磨を行う場合、円盤形状に加工した加圧処理部分と研磨処理後のガラス板の、同じ場所における板厚の差を、40μm以下にすることができる。また、主表面の研磨における片側の研磨により取り代量は、20μm以下にすることができる。さらに、主表面を研削する場合でも、研削による取り代量を少なくすることができるので、円盤形状に加工した加圧処理部分と研磨処理後のガラス板の同じ場所における板厚の差を、40μm以下にすることができる。
 なお、中間体ガラス板10の中央領域14における平均板厚は、ガラス板の主表面の研削を行わなくても済む程度に目標の板厚に近づけることができ、しかも、板内の板厚のばらつきも小さくきるので、研削を行わなくて済み、目標の板厚及び要求品質を満足するガラス板1を製造するときの生産性はより高くなる。
As described above, after the shape processing including cutting and chamfering is performed from the intermediate glass plate 10 shown in FIG. 2A to obtain a disk-shaped glass plate, the main surface is polished. . The difference between the maximum plate thickness and the minimum plate thickness in the plate thickness distribution in the pressure-treated portion before the polishing treatment can be 2 μm or less. For this reason, grinding is not performed, or even if it is performed, the machining allowance is small. When polishing the main surface without grinding the main surface, the difference in plate thickness between the pressure-treated portion processed into a disk shape and the polished glass plate at the same place should be 40 μm or less. it can. Further, the machining allowance can be reduced to 20 μm or less by polishing one side of the main surface. Furthermore, even when the main surface is ground, the machining allowance by grinding can be reduced, so the difference in plate thickness at the same place between the pressure-processed portion processed into a disk shape and the glass plate after polishing treatment can be reduced to 40 μm. It can be:
The average plate thickness in the central region 14 of the intermediate glass plate 10 can be brought close to the target plate thickness to the extent that it is not necessary to grind the main surface of the glass plate. Since the variation can be reduced, it is not necessary to perform grinding, and the productivity when manufacturing the glass plate 1 that satisfies the target plate thickness and required quality is higher.
 以上説明したように、ガラス素板から中間体ガラス板を製造するとき、ガラス素板20を、冶具を用いて支持しながら、ガラス素板20の主表面の両側を、加熱源40a,40bと非接触にして加熱する。この後、ガラス素板20を、冶具を用いて支持しながら、加熱処理されたガラス素板20の両側の主表面を一対の型50a,50bに同時に接触させて加圧して中間体ガラス板10を成形する。このため、中間体ガラス板10の加圧処理部分において、ガラス素板20の板間の板厚のばらつきを小さくでき、板内の板厚のばらつきも小さくできる。さらに、平坦度を向上させることができる。例えば、研磨処理前の中間体ガラス板10の加圧処理部分(中央領域14)における板間の平均板厚のばらつきを1μm以下にすることができ、研磨処理前の加圧処理部分における板内の最大板厚と最小板厚の差を2μm以下にすることができ、平坦度を4μm以下にすることができる。さらに、加圧処理部分の歪も抑制することができ、リターデーション値を5nm未満にすることができる。 As described above, when manufacturing an intermediate glass plate from a glass base plate, both sides of the main surface of the glass base plate 20 are supported by the heating sources 40a and 40b while supporting the glass base plate 20 using a jig. Heat without contact. Thereafter, while supporting the glass base plate 20 using a jig, the main surfaces on both sides of the heat-treated glass base plate 20 are simultaneously brought into contact with the pair of molds 50a and 50b to pressurize the intermediate glass plate 10. Is molded. For this reason, in the pressurization process part of the intermediate body glass plate 10, the dispersion | variation in the plate thickness of the glass base plate 20 can be made small, and the dispersion | variation in the plate thickness in a board can also be made small. Furthermore, the flatness can be improved. For example, the variation in the average plate thickness between the plates in the pressure-treated portion (central region 14) of the intermediate glass plate 10 before the polishing treatment can be reduced to 1 μm or less. The difference between the maximum plate thickness and the minimum plate thickness can be 2 μm or less, and the flatness can be 4 μm or less. Furthermore, the distortion of the pressure-treated portion can be suppressed, and the retardation value can be made less than 5 nm.
 また、上記加熱処理では、ガラス素板20の両側に設けられる加熱源からの輻射熱によりガラス素板20を加熱するので、ガラス素板20の主表面を熱伝導によらず効率よくかつ急速に加熱することができる。 Further, in the above heat treatment, the glass base plate 20 is heated by radiant heat from a heating source provided on both sides of the glass base plate 20, so that the main surface of the glass base plate 20 is efficiently and rapidly heated regardless of heat conduction. can do.
 上記加熱処理では、ガラス素板20の主表面の最低温度がガラス転移温度Tg+330℃以上ガラス転移温度Tg+430℃以下であり、主表面における最高温度と最低温度との温度差は50℃以下になるように加熱するので、ガラス素板20の主表面を含む表層にあるガラスを粘性状態にし、しかも、均一に近い粘性状態にすることができ、板間の板厚のばらつきをより抑制することができる。 In the heat treatment, the minimum temperature of the main surface of the glass base plate 20 is the glass transition temperature Tg + 330 ° C. or more and the glass transition temperature Tg + 430 ° C. or less, and the temperature difference between the maximum temperature and the minimum temperature on the main surface is 50 ° C. or less. Therefore, the glass on the surface layer including the main surface of the glass base plate 20 can be brought into a viscous state, and can be made into a nearly uniform viscous state, and variations in plate thickness between the plates can be further suppressed. .
 上記加熱処理における主表面の昇温速度は、55℃/秒以上とすることにより、ガラス素板20の主表面を含む表層にあるガラスが粘性状態になって流動し易くなっても、重力に従って鉛直下方に流れようとする時間は、非常に短くなる。このため、ガラス素板20の板厚の、加熱処理前の板厚からの変化は小さい。これにより、板間の板厚のばらつきをより抑制することができる。 The heating rate of the main surface in the heat treatment is 55 ° C./second or more, so that the glass on the surface layer including the main surface of the glass base plate 20 becomes viscous and easily flows, according to gravity. The time to flow vertically downward is very short. For this reason, the change of the plate | board thickness of the glass base plate 20 from the plate | board thickness before heat processing is small. Thereby, the dispersion | variation in the board thickness between boards can be suppressed more.
 上記加圧処理では、ガラス素板20の主表面の一部を型50a,50bと当接させて加圧し、残りの部分を型50a,50bで加圧しない。この方式の加圧処理では、加圧処理時加圧しない部分を利用してガラス素板20を支持することができるので、ガラス素板20が加圧処理の開始時変位することを防止することができる。この点で、ガラス素板20の主表面の一部を型50a,50bと当接させて加圧する方式は、ガラス素板20に対して安定した加圧処理を行うことができる。 In the pressurizing process, a part of the main surface of the glass base plate 20 is pressed against the molds 50a and 50b and the remaining part is not pressed by the molds 50a and 50b. In this type of pressure treatment, the glass base plate 20 can be supported using a portion that is not pressurized during the pressure treatment, so that the glass base plate 20 is prevented from being displaced at the start of the pressure treatment. Can do. In this regard, the method in which a part of the main surface of the glass base plate 20 is pressed against the molds 50 a and 50 b can perform a stable pressurizing process on the glass base plate 20.
 一実施形態によれば、加圧処理では、型50a,50bがガラス素板20から受ける圧力が、予め定めた上限に達するまで型50a,50bの間の距離を徐々に狭くすることにより、ガラス素板20を加圧する、ことが好ましい。これにより、中間体ガラス板10の板厚の制御を、金型50a,50bの簡易な制御で実現することができる。
 また、一実施形態によれば、上記加圧処理では、型50a,50bの間の距離が、予め設定された距離になるまで型50a,50bの間の距離を徐々に狭くすることにより、ガラス素板20を加圧することも好ましい。これにより、中間体ガラス板10の中央領域12における平均板厚を目標の板厚にすることができる。
According to one embodiment, in the pressure treatment, the distance between the molds 50a and 50b is gradually reduced until the pressure received by the molds 50a and 50b from the glass base plate 20 reaches a predetermined upper limit. It is preferable to pressurize the base plate 20. Thereby, control of the plate | board thickness of the intermediate body glass plate 10 is realizable by simple control of metal mold | die 50a, 50b.
Further, according to one embodiment, in the pressurizing process, the distance between the molds 50a and 50b is gradually reduced until the distance between the molds 50a and 50b reaches a preset distance. It is also preferable to pressurize the base plate 20. Thereby, the average board thickness in the center area | region 12 of the intermediate body glass plate 10 can be made into target board thickness.
 上記加圧処理を行うガラス素板20の主表面における温度の、加熱処理における温度からの低下(同じ場所における温度低下)は、100℃以下である、ことが好ましい。より好ましくは、60℃以下である。このような温度低下は、ガラス転移温度Tgより高く加熱されたガラス素板20の温度からの低下量は小さく、ガラス素板20の主表面を含む表層にあるガラスの粘性状態を維持したまま、ガラス素板20の加圧処理を効果的に行うことができる。 It is preferable that the decrease in the temperature on the main surface of the glass base plate 20 to be subjected to the pressure treatment from the temperature in the heat treatment (temperature drop in the same place) is 100 ° C. or less. More preferably, it is 60 degrees C or less. Such a temperature decrease has a small amount of decrease from the temperature of the glass base plate 20 heated higher than the glass transition temperature Tg, and while maintaining the viscosity state of the glass in the surface layer including the main surface of the glass base plate 20, The pressure treatment of the glass base plate 20 can be performed effectively.
 上記加圧処理では、ガラス素板20の主表面が水平方向を向くようにガラス素板20を配置して、型50a,50bを水平方向の両側からガラス素板20を挟むことにより、ガラス素板20を加圧することが好ましい。このようにガラス素板20を水平方向の両側から加圧することにより、加圧が開始されるまで両側の主表面を含む表層にある粘性状態のガラスは重力を同じ方向に受けるので、主表面の表面品質が板間でばらつく要因を少なくすることができる。 In the pressure treatment, the glass base plate 20 is arranged so that the main surface of the glass base plate 20 faces the horizontal direction, and the glass base plate 20 is sandwiched between the molds 50a and 50b from both sides in the horizontal direction. It is preferable to pressurize the plate 20. Thus, by pressing the glass base plate 20 from both sides in the horizontal direction, the glass in the viscous state on the surface layer including the main surfaces on both sides receives gravity in the same direction until pressing is started. Factors in which the surface quality varies between plates can be reduced.
 ガラス素板20は、加熱処理をする加熱装置から加圧処理を行う加圧装置に移動するが、上記加圧処理は、ガラス素板20が移動を停止したときに行うことが好ましい。これにより、板間の板厚のばらつきを抑制することができる。ガラス素板20の移動中に加圧処理を行うと、ガラス素板20の主表面が型50a,50bと当接するとき、表層にあるガラスの一部は、上記移動による慣性によって変位し、板内の移動方向に沿った板厚のばらつきが大きくなり易い。 The glass base plate 20 is moved from a heating device that performs heat treatment to a pressure device that performs pressure treatment, and the pressure treatment is preferably performed when the glass base plate 20 stops moving. Thereby, the dispersion | variation in the board thickness between boards can be suppressed. When pressure treatment is performed during the movement of the glass base plate 20, when the main surface of the glass base plate 20 comes into contact with the molds 50a and 50b, a part of the glass on the surface layer is displaced by the inertia due to the movement, and the plate The variation in the plate thickness along the moving direction is likely to increase.
 ガラス素板20の縁は、加熱処理中及び加圧処理中、ガラス素板20が変位しないようにキャリア30(治具)により固定されることにより、キャリア30に支持されることが好ましい。これにより、加熱処理中、ガラス素板20の熱収縮によりガラス素板20が変位して板間の板厚のばらつきを増大させることを抑制することができ、さらに、加圧処理時、型50a,50bがガラス素板20に当接しても、ガラス素板20の位置は変化せずガラス素板20は加圧されるので、ガラス素板20を支持しない場合に比べて板間の板厚のばらつきを抑制することができる。また、加熱処理中、ガラス素板20の縁を固定しないと、ガラス素板20は加熱によって収縮し、板内の板厚のばらつき、さらには、板間の板厚のばらつきを大きくするので好ましくない。 The edge of the glass base plate 20 is preferably supported by the carrier 30 by being fixed by the carrier 30 (jigs) so that the glass base plate 20 is not displaced during the heat treatment and the pressure treatment. Thereby, it can suppress that the glass base plate 20 displaces by the thermal contraction of the glass base plate 20 during heat processing, and increases the dispersion | variation in the plate | board thickness between board | plates. , 50b abuts on the glass base plate 20, the position of the glass base plate 20 does not change and the glass base plate 20 is pressurized, so that the plate thickness between the plates is larger than when the glass base plate 20 is not supported. Can be suppressed. In addition, if the edges of the glass base plate 20 are not fixed during the heat treatment, the glass base plate 20 is shrunk by heating, which increases the variation in the plate thickness within the plate, and further increases the plate thickness variation between the plates. Absent.
 加圧処理後であって、加圧処理後に最初に行う後処理前の、型50a,50bによって加圧されたガラス素板20の加圧処理部分の板厚分布における最大板厚と最小板厚の差を、上記加圧処理により2μm以下にすることができる。
 なお、加熱処理前のガラス素板20の板厚分布における最大板厚と最小板厚の差は0.5~20μmである。
 このように、ガラス素板20の板厚分布における最大板厚と最小板厚の差を加圧処理により小さくすることができるので、この後に、板厚を所定の範囲内にする研削する必要がなくなり、また、研削における取り代量を従来に比べて小さくすることができるので、所定の表面品質を満足するガラス板1の生産性を向上させることができる。
The maximum plate thickness and the minimum plate thickness in the plate thickness distribution of the pressed portion of the glass base plate 20 pressed by the molds 50a and 50b after the pressing process and before the first post-processing performed after the pressing process. Can be reduced to 2 μm or less by the pressure treatment.
The difference between the maximum plate thickness and the minimum plate thickness in the plate thickness distribution of the glass base plate 20 before the heat treatment is 0.5 to 20 μm.
As described above, the difference between the maximum plate thickness and the minimum plate thickness in the plate thickness distribution of the glass base plate 20 can be reduced by the pressurizing process, and thereafter, it is necessary to perform grinding so that the plate thickness is within a predetermined range. Moreover, since the machining allowance in grinding can be reduced as compared with the prior art, the productivity of the glass plate 1 satisfying a predetermined surface quality can be improved.
 また、図1に示すような、所定の表面品質を満足するガラス板1を製造するとき、上記加熱処理及び加圧処理を通して作製された中間体ガラス板1  0の加圧処理部分を所定の形状に切り出し、切り出した加圧処理部分の主表面を研磨する。このとき、切り出した加圧処理部分と研磨処理後のガラス板の、同じ場所における板厚の差を、40μm以下にすることができる。中間体ガラス板20の加圧処理部の板間の板厚のばらつきは小さく、目標の板厚に近づけることができるので、研削をする必要がなく、研削をするとしても、その取り代量は従来に比べて少ない。このように、研磨における取り代量も少なくすることができ、切り出した加圧処理部分と研磨処理後のガラス板の同じ場所における板厚の差を40μm以下にすることができる。主表面の研削をせず、研磨のみを行う場合、研磨による片側の取り代量を、20μm以下にすることができる。 Moreover, when manufacturing the glass plate 1 which satisfies predetermined surface quality as shown in FIG. 1, the pressurization process part of the intermediate glass plate 1 0 produced through the said heat processing and pressurization process is made into predetermined shape. And the main surface of the cut-out processed portion is polished. At this time, the difference in plate thickness at the same place between the cut-out pressure-treated portion and the polished glass plate can be 40 μm or less. The variation in the thickness between the plates of the pressure treatment part of the intermediate glass plate 20 is small and can approach the target plate thickness, so there is no need to grind, and even if grinding, the amount of machining allowance is Less than conventional. Thus, the machining allowance in polishing can be reduced, and the difference in plate thickness at the same place between the cut-out pressure-treated portion and the glass plate after polishing can be made 40 μm or less. When only the polishing is performed without grinding the main surface, the machining allowance on one side by polishing can be set to 20 μm or less.
(従来例、実施例)
 本実施形態の効果を確認するために、図4~6に示す中間体ガラス板10の製造方法を用いてガラス素板20から中間体ガラス板10を作製し、板間の板厚のばらつき及び板内の板厚のばらつきを調べた。
 作製する中間体ガラス板10の中央領域14における目標の板厚を820μmとして、
80mm×80mmの矩形のガラス板(平均板厚830μm~870μm、ガラス転移温度Tgは500℃)をガラス素板20として用意した。以下示す実施例においてガラス素板20を10枚ずつ用いて、中間体ガラス板10を作製した。ガラス素板20の板間の板厚のばらつき(ガラス板間の平均板厚のばらつき)は20μm超であり、板内の板厚のばらつき(最大板厚と最小板厚の差の最大差)も、4.0μm超であった。
 加熱源40a,40bとして、ガラス素板20の加熱が均一になるように調整したカンタル線ヒータを用い、加熱時間10秒の加熱処理で加圧処理部分となる場所の主表面の温度を室温から、少なくとも780℃以上に加熱した。
 型50a,50bの加圧面は、直径70mmの円形状とした。加圧処理における加圧圧力は30MPaとし、加圧面の温度を480℃とした。
 なお、ガラス素板20の縁は、図4に示すように、周上の12箇所で固定した。
(Conventional example, Example)
In order to confirm the effect of this embodiment, the intermediate glass plate 10 is produced from the glass base plate 20 using the method for manufacturing the intermediate glass plate 10 shown in FIGS. The variation of the plate thickness within the plate was examined.
The target plate thickness in the central region 14 of the intermediate glass plate 10 to be produced is 820 μm,
An 80 mm × 80 mm rectangular glass plate (average plate thickness: 830 μm to 870 μm, glass transition temperature Tg: 500 ° C.) was prepared as the glass base plate 20. The intermediate glass plate 10 was produced by using 10 glass base plates 20 in each of the following examples. Variation in the plate thickness between the glass base plates 20 (average plate thickness variation between glass plates) is more than 20 μm, variation in plate thickness (maximum difference between maximum plate thickness and minimum plate thickness) Was over 4.0 μm.
As the heating sources 40a and 40b, a Kanthal wire heater adjusted so that the heating of the glass base plate 20 is uniform is used, and the temperature of the main surface of the place that becomes the pressurizing process part by the heating process of the heating time of 10 seconds from the room temperature. And heated to at least 780 ° C. or higher.
The pressing surfaces of the molds 50a and 50b were circular with a diameter of 70 mm. The pressure applied in the pressure treatment was 30 MPa, and the temperature of the pressure surface was 480 ° C.
In addition, the edge of the glass base plate 20 was fixed at 12 places on the circumference as shown in FIG.
 下記表1には、各実施例の仕様と評価結果を示す。
 表1における“加熱処理後の主表面の温度(℃)”は、加熱処理装置に設けた赤外線放射温度計で計測した値であり、加圧される主表面の加圧処理部分の、主表面の最低温度を示す。
 表1における“最高温度と最低温度の温度差(℃)”は、加圧される主表面の加圧処理部分の、最高温度と最低温度の温度差を示す。
 表1における“加熱処理の昇温速度(℃/秒)”は、加熱処理による温度上昇分を加熱処理時間で割った値を示す。
 表1における“加圧処理前温度の加熱処理直後の温度からの低下(℃)”は、型50a,50bの加圧面の近傍に設けられた赤外線放射温度計で計測することにより得られ、加圧処理を行う直前の、加圧される加圧処理部分の主表面における温度の、加熱処理により加熱された温度からの、同じ場所における低下を示す。
 表1における評価結果の“板厚のばらつき評価”は、10枚の中間体ガラス板10における、中央領域14(加圧処理部分)の平均板厚の最大値と最小値の差を、(板間の板厚のばらつき)を、以下のレベルで区分けした結果を示す。また、“最大板厚と最小板厚の差評価”は、10枚の中間体ガラス板それぞれの中央領域14(加圧処理部分)における最大板厚と最小板厚の差のうち、最大の差(板内の板厚のばらつき)を、以下のレベルで区分けした結果を示す。
 なお、レベルCは、不合格であり、レベルAA,A,Bは合格である。
レベルAA:0.5μm以下
レベルA :0.5μm超、1μm以下
レベルB :1μm超、2μm以下
レベルC :2μm超
Table 1 below shows the specifications and evaluation results of each example.
“Temperature of the main surface after heat treatment (° C.)” in Table 1 is a value measured by an infrared radiation thermometer provided in the heat treatment apparatus. Indicates the minimum temperature.
“Temperature difference between maximum temperature and minimum temperature (° C.)” in Table 1 indicates the temperature difference between the maximum temperature and the minimum temperature of the pressure-treated portion of the main surface to be pressed.
“Heating rate of heat treatment (° C./second)” in Table 1 represents a value obtained by dividing the temperature increase due to the heat treatment by the heat treatment time.
The “decrease of the pre-pressurization temperature from the temperature immediately after the heat treatment (° C.)” in Table 1 is obtained by measuring with an infrared radiation thermometer provided in the vicinity of the pressurization surfaces of the molds 50a and 50b. It shows the decrease in the same place from the temperature heated by the heat treatment of the temperature on the main surface of the pressurized treatment portion to be pressurized just before the pressure treatment.
“Evaluation of variation in plate thickness” in the evaluation results in Table 1 is the difference between the maximum value and the minimum value of the average plate thickness in the central region 14 (pressurized portion) in the 10 intermediate glass plates 10 (plate The result of dividing the sheet thickness variation) between the following levels. Further, “Evaluation of difference between maximum plate thickness and minimum plate thickness” is the largest difference among the difference between the maximum plate thickness and the minimum plate thickness in the central region 14 (pressurized portion) of each of the 10 intermediate glass plates. The result of dividing (variation in plate thickness within the plate) by the following levels is shown.
Level C is rejected, and levels AA, A, and B are acceptable.
Level AA: 0.5 μm or less Level A: More than 0.5 μm, 1 μm or less Level B: More than 1 μm, 2 μm or less Level C: More than 2 μm
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~5のいずれの評価も、レベルAA,A,Bであり、レベルCはなく、実施例1~5のいずれの中間体ガラス板10の板間の板厚のばらつき(“板厚のばらつきの評価”)及び板内の板厚のばらつき(“最大板厚と最小板厚の差評価”)も、ガラス素板20の4.0μm超の板間の板厚のばらつき及び板内の板厚のばらつきに比べて小さかった。
 また、実施例1~3の比較より、主表面の加圧処理部分の、主表面の最低温度は、ガラス転移温度Tg+330℃以上ガラス転移温度Tg+430℃以下であり、加圧処理部分の温度分布における温度差が20℃以下である条件を満足する実施例1の板間の板厚のばらつき(“板厚のばらつきの評価”)及び板内の板厚のばらつき(“最大板厚と最小板厚の差評価”)は、この条件を満足しない実施例2,3の板間の板厚のばらつき及び板内の板厚のばらつきに比べて小さかった。
 また、実施例1,4の比較より、加熱処理における主表面の昇温速度が55℃/秒以上である実施例1の板間の板厚のばらつき(“板厚のばらつきの評価”)及び板内の板厚のばらつき(“最大板厚と最小板厚の差評価”)は、昇温速度が55℃/秒未満である実施例4の板間の板厚のばらつき及び板内の板厚のばらつきに比べて、小さかった。
 また、実施例1,5の比較より、加圧処理を行うガラス素板の主表面における温度の、加熱処理により加熱された温度からの、同じ場所における低下が100℃以下である実施例1の板間の板厚のばらつき(“板厚のばらつきの評価”)及び板内の板厚のばらつき(“最大板厚と最小板厚の差評価”)は、上記温度の低下が100℃超である実施例5の板間の板厚のばらつき及び板内の板厚のばらつきに比べて、小さかった。
 これより、本実施形態の効果は明らかである。
All evaluations in Examples 1 to 5 are levels AA, A, and B, and there is no level C. Variation in the plate thickness between the intermediate glass plates 10 in any of Examples 1 to 5 (“plate thickness”) Evaluation of variation in the sheet thickness)) and variation in the plate thickness ("Evaluation of difference between the maximum plate thickness and the minimum plate thickness") are also caused by variations in the plate thickness of the glass base plate 20 exceeding 4.0 μm and in the plate. It was smaller than the variation of the plate thickness.
Further, from the comparison of Examples 1 to 3, the minimum temperature of the main surface of the pressure treatment portion of the main surface is the glass transition temperature Tg + 330 ° C. or more and the glass transition temperature Tg + 430 ° C. or less, and in the temperature distribution of the pressure treatment portion Variation in the plate thickness between the plates of Example 1 that satisfies the temperature difference of 20 ° C. or less (“Evaluation of plate thickness variation”) and the variation in the plate thickness within the plate (“maximum plate thickness and minimum plate thickness” The difference evaluation “)” was smaller than the variation in the plate thickness between the plates of Examples 2 and 3 that did not satisfy this condition and the variation in the plate thickness within the plate.
Further, from the comparison between Examples 1 and 4, the plate thickness variation (“Evaluation of plate thickness variation”) between the plates of Example 1 in which the heating rate of the main surface in the heat treatment is 55 ° C./second or more and Variations in the plate thickness within the plate (“Evaluation of difference between maximum plate thickness and minimum plate thickness”) are the variations in the plate thickness between the plates of Example 4 where the rate of temperature increase is less than 55 ° C./second, and the plates in the plate. It was smaller than the thickness variation.
Moreover, from the comparison of Examples 1 and 5, the decrease in the same place from the temperature heated by the heat treatment of the main surface of the glass base plate subjected to the pressure treatment is 100 ° C. or less. Variation in plate thickness between plates (“Evaluation of plate thickness variation”) and variation in plate thickness (“Evaluation of difference between maximum plate thickness and minimum plate thickness”) It was small compared with the dispersion | variation in the board thickness of the board of a certain Example 5, and the dispersion | variation in the board thickness in a board.
From this, the effect of this embodiment is clear.
 以上、本発明の中間体ガラス板の製造方法、ガラス板の製造方法、及び中間体ガラス板について詳細に説明したが、本発明は、上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。 As mentioned above, although the manufacturing method of the intermediate glass plate of this invention, the manufacturing method of a glass plate, and the intermediate glass plate were demonstrated in detail, this invention is not limited to the said embodiment, and does not deviate from the main point of this invention. Of course, various improvements and changes may be made in the range.
1 ガラス板
10 中間体ガラス板
12 周辺領域
14 中央領域
20 ガラス素板
30 キャリア
30a,30b キャリア板
32 孔
34 押さえ部
40a,40b 加熱源
50a,50b 型
DESCRIPTION OF SYMBOLS 1 Glass plate 10 Intermediate glass plate 12 Peripheral area | region 14 Central area | region 20 Glass base plate 30 Carrier 30a, 30b Carrier plate 32 Hole 34 Holding | maintenance part 40a, 40b Heat source 50a, 50b type

Claims (19)

  1.  ガラス素板から中間体ガラス板を製造する方法であって、
     前記ガラス素板を、治具を用いて支持しながら、前記ガラス素板の両側の主表面を加熱源と非接触にして前記加熱源を用いて加熱する加熱処理と、
     加熱された前記ガラス素板を、前記治具を用いて支持しながら、加熱された前記ガラス素板の両側の前記主表面を一対の型に同時に接触させて加圧して中間体ガラス板を成形する加圧処理と、
     を備えることを特徴とする中間体ガラス板の製造方法。
    A method for producing an intermediate glass plate from a glass base plate,
    While supporting the glass base plate using a jig, heat treatment is performed using the heating source with the main surfaces on both sides of the glass base plate not in contact with the heating source,
    While supporting the heated glass base plate using the jig, the main surfaces on both sides of the heated glass base plate are simultaneously brought into contact with a pair of molds and pressed to form an intermediate glass plate. Pressure treatment to
    The manufacturing method of the intermediate body glass plate characterized by the above-mentioned.
  2.  前記加熱処理では、前記ガラス素板の両側に設けられる加熱源からの輻射熱により前記ガラス素板を加熱する、請求項1に記載の中間体ガラス板の製造方法。 The method for producing an intermediate glass plate according to claim 1, wherein, in the heat treatment, the glass base plate is heated by radiant heat from a heating source provided on both sides of the glass base plate.
  3.  前記加圧処理で加圧される前記主表面の加圧処理部分の、前記主表面の最低温度は、ガラス転移温度Tg+330℃以上ガラス転移温度Tg+430℃以下であり、前記加圧処理部分の温度分布における温度差は50℃以下になるように、前記加熱処理では、前記ガラス素板の両側の主表面を加熱する、請求項1又は2に記載の中間体ガラス板の製造方法。 The minimum temperature of the main surface of the pressure-treated portion of the main surface that is pressurized by the pressure treatment is a glass transition temperature Tg + 330 ° C. or higher and a glass transition temperature Tg + 430 ° C. or lower, and the temperature distribution of the pressure-treated portion. The method for producing an intermediate glass plate according to claim 1 or 2, wherein in the heat treatment, main surfaces on both sides of the glass base plate are heated so that a temperature difference in the heat treatment is 50 ° C or less.
  4.  前記加熱処理における前記主表面の昇温速度は、55℃/秒以上である、請求項1~3のいずれか1項に記載の中間体ガラス板の製造方法。 The method for producing an intermediate glass sheet according to any one of claims 1 to 3, wherein a temperature increase rate of the main surface in the heat treatment is 55 ° C / second or more.
  5.  前記加圧処理では、前記ガラス素板の前記主表面の一部を前記型と当接させて加圧し、残りの部分を前記型で加圧しない、請求項1~4のいずれか1項に記載のガラス板の製造方法。 5. The pressurizing treatment according to claim 1, wherein a part of the main surface of the glass base plate is pressed against the mold and pressed, and the remaining part is not pressed with the mold. The manufacturing method of the glass plate of description.
  6.  前記加圧処理では、前記型が前記ガラス素板から受ける圧力が、予め定めた上限に達するまで前記一対の型の間の距離を徐々に狭くすることにより、前記ガラス素板を加圧する、請求項1~5のいずれか1項に記載の中間体ガラス板の製造方法。 In the pressurizing process, the glass base plate is pressurized by gradually reducing the distance between the pair of molds until the pressure received by the mold from the glass base plate reaches a predetermined upper limit. Item 6. The method for producing an intermediate glass sheet according to any one of Items 1 to 5.
  7.  前記加圧処理では、前記一対の型の間の距離が、予め設定された距離になるまで前記一対の型の間の距離を徐々に狭くすることにより、前記ガラス素板を加圧する、請求項1~5のいずれか1項に記載の中間体ガラス板の製造方法。 The pressurizing process pressurizes the glass base plate by gradually reducing the distance between the pair of molds until the distance between the pair of molds reaches a preset distance. 6. The method for producing an intermediate glass plate according to any one of 1 to 5.
  8.  前記加圧処理を行う前記ガラス素板の前記主表面における温度の、前記加熱処理により加熱された温度からの、同じ場所における低下は、100℃以下である、請求項1~7のいずれか1項に記載の中間体ガラス板の製造方法。 The decrease in temperature at the same place from the temperature heated by the heat treatment of the temperature on the main surface of the glass base plate subjected to the pressure treatment is 100 ° C. or less. The manufacturing method of the intermediate body glass plate of description.
  9.  前記加圧処理では、前記ガラス素板の前記主表面が水平方向を向くように前記ガラス素板を配置して、前記一対の型を水平方向の両側から前記ガラス素板を挟むことにより、前記ガラス素板を加圧する、請求項1~8のいずれか1項に記載の中間体ガラス板の製造方法。 In the pressure treatment, the glass base plate is disposed so that the main surface of the glass base plate faces in the horizontal direction, and the pair of molds are sandwiched between the glass base plates from both sides in the horizontal direction. The method for producing an intermediate glass plate according to any one of claims 1 to 8, wherein the glass base plate is pressurized.
  10.  前記加圧処理を行う前記ガラス素板は、前記加熱処理をする処理装置から前記加圧処理を行う処理装置に移動し、
     前記加圧処理は、前記ガラス素板が移動を停止したときに行う、請求項1~9のいずれか1項に記載の中間体ガラス板の製造方法。
    The glass base plate that performs the pressure treatment moves from the processing device that performs the heat treatment to the processing device that performs the pressure treatment,
    The method for producing an intermediate glass sheet according to any one of claims 1 to 9, wherein the pressure treatment is performed when the movement of the glass base plate is stopped.
  11.  前記ガラス素板の縁は、前記加熱処理中及び前記加圧処理中、前記ガラス素板が変位しないように前記治具により固定されることにより、支持される、請求項1~10のいずれか1項に記載の中間体ガラス板の製造方法。 The edge of the glass base plate is supported by being fixed by the jig so that the glass base plate is not displaced during the heat treatment and the pressure treatment. The manufacturing method of the intermediate body glass plate of 1 item | term.
  12.  前記加圧処理後に最初に行う後処理前の前記中間体ガラス板において、前記型によって加圧された前記ガラス素板の加圧処理部分における最大板厚と最小板厚の差は2μm以下である、請求項1~11のいずれか1項に記載の中間体ガラス板の製造方法。 In the intermediate glass plate before post-processing that is performed first after the pressure treatment, the difference between the maximum plate thickness and the minimum plate thickness in the pressure-treated portion of the glass base plate pressed by the mold is 2 μm or less. The method for producing an intermediate glass plate according to any one of claims 1 to 11.
  13.  前記加熱処理前の前記ガラス素板の板厚分布における最大板厚と最小板厚の差は0.5~20μmである、請求項1~12のいずれか1項に記載の中間体ガラス板の製造方法。 The intermediate glass plate according to any one of claims 1 to 12, wherein a difference between a maximum plate thickness and a minimum plate thickness in a plate thickness distribution of the glass base plate before the heat treatment is 0.5 to 20 µm. Production method.
  14.  ガラス板の製造方法であって、
     請求項1~13のいずれか1項に記載の中間体ガラス板の製造方法で製造された前記中間体ガラス板の、前記型によって加圧された加圧処理部分を所定の形状に切り出す処理と、切り出した前記加圧処理部分の主表面を研磨する研磨処理を含む、ことを特徴とするガラス板の製造方法。
    A method of manufacturing a glass plate,
    A process of cutting a pressure-treated portion pressed by the mold of the intermediate glass sheet produced by the method for producing an intermediate glass sheet according to any one of claims 1 to 13 into a predetermined shape; A method for producing a glass plate, comprising: a polishing treatment for polishing a main surface of the cut-out processed pressure portion.
  15.  前記加圧処理後に最初に行う後処理前の前記加圧処理部分と、前記研磨処理後の前記ガラス板との、同じ場所における板厚の差は、40μm以下である、
     請求項14に記載のガラス板の製造方法。
    The difference in plate thickness at the same place between the pressure-treated portion before the post-treatment first performed after the pressure treatment and the glass plate after the polishing treatment is 40 μm or less.
    The manufacturing method of the glass plate of Claim 14.
  16.  中間体ガラス板であって、
     前記中間体ガラス板の両側の主表面のそれぞれは、周辺領域と、前記周辺領域に囲まれて設けられた中央領域と、を備え、
     前記中央領域における板厚は、前記周辺領域の板厚よりも薄く、
     前記両側の主表面それぞれの前記中央領域は、互いに対向するように設けられている、ことを特徴とする中間体ガラス板。
    An intermediate glass plate,
    Each of the main surfaces on both sides of the intermediate glass plate includes a peripheral region, and a central region provided surrounded by the peripheral region,
    The plate thickness in the central region is thinner than the plate thickness in the peripheral region,
    The intermediate glass plate, wherein the central regions of the main surfaces on both sides are provided to face each other.
  17.  中間体ガラス板であって、
     前記中間体ガラス板の両側の主表面のそれぞれは、周辺領域と、前記周辺領域に囲まれて設けられた中央領域と、を備え、
     前記中央領域における板厚は、前記周辺領域の板厚よりも薄く、
     前記中央領域はプレス面であり、前記周辺領域は非プレス面である、ことを特徴とする中間体ガラス板。
    An intermediate glass plate,
    Each of the main surfaces on both sides of the intermediate glass plate includes a peripheral region, and a central region provided surrounded by the peripheral region,
    The plate thickness in the central region is thinner than the plate thickness in the peripheral region,
    The intermediate glass plate, wherein the central region is a press surface and the peripheral region is a non-press surface.
  18.  前記中央領域における最大板厚と最小板厚の差は2μm以下である、請求項16又は17に記載の中間体ガラス板。 The intermediate glass plate according to claim 16 or 17, wherein a difference between the maximum plate thickness and the minimum plate thickness in the central region is 2 µm or less.
  19.  前記中央領域における最大板厚と最小板厚の差は、前記周辺領域における最大板厚と最小板厚の差よりも小さい、請求項16~18のいずれか1項に記載の中間体ガラス板。 The intermediate glass plate according to any one of claims 16 to 18, wherein a difference between the maximum plate thickness and the minimum plate thickness in the central region is smaller than a difference between the maximum plate thickness and the minimum plate thickness in the peripheral region.
PCT/JP2019/013636 2018-03-30 2019-03-28 Intermediate glass plate manufacturing method, glass plate manufacturing method, and intermediate glass plate WO2019189594A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018070221 2018-03-30
JP2018-070221 2018-03-30

Publications (1)

Publication Number Publication Date
WO2019189594A1 true WO2019189594A1 (en) 2019-10-03

Family

ID=68060259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013636 WO2019189594A1 (en) 2018-03-30 2019-03-28 Intermediate glass plate manufacturing method, glass plate manufacturing method, and intermediate glass plate

Country Status (1)

Country Link
WO (1) WO2019189594A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1192159A (en) * 1997-09-22 1999-04-06 Matsushita Electric Ind Co Ltd Production of glass substrate and apparatus therefor
JPH11228149A (en) * 1998-02-06 1999-08-24 Ngk Insulators Ltd Manufacture of glass substrate
JP2002104831A (en) * 2000-09-28 2002-04-10 Hata Kensaku:Kk Method of press-forming
JP2004059355A (en) * 2002-07-26 2004-02-26 Hoya Corp Glass blank, and method of manufacturing substrate for information recording medium and information recording medium
KR20090102181A (en) * 2008-03-25 2009-09-30 엘지마이크론 주식회사 Non contact polishing equipment and polishing method of the same
JP2009221089A (en) * 2008-03-19 2009-10-01 Hoya Corp Manufacturing method of each of glass blank for substrate for information recording medium, substrate for information recording medium, and information recording medium

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1192159A (en) * 1997-09-22 1999-04-06 Matsushita Electric Ind Co Ltd Production of glass substrate and apparatus therefor
JPH11228149A (en) * 1998-02-06 1999-08-24 Ngk Insulators Ltd Manufacture of glass substrate
JP2002104831A (en) * 2000-09-28 2002-04-10 Hata Kensaku:Kk Method of press-forming
JP2004059355A (en) * 2002-07-26 2004-02-26 Hoya Corp Glass blank, and method of manufacturing substrate for information recording medium and information recording medium
JP2009221089A (en) * 2008-03-19 2009-10-01 Hoya Corp Manufacturing method of each of glass blank for substrate for information recording medium, substrate for information recording medium, and information recording medium
KR20090102181A (en) * 2008-03-25 2009-09-30 엘지마이크론 주식회사 Non contact polishing equipment and polishing method of the same

Similar Documents

Publication Publication Date Title
JP6259022B2 (en) Glass blank
JP6234522B2 (en) Manufacturing method of glass substrate for magnetic disk
WO2019151185A1 (en) Method for producing glass substrate for magnetic disk
CN112512741B (en) Method for manufacturing glass substrate and method for manufacturing magnetic disk
JP7227273B2 (en) Glass plate manufacturing method, glass plate chamfering method, and magnetic disk manufacturing method
WO2021020587A1 (en) Ring-shaped glass plate production method, magnetic disc glass substrate production method, magnetic disc production method, ring-shaped glass plate, magnetic disc glass substrate, and magnetic disc
JP7311702B2 (en) glass plate and magnetic disk
WO2012147372A1 (en) Method for producing glass blank for magnetic disc, method for producing glass substrate for magnetic disc, and glass blank for magnetic disc
JP7366141B2 (en) Method for manufacturing glass plate, method for manufacturing glass substrate for magnetic disk, and method for manufacturing magnetic disk
WO2019189594A1 (en) Intermediate glass plate manufacturing method, glass plate manufacturing method, and intermediate glass plate
WO2019189480A1 (en) Glass substrate manufacturing method
JP5739552B2 (en) Method for manufacturing glass blank for magnetic disk and method for manufacturing glass substrate for magnetic disk
JP6198780B2 (en) Glass blank for magnetic disk and method for producing glass blank for magnetic disk
WO2022114060A1 (en) Method for manufacturing glass plate, method for manufacturing glass substrate for magnetic disk, method for manufacturing magnetic disk, and annular glass plate
JP2014235760A (en) Manufacturing method of glass substrate
JP6274802B2 (en) Method for manufacturing glass blank for magnetic disk, method for manufacturing glass substrate for magnetic disk, and glass blank mold
JP4227382B2 (en) Glass blank, information recording medium substrate, and information recording medium manufacturing method
KR100773381B1 (en) Substrate for information recording medium and production method thereof, information recording medium, and glass blank sheet
JP2018172251A (en) Mold for press-forming processing, production method of glass blank, and production method of glass substrate for magnetic disk
JP2013077366A (en) Manufacturing method of glass substrate for magnetic disk

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19775180

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19775180

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP