WO2019189444A1 - Liquid-crystal material, liquid-crystal film, method for producing same, sensor, and optical element - Google Patents

Liquid-crystal material, liquid-crystal film, method for producing same, sensor, and optical element Download PDF

Info

Publication number
WO2019189444A1
WO2019189444A1 PCT/JP2019/013328 JP2019013328W WO2019189444A1 WO 2019189444 A1 WO2019189444 A1 WO 2019189444A1 JP 2019013328 W JP2019013328 W JP 2019013328W WO 2019189444 A1 WO2019189444 A1 WO 2019189444A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
liquid crystal
general formula
linear
Prior art date
Application number
PCT/JP2019/013328
Other languages
French (fr)
Japanese (ja)
Inventor
古海 誓一
将司 府川
鈴木 達也
花菜 鈴木
健一郎 早田
Original Assignee
学校法人東京理科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人東京理科大学 filed Critical 学校法人東京理科大学
Priority to JP2020509240A priority Critical patent/JP7296134B2/en
Publication of WO2019189444A1 publication Critical patent/WO2019189444A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B13/00Preparation of cellulose ether-esters

Definitions

  • the present invention relates to a liquid crystal material, a liquid crystal film, a manufacturing method thereof, a sensor, and an optical element.
  • Liquid crystal materials are not only used as display materials for liquid crystal displays, but in recent years, application to photonic devices has been promoted using their optical characteristics.
  • a liquid crystal material for example, a cellulose derivative is known.
  • a cellulose derivative having liquid crystallinity a cellulose derivative in which a substituent having a carbamate group (urethane bond) is introduced into a hydrogen atom of a hydroxyl group of hydroxypropyl cellulose is disclosed (for example, see Patent Document 1).
  • Patent Document 1 describes a methacryloyl group as a group that can be introduced into a side chain of a cellulose derivative, but it is not introduced for crosslinking between monomer units of the cellulose derivative. Furthermore, Patent Document 1 does not plan to impart elasticity to the crosslinked cellulose derivative.
  • Hydroxypropylcellulose is a cellulose derivative that is the main component of paper, cotton, and pulp, and is harmless to the human body and the environment. It is a polymer.
  • Cellulose is an inexpensive material because it is the most abundant raw material in nature. Therefore, the development of liquid crystal materials and the like using cellulose derivatives as raw materials is also useful from the viewpoint of safety and the reduction of environmental burden. Further, it is expected to be used for photonic devices.
  • the present invention has been made in view of the above circumstances, and exhibits a thermotropic cholesteric liquid crystallinity and rubber elasticity, and a liquid crystal material, a liquid crystal film, and a liquid crystal material having a large shift change in the wavelength of reflected light with respect to mechanical pressure It is an object to provide a manufacturing method, a sensor, and an optical element.
  • a liquid crystal material containing a cellulose derivative having a specific structure exhibits a thermotropic cholesteric liquid crystal property, and has an alkylene group having a specific number of carbon atoms or more at the end of the side chain.
  • a liquid crystal film exhibiting rubber elasticity and containing the liquid crystal material is crosslinked at a wavelength of Bragg reflection by crosslinking a cellulose derivative containing at least one of a group having a saturated double bond and an acyl group having a specific carbon number or more.
  • the inventors have found that the orientation can be fixed and color can be developed, and the present invention has been completed. That is, the following embodiments are included in the means for solving the problems.
  • X 11 , X 12 and X 13 are each independently a single bond, an alkylene group, — (R 14 —O) h —, or —C ( ⁇ O) —R 15 —.
  • R 11 , R 12 and R 13 each independently represent a hydrogen atom, a group having an unsaturated double bond, or a hydrophobic group, and R 14 and R 15 each independently represents an alkylene group.
  • H represents an integer of 1 to 10
  • n11 represents an integer of 2 to 800, provided that at least one of R 11 , R 12 and R 13 is represented by the following general formula (3C). It represents at least one of the group having an unsaturated double bond and a linear or branched acyl group having 5 to 20 carbon atoms.
  • R 3C represents a hydrogen atom or a methyl group
  • X 38 represents a linear or branched alkylene group having 3 to 20 carbon atoms, —NH—, —C ( ⁇ O) O—
  • R 1 represents —CH 2 —CH 2 — or —CH 2 —CH (CH 3 ) —
  • R 11 , R 12 and R 13 are each independently A hydrogen atom, a group having an unsaturated double bond, or a hydrophobic group
  • m1, t1 and r1 each independently represents an integer of 0 to 10
  • n13 represents an integer of 2 to 800.
  • at least one of R 11 , R 12 and R 13 is at least one of a group having an unsaturated double bond represented by the following general formula (3C) and a linear or branched acyl group having 5 to 20 carbon atoms. Represents one.
  • R 3C represents a hydrogen atom or a methyl group
  • X 38 represents a linear or branched alkylene group having 3 to 20 carbon atoms, —NH—, —C ( ⁇ O) O—
  • ** represents a moiety that binds to X 11 , X 12 , or X 13 in the general formula (1A) or a moiety that binds to an oxygen atom at the 2nd, 3rd, or 6th position of the cellulose skeleton.
  • the group having an unsaturated double bond further includes a group represented by the following general formula (1C),
  • the hydrophobic group is a linear or branched alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 3 to 18 carbon atoms, an aryl group having 6 to 18 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, a carbon number A linear or branched acyl group having 2 to 4 carbon atoms, a linear or branched alkoxy group having 1 to 18 carbon atoms, a carboxylic acid ester group represented by —COOR 1A , or a halogen atom, wherein R 1A is a carbon atom
  • R 1C represents a hydrogen atom or a methyl group
  • X 18 represents a single bond, a linear or branched alkylene group having 1 to 18 carbon atoms, a cycloalkylene group having 3 to 18 carbon atoms
  • It represents a selected group or a group obtained by linking at least one of them
  • p1 represents an integer of 1 or 2.
  • X 18 is a single bond or —C ( ⁇ O) —NH— (CH 2 ) 2 —O—
  • p1 is 1, ⁇ 3>
  • the liquid crystal material described. ⁇ 5> The liquid crystal material according to ⁇ 3> or ⁇ 4>, wherein the hydrophobic group is a linear or branched acyl group having 2 to 4 carbon atoms.
  • ⁇ 6> The liquid crystal material according to any one of ⁇ 1> to ⁇ 5>, wherein the degree of substitution per monomer unit of the group having an unsaturated double bond is 0.01 or more and 2.0 or less.
  • Ratio of the degree of substitution per monomer unit of the group having an unsaturated double bond to the degree of substitution per monomer unit of the hydrophobic group (the group having an unsaturated double bond / the hydrophobic group ) Is 3.0 ⁇ 10 ⁇ 3 or more and 2.0 or less, the liquid crystal material according to any one of ⁇ 1> to ⁇ 6>.
  • ⁇ 8> Has a three-dimensional structure, Including a cellulose derivative having a molecular structure represented by the following general formula (2A), The liquid crystal film in which the cellulose derivative includes a group having a group for connecting monomer units to each other.
  • X 21 , X 22 and X 23 each independently represent a single bond, an alkylene group, — (R 24 —O) j —, or —C ( ⁇ O) —R 25 —.
  • R 21 , R 22 and R 23 are each independently a hydrogen atom, a group having a group linking the monomer units, or a hydrophobic group, and R 24 and R 25 are each independently Represents an alkylene group, j represents an integer of 1 to 10, and n21 represents an integer of 2 to 800.
  • at least one of R 21 , R 22 and R 23 is at least one of a group connecting monomer units represented by the following general formula (4C) and a linear or branched acyl group having 5 to 20 carbon atoms. Represents.
  • R 4C represents a hydrogen atom or a methyl group
  • X 48 represents a linear or branched alkylene group having 3 to 20 carbon atoms, —NH—, —C ( ⁇ O) O—
  • * represents a monomer ** represents a bonding position when the units are linked to each other
  • ** represents a portion bonded to X 21 , X 22 , or X 23 in the general formula (2A), or the 2-position, 3-position of the cellulose skeleton, Alternatively, it represents a moiety bonded to the oxygen atom at the 6-position.
  • R 2 represents —CH 2 —CH 2 — or —CH 2 —CH (CH 3 ) —
  • R 21 , R 22 and R 23 each independently represent A hydrogen atom, a group having the linking group, or a hydrophobic group is represented, m2, t2 and r2 each independently represent an integer of 0 to 10, and n23 represents an integer of 2 to 800.
  • at least one of R 21 , R 22 and R 23 is at least one of a group connecting monomer units represented by the following general formula (4C) and a linear or branched acyl group having 5 to 20 carbon atoms. Represents.
  • R 4C represents a hydrogen atom or a methyl group
  • X 48 represents a linear or branched alkylene group having 3 to 20 carbon atoms, —NH—, —C ( ⁇ O) O—
  • * represents a monomer ** represents a bonding position when the units are linked to each other
  • ** represents a portion bonded to X 21 , X 22 , or X 23 in the general formula (2A), or the 2-position, 3-position of the cellulose skeleton, Alternatively, it represents a moiety bonded to the oxygen atom at the 6-position.
  • the group connecting the monomer units includes a group represented by the following general formula (2C),
  • the hydrophobic group is a linear or branched alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 3 to 18 carbon atoms, an aryl group having 6 to 18 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, a carbon number A linear or branched acyl group having 2 to 4 carbon atoms, a linear or branched alkoxy group having 1 to 18 carbon atoms, a carboxylic acid ester group represented by —COOR 2A , or a halogen atom, wherein R 2A is carbon ⁇ 8> to ⁇ 10>, which includes a linear or branched alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, or an aryl group having 6 to 12 carbon atoms. Liquid crystal film.
  • R 2C represents a hydrogen atom or a methyl group
  • X 28 represents a single bond, a linear or branched alkylene group having 1 to 18 carbon atoms, or a cycloalkylene group having 3 to 18 carbon atoms.
  • Three hydrogen atoms were removed from an arylene group having 6 to 18 carbon atoms, —O—, —NH—, —S—, —C ( ⁇ O) —, or a linear or branched alkane having 1 to 18 carbon atoms.
  • a group consisting of a group obtained by removing 3 hydrogen atoms from a cycloalkane having 3 to 18 carbon atoms, a group obtained by removing 3 hydrogen atoms from an arene having 6 to 18 carbon atoms, and a group obtained by removing 3 hydrogen atoms from ammonia represents a group selected from the above or a group obtained by linking them, and p2 represents an integer of 1 or 2.
  • X 28 has a valence of p2 + 1, * represents a bond when monomer units are linked to each other.
  • X 28 is a single bond or —C ( ⁇ O) —NH— (CH 2 ) 2 —O—
  • p2 is 1, ⁇ 11>
  • ⁇ 14> a step of applying the liquid crystal material according to any one of ⁇ 1> to ⁇ 7> on a substrate; A step of applying heat or irradiating ultraviolet rays to the liquid crystal material applied on the substrate; A method for producing a liquid crystal film, comprising: ⁇ 15> A sensor comprising the liquid crystal film according to any one of ⁇ 8> to ⁇ 13>.
  • ⁇ 16> The sensor according to ⁇ 15>, which is a distortion sensor that detects distortion of an object.
  • ⁇ 17> The sensor according to ⁇ 16>, which is a wearable sensor that detects biological information.
  • An optical element comprising the liquid crystal film according to any one of ⁇ 8> to ⁇ 13>.
  • a liquid crystal material a liquid crystal film, a method for manufacturing the same, a sensor, and an optical element that exhibit thermotropic cholesteric liquid crystallinity and rubber elasticity, and that have a large wavelength shift change of reflected light with respect to mechanical pressure. can do.
  • FIG. 2 is a diagram showing the complex viscosity, the storage elastic modulus, and the loss elastic modulus with respect to the angular frequency of the liquid crystal materials 1-1 to 1-3.
  • FIG. 3 is a plot of loss tangent versus angular frequency of the liquid crystal materials 1-1 to 1-3.
  • FIG. 4 is a diagram of the 1 H-NMR spectrum of hydroxypropylcellulose derivative 1 synthesized in Example 2-1.
  • FIG. 5 is a diagram showing an FT-IR spectrum of Example 2-1.
  • FIG. 6 is a graph showing a change in transmission spectrum when mechanical pressure is applied to the liquid crystal film 2-1 fixed at 30 ° C.
  • FIG. 7 is a diagram showing the change in the transmission spectrum when mechanical pressure is applied to the liquid crystal film 2-2 fixed at 40 ° C.
  • FIG. 8 is a diagram showing a change in the transmission spectrum when mechanical pressure is applied to the liquid crystal film 2-3 fixed at 60 ° C.
  • FIG. 9 is a diagram showing a change in transmission spectrum when mechanical pressure is applied to the liquid crystal film 2-4 fixed at 70 ° C.
  • FIG. 10 shows the wavelength before mechanical pressure is applied to the reduction rate (compression ratio) of the film thickness when mechanical pressure is applied to the liquid crystal films 2-1, 2-2, 2-3, and 2-4. It is the figure which plotted ratio of wavelength (lambda) after applying mechanical pressure with respect to (lambda 0 ).
  • FIG. 11 is a diagram of the 1 H-NMR spectrum of hydroxypropylcellulose derivative 1 synthesized in Example 3.
  • FIG. 12 is an FT-IR spectrum of Example 3.
  • FIG. 13 is a diagram showing a change in the transmission spectrum when mechanical pressure is applied to the liquid crystal film 3.
  • FIG. 14 shows the wavelength after applying the mechanical pressure to the wavelength ( ⁇ 0 ) before applying the mechanical pressure, with respect to the reduction rate (compression ratio) of the film thickness when the mechanical pressure is applied to the liquid crystal film 3. It is the figure which plotted ratio of (lambda).
  • FIG. 15 is a diagram illustrating a change in the transmission spectrum when mechanical pressure is applied to the liquid crystal film 4-1.
  • FIG. 16 shows the mechanical pressure relative to the wavelength ( ⁇ 0 ) before applying the mechanical pressure with respect to the reduction rate (compression ratio) of the film thickness when the mechanical pressure is applied to the liquid crystal films 4-1 and 4-2. It is the figure which plotted the ratio of the wavelength ((lambda)) after adding.
  • FIG. 17 is a diagram illustrating a change in the transmission spectrum when mechanical pressure is applied to the liquid crystal film 4-2.
  • FIG. 18 is a diagram illustrating a change in the transmission spectrum when mechanical pressure is applied to the liquid crystal film 5-1.
  • FIG. 19 shows the mechanical pressure relative to the wavelength ( ⁇ 0 ) before the mechanical pressure is applied to the film thickness reduction rate (compression ratio) when the mechanical pressure is applied to the liquid crystal films 5-1 and 5-2. It is the figure which plotted the ratio of the wavelength ((lambda)) after adding.
  • FIG. 20 is a diagram showing the change in the transmission spectrum when mechanical pressure is applied to the liquid crystal film 5-2.
  • FIG. 21 is a diagram showing stress-strain curves in the process of stretching the liquid crystal films 6-1 and 6-2 and the liquid crystal film 7.
  • FIG. 22 is a diagram showing a stress-strain curve of the liquid crystal film 8 when the amount of ultraviolet light to be irradiated is changed when the liquid crystal film 8 is manufactured.
  • FIG. 23 is a diagram showing changes in elastic characteristics when the amount of ultraviolet light (10.8 J / cm 2 to 48.6 J / cm 2 ) is changed when the liquid crystal film 8 is manufactured.
  • FIG. 24 is a diagram illustrating a change in the transmission spectrum when heat is applied to the liquid crystal film 8.
  • FIG. 25 is a diagram showing the correlation between temperature and Bragg reflection wavelength for the HPC derivative 8 (before crosslinking) and the liquid crystal film 8 (after crosslinking). The upper part of FIG.
  • FIG. 26 is a diagram showing a change in transmission spectrum when mechanical pressure is applied to the liquid crystal film 8, and the lower part of FIG. 26 is a transmission spectrum when mechanical pressure applied to the liquid crystal film 8 is released.
  • FIG. FIG. 27 shows transmission spectra when mechanical pressure is applied to the liquid crystal film 8 and when the mechanical pressure applied to the liquid crystal film 8 is released in the first and 100th cycles of applying and releasing the mechanical pressure.
  • FIG. FIG. 28 is a diagram illustrating changes in the reflection wavelength and the liquid crystal film 8 when the cycle of applying and releasing the mechanical pressure is repeated 100 times for the liquid crystal film 8.
  • FIG. 29 is a diagram showing a stress-strain curve when applying and releasing mechanical pressure to the liquid crystal film 8 repeatedly.
  • FIG. 30 is a diagram showing changes in elastic properties when mechanical pressure is repeatedly applied to and released from the liquid crystal film 8 and the chloroprene rubber.
  • FIG. 31 is a diagram illustrating a change in color of the liquid crystal film 8 when the liquid crystal film 8 is pressed against the uneven substrate.
  • FIG. 32 is a diagram illustrating a change in the reflection wavelength of the liquid crystal film 8 when the liquid crystal film 8 is pressed against the uneven substrate.
  • FIG. 33 is a diagram illustrating a change in the color of the liquid crystal film 8 when the liquid crystal film 8 is pressed against the surface of a 100-yen coin.
  • FIG. 34 is a diagram showing the result of measuring the unevenness of a 100-yen coin with a precision instrument.
  • FIG. 31 is a diagram illustrating a change in color of the liquid crystal film 8 when the liquid crystal film 8 is pressed against the uneven substrate.
  • FIG. 32 is a diagram illustrating a change in the reflection wavelength of the liquid crystal film 8 when the liquid crystal film 8 is pressed
  • FIG. 35 is a diagram showing a change in transmission spectrum when mechanical pressure is applied to the liquid crystal film 8 and the liquid crystal film 9 and when mechanical pressure applied to the liquid crystal film 8 and the liquid crystal film 9 is released.
  • FIG. 36 is a diagram illustrating the relationship between the reflection wavelength, stress, and strain for the liquid crystal film 8 and the liquid crystal film 9.
  • FIG. 37 is a view of 1 H-NMR spectrum of 4H synthesized in Example 10-1.
  • FIG. 38 is a chart of 1 H-NMR spectrum of HPC derivative 10-1 produced in Example 10-1.
  • FIG. 39 is a diagram showing a stress-strain curve in the stretching process of the liquid crystal film 10-1.
  • FIG. 40 is a diagram showing stress-strain curves in the stretching process of the liquid crystal films 10-2, 10-3, and 10-4.
  • FIG. 41 is a transmission spectrum in the stretching release process of the liquid crystal film 10-3.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the (meth) acryloyl group means at least one of an acryloyl group and a methacryloyl group.
  • the liquid crystal material of the present embodiment includes a cellulose derivative having a molecular structure represented by the following general formula (1A) (hereinafter also referred to as “specific cellulose derivative”). Since the liquid crystal material of this embodiment contains a specific cellulose derivative, it exhibits thermotropic cholesteric liquid crystallinity and has a large shift change in the wavelength of reflected light with respect to mechanical pressure. Although this mechanism is not clear, it is presumed as follows.
  • the specific cellulose derivative containing at least one of a group having an alkylene group having a specific carbon number or more and an unsaturated double bond and an acyl group having a specific carbon number or more at the end of the side chain
  • thermotropic cholesteric liquid crystallinity and rubber elasticity are exhibited, and the wavelength shift of reflected light with respect to mechanical pressure is large.
  • the specific cellulose derivative can reduce the viscoelasticity of the liquid crystal material by containing an alkylene group having a specific carbon number or more and a group having an unsaturated double bond at the end of the side chain.
  • the elastomer film formed from the liquid crystal material of the present embodiment has at least one of a polymerizable monomer containing a group connecting monomer units having an alkylene group having a specific carbon number or more and an acyl group having a specific carbon number or more.
  • a polymerizable monomer containing a group connecting monomer units having an alkylene group having a specific carbon number or more and an acyl group having a specific carbon number or more.
  • it has a structure that is easily affected when mechanical pressure is applied to a liquid crystal film produced by a crosslinking reaction. Yes. Therefore, when the elastomer film is compressed in the film thickness direction, the wavelength shift to the short wavelength side is large, and the wavelength reflectance is also high.
  • each component of the liquid crystal material of the present embodiment will be described in detail.
  • the specific cellulose derivative has a molecular structure represented by the following general formula (1A).
  • [] represents a monomer unit.
  • [] is also simply referred to as “monomer unit”. The same applies to general formulas other than the general formula (1A).
  • X 11 , X 12 and X 13 each independently represent a single bond, an alkylene group, — (R 14 —O) h —, or —C ( ⁇ O) —R 15 —.
  • R 11 , R 12 and R 13 each independently represents a hydrogen atom, a group having an unsaturated double bond or a hydrophobic group, and R 14 and R 15 each independently represents an alkylene group.
  • H represents an integer of 1 to 10
  • n11 represents an integer of 2 to 800.
  • At least one of R 11 , R 12 and R 13 is at least one of a group having an unsaturated double bond represented by the following general formula (3C) and a linear or branched acyl group having 5 to 20 carbon atoms. Represents one.
  • the alkylene group represented by X 11 , X 12 and X 13 is not particularly limited.
  • the alkylene group include linear or branched alkylene groups having 1 to 18 (preferably 1 to 12) carbon atoms and cyclic cycloalkylene groups having 3 to 18 (preferably 3 to 12) carbon atoms.
  • Examples of the linear or branched alkylene group include a methylene group, an ethylene group, an n-propylene group, an isopropylene group, an n-butylene group, an isobutylene group, a sec-butylene group, a tert-butylene group, an n-pentylene group, An isopentylene group etc. are mentioned.
  • the cyclic alkylene group include a cyclopentylene group and a cyclohexylene group.
  • examples of the alkylene group (—R 14 —) in the group represented by — (R 14 —O) h — include the same alkylene groups as X 11 , X 12 and X 13 above.
  • examples of — (R 14 —O) h — include an ethyleneoxy group, a polyethyleneoxy group, a propyleneoxy group, a polypropyleneoxy group, and the like. More specifically, — (R 14 —O) h — can be represented by — (— O— (CH 2 ) n—) h —. However, n is an integer of 1 to 5.
  • h is preferably 1 or more and 6 or less, more preferably 1 or more and 4 or less, and further preferably 1 or more and 3 or less from the viewpoint of obtaining a liquid crystal film having appropriate rubber elasticity by crosslinking. .
  • examples of the alkylene group (—R 15 —) in the group represented by —C ( ⁇ O) —R 15 — include the same alkylene groups as X 11 , X 12 and X 13 above. It is done.
  • Examples of —C ( ⁇ O) —R 15 — include —C ( ⁇ O) —CH 2 —, —C ( ⁇ O) —C 2 H 4 —, —C ( ⁇ O) —C 3 H 6. -Etc. are mentioned.
  • the alkylene group, — (R 14 —O) h —, and —C ( ⁇ O) —R 15 — may have a substituent.
  • substituents examples include linear or branched alkyl groups having 1 to 6 carbon atoms, cycloalkyl groups having 3 to 6 carbon atoms, aryl groups having 6 to 12 carbon atoms, and halogen atoms. When there are two or more substituents, the respective substituents may be the same and different.
  • substituents examples include linear or branched alkyl groups having 1 to 6 carbon atoms, cycloalkyl groups having 3 to 6 carbon atoms, aryl groups having 6 to 12 carbon atoms, and halogen atoms. When there are two or more substituents, the respective substituents may be the same and different.
  • the group having an unsaturated double bond represented by R 11 , R 12 and R 13 is not particularly limited.
  • the general formula (1C) or the general formula (3C) described later is used.
  • the hydrophobic group represented by R 11 , R 12 and R 13 is not particularly limited, and examples thereof include an alkyl group having 1 to 18 carbon atoms, an acyl group having 2 to 20 carbon atoms, Examples thereof include an aryl group having 6 to 24 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, a carboxylic acid ester group, and a halogen atom.
  • the alkyl group having 1 to 18 carbon atoms may be a linear, branched or cyclic alkyl group, and may be unsubstituted or substituted.
  • substituent include the same alkylene groups as those described above for — (R 14 —O) h — and —C ( ⁇ O) —R 15 —.
  • unsubstituted alkyl group having 1 to 18 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a tert-butyl group.
  • Examples of the unsubstituted C3-C18 cyclic alkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a methylcyclopentyl group, a methylcyclohexyl group, and a methylcycloheptyl group. It is done.
  • the aryl group having 6 to 24 carbon atoms may be unsubstituted or substituted.
  • Examples of the unsubstituted aryl group having 6 to 18 carbon atoms include a phenyl group and a naphthyl group.
  • Examples of the substituted aryl group having 6 to 24 carbon atoms include aralkyl groups having 7 to 20 carbon atoms.
  • the aralkyl group having 7 to 20 carbon atoms may be unsubstituted or further substituted.
  • Examples of the substituent include the same alkylene groups as those described above for — (R 14 —O) h — and —C ( ⁇ O) —R 15 —.
  • Examples of the unsubstituted aralkyl group having 7 to 20 carbon atoms include a benzyl group, a phenylethyl group, and a phenylethenyl group.
  • the acyl group having 2 to 20 carbon atoms may be a linear or branched acyl group and may be unsubstituted or substituted.
  • substituent include the same alkylene groups as those described above for — (R 14 —O) h — and —C ( ⁇ O) —R 15 —.
  • acyl group having 2 to 4 carbon atoms include an acetyl group, a propionyl group (propanoyl group), and a butyryl group.
  • the alkoxy group having 1 to 18 carbon atoms may be a linear or branched alkoxy group, and may be unsubstituted or substituted.
  • substituent include the same alkylene groups as those described above for — (R 14 —O) h — and —C ( ⁇ O) —R 15 —.
  • alkoxy group having 1 to 18 carbon atoms include methoxy group, ethoxy group, propoxy group, butoxy group, hexyloxy group, phenoxy group, benzyloxy group and the like.
  • Examples of the carboxylic acid ester group include a carboxylic acid ester group represented by —COOR 1A .
  • Examples of R 1A in the carboxylic acid ester group include linear or branched alkyl groups having 1 to 12 carbon atoms, cyclic alkyl groups having 3 to 12 carbon atoms, and aryl groups having 6 to 12 carbon atoms.
  • the carboxylic acid ester group may be unsubstituted or substituted.
  • substituents include the same alkylene groups as those described above, — (R 14 —O) h —, and —C ( ⁇ O) —R 15 —.
  • unsubstituted carboxylic acid ester group examples include linear or branched alkyl ester groups having 2 to 12 carbon atoms (methyl ester group, ethyl ester group, etc.), and cycloalkyl esters having 4 to 12 carbon atoms. And groups (cyclopropyl ester group, cyclobutyl ester group, etc.), aryl ester groups having 7 to 12 carbon atoms (phenyl ester group, etc.).
  • halogen atom examples include a fluorine atom, a chlorine atom, and a bromine atom.
  • examples of the hydrophobic group include linear or branched alkyl groups having 1 to 18 carbon atoms, cyclic alkyl groups having 3 to 18 carbon atoms, aryl groups having 6 to 18 carbon atoms, carbon A aralkyl group of 7 to 20, a linear or branched acyl group having 2 to 20 carbon atoms, a linear or branched alkoxy group having 1 to 18 carbon atoms, a carboxylate group represented by -COOR 1A , or A halogen atom is preferred.
  • the hydrophobic group includes a linear or branched acyl group having 5 to 20 prime atoms and a linear or branched acyl group having 2 to 4 carbon atoms. At least one of straight chain and branched chain is acceptable.
  • n11 is 2 or more and 800 or less, preferably 2 or more and 400 or less, more preferably 2 or more and 300 or less, from the viewpoint of obtaining a liquid crystal film having appropriate rubber elasticity by crosslinking.
  • the general formula (1A) preferably has a molecular structure represented by the following general formula (1A-1).
  • R 1 represents —CH 2 —CH 2 — or —CH 2 —CH (CH 3 ) —
  • R 11 , R 12 and R 13 are each independently A hydrogen atom, a group having an unsaturated double bond, or a hydrophobic group
  • m1, t1 and r1 each independently represents an integer of 0 to 10
  • n13 represents an integer of 2 to 800.
  • at least one of R 11 , R 12 and R 13 is at least one of a group having an unsaturated double bond represented by the general formula (3C) and a linear or branched acyl group having 5 to 20 carbon atoms. Represents.
  • R 11, R 12 and R 13 has the same meaning as R 11, R 12 and R 13 in the general formula (1A), and preferred ranges are also the same.
  • m1, t1 and r1 are each independently preferably from 0 to 8, more preferably from 0 to 5, more preferably from the viewpoint of easy synthesis of the specific cellulose derivative. Preferably it is 0 or more and 3 or less.
  • n13 has the same meaning as n11 in general formula (1A), and the preferred range is also the same.
  • n13 is 2 or more and 800 or less, preferably 2 or more and 400 or less, more preferably 2 or more and 300 or less, from the viewpoint of obtaining a liquid crystal film having appropriate rubber elasticity by crosslinking. is there.
  • R 11, R 12, R 13, and n13 are the same meaning as R 11, R 12, R 13 , and n13 in the general formula (1A-1).
  • m11, t11 and r11 have the same meanings as m1, t1 and r1 in general formula (1A-1).
  • R 11, R 12, R 13, and n13 are the same meaning as R 11, R 12, R 13 , and n13 in the general formula (1A-1).
  • M12, t12 and r12 have the same meanings as m1, t1 and r1 in formula (1A-1).
  • a preferred embodiment of the specific cellulose derivative is a cellulose derivative having a molecular structure represented by the general formula (1a) or a cellulose derivative having a molecular structure represented by the general formula (1b).
  • the hydrophobic group (R 11 , R 12 or R 13 ) is an acyl group having 2 to 4 carbon atoms or an acyl group having 5 to 20 carbon atoms
  • the group having a double bond (R 11 , R 12 or R 13 ) is a group represented by the general formula (3C) and a (meth) acryloyl group
  • m11, t11 and r11 are each independently 0
  • the integer is 3 or less and n13 is 2 or more and 300 or less
  • the hydrophobic group (R 11 , R 12 or R 13 ) is an acyl group having 2 to 4 carbon atoms Or an acyl group having 5 to 20 carbon atoms and having an unsaturated double bond (R 11
  • R 3C represents a hydrogen atom or a methyl group
  • X 38 represents a linear or branched alkylene group having 3 to 20 carbon atoms, —NH—, —C ( ⁇ O) O—, a carbonyl group
  • 2 to 20 represents a group selected from the group consisting of 20 linear or branched alkyleneoxy groups, aryl groups and cycloalkylene groups having 3 to 10 carbon atoms, or a group obtained by linking at least one of these groups
  • ** represents the above general formula In (1A), it represents a moiety bonded to X 11 , X 12 , or X 13 or a moiety bonded to an oxygen atom at the 2nd, 3rd, or 6th position of the cellulose skeleton.
  • the linear or branched alkylene group having 3 to 20 carbon atoms is a linear or branched alkylene group having 5 to 20 carbon atoms from the viewpoint of obtaining a liquid crystal film excellent in rubber elasticity. It is more preferably a linear alkylene group having 5 to 20 carbon atoms, still more preferably a linear alkylene group having 5 to 15 carbon atoms, particularly preferably 5 to 10 carbon atoms. A straight-chain alkylene group, and even more preferably a straight-chain alkylene group having 7 to 10 carbon atoms.
  • the linear or branched alkyleneoxy group having 2 to 20 carbon atoms is a linear alkyleneoxy group having 2 to 10 carbon atoms from the viewpoint of obtaining a liquid crystal film excellent in rubber elasticity. It is preferably a straight-chain alkyleneoxy group having 2 to 6 carbon atoms, and more preferably a straight-chain alkyleneoxy group having 2 to 4 carbon atoms.
  • X 38 is preferably a divalent linking group having at least one of a urethane bond and an ester bond, and preferably a divalent linking group having a urethane bond, from the viewpoint of obtaining a liquid crystal film excellent in rubber elasticity. More preferred. Further, by adjusting the number of atoms of linear X 38, it can be adjusted rubber elasticity of the liquid crystal film, the strength and the like as appropriate.
  • the group represented by the general formula (3C) is a group represented by the general formula (3C-1), (3C-2), or (3C) from the viewpoint of easily obtaining a liquid crystal film that easily forms a crosslinked structure and is excellent in rubber elasticity. ⁇ 3), more preferably a group represented by the general formula (3C-1) or (3C-2).
  • the groups having an unsaturated double bond represented by R 11 , R 12 and R 13 are each independently further represented by the following general formula (1C) from the viewpoint of obtaining a liquid crystal film having more excellent rubber elasticity by crosslinking. It is preferable to include.
  • the group represented by the general formula (3C) is a group represented by the general formula (3C-5) from the viewpoint of obtaining a liquid crystal film that easily forms a crosslinked structure and is further excellent in rubber elasticity. Is more preferable.
  • R a represents a linear or branched alkyleneoxy group having 2 to 20 carbon atoms (the oxygen atom of the alkyleneoxy group is bonded to the carbonyl carbon), and R b is A linear or branched alkylene group having 3 to 20 carbon atoms is represented.
  • R 3C represents a hydrogen atom or a methyl group, and ** represents a binding site.
  • the linear or branched alkyleneoxy group having 2 to 20 carbon atoms in R a is a linear or branched alkyleneoxy group having 2 to 20 carbon atoms from the viewpoint of obtaining a liquid crystal film excellent in rubber elasticity.
  • the linear or branched alkylene group having 3 to 20 carbon atoms in R b is a linear alkylene group having 3 to 20 carbon atoms from the viewpoint of obtaining a liquid crystal film excellent in rubber elasticity. It is preferably a group, more preferably a linear alkylene group having 5 to 15 carbon atoms, and still more preferably a linear alkylene group having 5 to 10 carbon atoms.
  • R 1C represents a hydrogen atom or a methyl group
  • X 18 represents a single bond, a linear or branched alkylene group having 1 to 18 carbon atoms, or a cycloalkylene having 3 to 18 carbon atoms.
  • 3 hydrogen atoms are removed from a group, an arylene group having 6 to 18 carbon atoms, —O—, —NH—, —S—, —C ( ⁇ O) —, or a linear or branched alkane having 1 to 18 carbon atoms.
  • a group selected from the group or a group obtained by linking these is represented, and p1 represents an integer of 1 or 2. However, the valence of X 18 is p1 + 1.
  • ** represents a moiety bonded to X 11 , X 12 , or X 13 in the above general formula (1A), or the second position of the cellulose skeleton when X 11 , X 12 , or X 13 is a single bond
  • 3 Represents a moiety bonded to the oxygen atom at the 6th or 6th position.
  • Examples of the linear or branched alkylene group having 1 to 18 carbon atoms and the cycloalkylene group having 3 to 18 carbon atoms represented by X 18 include X 11 , X 12, and X 13 in the general formula (1A). The same thing as the alkylene group represented can be mentioned.
  • the arylene group having 6 to 18 carbon atoms represented by X 18 is not particularly limited, and examples thereof include a phenylene group and a naphthalene group.
  • X 18 is a group in which 3 hydrogen atoms are removed from a linear or branched alkane having 1 to 18 carbon atoms, a group in which 3 hydrogen atoms are removed from a cycloalkane having 3 to 18 carbon atoms, and 6 to 18 carbon atoms.
  • the linear or branched alkylene group, cycloalkylene group, arylene group, linear or branched alkane, cycloalkane, and arene represented by X 18 may have a substituent.
  • substituents include the same alkylene groups as those described above, — (R 14 —O) h —, and —C ( ⁇ O) —R 15 —.
  • the group selected from the group consisting of —O—, —NH—, —S—, and —C ( ⁇ O) — represented by X 18 is not particularly limited.
  • p1 is preferably 1.
  • X 18 is preferably a single bond or —C ( ⁇ O) —NH— (CH 2 ) 2 —O— from the viewpoint of easily obtaining a liquid crystal film having appropriate rubber elasticity by crosslinking. .
  • R 1C is a hydrogen atom or a methyl group
  • X 18 is a single bond
  • p1 is 1 is a (meth) acryloyl group.
  • the group represented by the general formula (1C) is preferably a (meth) acryloyl group, and more preferably an acryloyl group.
  • the group represented by the general formula (1C-5) is a trivalent linking group in which X 18 is represented by the following general formula (1C-7) in the group represented by the general formula (1C), and R 1C is a hydrogen atom and p1 is 2.
  • X 18 is represented by the following general formula (1C-7) in the group represented by the general formula (1C)
  • R 1C is a hydrogen atom and p1 is 2.
  • *** represents a moiety bonded to the carbon atom bonded to CO in (COCH ⁇ CH 2 ) in General Formula (1C-5).
  • the groups represented by the general formula (1C) include the general formulas (1C-1), (1C-3), (1C ⁇ 5) or (1C-6), more preferably a group represented by the general formula (1C-1) or (1C-3), and a group represented by the general formula (1C-3). More preferably it is.
  • the group having an unsaturated double bond represented by R 11 , R 12 and R 13 is easy to form a crosslinked structure, and has a rubber elasticity. From the viewpoint of obtaining an excellent liquid crystal film, it is preferable that both of the groups represented by the general formula (1C) and the general formula (3C) are included.
  • R 11 , R 12 and R 13 is preferably represented by the general formulas (3C-1), (3C— 2) or (3C-3) (more preferably a group represented by general formula (3C-1) or (3C-2)), and the other is preferably general formula (1C-1) Or (1C-3) (more preferably represented by the general formula (1C-1)).
  • R 11 , R 12, and R 13 are from the viewpoint of liquid crystallinity, excellent rubber elasticity, and a large wavelength shift of the reflection wavelength.
  • a hydrophobic group and a group having an unsaturated double bond preferably a group having an unsaturated double bond, a linear or branched acyl group having 5 to 20 carbon atoms and a hydrophobic group. More preferably, it has all of a group having an unsaturated double bond, a linear or branched acyl group having 5 to 20 carbon atoms, and a linear or branched acyl group having 2 to 4 carbon atoms. Further preferred.
  • the specific cellulose derivative has a degree of substitution per monomer unit of a group having an unsaturated double bond (hereinafter also referred to as “degree of substitution of a group having an unsaturated double bond”) of 0. It is preferably 01 or more and 2.0 or less.
  • the degree of substitution of a specific cellulose derivative refers to at least a part of hydroxyl groups or a part of hydroxyl groups among the three hydroxyl groups of cellulose monomer units (D-glucopyranose ( ⁇ -glucose)). This is an index indicating the degree to which it is formed, and specifically means the average number ( ⁇ 3) substituted with the above substituents.
  • the degree of substitution of the group having an unsaturated double bond means that when the specific cellulose derivative has a molecular structure represented by the general formula (1A), in the general formula (1A), R 11 , The average number of “groups having an unsaturated double bond” introduced at the positions of R 12 and R 13 is used.
  • degree of substitution per monomer unit of the hydrophobic group is the case where the specific cellulose derivative has a molecular structure represented by the general formula (1A):
  • degree of substitution of the hydrophobic group is the case where the specific cellulose derivative has a molecular structure represented by the general formula (1A):
  • the average number of hydrophobic groups introduced at the positions of R 11 , R 12 and R 13 is used.
  • the group in the case of a group having an unsaturated double bond and a group corresponding to a hydrophobic group, the group is regarded as a “group having an unsaturated double bond”.
  • the substitution degree of the group having an unsaturated double bond of the specific cellulose derivative is 0.01 or more and 2.0 or less, the expression of the thermotropic cholesteric liquid crystal can be improved, and the specific cellulose derivative after crosslinking Excellent rubber elasticity can be imparted. Therefore, according to the liquid crystal material of the present embodiment, it is possible to produce a liquid crystal film having appropriate rubber elasticity and having an orientation fixed at the Bragg reflection wavelength by crosslinking the monomers of the specific cellulose derivative.
  • the degree of substitution of the group having an unsaturated double bond that the specific cellulose derivative has is preferably from 0.01 to 2.0, more preferably from the viewpoint of obtaining a liquid crystal film having appropriate rubber elasticity by crosslinking of the specific cellulose derivative. Is 0.1 or more and 1.5 or less, more preferably 0.2 or more and less than 1.0.
  • the ratio of the substitution degree of the group having an unsaturated double bond and the substitution degree of a hydrophobic group (having an unsaturated double bond) Group / hydrophobic group) is preferably 3.0 ⁇ 10 ⁇ 3 or more and 2.0 or less, more preferably 3.0 ⁇ 10 ⁇ 2 or more and 1.0 or less, and even more preferably 7.0 ⁇ 10 ⁇ 2 or more. 0.5 or less.
  • the degree of substitution of the group having an unsaturated double bond that the specific cellulose derivative has is excellent by crosslinking of the specific cellulose derivative. From the viewpoint of obtaining a liquid crystal film having rubber elasticity, it is preferably 0.01 or more and 1.0 or less, more preferably 0.01 or more and 0.5 or less, and still more preferably 0.01 or more and 0.1 or less.
  • the ratio of the degree of substitution of the group having OH to the degree of substitution of the hydrophobic group is preferably 3.0 ⁇ 10 ⁇ 3 or more and 0.5 or less, more preferably Is 5.0 ⁇ 10 ⁇ 3 or more and 0.1 or less, more preferably 7.0 ⁇ 10 ⁇ 3 or more and 0.05 or less.
  • the degree of substitution of the group having an unsaturated double bond and the degree of substitution of the hydrophobic group are calculated from the integral values of characteristic proton peaks of each substituent by 1 H-NMR. Specifically, as shown in the examples described later, under the following measurement conditions, a 1 H-NMR spectrum of a specific cellulose derivative solution dissolved in deuterated chloroform was measured, and based on the measured 1 H-NMR spectrum.
  • HPC hydrogen carboxylate
  • the weight average molecular weight of the specific cellulose derivative is preferably 20,000 or more and 200,000 or less, more preferably 50,000 or more and 200,000 or less, and still more preferably 100,000 or more, from the viewpoint of obtaining a liquid crystal film having excellent rubber elasticity by crosslinking. 200,000 or less.
  • the weight average molecular weight of the specific cellulose derivative can be calculated by gel permeation chromatography method (GPC) (polystyrene standard), and a molecular weight calibration curve created by a polystyrene standard sample from the measurement results obtained under the following measurement conditions is obtained. Can be used to calculate.
  • GPC gel permeation chromatography method
  • R 1 is —CH 2 —CH (CH 3 ) —, m1 is 2, and t1 is 2 In this example, r1 is 0.
  • Specific examples other than the above examples include molecular structures in which m1, t1, and r1 are each independently replaced with 0 or more and 10 or less.
  • R 1 is —CH 2 —CH 2 —
  • m1 is 2
  • t1 is 2.
  • R1 is 0.
  • Specific examples other than the above examples include molecular structures in which m1, t1, and r1 are each independently replaced with 0 or more and 10 or less.
  • the content of the specific cellulose derivative is preferably 80% by mass or more, more preferably 90% by mass or more, and 99% by mass or more with respect to the total mass of the liquid crystal material of the present embodiment. Is more preferable.
  • the liquid crystal material of this embodiment may contain other components.
  • Other components include, for example, polymerization initiators, crosslinking agents, flame retardants, compatibilizers, antioxidants, mold release agents (release agents), light proofing agents, weathering agents, modifiers, antistatic agents, hydrolysis An inhibitor etc. are mentioned.
  • a polymerization initiator well-known polymerization initiators, such as a thermal polymerization initiator and a photoinitiator, can be used, for example.
  • examples of the photopolymerization initiator include 2-hydroxy-2-methyl-1-phenylpropane-1-one (HMPP), acetophenone, 1-hydroxycyclohexyl.
  • Phenylketone 2-hydroxy-4 '-(2-hydroxyethoxy) -2-methylpropiophenone, 2-methyl-4'-(methylthio) -2-morpholinopropiophenone, 2-benzyl-2- (dimethyl) Amino) -4'-morpholinobutyrophenone, phenylbis (2,4,6-trimethylbenzoyl) phosphine oxide, bis (2,6-difluoro-3- (1-hydropyrrol-1-yl) phenyl) titanocene and the like It is done.
  • Method for synthesizing specific cellulose derivative As an example of a method for synthesizing a specific cellulose derivative, a method for synthesizing a hydroxypropyl cellulose derivative having a molecular structure represented by the general formula (1A) will be described. However, the method for synthesizing the specific cellulose derivative of the present embodiment is not limited to this.
  • a method for synthesizing a specific cellulose derivative is prepared by preparing hydroxypropyl cellulose (HPC) as a starting material, dissolving the HPC in a solvent to prepare an HPC solution, and the HPC solution represented by the general formula (3C).
  • HPC hydroxypropyl cellulose
  • a compound having an unsaturated double bond group hereinafter also referred to as “polymerizable compound” and a linear or branched acyl group having 5 to 20 carbon atoms (hereinafter also referred to as “medium-chain hydrophobic group”).
  • HPC and a polymerizable compound are reacted, and at least some of the hydrogen atoms of the three hydroxyl groups contained in the structural unit derived from HPC are converted into an unsaturated double represented by the general formula (3C). It can be substituted with a group having a bond or a medium chain hydrophobic group.
  • a group having an unsaturated double bond represented by the general formula (3C) or a medium chain hydrophobic group is introduced into the side chain (terminal) of HPC to synthesize a specific cellulose derivative.
  • an HPC derivative having a molecular structure represented by the general formula (1a) is obtained.
  • the mixing step further includes a compound having a hydrophobic group other than the medium chain hydrophobic group (hereinafter also simply referred to as “hydrophobic compound”), and the HPC solution contains the polysynthetic compound and the hydrophobic compound. It is preferable to mix, HPC solution and a polymerizable compound are mixed, and at least one of a group having an unsaturated double bond represented by the general formula (3C) in the side chain of HPC and a medium chain hydrophobic group is added. More preferably, after introduction, a hydrophobic compound is mixed to further introduce a hydrophobic group into the side chain of the HPC.
  • a compound having a hydrophobic group other than the medium chain hydrophobic group hereinafter also simply referred to as “hydrophobic compound”
  • a specific cellulose derivative having a molecular structure represented by the general formula (1b) (an example of the general formula (1A)) can be obtained.
  • the specific cellulose derivative can be obtained, for example, by the following method. First, an alkylene group, — (R 14 —O) h — (R 14 ; alkylene group) is bonded between an oxygen atom bonded to the 2-position, 3-position, and 6-position of the cellulose skeleton and a hydrogen atom by a known method.
  • h an integer from 1 to 10
  • a cellulose derivative having a linking group having —C ( ⁇ O) —R 15 — (R 15 ; alkylene group) is prepared and used as a starting material.
  • the hydrogen atom at the terminal of the cellulose derivative (starting material) is converted into a group having an unsaturated double bond represented by the general formula (3C) by a method according to the above method, and preferably a hydrophobic group. Replace.
  • the cellulose derivative (specific cellulose derivative) which has the molecular structure represented by General formula (1A) is obtained.
  • the prepared HPC may be used as the HPC, or a commercially available HPC may be used.
  • examples of commercially available products of HPC include hydroxypropyl cellulose sold by Wako Pure Chemical Industries, Ltd.
  • the solvent is not particularly limited as long as it can dissolve the starting material.
  • the solvent include ketones such as acetone, alcohols such as methoxypropanol, ethoxyethanol, and propanol, and tetrahydrofuran.
  • the group having an unsaturated double bond represented by the general formula (3C) and the group having the unsaturated double bond are represented by R 11 and R 12 in the general formula (1A). or not particularly limited as long as it can be introduced into R 13.
  • examples of such a polymerizable compound include a halide of a compound having an unsaturated double bond represented by the general formula (3C) in the molecule (for example, 10-undecenoyl chloride).
  • the polysynthesized compound is a halogenated (meth) acryloyl (for example, (meth) acryloyl chloride, (meth) acryloyl bromide, etc.
  • Isocyanate (meth) acrylate for example, Karenz MOI (2-isocyanatoethyl methacrylate), Karenz AOI (2-isocyanatoethyl acrylate), Karenz BEI (1,1-bisacryloyl) manufactured by Showa Denko KK) Oxymethyl (ethyl isocyanate)), Karenz MOI-EG etc.
  • Karenz MOI 2,3-bisacryloyl
  • Oxymethyl ethyl isocyanate
  • Karenz MOI-EG etc. are preferably used in combination.
  • hydrophobic compound is not particularly limited as long as it has the aforementioned hydrophobic group and can introduce the hydrophobic group into R 11 , R 12 or R 13 in the general formula (1A).
  • hydrophobic compounds include acyl halides (for example, acyl chloride (acetyl chloride, propionyl chloride, butyryl chloride, pentanoyl chloride, decanoyl chloride, etc.), acyl bromide (acetyl bromide, propionyl bromide, butyryl bromide, Pentanoyl bromide, decanoyl bromide, etc.), more preferably acyl chloride, and from the viewpoint of liquid crystallinity, linear or branched acyl chlorides having 2 to 4 carbon atoms are further preferred.
  • Acetyl chloride, propionyl chloride or butyryl chloride is particularly preferable.
  • the liquid crystal film of the present embodiment includes a cellulose derivative having a three-dimensional structure and having a molecular structure represented by the general formula (2A) (hereinafter also referred to as “cellulose derivative having a three-dimensional structure”).
  • the cellulose derivative having a three-dimensional structure is obtained by crosslinking monomer units derived from the cellulose derivative having the molecular structure represented by the general formula (1A).
  • the molecular structure represented by the general formula (1A) is such that at least one of R 21 , R 22 and R 23 is a group connecting monomer units represented by the following general formula (4C) and a carbon number of 5 to 20
  • a specific cellulose derivative represented by at least one of a linear or branched acyl group is obtained by appropriately linking (crosslinking) monomer units with a linking group generated by cleavage of an unsaturated double bond, that is, These are obtained by crosslinking a polymer of a specific cellulose derivative.
  • the three-dimensional structure contributes to the development of rubber elasticity of the liquid crystal film.
  • the specific cellulose derivative having a three-dimensional structure has improved purification properties. This improvement in purification is considered to contribute to the development of cholesteric liquid crystal properties and rubber elasticity of the liquid crystal film. Therefore, the liquid crystal film of this embodiment has rubber elasticity, and the orientation is fixed at the wavelength of Bragg reflection. Further, reflected light having a wavelength corresponding to the pressure is obtained by the mechanical pressure.
  • the presence or absence of the formation of a three-dimensional structure can be confirmed by dissolving the liquid crystal film before and after crosslinking in a solvent.
  • the liquid crystal film after crosslinking has a three-dimensional structure formed. Therefore, the liquid crystal film before cross-linking (that is, the liquid crystal material) in which the three-dimensional structure is not formed is dissolved in the solvent.
  • the formation of a three-dimensional structure can be confirmed by comparing the presence or absence of solubility in a solvent.
  • the liquid crystal film of this embodiment can be produced by a relatively simple method. In addition, you may bridge
  • the liquid crystal film of this embodiment has the structure (three-dimensional structure) by which monomer units are bridge
  • the cellulose derivative having a three-dimensional structure has a molecular structure represented by the following general formula (2A).
  • X 21 , X 22 and X 23 each independently represent a single bond, an alkylene group, — (R 24 —O) j —, or —C ( ⁇ O) —R 25 —.
  • R 21 , R 22 and R 23 are each independently a hydrogen atom, a group having the linking group, or a hydrophobic group
  • R 24 and R 25 are each independently an alkylene group
  • j represents an integer of 1 to 10
  • n21 represents an integer of 2 to 800.
  • at least one of R 21 , R 22 and R 23 is at least one of a group connecting monomer units represented by the following general formula (4C) and a linear or branched acyl group having 5 to 20 carbon atoms. Represents.
  • the alkylene group represented by X 21 , X 22 and X 23 has the same meaning as the alkylene group represented by X 11 , X 12 and X 13 in the general formula (1A),
  • the preferable range is also the same.
  • — (R 24 —O) j — and —C ( ⁇ O) —R 25 — represented by X 21 , X 22 and X 23 are the same as those in general formula (1A).
  • — (R 24 —O) j — represents an alkyleneoxy group (alkylene ether group) or a polyalkyleneoxy group (polyalkylene ether group).
  • the hydrophobic group represented by R 21 , R 22 and R 23 has the same meaning as the hydrophobic group represented by R 11 , R 12 and R 13 in the general formula (1A).
  • the preferred range is also the same.
  • the hydrophobic group preferably contains an acyl group having 2 to 4 carbon atoms (both linear and branched, the same shall apply hereinafter).
  • n21 is 2 or more and 800 or less, preferably 2 or more and 400 or less, more preferably 2 or more and 300 or less, from the viewpoint of having appropriate rubber elasticity.
  • a group connecting monomer units represented by R 21 , R 22 and R 23 (hereinafter, also simply referred to as “group connecting monomer units”) has the following general formula (4C
  • a group having an unsaturated double bond represented by the general formula (3C) is a linking group generated by cleavage.
  • R 4C represents a hydrogen atom or a methyl group
  • X 48 represents a linear or branched alkylene group having 3 to 20 carbon atoms, —NH—, —C ( ⁇ O) O—
  • * represents a monomer ** represents a bonding position when the units are linked to each other
  • ** represents a portion bonded to X 21 , X 22 , or X 23 in the general formula (2A), or the 2-position, 3-position of the cellulose skeleton, Alternatively, it represents a moiety bonded to the oxygen atom at the 6-position.
  • the linear or branched alkylene group having 3 to 20 carbon atoms and the linear or branched alkyleneoxy group having 2 to 20 carbon atoms represented by X 48 are the same as those in the general formula (1A).
  • 11 , X 12 and X 13 are the same as the linear or branched alkylene group having 3 to 20 carbon atoms and the linear or branched alkyleneoxy group having 2 to 20 carbon atoms, and the preferred range is also the same. .
  • X 48 represents a linear alkylene group having 3 to 20 carbon atoms, —NH—, —C ( ⁇ O) O—, a carbonyl group, and a linear alkylene group having 2 to 20 carbon atoms.
  • Chain alkylene group —NH—, —C A group selected from the group consisting of ( ⁇ O) O—, a carbonyl group, and a linear alkyleneoxy group having 4 to 8 carbon atoms, or a group obtained by linking these groups, is particularly preferred.
  • a chain alkylene group, or a straight chain alkylene group having 5 to 7 carbon atoms, —NH—, —C ( ⁇ O) O—, a carbonyl group, and a straight chain alkyleneoxy group having 4 to 8 carbon atoms are linked. More preferably, it is a group.
  • R 4C is a hydrogen atom
  • X 48 is a linear alkylene group having 3 to 20 carbon atoms, —NH—, —C ( ⁇ O) O.
  • a group selected from the group consisting of a straight-chain alkylene group having 5 to 7 carbon atoms, —NH—, —C ( ⁇ O) O—, a carbonyl group, and a straight-chain alkyleneoxy group having 4 to 8 carbon atoms, or A group in which these are linked is particularly preferable, and a linear alkylene group having 5 to 7 carbon atoms, or a linear alkylene group having 5 to 7 carbon atoms, —NH—, —C ( ⁇ O) O—, A group in which a carbonyl group and a linear alkyleneoxy group having 4 to 8 carbon atoms are linked is more preferable.
  • the group connecting monomer units preferably further includes a group represented by the following general formula (2C).
  • R 2C represents a hydrogen atom or a methyl group
  • X 28 represents a single bond or a linear or branched alkylene group having 1 to 18 carbon atoms, or a cycloalkylene having 3 to 18 carbon atoms.
  • 3 hydrogen atoms are removed from a group, an arylene group having 6 to 18 carbon atoms, —O—, —NH—, —S—, —C ( ⁇ O) —, or a linear or branched alkane having 1 to 18 carbon atoms.
  • ** represents a moiety bonded to X 21 , X 22 , or X 23 in the above general formula (2A), or the second position of the cellulose skeleton when X 21 , X 22 , or X 23 is a single bond
  • 3 Represents a moiety bonded to the oxygen atom at the 6th or 6th position.
  • the linear or branched alkylene group having 1 to 18 carbon atoms and the cycloalkylene group having 3 to 18 carbon atoms represented by X 28 include X 11 in the general formula (1A), It has the same meaning as the alkylene group represented by X 12 and X 13, and preferred ranges are also the same.
  • the arylene group having 6 to 18 carbon atoms represented by X 28 is not particularly limited, and examples thereof include a phenylene group and a naphthalene group.
  • X 28 is a group in which 3 hydrogen atoms are removed from a linear or branched alkane having 1 to 18 carbon atoms, a group in which 3 hydrogen atoms are removed from a cycloalkane having 3 to 18 carbon atoms, and 6 to 18 carbon atoms.
  • a linking group in which one or two or more selected from the group consisting of —O—, —NH—, —S—, and —C ( ⁇ O) — represented by X 28 is linked There is no particular limitation, for example, —C ( ⁇ O) —NH— (CH 2 ) 2 —O—, —C ( ⁇ O) —NH— (CH 2 ) 2 —O— (CH 2 ) 2 —O—, —C ( ⁇ O) —NH—C (CH 3 ) — (CH 2 —O—) 2 can be mentioned.
  • X 28 is preferably a single bond or —C ( ⁇ O) —NH— (CH 2 ) 2 —O—.
  • a group in which R 2C is a hydrogen atom or a methyl group, X 18 is a single bond, and p2 is 1 is generated by cleavage of a (meth) acryloyl group. It is a linking group.
  • p2 is preferably 1.
  • a preferred embodiment of the cellulose derivative having the molecular structure represented by the general formula (2A) is that the hydrophobic group (R 21 , R 22 or R 23 ) in the general formula (2A) is an acyl group having 2 to 4 carbon atoms. Or a group having 5 to 20 carbon atoms and having a linking group (R 21 , R 22 or R 23 ) represented by the general formula (2C) group (preferably in the general formula (2C) , X 28 is a single bond or a group represented by —C ( ⁇ O) —NH— (CH 2 ) 2 —O—, and a group represented by (4C) (preferably represented by the general formula (4C) In which R 4C is a hydrogen atom, X 48 is a linear alkylene group having 5 to 7 carbon atoms, and n21 is 2 or more and 300 or less.
  • Preferred embodiments of the group represented by the general formula (2C) include the following general formulas (2C-1) to (2C-6) from the viewpoint of appropriate rubber elasticity. Below, an example of group represented by general formula (2C) is shown. The group represented by the general formula (2C) is not limited by these. Note that * and ** represent binding positions.
  • linking group represented by the general formula (2C-5), in the linking group represented by the general formula (2C), be a trivalent linking group X 28 is represented by the following general formula (2C-7) , R 2C is a hydrogen atom and p2 is 2.
  • R 1 is —CH 2 —CH (CH 3 ) —, m1 is 2, t1 is 2 In this example, r1 is 0.
  • Specific examples other than the above examples include molecular structures in which m1, t1, and r1 are each independently replaced with 0 or more and 10 or less.
  • the degree of substitution per unit of hydrophobic group (the degree of substitution of the hydrophobic group) is adjusted to the ratio of the group having the linking group in the specific cellulose derivative, and is appropriate for the liquid crystal film. From the viewpoint of imparting rubber elasticity, it is preferably 1.0 or more and 2.9 or less, more preferably 2.0 or more and 2.9 or less, and further preferably 2.5 or more and 2.9 or less.
  • the degree of substitution of the hydrophobic group in the liquid crystal film of the present embodiment can be measured by the same method as the degree of substitution of the hydrophobic group in the liquid crystal material described above.
  • the weight average molecular weight of the specific cellulose derivative having a three-dimensional structure is not particularly limited.
  • Content of the specific cellulose derivative which has a three-dimensional structure it is preferable that it is 80 mass% or more with respect to the total mass of the liquid crystal film of this embodiment, It is more preferable that it is 90 mass% or more, 99 mass % Or more is more preferable.
  • the liquid crystal film of this embodiment may contain other components as long as the effects of this embodiment are not achieved.
  • Other components include, for example, polymerization initiators, crosslinking agents, flame retardants, compatibilizers, antioxidants, mold release agents (release agents), light proofing agents, weathering agents, modifiers, antistatic agents, hydrolysis An inhibitor etc. are mentioned.
  • the polymerization initiator a known polymerization initiator (for example, a thermal polymerization initiator or a photopolymerization initiator) can be used.
  • a photoinitiator it is synonymous with the photoinitiator in the liquid crystal material as stated above, and its preferable example is also the same.
  • the method for producing a liquid crystal film of the present embodiment includes a step of applying the liquid crystal material of the above-described embodiment on the substrate (hereinafter also referred to as “liquid crystal material application step”), and applying heat to the liquid crystal material applied on the substrate. And a step of irradiating ultraviolet rays (hereinafter also referred to as “ultraviolet irradiation step”).
  • a liquid crystal film having rubber elasticity and having a Bragg reflection fixed at a specific wavelength can be obtained through the above steps.
  • a mechanical pressure it is possible to manufacture a liquid crystal film from which reflected light having a wavelength corresponding to the pressure can be obtained.
  • a liquid crystal material provision process is a process of providing the liquid crystal material of the said embodiment on a board
  • the substrate include a glass substrate, a plastic substrate (for example, a polyethylene naphthalate (PEN) substrate, a polyethylene terephthalate (PET) substrate, a polycarbonate (PC) substrate, a polyimide (PI) substrate), an aluminum substrate, a stainless steel substrate, and the like.
  • PEN polyethylene naphthalate
  • PET polyethylene terephthalate
  • PET polyethylene terephthalate
  • PC polycarbonate
  • PI polyimide
  • aluminum substrate aluminum substrate
  • stainless steel substrate and the like.
  • a semiconductor substrate such as a metal substrate or a silicon substrate can be used.
  • the thickness and shape of the substrate are not particularly limited, and it is preferable to select appropriately according to the purpose.
  • Examples of the method for applying the liquid crystal material onto the substrate include coating methods such as spin coating, dipping, and spraying; ink jet methods; screen printing methods; injection methods such as reduced pressure injection methods; and the like.
  • the form of the liquid crystal material may be solid (for example, powder) or liquid.
  • the liquid crystal material When the liquid crystal material is in a solid form, it may be mixed with a solvent at the time of use to form a liquid, and when the liquid crystal material has a liquid enough to be applied on the substrate, it may be used as it is, You may use what was mixed and adjusted to the viscosity which is easy to use.
  • the liquid crystal material applied to the substrate may contain other components. Examples of the other components include the same components as those described above (for example, a polymerization initiator and a release agent). It does not restrict
  • the heat application step is a step of applying heat to the liquid crystal material applied on the substrate to cure the liquid crystal material.
  • the heat application step the unsaturated double bond of the specific cellulose derivative before cross-linking is cleaved and the monomer units are connected (cross-linked) via a linking group, resulting in rubber elasticity.
  • the orientation is fixed at the wavelength of Bragg reflection.
  • the heat application method is not particularly limited, and examples thereof include a method of applying heat using a known heating device (an oven, an infrared heater, a hot plate).
  • the temperature at which heat is applied to the liquid crystal material is preferably 25 ° C. or higher and 130 ° C. or lower, more preferably 25 ° C.
  • the orientation at which heat is applied to the liquid crystal material is controlled so that the liquid crystal material falls within the above range.
  • the orientation is easily fixed at the Bragg reflection wavelength by controlling the heat application conditions (temperature, heating time, etc.).
  • the ultraviolet irradiation step is a step of irradiating the liquid crystal material applied on the substrate with ultraviolet rays to cure the liquid crystal material.
  • the ultraviolet irradiation step the unsaturated double bond of the specific cellulose derivative before crosslinking is cleaved and the monomer units are linked (crosslinked) via a linking group, and as a result, rubber elasticity is expressed.
  • the orientation is fixed at the wavelength of Bragg reflection.
  • the temperature at which the liquid crystal material is irradiated with ultraviolet rays (hereinafter also referred to as “UV irradiation temperature”) is preferably 25 ° C. or higher and 130 ° C. or lower, more preferably 25 ° C. or higher and 120 ° C. or lower, and further preferably 25 ° C. or higher and 110 ° C. or lower. It is as follows. Note that the temperature at which the liquid crystal material is irradiated with ultraviolet rays is controlled so that the liquid crystal material falls within the above range.
  • the irradiation intensity (UV illuminance) of ultraviolet rays (hereinafter also referred to as “UV irradiation intensity”) is preferably 1 mW / cm 2 or more and 20 mW / cm 2 or less, more preferably 5 mW / cm 2 or more and 20 mW / cm 2 or less, More preferably, it is 10 mW / cm 2 or more and 20 mW / cm 2 or less.
  • the irradiation time of ultraviolet rays is preferably 5 minutes to 10 hours, more preferably 10 minutes to 5 hours, and further preferably 20 minutes to 2 hours.
  • thermotropic cholesteric liquid crystallinity of the specific cellulose derivative is expressed, and it becomes easy to adjust to a target color and a desired color is easily obtained.
  • the color obtained by the UV irradiation temperature is fixed by controlling the UV irradiation temperature within the above range and further controlling the UV irradiation intensity within the above range.
  • a multi-color liquid crystal film exhibiting a target color at a target location can be obtained by controlling both the UV irradiation temperature and the UV irradiation intensity (preferably UV irradiation time).
  • Such a multi-color liquid crystal film that is, a film in which the orientation in different Bragg reflections is fixed
  • the manufacturing method of the liquid crystal film of this embodiment may include a step of forming an alignment film on the substrate (alignment film forming step).
  • the manufacturing method of the liquid crystal film of this embodiment may have an alignment film formation process before the said liquid-crystal material provision process.
  • the alignment film is preferably subjected to a rubbing treatment.
  • the thickness of the liquid crystal film is not particularly limited, but is preferably 50 ⁇ m or more and 2000 ⁇ m or less, more preferably 100 ⁇ m or more and 1500 ⁇ m or less, and further preferably 200 ⁇ m or more and 1000 ⁇ m or less. Note that the liquid crystal film may be used by being peeled from the substrate, or may be used as it is formed on the substrate.
  • a method for manufacturing a liquid crystal film using a photomask processed into a T-shape using a negative photoresist
  • FIG. 1A an alignment film (not shown) is formed over the first substrate 12, and a rubbing process is performed on the alignment film.
  • an alignment film (not shown) is formed on the second substrate 14, and the alignment film is rubbed as necessary.
  • a liquid crystal material 18 is injected through a spacer (not shown) between the first substrate 12 and the second substrate 14 on which the alignment film is formed.
  • the liquid crystal cell 10 includes a first substrate 12 with an alignment film and a second substrate 14 with an alignment film, and a liquid crystal material 18 provided between these substrates via a spacer (not shown).
  • a photomask 16 cut into a T-shape is disposed above the liquid crystal cell 10, and the temperature of the liquid crystal cell 10 (liquid crystal material) is first from the side of the first substrate 12 on which the alignment film is formed.
  • the liquid crystal cell 10 is heated to a temperature of (in FIG. 1A, X ° C .: for example, 105 ° C.).
  • the liquid crystal cell 10 is irradiated with ultraviolet rays through the opening (T-shaped) of the photomask 16 for a predetermined time with a predetermined irradiation intensity (first UV irradiation).
  • the orientation of the portion of the liquid crystal material that has been subjected to the first UV irradiation at the first temperature is fixed by the first Bragg reflection.
  • the photomask 16 is removed, and the liquid crystal cell 10 is cooled to a second temperature (Y ° C .: for example, 95 ° C. in FIG. 1B) lower than the first temperature (X ° C.). Maintain the temperature of.
  • the entire liquid crystal cell 10 is irradiated with ultraviolet rays at a predetermined irradiation intensity for a predetermined time while maintaining the second temperature (second UV irradiation).
  • second UV irradiation the orientation of the portion of the liquid crystal material that has been subjected to the second UV irradiation at the second temperature is fixed by the second Bragg reflection.
  • the liquid crystal cell 10A includes a first substrate 12 with an alignment film and a second substrate 14 with an alignment film, and the liquid crystal film 20 provided between these substrates via a spacer (not shown).
  • the temperature of the liquid crystal cell (liquid crystal material) when irradiating with ultraviolet rays is the first temperature (X ° C. in FIG. 1A) from the second temperature (Y ° C. in FIG. 1B). It is preferable to increase the height. This makes it easier to fix the orientation with different Bragg reflections.
  • the first temperature may be lower than the second temperature (X ° C. ⁇ Y ° C.). Further, the alignment film may not be formed.
  • the liquid crystal film of the present embodiment includes, for example, a polarizing film, a retardation film, a backlight, an antireflection film, a light diffusion film, a brightness enhancement film, an antiglare film, and the like; distortion, stretching, vibration, impact, etc.
  • a wearable sensor that detects the wavelength of reflection (preferably a reflected color); an optical element using the optical film; an optical element other than the above; a liquid crystal display element;
  • the liquid crystal film of the present embodiment has rubber elasticity, and by applying mechanical pressure, it is possible to obtain reflected light having a wavelength corresponding to the mechanical pressure. Therefore, the liquid crystal film has a mechanical property depending on the reflected wavelength (preferably reflected color). It is preferable to use the sensor mounted on an optical element that can detect reflected light by applying a mechanical pressure or a sensor that can detect the target pressure.
  • the sensor of this embodiment includes the liquid crystal film of the above embodiment.
  • Examples of the sensor include various sensors exemplified above.
  • the sensor of the present embodiment is preferably a strain sensor that detects strain of an object. Since the strain sensor according to the present embodiment includes the liquid crystal film according to the above-described embodiment, the deformation caused by the distortion of the object can be detected by the wavelength of reflection (preferably the reflected color). For example, by installing the strain sensor of the present embodiment in advance at a position of an object (for example, a structure such as a bridge or a building) where distortion is likely to occur, the degree of distortion of the object can be detected. Further, the mechanical pressure due to the distortion (deformation) can be detected visually, that is, by the wavelength of reflection (preferably the reflected color).
  • the sensor of the present embodiment is preferably a wearable sensor that detects biological information.
  • Wearable sensors are relatively small sensors that can be worn and used. Since the wearable sensor of this embodiment is provided with the liquid crystal film of the said embodiment, biometric information can be detected with the wavelength of reflection (preferably reflection color).
  • the strain sensor of the present embodiment is directly attached (for example, to the skin) or attached to a place where biometric information is to be acquired, or clothing, underwear, socks, gloves, ties, handkerchiefs, mufflers, watches, glasses, shoes, By attaching or attaching to slippers, hats, etc., biological information (pulse wave, breathing, cardiac motion, body movement (muscle movement, etc.)) is visible, that is, the wavelength of reflection (preferably reflected color) Can be obtained by:
  • the optical element of this embodiment includes the liquid crystal film of the above embodiment.
  • the optical element of the present embodiment is artificially applied with mechanical pressure or is previously installed at a place where mechanical pressure is naturally applied, different reflected light corresponding to the stress can be obtained.
  • Applications of such optical elements include toys, emergency light sources, interiors (such as figurines and shelves), building members (such as floors, walls, and stairs), tableware, and containers.
  • the liquid crystal material and liquid crystal film of the present invention can be used not only for display materials of liquid crystal display elements, but also for photonic devices (various sensors utilizing liquid crystal properties (distortion sensors, wearable sensors, etc.), optical elements, etc.). Can be used. For this reason, it contributes to manufacture of parts used for display materials and photonic devices of liquid crystal display elements, and sales thereof.
  • Example 1-1 Provide of liquid crystal material 1-1> HPC derivative 1-1 (HPC-UndE / PrE) was synthesized according to the following scheme.
  • Example 2-1 low molecular weight hydroxypropylcellulose (HPC) (manufactured by Wako Pure Chemical Industries, Ltd., product name: hydroxypropylcellulose 2.0 to 2.9, product number: 082-07925, weight average The molecular weight is 5.0 ⁇ 10 4 ), and the first reagent to be added is 2.4 mL (11 mmol) of 10-undecenoyl chloride (manufactured by Tokyo Chemical Industry Co., Ltd., product number; U0008) and propionyl chloride (Tokyo Chemical Industry).
  • HPC derivative 1-1 was synthesized in the same manner as in Example 2-1, except that it was changed to 13 mL (150 mmol) manufactured by Kogyo Co., Ltd. The obtained HPC derivative 1-1 was designated as a liquid crystal material 1-1.
  • Example 2-1 low molecular weight hydroxypropylcellulose (HPC) (manufactured by Wako Pure Chemical Industries, Ltd., product name: hydroxypropylcellulose 2.0 to 2.9, product number: 082-07925, weight average Molecular weight: 5.0 ⁇ 10 4 ), except that the first reagent added was changed to 2.4 mL (11 mmol) of acryloyl chloride and 13 mL (150 mmol) of propionyl chloride (manufactured by Tokyo Chemical Industry Co., Ltd.).
  • the HPC derivative 1-2 was synthesized in the same manner as in Example 2-1.
  • the obtained HPC derivative 1-2 was designated as a liquid crystal material 1-2.
  • the liquid crystal material 1-2 was measured for 1 H-NMR spectrum (not shown), and based on the assigned peaks, the degree of substitution with a group having an unsaturated double bond and the degree of substitution with a hydrophobic group were determined. Was calculated.
  • the degree of substitution with an acryloyl group (group having an unsaturated double bond) is 0.55
  • Example 2-1 low molecular weight hydroxypropylcellulose (HPC) (manufactured by Wako Pure Chemical Industries, Ltd., product name: hydroxypropylcellulose 2.0 to 2.9, product number: 082-07925, weight average HPC derivative 1-3 (hereinafter referred to as “the molecular weight: 5.0 ⁇ 10 4 )” was used in the same manner as in Example 2-1, except that the reagent initially added was changed to propionyl chloride 13 mL (150 mmol). Also referred to as “HPC-PrE”). This was designated as Liquid Crystal Material 1-3.
  • HPC-PrE weight average HPC derivative 1-3
  • the loss tangent of the liquid crystal material 1-1 (HPC-UndE / PrE) as an example was the smallest. This is because the HPC polymer network is oriented due to the low viscosity of the liquid crystal material 1-1 (HPC-UndE / PrE) in the region where the angular frequency is small, and the molecular helical structure of the cholesteric liquid crystal is self-organized. As a result, it is assumed that the fluidity has decreased. On the other hand, in the region where the angular frequency is large, the loss tangent of the liquid crystal material 1-1 (HPC-UndE / PrE) as an example was the largest.
  • the liquid crystal material 1-1 as an example (HPC-UndE / PrE) showed the highest fluidity.
  • the liquid crystal material 1-1 in which the group having an unsaturated double bond substituted on the HPC side chain is an undecenoyl group shows higher fluidity than the liquid crystal materials 1-2 and 1-3 as comparative examples. Therefore, it can be seen that handling is easy and alignment treatment can be easily performed.
  • Example 2-1 Preparation of liquid crystal material 2-1> HPC derivative 2-1 was synthesized according to the following scheme.
  • HPC Medium molecular weight hydroxypropylcellulose
  • HPC hydroxypropylcellulose
  • product name hydroxypropylcellulose 6.0-10.0, product number: 086 ⁇ 07945, weight average molecular weight: 1.5 ⁇ 10 5
  • 6.2 g (16 mmol) was dissolved in 30 mL of ultra-dehydrated acetone in a nitrogen-filled flask and then shielded with aluminum foil at room temperature ( 25 ° C) 10-undecenoyl chloride (product number; U0008) manufactured by Tokyo Chemical Industry Co., Ltd., which is an acid chloride of a long-chain hydrocarbon group having an unsaturated double bond at the terminal (12 mmol) and 0.57 mL (7.0 mmol) of acryloyl chloride ((Tokyo Chemical Industry Co., Ltd., A0147)) were added and stirred for 24 hours.
  • HPC derivative 2-1 as a product is obtained by drying under reduced pressure for one day or more (hereinafter referred to as “HPC-UndE”). / AcE / PrE "). This was designated as Liquid Crystal Material 2-1.
  • the yield was 6.0g. Further, the weight average molecular weight of HPC-UndE / AcE / PrE was measured by the method described above, and as a result, the weight average molecular weight was 1.5 ⁇ 10 5 .
  • each peak near 5 ppm is a vinyl group ((a) in FIG. 4). It is a proton peak attached to a heavy bond, and a peak in the vicinity of 5.2 ppm is a proton peak at the terminal hydroxypropyl group methine group and undecenoyl group terminal.
  • the peak in the vicinity of 1.0 ppm to 2.5 ppm is attributed to the methylene group of undecenoyl group and propionyl group ((b) and (c) of FIG. 4), the proton in the ⁇ -glucose monomer unit, and the hydroxypropyl group in the side chain. It is the proton of the methine group.
  • R 11 , R 12 and R 13 are each independently an acryloyl group, an undecenoyl group or a propionyl group, and X 11 , X 12 and X 13 are each Independently, it is a single bond or (—CH 2 —CH (CH 3 ) —O—) h (where h is an integer of 0 or more and 10 or less), and n11 is 70.
  • the HPC side chain (hydrogen atom in the hydroxyl group) has a degree of substitution with a group having an unsaturated double bond (ie, undecenoyl group or acryloyl group) and a hydrophobic group (ie, propionyl group).
  • the degree of substitution was calculated.
  • the HPC derivative 2-1 has a degree of substitution to an undecenoyl group (group having an unsaturated double bond) of 0.61, and a degree of substitution to an acryloyl group (group having an unsaturated double bond) is 0.13.
  • PVA polyvinyl alcohol
  • the PVA aqueous solution was spin-coated on a commercially available glass slide (substrate) at 800 rpm for 10 seconds and then at 1800 rpm for 20 seconds to obtain a PVA-coated substrate.
  • the rubbing process was performed by rubbing the PVA-coated substrate 50 times in one axial direction using a stick wound with a cupra. Further, in preparation for the peeling operation, the release agent was spin-coated at 500 rpm for 10 seconds and heat-treated on a hot stage at about 80 ° C. for about 3 minutes. As a result, a PVA glass substrate subjected to rubbing treatment and peeling treatment (hereinafter also referred to as “rubbing / peeling treatment PVA glass substrate”) was obtained. A total of two rubbing / peeling-treated PVA glass substrates were produced.
  • the liquid crystal material 1 was sandwiched with a polytetrafluoroethylene (PTFE) spacer of about 680 ⁇ m between two rubbing / peeling-treated PVA glass substrates. Further, after shear alignment treatment was allowed to stand for 4 hours or longer, the liquid crystal cell 2-1 was heated to a specific temperature on a hot stage (manufactured by METTLER TRADE CO., LTD.) And left for about 20 minutes.
  • PTFE polytetrafluoroethylene
  • the liquid crystal cell 2-1 produced above was irradiated with ultraviolet rays at around 365 nm (9.5 mW) at 30 ° C. for 2 hours or more through an optical filter (UV-35 / UV-D36A) using a mercury xenon lamp as a light source. Irradiated. Thereafter, tweezers were inserted into the gaps of the liquid crystal cell, and the film was peeled off slowly to obtain a liquid crystal film 2-1.
  • FIG. 5 is an FT-IR spectrum of Example 2-1.
  • a peak of C ⁇ O stretching vibration appeared strongly in the vicinity of 1730 cm ⁇ 1 .
  • the peak of OH stretching vibration around 3300 cm ⁇ 1 to 3600 cm ⁇ 1 decreased. Therefore, it was confirmed that the liquid crystal material 2-1 (HPC-UndE / AcE / PrE) of Example 2 has a sufficient degree of substitution with the acryloyl group, propionyl group, and undecenoyl group.
  • Example 2-2 In Example 2-1, a liquid crystal material 2-2 and a liquid crystal film 2-2 were prepared in the same manner as in Example 2-1, except that the temperature at the time of UV irradiation of the liquid crystal cell was changed to 40 ° C. Was evaluated. The results are shown in FIG. The film thickness of the liquid crystal film 2-2 was 640 ⁇ m.
  • Example 2-3 In Example 2-1, a liquid crystal material 2-3 and a liquid crystal film 2-3 were produced in the same manner as in Example 2-1, except that the temperature at the time of ultraviolet irradiation of the liquid crystal cell was changed to 60 ° C. Similar evaluations were made. The results are shown in FIG. The film thickness of the liquid crystal film 2-3 was 700 ⁇ m.
  • Example 2-4 In Example 2-1, a liquid crystal material 2-4 and a liquid crystal film 2-4 were produced in the same manner as in Example 2-1, except that the temperature at the time of ultraviolet irradiation of the liquid crystal cell was changed to 70 ° C. Similar evaluations were made. The results are shown in FIG. The film thickness of the liquid crystal film 2-4 was 670 ⁇ m.
  • HPC derivative 3 was synthesized according to the following scheme.
  • Example 2-1 low molecular weight hydroxypropylcellulose (HPC) (manufactured by Wako Pure Chemical Industries, Ltd., product name; hydroxypropylcellulose 2.0 to 2.9, product number; 082-07925, weight average molecular weight; 5.0 ⁇ 10 4 ) 4.5 g (10 mmol), the amount of ultra-dehydrated acetone was 22 mL, and the first added reagent was Karenz AOI (2-acryloyloxyethyl isocyanate) 2.1 mL (17 mmol), 24 hours The reagents were added after stirring, except that they were changed to 3.4 mL (17 mmol) of decanoyl chloride and 9.4 mL (83 mmol) of butyryl chloride, which are acid chlorides of a long-chain hydrocarbon group having no unsaturated double bond.
  • HPC derivative 3 hereinafter also referred to as “HPC-AcC / DecE / BuE”
  • the peak in the vicinity of 2.7 ppm to 4.5 ppm is a proton peak in the ⁇ -glucose monomer unit, an ethylene group proton peak between the acryloyl group and the carbamate bond.
  • the peak around 2.3 ppm is a proton peak of a methylene group adjacent to the ester bond in the decanoyl group and butyryl group ((b) of FIG. 11).
  • the peaks in the vicinity of 0.9 ppm to 1.4 ppm are the proton peaks of the methyl group of the decanoyl group and the six methylene groups on the terminal side, and the proton peaks of the methyl group of the butyryl group ((( c)).
  • R 11 , R 12 and R 13 are each independently an acryloyl group, a decanoyl group or a butyryl group, and X 11 , X 12 and X 13 are each independently A single bond or (—CH 2 —CH (CH 3 ) —O—) h (where h is an integer of 0 or more and 10 or less), and an HPC derivative 3 having a molecular structure in which n11 is 70. is there.
  • HPC side chain (hydrogen atom in the hydroxyl group) has a degree of substitution with a group having an unsaturated double bond (ie, acryloyl group) and a hydrophobic group (ie, decanoyl group and butyryl group).
  • the degree of substitution was calculated.
  • the HPC derivative 3 has a substitution degree to a decanoyl group (hydrophobic group) of 0.53, a substitution degree to an acryloyl group (group having an unsaturated double bond), 0.14, and a butyryl group (hydrophobic group).
  • Example 2-1 The prepared liquid crystal material 3 was used in the same manner as in Example 2-1, except that the temperature at the time of UV irradiation of the liquid crystal cell in Example 2-1 was changed to 25 ° C. And the liquid crystal film 3 was produced and the same evaluation was performed. The obtained results are shown in FIGS. The film thickness of the liquid crystal film 3 was 680 ⁇ m.
  • FIG. 12 is an FT-IR spectrum of Example 3.
  • the normalized Bragg reflection wavelength of the liquid crystal film 3 produced above was plotted to obtain a regression line (FIG. 14).
  • Table 1 shows the slope values obtained from the regression line.
  • the liquid crystal films prepared from the liquid crystal materials 2-1 to 2-4 exhibit thermotropic cholesteric liquid crystal properties and have a large shift in the wavelength of reflected light with respect to mechanical pressure. .
  • the liquid crystal film 2-2 fixed at 40 ° C. showed particularly excellent pressure response.
  • the crosslinking reaction of the acryloyl group proceeds by ultraviolet irradiation, and further exhibits a compression response. Recognize.
  • Example 4-1 Preparation of liquid crystal material 4-1>
  • HPC low molecular weight hydroxypropylcellulose
  • HPC-UndE / BuE The HPC derivative 4-1 (hereinafter also referred to as “HPC-UndE / BuE”) was obtained in the same manner as in Example 2-1, except that it was changed to 14.6 mL (140 mmol).
  • the yield of HPC-UndE / BuE was 3.0 g.
  • R 11 , R 12 and R 13 are each independently an undecenoyl group or a butyryl group
  • X 11 , X 12 and X 13 are each independently HPC derivative 4-1 having a single bond or (—CH 2 —CH (CH 3 ) —O—) h (where h is an integer of 0 or more and 10 or less) and n11 is 70 It is.
  • HPC derivative 4-1 A 1 H-NMR spectrum of the HPC derivative 4-1 was measured (not shown), and a group having an unsaturated double bond in the HPC side chain (hydrogen atom in the hydroxyl group) based on the assigned peak (ie, , Undecenoyl group) and hydrophobic group (ie, butyryl group) were calculated.
  • HMPP 2-Hydroxy-2-methyl-1-phenylpropane-1-one
  • a liquid crystal material 4-1 containing HMPP prepared as described above was placed between two glass substrates on which a release agent was spin-coated at 800 rpm for 10 seconds, similarly to the production of the liquid crystal film 2-1.
  • the liquid crystal cell 4-1 was produced by sandwiching. After the liquid crystal cell 4-1 was irradiated with ultraviolet rays, the liquid crystal elastomer film was peeled from the glass substrate to obtain a liquid crystal film 4-1.
  • the film thickness of the liquid crystal film 4-1 was about 500 ⁇ m.
  • the obtained liquid crystal film 4-1 was evaluated in the same manner as in Example 2-1. The obtained results are shown in FIGS.
  • Example 4-2 ⁇ Preparation of liquid crystal material 4-2>
  • HPC low molecular weight hydroxypropylcellulose (HPC) (manufactured by Wako Pure Chemical Industries, Ltd., product name; hydroxypropylcellulose 2.0 to 2.9, product number; 082-07925, weight average molecular weight: 5.0 ⁇ 10 4 ), 10-undecenoyl chloride (manufactured by Tokyo Chemical Industry Co., Ltd., product number; U0008) 3.0 mL (15 mmol) and butyryl chloride (manufactured by Tokyo Chemical Industry Co., Ltd.) ) HPC derivative 4-2 (hereinafter also referred to as “HPC-UndE / BuE”) was obtained in the same manner as in Example 2-1, except that the volume was changed to 14.1 mL (135 mmol). The yield of HPC-UndE / BuE was 2.5 g.
  • HPC derivative 4-2 A 1 H-NMR spectrum of HPC derivative 4-2 was measured (not shown), and a group having an unsaturated double bond in the HPC side chain (hydrogen atom in the hydroxyl group) based on the assigned peak (ie, , Undecenoyl group) and hydrophobic group (ie, butyryl group) were calculated.
  • the degree of substitution with the undecenoyl group is 0.43
  • HMPP as a photopolymerization initiator was added to the HPC derivative 4-2 at 1% by mass with respect to the total mass of the liquid crystal material and stirred. This was designated as Liquid Crystal Material 4-2.
  • Example 4-1 a liquid crystal cell 4-2 and a liquid crystal film 4-2 were prepared in the same manner as in Example 4-1, except that the liquid crystal material 4-2 was used instead of the HPC derivative 4-1. Evaluation was performed in the same manner as in Example 2-1. The obtained results are shown in FIGS. The film thickness of the liquid crystal film 4-2 was about 500 ⁇ m.
  • Example 5-1 Preparation of liquid crystal material 5-1>
  • HPC low molecular weight hydroxypropylcellulose
  • HPC-UndE / PrE low molecular weight hydroxypropylcellulose
  • Example 2-1 low molecular weight hydroxypropylcellulose (HPC) (manufactured by Wako Pure Chemical Industries, Ltd., product name; hydroxypropylcellulose 2.0 to 2.9, product number; 082-07925, weight average molecular weight: 5.0 ⁇ 10 4 ), 10-undecenoyl chloride (manufactured by Tokyo Chemical Industry Co., Ltd., product number; U0008) 3.0 mL (15 mmol) and propionyl chloride (manufactured by Tokyo Chemical Industry Co., Ltd.) ) HPC derivative 5-1 (hereinafter also referred to as “HPC-UndE / PrE”) was obtained in the same manner as in Example 2-1, except that the amount was changed to 11.8 mL (135 mmol). The yield of HPC-
  • HPC derivative 5-1 A 1 H-NMR spectrum of the HPC derivative 5-1 was measured (not shown), and a group having an unsaturated double bond in the HPC side chain (hydrogen atom in the hydroxyl group) based on the assigned peak (ie, , Undecenoyl group) and hydrophobic group (that is, propionyl group) were calculated.
  • HMPP as a photopolymerization initiator was added to the HPC derivative 5-1 at 1 mass% with respect to the total mass of the liquid crystal material and stirred. This was designated as Liquid Crystal Material 5-1.
  • a liquid crystal cell 5-1 and a liquid crystal film 5-1 were produced in the same manner as in Example 4-1, except that the HPC derivative 5-1 was used instead of the HPC derivative 4-1 in Example 4-1. Evaluation was performed in the same manner as in Example 2-1. The obtained results are shown in FIGS.
  • the film thickness of the liquid crystal film 5-1 was about 500 ⁇ m.
  • Example 5-2 ⁇ Preparation of liquid crystal material 5-2>
  • HPC low molecular weight hydroxypropylcellulose
  • HPC-UndE / PrE hydroxypropylcellulose
  • Example 2-1 low molecular weight hydroxypropylcellulose (HPC) (manufactured by Wako Pure Chemical Industries, Ltd., product name; hydroxypropylcellulose 2.0 to 2.9, product number; 082-07925, weight average molecular weight: 5.0 ⁇ 10 4 ), 10-undecenoyl chloride (manufactured by Tokyo Chemical Industry Co., Ltd., product number; U0008) 6.0 mL (30 mmol) and propionyl chloride (Tokyo Chemical Industry Co., Ltd.) HPC derivative 5-2 (hereinafter also referred to as “HPC-UndE / PrE”) was obtained in the same manner as in Example 2-1, except that the volume was changed to 10.6 mL (120 mmol). The yield of HPC-UndE / PrE was 2.5
  • HPC derivative 5-2 A 1 H-NMR spectrum of HPC derivative 5-2 was measured (not shown), and a group having an unsaturated double bond in the HPC side chain (hydrogen atom in the hydroxyl group) based on the assigned peak (ie, , Undecenoyl group) and hydrophobic group (that is, propionyl group) were calculated.
  • the degree of substitution with an undecenoyl group is 0.94
  • the degree of substitution with a propionyl group hydrophobic group
  • HMPP as a photopolymerization initiator was added to the HPC derivative 5-2 at 1% by mass with respect to the total mass of the liquid crystal material and stirred. This was designated as Liquid Crystal Material 5-2.
  • a liquid crystal cell 5-2 and a liquid crystal film 5-2 were produced in the same manner as in Example 4-1, except that the HPC derivative 5-2 was used instead of the HPC derivative 4-1 in Example 4-1. Evaluation was performed in the same manner as in Example 2-1. The obtained results are shown in FIGS.
  • the film thickness of the liquid crystal film 5-2 was about 500 ⁇ m.
  • Example 6 ⁇ Preparation of liquid crystal materials 6-1 and 6-2>
  • the reagents to be added were 10-undecenoyl chloride (manufactured by Tokyo Chemical Industry Co., Ltd., product number; U0008) 1.5 mL (7.3 mmol) and butyryl chloride (Tokyo Chemical Industry Co., Ltd.).
  • HPC derivative 6-1 (hereinafter also referred to as “HPC-UndE / BuE”) was synthesized in the same manner as in Example 4-1, except that the amount was changed to 14.6 mL (140 mmol). The yield of HPC derivative 6-1 was 3.0 g.
  • HPC derivative 6-2 (hereinafter also referred to as “HPC-UndE / BuE”) was synthesized in the same manner as Example 4-1.
  • the yield of HPC derivative 6-2 was 3.0 g.
  • the degree of substitution with the group having the same (ie, undecenoyl group) and the degree of substitution with the hydrophobic group (ie, butyryl group) were calculated.
  • Example 4-1 the liquid crystal cells 6-1 and 6-2 and the liquid crystal cells 6-1 and 6-2 were prepared in the same manner as in Example 4-1, except that the HPC derivative 6-1 or 6-2 was used instead of the HPC derivative 4-1. Liquid crystal films 6-1 and 6-2 were produced.
  • HPC derivative 7 (hereinafter referred to as “hereinafter referred to as“ PCC derivative 7 ”) was prepared in the same manner as in Comparative Example 1-2, except that the reagent to be added was changed to 15.6 mL of butyryl chloride (Tokyo Chemical Industry Co., Ltd.) Also referred to as “HPC-AcE / BuE”). This was designated as a liquid crystal material 7.
  • PCC derivative 7 HPC derivative 7
  • 1 H-NMR spectrum was measured (not shown), and the degree of substitution with a group having an unsaturated double bond and the degree of substitution with a hydrophobic group were calculated based on the assigned peak. did.
  • Example 4-1 a liquid crystal cell 7 and a liquid crystal film 7 were produced in the same manner as in Example 4-1, except that the HPC derivative 7 was used instead of the HPC derivative 4-1.
  • the liquid crystal films 6-1 and 6-2 have a small maximum point stress (tensile strength). It can be seen that the maximum degree of stretch (%) is high and the film has excellent stretchability, that is, rubber elasticity. Furthermore, when the degree of substitution of the group having an unsaturated double bond (undecenoyl group) in the side chain of the liquid crystal films 6-1 and 6-2 is increased, it can be stretched with a smaller force, and the maximum strain is also large.
  • the rubber elasticity of the liquid crystal film of the present invention improves as the amount of unsaturated double bonds (for example, undecenoyl groups) introduced into the side chain of the specific cellulose derivative increases.
  • the liquid crystal material and the liquid crystal film of the present invention can be used not only for display materials of liquid crystal display elements but also for photonic devices such as various sensors such as strain sensors and wearable sensors using liquid crystal properties, and optical elements. Can also be used. For this reason, it contributes to manufacture of parts used for display materials and photonic devices of liquid crystal display elements, and sales thereof.
  • Example 2-1 low molecular weight hydroxypropylcellulose (HPC) (manufactured by Wako Pure Chemical Industries, Ltd., product name: hydroxypropylcellulose 2.0 to 2.9, product number: 082-07925, weight average Molecular weight: 5.0 ⁇ 10 4 ) 8 g (17.8 mmol), super dehydrated acetone 35 mL, first added reagent 10-undecenoyl chloride 2.6 mL (10.6 mmol), later added reagent
  • HPC derivative 8 hereinafter also referred to as “HPC-UndE / BuE”
  • Example 2-1 low molecular weight hydroxypropylcellulose (HPC) (manufactured by Wako Pure Chemical Industries, Ltd., product name: hydroxypropylcellulose 2.0 to 2.9, product number: 082-07925, weight average Molecular weight: 5.0 ⁇ 10 4 ) 8 g (17.8 mmol), super dehydrated acetone 35 mL, first added reagent 10-undeceno
  • the yield was 5.0 g.
  • HMPP was added to the HPC derivative 8 as a photopolymerization initiator so as to be 2% by mass with respect to the total mass of the liquid crystal material, and stirred. This was designated as liquid crystal material 8.
  • a liquid crystal cell 8 and a liquid crystal film 8 were produced in the same manner as in Example 4-1, except that the HPC derivative 8 was used instead of the HPC derivative 4-1.
  • the thickness of the liquid crystal film 8 was 460 m.
  • FIG. 22 shows a stress-strain curve of the liquid crystal film 8 when the amount of ultraviolet light to be irradiated is changed during the production of the liquid crystal film 8, and the amount of ultraviolet light (10.8 J / cm 2 to 48.6 J / cm 2 ) is shown.
  • FIG. 23 shows changes in elastic characteristics when changed. As shown in FIG. 23, when the amount of ultraviolet light is 10.8 J / cm 2 to 27.0 J / cm 2 , the elastic modulus and the maximum stress of the liquid crystal film 8 increase as the amount of light increases. It is presumed that this is caused by an increase in the number of crosslinking points that fix the molecular helical structure as the photocrosslinking reaction proceeds.
  • the transmission spectrum measured while heating the liquid crystal film 8 is shown in FIG.
  • the same evaluation was performed with the HPC derivative 8, and the correlation between temperature and Bragg reflection wavelength was summarized as shown in FIG. From FIG. 25, it was found that the HPC derivative 8 before crosslinking was not only shifted in reflection wavelength by heating but also exhibited Bragg reflection only up to 70 ° C.
  • the liquid crystal film 8 after cross-linking was not only small in the width of the long wavelength shift due to heating, but could exhibit Bragg reflection up to 175 ° C.
  • Such stability to the heat of the liquid crystal film 8 is presumed to be due to the fact that the crosslinking point generated at the end of the Und group of the HPC derivative 8 suppresses the expansion and contraction of the molecular helical structure.
  • FIG. 26 shows the change of the transmission spectrum in the process of compressing the liquid crystal film 8 equivalent to strain 0.3, and the lower part of FIG. 26 shows the transmission spectrum in the process of releasing the compression.
  • the Bragg reflection of the liquid crystal film 8 exhibited a substantially reversible behavior although it appeared on the short wavelength side of about 10 nm after being released from compression.
  • FIG. 29 shows a stress-strain curve when the liquid crystal film 8 is repeatedly compressed and released at a speed of 0.5 mm / min and a strain of 0.2.
  • FIG. 30 shows a change in elastic characteristics accompanying the repeated compression of the liquid crystal film 8 calculated from FIG.
  • the result of having done the test similar to the liquid crystal film 8 with respect to commercially available chloroprene rubber is shown in FIG. From FIG. 30, the elastic modulus of the liquid crystal film 8 did not change greatly due to repeated compression, like the chloroprene rubber. From this, it was found that the liquid crystal film 8 exhibits elastic properties equivalent to those of a commercially available chloroprene rubber when the strain is at least 0.2.
  • Example 9 Preparation of liquid crystal material 9> According to the following scheme, HPC derivative 9 (HPC-UndE / DecE / BuE) was synthesized.
  • Example 2-1 low molecular weight hydroxypropylcellulose (HPC) (manufactured by Wako Pure Chemical Industries, Ltd., product name: hydroxypropylcellulose 2.0 to 2.9, product number: 082-07925, weight average In place of 8 g (17.8 mmol) of molecular weight; 5.0 ⁇ 10 4 ), 35 mL of super-dehydrated acetone, 1.3 mL (5.3 mmol) of 10-undecenoyl chloride, and acryloyl chloride HPC derivative 9 (hereinafter “HPC-”) was prepared in the same manner as in Example 2-1, except that 1.2 mL (5.3 mmol) of decanoyl chloride and 17.6 ml (149 mmol) of butyryl chloride were used instead of propionyl chloride.
  • HPC- low molecular weight hydroxypropylcellulose
  • HMPP was added to the HPC derivative 9 as a photopolymerization initiator and stirred so as to be 2% by mass with respect to the total mass of the liquid crystal material. This was designated as a liquid crystal material 9.
  • a liquid crystal film 9 was produced by irradiating the liquid crystal cell 9 produced from the liquid crystal material 9 with ultraviolet rays having a light quantity of 32.4 J / cm 2 .
  • the film thickness of the liquid crystal film 9 was 470 ⁇ m.
  • FIG. 35 shows the result of a compression test performed on the liquid crystal film 8 and the liquid crystal film 9 at a speed of 0.5 mm / min and a strain of 0.3. Further, the result of measuring the reflection wavelength while compressing the liquid crystal film 8 and the liquid crystal film 9 was combined with FIG. 35, and the relationship between the reflection wavelength, stress, and strain shown in FIG. 36 was obtained. As shown in FIG. 36, the reflection wavelength of the liquid crystal film 8 was shifted by a short wavelength from about 620 nm to 480 nm at a pressure of about 4.5 MPa. On the other hand, the liquid crystal film 9 realized a similar short wavelength shift of the reflection wavelength at a pressure of about 2.5 MPa.
  • the liquid crystal film 9 was able to change color by detecting a smaller pressure on the liquid crystal film 8. This is presumably because the liquid crystal HPC derivative 9 has a smaller amount of UndE introduced than the HPC derivative 8, and as a result, the number of crosslinking points for fixing the molecular helical structure is reduced.
  • Example 10-1 ⁇ Preparation of liquid crystal material 10-1> According to the following scheme, HPC derivative 10-1 (HPC-4HC / PrE) was synthesized.
  • HPC Low molecular weight hydroxypropylcellulose
  • HPC derivative 10-1 (hereinafter referred to as “HPC-4HC / PrE”). Is also referred to as).
  • the yield was 4.0 g.
  • peaks near 4.2 ppm and 3.2 ppm are the proton peaks of the four methylene groups derived from 4-hydroxybutyl acrylate at 4H, and the peaks near 1.2 ppm to 1.8 ppm are the hexamethylene dimethyl peaks at 4H. This is a proton peak of six methylene groups derived from isocyanate.
  • the peaks around 5.8 ppm, 6.1 ppm and 6.4 ppm are respectively acryloyl groups at the ends.
  • Peaks in the vicinity of 1.0 ppm to 2.5 ppm are the methyl group of the hydroxypropyl group of the HPC side chain, the methylene group of the group having an unsaturated bond, the methylene group not adjacent to the nitrogen atom, and the methyl of the propionyl group.
  • the peak around 2.7 ppm to 4.6 ppm is a peak of other protons that HPC derivative 10-1 has.
  • HPC side chain (hydrogen atom in the hydroxyl group) has a degree of substitution with a group having an unsaturated double bond (ie, 4HC group) and substitution with a hydrophobic group (ie, propionyl group). The degree was calculated.
  • Example 10-2 to 10-4 ⁇ Preparation of liquid crystal materials 10-2 to 10-4>
  • HPC-4HC / PrE having different degrees of substitution with 4HC groups was synthesized by changing the amount of 4H to be added. This was designated as HPC derivatives 10-2, 10-3 and 10-4.
  • HMPP as a photopolymerization initiator was added to HPC derivatives 10-2, 10-3, and 10-4 as a photopolymerization initiator so as to be 1% by mass with respect to the total mass of the liquid crystal material, followed by stirring. These were designated as liquid crystal materials 10-2, 10-3, and 10-4.
  • the liquid crystal film 10-1 was produced by irradiation with ultraviolet rays (wavelength: 365 nm, intensity 10.0 mW / cm 2 ) for 30 minutes at room temperature (25 ° C.). Further, by using the liquid crystal materials 10-2, 10-3, and 10-4, and performing the same operation as the liquid crystal material 10-1, except that the ultraviolet irradiation time is 1 hour, the liquid crystal film 10- 2, 10-3 and 10-4 were prepared. The film thicknesses of the liquid crystal films 10-1, 10-2, 10-3, and 10-4 were 500 ⁇ m, 560 ⁇ m, 450 ⁇ m, and 470 ⁇ m, respectively.
  • the liquid crystal film 10-1 is a dumbbell test piece having a width of 12 mm, a length of 30 mm, a parallel part width of 5 mm, and a length of 10 mm.
  • the liquid crystal films 10-2, 10-3, and 10-4 are JIS No. 7 dumbbells.
  • the test piece was subjected to a tensile test using a small tabletop testing machine (product name: EZ-LX, manufactured by Shimadzu Corporation) at a tensile speed of 10 mm / min.
  • FIG. 39 shows a stress-strain curve in the stretching process of the liquid crystal film 10-1. Details of the results are shown in Table 3.
  • the liquid crystal film 10-1 can be stretched by 100% or more. This is due to the fact that the side chain stretches with stretching due to the lengthening of the side chain having an unsaturated bond, so that the film is easily deformed flexibly. It was also confirmed that the reflection wavelength was shifted by a short wavelength with 100% or more stretching. This is presumed to be due to the shrinkage of the helical pitch because the thickness in the vertical direction decreases as the strain in the stretching direction increases.
  • FIG. 40 shows stress-strain curves in the stretching process of the liquid crystal films 10-2, 10-3, and 10-4. Details of the results are shown in Table 4.
  • the addition of the photopolymerization initiator allowed the photocrosslinking reaction to proceed sufficiently to improve the rubber elasticity. Furthermore, it was found that the greater the amount of 4HC groups (groups having unsaturated double bonds) introduced, the greater the modulus of elasticity and the maximum stress and the smaller the breaking strain. As compared with Example 6 and Comparative Example 7, these had larger breaking strain (maximum strain), and it was found that the tensile properties were improved by the introduction of 4HC groups.
  • FIG. 41 shows the change in the transmission spectrum during the stretching release process of the liquid crystal film 10-3. It was found that the Bragg reflection wavelength shifts shortly with stretching and returns to the initial wavelength when released. This means that reversible expansion and contraction is possible at least within the range of strain 0.2 with improvement in rubber elasticity of the liquid crystal film.

Abstract

A liquid-crystal material containing a cellulose derivative having a molecular structure represented by general formula (1A). In general formula (1A), X11, X12, and X13 each independently represent a single bond, an alkylene group, -(R14-O)h-, or-C(=O)-R15-; R11, R12, and R13 each independently represent a hydrogen atom, a group having an unsaturated double bond, or a hydrophobic group; R14 and R15 each independently represent an alkylene group; h represents an integer of 1-10; and n11 represents an integer of 2-800. However, at least one of R11, R12, and R13 represents a group having an unsaturated double bond represented by general formula (3C) and/or a C5-20 linear or branched acyl group.

Description

液晶材料、液晶フィルム及びその製造方法、センサー、並びに、光学素子Liquid crystal material, liquid crystal film and manufacturing method thereof, sensor, and optical element
 本発明は、液晶材料、液晶フィルム及びその製造方法、センサー、並びに、光学素子に関する。 The present invention relates to a liquid crystal material, a liquid crystal film, a manufacturing method thereof, a sensor, and an optical element.
液晶材料は、液晶ディスプレイの表示材料のみならず、近年ではその光学特性を利用して、フォトニックデバイスへの適応が進められている。液晶材料として、例えば、セルロース誘導体が知られている。 Liquid crystal materials are not only used as display materials for liquid crystal displays, but in recent years, application to photonic devices has been promoted using their optical characteristics. As a liquid crystal material, for example, a cellulose derivative is known.
 液晶性を備えたセルロース誘導体として、ヒドロキシプロピルセルロースが有する水酸基の水素原子に、カルバメート基(ウレタン結合)を有する置換基が導入されたセルロース誘導体が開示されている(例えば、特許文献1参照)。 As a cellulose derivative having liquid crystallinity, a cellulose derivative in which a substituent having a carbamate group (urethane bond) is introduced into a hydrogen atom of a hydroxyl group of hydroxypropyl cellulose is disclosed (for example, see Patent Document 1).
 また、溶媒(A)と、該溶媒(A)中で液晶形成可能なセルロース誘導体(B)と、テトラアルコキシシラン(C)とを混合して混合液を得る工程(I)、前記セルロース誘導体(B)の液晶化物と、前記テトラアルコキシシラン(C)の縮合物との複合材料を得る工程(II)、酸(E)の処理により、前記複合材料中の前記液晶化物を除去する工程(III)を有する、シリカ系キラル構造体の製造方法が開示されている(例えば、特許文献2参照)。 Step (I) of mixing a solvent (A), a cellulose derivative (B) capable of forming a liquid crystal in the solvent (A), and a tetraalkoxysilane (C) to obtain a mixed solution, the cellulose derivative ( A step (II) of obtaining a composite material of the liquid crystallized product of B) and a condensate of the tetraalkoxysilane (C), and a step of removing the liquid crystallized product in the composite material by treatment with acid (E) (III ) Has been disclosed (for example, see Patent Document 2).
特開2015-48365号公報Japanese Patent Laying-Open No. 2015-48365 特開2016-113315号公報JP 2016-113315 A
  特許文献1には、セルロース誘導体の側鎖に導入可能な基として、メタクリロイル基が記載されているが、セルロース誘導体のモノマー単位間を架橋するために導入されたものではない。さらに、特許文献1では、架橋後のセルロース誘導体に弾性を付与することも予定していない。 Patent Document 1 describes a methacryloyl group as a group that can be introduced into a side chain of a cellulose derivative, but it is not introduced for crosslinking between monomer units of the cellulose derivative. Furthermore, Patent Document 1 does not plan to impart elasticity to the crosslinked cellulose derivative.
 また、上述の特許文献2に記載の液晶化物は、最終的に酸の処理により除去される。そのため、シリカ系キラル構造体は、セルロースが持つ液晶性及び光学特性を利用したものではない。 The liquid crystal described in Patent Document 2 is finally removed by acid treatment. Therefore, the silica-based chiral structure does not utilize the liquid crystallinity and optical properties of cellulose.
 ヒドロキシプロピルセルロース(HPC)は、紙、綿、パルプの主成分であるセルロース誘導体であり、また、人体及び環境に対して無害であるため、医薬品、サプリメント等にも使用されている汎用性の高い高分子である。また、セルロースは、天然に最も豊富に存在する原料であるため安価な材料である。
 従って、セルロース誘導体を原料として用いた液晶材料等の開発は、安全性の観点及び環境負荷を低減する観点からも有用であり、セルロース誘導体が持つ液晶性、光学特性等を、液晶材料、液晶フィルム、フォトニックデバイス等への利用が更に期待されている。
Hydroxypropylcellulose (HPC) is a cellulose derivative that is the main component of paper, cotton, and pulp, and is harmless to the human body and the environment. It is a polymer. Cellulose is an inexpensive material because it is the most abundant raw material in nature.
Therefore, the development of liquid crystal materials and the like using cellulose derivatives as raw materials is also useful from the viewpoint of safety and the reduction of environmental burden. Further, it is expected to be used for photonic devices.
 本発明は、上記のような事情に鑑みてなされたものであり、サーモトロピックコレステリック液晶性及びゴム弾性を示し、かつ、機械的圧力に対する反射光の波長のシフト変化が大きい液晶材料、液晶フィルム及びその製造方法、センサー、並びに、光学素子を提供することを課題とする。 The present invention has been made in view of the above circumstances, and exhibits a thermotropic cholesteric liquid crystallinity and rubber elasticity, and a liquid crystal material, a liquid crystal film, and a liquid crystal material having a large shift change in the wavelength of reflected light with respect to mechanical pressure It is an object to provide a manufacturing method, a sensor, and an optical element.
 本発明者らは鋭意検討した結果、特定の構造を有するセルロース誘導体を含有する液晶材料は、サーモトロピックコレステリック液晶性を示し、また、側鎖の末端に、特定の炭素数以上のアルキレン基と不飽和二重結合とを有する基及び特定の炭素数以上のアシル基の少なくとも一方を含有するセルロース誘導体が架橋することで、ゴム弾性を発現し当該液晶材料を含む液晶フィルムは、ブラッグ反射の波長で配向を固定化し発色させ得ることを見出し、本発明を完成させた。
 即ち、前記課題を解決するための手段には、以下の実施態様が含まれる。
<1> 下記一般式(1A)で表される分子構造を有するセルロース誘導体を含む、液晶材料。
As a result of intensive studies, the present inventors have found that a liquid crystal material containing a cellulose derivative having a specific structure exhibits a thermotropic cholesteric liquid crystal property, and has an alkylene group having a specific number of carbon atoms or more at the end of the side chain. A liquid crystal film exhibiting rubber elasticity and containing the liquid crystal material is crosslinked at a wavelength of Bragg reflection by crosslinking a cellulose derivative containing at least one of a group having a saturated double bond and an acyl group having a specific carbon number or more. The inventors have found that the orientation can be fixed and color can be developed, and the present invention has been completed.
That is, the following embodiments are included in the means for solving the problems.
<1> A liquid crystal material containing a cellulose derivative having a molecular structure represented by the following general formula (1A).
Figure JPOXMLDOC01-appb-C000011

 
(一般式(1A)中、X11、X12及びX13は、それぞれ独立に、単結合、アルキレン基、-(R14-O)-、又は、-C(=O)-R15-を表し、R11、R12及びR13は、それぞれ独立に、水素原子、不飽和二重結合を有する基、又は、疎水性基を表し、R14及びR15は、それぞれ独立に、アルキレン基を表し、hは、1以上10以下の整数を表し、n11は、2以上800以下の整数を表す。但し、R11、R12及びR13の少なくとも1つは、下記一般式(3C)で表される不飽和二重結合を有する基及び炭素数5~20の直鎖若しくは分岐のアシル基の少なくとも一方を表す。)
Figure JPOXMLDOC01-appb-C000011


(In the general formula (1A), X 11 , X 12 and X 13 are each independently a single bond, an alkylene group, — (R 14 —O) h —, or —C (═O) —R 15 —. R 11 , R 12 and R 13 each independently represent a hydrogen atom, a group having an unsaturated double bond, or a hydrophobic group, and R 14 and R 15 each independently represents an alkylene group. H represents an integer of 1 to 10, and n11 represents an integer of 2 to 800, provided that at least one of R 11 , R 12 and R 13 is represented by the following general formula (3C). It represents at least one of the group having an unsaturated double bond and a linear or branched acyl group having 5 to 20 carbon atoms.)
Figure JPOXMLDOC01-appb-C000012

 
(一般式(3C)中、R3Cは、水素原子又はメチル基を表し、X38は、炭素数3~20の直鎖若しくは分岐のアルキレン基、-NH-、-C(=O)O-、カルボニル基、炭素数2~20の直鎖若しくは分岐のアルキレンオキシ基、アリール基及び炭素数3~10のシクロアルキレン基からなる群より選ばれる基又はこれらの少なくとも1つを連結した基を表し、**は、上記一般式(1A)中、X11、X12、若しくはX13と結合する部分、又は、セルロース骨格の2位、3位、若しくは6位にある酸素原子と結合する部分を表す。)
<2> 前記一般式(1A)で表される分子構造が、下記一般式(1A-1)で表される分子構造である、<1>に記載の液晶材料。
Figure JPOXMLDOC01-appb-C000012


(In the general formula (3C), R 3C represents a hydrogen atom or a methyl group, and X 38 represents a linear or branched alkylene group having 3 to 20 carbon atoms, —NH—, —C (═O) O— Represents a group selected from the group consisting of a carbonyl group, a linear or branched alkyleneoxy group having 2 to 20 carbon atoms, an aryl group and a cycloalkylene group having 3 to 10 carbon atoms, or a group obtained by linking at least one of these groups. ** represents a moiety bonded to X 11 , X 12 , or X 13 in the general formula (1A), or a moiety bonded to an oxygen atom at the 2-position, 3-position, or 6-position of the cellulose skeleton. To express.)
<2> The liquid crystal material according to <1>, wherein the molecular structure represented by the general formula (1A) is a molecular structure represented by the following general formula (1A-1).
Figure JPOXMLDOC01-appb-C000013

 
Figure JPOXMLDOC01-appb-C000013

 
 一般式(1A-1)中、Rは、-CH-CH-、又は、-CH-CH(CH)-を表し、R11、R12及びR13は、それぞれ独立に、水素原子、不飽和二重結合を有する基、又は、疎水性基を表し、m1、t1及びr1は、それぞれ独立に、0以上10以下の整数を表し、n13は、2以上800以下の整数を表す。但し、R11、R12及びR13の少なくとも1つは、下記一般式(3C)で表される不飽和二重結合を有する基及び炭素数5~20の直鎖若しくは分岐のアシル基の少なくとも一方を表す。 In the general formula (1A-1), R 1 represents —CH 2 —CH 2 — or —CH 2 —CH (CH 3 ) —, and R 11 , R 12 and R 13 are each independently A hydrogen atom, a group having an unsaturated double bond, or a hydrophobic group, m1, t1 and r1 each independently represents an integer of 0 to 10, and n13 represents an integer of 2 to 800. To express. However, at least one of R 11 , R 12 and R 13 is at least one of a group having an unsaturated double bond represented by the following general formula (3C) and a linear or branched acyl group having 5 to 20 carbon atoms. Represents one.
Figure JPOXMLDOC01-appb-C000014

 
Figure JPOXMLDOC01-appb-C000014

 
 一般式(3C)中、R3Cは、水素原子又はメチル基を表し、X38は、炭素数3~20の直鎖若しくは分岐のアルキレン基、-NH-、-C(=O)O-、カルボニル基、炭素数2~20の直鎖若しくは分岐のアルキレンオキシ基、アリール基及び炭素数3~10のシクロアルキレン基からなる群より選ばれる基又はこれらの少なくとも1つを連結した基を表し、**は、上記一般式(1A)中、X11、X12、若しくはX13と結合する部分、又は、セルロース骨格の2位、3位、若しくは6位にある酸素原子と結合する部分を表す。
<3> 前記不飽和二重結合を有する基が、下記一般式(1C)で表される基を更に含み、
 前記疎水性基が、炭素数1~18の直鎖若しくは分岐のアルキル基、炭素数3~18のシクロアルキル基、炭素数6~18のアリール基、炭素数7~20のアラルキル基、炭素数2~4の直鎖若しくは分岐のアシル基、炭素数1~18の直鎖若しくは分岐のアルコキシ基、-COOR1Aで表されるカルボン酸エステル基、又はハロゲン原子であり、前記R1Aが、炭素数1~12の直鎖若しくは分岐のアルキル基、炭素数3~12のシクロアルキル基、又は、炭素数6~12のアリール基を更に含む、<1>又は<2>に記載の液晶材料。
In the general formula (3C), R 3C represents a hydrogen atom or a methyl group, X 38 represents a linear or branched alkylene group having 3 to 20 carbon atoms, —NH—, —C (═O) O—, Represents a group selected from the group consisting of a carbonyl group, a linear or branched alkyleneoxy group having 2 to 20 carbon atoms, an aryl group and a cycloalkylene group having 3 to 10 carbon atoms, or a group obtained by linking at least one of these groups, ** represents a moiety that binds to X 11 , X 12 , or X 13 in the general formula (1A) or a moiety that binds to an oxygen atom at the 2nd, 3rd, or 6th position of the cellulose skeleton. .
<3> The group having an unsaturated double bond further includes a group represented by the following general formula (1C),
The hydrophobic group is a linear or branched alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 3 to 18 carbon atoms, an aryl group having 6 to 18 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, a carbon number A linear or branched acyl group having 2 to 4 carbon atoms, a linear or branched alkoxy group having 1 to 18 carbon atoms, a carboxylic acid ester group represented by —COOR 1A , or a halogen atom, wherein R 1A is a carbon atom The liquid crystal material according to <1> or <2>, further comprising a linear or branched alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, or an aryl group having 6 to 12 carbon atoms.
Figure JPOXMLDOC01-appb-C000015

 
Figure JPOXMLDOC01-appb-C000015

 
 一般式(1C)中、R1Cは、水素原子又はメチル基を表し、X18は、単結合、炭素数1~18の直鎖若しくは分岐のアルキレン基、炭素数3~18のシクロアルキレン基、炭素数6~18のアリーレン基、-O-、-NH-、-S-、-C(=O)-、炭素数1~18の直鎖若しくは分岐のアルカンから3つの水素原子を除いた基、炭素数3~18のシクロアルカンから3つの水素原子を除いた基、炭素数6~18のアレーンから3つの水素原子を除いた基及びアンモニアから3つの水素原子を除いた基からなる群より選ばれる基又はこれらの少なくとも1つを連結した基を表し、p1は、1又は2の整数を表す。但し、X18の価数は、p1+1である。**は、上記一般式(1A)中、X11、X12、若しくはX13と結合する部分、又は、セルロース骨格の2位、3位、若しくは6位にある酸素原子と結合する部分を表す。
<4> 前記一般式(1C)において、X18が、単結合、又は、-C(=O)-NH-(CH-O-であり、p1が1である、<3>に記載の液晶材料。
<5> 前記疎水性基が、直鎖若しくは分岐の炭素数2~4のアシル基である、<3>又は<4>に記載の液晶材料。
<6> 前記不飽和二重結合を有する基のモノマー単位あたりの置換度が、0.01以上2.0以下である<1>~<5>のいずれか1つに記載の液晶材料。
<7> 前記不飽和二重結合を有する基のモノマー単位あたりの置換度と、前記疎水性基のモノマー単位あたりの置換度との比(前記不飽和二重結合を有する基/前記疎水性基)が、3.0×10-3以上2.0以下である、<1>~<6>のいずれか1つに記載の液晶材料。
<8> 三次元構造を有し、
 下記一般式(2A)で表される分子構造を有するセルロース誘導体を含み、
 前記セルロース誘導体が、モノマー単位同士を連結する基を有する基を含む、液晶フィルム。
In the general formula (1C), R 1C represents a hydrogen atom or a methyl group, X 18 represents a single bond, a linear or branched alkylene group having 1 to 18 carbon atoms, a cycloalkylene group having 3 to 18 carbon atoms, An arylene group having 6 to 18 carbon atoms, —O—, —NH—, —S—, —C (═O) —, a group obtained by removing three hydrogen atoms from a linear or branched alkane having 1 to 18 carbon atoms A group obtained by removing three hydrogen atoms from a cycloalkane having 3 to 18 carbon atoms, a group obtained by removing three hydrogen atoms from an arene having 6 to 18 carbon atoms, and a group obtained by removing three hydrogen atoms from ammonia It represents a selected group or a group obtained by linking at least one of them, and p1 represents an integer of 1 or 2. However, the valence of X 18 is p1 + 1. ** represents a moiety that binds to X 11 , X 12 , or X 13 in the general formula (1A) or a moiety that binds to an oxygen atom at the 2nd, 3rd, or 6th position of the cellulose skeleton. .
<4> In the general formula (1C), X 18 is a single bond or —C (═O) —NH— (CH 2 ) 2 —O—, p1 is 1, <3> The liquid crystal material described.
<5> The liquid crystal material according to <3> or <4>, wherein the hydrophobic group is a linear or branched acyl group having 2 to 4 carbon atoms.
<6> The liquid crystal material according to any one of <1> to <5>, wherein the degree of substitution per monomer unit of the group having an unsaturated double bond is 0.01 or more and 2.0 or less.
<7> Ratio of the degree of substitution per monomer unit of the group having an unsaturated double bond to the degree of substitution per monomer unit of the hydrophobic group (the group having an unsaturated double bond / the hydrophobic group ) Is 3.0 × 10 −3 or more and 2.0 or less, the liquid crystal material according to any one of <1> to <6>.
<8> Has a three-dimensional structure,
Including a cellulose derivative having a molecular structure represented by the following general formula (2A),
The liquid crystal film in which the cellulose derivative includes a group having a group for connecting monomer units to each other.
Figure JPOXMLDOC01-appb-C000016

 
Figure JPOXMLDOC01-appb-C000016

 
 一般式(2A)中、X21、X22及びX23は、それぞれ独立に、単結合、アルキレン基、-(R24-O)-、又は、-C(=O)-R25-を表し、R21、R22及びR23は、それぞれ独立に、水素原子、前記モノマー単位同士を連結する基を有する基、又は、疎水性基であり、R24及びR25は、それぞれ独立に、アルキレン基を表し、jは、1以上10以下の整数を表し、n21は、2以上800以下の整数を表す。但し、R21、R22及びR23の少なくとも1つは、下記一般式(4C)で表されるモノマー単位同士を連結する基及び炭素数5~20の直鎖若しくは分岐のアシル基の少なくとも一方を表す。 In the general formula (2A), X 21 , X 22 and X 23 each independently represent a single bond, an alkylene group, — (R 24 —O) j —, or —C (═O) —R 25 —. R 21 , R 22 and R 23 are each independently a hydrogen atom, a group having a group linking the monomer units, or a hydrophobic group, and R 24 and R 25 are each independently Represents an alkylene group, j represents an integer of 1 to 10, and n21 represents an integer of 2 to 800. However, at least one of R 21 , R 22 and R 23 is at least one of a group connecting monomer units represented by the following general formula (4C) and a linear or branched acyl group having 5 to 20 carbon atoms. Represents.
Figure JPOXMLDOC01-appb-C000017

 
Figure JPOXMLDOC01-appb-C000017

 
 一般式(4C)中、R4Cは、水素原子又はメチル基を表し、X48は、炭素数3~20の直鎖若しくは分岐のアルキレン基、-NH-、-C(=O)O-、カルボニル基、炭素数2~20の直鎖若しくは分岐のアルキレンオキシ基、アリール基及び炭素数3~10のシクロアルキレン基からなる群より選ばれる基又はこれらを連結した基を表し、*は、モノマー単位同士が連結されたときの結合位置を表し、**は、上記一般式(2A)中、X21、X22、若しくはX23と結合する部分、又は、セルロース骨格の2位、3位、若しくは6位にある酸素原子と結合する部分を表す。
<9> 前記疎水性基のモノマー単位あたりの置換度が、1.0以上2.9以下である、<8>に記載の液晶フィルム。
<10> 前記一般式(2A)で表される分子構造が、下記一般式(2A-1)で表される分子構造である、<8>又は<9>に記載の液晶フィルム。
In the general formula (4C), R 4C represents a hydrogen atom or a methyl group, X 48 represents a linear or branched alkylene group having 3 to 20 carbon atoms, —NH—, —C (═O) O—, Represents a group selected from the group consisting of a carbonyl group, a linear or branched alkyleneoxy group having 2 to 20 carbon atoms, an aryl group, and a cycloalkylene group having 3 to 10 carbon atoms, or a group obtained by linking these, * represents a monomer ** represents a bonding position when the units are linked to each other, and ** represents a portion bonded to X 21 , X 22 , or X 23 in the general formula (2A), or the 2-position, 3-position of the cellulose skeleton, Alternatively, it represents a moiety bonded to the oxygen atom at the 6-position.
<9> The liquid crystal film according to <8>, wherein the degree of substitution per monomer unit of the hydrophobic group is 1.0 or more and 2.9 or less.
<10> The liquid crystal film according to <8> or <9>, wherein the molecular structure represented by the general formula (2A) is a molecular structure represented by the following general formula (2A-1).
Figure JPOXMLDOC01-appb-C000018

 
Figure JPOXMLDOC01-appb-C000018

 
 一般式(2A-1)中、Rは、-CH-CH-、又は、-CH-CH(CH)-を表し、R21、R22及びR23は、それぞれ独立に、水素原子、前記連結基を有する基、又は、疎水性基を表し、m2、t2及びr2は、それぞれ独立に、0以上10以下の整数を表し、n23は、2以上800以下の整数を表す。但し、R21、R22及びR23の少なくとも1つは、下記一般式(4C)で表されるモノマー単位同士を連結する基及び炭素数5~20の直鎖若しくは分岐のアシル基の少なくとも一方を表す。 In the general formula (2A-1), R 2 represents —CH 2 —CH 2 — or —CH 2 —CH (CH 3 ) —, and R 21 , R 22 and R 23 each independently represent A hydrogen atom, a group having the linking group, or a hydrophobic group is represented, m2, t2 and r2 each independently represent an integer of 0 to 10, and n23 represents an integer of 2 to 800. However, at least one of R 21 , R 22 and R 23 is at least one of a group connecting monomer units represented by the following general formula (4C) and a linear or branched acyl group having 5 to 20 carbon atoms. Represents.
Figure JPOXMLDOC01-appb-C000019

 
Figure JPOXMLDOC01-appb-C000019

 
 一般式(4C)中、R4Cは、水素原子又はメチル基を表し、X48は、炭素数3~20の直鎖若しくは分岐のアルキレン基、-NH-、-C(=O)O-、カルボニル基、炭素数2~20の直鎖若しくは分岐のアルキレンオキシ基、アリール基及び炭素数3~10のシクロアルキレン基からなる群より選ばれる基又はこれらを連結した基を表し、*は、モノマー単位同士が連結されたときの結合位置を表し、**は、上記一般式(2A)中、X21、X22、若しくはX23と結合する部分、又は、セルロース骨格の2位、3位、若しくは6位にある酸素原子と結合する部分を表す。
<11> 前記モノマー単位同士を連結する基が、下記一般式(2C)で表される基を含み、
 前記疎水性基が、炭素数1~18の直鎖若しくは分岐のアルキル基、炭素数3~18のシクロアルキル基、炭素数6~18のアリール基、炭素数7~20のアラルキル基、炭素数2~4の直鎖若しくは分岐のアシル基、炭素数1~18の直鎖若しくは分岐のアルコキシ基、-COOR2Aで表されるカルボン酸エステル基、又はハロゲン原子であり、前記R2Aが、炭素数1~12の直鎖若しくは分岐のアルキル基、炭素数3~12のシクロアルキル基、又は、炭素数6~12のアリール基を含む、<8>~<10>のいずれか1つに記載の液晶フィルム。
In the general formula (4C), R 4C represents a hydrogen atom or a methyl group, X 48 represents a linear or branched alkylene group having 3 to 20 carbon atoms, —NH—, —C (═O) O—, Represents a group selected from the group consisting of a carbonyl group, a linear or branched alkyleneoxy group having 2 to 20 carbon atoms, an aryl group, and a cycloalkylene group having 3 to 10 carbon atoms, or a group obtained by linking these, * represents a monomer ** represents a bonding position when the units are linked to each other, and ** represents a portion bonded to X 21 , X 22 , or X 23 in the general formula (2A), or the 2-position, 3-position of the cellulose skeleton, Alternatively, it represents a moiety bonded to the oxygen atom at the 6-position.
<11> The group connecting the monomer units includes a group represented by the following general formula (2C),
The hydrophobic group is a linear or branched alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 3 to 18 carbon atoms, an aryl group having 6 to 18 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, a carbon number A linear or branched acyl group having 2 to 4 carbon atoms, a linear or branched alkoxy group having 1 to 18 carbon atoms, a carboxylic acid ester group represented by —COOR 2A , or a halogen atom, wherein R 2A is carbon <8> to <10>, which includes a linear or branched alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, or an aryl group having 6 to 12 carbon atoms. Liquid crystal film.
Figure JPOXMLDOC01-appb-C000020

 
(一般式(2C)中、R2Cは、水素原子又はメチル基を表し、X28は、単結合、炭素数1~18の直鎖若しくは分岐のアルキレン基、炭素数3~18のシクロアルキレン基、炭素数6~18のアリーレン基、-O-、-NH-、-S-、-C(=O)-、炭素数1~18の直鎖若しくは分岐のアルカンから3つの水素原子を除いた基、炭素数3~18のシクロアルカンから3つの水素原子を除いた基、炭素数6~18のアレーンから3つの水素原子を除いた基及びアンモニアから3つの水素原子を除いた基からなる群より選ばれる基又はこれらを連結した基を表し、p2は、1又は2の整数を表す。但し、X28の価数は、p2+1である。*は、モノマー単位同士が連結されたときの結合位置を表す。**は、上記一般式(2A)中、X21、X22、若しくはX23と結合する部分、又は、セルロース骨格の2位、3位、若しくは6位にある酸素原子と結合する部分を表す。)
<12> 前記一般式(2C)において、X28が、単結合、又は、-C(=O)-NH-(CH-O-であり、p2が1である、<11>に記載の液晶フィルム。
<13> 前記疎水性基が、炭素数2~4の直鎖若しくは分岐のアシル基である、<11>又は<12>に記載の液晶フィルム。
<14> <1>~<7>のいずれか1つに記載の液晶材料を基板上に付与する工程と、
 基板上に付与された前記液晶材料に、熱を加える工程又は紫外線を照射する工程と、
を有する、液晶フィルムの製造方法。
<15> <8>~<13>のいずれか1つに記載の液晶フィルムを備えるセンサー。
<16> 物体の歪みを検出する歪みセンサーである<15>に記載のセンサー。
<17> 生体情報を検出するウェアラブルセンサーである<16>に記載のセンサー。
<18> <8>~<13>のいずれか1つに記載の液晶フィルムを備える光学素子。
Figure JPOXMLDOC01-appb-C000020


(In the general formula (2C), R 2C represents a hydrogen atom or a methyl group, X 28 represents a single bond, a linear or branched alkylene group having 1 to 18 carbon atoms, or a cycloalkylene group having 3 to 18 carbon atoms. Three hydrogen atoms were removed from an arylene group having 6 to 18 carbon atoms, —O—, —NH—, —S—, —C (═O) —, or a linear or branched alkane having 1 to 18 carbon atoms. A group consisting of a group obtained by removing 3 hydrogen atoms from a cycloalkane having 3 to 18 carbon atoms, a group obtained by removing 3 hydrogen atoms from an arene having 6 to 18 carbon atoms, and a group obtained by removing 3 hydrogen atoms from ammonia Represents a group selected from the above or a group obtained by linking them, and p2 represents an integer of 1 or 2. However, X 28 has a valence of p2 + 1, * represents a bond when monomer units are linked to each other. ** represents the position in the above general formula (2A) X 21, X 22, or a moiety that binds with X 23, or represents a 2-position, 3-position, or a moiety that binds to be an oxygen atom in the 6-position of the cellulose backbone.)
<12> In the above general formula (2C), X 28 is a single bond or —C (═O) —NH— (CH 2 ) 2 —O—, p2 is 1, <11> The liquid crystal film as described.
<13> The liquid crystal film according to <11> or <12>, wherein the hydrophobic group is a linear or branched acyl group having 2 to 4 carbon atoms.
<14> a step of applying the liquid crystal material according to any one of <1> to <7> on a substrate;
A step of applying heat or irradiating ultraviolet rays to the liquid crystal material applied on the substrate;
A method for producing a liquid crystal film, comprising:
<15> A sensor comprising the liquid crystal film according to any one of <8> to <13>.
<16> The sensor according to <15>, which is a distortion sensor that detects distortion of an object.
<17> The sensor according to <16>, which is a wearable sensor that detects biological information.
<18> An optical element comprising the liquid crystal film according to any one of <8> to <13>.
 本発明によれば、サーモトロピックコレステリック液晶性及びゴム弾性を示し、かつ、機械的圧力に対する反射光の波長のシフト変化が大きい液晶材料、液晶フィルム及びその製造方法、センサー、並びに、光学素子を提供することができる。 According to the present invention, there are provided a liquid crystal material, a liquid crystal film, a method for manufacturing the same, a sensor, and an optical element that exhibit thermotropic cholesteric liquid crystallinity and rubber elasticity, and that have a large wavelength shift change of reflected light with respect to mechanical pressure. can do.
本実施形態において、異なるブラッグ反射の波長で配向が固定化された液晶フィルムを製造する方法の一例を示す概略図である。(A)は、第1の温度で加熱した後の液晶セルであり、(B)は第2の温度で加熱した後の液晶セルである。In this embodiment, it is the schematic which shows an example of the method of manufacturing the liquid crystal film by which orientation was fixed by the wavelength of different Bragg reflection. (A) is a liquid crystal cell after heating at a first temperature, and (B) is a liquid crystal cell after heating at a second temperature. 図2は、液晶材料1-1~1-3の角周波数に対する複素粘度、貯蔵弾性率及び損失弾性率を示す図である。FIG. 2 is a diagram showing the complex viscosity, the storage elastic modulus, and the loss elastic modulus with respect to the angular frequency of the liquid crystal materials 1-1 to 1-3. 図3は、液晶材料1-1~1-3の角周波数に対する損失正接をプロットした図である。FIG. 3 is a plot of loss tangent versus angular frequency of the liquid crystal materials 1-1 to 1-3. 図4は、実施例2-1で合成したヒドロキシプロピルセルロース誘導体1のH-NMRスペクトルの図である。FIG. 4 is a diagram of the 1 H-NMR spectrum of hydroxypropylcellulose derivative 1 synthesized in Example 2-1. 図5は、実施例2-1のFT-IRスペクトルを表す図である。FIG. 5 is a diagram showing an FT-IR spectrum of Example 2-1. 図6は、30℃で固定化した液晶フィルム2-1に機械的圧力を加えたときの透過スペクトルの変化を表す図である。FIG. 6 is a graph showing a change in transmission spectrum when mechanical pressure is applied to the liquid crystal film 2-1 fixed at 30 ° C. 図7は、40℃で固定化した液晶フィルム2-2に機械的圧力を加えたときの透過スペクトルの変化を表す図である。FIG. 7 is a diagram showing the change in the transmission spectrum when mechanical pressure is applied to the liquid crystal film 2-2 fixed at 40 ° C. 図8は、60℃で固定化した液晶フィルム2-3に機械的圧力を加えたときの透過スペクトルの変化を表す図である。FIG. 8 is a diagram showing a change in the transmission spectrum when mechanical pressure is applied to the liquid crystal film 2-3 fixed at 60 ° C. 図9は、70℃で固定化した液晶フィルム2-4に機械的圧力を加えたときの透過スペクトルの変化を表す図である。FIG. 9 is a diagram showing a change in transmission spectrum when mechanical pressure is applied to the liquid crystal film 2-4 fixed at 70 ° C. FIG. 図10は、液晶フィルム2-1、2-2、2-3及び2-4に機械的圧力を加えたときの膜厚の減少率(圧縮率)に対する、機械的圧力を加える前の波長(λ)に対する機械的圧力を加えた後の波長(λ)の比をプロットした図である。FIG. 10 shows the wavelength before mechanical pressure is applied to the reduction rate (compression ratio) of the film thickness when mechanical pressure is applied to the liquid crystal films 2-1, 2-2, 2-3, and 2-4. It is the figure which plotted ratio of wavelength (lambda) after applying mechanical pressure with respect to (lambda 0 ). 図11は、実施例3で合成したヒドロキシプロピルセルロース誘導体1のH-NMRスペクトルの図である。FIG. 11 is a diagram of the 1 H-NMR spectrum of hydroxypropylcellulose derivative 1 synthesized in Example 3. 図12は、実施例3のFT-IRスペクトルである。FIG. 12 is an FT-IR spectrum of Example 3. 図13は、液晶フィルム3に機械的圧力を加えたときの透過スペクトルの変化を表す図である。FIG. 13 is a diagram showing a change in the transmission spectrum when mechanical pressure is applied to the liquid crystal film 3. 図14は、液晶フィルム3に機械的圧力を加えたときの膜厚の減少率(圧縮率)に対する、機械的圧力を加える前の波長(λ)に対する機械的圧力を加えた後の波長(λ)の比をプロットした図である。FIG. 14 shows the wavelength after applying the mechanical pressure to the wavelength (λ 0 ) before applying the mechanical pressure, with respect to the reduction rate (compression ratio) of the film thickness when the mechanical pressure is applied to the liquid crystal film 3. It is the figure which plotted ratio of (lambda). 図15は、液晶フィルム4-1に機械的圧力を加えたときの透過スペクトルの変化を表す図である。FIG. 15 is a diagram illustrating a change in the transmission spectrum when mechanical pressure is applied to the liquid crystal film 4-1. 図16は、液晶フィルム4-1及び4-2に機械的圧力を加えたときの膜厚の減少率(圧縮率)に対する、機械的圧力を加える前の波長(λ)に対する機械的圧力を加えた後の波長(λ)の比をプロットした図である。FIG. 16 shows the mechanical pressure relative to the wavelength (λ 0 ) before applying the mechanical pressure with respect to the reduction rate (compression ratio) of the film thickness when the mechanical pressure is applied to the liquid crystal films 4-1 and 4-2. It is the figure which plotted the ratio of the wavelength ((lambda)) after adding. 図17は、液晶フィルム4-2に機械的圧力を加えたときの透過スペクトルの変化を表す図である。FIG. 17 is a diagram illustrating a change in the transmission spectrum when mechanical pressure is applied to the liquid crystal film 4-2. 図18は、液晶フィルム5-1に機械的圧力を加えたときの透過スペクトルの変化を表す図である。FIG. 18 is a diagram illustrating a change in the transmission spectrum when mechanical pressure is applied to the liquid crystal film 5-1. 図19は、液晶フィルム5-1及び5-2に機械的圧力を加えたときの膜厚の減少率(圧縮率)に対する、機械的圧力を加える前の波長(λ)に対する機械的圧力を加えた後の波長(λ)の比をプロットした図である。FIG. 19 shows the mechanical pressure relative to the wavelength (λ 0 ) before the mechanical pressure is applied to the film thickness reduction rate (compression ratio) when the mechanical pressure is applied to the liquid crystal films 5-1 and 5-2. It is the figure which plotted the ratio of the wavelength ((lambda)) after adding. 図20は、液晶フィルム5-2に機械的圧力を加えたときの透過スペクトルの変化を表す図である。FIG. 20 is a diagram showing the change in the transmission spectrum when mechanical pressure is applied to the liquid crystal film 5-2. 図21は、液晶フィルム6-1及び6-2並びに液晶フィルム7の延伸過程における応力-歪み曲線を示す図である。FIG. 21 is a diagram showing stress-strain curves in the process of stretching the liquid crystal films 6-1 and 6-2 and the liquid crystal film 7. 図22は、液晶フィルム8の作製時、照射する紫外線の光量を変えた場合の液晶フィルム8の応力-歪み曲線を示す図である。FIG. 22 is a diagram showing a stress-strain curve of the liquid crystal film 8 when the amount of ultraviolet light to be irradiated is changed when the liquid crystal film 8 is manufactured. 図23は、液晶フィルム8の作製時、紫外線の光量(10.8J/cm~48.6J/cm)を変えたときの弾性特性の変化を示す図である。FIG. 23 is a diagram showing changes in elastic characteristics when the amount of ultraviolet light (10.8 J / cm 2 to 48.6 J / cm 2 ) is changed when the liquid crystal film 8 is manufactured. 図24は、液晶フィルム8に熱を加えたときの透過スペクトルの変化を表す図である。FIG. 24 is a diagram illustrating a change in the transmission spectrum when heat is applied to the liquid crystal film 8. 図25は、HPC誘導体8(架橋前)及び液晶フィルム8(架橋後)について、温度とブラッグ反射波長の相関を示す図である。FIG. 25 is a diagram showing the correlation between temperature and Bragg reflection wavelength for the HPC derivative 8 (before crosslinking) and the liquid crystal film 8 (after crosslinking). 図26の上段は、液晶フィルム8に機械的圧力を加えたときの透過スペクトルの変化を表す図であり、図26の下段は、液晶フィルム8に加えた機械的圧力を解放したときの透過スペクトルの変化を表す図である。The upper part of FIG. 26 is a diagram showing a change in transmission spectrum when mechanical pressure is applied to the liquid crystal film 8, and the lower part of FIG. 26 is a transmission spectrum when mechanical pressure applied to the liquid crystal film 8 is released. FIG. 図27は、機械的圧力の印加及び解放の1サイクル目及び100サイクル目において、液晶フィルム8に機械的圧力を加えたとき、及び液晶フィルム8に加えた機械的圧力を解放したときの透過スペクトルの変化を表す図である。FIG. 27 shows transmission spectra when mechanical pressure is applied to the liquid crystal film 8 and when the mechanical pressure applied to the liquid crystal film 8 is released in the first and 100th cycles of applying and releasing the mechanical pressure. FIG. 図28は、液晶フィルム8について機械的圧力の印加及び解放のサイクルを100回繰り返したときの反射波長及び液晶フィルム8の変化を示す図である。FIG. 28 is a diagram illustrating changes in the reflection wavelength and the liquid crystal film 8 when the cycle of applying and releasing the mechanical pressure is repeated 100 times for the liquid crystal film 8. 図29は、液晶フィルム8に機械的圧力の印加及び解放を繰り返した際の応力-歪み曲線を示す図である。FIG. 29 is a diagram showing a stress-strain curve when applying and releasing mechanical pressure to the liquid crystal film 8 repeatedly. 図30は、液晶フィルム8及びクロロプレンゴムに機械的圧力の印加及び解放を繰り返した際の弾性特性の変化を示す図である。FIG. 30 is a diagram showing changes in elastic properties when mechanical pressure is repeatedly applied to and released from the liquid crystal film 8 and the chloroprene rubber. 図31は、液晶フィルム8を凹凸基板に押し付けたときの液晶フィルム8の色の変化を示す図である。FIG. 31 is a diagram illustrating a change in color of the liquid crystal film 8 when the liquid crystal film 8 is pressed against the uneven substrate. 図32は、液晶フィルム8を凹凸基板に押し付けたときの液晶フィルム8の反射波長の変化を示す図である。FIG. 32 is a diagram illustrating a change in the reflection wavelength of the liquid crystal film 8 when the liquid crystal film 8 is pressed against the uneven substrate. 図33は、液晶フィルム8を100円硬貨の表面に押し付けたときの液晶フィルム8の色の変化を示す図である。FIG. 33 is a diagram illustrating a change in the color of the liquid crystal film 8 when the liquid crystal film 8 is pressed against the surface of a 100-yen coin. 図34は、100円硬貨の凹凸を精密機器により測定した結果を示す図である。FIG. 34 is a diagram showing the result of measuring the unevenness of a 100-yen coin with a precision instrument. 図35は、液晶フィルム8及び液晶フィルム9に機械的圧力を加えたとき、並びに液晶フィルム8及び液晶フィルム9に加えた機械的圧力を解放したときの透過スペクトルの変化を表す図である。FIG. 35 is a diagram showing a change in transmission spectrum when mechanical pressure is applied to the liquid crystal film 8 and the liquid crystal film 9 and when mechanical pressure applied to the liquid crystal film 8 and the liquid crystal film 9 is released. 図36は、液晶フィルム8及び液晶フィルム9について反射波長と応力と歪みとの関係を示す図である。FIG. 36 is a diagram illustrating the relationship between the reflection wavelength, stress, and strain for the liquid crystal film 8 and the liquid crystal film 9. 図37は、実施例10-1で合成した4HのH-NMRスペクトルの図である。FIG. 37 is a view of 1 H-NMR spectrum of 4H synthesized in Example 10-1. 図38は、実施例10-1で作製したHPC誘導体10-1のH-NMRスペクトルの図である。FIG. 38 is a chart of 1 H-NMR spectrum of HPC derivative 10-1 produced in Example 10-1. 図39は、液晶フィルム10-1の延伸過程における応力-歪み曲線を示す図である。FIG. 39 is a diagram showing a stress-strain curve in the stretching process of the liquid crystal film 10-1. 図40は、液晶フィルム10-2、10-3、10-4の延伸過程における応力-歪み曲線を示す図である。FIG. 40 is a diagram showing stress-strain curves in the stretching process of the liquid crystal films 10-2, 10-3, and 10-4. 図41は、液晶フィルム10-3の延伸解放過程における透過スペクトルの図である。FIG. 41 is a transmission spectrum in the stretching release process of the liquid crystal film 10-3.
 以下、本発明の実施形態に係る液晶材料について説明する。
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 また、本明細書において、(メタ)アクリロイル基とは、アクリロイル基及びメタクリロイル基の少なくとも一方を意味する。
Hereinafter, the liquid crystal material according to the embodiment of the present invention will be described.
In the present specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
In the present specification, the (meth) acryloyl group means at least one of an acryloyl group and a methacryloyl group.
《液晶材料》
 本実施形態の液晶材料は、下記一般式(1A)で表される分子構造を有するセルロース誘導体(以下、「特定セルロース誘導体」ともいう。」)を含む。
 本実施形態の液晶材料は、特定セルロース誘導体を含有するので、サーモトロピックコレステリック液晶性を示し、かつ、機械的圧力に対する反射光の波長のシフト変化が大きい。
 このメカニズムは明らかではないが、以下のように推測される。
<Liquid crystal material>
The liquid crystal material of the present embodiment includes a cellulose derivative having a molecular structure represented by the following general formula (1A) (hereinafter also referred to as “specific cellulose derivative”).
Since the liquid crystal material of this embodiment contains a specific cellulose derivative, it exhibits thermotropic cholesteric liquid crystallinity and has a large shift change in the wavelength of reflected light with respect to mechanical pressure.
Although this mechanism is not clear, it is presumed as follows.
 本実施形態の液晶材料では、側鎖の末端に、特定の炭素数以上のアルキレン基と不飽和二重結合とを有する基及び特定の炭素数以上のアシル基の少なくとも一方を含有する特定セルロース誘導体を含むので、サーモトロピックコレステリック液晶性及びゴム弾性を示し、かつ、機械的圧力に対する反射光の波長のシフト変化が大きい。
 また、特定セルロース誘導体が、側鎖の末端に、特定の炭素数以上のアルキレン基及び不飽和二重結合を有する基を含有することで、液晶材料の粘弾性を低減することができる。
 本実施形態の液晶材料より形成されたエラストマー膜は、特定の炭素数以上のアルキレン基を有する、モノマー単位同士を連結する基を含有する重合性モノマー及び特定の炭素数以上のアシル基の少なくとも一方を含有することにより粘弾性が低減し、かつ、優れたコレステリック液晶配向状態を示すため、架橋反応によって作製した液晶フィルムに対して機械的圧力を加えたときの影響を受けやすい構造を有している。
 そのため、エラストマー膜を膜厚方向に圧縮したときの短波長側への波長のシフト変化が大きく、かつ、波長反射率も高い。
 以下、本実施形態の液晶材料の各成分について詳細に説明する
In the liquid crystal material of this embodiment, the specific cellulose derivative containing at least one of a group having an alkylene group having a specific carbon number or more and an unsaturated double bond and an acyl group having a specific carbon number or more at the end of the side chain Thus, thermotropic cholesteric liquid crystallinity and rubber elasticity are exhibited, and the wavelength shift of reflected light with respect to mechanical pressure is large.
Moreover, the specific cellulose derivative can reduce the viscoelasticity of the liquid crystal material by containing an alkylene group having a specific carbon number or more and a group having an unsaturated double bond at the end of the side chain.
The elastomer film formed from the liquid crystal material of the present embodiment has at least one of a polymerizable monomer containing a group connecting monomer units having an alkylene group having a specific carbon number or more and an acyl group having a specific carbon number or more. In order to reduce viscoelasticity and to show an excellent cholesteric liquid crystal alignment state, it has a structure that is easily affected when mechanical pressure is applied to a liquid crystal film produced by a crosslinking reaction. Yes.
Therefore, when the elastomer film is compressed in the film thickness direction, the wavelength shift to the short wavelength side is large, and the wavelength reflectance is also high.
Hereinafter, each component of the liquid crystal material of the present embodiment will be described in detail.
<特定セルロース誘導体>
 特定セルロース誘導体は、下記一般式(1A)で表される分子構造を有する。
 一般式(1A)で表される分子構造において、[ ]は、モノマー単位を表す。以下、[ ]を、単に「モノマー単位」とも称する。なお、一般式(1A)以外で表される一般式においても同様である。
<Specific cellulose derivative>
The specific cellulose derivative has a molecular structure represented by the following general formula (1A).
In the molecular structure represented by the general formula (1A), [] represents a monomer unit. Hereinafter, [] is also simply referred to as “monomer unit”. The same applies to general formulas other than the general formula (1A).
Figure JPOXMLDOC01-appb-C000021

 
Figure JPOXMLDOC01-appb-C000021

 
 一般式(1A)において、X11、X12及びX13は、それぞれ独立に、単結合、アルキレン基、-(R14-O)-、又は、-C(=O)-R15-を表し、R11、R12及びR13は、それぞれ独立に、水素原子、不飽和二重結合を有する基、又は、疎水性基を表し、R14及びR15は、それぞれ独立に、アルキレン基を表し、hは、1以上10以下の整数を表し、n11は、2以上800以下の整数を表す。但し、R11、R12及びR13の少なくとも1つは、下記一般式(3C)で表される不飽和二重結合を有する基及び炭素数5~20の直鎖若しくは分岐のアシル基の少なくとも一方を表す。 In the general formula (1A), X 11 , X 12 and X 13 each independently represent a single bond, an alkylene group, — (R 14 —O) h —, or —C (═O) —R 15 —. R 11 , R 12 and R 13 each independently represents a hydrogen atom, a group having an unsaturated double bond or a hydrophobic group, and R 14 and R 15 each independently represents an alkylene group. H represents an integer of 1 to 10, and n11 represents an integer of 2 to 800. However, at least one of R 11 , R 12 and R 13 is at least one of a group having an unsaturated double bond represented by the following general formula (3C) and a linear or branched acyl group having 5 to 20 carbon atoms. Represents one.
 一般式(1A)中、X11、X12及びX13で表されるアルキレン基は、特に制限されない。アルキレン基としては、直鎖又は分岐の炭素数1~18(好ましくは1~12)のアルキレン基、環状の炭素数3~18(好ましくは3~12)のシクロアルキレン基が挙げられる。直鎖又は分岐のアルキレン基としては、例えば、メチレン基、エチレン基、n-プロピレン基、イソプロピレン基、n-ブチレン基、イソブチレン基、sec-ブチレン基、tert-ブチレン基、n-ペンチレン基、イソペンチレン基等が挙げられる。
 環状のアルキレン基としては、例えば、シクロペンチレン基、シクロヘキシレン基等が挙げられる。
In general formula (1A), the alkylene group represented by X 11 , X 12 and X 13 is not particularly limited. Examples of the alkylene group include linear or branched alkylene groups having 1 to 18 (preferably 1 to 12) carbon atoms and cyclic cycloalkylene groups having 3 to 18 (preferably 3 to 12) carbon atoms. Examples of the linear or branched alkylene group include a methylene group, an ethylene group, an n-propylene group, an isopropylene group, an n-butylene group, an isobutylene group, a sec-butylene group, a tert-butylene group, an n-pentylene group, An isopentylene group etc. are mentioned.
Examples of the cyclic alkylene group include a cyclopentylene group and a cyclohexylene group.
 一般式(1A)中、-(R14-O)-で表される基におけるアルキレン基(-R14-)としては、上記X11、X12及びX13と同様のアルキレン基が挙げられる。
 -(R14-O)-としては、例えば、エチレンオキシ基、ポリエチレンオキシ基、プロピレンオキシ基、ポリプロピレンオキシ基等が挙げられる。
 -(R14-O)-は、より具体的には、-(-O-(CH)n-)-で表すことができる。ただし、nは1以上5以下の整数である。
In general formula (1A), examples of the alkylene group (—R 14 —) in the group represented by — (R 14 —O) h — include the same alkylene groups as X 11 , X 12 and X 13 above. .
Examples of — (R 14 —O) h — include an ethyleneoxy group, a polyethyleneoxy group, a propyleneoxy group, a polypropyleneoxy group, and the like.
More specifically, — (R 14 —O) h — can be represented by — (— O— (CH 2 ) n—) h —. However, n is an integer of 1 to 5.
 一般式(1A)中、hとしては、架橋によって適度なゴム弾性を有する液晶フィルムを得る観点から、好ましくは1以上6以下、より好ましくは1以上4以下、さらに好ましくは1以上3以下である。 In the general formula (1A), h is preferably 1 or more and 6 or less, more preferably 1 or more and 4 or less, and further preferably 1 or more and 3 or less from the viewpoint of obtaining a liquid crystal film having appropriate rubber elasticity by crosslinking. .
 一般式(1A)中、-C(=O)-R15-で表される基におけるアルキレン基(-R15-)としては、上記X11、X12及びX13と同様のアルキレン基が挙げられる。
 -C(=O)-R15-としては、例えば、-C(=O)-CH-、-C(=O)-C-、-C(=O)-C-等が挙げられる。
In general formula (1A), examples of the alkylene group (—R 15 —) in the group represented by —C (═O) —R 15 — include the same alkylene groups as X 11 , X 12 and X 13 above. It is done.
Examples of —C (═O) —R 15 — include —C (═O) —CH 2 —, —C (═O) —C 2 H 4 —, —C (═O) —C 3 H 6. -Etc. are mentioned.
 アルキレン基、-(R14-O)-、 及び、-C(=O)-R15-は、置換基を有していてもよい。 The alkylene group, — (R 14 —O) h —, and —C (═O) —R 15 — may have a substituent.
 置換基としては、例えば、直鎖又は分岐鎖の炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数6~12のアリール基、ハロゲン原子が挙げられる。置換基が2以上ある場合には、それぞれの置換基は同一であって異なっていてもよい。 Examples of the substituent include linear or branched alkyl groups having 1 to 6 carbon atoms, cycloalkyl groups having 3 to 6 carbon atoms, aryl groups having 6 to 12 carbon atoms, and halogen atoms. When there are two or more substituents, the respective substituents may be the same and different.
 なお、上述のアルキレン基、-(R14-O)-、及び、-C(=O)-R15-は、置換基を有していてもよい。 Note that the above-described alkylene group, — (R 14 —O) h —, and —C (═O) —R 15 — may have a substituent.
 置換基としては、例えば、直鎖又は分岐鎖の炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数6~12のアリール基、ハロゲン原子が挙げられる。置換基が2以上ある場合には、それぞれの置換基は同一であって異なっていてもよい。 Examples of the substituent include linear or branched alkyl groups having 1 to 6 carbon atoms, cycloalkyl groups having 3 to 6 carbon atoms, aryl groups having 6 to 12 carbon atoms, and halogen atoms. When there are two or more substituents, the respective substituents may be the same and different.
 一般式(1A)中、R11、R12及びR13で表される不飽和二重結合を有する基としては、特に制限されず、例えば、後述する一般式(1C)又は一般式(3C)で表される基、ビニル基、アリル基、ビニルオキシ基、イソプロペニル基、1-プロペニル基、2-ブテニル基、3-ブテニル基、1,3-ブタジエニル基、2-ペンテニル基、ゲラニル基、オレイル基、シクロアルケニル基(例えば、2-シクロペンテン-1-イル基、2-シクロヘキセン-1-イル基)、ビニルベンジル基、シンナミル基等が挙げられる。 In the general formula (1A), the group having an unsaturated double bond represented by R 11 , R 12 and R 13 is not particularly limited. For example, the general formula (1C) or the general formula (3C) described later is used. , Vinyl group, allyl group, vinyloxy group, isopropenyl group, 1-propenyl group, 2-butenyl group, 3-butenyl group, 1,3-butadienyl group, 2-pentenyl group, geranyl group, oleyl Group, cycloalkenyl group (for example, 2-cyclopenten-1-yl group, 2-cyclohexen-1-yl group), vinylbenzyl group, cinnamyl group and the like.
 一般式(1A)中、R11、R12及びR13で表される疎水性基としては、特に制限されず、例えば、炭素数1~18のアルキル基、炭素数2~20のアシル基、炭素数6~24のアリール基、炭素数1~18のアルコキシ基、カルボン酸エステル基、ハロゲン原子等が挙げられる。 In the general formula (1A), the hydrophobic group represented by R 11 , R 12 and R 13 is not particularly limited, and examples thereof include an alkyl group having 1 to 18 carbon atoms, an acyl group having 2 to 20 carbon atoms, Examples thereof include an aryl group having 6 to 24 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, a carboxylic acid ester group, and a halogen atom.
 炭素数1~18のアルキル基は、直鎖、分岐鎖又は環状のアルキル基であってもよく、無置換又は置換されていてもよい。置換基としては、前述のアルキレン基、-(R14-O)-、及び、-C(=O)-R15-における置換基と同様のものが挙げられる。
 炭素数1~18の無置換のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基等が挙げられる。
The alkyl group having 1 to 18 carbon atoms may be a linear, branched or cyclic alkyl group, and may be unsubstituted or substituted. Examples of the substituent include the same alkylene groups as those described above for — (R 14 —O) h — and —C (═O) —R 15 —.
Examples of the unsubstituted alkyl group having 1 to 18 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a tert-butyl group.
 無置換の炭素数3~18の環状のアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、メチルシクロペンチル基、メチルシクロヘキシル基、メチルシクロヘプチル基等が挙げられる。 Examples of the unsubstituted C3-C18 cyclic alkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a methylcyclopentyl group, a methylcyclohexyl group, and a methylcycloheptyl group. It is done.
 炭素数6~24のアリール基は、無置換であっても置換されていてもよい。
 無置換の炭素数6~18のアリール基としては、例えば、フェニル基、ナフチル基等が挙げられる。
The aryl group having 6 to 24 carbon atoms may be unsubstituted or substituted.
Examples of the unsubstituted aryl group having 6 to 18 carbon atoms include a phenyl group and a naphthyl group.
 置換された炭素数6~24のアリール基としては、炭素数7~20のアラルキル基が挙げられる。炭素数7~20のアラルキル基は、無置換であっても、更に置換されていてもよい。置換基としては、前述のアルキレン基、-(R14-O)-、及び、-C(=O)-R15-における置換基と同様のものが挙げられる。
 無置換の炭素数7~20のアラルキル基としては、例えば、ベンジル基、フェニルエチル基、フェニルエテニル基等が挙げられる。
Examples of the substituted aryl group having 6 to 24 carbon atoms include aralkyl groups having 7 to 20 carbon atoms. The aralkyl group having 7 to 20 carbon atoms may be unsubstituted or further substituted. Examples of the substituent include the same alkylene groups as those described above for — (R 14 —O) h — and —C (═O) —R 15 —.
Examples of the unsubstituted aralkyl group having 7 to 20 carbon atoms include a benzyl group, a phenylethyl group, and a phenylethenyl group.
 炭素数2~20のアシル基は、直鎖又は分岐鎖のアシル基であってもよく、無置換であっても置換されていてもよい。置換基としては、前述のアルキレン基、-(R14-O)-、及び、-C(=O)-R15-における置換基と同様のものが挙げられる。
 また、炭素数2~4のアシル基としては、例えば、アセチル基、プロピオニル基(プロパノイル基)、ブチリル基等が挙げられる。
The acyl group having 2 to 20 carbon atoms may be a linear or branched acyl group and may be unsubstituted or substituted. Examples of the substituent include the same alkylene groups as those described above for — (R 14 —O) h — and —C (═O) —R 15 —.
Examples of the acyl group having 2 to 4 carbon atoms include an acetyl group, a propionyl group (propanoyl group), and a butyryl group.
 炭素数1~18のアルコキシ基は、直鎖又は分岐鎖のアルコキシ基であってもよく、無置換であっても置換されていてもよい。置換基としては、前述のアルキレン基、-(R14-O)-、及び、-C(=O)-R15-における置換基と同様のものが挙げられる。
 炭素数1~18のアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ヘキシルオキシ基、フェノキシ基、ベンジルオキシ基等が挙げられる。
The alkoxy group having 1 to 18 carbon atoms may be a linear or branched alkoxy group, and may be unsubstituted or substituted. Examples of the substituent include the same alkylene groups as those described above for — (R 14 —O) h — and —C (═O) —R 15 —.
Examples of the alkoxy group having 1 to 18 carbon atoms include methoxy group, ethoxy group, propoxy group, butoxy group, hexyloxy group, phenoxy group, benzyloxy group and the like.
 カルボン酸エステル基としては、-COOR1Aで表されるカルボン酸エステル基が挙げられる。
 カルボン酸エステル基中のR1Aとしては、直鎖又は分岐鎖の炭素数1~12のアルキル基、炭素数3~12の環状のアルキル基、炭素数6~12のアリール基が挙げられる。
Examples of the carboxylic acid ester group include a carboxylic acid ester group represented by —COOR 1A .
Examples of R 1A in the carboxylic acid ester group include linear or branched alkyl groups having 1 to 12 carbon atoms, cyclic alkyl groups having 3 to 12 carbon atoms, and aryl groups having 6 to 12 carbon atoms.
 カルボン酸エステル基としては、無置換であっても置換されていてもよい。
 置換基としては、既述のアルキレン基、-(R14-O)-、及び、-C(=O)-R15-における置換基と同様のものが挙げられる。
The carboxylic acid ester group may be unsubstituted or substituted.
Examples of the substituent include the same alkylene groups as those described above, — (R 14 —O) h —, and —C (═O) —R 15 —.
 無置換のカルボン酸エステル基としては、具体的には、直鎖若しくは分岐鎖の炭素数2~12のアルキルエステル基(メチルエステル基、エチルエステル基等)、炭素数4~12のシクロアルキルエステル基(シクロプロピルエステル基、シクロブチルエステル基等)、炭素数7~12のアリールエステル基(フェニルエステル基等)が挙げられる。 Specific examples of the unsubstituted carboxylic acid ester group include linear or branched alkyl ester groups having 2 to 12 carbon atoms (methyl ester group, ethyl ester group, etc.), and cycloalkyl esters having 4 to 12 carbon atoms. And groups (cyclopropyl ester group, cyclobutyl ester group, etc.), aryl ester groups having 7 to 12 carbon atoms (phenyl ester group, etc.).
 ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子等が挙げられる。 Examples of the halogen atom include a fluorine atom, a chlorine atom, and a bromine atom.
 液晶性を発現する観点から、疎水性基としては、直鎖若しくは分岐鎖の炭素数1~18のアルキル基、環状の炭素数3~18のアルキル基、炭素数6~18のアリール基、炭素数7~20のアラルキル基、直鎖若しくは分岐鎖の炭素数2~20のアシル基、直鎖若しくは分岐鎖の炭素数1~18のアルコキシ基、-COOR1Aで表されるカルボン酸エステル基又はハロゲン原子であることが好ましい。 From the viewpoint of developing liquid crystallinity, examples of the hydrophobic group include linear or branched alkyl groups having 1 to 18 carbon atoms, cyclic alkyl groups having 3 to 18 carbon atoms, aryl groups having 6 to 18 carbon atoms, carbon A aralkyl group of 7 to 20, a linear or branched acyl group having 2 to 20 carbon atoms, a linear or branched alkoxy group having 1 to 18 carbon atoms, a carboxylate group represented by -COOR 1A , or A halogen atom is preferred.
 これらの中でも、特定セルロース誘導体の合成のし易さの観点から、疎水性基としては、素数5~20の直鎖若しくは分岐のアシル基及び直鎖若しくは分岐鎖の炭素数2~4のアシル基(直鎖及び分岐鎖のいずれも可。以下同様。)の少なくとも一方が好ましい。 Among these, from the viewpoint of easy synthesis of the specific cellulose derivative, the hydrophobic group includes a linear or branched acyl group having 5 to 20 prime atoms and a linear or branched acyl group having 2 to 4 carbon atoms. At least one of straight chain and branched chain is acceptable.
 一般式(1A)において、n11としては、架橋によって適度なゴム弾性を有する液晶フィルムを得る観点から、2以上800以下であり、好ましくは2以上400以下、より好ましくは2以上300以下である。 In the general formula (1A), n11 is 2 or more and 800 or less, preferably 2 or more and 400 or less, more preferably 2 or more and 300 or less, from the viewpoint of obtaining a liquid crystal film having appropriate rubber elasticity by crosslinking.
 なお、上述のアルキレン基、-(R18-O)-、及び、-C(=O)-R19-は、置換基を有していてもよい。置換基としては、前述で例示した置換基と同様のものが挙げられる。 Note that the above-described alkylene group, — (R 18 —O) i —, and —C (═O) —R 19 — may have a substituent. Examples of the substituent include the same substituents exemplified above.
 一般式(1A)は、下記一般式(1A-1)で表される分子構造であることが好ましい。 The general formula (1A) preferably has a molecular structure represented by the following general formula (1A-1).
Figure JPOXMLDOC01-appb-C000022

 
Figure JPOXMLDOC01-appb-C000022

 
 一般式(1A-1)において、Rは、-CH-CH-、又は、-CH-CH(CH)-を表し、R11、R12及びR13は、それぞれ独立に、水素原子、不飽和二重結合を有する基、又は、疎水性基を表し、m1、t1及びr1は、それぞれ独立に、0以上10以下の整数を表し、n13は、2以上800以下の整数を表す。但し、R11、R12及びR13の少なくとも1つは、一般式(3C)で表される不飽和二重結合を有する基及び炭素数5~20の直鎖若しくは分岐のアシル基の少なくとも一方を表す。 In the general formula (1A-1), R 1 represents —CH 2 —CH 2 — or —CH 2 —CH (CH 3 ) —, and R 11 , R 12 and R 13 are each independently A hydrogen atom, a group having an unsaturated double bond, or a hydrophobic group, m1, t1 and r1 each independently represents an integer of 0 to 10, and n13 represents an integer of 2 to 800. To express. However, at least one of R 11 , R 12 and R 13 is at least one of a group having an unsaturated double bond represented by the general formula (3C) and a linear or branched acyl group having 5 to 20 carbon atoms. Represents.
 一般式(1A-1)において、R11、R12及びR13は、前記一般式(1A)におけるR11、R12及びR13と同義であり、好ましい範囲も同様である。
 一般式(1A-1)において、m1、t1及びr1としては、特定セルロース誘導体の合成のし易さの観点から、それぞれ独立に、好ましくは0以上8以下、より好ましくは0以上5以下、さらに好ましくは0以上3以下が好ましい。
In the general formula (1A-1), R 11, R 12 and R 13 has the same meaning as R 11, R 12 and R 13 in the general formula (1A), and preferred ranges are also the same.
In the general formula (1A-1), m1, t1 and r1 are each independently preferably from 0 to 8, more preferably from 0 to 5, more preferably from the viewpoint of easy synthesis of the specific cellulose derivative. Preferably it is 0 or more and 3 or less.
 一般式(1A-1)において、n13は、一般式(1A)におけるn11と同義であり、好ましい範囲も同様である。
 一般式(1A-1)において、n13としては、架橋によって適度なゴム弾性を有する液晶フィルムを得る観点から、2以上800以下であり、好ましくは2以上400以下、より好ましくは2以上300以下である。
In general formula (1A-1), n13 has the same meaning as n11 in general formula (1A), and the preferred range is also the same.
In the general formula (1A-1), n13 is 2 or more and 800 or less, preferably 2 or more and 400 or less, more preferably 2 or more and 300 or less, from the viewpoint of obtaining a liquid crystal film having appropriate rubber elasticity by crosslinking. is there.
 一般式(1A-1)において、Rが-CH-CH(CH)-で表される場合、分子構造は、下記の一般式(1a)で表される。 In the general formula (1A-1), when R 1 is represented by —CH 2 —CH (CH 3 ) —, the molecular structure is represented by the following general formula (1a).
Figure JPOXMLDOC01-appb-C000023

 
 
Figure JPOXMLDOC01-appb-C000023

 
 
 一般式(1a)中、R11、R12、R13、及びn13は、一般式(1A-1)におけるR11、R12、R13、及びn13と同義である。一般式(1a)中、m11、t11、r11は、一般式(1A-1)におけるm1、t1及びr1と同義である。 In the general formula (1a), R 11, R 12, R 13, and n13 are the same meaning as R 11, R 12, R 13 , and n13 in the general formula (1A-1). In general formula (1a), m11, t11 and r11 have the same meanings as m1, t1 and r1 in general formula (1A-1).
 一般式(1A-1)中、Rが-CH-CH-で表される場合、分子構造は下記の一般式(1b)で表される。 In the general formula (1A-1), when R 1 is represented by —CH 2 —CH 2 —, the molecular structure is represented by the following general formula (1b).
Figure JPOXMLDOC01-appb-C000024

 
 
Figure JPOXMLDOC01-appb-C000024

 
 
 一般式(1b)中、R11、R12、R13、及びn13は、一般式(1A-1)におけるR11、R12、R13、及びn13と同義である。また、m12、t12及びr12は、一般式(1A-1)におけるm1、t1及びr1と同義である。 In the general formula (1b), R 11, R 12, R 13, and n13 are the same meaning as R 11, R 12, R 13 , and n13 in the general formula (1A-1). M12, t12 and r12 have the same meanings as m1, t1 and r1 in formula (1A-1).
 特定セルロース誘導体の好ましい態様は、一般式(1a)で表される分子構造を有するセルロース誘導体、又は、一般式(1b)で表される分子構造を有するセルロース誘導体である。
 具体的には、一般式(1a)において、疎水性基(R11、R12又はR13)が、炭素数2~4のアシル基又は炭素数5~20のアシル基であって、不飽和二重結合を有する基(R11、R12又はR13)が、一般式(3C)で表される基及び(メタ)アクリロイル基であって、m11、t11及びr11が、それぞれ独立に、0以上3以下の整数であって、n13が、2以上300以下である態様;一般式(1b)において、疎水性基(R11、R12又はR13)が、炭素数2~4のアシル基又は炭素数5~20のアシル基であって、不飽和二重結合を有する基(R11、R12又はR13)が、一般式(3C)で表される基及び(メタ)アクリロイル基であって、m12、t12及びr12が、それぞれ独立に、0以上3以下の整数であって、n13が、2以上300以下である態様である。
A preferred embodiment of the specific cellulose derivative is a cellulose derivative having a molecular structure represented by the general formula (1a) or a cellulose derivative having a molecular structure represented by the general formula (1b).
Specifically, in the general formula (1a), the hydrophobic group (R 11 , R 12 or R 13 ) is an acyl group having 2 to 4 carbon atoms or an acyl group having 5 to 20 carbon atoms, The group having a double bond (R 11 , R 12 or R 13 ) is a group represented by the general formula (3C) and a (meth) acryloyl group, and m11, t11 and r11 are each independently 0 An embodiment wherein the integer is 3 or less and n13 is 2 or more and 300 or less; in the general formula (1b), the hydrophobic group (R 11 , R 12 or R 13 ) is an acyl group having 2 to 4 carbon atoms Or an acyl group having 5 to 20 carbon atoms and having an unsaturated double bond (R 11 , R 12 or R 13 ) is a group represented by the general formula (3C) and a (meth) acryloyl group M12, t12 and r12 are each independently 0 A top 3 an integer, n13 is an embodiment is 2 to 300.
-不飽和二重結合を有する基-
 一般式(1A)及び一般式(1A-1)中、R11、R12及びR13で表される不飽和二重結合を有する基としては、架橋によって優れたゴム弾性を有する液晶フィルムを得る観点から、R11、R12及びR13の少なくとも1つは、下記一般式(3C)で表される不飽和二重結合を有する基を表すことが好ましい。
-Groups with unsaturated double bonds-
In general formula (1A) and general formula (1A-1), as the group having an unsaturated double bond represented by R 11 , R 12 and R 13 , a liquid crystal film having excellent rubber elasticity is obtained by crosslinking. From the viewpoint, at least one of R 11 , R 12 and R 13 preferably represents a group having an unsaturated double bond represented by the following general formula (3C).
Figure JPOXMLDOC01-appb-C000025

 
Figure JPOXMLDOC01-appb-C000025

 
 R3Cは、水素原子又はメチル基を表し、X38は、炭素数3~20の直鎖若しくは分岐のアルキレン基、-NH-、-C(=O)O-、カルボニル基、炭素数2~20の直鎖若しくは分岐のアルキレンオキシ基、アリール基及び炭素数3~10のシクロアルキレン基からなる群より選ばれる基又はこれらの少なくとも1つを連結した基を表し、**は、上記一般式(1A)中、X11、X12、若しくはX13と結合する部分、又は、セルロース骨格の2位、3位、若しくは6位にある酸素原子と結合する部分を表す。 R 3C represents a hydrogen atom or a methyl group, X 38 represents a linear or branched alkylene group having 3 to 20 carbon atoms, —NH—, —C (═O) O—, a carbonyl group, 2 to 20 represents a group selected from the group consisting of 20 linear or branched alkyleneoxy groups, aryl groups and cycloalkylene groups having 3 to 10 carbon atoms, or a group obtained by linking at least one of these groups, and ** represents the above general formula In (1A), it represents a moiety bonded to X 11 , X 12 , or X 13 or a moiety bonded to an oxygen atom at the 2nd, 3rd, or 6th position of the cellulose skeleton.
 一般式(3C)中、炭素数3~20の直鎖若しくは分岐のアルキレン基としては、ゴム弾性により優れる液晶フィルムが得られる観点から、炭素数5~20の直鎖若しくは分岐のアルキレン基であることが好ましく、炭素数5~20の直鎖のアルキレン基であることがより好ましく、更に好ましくは、炭素数5~15の直鎖のアルキレン基であり、特に好ましくは、炭素数5~10の直鎖のアルキレン基であり、より一層好ましくは、炭素数7~10の直鎖のアルキレン基である。 In the general formula (3C), the linear or branched alkylene group having 3 to 20 carbon atoms is a linear or branched alkylene group having 5 to 20 carbon atoms from the viewpoint of obtaining a liquid crystal film excellent in rubber elasticity. It is more preferably a linear alkylene group having 5 to 20 carbon atoms, still more preferably a linear alkylene group having 5 to 15 carbon atoms, particularly preferably 5 to 10 carbon atoms. A straight-chain alkylene group, and even more preferably a straight-chain alkylene group having 7 to 10 carbon atoms.
 一般式(3C)中、炭素数2~20の直鎖若しくは分岐のアルキレンオキシ基としては、ゴム弾性により優れる液晶フィルムが得られる観点から、炭素数2~10の直鎖のアルキレンオキシ基であることが好ましく、炭素数2~6の直鎖のアルキレンオキシ基であることがより好ましく、炭素数2~4の直鎖のアルキレンオキシ基であることが更に好ましい。 In the general formula (3C), the linear or branched alkyleneoxy group having 2 to 20 carbon atoms is a linear alkyleneoxy group having 2 to 10 carbon atoms from the viewpoint of obtaining a liquid crystal film excellent in rubber elasticity. It is preferably a straight-chain alkyleneoxy group having 2 to 6 carbon atoms, and more preferably a straight-chain alkyleneoxy group having 2 to 4 carbon atoms.
 X38は、ゴム弾性により優れる液晶フィルムが得られる観点から、ウレタン結合及びエステル結合の少なくとも一方を有する2価の連結基であることが好ましく、ウレタン結合を有する2価の連結基であることがより好ましい。
 また、X38の直鎖の原子数を調節することにより、液晶フィルムのゴム弾性、強度等を適宜調節することができる。
X 38 is preferably a divalent linking group having at least one of a urethane bond and an ester bond, and preferably a divalent linking group having a urethane bond, from the viewpoint of obtaining a liquid crystal film excellent in rubber elasticity. More preferred.
Further, by adjusting the number of atoms of linear X 38, it can be adjusted rubber elasticity of the liquid crystal film, the strength and the like as appropriate.
 以下に、一般式(3C)で表される基の一例を示す。一般式(3C)で表される基はこれらにより何ら限定されるものではない。なお、下記一般式(3C-1)~(3C-4)中、**は、結合位置を表す。 Hereinafter, an example of a group represented by the general formula (3C) is shown. The group represented by the general formula (3C) is not limited by these. In the following general formulas (3C-1) to (3C-4), ** represents a bonding position.
Figure JPOXMLDOC01-appb-C000026

 
Figure JPOXMLDOC01-appb-C000026

 
 架橋構造を形成しやすく、かつ、ゴム弾性により優れる液晶フィルムが得られる観点から、一般式(3C)で表される基としては、一般式(3C-1)、(3C-2)又は(3C-3)であることが好ましく、一般式(3C-1)又は(3C-2)で表される基であることがより好ましい。 The group represented by the general formula (3C) is a group represented by the general formula (3C-1), (3C-2), or (3C) from the viewpoint of easily obtaining a liquid crystal film that easily forms a crosslinked structure and is excellent in rubber elasticity. −3), more preferably a group represented by the general formula (3C-1) or (3C-2).
 R11、R12及びR13で表される不飽和二重結合を有する基は、それぞれ独立に、架橋によってより優れたゴム弾性を有する液晶フィルムが得られる観点から下記一般式(1C)を更に含むことが好ましい。 The groups having an unsaturated double bond represented by R 11 , R 12 and R 13 are each independently further represented by the following general formula (1C) from the viewpoint of obtaining a liquid crystal film having more excellent rubber elasticity by crosslinking. It is preferable to include.
 架橋構造を形成しやすく、かつ、ゴム弾性に更に優れる液晶フィルムが得られる観点から、一般式(3C)で表される基としては、一般式(3C-5)で表される基であることが更に好ましい。 The group represented by the general formula (3C) is a group represented by the general formula (3C-5) from the viewpoint of obtaining a liquid crystal film that easily forms a crosslinked structure and is further excellent in rubber elasticity. Is more preferable.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 一般式(3C-5)中、Rは、炭素数2~20の直鎖若しくは分岐のアルキレンオキシ基(アルキレンオキシ基の酸素原子がカルボニル炭素に結合している)を表し、Rは、炭素数3~20の直鎖若しくは分岐のアルキレン基を表す。R3Cは、水素原子又はメチル基を示し、**は結合部位を示す。
 一般式(3C-5)中、Rにおける炭素数2~20の直鎖若しくは分岐のアルキレンオキシ基としては、ゴム弾性により優れる液晶フィルムが得られる観点から、炭素数2~20の直鎖のアルキレンオキシ基であることが好ましく、炭素数4~16の直鎖のアルキレンオキシ基であることがより好ましく、炭素数4~12の直鎖のアルキレンオキシ基であることが更に好ましく、炭素数4~8の直鎖のアルキレンオキシ基であることがより一層好ましい。
 一般式(3C-5)中、Rにおける炭素数3~20の直鎖若しくは分岐のアルキレン基としては、ゴム弾性により優れる液晶フィルムが得られる観点から、炭素数3~20の直鎖のアルキレン基であることが好ましく、より好ましくは、炭素数5~15の直鎖のアルキレン基であり、更に好ましくは、炭素数5~10の直鎖のアルキレン基である。
In the general formula (3C-5), R a represents a linear or branched alkyleneoxy group having 2 to 20 carbon atoms (the oxygen atom of the alkyleneoxy group is bonded to the carbonyl carbon), and R b is A linear or branched alkylene group having 3 to 20 carbon atoms is represented. R 3C represents a hydrogen atom or a methyl group, and ** represents a binding site.
In the general formula (3C-5), the linear or branched alkyleneoxy group having 2 to 20 carbon atoms in R a is a linear or branched alkyleneoxy group having 2 to 20 carbon atoms from the viewpoint of obtaining a liquid crystal film excellent in rubber elasticity. It is preferably an alkyleneoxy group, more preferably a linear alkyleneoxy group having 4 to 16 carbon atoms, still more preferably a linear alkyleneoxy group having 4 to 12 carbon atoms, and a carbon number of 4 Even more preferably, it is a linear alkyleneoxy group of ˜8.
In the general formula (3C-5), the linear or branched alkylene group having 3 to 20 carbon atoms in R b is a linear alkylene group having 3 to 20 carbon atoms from the viewpoint of obtaining a liquid crystal film excellent in rubber elasticity. It is preferably a group, more preferably a linear alkylene group having 5 to 15 carbon atoms, and still more preferably a linear alkylene group having 5 to 10 carbon atoms.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 一般式(1C)において、R1Cは、水素原子又はメチル基を表し、X18は、単結合、又は、炭素数1~18の直鎖若しくは分岐のアルキレン基、炭素数3~18のシクロアルキレン基、炭素数6~18のアリーレン基、-O-、-NH-、-S-、-C(=O)-、炭素数1~18の直鎖若しくは分岐のアルカンから3つの水素原子を除いた基、炭素数3~18のシクロアルカンから3つの水素原子を除いた基、炭素数6~18のアレーンから3つの水素原子を除いた基及びアンモニアから3つの水素原子を除いた基からなる群より選ばれる基又はこれらを連結した基を表し、p1は、1又は2の整数を表す。但し、X18の価数は、p1+1である。
 **は、上記一般式(1A)中、X11、X12、若しくはX13と結合する部分、又は、X11、X12、若しくはX13が単結合の場合はセルロース骨格の2位、3位、若しくは6位にある酸素原子と結合する部分を表す。
In the general formula (1C), R 1C represents a hydrogen atom or a methyl group, X 18 represents a single bond, a linear or branched alkylene group having 1 to 18 carbon atoms, or a cycloalkylene having 3 to 18 carbon atoms. 3 hydrogen atoms are removed from a group, an arylene group having 6 to 18 carbon atoms, —O—, —NH—, —S—, —C (═O) —, or a linear or branched alkane having 1 to 18 carbon atoms. A group obtained by removing three hydrogen atoms from a cycloalkane having 3 to 18 carbon atoms, a group obtained by removing three hydrogen atoms from an arene having 6 to 18 carbon atoms, and a group obtained by removing three hydrogen atoms from ammonia. A group selected from the group or a group obtained by linking these is represented, and p1 represents an integer of 1 or 2. However, the valence of X 18 is p1 + 1.
** represents a moiety bonded to X 11 , X 12 , or X 13 in the above general formula (1A), or the second position of the cellulose skeleton when X 11 , X 12 , or X 13 is a single bond, 3 Represents a moiety bonded to the oxygen atom at the 6th or 6th position.
 X18で表される直鎖若しくは分岐の炭素数1~18のアルキレン基、及び、炭素数3~18のシクロアルキレン基としては、上記一般式(1A)におけるX11、X12及びX13で表されるアルキレン基と同様のものが挙げられる。 Examples of the linear or branched alkylene group having 1 to 18 carbon atoms and the cycloalkylene group having 3 to 18 carbon atoms represented by X 18 include X 11 , X 12, and X 13 in the general formula (1A). The same thing as the alkylene group represented can be mentioned.
 X18で表される炭素数6~18のアリーレン基としては、特に制限はなく、例えば、フェニレン基、ナフタレン基が挙げられる。 The arylene group having 6 to 18 carbon atoms represented by X 18 is not particularly limited, and examples thereof include a phenylene group and a naphthalene group.
 X18について、炭素数1~18の直鎖若しくは分岐のアルカンから3つの水素原子を除いた基、炭素数3~18のシクロアルカンから3つの水素原子を除いた基、及び炭素数6~18のアレーンから3つの水素原子を除いた基としては、X18で表される、直鎖若しくは分岐の炭素数1~18のアルキレン基、炭素数3~18のシクロアルキレン基及び炭素数6~18のアリーレン基からそれぞれ1つの水素原子を除いた基が挙げられる。 X 18 is a group in which 3 hydrogen atoms are removed from a linear or branched alkane having 1 to 18 carbon atoms, a group in which 3 hydrogen atoms are removed from a cycloalkane having 3 to 18 carbon atoms, and 6 to 18 carbon atoms. the arene group obtained by removing three hydrogen atoms from, represented by X 18 linear or branched alkylene group having 1 to 18 carbon atoms, a cycloalkylene group and having a carbon number of 3 to 18 carbon atoms 6-18 Groups obtained by removing one hydrogen atom from each arylene group.
 X18で表される、直鎖若しくは分岐のアルキレン基、シクロアルキレン基、アリーレン基、直鎖若しくは分岐のアルカン、シクロアルカン及びアレーンは、置換基を有していてもよい。
 置換基としては、既述のアルキレン基、-(R14-O)-、及び、-C(=O)-R15-における置換基と同様のものが挙げられる。
The linear or branched alkylene group, cycloalkylene group, arylene group, linear or branched alkane, cycloalkane, and arene represented by X 18 may have a substituent.
Examples of the substituent include the same alkylene groups as those described above, — (R 14 —O) h —, and —C (═O) —R 15 —.
 一般式(1C)において、X18で表される-O-、-NH-、-S-、及び-C(=O)-からなる群より選ばれる又はこれらを連結した基としては特に制限はなく、例えば、「-C(=O)-NH-(CH-O-」、「-C(=O)-NH-(CH-O-(CH-O-」、「-C(=O)-NH-C(CH)-(CH-O-)」が挙げられる。 In the general formula (1C), the group selected from the group consisting of —O—, —NH—, —S—, and —C (═O) — represented by X 18 is not particularly limited. For example, “—C (═O) —NH— (CH 2 ) 2 —O—”, “—C (═O) —NH— (CH 2 ) 2 —O— (CH 2 ) 2 —O—” And “—C (═O) —NH—C (CH 3 ) — (CH 2 —O—) 2 ”.
 一般式(1C)において、p1は、1であることが好ましい。 In the general formula (1C), p1 is preferably 1.
 架橋によって適度なゴム弾性を有する液晶フィルムがより得られやすい観点から、X18としては、単結合、又は、-C(=O)-NH-(CH-O-であることが好ましい。 X 18 is preferably a single bond or —C (═O) —NH— (CH 2 ) 2 —O— from the viewpoint of easily obtaining a liquid crystal film having appropriate rubber elasticity by crosslinking. .
 一般式(1C)中、R1Cが水素原子又はメチル基であり、X18が単結合であり、p1が1である基は、(メタ)アクリロイル基である。架橋反応の観点から、一般式(1C)で表される基としては、(メタ)アクリロイル基であることが好ましく、アクリロイル基であることがより好ましい。 In the general formula (1C), R 1C is a hydrogen atom or a methyl group, X 18 is a single bond, and p1 is 1 is a (meth) acryloyl group. From the viewpoint of the crosslinking reaction, the group represented by the general formula (1C) is preferably a (meth) acryloyl group, and more preferably an acryloyl group.
 以下に、一般式(1C)で表される基の一例を示す。一般式(1C)で表される基はこれらにより何ら限定されるものではない。なお、下記一般式(1C-1)~(1C-8)中、**は、結合位置を表す。 Hereinafter, an example of a group represented by the general formula (1C) is shown. The group represented by the general formula (1C) is not limited by these. In the following general formulas (1C-1) to (1C-8), ** represents a bonding position.
Figure JPOXMLDOC01-appb-C000029

 
Figure JPOXMLDOC01-appb-C000029

 
Figure JPOXMLDOC01-appb-C000030

 
Figure JPOXMLDOC01-appb-C000030

 
 一般式(1C-5)で表される基は、一般式(1C)で表される基中、X18が下記一般式(1C-7)で表される3価の連結基であり、R1Cが水素原子であり、p1が2である。
 一般式(1C-7)中、***は、上記一般式(1C-5)における(COCH=CH)のCOに結合する炭素原子と結合する部分を表す。
The group represented by the general formula (1C-5) is a trivalent linking group in which X 18 is represented by the following general formula (1C-7) in the group represented by the general formula (1C), and R 1C is a hydrogen atom and p1 is 2.
In General Formula (1C-7), *** represents a moiety bonded to the carbon atom bonded to CO in (COCH═CH 2 ) in General Formula (1C-5).
Figure JPOXMLDOC01-appb-C000031

 
Figure JPOXMLDOC01-appb-C000031

 
Figure JPOXMLDOC01-appb-C000032

 
Figure JPOXMLDOC01-appb-C000032

 
 一般式(1A)及び一般式(1A-1)中、R11、R12及びR13で表される不飽和二重結合を有する基が一般式(1C)で表される基を含む場合、架橋構造を形成しやすく、かつ、ゴム弾性により優れる液晶フィルムが得られる観点から、一般式(1C)で表される基としては、一般式(1C-1)、(1C-3)、(1C-5)又は(1C-6)であることが好ましく、一般式(1C-1)又は(1C-3)で表される基がより好ましく、一般式(1C-3)で表される基であることが更に好ましい。 In the general formula (1A) and general formula (1A-1), when the group having an unsaturated double bond represented by R 11 , R 12 and R 13 includes a group represented by the general formula (1C), From the viewpoint of obtaining a liquid crystal film that easily forms a crosslinked structure and is excellent in rubber elasticity, the groups represented by the general formula (1C) include the general formulas (1C-1), (1C-3), (1C −5) or (1C-6), more preferably a group represented by the general formula (1C-1) or (1C-3), and a group represented by the general formula (1C-3). More preferably it is.
 一般式(1A)及び一般式(1A-1)中、R11、R12及びR13で表される不飽和二重結合を有する基としては、架橋構造を形成しやすく、かつ、ゴム弾性により優れる液晶フィルムが得られる観点から、上記一般式(1C)及び上記一般式(3C)で表される基の両方を含むことが好ましい。 In the general formula (1A) and the general formula (1A-1), the group having an unsaturated double bond represented by R 11 , R 12 and R 13 is easy to form a crosslinked structure, and has a rubber elasticity. From the viewpoint of obtaining an excellent liquid crystal film, it is preferable that both of the groups represented by the general formula (1C) and the general formula (3C) are included.
 架橋構造を形成しやすく、かつ、ゴム弾性がより優れる液晶フィルムが得られやすい観点から、R11、R12及びR13の少なくとも1つは、好ましくは一般式(3C-1)、(3C-2)又は(3C-3)であり(より好ましくは、一般式(3C-1)又は(3C-2)で表される基である。)、他方が、好ましくは一般式(1C-1)又は(1C-3)(より好ましくは一般式(1C-1)である。)である。 From the viewpoint of easily forming a crosslinked structure and obtaining a liquid crystal film having more excellent rubber elasticity, at least one of R 11 , R 12 and R 13 is preferably represented by the general formulas (3C-1), (3C— 2) or (3C-3) (more preferably a group represented by general formula (3C-1) or (3C-2)), and the other is preferably general formula (1C-1) Or (1C-3) (more preferably represented by the general formula (1C-1)).
 一般式(1A)及び一般式(1A-1)において、液晶性、及び、優れたゴム弾性を有し、かつ、反射波長の波長シフトが大きくなる観点から、R11、R12及びR13は、疎水性基、及び、不飽和二重結合を有する基の両方を有することが好ましく、不飽和二重結合を有する基、炭素数5~20の直鎖若しくは分岐のアシル基及び疎水性基の全てを有することがより好ましく、不飽和二重結合を有する基、炭素数5~20の直鎖若しくは分岐のアシル基及び炭素数2~4の直鎖若しくは分岐のアシル基の全てを有することが更に好ましい。
 また、同様の観点から、特定セルロース誘導体は、不飽和二重結合を有する基のモノマー単位あたりの置換度(以下、「不飽和二重結合を有する基の置換度」とも称する)が、0.01以上2.0以下であることが好ましい。
In the general formula (1A) and the general formula (1A-1), R 11 , R 12, and R 13 are from the viewpoint of liquid crystallinity, excellent rubber elasticity, and a large wavelength shift of the reflection wavelength. , A hydrophobic group and a group having an unsaturated double bond, preferably a group having an unsaturated double bond, a linear or branched acyl group having 5 to 20 carbon atoms and a hydrophobic group. More preferably, it has all of a group having an unsaturated double bond, a linear or branched acyl group having 5 to 20 carbon atoms, and a linear or branched acyl group having 2 to 4 carbon atoms. Further preferred.
From the same viewpoint, the specific cellulose derivative has a degree of substitution per monomer unit of a group having an unsaturated double bond (hereinafter also referred to as “degree of substitution of a group having an unsaturated double bond”) of 0. It is preferably 01 or more and 2.0 or less.
 また、特定セルロース誘導体の置換度とは、セルロースのモノマー単位(D-グルコピラノース(β-グルコース))が有する3つの水酸基のうち、少なくとも一部の水酸基又は水酸基の一部が、置換基により置換されている程度を示す指標であり、具体的には、上記置換基で置換された平均個数(≦3)を意味する。 The degree of substitution of a specific cellulose derivative refers to at least a part of hydroxyl groups or a part of hydroxyl groups among the three hydroxyl groups of cellulose monomer units (D-glucopyranose (β-glucose)). This is an index indicating the degree to which it is formed, and specifically means the average number (≦ 3) substituted with the above substituents.
 本実施形態における「不飽和二重結合を有する基の置換度」とは、特定セルロース誘導体が一般式(1A)で表される分子構造を有する場合では、一般式(1A)中、R11、R12、及びR13の位置に導入された「不飽和二重結合を有する基」の平均個数とする。 In the present embodiment, “the degree of substitution of the group having an unsaturated double bond” means that when the specific cellulose derivative has a molecular structure represented by the general formula (1A), in the general formula (1A), R 11 , The average number of “groups having an unsaturated double bond” introduced at the positions of R 12 and R 13 is used.
 同様に、疎水性基のモノマー単位あたりの置換度(以下、「疎水性基の置換度」とも称する)とは、特定セルロース誘導体が一般式(1A)で表される分子構造を有する場合では、一般式(1A)中、R11、R12、及びR13の位置に導入された疎水性基の平均個数とする。 Similarly, the degree of substitution per monomer unit of the hydrophobic group (hereinafter also referred to as “degree of substitution of the hydrophobic group”) is the case where the specific cellulose derivative has a molecular structure represented by the general formula (1A): In the general formula (1A), the average number of hydrophobic groups introduced at the positions of R 11 , R 12 and R 13 is used.
 なお、本実施形態において、不飽和二重結合を有する基であり、かつ疎水性基にも該当する基の場合、かかる基は「不飽和二重結合を有する基」とみなす。 In the present embodiment, in the case of a group having an unsaturated double bond and a group corresponding to a hydrophobic group, the group is regarded as a “group having an unsaturated double bond”.
 特定セルロース誘導体の不飽和二重結合を有する基の置換度が0.01以上2.0以下である場合、サーモトロピックコレステリック液晶性の発現を向上することができ、また、架橋後における特定セルロース誘導体に優れたゴム弾性が付与することができる。
 したがって本実施形態の液晶材料によれば、特定セルロース誘導体のモノマー間を架橋することによって、適度なゴム弾性を有し、さらにブラッグ反射の波長で配向が固定化された液晶フィルムを製造し得る。
When the substitution degree of the group having an unsaturated double bond of the specific cellulose derivative is 0.01 or more and 2.0 or less, the expression of the thermotropic cholesteric liquid crystal can be improved, and the specific cellulose derivative after crosslinking Excellent rubber elasticity can be imparted.
Therefore, according to the liquid crystal material of the present embodiment, it is possible to produce a liquid crystal film having appropriate rubber elasticity and having an orientation fixed at the Bragg reflection wavelength by crosslinking the monomers of the specific cellulose derivative.
 特定セルロース誘導体が有する不飽和二重結合を有する基の置換度は、特定セルロース誘導体の架橋によって適度なゴム弾性を有する液晶フィルムを得る観点から、0.01以上2.0以下が好ましく、より好ましくは0.1以上1.5以下、更に好ましくは0.2以上1.0未満である。 The degree of substitution of the group having an unsaturated double bond that the specific cellulose derivative has is preferably from 0.01 to 2.0, more preferably from the viewpoint of obtaining a liquid crystal film having appropriate rubber elasticity by crosslinking of the specific cellulose derivative. Is 0.1 or more and 1.5 or less, more preferably 0.2 or more and less than 1.0.
 架橋によって適度なゴム弾性を有する液晶フィルムを得る観点から、特定セルロース誘導体において、不飽和二重結合を有する基の置換度と、疎水性基の置換度との比(不飽和二重結合を有する基/疎水性基)は、好ましくは3.0×10-3以上2.0以下、より好ましくは3.0×10-2以上1.0以下、更に好ましくは7.0×10-2以上0.5以下である。 From the viewpoint of obtaining a liquid crystal film having appropriate rubber elasticity by crosslinking, in the specific cellulose derivative, the ratio of the substitution degree of the group having an unsaturated double bond and the substitution degree of a hydrophobic group (having an unsaturated double bond) Group / hydrophobic group) is preferably 3.0 × 10 −3 or more and 2.0 or less, more preferably 3.0 × 10 −2 or more and 1.0 or less, and even more preferably 7.0 × 10 −2 or more. 0.5 or less.
 不飽和二重結合を有する基が一般式(3C-5)で表される基である場合、特定セルロース誘導体が有する不飽和二重結合を有する基の置換度は、特定セルロース誘導体の架橋によって優れたゴム弾性を有する液晶フィルムを得る観点から、0.01以上1.0以下が好ましく、より好ましくは0.01以上0.5以下、更に好ましくは0.01以上0.1以下である。 When the group having an unsaturated double bond is a group represented by the general formula (3C-5), the degree of substitution of the group having an unsaturated double bond that the specific cellulose derivative has is excellent by crosslinking of the specific cellulose derivative. From the viewpoint of obtaining a liquid crystal film having rubber elasticity, it is preferably 0.01 or more and 1.0 or less, more preferably 0.01 or more and 0.5 or less, and still more preferably 0.01 or more and 0.1 or less.
 不飽和二重結合を有する基が一般式(3C-5)で表される基である場合、架橋によって優れたゴム弾性を有する液晶フィルムを得る観点から、特定セルロース誘導体において、不飽和二重結合を有する基の置換度と、疎水性基の置換度との比(不飽和二重結合を有する基/疎水性基)は、3.0×10-3以上0.5以下が好ましく、より好ましくは5.0×10-3以上0.1以下であり、更に好ましくは7.0×10-3以上0.05以下である。 When the group having an unsaturated double bond is a group represented by the general formula (3C-5), from the viewpoint of obtaining a liquid crystal film having excellent rubber elasticity by crosslinking, an unsaturated double bond in the specific cellulose derivative The ratio of the degree of substitution of the group having OH to the degree of substitution of the hydrophobic group (group having unsaturated double bond / hydrophobic group) is preferably 3.0 × 10 −3 or more and 0.5 or less, more preferably Is 5.0 × 10 −3 or more and 0.1 or less, more preferably 7.0 × 10 −3 or more and 0.05 or less.
 不飽和二重結合を有する基の置換度及び疎水性基の置換度は、H-NMRにより、各置換基が有する特徴的なプロトンピークの積分値から算出される。
 具体的には、後述する実施例に示すように、下記の測定条件で、重クロロホルムに溶解させた特定セルロース誘導体溶液のH-NMRスペクトルを測定し、測定されたH-NMRスペクトルに基づき、不飽和二重結合を有する基に由来するプロトンピーク;疎水性基に由来するプロトンピーク;セルロース骨格由来のプロトンピーク(例えばβ-グルコースモノマー単位にあるプロトンピーク等);セルロース骨格がヒドロキシプロピルセルロース(HPC)の場合、HPC由来のプロトンピーク鎖中のヒドロキシプロピル基が有するメチン基のプロトンピーク;等の積分値に基づき算出することができる。
The degree of substitution of the group having an unsaturated double bond and the degree of substitution of the hydrophobic group are calculated from the integral values of characteristic proton peaks of each substituent by 1 H-NMR.
Specifically, as shown in the examples described later, under the following measurement conditions, a 1 H-NMR spectrum of a specific cellulose derivative solution dissolved in deuterated chloroform was measured, and based on the measured 1 H-NMR spectrum. A proton peak derived from a group having an unsaturated double bond; a proton peak derived from a hydrophobic group; a proton peak derived from a cellulose skeleton (for example, a proton peak in a β-glucose monomer unit); In the case of (HPC), it can be calculated based on an integral value such as a proton peak of a methine group possessed by a hydroxypropyl group in a proton peak chain derived from HPC;
-測定条件-
装置 :BRUKER製:ULTRASHIELD400PLUS(型番)
周波数:400MHz
-Measurement condition-
Device: BRUKER: ULTRASHIELD400PLUS (model number)
Frequency: 400MHz
(重量平均分子量)
 特定セルロース誘導体の重量平均分子量は、架橋によって優れたゴム弾性を有する液晶フィルムが得られる観点から、好ましくは2万以上20万以下、より好ましくは5万以上20万以下、更に好ましくは10万以上20万以下である。
 特定セルロース誘導体の重量平均分子量は、ゲルバーミエーションクロマトグラフィー法(GPC)(ポリスチレン標準)により算出することができ、以下の測定条件で得られた測定結果からポリスチレン標準試料により作成した分子量校正曲線を使用して算出することができる。
(Weight average molecular weight)
The weight average molecular weight of the specific cellulose derivative is preferably 20,000 or more and 200,000 or less, more preferably 50,000 or more and 200,000 or less, and still more preferably 100,000 or more, from the viewpoint of obtaining a liquid crystal film having excellent rubber elasticity by crosslinking. 200,000 or less.
The weight average molecular weight of the specific cellulose derivative can be calculated by gel permeation chromatography method (GPC) (polystyrene standard), and a molecular weight calibration curve created by a polystyrene standard sample from the measurement results obtained under the following measurement conditions is obtained. Can be used to calculate.
-測定条件-
 装置  :東ソー社製:HLC-8220GPC(型番)
 溶剤  :テトラヒドロフラン
 カラム :0021815 TSKgel SuperMultiporeHZ-N(粒子径3μm、内径4.6mm×長さ15cm、東ソー社製)
 流速  :0.15mL/分
 試料濃度:2.0質量%
 注入量 :10μL
 検出器 :示差屈折検出器
 温度  :40℃
-Measurement condition-
Equipment: Tosoh Corporation: HLC-8220GPC (model number)
Solvent: Tetrahydrofuran Column: 0021815 TSKgel SuperMultipore HZ-N (particle diameter 3 μm, inner diameter 4.6 mm × length 15 cm, manufactured by Tosoh Corporation)
Flow rate: 0.15 mL / min Sample concentration: 2.0% by mass
Injection volume: 10 μL
Detector: Differential refraction detector Temperature: 40 ° C
 一般式(1A)で表される分子構造の具体例を以下に示す。なお、一般式(1A)で表される分子構造はこれらにより何ら限定されるものではない。 Specific examples of the molecular structure represented by the general formula (1A) are shown below. The molecular structure represented by the general formula (1A) is not limited by these.
Figure JPOXMLDOC01-appb-C000033

 
Figure JPOXMLDOC01-appb-C000033

 
Figure JPOXMLDOC01-appb-C000034

 
Figure JPOXMLDOC01-appb-C000034

 
Figure JPOXMLDOC01-appb-C000035

 
Figure JPOXMLDOC01-appb-C000035

 
Figure JPOXMLDOC01-appb-C000036

 
Figure JPOXMLDOC01-appb-C000036

 
 上記式(1-13)~(1-16)は、一般式(1A-1)において、Rが、-CH-CH(CH)-であり、m1が2であり、t1が2であり、r1が0である場合の例である。
 上記例以外の具体例としては、m1、t1、及びr1を、それぞれ独立に0以上10以下に置き換えた分子構造が挙げられる。
In the above formulas (1-13) to (1-16), in general formula (1A-1), R 1 is —CH 2 —CH (CH 3 ) —, m1 is 2, and t1 is 2 In this example, r1 is 0.
Specific examples other than the above examples include molecular structures in which m1, t1, and r1 are each independently replaced with 0 or more and 10 or less.
 また、上記式(1-13)~(1-16)は、一般式(1A-1)においてRが、-CH-CH-であり、m1が2であり、t1が2であり、r1が0である場合の例である。
 上記例以外の具体例としては、m1、t1、及びr1を、それぞれ独立に0以上10以下に置き換えた分子構造が挙げられる。
In addition, in the above formulas (1-13) to (1-16), in general formula (1A-1), R 1 is —CH 2 —CH 2 —, m1 is 2, and t1 is 2. , R1 is 0.
Specific examples other than the above examples include molecular structures in which m1, t1, and r1 are each independently replaced with 0 or more and 10 or less.
<特定セルロース誘導体の含有量>
 特定セルロース誘導体の含有量としては、本実施形態の液晶材料の全質量に対して、80質量%以上であることが好ましく、90質量%以上であることがより好ましく、99質量%以上であることがさらに好ましい。
<Content of specific cellulose derivative>
The content of the specific cellulose derivative is preferably 80% by mass or more, more preferably 90% by mass or more, and 99% by mass or more with respect to the total mass of the liquid crystal material of the present embodiment. Is more preferable.
<その他の成分>
 本実施形態の液晶材料は、その他の成分を含んでいてもよい。その他の成分としては、例えば、重合開始剤、架橋剤、難燃剤、相溶化剤、酸化防止剤、離型剤(剥離剤)、耐光剤、耐候剤、改質剤、帯電防止剤、加水分解防止剤等が挙げられる。
 重合開始剤としては、例えば、熱重合開始剤、光重合開始剤等の公知の重合開始剤を用いることができる。
 本実施形態の液晶材料が光重合開始剤を含有する場合、光重合開始剤としては、例えば、2-Hydroxy-2-methyl-1-phenylpropane-1-one(HMPP)、アセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-4’-(2-ヒドロキシエトキシ)-2-メチルプロピオフェノン、2-メチル-4’-(メチルチオ)-2-モルホリノプロピオフェノン、2-ベンジル-2-(ジメチルアミノ)-4’-モルホリノブチロフェノン、フェニルビス(2,4,6-トリメチルベンゾイル)ホスフィンオキシド、ビス(2,6-ジフルオロ-3-(1-ヒドロピロール-1-イル)フェニル)チタノセン等が挙げられる。
<Other ingredients>
The liquid crystal material of this embodiment may contain other components. Other components include, for example, polymerization initiators, crosslinking agents, flame retardants, compatibilizers, antioxidants, mold release agents (release agents), light proofing agents, weathering agents, modifiers, antistatic agents, hydrolysis An inhibitor etc. are mentioned.
As a polymerization initiator, well-known polymerization initiators, such as a thermal polymerization initiator and a photoinitiator, can be used, for example.
When the liquid crystal material of the present embodiment contains a photopolymerization initiator, examples of the photopolymerization initiator include 2-hydroxy-2-methyl-1-phenylpropane-1-one (HMPP), acetophenone, 1-hydroxycyclohexyl. Phenylketone, 2-hydroxy-4 '-(2-hydroxyethoxy) -2-methylpropiophenone, 2-methyl-4'-(methylthio) -2-morpholinopropiophenone, 2-benzyl-2- (dimethyl) Amino) -4'-morpholinobutyrophenone, phenylbis (2,4,6-trimethylbenzoyl) phosphine oxide, bis (2,6-difluoro-3- (1-hydropyrrol-1-yl) phenyl) titanocene and the like It is done.
(特定セルロース誘導体の合成方法)
 特定セルロース誘導体の合成方法の一例として、一般式(1A)で表される分子構造を有するヒドロキシプロピルセルロース誘導体を合成する方法について説明する。
 但し、本実施形態の特定セルロース誘導体の合成方法については、これに限定されない。
(Method for synthesizing specific cellulose derivative)
As an example of a method for synthesizing a specific cellulose derivative, a method for synthesizing a hydroxypropyl cellulose derivative having a molecular structure represented by the general formula (1A) will be described.
However, the method for synthesizing the specific cellulose derivative of the present embodiment is not limited to this.
 特定セルロース誘導体の合成方法は、出発物質としてヒドロキシプロピルセルロース(HPC)を準備し、このHPCを溶媒に溶解してHPC溶液を調製する工程と、上記HPC溶液に、一般式(3C)で表される不飽和二重結合を有する基を持つ化合物(以下、「重合性化合物」とも称する。)及び炭素数5~20の直鎖若しくは分岐のアシル基(以下、「中鎖疎水性基」ともいう。)を有する化合物の少なくとも一方を混合する混合工程と、を有する。
 上記混合工程において、HPCと、重合性化合物を反応させて、HPCに由来する構成単位に含まれる3つの水酸基の水素原子の少なくとも一部を、一般式(3C)で表される不飽和二重結合を有する基又は中鎖疎水性基で置換することができる。
 上記工程を有する合成方法により、HPCの側鎖(末端)に一般式(3C)で表される不飽和二重結合を有する基又は中鎖疎水性基が導入されて、特定セルロース誘導体を合成することができ、一般式(1a)(一般式(1A)の一例)で表される分子構造を有するHPC誘導体が得られる。
A method for synthesizing a specific cellulose derivative is prepared by preparing hydroxypropyl cellulose (HPC) as a starting material, dissolving the HPC in a solvent to prepare an HPC solution, and the HPC solution represented by the general formula (3C). A compound having an unsaturated double bond group (hereinafter also referred to as “polymerizable compound”) and a linear or branched acyl group having 5 to 20 carbon atoms (hereinafter also referred to as “medium-chain hydrophobic group”). A mixing step of mixing at least one of the compounds having.
In the above mixing step, HPC and a polymerizable compound are reacted, and at least some of the hydrogen atoms of the three hydroxyl groups contained in the structural unit derived from HPC are converted into an unsaturated double represented by the general formula (3C). It can be substituted with a group having a bond or a medium chain hydrophobic group.
By the synthesis method having the above steps, a group having an unsaturated double bond represented by the general formula (3C) or a medium chain hydrophobic group is introduced into the side chain (terminal) of HPC to synthesize a specific cellulose derivative. And an HPC derivative having a molecular structure represented by the general formula (1a) (an example of the general formula (1A)) is obtained.
 なお、上記混合工程において、上記中鎖疎水性基以外の疎水性基を有する化合物(以下、単に「疎水性化合物」とも称する。)を更に含み、HPC溶液に、重合成化合物及び疎水性化合物を混合することが好ましく、HPC溶液と、重合性化合物を混合して、HPCの側鎖に一般式(3C)で表される不飽和二重結合を有する基及び中鎖疎水性基の少なくとも一方を導入した後に、疎水性化合物を混合してHPCの側鎖に疎水性基を更に導入することがより好ましい。 The mixing step further includes a compound having a hydrophobic group other than the medium chain hydrophobic group (hereinafter also simply referred to as “hydrophobic compound”), and the HPC solution contains the polysynthetic compound and the hydrophobic compound. It is preferable to mix, HPC solution and a polymerizable compound are mixed, and at least one of a group having an unsaturated double bond represented by the general formula (3C) in the side chain of HPC and a medium chain hydrophobic group is added. More preferably, after introduction, a hydrophobic compound is mixed to further introduce a hydrophobic group into the side chain of the HPC.
 例えば、出発物質としてヒドロキシエチルセルロースを用いれば、一般式(1b)(一般式(1A)の一例)で表される分子構造を有する特定セルロース誘導体が得られる。
 特定セルロース誘導体は、例えば、以下の方法で得ることができる。
 まず、セルロース骨格の2位、3位、6位に結合する酸素原子と水素原子との間に、公知の方法により、アルキレン基、-(R14-O)-(R14;アルキレン基、h;1以上10以下の整数)、又は、-C(=O)-R15-(R15;アルキレン基)を有する連結基を導入したセルロース誘導体を準備し、これを出発物質とする。
 次に、このセルロース誘導体(出発物質)の末端にある水素原子を、上記方法に準じる方法により一般式(3C)で表される不飽和二重結合を有する基と、好ましくは疎水性基とで置換する。
 これにより、一般式(1A)で表される分子構造を有するセルロース誘導体(特定セルロース誘導体)が得られる。
For example, when hydroxyethyl cellulose is used as a starting material, a specific cellulose derivative having a molecular structure represented by the general formula (1b) (an example of the general formula (1A)) can be obtained.
The specific cellulose derivative can be obtained, for example, by the following method.
First, an alkylene group, — (R 14 —O) h — (R 14 ; alkylene group) is bonded between an oxygen atom bonded to the 2-position, 3-position, and 6-position of the cellulose skeleton and a hydrogen atom by a known method. h: an integer from 1 to 10) or a cellulose derivative having a linking group having —C (═O) —R 15 — (R 15 ; alkylene group) is prepared and used as a starting material.
Next, the hydrogen atom at the terminal of the cellulose derivative (starting material) is converted into a group having an unsaturated double bond represented by the general formula (3C) by a method according to the above method, and preferably a hydrophobic group. Replace.
Thereby, the cellulose derivative (specific cellulose derivative) which has the molecular structure represented by General formula (1A) is obtained.
 HPCを出発物質した場合、HPCとしては、調製したHPCを用いてもよく、市販のHPCを用いてもよい。
 HPCの市販品としては、例えば、和光純薬工業(株)より販売されているヒドロキシプロピルセルロース等が挙げられる。
When HPC is a starting material, the prepared HPC may be used as the HPC, or a commercially available HPC may be used.
Examples of commercially available products of HPC include hydroxypropyl cellulose sold by Wako Pure Chemical Industries, Ltd.
 溶媒としては、出発物質を溶解できるものであれば特に制限されない。
 溶媒としては、例えばアセトン等のケトン、メトキシプロパノール、エトキシエタノール、プロパノール等のアルコール、テトラヒドロフランなどが挙げられる。
The solvent is not particularly limited as long as it can dissolve the starting material.
Examples of the solvent include ketones such as acetone, alcohols such as methoxypropanol, ethoxyethanol, and propanol, and tetrahydrofuran.
 重合性化合物としては、一般式(3C)で表される不飽和二重結合を有する基を有し、かつ、その不飽和二重結合を有する基を一般式(1A)におけるR11、R12又はR13に導入できるものであれば特に制限されない。
 このような重合性化合物としては、一般式(3C)で表される不飽和二重結合を分子内に有する化合物のハロゲン化物(例えば、塩化10-ウンデセノイル等)が挙げられる。
 また、架橋構造を形成しやすく、かつ、ゴム弾性により優れる液晶フィルムが得られる観点から、重合成化合物は、ハロゲン化(メタ)アクリロイル(例えば、塩化(メタ)アクリロイル、臭化(メタ)アクリロイル等);イソシアナート(メタ)アクリレート(例えば、昭和電工(株)製のカレンズMOI(2-イソシアナトエチルメタクリレート)、カレンズAOI(2-イソシアナトエチルアクリラート)、カレンズBEI(1,1-ビスアクリロイルオキシメチル(エチルイソシアナート))、カレンズMOI-EG等);を併用することが好ましい。
As the polymerizable compound, the group having an unsaturated double bond represented by the general formula (3C) and the group having the unsaturated double bond are represented by R 11 and R 12 in the general formula (1A). or not particularly limited as long as it can be introduced into R 13.
Examples of such a polymerizable compound include a halide of a compound having an unsaturated double bond represented by the general formula (3C) in the molecule (for example, 10-undecenoyl chloride).
In addition, from the viewpoint of obtaining a liquid crystal film that easily forms a crosslinked structure and is excellent in rubber elasticity, the polysynthesized compound is a halogenated (meth) acryloyl (for example, (meth) acryloyl chloride, (meth) acryloyl bromide, etc. ); Isocyanate (meth) acrylate (for example, Karenz MOI (2-isocyanatoethyl methacrylate), Karenz AOI (2-isocyanatoethyl acrylate), Karenz BEI (1,1-bisacryloyl) manufactured by Showa Denko KK) Oxymethyl (ethyl isocyanate)), Karenz MOI-EG etc.) are preferably used in combination.
 疎水性化合物としては、既述の疎水性基を有し、かつ、その疎水性基を一般式(1A)におけるR11、R12若しくはR13に導入できるものであれば特に制限されない。
 中でも、疎水性化合物としては、ハロゲン化アシル(例えば、塩化アシル(塩化アセチル、塩化プロピオニル、塩化ブチリル、塩化ペンタノイル、塩化デカノイル等)、臭化アシル(臭化アセチル、臭化プロピオニル、臭化ブチリル、臭化ペンタノイル、臭化デカノイル、等);であることが好ましく、塩化アシルであることがより好ましく、液晶性の観点から、直鎖若しくは分岐の炭素数2~4の塩化アシルであることが更に好ましく、塩化アセチル、塩化プロピオニル又は塩化ブチリルであることが特に好ましい。
 なお、具体的なセルロース誘導体の合成方法の一例については、後述する実施例の項にて説明する。
The hydrophobic compound is not particularly limited as long as it has the aforementioned hydrophobic group and can introduce the hydrophobic group into R 11 , R 12 or R 13 in the general formula (1A).
Among these, hydrophobic compounds include acyl halides (for example, acyl chloride (acetyl chloride, propionyl chloride, butyryl chloride, pentanoyl chloride, decanoyl chloride, etc.), acyl bromide (acetyl bromide, propionyl bromide, butyryl bromide, Pentanoyl bromide, decanoyl bromide, etc.), more preferably acyl chloride, and from the viewpoint of liquid crystallinity, linear or branched acyl chlorides having 2 to 4 carbon atoms are further preferred. Acetyl chloride, propionyl chloride or butyryl chloride is particularly preferable.
An example of a specific method for synthesizing cellulose derivatives will be described in the Examples section described later.
《液晶フィルム》
 本実施形態の液晶フィルムは、三次元構造を有し、一般式(2A)で表される分子構造を有するセルロース誘導体(以下、「三次元構造を有するセルロース誘導体」とも称する)を含み、三次元構造を有するセルロース誘導体三次元構造を有する、モノマー単位同士を連結する連結基を有する基を含む。
 三次元構造を有するセルロース誘導体は、上記一般式(1A)で表される分子構造を有するセルロース誘導体に由来するモノマー単位同士を架橋することにより得られる。
<Liquid Crystal Film>
The liquid crystal film of the present embodiment includes a cellulose derivative having a three-dimensional structure and having a molecular structure represented by the general formula (2A) (hereinafter also referred to as “cellulose derivative having a three-dimensional structure”). A group having a linking group for linking monomer units having a three-dimensional structure of a cellulose derivative having a structure.
The cellulose derivative having a three-dimensional structure is obtained by crosslinking monomer units derived from the cellulose derivative having the molecular structure represented by the general formula (1A).
 一般式(1A)で表される分子構造は、R21、R22及びR23の少なくとも1つが、下記一般式(4C)で表されるモノマー単位同士を連結する基及び炭素数5~20の直鎖若しくは分岐のアシル基の少なくとも一方で表された、特定セルロース誘導体である。
 したがって、本実施形態における三次元構造を有する特定セルロース誘導体は、不飽和二重結合が開裂することで生じた連結基によって、モノマー単位同士が適度に連結(架橋)されて得られたもの、すなわち、特定セルロース誘導体のポリマーが架橋されて得られたものである。
The molecular structure represented by the general formula (1A) is such that at least one of R 21 , R 22 and R 23 is a group connecting monomer units represented by the following general formula (4C) and a carbon number of 5 to 20 A specific cellulose derivative represented by at least one of a linear or branched acyl group.
Therefore, the specific cellulose derivative having a three-dimensional structure in the present embodiment is obtained by appropriately linking (crosslinking) monomer units with a linking group generated by cleavage of an unsaturated double bond, that is, These are obtained by crosslinking a polymer of a specific cellulose derivative.
 本実施形態では、上記三次元構造が、液晶フィルムのゴム弾性の発現に寄与していると考えられる。三次元構造を有する特定セルロース誘導体は、精製性が向上する。この精製性の向上は、液晶フィルムのコレステリック液晶性の発現、及び、ゴム弾性の発現に寄与すると考えられる。
 したがって本実施形態の液晶フィルムは、ゴム弾性を有し、さらにブラッグ反射の波長で配向が固定化される。さらに、機械的圧力によって、その圧力に対応する波長の反射光が得られる。
In the present embodiment, it is considered that the three-dimensional structure contributes to the development of rubber elasticity of the liquid crystal film. The specific cellulose derivative having a three-dimensional structure has improved purification properties. This improvement in purification is considered to contribute to the development of cholesteric liquid crystal properties and rubber elasticity of the liquid crystal film.
Therefore, the liquid crystal film of this embodiment has rubber elasticity, and the orientation is fixed at the wavelength of Bragg reflection. Further, reflected light having a wavelength corresponding to the pressure is obtained by the mechanical pressure.
 ここで、三次元構造の形成(架橋構造)の有無は、架橋前後の液晶フィルムを溶媒に溶解することで確認することができる
 具体的には、架橋後の液晶フィルムは三次元構造が形成されているため、溶媒(例えばアセトン)に溶解しないが、三次元構造が形成されていない架橋前の液晶フィルム(つまり液晶材料)は溶媒に溶解する。このように溶媒に対する溶解性の有無を比較することにより、三次元構造の形成を確認することができる。
 また、本実施形態の液晶フィルムは、架橋剤を用いなくても三次元構造が形成されるため、比較的簡易な方法で製造することができる。なお、架橋剤を用いてモノマー単位同士を架橋させてもよい。
 また、本実施形態の液晶フィルムは、モノマー単位同士が架橋されている構造(三次元構造)を有するが、これはモノマー単位内での架橋を排除するものではない。
Here, the presence or absence of the formation of a three-dimensional structure (crosslinked structure) can be confirmed by dissolving the liquid crystal film before and after crosslinking in a solvent. Specifically, the liquid crystal film after crosslinking has a three-dimensional structure formed. Therefore, the liquid crystal film before cross-linking (that is, the liquid crystal material) in which the three-dimensional structure is not formed is dissolved in the solvent. Thus, the formation of a three-dimensional structure can be confirmed by comparing the presence or absence of solubility in a solvent.
Moreover, since the three-dimensional structure is formed without using a crosslinking agent, the liquid crystal film of this embodiment can be produced by a relatively simple method. In addition, you may bridge | crosslink monomer units using a crosslinking agent.
Moreover, although the liquid crystal film of this embodiment has the structure (three-dimensional structure) by which monomer units are bridge | crosslinked, this does not exclude the bridge | crosslinking in a monomer unit.
<三次元構造を有するセルロース誘導体>
 三次元構造を有するセルロース誘導体は、下記一般式(2A)で表される分子構造を有する。
<Cellulose derivative having a three-dimensional structure>
The cellulose derivative having a three-dimensional structure has a molecular structure represented by the following general formula (2A).
Figure JPOXMLDOC01-appb-C000037

 
Figure JPOXMLDOC01-appb-C000037

 
 一般式(2A)中、X21、X22及びX23は、それぞれ独立に、単結合、アルキレン基、-(R24-O)-、又は、-C(=O)-R25-を表し、R21、R22及びR23は、それぞれ独立に、水素原子、前記連結基を有する基、又は、疎水性基であり、R24及びR25は、それぞれ独立に、アルキレン基を表し、jは、1以上10以下の整数を表し、n21は、2以上800以下の整数を表す。但し、R21、R22及びR23の少なくとも1つは、下記一般式(4C)で表されるモノマー単位同士を連結する基及び炭素数5~20の直鎖若しくは分岐のアシル基の少なくとも一方を表す。 In the general formula (2A), X 21 , X 22 and X 23 each independently represent a single bond, an alkylene group, — (R 24 —O) j —, or —C (═O) —R 25 —. R 21 , R 22 and R 23 are each independently a hydrogen atom, a group having the linking group, or a hydrophobic group, R 24 and R 25 are each independently an alkylene group, j represents an integer of 1 to 10, and n21 represents an integer of 2 to 800. However, at least one of R 21 , R 22 and R 23 is at least one of a group connecting monomer units represented by the following general formula (4C) and a linear or branched acyl group having 5 to 20 carbon atoms. Represents.
 一般式(2A)において、X21、X22及びX23で表されるアルキレン基としては、上記一般式(1A)におけるX11、X12及びX13で表されるアルキレン基と同義であり、好ましい範囲も同様である。 In the general formula (2A), the alkylene group represented by X 21 , X 22 and X 23 has the same meaning as the alkylene group represented by X 11 , X 12 and X 13 in the general formula (1A), The preferable range is also the same.
 一般式(2A)中、X21、X22及びX23で表される-(R24-O)-、及び、-C(=O)-R25-としては、前記一般式(1A)における-(R14-O)-、及び、-C(=O)-R15-と同義であり、好ましい範囲も同様である。
 なお、-(R24-O)-は、アルキレンオキシ基(アルキレンエーテル基)又はポリアルキレンオキシ基(ポリアルキレンエーテル基)を示す。
In general formula (2A), — (R 24 —O) j — and —C (═O) —R 25 — represented by X 21 , X 22 and X 23 are the same as those in general formula (1A). Are the same as — (R 14 —O) h — and —C (═O) —R 15 —, and the preferred range is also the same.
In addition, — (R 24 —O) j — represents an alkyleneoxy group (alkylene ether group) or a polyalkyleneoxy group (polyalkylene ether group).
 一般式(2A)において、R21、R22及びR23で表される疎水性基としては、前述の一般式(1A)におけるR11、R12及びR13で表される疎水性基と同義であり、好ましい範囲も同様である。 In the general formula (2A), the hydrophobic group represented by R 21 , R 22 and R 23 has the same meaning as the hydrophobic group represented by R 11 , R 12 and R 13 in the general formula (1A). The preferred range is also the same.
 セルロース誘導体の合成のし易さの観点から、疎水性基としては、炭素数2~4のアシル基(直鎖、分岐のいずれも可。以下同様。)を含むことが好ましい。 From the viewpoint of easy synthesis of the cellulose derivative, the hydrophobic group preferably contains an acyl group having 2 to 4 carbon atoms (both linear and branched, the same shall apply hereinafter).
 一般式(2A)において、n21としては、適度なゴム弾性を有する観点から、2以上800以下であり、好ましくは2以上400以下、より好ましくは2以上300以下である。 In the general formula (2A), n21 is 2 or more and 800 or less, preferably 2 or more and 400 or less, more preferably 2 or more and 300 or less, from the viewpoint of having appropriate rubber elasticity.
 一般式(2A)において、R21、R22及びR23で表される、モノマー単位同士を連結する基(以下、単に「モノマー単位同士を連結する基」とも称する)は、下記一般式(4C)で表されるモノマー単位同士を連結する基であり、一般式(3C)で表される不飽和二重結合を有する基が、開裂することで生じる連結基である。 In the general formula (2A), a group connecting monomer units represented by R 21 , R 22 and R 23 (hereinafter, also simply referred to as “group connecting monomer units”) has the following general formula (4C And a group having an unsaturated double bond represented by the general formula (3C) is a linking group generated by cleavage.
Figure JPOXMLDOC01-appb-C000038

 
Figure JPOXMLDOC01-appb-C000038

 
 一般式(4C)中、R4Cは、水素原子又はメチル基を表し、X48は、炭素数3~20の直鎖若しくは分岐のアルキレン基、-NH-、-C(=O)O-、カルボニル基、炭素数2~20の直鎖若しくは分岐のアルキレンオキシ基、アリール基及び炭素数3~10のシクロアルキレン基からなる群より選ばれる基又はこれらを連結した基を表し、*は、モノマー単位同士が連結されたときの結合位置を表し、**は、上記一般式(2A)中、X21、X22、若しくはX23と結合する部分、又は、セルロース骨格の2位、3位、若しくは6位にある酸素原子と結合する部分を表す。 In the general formula (4C), R 4C represents a hydrogen atom or a methyl group, X 48 represents a linear or branched alkylene group having 3 to 20 carbon atoms, —NH—, —C (═O) O—, Represents a group selected from the group consisting of a carbonyl group, a linear or branched alkyleneoxy group having 2 to 20 carbon atoms, an aryl group, and a cycloalkylene group having 3 to 10 carbon atoms, or a group obtained by linking these, * represents a monomer ** represents a bonding position when the units are linked to each other, and ** represents a portion bonded to X 21 , X 22 , or X 23 in the general formula (2A), or the 2-position, 3-position of the cellulose skeleton, Alternatively, it represents a moiety bonded to the oxygen atom at the 6-position.
 一般式(4C)中、X48で表される炭素数3~20の直鎖若しくは分岐のアルキレン基及び炭素数2~20の直鎖若しくは分岐のアルキレンオキシ基は、一般式(1A)におけるX11、X12及びX13で表される炭素数3~20の直鎖若しくは分岐のアルキレン基及び炭素数2~20の直鎖若しくは分岐のアルキレンオキシ基と同義であり、好ましい範囲も同様である。 In the general formula (4C), the linear or branched alkylene group having 3 to 20 carbon atoms and the linear or branched alkyleneoxy group having 2 to 20 carbon atoms represented by X 48 are the same as those in the general formula (1A). 11 , X 12 and X 13 are the same as the linear or branched alkylene group having 3 to 20 carbon atoms and the linear or branched alkyleneoxy group having 2 to 20 carbon atoms, and the preferred range is also the same. .
 ゴム弾性により優れる観点から、X48は、炭素数3~20の直鎖のアルキレン基、-NH-、-C(=O)O-、カルボニル基、及び炭素数2~20の直鎖のアルキレンオキシ基からなる群より選ばれる基又はこれらを連結した基であることが好ましく、炭素数5~15の直鎖のアルキレン基、-NH-、-C(=O)O-、カルボニル基、及び炭素数4~16の直鎖のアルキレンオキシ基からなる群より選ばれる基又はこれらを連結した基であることがより好ましく、炭素数5~10の直鎖のアルキレン基、-NH-、-C(=O)O-、カルボニル基、及び炭素数4~12の直鎖のアルキレンオキシ基からなる群より選ばれる基又はこれらを連結した基であることが更に好ましく、炭素数5~7の直鎖のアルキレン基、-NH-、-C(=O)O-、カルボニル基、及び炭素数4~8の直鎖のアルキレンオキシ基からなる群より選ばれる基又はこれらを連結した基であることが特に好ましく、炭素数5~7の直鎖のアルキレン基、又は炭素数5~7の直鎖のアルキレン基、-NH-、-C(=O)O-、カルボニル基、及び炭素数4~8の直鎖のアルキレンオキシ基が連結した基であることがより一層好ましい。 From the viewpoint of superior rubber elasticity, X 48 represents a linear alkylene group having 3 to 20 carbon atoms, —NH—, —C (═O) O—, a carbonyl group, and a linear alkylene group having 2 to 20 carbon atoms. It is preferably a group selected from the group consisting of oxy groups or a group obtained by linking these, a linear alkylene group having 5 to 15 carbon atoms, —NH—, —C (═O) O—, a carbonyl group, and A group selected from the group consisting of a linear alkyleneoxy group having 4 to 16 carbon atoms or a group in which these groups are connected is more preferable, and a linear alkylene group having 5 to 10 carbon atoms, —NH—, —C A group selected from the group consisting of (═O) O—, a carbonyl group, and a linear alkyleneoxy group having 4 to 12 carbon atoms, or a group in which these groups are connected, is more preferable. Chain alkylene group, —NH—, —C A group selected from the group consisting of (═O) O—, a carbonyl group, and a linear alkyleneoxy group having 4 to 8 carbon atoms, or a group obtained by linking these groups, is particularly preferred. A chain alkylene group, or a straight chain alkylene group having 5 to 7 carbon atoms, —NH—, —C (═O) O—, a carbonyl group, and a straight chain alkyleneoxy group having 4 to 8 carbon atoms are linked. More preferably, it is a group.
 以下に、一般式(4C)で表される基の一例を示す。一般式(4C)で表される基はこれらにより何ら限定されるものではない。なお、*及び**は、結合位置を表す。 An example of a group represented by the general formula (4C) is shown below. The group represented by the general formula (4C) is not limited by these. Note that * and ** represent binding positions.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 ゴム弾性により優れる観点から、一般式(4C)において、R4Cは、水素原子であり、X48は、炭素数3~20の直鎖のアルキレン基、-NH-、-C(=O)O-、カルボニル基、及び炭素数2~20の直鎖のアルキレンオキシ基からなる群より選ばれる基又はこれらを連結した基であることが好ましく、炭素数5~15の直鎖のアルキレン基、-NH-、-C(=O)O-、カルボニル基、及び炭素数4~16の直鎖のアルキレンオキシ基からなる群より選ばれる基又はこれらを連結した基であることがより好ましく、炭素数5~10の直鎖のアルキレン基、-NH-、-C(=O)O-、カルボニル基、及び炭素数4~12の直鎖のアルキレンオキシ基からなる群より選ばれる基又はこれらを連結した基であることが更に好ましく、炭素数5~7の直鎖のアルキレン基、-NH-、-C(=O)O-、カルボニル基、及び炭素数4~8の直鎖のアルキレンオキシ基からなる群より選ばれる基又はこれらを連結した基であることが特に好ましく、炭素数5~7の直鎖のアルキレン基、又は炭素数5~7の直鎖のアルキレン基、-NH-、-C(=O)O-、カルボニル基、及び炭素数4~8の直鎖のアルキレンオキシ基が連結した基であることがより一層好ましい。 From the viewpoint of superior rubber elasticity, in the general formula (4C), R 4C is a hydrogen atom, X 48 is a linear alkylene group having 3 to 20 carbon atoms, —NH—, —C (═O) O. A group selected from the group consisting of-, a carbonyl group, and a straight-chain alkyleneoxy group having 2 to 20 carbon atoms, or a group obtained by linking these groups, a straight-chain alkylene group having 5 to 15 carbon atoms,- It is more preferably a group selected from the group consisting of NH—, —C (═O) O—, a carbonyl group, and a linear alkyleneoxy group having 4 to 16 carbon atoms, or a group obtained by linking these groups. A group selected from the group consisting of a linear alkylene group of 5 to 10, a —NH—, —C (═O) O—, a carbonyl group, and a linear alkyleneoxy group of 4 to 12 carbon atoms, or a combination thereof. More preferred A group selected from the group consisting of a straight-chain alkylene group having 5 to 7 carbon atoms, —NH—, —C (═O) O—, a carbonyl group, and a straight-chain alkyleneoxy group having 4 to 8 carbon atoms, or A group in which these are linked is particularly preferable, and a linear alkylene group having 5 to 7 carbon atoms, or a linear alkylene group having 5 to 7 carbon atoms, —NH—, —C (═O) O—, A group in which a carbonyl group and a linear alkyleneoxy group having 4 to 8 carbon atoms are linked is more preferable.
 適度なゴム弾性を有する観点から、モノマー単位同士を連結する基としては、下記一般式(2C)で表される基を更に含むことが好ましい。 From the viewpoint of having appropriate rubber elasticity, the group connecting monomer units preferably further includes a group represented by the following general formula (2C).
Figure JPOXMLDOC01-appb-C000041

 
Figure JPOXMLDOC01-appb-C000041

 
 一般式(2C)中、R2Cは、水素原子又はメチル基を表し、X28は、単結合、又は、直鎖若しくは分岐の炭素数1~18のアルキレン基、炭素数3~18のシクロアルキレン基、炭素数6~18のアリーレン基、-O-、-NH-、-S-、-C(=O)-、炭素数1~18の直鎖若しくは分岐のアルカンから3つの水素原子を除いた基、炭素数3~18のシクロアルカンから3つの水素原子を除いた基、炭素数6~18のアレーンから3つの水素原子を除いた基及びアンモニアから3つの水素原子を除いた基からなる群より選ばれる基又はこれらを連結した基を表し、p2は、1又は2の整数を表す。
 *は、モノマー単位同士が連結されたときの結合位置を表す。**は、上記一般式(2A)中、X21、X22、若しくはX23と結合する部分、又は、X21、X22、若しくはX23が単結合の場合はセルロース骨格の2位、3位、若しくは6位にある酸素原子と結合する部分を表す。
In the general formula (2C), R 2C represents a hydrogen atom or a methyl group, X 28 represents a single bond or a linear or branched alkylene group having 1 to 18 carbon atoms, or a cycloalkylene having 3 to 18 carbon atoms. 3 hydrogen atoms are removed from a group, an arylene group having 6 to 18 carbon atoms, —O—, —NH—, —S—, —C (═O) —, or a linear or branched alkane having 1 to 18 carbon atoms. A group obtained by removing three hydrogen atoms from a cycloalkane having 3 to 18 carbon atoms, a group obtained by removing three hydrogen atoms from an arene having 6 to 18 carbon atoms, and a group obtained by removing three hydrogen atoms from ammonia. Represents a group selected from the group or a group obtained by linking them, and p2 represents an integer of 1 or 2.
* Represents a bonding position when monomer units are linked to each other. ** represents a moiety bonded to X 21 , X 22 , or X 23 in the above general formula (2A), or the second position of the cellulose skeleton when X 21 , X 22 , or X 23 is a single bond, 3 Represents a moiety bonded to the oxygen atom at the 6th or 6th position.
 一般式(2C)中、X28で表される炭素数1~18の直鎖若しくは分岐のアルキレン基、及び、炭素数3~18のシクロアルキレン基としては、一般式(1A)におけるX11、X12及びX13で表されるアルキレン基と同義であり、好ましい範囲も同様である。 In the general formula (2C), the linear or branched alkylene group having 1 to 18 carbon atoms and the cycloalkylene group having 3 to 18 carbon atoms represented by X 28 include X 11 in the general formula (1A), It has the same meaning as the alkylene group represented by X 12 and X 13, and preferred ranges are also the same.
 一般式(2C)中、X28で表される炭素数6~18のアリーレン基としては、特に制限はなく、例えば、フェニレン基、ナフタレン基が挙げられる。 In the general formula (2C), the arylene group having 6 to 18 carbon atoms represented by X 28 is not particularly limited, and examples thereof include a phenylene group and a naphthalene group.
 X28について、炭素数1~18の直鎖若しくは分岐のアルカンから3つの水素原子を除いた基、炭素数3~18のシクロアルカンから3つの水素原子を除いた基、及び炭素数6~18のアレーンから3つの水素原子を除いた基としては、X28で表される、直鎖若しくは分岐の炭素数1~18のアルキレン基、炭素数3~18のシクロアルキレン基及び炭素数6~18のアリーレン基からそれぞれ1つの水素原子を除いた基が挙げられる。 X 28 is a group in which 3 hydrogen atoms are removed from a linear or branched alkane having 1 to 18 carbon atoms, a group in which 3 hydrogen atoms are removed from a cycloalkane having 3 to 18 carbon atoms, and 6 to 18 carbon atoms. the arene group obtained by removing three hydrogen atoms from, represented by X 28, linear or branched alkylene group having 1 to 18 carbon atoms, a cycloalkylene group and having a carbon number of 3 to 18 carbon atoms 6-18 Groups obtained by removing one hydrogen atom from each arylene group.
 一般式(2C)中、X28で表される-O-、-NH-、-S-、及び-C(=O)-からなる群より選ばれる1つ若しくは2つ以上を連結した連結基としては、特に制限はなく、例えば、-C(=O)-NH-(CH-O-、-C(=O)-NH-(CH-O-(CH-O-、-C(=O)-NH-C(CH)-(CH-O-)が挙げられる。 In the general formula (2C), a linking group in which one or two or more selected from the group consisting of —O—, —NH—, —S—, and —C (═O) — represented by X 28 is linked. There is no particular limitation, for example, —C (═O) —NH— (CH 2 ) 2 —O—, —C (═O) —NH— (CH 2 ) 2 —O— (CH 2 ) 2 —O—, —C (═O) —NH—C (CH 3 ) — (CH 2 —O—) 2 can be mentioned.
 一般式(2C)中、X28としては、単結合、又は、-C(=O)-NH-(CH-O-が好ましい。 In general formula (2C), X 28 is preferably a single bond or —C (═O) —NH— (CH 2 ) 2 —O—.
 一般式(2C)で表される基において、R2Cが水素原子又はメチル基であり、X18が単結合であり、p2が1である基は、(メタ)アクリロイル基が開裂することで生じる連結基である。 In the group represented by the general formula (2C), a group in which R 2C is a hydrogen atom or a methyl group, X 18 is a single bond, and p2 is 1 is generated by cleavage of a (meth) acryloyl group. It is a linking group.
 一般式(2C)において、p2は、1であることが好ましい。 In general formula (2C), p2 is preferably 1.
 一般式(2A)で表される分子構造を有するセルロース誘導体の好ましい態様は、一般式(2A)において、疎水性基(R21、R22又はR23)が、炭素数2~4のアシル基又は炭素数5~20のアシル基であって、連結基を有する基(R21、R22又はR23)が、一般式(2C)基で表される基(好ましくは一般式(2C)中、X28が、単結合、若しくは、-C(=O)-NH-(CH-O-である基、)及び(4C)で表される基(好ましくは、一般式(4C)中、R4Cは、水素原子であり、X48が炭素数5~7の直鎖のアルキレン基である)であって、n21が、2以上300以下である態様である。 A preferred embodiment of the cellulose derivative having the molecular structure represented by the general formula (2A) is that the hydrophobic group (R 21 , R 22 or R 23 ) in the general formula (2A) is an acyl group having 2 to 4 carbon atoms. Or a group having 5 to 20 carbon atoms and having a linking group (R 21 , R 22 or R 23 ) represented by the general formula (2C) group (preferably in the general formula (2C) , X 28 is a single bond or a group represented by —C (═O) —NH— (CH 2 ) 2 —O—, and a group represented by (4C) (preferably represented by the general formula (4C) In which R 4C is a hydrogen atom, X 48 is a linear alkylene group having 5 to 7 carbon atoms, and n21 is 2 or more and 300 or less.
 一般式(2C)で表される基の好ましい態様としては、適度なゴム弾性を有する観点から、下記一般式(2C-1)~一般式(2C-6)が挙げられる。
 以下に、一般式(2C)で表される基の一例を示す。一般式(2C)で表される基はこれらにより何ら限定されるものではない。なお、*及び**は、結合位置を表す。
Preferred embodiments of the group represented by the general formula (2C) include the following general formulas (2C-1) to (2C-6) from the viewpoint of appropriate rubber elasticity.
Below, an example of group represented by general formula (2C) is shown. The group represented by the general formula (2C) is not limited by these. Note that * and ** represent binding positions.
Figure JPOXMLDOC01-appb-C000042

 
Figure JPOXMLDOC01-appb-C000042

 
Figure JPOXMLDOC01-appb-C000043

 
 
Figure JPOXMLDOC01-appb-C000043

 
 
 一般式(2C-5)で表される連結基は、一般式(2C)で表される連結基において、X28が下記一般式(2C-7)で表される3価の連結基であり、R2Cが水素原子であり、p2が2である基に該当する。 The linking group represented by the general formula (2C-5), in the linking group represented by the general formula (2C), be a trivalent linking group X 28 is represented by the following general formula (2C-7) , R 2C is a hydrogen atom and p2 is 2.
Figure JPOXMLDOC01-appb-C000044

 
Figure JPOXMLDOC01-appb-C000044

 
 上記一般式(2C)で表される連結基を有する基の中でも、適度なゴム弾性を有する観点から、一般式(2C-1)、(2C-3)、(2C-5)又は(2C-6)で表される基が好ましく、一般式(2C-1)又は一般式(2C-3)で表される基がより好ましい。 Among the groups having a linking group represented by the above general formula (2C), from the viewpoint of having appropriate rubber elasticity, the general formula (2C-1), (2C-3), (2C-5) or (2C— The group represented by 6) is preferable, and the group represented by General Formula (2C-1) or General Formula (2C-3) is more preferable.
 以下に、一般式(2A)で表される分子構造の具体例を示す。
 なお、一般式(2A)で表される分子構造はこれらにより何ら限定されるものではない。式中、*は結合位置を表す。
Specific examples of the molecular structure represented by the general formula (2A) are shown below.
In addition, the molecular structure represented by the general formula (2A) is not limited by these. In the formula, * represents a bonding position.
Figure JPOXMLDOC01-appb-C000045

 
Figure JPOXMLDOC01-appb-C000045

 
Figure JPOXMLDOC01-appb-C000046

 
Figure JPOXMLDOC01-appb-C000046

 
Figure JPOXMLDOC01-appb-C000047

 
Figure JPOXMLDOC01-appb-C000047

 
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
 上記式(2-13)~(2-16)は、一般式(1A-1)において、Rが、-CH-CH(CH)-であり、m1が2であり、t1が2であり、r1が0である場合の例である。
 上記例以外の具体例としては、m1、t1、及びr1を、それぞれ独立に0以上10以下に置き換えた分子構造が挙げられる。
In the above formulas (2-13) to (2-16), in general formula (1A-1), R 1 is —CH 2 —CH (CH 3 ) —, m1 is 2, t1 is 2 In this example, r1 is 0.
Specific examples other than the above examples include molecular structures in which m1, t1, and r1 are each independently replaced with 0 or more and 10 or less.
<疎水性基の置換度>
 本実施形態の液晶フィルムにおいて、疎水性基のモノマー単位あたりの置換度(疎水性基の置換度)は、特定セルロース誘導体中の上記連結基を有する基の比率を調整し、液晶フィルムに適度なゴム弾性を付与する観点から、好ましくは1.0以上2.9以下であり、より好ましくは2.0以上2.9以下であり、さらに好ましくは2.5以上2.9以下である。
 本実施形態の液晶フィルムにおける疎水性基の置換度は、上述の液晶材料における疎水性基の置換度と同様の方法により測定することができる。
<Degree of substitution of hydrophobic group>
In the liquid crystal film of the present embodiment, the degree of substitution per unit of hydrophobic group (the degree of substitution of the hydrophobic group) is adjusted to the ratio of the group having the linking group in the specific cellulose derivative, and is appropriate for the liquid crystal film. From the viewpoint of imparting rubber elasticity, it is preferably 1.0 or more and 2.9 or less, more preferably 2.0 or more and 2.9 or less, and further preferably 2.5 or more and 2.9 or less.
The degree of substitution of the hydrophobic group in the liquid crystal film of the present embodiment can be measured by the same method as the degree of substitution of the hydrophobic group in the liquid crystal material described above.
(重量平均分子量)
 本実施形態において、三次元構造を有する特定セルロース誘導体の重量平均分子量は、特に制限されない。
(Weight average molecular weight)
In the present embodiment, the weight average molecular weight of the specific cellulose derivative having a three-dimensional structure is not particularly limited.
<三次元構造を有する特定セルロース誘導体の含有量>
 三次元構造を有する特定セルロース誘導体の含有量としては、本実施形態の液晶フィルムの全質量に対して、80質量%以上であることが好ましく、90質量%以上であることがより好ましく、99質量%以上であることが更に好ましい。
<Content of specific cellulose derivative having three-dimensional structure>
As content of the specific cellulose derivative which has a three-dimensional structure, it is preferable that it is 80 mass% or more with respect to the total mass of the liquid crystal film of this embodiment, It is more preferable that it is 90 mass% or more, 99 mass % Or more is more preferable.
<その他の成分>
 本実施形態の液晶フィルムは、本実施形態の効果を奏しない範囲内において、その他の成分を含んでいてもよい。その他の成分としては、例えば、重合開始剤、架橋剤、難燃剤、相溶化剤、酸化防止剤、離型剤(剥離剤)、耐光剤、耐候剤、改質剤、帯電防止剤、加水分解防止剤等が挙げられる。重合開始剤としては、公知の重合開始剤(例えば熱重合開始剤、光重合開始剤)を用いることができる。
 光重合開始剤としては、既述の液晶材料における光重合開始剤と同義であり、好ましい例も同様である。
<Other ingredients>
The liquid crystal film of this embodiment may contain other components as long as the effects of this embodiment are not achieved. Other components include, for example, polymerization initiators, crosslinking agents, flame retardants, compatibilizers, antioxidants, mold release agents (release agents), light proofing agents, weathering agents, modifiers, antistatic agents, hydrolysis An inhibitor etc. are mentioned. As the polymerization initiator, a known polymerization initiator (for example, a thermal polymerization initiator or a photopolymerization initiator) can be used.
As a photoinitiator, it is synonymous with the photoinitiator in the liquid crystal material as stated above, and its preferable example is also the same.
《液晶フィルムの製造方法》
 本実施形態の液晶フィルムの製造方法は、基板上に、上記実施形態の液晶材料を付与する工程(以下、「液晶材料付与工程」とも称する)と、基板上に付与された液晶材料に、熱を加える工程(以下、「熱付与工程」とも称する)又は紫外線を照射する工程(以下、「紫外線照射工程」とも称する)と、を有する。
 本実施形態の液晶フィルムの製造方法では、上記工程を経ることにより、ゴム弾性を有し、ブラッグ反射が特定の波長で固定化された液晶フィルムを得ることができる。さらに、機械的圧力を加えることによって、その圧力に対応する波長の反射光が得られる液晶フィルムを製造することができる。
《Liquid crystal film production method》
The method for producing a liquid crystal film of the present embodiment includes a step of applying the liquid crystal material of the above-described embodiment on the substrate (hereinafter also referred to as “liquid crystal material application step”), and applying heat to the liquid crystal material applied on the substrate. And a step of irradiating ultraviolet rays (hereinafter also referred to as “ultraviolet irradiation step”).
In the manufacturing method of the liquid crystal film of this embodiment, a liquid crystal film having rubber elasticity and having a Bragg reflection fixed at a specific wavelength can be obtained through the above steps. Furthermore, by applying a mechanical pressure, it is possible to manufacture a liquid crystal film from which reflected light having a wavelength corresponding to the pressure can be obtained.
(液晶材料付与工程)
 液晶材料付与工程は、基板上に、上記実施形態の液晶材料を付与する工程である。
 基板としては特に制限されず、目的に応じて通常用いられるものから適宜選択することができる。基板としては、例えば、ガラス基板、プラスチック基板(例えば、ポリエチレンナフタレート(PEN)基板、ポリエチレンテレフタレート(PET)基板、ポリカーボネート(PC)基板、ポリイミド(PI)基板等)、アルミ基板やステンレス基板等の金属基板、シリコン基板等の半導体基板等を用いることができる。
 基板の厚さ、形状は特に限定されず、目的に応じて適宜選択することが好ましい。
 基板上への液晶材料の付与方法としては、例えば、スピンコート法、ディップ法、スプレー法等の塗布法;インクジェット法;スクリーン印刷法;減圧注入法等の注入法;等が挙げられる。
 液晶材料の形態は、固形状(例えば粉末)であっても液状であってもよい。
 液晶材料が固形状である場合は、使用する際に溶媒と混合して液状にすればよく、液晶材料が基板上に付与できる程度の液状を有する場合は、そのまま用いてもよいし、溶媒と混合して使用しやすい粘度に調整したものを用いてもよい。
 なお、基板に付与される上記液晶材料は、その他の成分を含んでもよい。その他の成分としては、既述のその他の成分(例えば重合開始剤、剥離剤)と同様のものが挙げられる。
 溶媒としては特に制限されず、例えば、既述の特定セルロース誘導体の合成方法の項で例示した溶媒を用いることができる。
(Liquid crystal material application process)
A liquid crystal material provision process is a process of providing the liquid crystal material of the said embodiment on a board | substrate.
It does not restrict | limit especially as a board | substrate, According to the objective, it can select suitably from what is normally used. Examples of the substrate include a glass substrate, a plastic substrate (for example, a polyethylene naphthalate (PEN) substrate, a polyethylene terephthalate (PET) substrate, a polycarbonate (PC) substrate, a polyimide (PI) substrate), an aluminum substrate, a stainless steel substrate, and the like. A semiconductor substrate such as a metal substrate or a silicon substrate can be used.
The thickness and shape of the substrate are not particularly limited, and it is preferable to select appropriately according to the purpose.
Examples of the method for applying the liquid crystal material onto the substrate include coating methods such as spin coating, dipping, and spraying; ink jet methods; screen printing methods; injection methods such as reduced pressure injection methods; and the like.
The form of the liquid crystal material may be solid (for example, powder) or liquid.
When the liquid crystal material is in a solid form, it may be mixed with a solvent at the time of use to form a liquid, and when the liquid crystal material has a liquid enough to be applied on the substrate, it may be used as it is, You may use what was mixed and adjusted to the viscosity which is easy to use.
Note that the liquid crystal material applied to the substrate may contain other components. Examples of the other components include the same components as those described above (for example, a polymerization initiator and a release agent).
It does not restrict | limit especially as a solvent, For example, the solvent illustrated by the term of the synthesis | combining method of the above-mentioned specific cellulose derivative can be used.
(熱付与工程)
 熱付与工程は、基板上に付与された液晶材料に、熱を加え、液晶材料を硬化させる工程である。上記熱付与工程により、架橋前の特定セルロース誘導体が有していた不飽和二重結合が開裂してモノマー単位同士が連結基を介して連結(架橋)され、結果、ゴム弾性が発現される。またブラッグ反射の波長で配向が固定化される。
 熱付与方法としては特に制限されず、例えば公知の加熱装置(オーブン、赤外線ヒーター、ホットプレート)を用いて熱を加える方法が挙げられる。
 液晶材料に熱を付与する際の温度は、適度なゴム弾性を有する観点、及び、ブラッグ反射の波長で配向を固定化する観点から、好ましくは25℃以上130℃以下、より好ましくは25℃以上120℃以下、さらに好ましくは25℃以上110℃以下である。なお、液晶材料に熱を付与する際の温度は、液晶材料が上記範囲になるように制御される。
 なお、熱付与工程では、熱付与条件(温度、加熱時間等)を制御することにより、ブラッグ反射の波長で配向が固定化されやすくなる。
(Heat application process)
The heat application step is a step of applying heat to the liquid crystal material applied on the substrate to cure the liquid crystal material. By the heat application step, the unsaturated double bond of the specific cellulose derivative before cross-linking is cleaved and the monomer units are connected (cross-linked) via a linking group, resulting in rubber elasticity. The orientation is fixed at the wavelength of Bragg reflection.
The heat application method is not particularly limited, and examples thereof include a method of applying heat using a known heating device (an oven, an infrared heater, a hot plate).
The temperature at which heat is applied to the liquid crystal material is preferably 25 ° C. or higher and 130 ° C. or lower, more preferably 25 ° C. or higher, from the viewpoint of having appropriate rubber elasticity and fixing the orientation at the wavelength of Bragg reflection. It is 120 ° C. or lower, more preferably 25 ° C. or higher and 110 ° C. or lower. Note that the temperature at which heat is applied to the liquid crystal material is controlled so that the liquid crystal material falls within the above range.
In the heat application step, the orientation is easily fixed at the Bragg reflection wavelength by controlling the heat application conditions (temperature, heating time, etc.).
(紫外線照射工程)
 紫外線照射工程は、基板上に付与された液晶材料に、紫外線を照射し、液晶材料を硬化させる工程である。上記紫外線照射工程により、架橋前の特定セルロース誘導体が有していた不飽和二重結合が開裂してモノマー単位同士が連結基を介して連結(架橋)され、結果、ゴム弾性が発現される。またブラッグ反射の波長で配向が固定化される。
 液晶材料に紫外線を照射する際の温度(以下、「UV照射温度」とも称する)は、好ましくは25℃以上130℃以下、より好ましくは25℃以上120℃以下、さらに好ましくは25℃以上110℃以下である。なお、液晶材料に紫外線を照射する際の温度は、液晶材料が上記範囲になるように制御される。
(UV irradiation process)
The ultraviolet irradiation step is a step of irradiating the liquid crystal material applied on the substrate with ultraviolet rays to cure the liquid crystal material. By the ultraviolet irradiation step, the unsaturated double bond of the specific cellulose derivative before crosslinking is cleaved and the monomer units are linked (crosslinked) via a linking group, and as a result, rubber elasticity is expressed. The orientation is fixed at the wavelength of Bragg reflection.
The temperature at which the liquid crystal material is irradiated with ultraviolet rays (hereinafter also referred to as “UV irradiation temperature”) is preferably 25 ° C. or higher and 130 ° C. or lower, more preferably 25 ° C. or higher and 120 ° C. or lower, and further preferably 25 ° C. or higher and 110 ° C. or lower. It is as follows. Note that the temperature at which the liquid crystal material is irradiated with ultraviolet rays is controlled so that the liquid crystal material falls within the above range.
 また、紫外線の照射強度(UV照度)(以下、「UV照射強度」とも称する)は、好ましくは1mW/cm以上20mW/cm以下、より好ましくは5mW/cm以上20mW/cm以下、さらに好ましくは10mW/cm以上20mW/cm以下である。
 紫外線照射工程では、UV照射温度とUV照射強度とを組み合わせて制御することによって、異なるブラッグ反射で配向が固定化された液晶フィルムが得られる。
 また、紫外線の照射時間は、好ましくは5分~10時間であり、より好ましくは10分~5時間であり、さらに好ましくは20分~2時間である。
Further, the irradiation intensity (UV illuminance) of ultraviolet rays (hereinafter also referred to as “UV irradiation intensity”) is preferably 1 mW / cm 2 or more and 20 mW / cm 2 or less, more preferably 5 mW / cm 2 or more and 20 mW / cm 2 or less, More preferably, it is 10 mW / cm 2 or more and 20 mW / cm 2 or less.
In the ultraviolet irradiation step, by controlling the UV irradiation temperature and the UV irradiation intensity in combination, a liquid crystal film whose orientation is fixed by different Bragg reflections is obtained.
Further, the irradiation time of ultraviolet rays is preferably 5 minutes to 10 hours, more preferably 10 minutes to 5 hours, and further preferably 20 minutes to 2 hours.
 より詳細には、UV照射温度を上記範囲に制御することによって、特定セルロース誘導体のサーモトロピックコレステリック液晶性が発現され、目的とする色に調整しやすくなり、所望の色が得られやすくなる。そして、UV照射温度を上記範囲に制御した上で、さらにUV照射強度を上記範囲に制御することによって、UV照射温度によって得られた色が固定化される。
 したがって、上記紫外線照射工程では、UV照射温度及びUV照射強度(好ましくはUV照射時間)を共に制御することによって、目的とする箇所に目的とする色を呈する多色からなる液晶フィルムが得られる。
 なお、このような多色からなる液晶フィルム(つまり異なるブラッグ反射での配向が固定化されたフィルム)は、例えばフォトマスクを用いることで容易に得ることができる。詳細は後述する。
More specifically, by controlling the UV irradiation temperature within the above range, the thermotropic cholesteric liquid crystallinity of the specific cellulose derivative is expressed, and it becomes easy to adjust to a target color and a desired color is easily obtained. Then, the color obtained by the UV irradiation temperature is fixed by controlling the UV irradiation temperature within the above range and further controlling the UV irradiation intensity within the above range.
Accordingly, in the ultraviolet irradiation step, a multi-color liquid crystal film exhibiting a target color at a target location can be obtained by controlling both the UV irradiation temperature and the UV irradiation intensity (preferably UV irradiation time).
Such a multi-color liquid crystal film (that is, a film in which the orientation in different Bragg reflections is fixed) can be easily obtained by using, for example, a photomask. Details will be described later.
(配向膜形成工程)
 本実施形態の液晶フィルムの製造方法は、基板上に配向膜を形成する工程(配向膜形成工程)を有してもよい。
 本実施形態の液晶フィルムの製造方法は、上記液晶材料付与工程の前に配向膜形成工程を有してもよい。配向膜を形成することにより、熱付与工程又は紫外線照射工程において、ブラッグ反射の波長での配向の固定化が容易に行える。なお、配向膜にラビング処理を施すことが好ましい。
 以上の工程を経て、本実施形態の液晶フィルムが得られる。
(Alignment film formation process)
The manufacturing method of the liquid crystal film of this embodiment may include a step of forming an alignment film on the substrate (alignment film forming step).
The manufacturing method of the liquid crystal film of this embodiment may have an alignment film formation process before the said liquid-crystal material provision process. By forming the alignment film, it is possible to easily fix the alignment at the Bragg reflection wavelength in the heat application step or the ultraviolet irradiation step. Note that the alignment film is preferably subjected to a rubbing treatment.
Through the above steps, the liquid crystal film of the present embodiment is obtained.
 液晶フィルムの厚さは特に制限されないが、好ましくは50μm以上2000μm以下、より好ましくは100μm以上1500μm以下、さらに好ましくは200μm以上1000μm以下である。
 なお、液晶フィルムは、基板から剥離して用いてもよいし、基板上に形成したまま用いてもよい。
The thickness of the liquid crystal film is not particularly limited, but is preferably 50 μm or more and 2000 μm or less, more preferably 100 μm or more and 1500 μm or less, and further preferably 200 μm or more and 1000 μm or less.
Note that the liquid crystal film may be used by being peeled from the substrate, or may be used as it is formed on the substrate.
 ここで、異なるブラッグ反射の波長で配向が固定化された液晶フィルムの製造方法の一例について図1(A)、図1(B)を参照しながら説明する。ここでは、T字形状に加工されたフォトマスク(ネガティブフォトレジスト使用)を用いて液晶フィルムを製造する方法について説明する。
 図1(A)に示すように、第1の基板12上に配向膜(不図示)を形成し、配向膜にラビング処理を施す。同様にして、第2の基板14上に配向膜(不図示)を形成し、必要に応じて配向膜にラビング処理を施す。次に、配向膜が形成された第1の基板12及び第2の基板14の間に、スペーサー(不図示)を介して、液晶材料18を注入する。これにより、液晶セル10を得る。液晶セル10は、配向膜付き第1の基板12及び配向膜付き第2の基板14と、これらの基板の間にスペーサー(不図示)を介して設けられた液晶材料18とで構成される。
Here, an example of a method for producing a liquid crystal film in which the orientation is fixed at different Bragg reflection wavelengths will be described with reference to FIGS. 1 (A) and 1 (B). Here, a method for manufacturing a liquid crystal film using a photomask processed into a T-shape (using a negative photoresist) will be described.
As shown in FIG. 1A, an alignment film (not shown) is formed over the first substrate 12, and a rubbing process is performed on the alignment film. Similarly, an alignment film (not shown) is formed on the second substrate 14, and the alignment film is rubbed as necessary. Next, a liquid crystal material 18 is injected through a spacer (not shown) between the first substrate 12 and the second substrate 14 on which the alignment film is formed. Thereby, the liquid crystal cell 10 is obtained. The liquid crystal cell 10 includes a first substrate 12 with an alignment film and a second substrate 14 with an alignment film, and a liquid crystal material 18 provided between these substrates via a spacer (not shown).
 次に、液晶セル10の上方にT字形状に切り抜かれたフォトマスク16を配置し、配向膜が形成された第1の基板12の側から、液晶セル10(液晶材料)の温度が第1の温度(図1(A)中、X℃:例えば105℃)となるように液晶セル10を加熱する。その後、液晶セル10に対し、紫外線をフォトマスク16の開口部(T字形状)を通過させて所定の照射強度で所定時間照射する(第1のUV照射)。これにより、第1の温度で第1のUV照射が行われた液晶材料の部分の配向が第1のブラッグ反射で固定化される。
 次に、フォトマスク16を外し、液晶セル10を、第1の温度(X℃)よりも低い第2の温度(図1(B)中、Y℃:例えば95℃)まで冷却し、第2の温度を維持する。その後、第2の温度を保ったまま紫外線を液晶セル10全体に所定の照射強度で所定時間照射する(第2のUV照射)。これにより、第2の温度で第2のUV照射が行われた液晶材料の部分の配向が第2のブラッグ反射で固定化される。
Next, a photomask 16 cut into a T-shape is disposed above the liquid crystal cell 10, and the temperature of the liquid crystal cell 10 (liquid crystal material) is first from the side of the first substrate 12 on which the alignment film is formed. The liquid crystal cell 10 is heated to a temperature of (in FIG. 1A, X ° C .: for example, 105 ° C.). Thereafter, the liquid crystal cell 10 is irradiated with ultraviolet rays through the opening (T-shaped) of the photomask 16 for a predetermined time with a predetermined irradiation intensity (first UV irradiation). Thereby, the orientation of the portion of the liquid crystal material that has been subjected to the first UV irradiation at the first temperature is fixed by the first Bragg reflection.
Next, the photomask 16 is removed, and the liquid crystal cell 10 is cooled to a second temperature (Y ° C .: for example, 95 ° C. in FIG. 1B) lower than the first temperature (X ° C.). Maintain the temperature of. Thereafter, the entire liquid crystal cell 10 is irradiated with ultraviolet rays at a predetermined irradiation intensity for a predetermined time while maintaining the second temperature (second UV irradiation). Thereby, the orientation of the portion of the liquid crystal material that has been subjected to the second UV irradiation at the second temperature is fixed by the second Bragg reflection.
 以上の工程を経て、異なるブラッグ反射で配向が固定化された液晶フィルム20、及び、液晶フィルム20を備える液晶セル10Aが得られる。液晶セル10Aは、配向膜付き第1の基板12及び配向膜付き第2の基板14と、これらの基板の間にスペーサー(不図示)を介して設けられた上記液晶フィルム20とで構成される。
 なお、紫外線を照射する際の液晶セル(液晶材料)の温度は、第1の温度(図1(A)中、X℃)を第2の温度(図1(B)中、Y℃)よりも高くすることが好ましい。これにより、異なるブラッグ反射で配向を固定化しやすくなる。なお、第1の温度を第2の温度より低くしてもよい(X℃<Y℃)。また、配向膜は形成しなくてもよい。
Through the above-described steps, the liquid crystal film 20 in which the orientation is fixed by different Bragg reflections and the liquid crystal cell 10A including the liquid crystal film 20 are obtained. The liquid crystal cell 10A includes a first substrate 12 with an alignment film and a second substrate 14 with an alignment film, and the liquid crystal film 20 provided between these substrates via a spacer (not shown). .
Note that the temperature of the liquid crystal cell (liquid crystal material) when irradiating with ultraviolet rays is the first temperature (X ° C. in FIG. 1A) from the second temperature (Y ° C. in FIG. 1B). It is preferable to increase the height. This makes it easier to fix the orientation with different Bragg reflections. Note that the first temperature may be lower than the second temperature (X ° C. <Y ° C.). Further, the alignment film may not be formed.
[液晶フィルムの用途]
 本実施形態の液晶フィルムは、例えば、偏光フィルム、位相差フィルム、バックライト、反射防止フィルム、光拡散フィルム、輝度向上フィルム、防眩フィルム等の光学フィルム;物体の歪み、伸縮、振動、衝撃等に起因する変形を、反射の波長(好ましくは反射色)によって検出するセンサー(圧力センサー、歪みセンサー、伸縮センサー、振動センサー、衝撃センサー等);脈波、呼吸、心弾動等の生体情報を、反射の波長(好ましくは反射色)によって検出するウェアラブルセンサー;上記光学フィルムを利用した光学素子;前記以外の光学素子;液晶表示素子;等に搭載して利用することができる。
 本実施形態の液晶フィルムは、ゴム弾性を有し、機械的圧力を加えることによって、機械的圧力に対応する波長の反射光を得ることができるので、反射の波長(好ましくは反射色)によって機械的圧力を検出できるセンサー、又は、機械的圧力を加えることによって反射光が得られる光学素子に搭載して利用することが好ましい。
[Use of liquid crystal film]
The liquid crystal film of the present embodiment includes, for example, a polarizing film, a retardation film, a backlight, an antireflection film, a light diffusion film, a brightness enhancement film, an antiglare film, and the like; distortion, stretching, vibration, impact, etc. of an object Sensors (pressure sensor, strain sensor, expansion / contraction sensor, vibration sensor, impact sensor, etc.) that detect deformation caused by the reflection wavelength (preferably reflected color); biological information such as pulse wave, respiration, and cardiac motion , A wearable sensor that detects the wavelength of reflection (preferably a reflected color); an optical element using the optical film; an optical element other than the above; a liquid crystal display element;
The liquid crystal film of the present embodiment has rubber elasticity, and by applying mechanical pressure, it is possible to obtain reflected light having a wavelength corresponding to the mechanical pressure. Therefore, the liquid crystal film has a mechanical property depending on the reflected wavelength (preferably reflected color). It is preferable to use the sensor mounted on an optical element that can detect reflected light by applying a mechanical pressure or a sensor that can detect the target pressure.
<センサー>
 本実施形態のセンサーは、上記実施形態の液晶フィルムを備える。
 センサーとしては、例えば、上記で例示した各種センサーが挙げられる。
<Sensor>
The sensor of this embodiment includes the liquid crystal film of the above embodiment.
Examples of the sensor include various sensors exemplified above.
<歪みセンサー>
 本実施形態のセンサーは、物体の歪みを検出する歪みセンサーであることが好ましい。
 本実施形態の歪みセンサーは、上記実施形態の液晶フィルムを備えるため、物体の歪みに起因する変形を、反射の波長(好ましくは反射色)によって検出することができる。
 例えば本実施形態の歪みセンサーを、歪みが生じやすい物体(例えば、橋梁、建物等の構造物)の箇所に予め設置しておくことによって、物体の歪みの程度を検出することができる。また、その歪み(変形)に起因する機械的圧力を可視的に、すなわち反射の波長(好ましくは反射色)によって検出することができる。
<Strain sensor>
The sensor of the present embodiment is preferably a strain sensor that detects strain of an object.
Since the strain sensor according to the present embodiment includes the liquid crystal film according to the above-described embodiment, the deformation caused by the distortion of the object can be detected by the wavelength of reflection (preferably the reflected color).
For example, by installing the strain sensor of the present embodiment in advance at a position of an object (for example, a structure such as a bridge or a building) where distortion is likely to occur, the degree of distortion of the object can be detected. Further, the mechanical pressure due to the distortion (deformation) can be detected visually, that is, by the wavelength of reflection (preferably the reflected color).
<ウェアラブルセンサー>
 本実施形態のセンサーは、生体情報を検出するウェアラブルセンサーであることが好ましい。ウェアラブルセンサーとは、身につけて使用できる比較的小型のセンサーのことである。
 本実施形態のウェアラブルセンサーは、上記実施形態の液晶フィルムを備えるため、生体情報を、反射の波長(好ましくは反射色)によって検出することができる。
 例えば本実施形態の歪みセンサーを、生体情報を取得したい箇所に直接(例えば肌に)貼り付ける若しくは装着する、又は、衣類、下着、靴下、手袋、ネクタイ、ハンカチ、マフラー、時計、メガネ、靴、スリッパ、帽子等に貼り付ける若しくは装着することによって、生体情報(脈波、呼吸、心弾動、体動(筋肉の動き等)など)を可視的に、すなわち反射の波長(好ましくは反射色)によって取得することができる。
<Wearable sensor>
The sensor of the present embodiment is preferably a wearable sensor that detects biological information. Wearable sensors are relatively small sensors that can be worn and used.
Since the wearable sensor of this embodiment is provided with the liquid crystal film of the said embodiment, biometric information can be detected with the wavelength of reflection (preferably reflection color).
For example, the strain sensor of the present embodiment is directly attached (for example, to the skin) or attached to a place where biometric information is to be acquired, or clothing, underwear, socks, gloves, ties, handkerchiefs, mufflers, watches, glasses, shoes, By attaching or attaching to slippers, hats, etc., biological information (pulse wave, breathing, cardiac motion, body movement (muscle movement, etc.)) is visible, that is, the wavelength of reflection (preferably reflected color) Can be obtained by:
<光学素子>
 本実施形態の光学素子は、上記実施形態の液晶フィルムを備える。
 本実施形態の光学素子を、例えば人為的に機械的圧力を加える、又は、自然に機械的圧力がかかる箇所に予め設置することにより、その応力に対応する異なる反射光が得られる。このような光学素子の用途としては、玩具、非常用光源、インテリア(置物、棚等)、建築部材(床、壁、階段等)、食器、容器等が挙げられる。
<Optical element>
The optical element of this embodiment includes the liquid crystal film of the above embodiment.
When the optical element of the present embodiment is artificially applied with mechanical pressure or is previously installed at a place where mechanical pressure is naturally applied, different reflected light corresponding to the stress can be obtained. Applications of such optical elements include toys, emergency light sources, interiors (such as figurines and shelves), building members (such as floors, walls, and stairs), tableware, and containers.
 本発明の液晶材料及び液晶フィルムは、液晶表示素子の表示材料に使用し得るだけでなく、フォトニックデバイス(液晶性を利用した各種センサー(歪みセンサー、ウェアラブルセンサー等)、光学素子等)にも利用することができる。このため、液晶表示素子の表示材料及びフォトニックデバイスに用いられる部品の製造、並びに、これらの販売に貢献するものである。 The liquid crystal material and liquid crystal film of the present invention can be used not only for display materials of liquid crystal display elements, but also for photonic devices (various sensors utilizing liquid crystal properties (distortion sensors, wearable sensors, etc.), optical elements, etc.). Can be used. For this reason, it contributes to manufacture of parts used for display materials and photonic devices of liquid crystal display elements, and sales thereof.
 以下に本発明を実施例により説明するが、本発明は、これらの実施例に限定されるものではない。なお、以下の説明において、特に断りのない限り「%」はすべて質量基準である。「wt%」は質量%を意味する。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples. In the following description, “%” is based on mass unless otherwise specified. “Wt%” means mass%.
(実施例1-1)
<液晶材料1-1作製>
 下記のスキームに準じて、HPC誘導体1-1(HPC-UndE/PrE)を合成した。
Example 1-1
<Production of liquid crystal material 1-1>
HPC derivative 1-1 (HPC-UndE / PrE) was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000049

 
Figure JPOXMLDOC01-appb-C000049

 
 後述の実施例2-1において、低分子量ヒドロキシプロピルセルロース(HPC)(和光純薬工業(株)製、製品名;ヒドロキシプロピルセルロース2.0~2.9、製品番号;082-07925、重量平均分子量:5.0×10)を用い、最初に添加する試薬を、塩化10-ウンデセノイル(東京化成工業(株)製、製品番号;U0008)2.4mL(11mmol)と、塩化プロピオニル(東京化成工業(株)製)13mL(150mmol)に変更したこと以外は、実施例2-1と同様にしてHPC誘導体1-1を合成した。得られたHPC誘導体1-1を液晶材料1-1とした。 In Example 2-1 described later, low molecular weight hydroxypropylcellulose (HPC) (manufactured by Wako Pure Chemical Industries, Ltd., product name: hydroxypropylcellulose 2.0 to 2.9, product number: 082-07925, weight average The molecular weight is 5.0 × 10 4 ), and the first reagent to be added is 2.4 mL (11 mmol) of 10-undecenoyl chloride (manufactured by Tokyo Chemical Industry Co., Ltd., product number; U0008) and propionyl chloride (Tokyo Chemical Industry). HPC derivative 1-1 was synthesized in the same manner as in Example 2-1, except that it was changed to 13 mL (150 mmol) manufactured by Kogyo Co., Ltd. The obtained HPC derivative 1-1 was designated as a liquid crystal material 1-1.
 液晶材料1-1について、それぞれH-NMRスペクトルを測定し(図示せず)、帰属したピークをもとに、不飽和二重結合を有する基への置換度及び疎水性基への置換度を算出した。
 液晶材料1-1は、HPC側鎖(水酸基中の水素原子)が、ウンデセノイル基(不飽和二重結合を有する基)への置換度が1.33であり、プロピオニル基(疎水性基)への置換度が1.62(HPC-UndE/PrE(UndE:PrE=1.33:1.62)であった。
With respect to the liquid crystal material 1-1, a 1 H-NMR spectrum was measured (not shown), and based on the assigned peak, the degree of substitution with a group having an unsaturated double bond and the degree of substitution with a hydrophobic group Was calculated.
In the liquid crystal material 1-1, the substitution degree of the HPC side chain (hydrogen atom in the hydroxyl group) with an undecenoyl group (group having an unsaturated double bond) is 1.33, and the propionyl group (hydrophobic group) The degree of substitution was 1.62 (HPC-UndE / PrE (UndE: PrE = 1.33: 1.62)).
(比較例1-2)
<液晶材料1-2の作製>
 下記のスキームに準じて、低分子量ヒドロキシプロピルセルロース(和光純薬工業(株)製、製品名;ヒドロキシプロピルセルロース2.0~2.9、製品番号;082-07925、重量平均分子量:5.0×10)を用い、HPC誘導体1-2(HPC-AcE/PrE)を合成した。
(Comparative Example 1-2)
<Preparation of liquid crystal material 1-2>
In accordance with the following scheme, low molecular weight hydroxypropyl cellulose (manufactured by Wako Pure Chemical Industries, Ltd., product name; hydroxypropyl cellulose 2.0 to 2.9, product number; 082-07925, weight average molecular weight: 5.0 × 10 4 ) was used to synthesize HPC derivative 1-2 (HPC-AcE / PrE).
Figure JPOXMLDOC01-appb-C000050

 
Figure JPOXMLDOC01-appb-C000050

 
 後述の実施例2-1において、低分子量ヒドロキシプロピルセルロース(HPC)(和光純薬工業(株)製、製品名;ヒドロキシプロピルセルロース2.0~2.9、製品番号;082-07925、重量平均分子量:5.0×10)を用い、最初に添加する試薬を塩化アクリロイル2.4mL(11mmol)と、塩化プロピオニル(東京化成工業(株)製)13mL(150mmol)とに変更したこと以外は、実施例2-1と同様にしてHPC誘導体1-2を合成した。得られたHPC誘導体1-2を液晶材料1-2とした。 In Example 2-1 described later, low molecular weight hydroxypropylcellulose (HPC) (manufactured by Wako Pure Chemical Industries, Ltd., product name: hydroxypropylcellulose 2.0 to 2.9, product number: 082-07925, weight average Molecular weight: 5.0 × 10 4 ), except that the first reagent added was changed to 2.4 mL (11 mmol) of acryloyl chloride and 13 mL (150 mmol) of propionyl chloride (manufactured by Tokyo Chemical Industry Co., Ltd.). The HPC derivative 1-2 was synthesized in the same manner as in Example 2-1. The obtained HPC derivative 1-2 was designated as a liquid crystal material 1-2.
 液晶材料1-2について、それぞれH-NMRスペクトルを測定し(図示せず)、帰属したピークをもとに、不飽和二重結合を有する基への置換度及び疎水性基への置換度を算出した。
 液晶材料1-2は、アクリロイル基(不飽和二重結合を有する基)への置換度は0.55であり、プロピオニル基(疎水性基)への置換度は2.24(HPC-AcE/PrE(AcE:PrE=0.55:2.24))であった。
The liquid crystal material 1-2 was measured for 1 H-NMR spectrum (not shown), and based on the assigned peaks, the degree of substitution with a group having an unsaturated double bond and the degree of substitution with a hydrophobic group were determined. Was calculated.
In the liquid crystal material 1-2, the degree of substitution with an acryloyl group (group having an unsaturated double bond) is 0.55, and the degree of substitution with a propionyl group (hydrophobic group) is 2.24 (HPC-AcE / PrE (AcE: PrE = 0.55: 2.24)).
(比較例1-3)
<液晶材料1-3の作製>
 下記のスキームに準じて、低分子量ヒドロキシプロピルセルロース(HPC)(和光純薬工業(株)製、製品名;ヒドロキシプロピルセルロース2.0~2.9、製品番号;082-07925、重量平均分子量:5.0×10)を用い、HPC誘導体1-3(HPC-PrE)を合成した。
(Comparative Example 1-3)
<Preparation of liquid crystal material 1-3>
According to the following scheme, low molecular weight hydroxypropylcellulose (HPC) (manufactured by Wako Pure Chemical Industries, Ltd., product name: hydroxypropylcellulose 2.0 to 2.9, product number; 082-07925, weight average molecular weight: HPC derivative 1-3 (HPC-PrE) was synthesized using 5.0 × 10 4 ).
Figure JPOXMLDOC01-appb-C000051

 
Figure JPOXMLDOC01-appb-C000051

 
 後述の実施例2-1において、低分子量ヒドロキシプロピルセルロース(HPC)(和光純薬工業(株)製、製品名;ヒドロキシプロピルセルロース2.0~2.9、製品番号;082-07925、重量平均分子量:5.0×10))を用い、最初に添加する試薬を塩化プロピオニル13mL(150mmol)に変更した以外は、実施例2-1と同様にして、HPC誘導体1-3(以下、「HPC-PrE」とも称する。)を合成した。これを液晶材料1-3とした。 In Example 2-1 described later, low molecular weight hydroxypropylcellulose (HPC) (manufactured by Wako Pure Chemical Industries, Ltd., product name: hydroxypropylcellulose 2.0 to 2.9, product number: 082-07925, weight average HPC derivative 1-3 (hereinafter referred to as “the molecular weight: 5.0 × 10 4 )” was used in the same manner as in Example 2-1, except that the reagent initially added was changed to propionyl chloride 13 mL (150 mmol). Also referred to as “HPC-PrE”). This was designated as Liquid Crystal Material 1-3.
 液晶材料1-3について、H-NMRスペクトルを測定し(図示せず)、帰属したピークをもとに、疎水性基への置換度を算出した。
 液晶材料1-3は、HPC側鎖(水酸基中の水素原子)が、プロピオニル基(疎水性基)への置換度が2.98(HPC-PrE(PrE=2.98))であった。
For the liquid crystal material 1-3, a 1 H-NMR spectrum was measured (not shown), and the degree of substitution with hydrophobic groups was calculated based on the assigned peaks.
In the liquid crystal material 1-3, the substitution degree of the HPC side chain (hydrogen atom in the hydroxyl group) with a propionyl group (hydrophobic group) was 2.98 (HPC-PrE (PrE = 2.98)).
[評価]
-液晶材料の粘弾性-
 上記で作製した液晶材料1-1~1-3の25℃における粘度を、レオメーター(製品名;MCR102、(株)アントンパール・ジャパン製、使用治具:パラレルプレート直径8mm、温度コントローラー:ペルチェ温調ステージ)を用いて測定し、角周波数に対する複素粘度、貯蔵弾性率及び損失弾性率を求めた。結果を図2に示す。また、図3に液晶材料1-1~1-3の角周波数に対する損失正接をプロットした結果を示す。
 損失正接の値が大きいほど、液晶材料が流動性を有していること、すなわち粘弾性を低減していることを示す。
[Evaluation]
-Viscoelasticity of liquid crystal materials-
The viscosity at 25 ° C. of the liquid crystal materials 1-1 to 1-3 prepared above was measured using a rheometer (product name: MCR102, manufactured by Anton Paar Japan Co., Ltd., jig used: parallel plate diameter 8 mm, temperature controller: Peltier The temperature was measured using a temperature control stage), and the complex viscosity, storage elastic modulus and loss elastic modulus with respect to the angular frequency were determined. The results are shown in FIG. FIG. 3 shows the result of plotting the loss tangent against the angular frequency of the liquid crystal materials 1-1 to 1-3.
A larger loss tangent value indicates that the liquid crystal material has fluidity, that is, viscoelasticity is reduced.
 図3に示すとおり、角周波数の小さい領域においては、実施例である液晶材料1-1(HPC-UndE/PrE)の損失正接が最も小さかった。これは、角周波数の小さい領域において、液晶材料1-1(HPC-UndE/PrE)の粘度の低さから、HPCポリマーネットワークが配向し、コレステリック液晶の分子らせん構造を自己組織的に形成し、その結果として、流動性が低下したと推察される。
 一方で、角周波数の大きい領域においては、実施例である液晶材料1-1(HPC-UndE/PrE)の損失正接が最も大きかった。
 HPC誘導体にせん断等の外力を加えた場合、実施例である液晶材料1-1(HPC-UndE/PrE)は最も高い流動性を示していた。
 HPC側鎖に置換している不飽和二重結合を有する基がウンデセノイル基である液晶材料1-1は、比較例である液晶材料1-2及び1-3と比べて、高い流動性を示すため、ハンドリングが容易で、かつ、容易に配向処理できることが分かる。
As shown in FIG. 3, in the region where the angular frequency is small, the loss tangent of the liquid crystal material 1-1 (HPC-UndE / PrE) as an example was the smallest. This is because the HPC polymer network is oriented due to the low viscosity of the liquid crystal material 1-1 (HPC-UndE / PrE) in the region where the angular frequency is small, and the molecular helical structure of the cholesteric liquid crystal is self-organized. As a result, it is assumed that the fluidity has decreased.
On the other hand, in the region where the angular frequency is large, the loss tangent of the liquid crystal material 1-1 (HPC-UndE / PrE) as an example was the largest.
When an external force such as shear was applied to the HPC derivative, the liquid crystal material 1-1 as an example (HPC-UndE / PrE) showed the highest fluidity.
The liquid crystal material 1-1 in which the group having an unsaturated double bond substituted on the HPC side chain is an undecenoyl group shows higher fluidity than the liquid crystal materials 1-2 and 1-3 as comparative examples. Therefore, it can be seen that handling is easy and alignment treatment can be easily performed.
(実施例2-1)
<液晶材料2-1の作製>
 下記のスキームに準じて、HPC誘導体2-1を合成した。
Example 2-1
<Preparation of liquid crystal material 2-1>
HPC derivative 2-1 was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000052

 
Figure JPOXMLDOC01-appb-C000052

 
 減圧下、室温(25℃)で24時間以上乾燥した中分子量ヒドロキシプロピルセルロース(HPC)(和光純薬工業(株)製、製品名;ヒドロキシプロピルセルロース6.0~10.0、製品番号;086-07945、重量平均分子量:1.5×10)6.2g(16mmol)を、窒素充填させたフラスコ内で、超脱水アセトン30mLに溶解させたのち、アルミホイルで遮光した状態で、室温(25℃)条件下で、末端に不飽和2重結合を有し長鎖炭化水素基の酸塩化物である塩化10-ウンデセノイル(東京化成工業(株)製、製品番号;U0008))2.5mL(12mmol)、及び、塩化アクリロイル((東京化成工業(株)製、A0147))0.57mL(7.0mmol)を加え24時間撹拌した。
 次に、塩化プロピオニル13mL(150mmol)を加え24時間撹拌した後、反応溶液を超純水に滴下させた。特級アセトンに再溶解させて、超純水への滴下による洗浄操作を3回以上繰り返した後、1日以上減圧乾燥することにより生成物であるHPC誘導体2-1を(以下、「HPC-UndE/AcE/PrE」とも称する。)得た。これを液晶材料2-1とした。収量は、6.0gであった。
 また、既述の方法により、HPC-UndE/AcE/PrEの重量平均分子量を測定した結果、重量平均分子量は、1.5×10であった。
Medium molecular weight hydroxypropylcellulose (HPC) dried at room temperature (25 ° C.) for 24 hours or more under reduced pressure (manufactured by Wako Pure Chemical Industries, Ltd., product name: hydroxypropylcellulose 6.0-10.0, product number: 086 −07945, weight average molecular weight: 1.5 × 10 5 ) 6.2 g (16 mmol) was dissolved in 30 mL of ultra-dehydrated acetone in a nitrogen-filled flask and then shielded with aluminum foil at room temperature ( 25 ° C) 10-undecenoyl chloride (product number; U0008) manufactured by Tokyo Chemical Industry Co., Ltd., which is an acid chloride of a long-chain hydrocarbon group having an unsaturated double bond at the terminal (12 mmol) and 0.57 mL (7.0 mmol) of acryloyl chloride ((Tokyo Chemical Industry Co., Ltd., A0147)) were added and stirred for 24 hours.
Next, 13 mL (150 mmol) of propionyl chloride was added and stirred for 24 hours, and then the reaction solution was added dropwise to ultrapure water. After re-dissolving in special grade acetone and repeating the washing operation by dropping into ultrapure water three times or more, HPC derivative 2-1 as a product is obtained by drying under reduced pressure for one day or more (hereinafter referred to as “HPC-UndE”). / AcE / PrE "). This was designated as Liquid Crystal Material 2-1. The yield was 6.0g.
Further, the weight average molecular weight of HPC-UndE / AcE / PrE was measured by the method described above, and as a result, the weight average molecular weight was 1.5 × 10 5 .
H-NMRスペクトルの測定)
 上記で合成した液晶材料2-1のH-NMRスペクトルを測定した。
 本発明に係るHPC誘導体2-1に由来するピーク(具体的にはHPC-UndE/AcE/PrE由来)のピークとして、5ppm付近のピークは、それぞれビニル基(図4の(a))の二重結合につくプロトンのピークであり、5.2ppm付近のピークは、末端のヒドロキシプロピル基のメチン基及びウンデセノイル基末端のプロトンのピークである。1.0ppm~2.5ppm付近のピークは、ウンデセノイル基及びプロピオニル基のメチレン基(図4の(b)及び(c))、β-グルコースモノマーユニットにあるプロトン、側鎖のヒドロキシプロピル基が有するメチン基のプロトンである。
(Measurement of 1 H-NMR spectrum)
The 1 H-NMR spectrum of the liquid crystal material 2-1 synthesized above was measured.
As a peak derived from the HPC derivative 2-1 according to the present invention (specifically, derived from HPC-UndE / AcE / PrE), each peak near 5 ppm is a vinyl group ((a) in FIG. 4). It is a proton peak attached to a heavy bond, and a peak in the vicinity of 5.2 ppm is a proton peak at the terminal hydroxypropyl group methine group and undecenoyl group terminal. The peak in the vicinity of 1.0 ppm to 2.5 ppm is attributed to the methylene group of undecenoyl group and propionyl group ((b) and (c) of FIG. 4), the proton in the β-glucose monomer unit, and the hydroxypropyl group in the side chain. It is the proton of the methine group.
 液晶材料2-1は、一般式(1A)において、R11、R12及びR13は、それぞれ独立に、アクリロイル基、ウンデセノイル基又はプロピオニル基であり、X11、X12及びX13は、それぞれ独立に、単結合又は(-CH-CH(CH)-O-)(但し、hは、0以上10以下の整数である)であり、n11が70である分子構造を有する。 In the liquid crystal material 2-1, in the general formula (1A), R 11 , R 12 and R 13 are each independently an acryloyl group, an undecenoyl group or a propionyl group, and X 11 , X 12 and X 13 are each Independently, it is a single bond or (—CH 2 —CH (CH 3 ) —O—) h (where h is an integer of 0 or more and 10 or less), and n11 is 70.
(不飽和二重結合を有する基の置換度及び疎水性基を有する基の置換度)
 帰属したピークをもとに、HPC側鎖(水酸基中の水素原子)において、不飽和二重結合を有する基(すなわち、ウンデセノイル基又はアクリロイル基)への置換度及び疎水性基(すなわち、プロピオニル基)への置換度を算出した。
 HPC誘導体2-1は、ウンデセノイル基(不飽和二重結合を有する基)への置換度は0.61であり、アクリロイル基(不飽和二重結合を有する基)への置換度は0.13あり、プロピオニル基(疎水性基)への置換度は2.22(HPC-UndE/AcE/PrE(UndE:AcE:PrE=0.61:0.13:2.22))であった。
(Substitution degree of a group having an unsaturated double bond and substitution degree of a group having a hydrophobic group)
Based on the assigned peak, the HPC side chain (hydrogen atom in the hydroxyl group) has a degree of substitution with a group having an unsaturated double bond (ie, undecenoyl group or acryloyl group) and a hydrophobic group (ie, propionyl group). The degree of substitution was calculated.
The HPC derivative 2-1 has a degree of substitution to an undecenoyl group (group having an unsaturated double bond) of 0.61, and a degree of substitution to an acryloyl group (group having an unsaturated double bond) is 0.13. The substitution degree to the propionyl group (hydrophobic group) was 2.22 (HPC-UndE / AcE / PrE (UndE: AcE: PrE = 0.61: 0.13: 2.22)).
<液晶フィルム2-1の作製>
 液晶配向膜として2.0wt%のポリビニルアルコール(PVA)(Aldrich社製、M:1.3×10~2.3×10、加水分解度(hydrolyzed):87%~89%)水溶液を調製した。スピンコーター(Active社製:ACT-220D II)を用いて、市販のスライドガラス(基板)に上記PVA水溶液を800rpmで10秒間、続けて1800rpmで20秒間スピン塗布し、PVA塗布基板を得た。
 その後、キュプラで巻いた棒を用いてPVA塗布基板を1軸方向に50回擦り、ラビング処理を施した。
 さらに、剥離操作に備えて、剥離剤を500rpmで10秒間スピン塗布し、約80℃のホットステージ上で3分程度熱処理した。これにより、ラビング処理及び剥離処理が施されたPVAガラス基板(以下、「ラビング・剥離処理PVAガラス基板」とも称する。)を得た。
 なお、ラビング・剥離処理PVAガラス基板は計2枚作製した。
<Preparation of liquid crystal film 2-1>
2.0 wt% of polyvinyl alcohol (PVA) as a liquid crystal alignment film (Aldrich Corp., M W: 1.3 × 10 4 ~ 2.3 × 10 4, the degree of hydrolysis (hydrolyzed): 87% ~ 89 %) aqueous solution Was prepared. Using a spin coater (Active: ACT-220D II), the PVA aqueous solution was spin-coated on a commercially available glass slide (substrate) at 800 rpm for 10 seconds and then at 1800 rpm for 20 seconds to obtain a PVA-coated substrate.
Then, the rubbing process was performed by rubbing the PVA-coated substrate 50 times in one axial direction using a stick wound with a cupra.
Further, in preparation for the peeling operation, the release agent was spin-coated at 500 rpm for 10 seconds and heat-treated on a hot stage at about 80 ° C. for about 3 minutes. As a result, a PVA glass substrate subjected to rubbing treatment and peeling treatment (hereinafter also referred to as “rubbing / peeling treatment PVA glass substrate”) was obtained.
A total of two rubbing / peeling-treated PVA glass substrates were produced.
 室温(25℃)で、2枚のラビング・剥離処理PVAガラス基板の間に約680μmのポリテトラフルオロエチレン(PTFE)スペーサーとともに液晶材料1を挟んだ。
 さらに、ずり配向処理を施し、4時間以上静置させた後、液晶セル2-1をホットステージ(メトラートレード社製)上で特定の温度まで加熱し、20分程度放置した。
At room temperature (25 ° C.), the liquid crystal material 1 was sandwiched with a polytetrafluoroethylene (PTFE) spacer of about 680 μm between two rubbing / peeling-treated PVA glass substrates.
Further, after shear alignment treatment was allowed to stand for 4 hours or longer, the liquid crystal cell 2-1 was heated to a specific temperature on a hot stage (manufactured by METTLER TRADE CO., LTD.) And left for about 20 minutes.
 上記で作製した液晶セル2-1に、水銀キセノンランプを光源とし、光学フィルター(UV-35/UV-D36A)を介して365nm付近(9.5mW)の紫外線を、30℃で、2時間以上照射した。その後、液晶セルの隙間にピンセットを差し込み、ゆっくりと引き上げて膜を剥離し、液晶フィルム2-1を得た。 The liquid crystal cell 2-1 produced above was irradiated with ultraviolet rays at around 365 nm (9.5 mW) at 30 ° C. for 2 hours or more through an optical filter (UV-35 / UV-D36A) using a mercury xenon lamp as a light source. Irradiated. Thereafter, tweezers were inserted into the gaps of the liquid crystal cell, and the film was peeled off slowly to obtain a liquid crystal film 2-1.
-液晶材料及び液晶フィルムの光学特性-
<FT-IRスペクトルの測定>
 実施例2で得た液晶材料2-1(HPC-UndE/AcE/PrE)を用いて、FT-IR(赤外全反射吸収測定法:ATR法)により、FT-IRスペクトルを測定した。結果を図5に示す。図5は実施例2-1のFT-IRスペクトルである。
 図5に示すように、1730cm-1付近にC=O伸縮振動のピークが強く表れた。また、3300cm-1~3600cm-1付近のOH伸縮振動のピークが減少した。したがって、実施例2の液晶材料2-1(HPC-UndE/AcE/PrE)は、アクリロイル基、プロピオニル基及びウンデセノイル基への置換度が十分であることが確認された。
-Optical properties of liquid crystal materials and liquid crystal films-
<Measurement of FT-IR spectrum>
Using the liquid crystal material 2-1 (HPC-UndE / AcE / PrE) obtained in Example 2, an FT-IR spectrum was measured by FT-IR (infrared total reflection absorption measurement method: ATR method). The results are shown in FIG. FIG. 5 is an FT-IR spectrum of Example 2-1.
As shown in FIG. 5, a peak of C═O stretching vibration appeared strongly in the vicinity of 1730 cm −1 . In addition, the peak of OH stretching vibration around 3300 cm −1 to 3600 cm −1 decreased. Therefore, it was confirmed that the liquid crystal material 2-1 (HPC-UndE / AcE / PrE) of Example 2 has a sufficient degree of substitution with the acryloyl group, propionyl group, and undecenoyl group.
[評価]
-圧縮時における波長のシフト変化-
 上記で作製した液晶フィルム2-1(エラストマー膜)の反射スペクトルを以下の条件で測定した。作製した液晶フィルム2-1の膜厚をノギスを用いて測った後、自作の圧縮チューニングセルを用いて30μmずつ液晶フィルム2-1を厚み方向へ圧縮した。小型ファイバマルチチャンネル分光器(Ocean Optics社製、型番;USB-4000)を用いて、30μm毎に透過スペクトルを測定することで、圧縮時における波長のシフト変化を測定した。その結果を図6に示す。
 なお、液晶フィルム2-1の膜厚は710μmであった。
[Evaluation]
-Wavelength shift change during compression-
The reflection spectrum of the liquid crystal film 2-1 (elastomer film) produced above was measured under the following conditions. After the thickness of the produced liquid crystal film 2-1 was measured using a caliper, the liquid crystal film 2-1 was compressed in the thickness direction by 30 μm using a self-made compression tuning cell. Using a small fiber multi-channel spectrometer (manufactured by Ocean Optics, model number: USB-4000), the transmission spectrum was measured every 30 μm, thereby measuring the change in wavelength shift during compression. The result is shown in FIG.
The film thickness of the liquid crystal film 2-1 was 710 μm.
-圧力応答性-
 液晶フィルム2-1に機械的圧力を加えたときの圧縮率(すなわち、膜厚減少率)に対する、機械的圧力による圧縮前の波長(λ)に対する圧縮後の波長(λ)の比(以下、「規格化したブラッグ反射波長」とも称する。)及び、後述の液晶フィルム2-2~2-4の規格化したブラッグ反射波長をそれぞれプロットして、回帰直線を求めた(図10)。 回帰直線より得られたそれぞれの傾きの値を表1に示す。
 回帰直線の傾きが1に近いほど圧力応答性に優れ、機械的圧力に対する反射光の波長のシフト変化が大きいことが分かる。
-Pressure response-
Ratio of wavelength (λ) after compression to wavelength (λ 0 ) before compression due to mechanical pressure with respect to compression rate (that is, film thickness reduction rate) when mechanical pressure is applied to liquid crystal film 2-1 , Also referred to as “standardized Bragg reflection wavelength”) and normalized Bragg reflection wavelengths of the liquid crystal films 2-2 to 2-4 described later were plotted to obtain a regression line (FIG. 10). Table 1 shows the slope values obtained from the regression line.
It can be seen that the closer the slope of the regression line is to 1, the better the pressure response, and the greater the shift in the wavelength of reflected light with respect to mechanical pressure.
(実施例2-2)
 実施例2-1において、液晶セルの紫外線照射時の温度を40℃に変更した以外は、実施例2-1と同様の方法で液晶材料2-2及び液晶フィルム2-2を作製し、同様の評価を行った。結果を図7に示す。
 なお、液晶フィルム2-2の膜厚は640μmであった。
(Example 2-2)
In Example 2-1, a liquid crystal material 2-2 and a liquid crystal film 2-2 were prepared in the same manner as in Example 2-1, except that the temperature at the time of UV irradiation of the liquid crystal cell was changed to 40 ° C. Was evaluated. The results are shown in FIG.
The film thickness of the liquid crystal film 2-2 was 640 μm.
(実施例2-3)
 実施例2-1おいて、液晶セルの紫外線照射時の温度を60℃に変更した以外は、実施例2-1と同様の方法で液晶材料2-3及び液晶フィルム2-3を作製し、同様の評価を行った。結果を図8に示す。
 なお、液晶フィルム2-3の膜厚は700μmであった。
(Example 2-3)
In Example 2-1, a liquid crystal material 2-3 and a liquid crystal film 2-3 were produced in the same manner as in Example 2-1, except that the temperature at the time of ultraviolet irradiation of the liquid crystal cell was changed to 60 ° C. Similar evaluations were made. The results are shown in FIG.
The film thickness of the liquid crystal film 2-3 was 700 μm.
(実施例2-4)
 実施例2-1おいて、液晶セルの紫外線照射時の温度を70℃に変更した以外は、実施例2-1と同様の方法で液晶材料2-4及び液晶フィルム2-4を作製し、同様の評価を行った。結果を図9に示す。
 なお、液晶フィルム2-4の膜厚は670μmであった。
(Example 2-4)
In Example 2-1, a liquid crystal material 2-4 and a liquid crystal film 2-4 were produced in the same manner as in Example 2-1, except that the temperature at the time of ultraviolet irradiation of the liquid crystal cell was changed to 70 ° C. Similar evaluations were made. The results are shown in FIG.
The film thickness of the liquid crystal film 2-4 was 670 μm.
(実施例3)
<液晶材料3の作製>
 下記のスキームに準じて、HPC誘導体3を合成した。
Example 3
<Preparation of liquid crystal material 3>
HPC derivative 3 was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000053

 
Figure JPOXMLDOC01-appb-C000053

 
 実施例2-1において、低分子量ヒドロキシプロピルセルロース(HPC)(和光純薬工業(株)製、製品名;ヒドロキシプロピルセルロース2.0~2.9、製品番号;082-07925、重量平均分子量;5.0×10)4.5g(10mmol)を用い、超脱水アセトンの量を22mL、最初に加えた試薬をカレンズAOI(2-アクリロイルオキシエチルイソシアナート)2.1mL(17mmol)、24時間撹拌後に加えた試薬として、不飽和2重結合を持たない長鎖炭化水素基の酸塩化物である塩化デカノイル3.4mL(17mmol)及び塩化ブチリル9.4mL(83mmol)に変更した以外は、実施例2-1と同様にして、HPC誘導体3(以下、「HPC-AcC/DecE/BuE」とも称する。)を得た。これを液晶材料3とした。
 なお収量は3.0gであった。
In Example 2-1, low molecular weight hydroxypropylcellulose (HPC) (manufactured by Wako Pure Chemical Industries, Ltd., product name; hydroxypropylcellulose 2.0 to 2.9, product number; 082-07925, weight average molecular weight; 5.0 × 10 4 ) 4.5 g (10 mmol), the amount of ultra-dehydrated acetone was 22 mL, and the first added reagent was Karenz AOI (2-acryloyloxyethyl isocyanate) 2.1 mL (17 mmol), 24 hours The reagents were added after stirring, except that they were changed to 3.4 mL (17 mmol) of decanoyl chloride and 9.4 mL (83 mmol) of butyryl chloride, which are acid chlorides of a long-chain hydrocarbon group having no unsaturated double bond. In the same manner as in Example 2-1, HPC derivative 3 (hereinafter also referred to as “HPC-AcC / DecE / BuE”) was obtained. This was designated as Liquid Crystal Material 3.
The yield was 3.0 g.
H-NMRスペクトルの測定)
 上記で合成したHPC誘導体3のH-NMRスペクトルを測定した。
 本発明に係るHPC誘導体3に由来するピーク(具体的にはHPC-AcC/DecE/BuE由来のピーク)として、5.8ppm、6.1ppm及び6.4ppm付近のピークは、それぞれアクリロイル基の二重結合につくプロトンのピークであり、4.7ppm~5.2ppm付近のピークは、末端のヒドロキシプロピル基のメチン基のプロトンのピークである(図11の(a))。2.7ppm~4.5ppm付近のピークは、β-グルコースモノマーユニットにあるプロトンのピーク、アクリロイル基とカルバメート結合との間のエチレン基のプロトンのピークである。2.3ppm付近のピークは、デカノイル基及びブチリル基におけるエステル結合に隣接するメチレン基の有するプロトンのピークである(図11の(b))。0.9ppm~1.4ppm付近のピークは、デカノイル基のメチル基及び末端側の6つメチレン基の有するプロトンのピーク、並びに、ブチリル基のメチル基の有するプロトンのピークである(図11の(c))。
(Measurement of 1 H-NMR spectrum)
The 1 H-NMR spectrum of the HPC derivative 3 synthesized above was measured.
As peaks derived from the HPC derivative 3 according to the present invention (specifically, peaks derived from HPC-AcC / DecE / BuE), peaks around 5.8 ppm, 6.1 ppm and 6.4 ppm are respectively two of acryloyl groups. A peak of protons attached to a heavy bond, and a peak around 4.7 ppm to 5.2 ppm is a proton peak of a methine group of a terminal hydroxypropyl group ((a) of FIG. 11). The peak in the vicinity of 2.7 ppm to 4.5 ppm is a proton peak in the β-glucose monomer unit, an ethylene group proton peak between the acryloyl group and the carbamate bond. The peak around 2.3 ppm is a proton peak of a methylene group adjacent to the ester bond in the decanoyl group and butyryl group ((b) of FIG. 11). The peaks in the vicinity of 0.9 ppm to 1.4 ppm are the proton peaks of the methyl group of the decanoyl group and the six methylene groups on the terminal side, and the proton peaks of the methyl group of the butyryl group ((( c)).
 HPC誘導体3は、一般式(1A)において、R11、R12及びR13は、それぞれ独立に、アクリロイル基、デカノイル基又はブチリル基であり、X11、X12及びX13は、それぞれ独立に、単結合又は(-CH-CH(CH)-O-)(但し、hは、0以上10以下の整数である)であり、n11が70である分子構造を有するHPC誘導体3である。 In the HPC derivative 3, in the general formula (1A), R 11 , R 12 and R 13 are each independently an acryloyl group, a decanoyl group or a butyryl group, and X 11 , X 12 and X 13 are each independently A single bond or (—CH 2 —CH (CH 3 ) —O—) h (where h is an integer of 0 or more and 10 or less), and an HPC derivative 3 having a molecular structure in which n11 is 70. is there.
 帰属したピークをもとに、HPC側鎖(水酸基中の水素原子)において、不飽和二重結合を有する基(すなわち、アクリロイル基)への置換度及び疎水性基(すなわち、デカノイル基及びブチリル基)への置換度を算出した。
 HPC誘導体3は、デカノイル基(疎水性基)への置換度は0.53であり、アクリロイル基(不飽和二重結合を有する基)への置換度は0.14あり、ブチリル基(疎水性基)への置換度は2.33(HPC-AcC/DecE/BuE(AcC:DecE:BuE=0.14:0.53:2.33))であった。
Based on the assigned peak, HPC side chain (hydrogen atom in the hydroxyl group) has a degree of substitution with a group having an unsaturated double bond (ie, acryloyl group) and a hydrophobic group (ie, decanoyl group and butyryl group). The degree of substitution was calculated.
The HPC derivative 3 has a substitution degree to a decanoyl group (hydrophobic group) of 0.53, a substitution degree to an acryloyl group (group having an unsaturated double bond), 0.14, and a butyryl group (hydrophobic group). The degree of substitution on the group was 2.33 (HPC-AcC / DecE / BuE (AcC: DecE: BuE = 0.14: 0.53: 2.33)).
 また調製した液晶材料3を用いて、実施例2-1において液晶セルの紫外線照射時の温度を25℃に変更した以外は、実施例2-1と同様の方法でと同様にして液晶セル3及び液晶フィルム3を作製し、同様の評価を行った。得られた結果を図12、13及び14に示す。なお、液晶フィルム3の膜厚は680μmであった。
 図12は実施例3のFT-IRスペクトルである。
The prepared liquid crystal material 3 was used in the same manner as in Example 2-1, except that the temperature at the time of UV irradiation of the liquid crystal cell in Example 2-1 was changed to 25 ° C. And the liquid crystal film 3 was produced and the same evaluation was performed. The obtained results are shown in FIGS. The film thickness of the liquid crystal film 3 was 680 μm.
FIG. 12 is an FT-IR spectrum of Example 3.
 上記で作製した液晶フィルム3の規格化したブラッグ反射波長をプロットし、回帰直線を求めた(図14)。回帰直線よりえられた傾きの値を表1に示す。 The normalized Bragg reflection wavelength of the liquid crystal film 3 produced above was plotted to obtain a regression line (FIG. 14). Table 1 shows the slope values obtained from the regression line.
 上記で作製した各液晶フィルム2-1、2-2、2-3、2-4及び液晶フィルム3について、液晶フィルムを固定化したときの温度(℃)、膜厚(μm)及び回帰直線の傾きを表1に示す。 For each of the liquid crystal films 2-1, 2-2, 2-3, 2-4 and the liquid crystal film 3 prepared above, the temperature (° C.), film thickness (μm), and regression line The slope is shown in Table 1.
Figure JPOXMLDOC01-appb-T000054

 
Figure JPOXMLDOC01-appb-T000054

 
 表1に示すように、液晶材料2-1~2-4より作製された液晶フィルムは、サーモトロピックコレステリック液晶性を示し、かつ、機械的圧力に対する反射光の波長のシフト変化が大きいことがわかる。
 40℃で固定化した液晶フィルム2-2は、特に優れた圧力応答性を示した。
 HPC側鎖に導入した不飽和二重結合を有していない炭素数5以上のデカノイル基を有する液晶フィルム3では、紫外線照射によってアクリロイル基の架橋反応が進み、さらには、圧縮応答性を示すことわかる。
As shown in Table 1, it can be seen that the liquid crystal films prepared from the liquid crystal materials 2-1 to 2-4 exhibit thermotropic cholesteric liquid crystal properties and have a large shift in the wavelength of reflected light with respect to mechanical pressure. .
The liquid crystal film 2-2 fixed at 40 ° C. showed particularly excellent pressure response.
In the liquid crystal film 3 having a decanoyl group having 5 or more carbon atoms that does not have an unsaturated double bond introduced into the HPC side chain, the crosslinking reaction of the acryloyl group proceeds by ultraviolet irradiation, and further exhibits a compression response. Recognize.
(実施例4-1)
<液晶材料4-1の作製>
 実施例2-1において、低分子量ヒドロキシプロピルセルロース(HPC)(和光純薬工業(株)製、製品名;ヒドロキシプロピルセルロース2.0~2.9、製品番号;082-07925、重量平均分子量:5.0×10)を用いて、添加する試薬を塩化10-ウンデセノイル(東京化成工業(株)製、製品番号;U0008)2.0mL(9.6mmol)及び塩化ブチリル(東京化成工業(株)製)14.6mL(140mmol)に変更したこと以外は、実施例2-1と同様にして、HPC誘導体4-1(以下、「HPC-UndE/BuE」とも称する。)を得た。なお、HPC-UndE/BuEの収量は、3.0gであった。
Example 4-1
<Preparation of liquid crystal material 4-1>
In Example 2-1, low molecular weight hydroxypropylcellulose (HPC) (manufactured by Wako Pure Chemical Industries, Ltd., product name; hydroxypropylcellulose 2.0 to 2.9, product number; 082-07925, weight average molecular weight: 5.0 × 10 4 ), 10-undecenoyl chloride (manufactured by Tokyo Chemical Industry Co., Ltd., product number; U0008) 2.0 mL (9.6 mmol) and butyryl chloride (Tokyo Chemical Industry Co., Ltd.) The HPC derivative 4-1 (hereinafter also referred to as “HPC-UndE / BuE”) was obtained in the same manner as in Example 2-1, except that it was changed to 14.6 mL (140 mmol). The yield of HPC-UndE / BuE was 3.0 g.
 HPC誘導体4-1は、一般式(1A)において、R11、R12及びR13は、それぞれ独立に、ウンデセノイル基又はブチリル基であり、X11、X12及びX13は、それぞれ独立に、単結合又は(-CH-CH(CH)-O-)(但し、hは、0以上10以下の整数である)であり、n11が70である分子構造を有するHPC誘導体4-1である。 In the HPC derivative 4-1, in the general formula (1A), R 11 , R 12 and R 13 are each independently an undecenoyl group or a butyryl group, and X 11 , X 12 and X 13 are each independently HPC derivative 4-1 having a single bond or (—CH 2 —CH (CH 3 ) —O—) h (where h is an integer of 0 or more and 10 or less) and n11 is 70 It is.
 HPC誘導体4-1のH-NMRスペクトルを測定し(図示せず)、帰属したピークをもとに、HPC側鎖(水酸基中の水素原子)において、不飽和二重結合を有する基(すなわち、ウンデセノイル基)への置換度及び疎水性基(すなわち、ブチリル基)への置換度を算出した。
 HPC誘導体4-1は、ウンデセノイル基(不飽和二重結合を有する基)への置換度は0.36であり、ブチリル基(疎水性基)への置換度は2.62(HPC-UndE/BuE(UndE:BuE=0.36:2.62))であった。
A 1 H-NMR spectrum of the HPC derivative 4-1 was measured (not shown), and a group having an unsaturated double bond in the HPC side chain (hydrogen atom in the hydroxyl group) based on the assigned peak (ie, , Undecenoyl group) and hydrophobic group (ie, butyryl group) were calculated.
The HPC derivative 4-1 has a degree of substitution with an undecenoyl group (group having an unsaturated double bond) of 0.36, and a degree of substitution with a butyryl group (hydrophobic group) of 2.62 (HPC-UndE / BuE (UndE: BuE = 0.36: 2.62)).
 HPC誘導体4-1に、液晶材料の全質量に対して、1質量%になるように光重合開始剤として2-Hydroxy-2-methyl-1-phenylpropane-1-one(HMPP)(東京化成工業(株)製、製品番号;H0991)を加え撹拌した。これを液晶材料4-1とした。
 ついで、市販のスライドガラス(基板)の上に2wt%のポリビニルアルコール(PVA)を800rpmで10秒間スピン塗布した後、液晶フィルム2-1の作製と同様にラビング処理を施し、ラビング・剥離処理PVAガラス基板を作製した。
 その基板の上に、更に剥離剤を800rpmで10秒間スピン塗布した2枚のガラス基板の間に、液晶フィルム2-1の作製と同様に、上記で調製したHMPPを含む液晶材料4-1を挟み込み、液晶セル4-1を作製した。
 液晶セル4-1に紫外線を照射した後、液晶エラストマー膜をガラス基板から剥離し液晶フィルム4-1を得た。
 なお、液晶フィル4-1の膜厚は約500μmであった。
To the HPC derivative 4-1, 2-Hydroxy-2-methyl-1-phenylpropane-1-one (HMPP) (Tokyo Chemical Industry Co., Ltd.) was used as a photopolymerization initiator so as to be 1% by mass with respect to the total mass of the liquid crystal material. Co., Ltd., product number; H0991) was added and stirred. This was designated as Liquid Crystal Material 4-1.
Next, after spin coating 2 wt% polyvinyl alcohol (PVA) on a commercially available slide glass (substrate) at 800 rpm for 10 seconds, rubbing treatment was performed in the same manner as the production of the liquid crystal film 2-1, and rubbing / peeling treatment PVA. A glass substrate was produced.
On the substrate, a liquid crystal material 4-1 containing HMPP prepared as described above was placed between two glass substrates on which a release agent was spin-coated at 800 rpm for 10 seconds, similarly to the production of the liquid crystal film 2-1. The liquid crystal cell 4-1 was produced by sandwiching.
After the liquid crystal cell 4-1 was irradiated with ultraviolet rays, the liquid crystal elastomer film was peeled from the glass substrate to obtain a liquid crystal film 4-1.
The film thickness of the liquid crystal film 4-1 was about 500 μm.
 得られた液晶フィルム4-1について、実施例2-1と同様にして評価を行った。得られた結果を図15及び図16に示す。 The obtained liquid crystal film 4-1 was evaluated in the same manner as in Example 2-1. The obtained results are shown in FIGS.
(実施例4-2)
<液晶材料4-2の作製>
 実施例2-1において、低分子量ヒドロキシプロピルセルロース(HPC)(和光純薬工業(株)製、製品名;ヒドロキシプロピルセルロース2.0~2.9、製品番号;082-07925、重量平均分子量:5.0×10)を用いて、添加する試薬を塩化10-ウンデセノイル(東京化成工業(株)製、製品番号;U0008)3.0mL(15mmol)及び塩化ブチリル(東京化成工業(株)製)14.1mL(135mmol)に変更したこと以外は、実施例2-1と同様にして、HPC誘導体4-2(以下、「HPC-UndE/BuE」とも称する。)を得た。
 なお、HPC-UndE/BuEの収量は2.5gであった。
(Example 4-2)
<Preparation of liquid crystal material 4-2>
In Example 2-1, low molecular weight hydroxypropylcellulose (HPC) (manufactured by Wako Pure Chemical Industries, Ltd., product name; hydroxypropylcellulose 2.0 to 2.9, product number; 082-07925, weight average molecular weight: 5.0 × 10 4 ), 10-undecenoyl chloride (manufactured by Tokyo Chemical Industry Co., Ltd., product number; U0008) 3.0 mL (15 mmol) and butyryl chloride (manufactured by Tokyo Chemical Industry Co., Ltd.) ) HPC derivative 4-2 (hereinafter also referred to as “HPC-UndE / BuE”) was obtained in the same manner as in Example 2-1, except that the volume was changed to 14.1 mL (135 mmol).
The yield of HPC-UndE / BuE was 2.5 g.
 HPC誘導体4-2のH-NMRスペクトルを測定し(図示せず)、帰属したピークをもとに、HPC側鎖(水酸基中の水素原子)において、不飽和二重結合を有する基(すなわち、ウンデセノイル基)への置換度及び疎水性基(すなわち、ブチリル基)への置換度を算出した。
 HPC誘導体4-2は、ウンデセノイル基(不飽和二重結合を有する基)への置換度は0.43であり、ブチリル基(疎水性基)への置換度は2.54(HPC-UndE/BuE(UndE:BuE=0.43:2.54))であった。
A 1 H-NMR spectrum of HPC derivative 4-2 was measured (not shown), and a group having an unsaturated double bond in the HPC side chain (hydrogen atom in the hydroxyl group) based on the assigned peak (ie, , Undecenoyl group) and hydrophobic group (ie, butyryl group) were calculated.
In the HPC derivative 4-2, the degree of substitution with the undecenoyl group (group having an unsaturated double bond) is 0.43, and the degree of substitution with the butyryl group (hydrophobic group) is 2.54 (HPC-UndE / BuE (UndE: BuE = 0.43: 2.54)).
 HPC誘導体4-2に、光重合開始剤としてHMPPを液晶材料の全質量に対して、1質量%になるように加え撹拌した。これを液晶材料4-2とした。 HMPP as a photopolymerization initiator was added to the HPC derivative 4-2 at 1% by mass with respect to the total mass of the liquid crystal material and stirred. This was designated as Liquid Crystal Material 4-2.
 実施例4-1において、HPC誘導体4-1の代わりに液晶材料4-2を用いた以外は、実施例4-1と同様にして、液晶セル4-2及び液晶フィルム4-2を作製し、実施例2-1と同様にして評価を行った。得られた結果を図16及び図17に示す。
 なお、液晶フィルム4-2の膜厚は約500μmであった。
In Example 4-1, a liquid crystal cell 4-2 and a liquid crystal film 4-2 were prepared in the same manner as in Example 4-1, except that the liquid crystal material 4-2 was used instead of the HPC derivative 4-1. Evaluation was performed in the same manner as in Example 2-1. The obtained results are shown in FIGS.
The film thickness of the liquid crystal film 4-2 was about 500 μm.
(実施例5-1)
<液晶材料5-1の作製>
 実施例2-1において、低分子量ヒドロキシプロピルセルロース(HPC)(和光純薬工業(株)製、製品名;ヒドロキシプロピルセルロース2.0~2.9、製品番号;082-07925、重量平均分子量:5.0×10)を用いて、添加する試薬を塩化10-ウンデセノイル(東京化成工業(株)製、製品番号;U0008)3.0mL(15mmol)及び塩化プロピオニル(東京化成工業(株)製)11.8mL(135mmol)に変更したこと以外は、実施例2-1と同様にして、HPC誘導体5-1(以下、「HPC-UndE/PrE」とも称する。)を得た。
 なお、HPC-UndE/PrEの収量は3.0gであった。
Example 5-1
<Preparation of liquid crystal material 5-1>
In Example 2-1, low molecular weight hydroxypropylcellulose (HPC) (manufactured by Wako Pure Chemical Industries, Ltd., product name; hydroxypropylcellulose 2.0 to 2.9, product number; 082-07925, weight average molecular weight: 5.0 × 10 4 ), 10-undecenoyl chloride (manufactured by Tokyo Chemical Industry Co., Ltd., product number; U0008) 3.0 mL (15 mmol) and propionyl chloride (manufactured by Tokyo Chemical Industry Co., Ltd.) ) HPC derivative 5-1 (hereinafter also referred to as “HPC-UndE / PrE”) was obtained in the same manner as in Example 2-1, except that the amount was changed to 11.8 mL (135 mmol).
The yield of HPC-UndE / PrE was 3.0 g.
 HPC誘導体5-1のH-NMRスペクトルを測定し(図示せず)、帰属したピークをもとに、HPC側鎖(水酸基中の水素原子)において、不飽和二重結合を有する基(すなわち、ウンデセノイル基)への置換度及び疎水性基(すなわち、プロピオニル基)への置換度を算出した。
 HPC誘導体5-1は、ウンデセノイル基(不飽和二重結合を有する基)への置換度は0.43であり、プロピオニル基(疎水性基)への置換度は2.55(HPC-UndE/PrE(UndE:PrE=0.43:2.55))であった。
A 1 H-NMR spectrum of the HPC derivative 5-1 was measured (not shown), and a group having an unsaturated double bond in the HPC side chain (hydrogen atom in the hydroxyl group) based on the assigned peak (ie, , Undecenoyl group) and hydrophobic group (that is, propionyl group) were calculated.
The HPC derivative 5-1 has a degree of substitution with an undecenoyl group (group having an unsaturated double bond) of 0.43, and a degree of substitution with a propionyl group (hydrophobic group) of 2.55 (HPC-UndE / PrE (UndE: PrE = 0.43: 2.55)).
 HPC誘導体5-1に、光重合開始剤としてHMPPを液晶材料の全質量に対して、1質量%になるように加え撹拌した。これを液晶材料5-1とした。 HMPP as a photopolymerization initiator was added to the HPC derivative 5-1 at 1 mass% with respect to the total mass of the liquid crystal material and stirred. This was designated as Liquid Crystal Material 5-1.
 実施例4-1において、HPC誘導体4-1の代わりにHPC誘導体5-1を用いた以外は、実施例4-1と同様にして、液晶セル5-1及び液晶フィルム5-1を作製し、実施例2-1と同様にして評価を行った。得られた結果を図18及び図19に示す。
 なお、液晶フィルム5-1の膜厚は約500μmであった。
A liquid crystal cell 5-1 and a liquid crystal film 5-1 were produced in the same manner as in Example 4-1, except that the HPC derivative 5-1 was used instead of the HPC derivative 4-1 in Example 4-1. Evaluation was performed in the same manner as in Example 2-1. The obtained results are shown in FIGS.
The film thickness of the liquid crystal film 5-1 was about 500 μm.
(実施例5-2)
<液晶材料5-2の作製>
 実施例2-1において、低分子量ヒドロキシプロピルセルロース(HPC)(和光純薬工業(株)製、製品名;ヒドロキシプロピルセルロース2.0~2.9、製品番号;082-07925、重量平均分子量:5.0×10)を用いて、最初に添加する試薬を塩化10-ウンデセノイル(東京化成工業(株)製、製品番号;U0008)6.0mL(30mmol)及び塩化プロピオニル(東京化成工業(株)製)10.6mL(120mmol)に変更したこと以外は、実施例2-1と同様にして、HPC誘導体5-2(以下、「HPC-UndE/PrE」とも称する。)を得た。なお、HPC-UndE/PrEの収量は2.5gであった。
(Example 5-2)
<Preparation of liquid crystal material 5-2>
In Example 2-1, low molecular weight hydroxypropylcellulose (HPC) (manufactured by Wako Pure Chemical Industries, Ltd., product name; hydroxypropylcellulose 2.0 to 2.9, product number; 082-07925, weight average molecular weight: 5.0 × 10 4 ), 10-undecenoyl chloride (manufactured by Tokyo Chemical Industry Co., Ltd., product number; U0008) 6.0 mL (30 mmol) and propionyl chloride (Tokyo Chemical Industry Co., Ltd.) HPC derivative 5-2 (hereinafter also referred to as “HPC-UndE / PrE”) was obtained in the same manner as in Example 2-1, except that the volume was changed to 10.6 mL (120 mmol). The yield of HPC-UndE / PrE was 2.5 g.
 HPC誘導体5-2のH-NMRスペクトルを測定し(図示せず)、帰属したピークをもとに、HPC側鎖(水酸基中の水素原子)において、不飽和二重結合を有する基(すなわち、ウンデセノイル基)への置換度及び疎水性基(すなわち、プロピオニル基)への置換度を算出した。
 HPC誘導体5-2は、ウンデセノイル基(不飽和二重結合を有する基)への置換度は0.94であり、プロピオニル基(疎水性基)への置換度は2.05(HPC-UndE/PrE(UndE:PrE=0.94:2.05))であった。
A 1 H-NMR spectrum of HPC derivative 5-2 was measured (not shown), and a group having an unsaturated double bond in the HPC side chain (hydrogen atom in the hydroxyl group) based on the assigned peak (ie, , Undecenoyl group) and hydrophobic group (that is, propionyl group) were calculated.
In the HPC derivative 5-2, the degree of substitution with an undecenoyl group (group having an unsaturated double bond) is 0.94, and the degree of substitution with a propionyl group (hydrophobic group) is 2.05 (HPC-UndE / PrE (UndE: PrE = 0.94: 2.05)).
 HPC誘導体5-2に、光重合開始剤としてHMPPを液晶材料の全質量に対して、1質量%になるように加え撹拌した。これを液晶材料5-2とした。 HMPP as a photopolymerization initiator was added to the HPC derivative 5-2 at 1% by mass with respect to the total mass of the liquid crystal material and stirred. This was designated as Liquid Crystal Material 5-2.
 実施例4-1において、HPC誘導体4-1の代わりにHPC誘導体5-2を用いた以外は、実施例4-1と同様にして、液晶セル5-2及び液晶フィルム5-2を作製し、実施例2-1と同様にして評価を行った。得られた結果を図19及び図20に示す。
 なお、液晶フィルム5-2の膜厚は約500μmであった。
A liquid crystal cell 5-2 and a liquid crystal film 5-2 were produced in the same manner as in Example 4-1, except that the HPC derivative 5-2 was used instead of the HPC derivative 4-1 in Example 4-1. Evaluation was performed in the same manner as in Example 2-1. The obtained results are shown in FIGS.
The film thickness of the liquid crystal film 5-2 was about 500 μm.
(実施例6)
<液晶材料6-1及び6-2の作製>
 実施例4-1と同様にして、添加する試薬を塩化10-ウンデセノイル(東京化成工業(株)製、製品番号;U0008)1.5mL(7.3mmol)及び塩化ブチリル(東京化成工業(株)製)14.6mL(140mmol)に変更したこと以外は実施例4-1と同様にして、HPC誘導体6-1(以下、「HPC-UndE/BuE」とも称する。)を合成した。なお、HPC誘導体6-1の収量は3.0gであった。
 また、実施例4-1と同様にして、HPC誘導体6-2(以下、「HPC-UndE/BuE」とも称する。)を合成した。なお、HPC誘導体6-2の収量は3.0gであった。
 HPC誘導体6-1及び6-2のH-NMRスペクトルを測定し(図示せず)、帰属したピークをもとに、HPC側鎖(水酸基中の水素原子)において、不飽和二重結合を有する基(すなわち、ウンデセノイル基)への置換度及び疎水性基(すなわち、ブチリル基)への置換度を算出した。
 HPC誘導体6-1は、ウンデセノイル基(不飽和二重結合を有する基)への置換度は0.27であり、ブチリル基(疎水性基)への置換度は2.67(HPC-UndE/BuE(UndE:BuE=0.27:2.67))であった。これを液晶材料6-1とした。
(Example 6)
<Preparation of liquid crystal materials 6-1 and 6-2>
In the same manner as in Example 4-1, the reagents to be added were 10-undecenoyl chloride (manufactured by Tokyo Chemical Industry Co., Ltd., product number; U0008) 1.5 mL (7.3 mmol) and butyryl chloride (Tokyo Chemical Industry Co., Ltd.). HPC derivative 6-1 (hereinafter also referred to as “HPC-UndE / BuE”) was synthesized in the same manner as in Example 4-1, except that the amount was changed to 14.6 mL (140 mmol). The yield of HPC derivative 6-1 was 3.0 g.
Further, HPC derivative 6-2 (hereinafter also referred to as “HPC-UndE / BuE”) was synthesized in the same manner as Example 4-1. The yield of HPC derivative 6-2 was 3.0 g.
Measure 1 H-NMR spectra of HPC derivatives 6-1 and 6-2 (not shown), and based on the assigned peak, the unsaturated double bond was found in the HPC side chain (hydrogen atom in the hydroxyl group). The degree of substitution with the group having the same (ie, undecenoyl group) and the degree of substitution with the hydrophobic group (ie, butyryl group) were calculated.
The HPC derivative 6-1 has a substitution degree to the undecenoyl group (group having an unsaturated double bond) of 0.27 and a substitution degree to the butyryl group (hydrophobic group) of 2.67 (HPC-UndE / BuE (UndE: BuE = 0.27: 2.67)). This was designated as Liquid Crystal Material 6-1.
 HPC誘導体6-2は、ウンデセノイル基(不飽和二重結合を有する基)への置換度は0.36であり、ブチリル基(疎水性基)への置換度は2.64(HPC-UndE/BuE(UndE:BuE=0.36:2.64))であった。これを液晶材料6-2とした。 In the HPC derivative 6-2, the degree of substitution with an undecenoyl group (group having an unsaturated double bond) is 0.36, and the degree of substitution with a butyryl group (hydrophobic group) is 2.64 (HPC-UndE / BuE (UndE: BuE = 0.36: 2.64)). This was designated as Liquid Crystal Material 6-2.
 実施例4-1において、HPC誘導体4-1の代わりにHPC誘導体6-1又は6-2を用いた以外は、実施例4-1と同様にして、液晶セル6-1及び6-2並びに液晶フィルム6-1及び6-2を作製した。 In Example 4-1, the liquid crystal cells 6-1 and 6-2 and the liquid crystal cells 6-1 and 6-2 were prepared in the same manner as in Example 4-1, except that the HPC derivative 6-1 or 6-2 was used instead of the HPC derivative 4-1. Liquid crystal films 6-1 and 6-2 were produced.
(比較例7)
<液晶材料7の作製>
 比較例1-2において、添加する試薬を塩化ブチリル15.6mL(東京化成工業(株)製)(150mmol)に変更した以外は比較例1-2と同様にして、HPC誘導体7(以下、「HPC-AcE/BuE」とも称する。)を合成した。これを液晶材料7とした。
 液晶材料7について、それぞれH-NMRスペクトルを測定し(図示せず)、帰属したピークをもとに、不飽和二重結合を有する基への置換度及び疎水性基への置換度を算出した。
 液晶材料7は、アクリロイル基(不飽和二重結合を有する基)への置換度は0.55であり、ブチリル基(疎水性基)への置換度は2.36(HPC-AcE/BuE(AcE:BuE=0.55:2.36))であった。
(Comparative Example 7)
<Preparation of liquid crystal material 7>
In Comparative Example 1-2, HPC derivative 7 (hereinafter referred to as “hereinafter referred to as“ PCC derivative 7 ”) was prepared in the same manner as in Comparative Example 1-2, except that the reagent to be added was changed to 15.6 mL of butyryl chloride (Tokyo Chemical Industry Co., Ltd.) Also referred to as “HPC-AcE / BuE”). This was designated as a liquid crystal material 7.
For the liquid crystal material 7, 1 H-NMR spectrum was measured (not shown), and the degree of substitution with a group having an unsaturated double bond and the degree of substitution with a hydrophobic group were calculated based on the assigned peak. did.
In the liquid crystal material 7, the degree of substitution with an acryloyl group (group having an unsaturated double bond) is 0.55, and the degree of substitution with a butyryl group (hydrophobic group) is 2.36 (HPC-AcE / BuE ( AcE: BuE = 0.55: 2.36)).
 実施例4-1において、HPC誘導体4-1の代わりにHPC誘導体7を用いた以外は、実施例4-1と同様にして、液晶セル7及び液晶フィルム7を作製した。 In Example 4-1, a liquid crystal cell 7 and a liquid crystal film 7 were produced in the same manner as in Example 4-1, except that the HPC derivative 7 was used instead of the HPC derivative 4-1.
[評価]
-膜の延伸性-
 上記で調製した液晶フィルム6-1及び6-2並びに液晶フィルム7を、引張試験機(製品名;オートグラフAGS-X、(株)島津製作所製)を用いて、ロードセル荷重500N、チャック間距離10mm、引張速度は10mm/分の条件で延伸度を測定した。
 なお、延伸度が大きいほど、ゴム弾性に優れることを意味する。結果を表2及び図21に示す。
[Evaluation]
-Film stretchability-
Using the tensile tester (product name: Autograph AGS-X, manufactured by Shimadzu Corporation), the liquid crystal films 6-1 and 6-2 and the liquid crystal film 7 prepared above were loaded with a load cell load of 500 N and a distance between chucks. The degree of stretching was measured under the conditions of 10 mm and a tensile speed of 10 mm / min.
In addition, it means that it is excellent in rubber elasticity, so that an extending | stretching degree is large. The results are shown in Table 2 and FIG.
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000055
 図21に示すとおり、液晶フィルム7と、液晶フィルム6-1及び6-2と、を比較すると、液晶フィルム6-1及び6-2は、最大点応力(引張強さ)が小さくても、最大延伸度(%)が高く、膜の延伸性、すなわち、ゴム弾性に優れることが分かる。
 さらに、液晶フィルム6-1及び6-2の側鎖における不飽和二重結合を有する基(ウンデセノイル基)の置換度を増加させた場合、より小さな力で延伸させることができ、最大歪みも大きくなることが分かる。
 表2に示すとおり、特定セルロース誘導体の側鎖に導入する不飽和二重結合(例えば、ウンデセノイル基)の増量に伴って、本発明の液晶フィルムは、ゴム弾性が向上すことが分かる。
As shown in FIG. 21, when the liquid crystal film 7 is compared with the liquid crystal films 6-1 and 6-2, the liquid crystal films 6-1 and 6-2 have a small maximum point stress (tensile strength). It can be seen that the maximum degree of stretch (%) is high and the film has excellent stretchability, that is, rubber elasticity.
Furthermore, when the degree of substitution of the group having an unsaturated double bond (undecenoyl group) in the side chain of the liquid crystal films 6-1 and 6-2 is increased, it can be stretched with a smaller force, and the maximum strain is also large. I understand that
As shown in Table 2, it can be seen that the rubber elasticity of the liquid crystal film of the present invention improves as the amount of unsaturated double bonds (for example, undecenoyl groups) introduced into the side chain of the specific cellulose derivative increases.
 以上より、本発明の液晶材料及び液晶フィルムは、液晶表示素子の表示材料に使用し得るだけでなく、液晶性を利用した歪みセンサー、ウェアラブルセンサー等の各種センサー、光学素子などのフォトニックデバイスにも利用することができる。このため、液晶表示素子の表示材料及びフォトニックデバイスに用いられる部品の製造、並びに、これらの販売に貢献するものである。 As described above, the liquid crystal material and the liquid crystal film of the present invention can be used not only for display materials of liquid crystal display elements but also for photonic devices such as various sensors such as strain sensors and wearable sensors using liquid crystal properties, and optical elements. Can also be used. For this reason, it contributes to manufacture of parts used for display materials and photonic devices of liquid crystal display elements, and sales thereof.
(実施例8)
<液晶材料8の作製>
 下記のスキームに準じて、HPC誘導体8(HPC-UndE/BuE)を合成した。
(Example 8)
<Preparation of liquid crystal material 8>
According to the following scheme, HPC derivative 8 (HPC-UndE / BuE) was synthesized.
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
 前述の実施例2-1において、低分子量ヒドロキシプロピルセルロース(HPC)(和光純薬工業(株)製、製品名;ヒドロキシプロピルセルロース2.0~2.9、製品番号;082-07925、重量平均分子量;5.0×10)の質量を8g(17.8mmol)、超脱水アセトンの量を35mL、最初に加えた試薬を塩化10-ウンデセノイル2.6mL(10.6mmol)、後に加えた試薬を塩化プロピオニルに代えて塩化ブチリル17.6mL(149mmol)とした以外は実施例2-1と同様にしてHPC誘導体8(以下「HPC-UndE/BuE」とも称する。)を得た。収量は5.0gであった。
 HPC誘導体8はウンデセノイル基(不飽和二重結合を有する基)への置換度は0.40であり、ブチリル基(疎水性基)への置換度は2.55(HPC-UndE/BuE(UndE:BuE=0.40:2.55))であった。
In Example 2-1 described above, low molecular weight hydroxypropylcellulose (HPC) (manufactured by Wako Pure Chemical Industries, Ltd., product name: hydroxypropylcellulose 2.0 to 2.9, product number: 082-07925, weight average Molecular weight: 5.0 × 10 4 ) 8 g (17.8 mmol), super dehydrated acetone 35 mL, first added reagent 10-undecenoyl chloride 2.6 mL (10.6 mmol), later added reagent The HPC derivative 8 (hereinafter also referred to as “HPC-UndE / BuE”) was obtained in the same manner as in Example 2-1, except that 17.6 mL (149 mmol) of butyryl chloride was used instead of propionyl chloride. The yield was 5.0 g.
The HPC derivative 8 has a degree of substitution with an undecenoyl group (group having an unsaturated double bond) of 0.40, and a degree of substitution with a butyryl group (hydrophobic group) of 2.55 (HPC-UndE / BuE (UndE : BuE = 0.40: 2.55)).
 HPC誘導体8に、液晶材料の全質量に対して、2質量%になるように光重合開始剤としてHMPPを加え撹拌した。これを液晶材料8とした。 HMPP was added to the HPC derivative 8 as a photopolymerization initiator so as to be 2% by mass with respect to the total mass of the liquid crystal material, and stirred. This was designated as liquid crystal material 8.
 実施例4-1において、HPC誘導体4-1の代わりにHPC誘導体8を用いた以外は実施例4-1と同様にして、液晶セル8及び液晶フィルム8を作製した。
 なお、液晶フィルム8の厚みは460mであった。
A liquid crystal cell 8 and a liquid crystal film 8 were produced in the same manner as in Example 4-1, except that the HPC derivative 8 was used instead of the HPC derivative 4-1.
The thickness of the liquid crystal film 8 was 460 m.
 液晶フィルム8の作製時、照射する紫外線の光量を変えた場合の液晶フィルム8の応力-歪み曲線を図22に示し、紫外線の光量(10.8J/cm~48.6J/cm)を変えたときの弾性特性の変化を図23に示す。図23に示すように、紫外線の光量が10.8J/cm~27.0J/cmのときは光量の増大に伴って液晶フィルム8の弾性率及び最大応力が増大しており、これは光架橋反応の進行によって分子らせん構造を固定する架橋点が増加してことに起因すると推測される。一方、紫外線の光量が27.0J/cm~48.6J/cmのときは紫外線の光量に依らずにほぼ一定の弾性特性を示した。これは、光架橋反応が十分に進行しきっていることを示唆している。以下では、光架橋反応が十分に進行していると推測される32.4J/cmの光量を照射して作製した液晶フィルム8について物性を評価した。 FIG. 22 shows a stress-strain curve of the liquid crystal film 8 when the amount of ultraviolet light to be irradiated is changed during the production of the liquid crystal film 8, and the amount of ultraviolet light (10.8 J / cm 2 to 48.6 J / cm 2 ) is shown. FIG. 23 shows changes in elastic characteristics when changed. As shown in FIG. 23, when the amount of ultraviolet light is 10.8 J / cm 2 to 27.0 J / cm 2 , the elastic modulus and the maximum stress of the liquid crystal film 8 increase as the amount of light increases. It is presumed that this is caused by an increase in the number of crosslinking points that fix the molecular helical structure as the photocrosslinking reaction proceeds. On the other hand, when the amount of ultraviolet light was 27.0 J / cm 2 to 48.6 J / cm 2 , almost constant elastic characteristics were exhibited regardless of the amount of ultraviolet light. This suggests that the photocrosslinking reaction has sufficiently progressed. Below, the physical property was evaluated about the liquid crystal film 8 produced by irradiating the light quantity of 32.4 J / cm < 2 > estimated that the photocrosslinking reaction fully progressed.
 液晶フィルム8を加熱しながら測定した透過スペクトルを図24に示した。同様の評価をHPC誘導体8で行い、温度とブラッグ反射波長の相関をまとめると図25のようになった。図25より、架橋前であるHPC誘導体8は加熱によってその反射波長が長波長シフトしているだけでなく、70℃までしかブラッグ反射を発現できていないことが分かった。一方、架橋後である液晶フィルム8は加熱に伴う波長の長波長シフトの幅が小さいだけでなく、175℃までブラッグ反射を発現できた。このような、液晶フィルム8の熱に対する安定性はHPC誘導体8のUnd基末端で生じた架橋点が分子らせん構造の伸縮を抑制していることに起因すると推測される。 The transmission spectrum measured while heating the liquid crystal film 8 is shown in FIG. The same evaluation was performed with the HPC derivative 8, and the correlation between temperature and Bragg reflection wavelength was summarized as shown in FIG. From FIG. 25, it was found that the HPC derivative 8 before crosslinking was not only shifted in reflection wavelength by heating but also exhibited Bragg reflection only up to 70 ° C. On the other hand, the liquid crystal film 8 after cross-linking was not only small in the width of the long wavelength shift due to heating, but could exhibit Bragg reflection up to 175 ° C. Such stability to the heat of the liquid crystal film 8 is presumed to be due to the fact that the crosslinking point generated at the end of the Und group of the HPC derivative 8 suppresses the expansion and contraction of the molecular helical structure.
 図26の上段は液晶フィルム8を歪み0.3相当圧縮する過程における透過スペクトルの変化を示し、図26の下段は圧縮を解放する過程における透過スペクトルを示す。図26に示すように、液晶フィルム8のブラッグ反射は圧縮解放後、10nm程度短波長側で発現したもののほぼ可逆的な挙動を示した。 26 shows the change of the transmission spectrum in the process of compressing the liquid crystal film 8 equivalent to strain 0.3, and the lower part of FIG. 26 shows the transmission spectrum in the process of releasing the compression. As shown in FIG. 26, the Bragg reflection of the liquid crystal film 8 exhibited a substantially reversible behavior although it appeared on the short wavelength side of about 10 nm after being released from compression.
 また、液晶フィルム8に加える歪みを0.2として圧縮と解放のサイクルを100回繰り返した際、透過スペクトルの変化を図27に示し、反射波長及び液晶フィルム8の変化を図28に示す。図27及び図28に示すように、液晶フィルム8の光学特性は、100回の繰り返し圧縮に対して可逆的な挙動を示しており、繰り返し圧縮耐性に優れていることが分かった。 Further, when the compression and release cycle is repeated 100 times with the strain applied to the liquid crystal film 8 being 0.2, the change in the transmission spectrum is shown in FIG. 27, and the change in the reflection wavelength and the liquid crystal film 8 is shown in FIG. As shown in FIGS. 27 and 28, it was found that the optical characteristics of the liquid crystal film 8 showed a reversible behavior with respect to 100 repeated compressions, and was excellent in repeated compression resistance.
 また、圧縮試験から液晶フィルム8の弾性特性の繰り返し圧縮耐性を評価した。液晶フィルム8を速度0.5mm/min、歪み0.2で繰り返し圧縮解放した際の応力-歪み曲線を図29に示す。さらに、図29から算出した液晶フィルム8の繰り返し圧縮に伴う弾性特性の変化を図30に示す。また、市販のクロロプレンゴムに対して液晶フィルム8と同様の試験を行った結果を図30に示す。図30より、液晶フィルム8は、クロロプレンゴムと同様に繰り返し圧縮によって弾性率が大きく変化しなかった。このことから、液晶フィルム8は少なくとも歪みが0.2の場合は、市販のクロロプレンゴムと同等の弾性特性を示すことが分かった。 Also, the repeated compression resistance of the elastic properties of the liquid crystal film 8 was evaluated from a compression test. FIG. 29 shows a stress-strain curve when the liquid crystal film 8 is repeatedly compressed and released at a speed of 0.5 mm / min and a strain of 0.2. Further, FIG. 30 shows a change in elastic characteristics accompanying the repeated compression of the liquid crystal film 8 calculated from FIG. Moreover, the result of having done the test similar to the liquid crystal film 8 with respect to commercially available chloroprene rubber is shown in FIG. From FIG. 30, the elastic modulus of the liquid crystal film 8 did not change greatly due to repeated compression, like the chloroprene rubber. From this, it was found that the liquid crystal film 8 exhibits elastic properties equivalent to those of a commercially available chloroprene rubber when the strain is at least 0.2.
 図31に示したように、液晶フィルム8を凹凸基板に押し付けると突起部のみ選択的に緑色に変色した。この際の反射波長の変化を図32に示す。図32から分かるように、液晶フィルム8を凹凸基板に押し付けると窪みの部分は反射波長が約620nm、突起部は約510nmであった。図33に示すように液晶フィルム8を100円硬貨に押し付けた場合、液晶フィルム8の変色によって100円硬貨の表面のような微細な凹凸も検知することができた。この100円硬貨の凹凸を精密機器((株)キーエンス、VR-5000)により測定した結果(図34)、液晶フィルム8は最小で幅93μm、高さ190μmの凹凸を検知できることが分かった。 As shown in FIG. 31, when the liquid crystal film 8 was pressed against the concavo-convex substrate, only the protrusions were selectively changed to green. The change in the reflection wavelength at this time is shown in FIG. As can be seen from FIG. 32, when the liquid crystal film 8 was pressed against the concavo-convex substrate, the depression portion had a reflection wavelength of about 620 nm and the protrusion portion was about 510 nm. As shown in FIG. 33, when the liquid crystal film 8 was pressed against a 100-yen coin, fine irregularities such as the surface of the 100-yen coin could be detected due to the discoloration of the liquid crystal film 8. As a result of measuring the unevenness of this 100-yen coin with a precision instrument (Keyence Co., Ltd., VR-5000) (FIG. 34), it was found that the liquid crystal film 8 can detect the unevenness of 93 μm in width and 190 μm in height at the minimum.
(実施例9)
<液晶材料9の作製>
 下記のスキームに準じて、HPC誘導体9(HPC-UndE/DecE/BuE)を合成した。
Example 9
<Preparation of liquid crystal material 9>
According to the following scheme, HPC derivative 9 (HPC-UndE / DecE / BuE) was synthesized.
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
 前述の実施例2-1において、低分子量ヒドロキシプロピルセルロース(HPC)(和光純薬工業(株)製、製品名;ヒドロキシプロピルセルロース2.0~2.9、製品番号;082-07925、重量平均分子量;5.0×10)の質量を8g(17.8mmol)、超脱水アセトンの量を35mL、塩化10-ウンデセノイルの量を1.3mL(5.3mmol)、及び、塩化アクリロイルに代えて塩化デカノイル1.2mL(5.3mmol)、後に加えた試薬を塩化プロピオニルに代えて塩化ブチリル17.6ml(149mmol)とした以外は実施例2-1と同様にしてHPC誘導体9(以下「HPC-UndE/DecE/BuE」とも称する。)を得た。収量は5.0gであった。
 HPC誘導体9はウンデセノイル基(不飽和二重結合を有する基)への置換度は0.22であり、デカノイル基(アシル基)への置換度は0.20であり、ブチリル基への置換度は2.55(HPC-UndE/DecE/BuE(UndE:DecE:BuE=0.22:0.20:2.55))であった。
In Example 2-1 described above, low molecular weight hydroxypropylcellulose (HPC) (manufactured by Wako Pure Chemical Industries, Ltd., product name: hydroxypropylcellulose 2.0 to 2.9, product number: 082-07925, weight average In place of 8 g (17.8 mmol) of molecular weight; 5.0 × 10 4 ), 35 mL of super-dehydrated acetone, 1.3 mL (5.3 mmol) of 10-undecenoyl chloride, and acryloyl chloride HPC derivative 9 (hereinafter “HPC-”) was prepared in the same manner as in Example 2-1, except that 1.2 mL (5.3 mmol) of decanoyl chloride and 17.6 ml (149 mmol) of butyryl chloride were used instead of propionyl chloride. Also referred to as “UndE / DecE / BuE”). The yield was 5.0 g.
HPC derivative 9 has a degree of substitution with an undecenoyl group (a group having an unsaturated double bond) of 0.22, a degree of substitution with a decanoyl group (acyl group) is 0.20, and a degree of substitution with a butyryl group Was 2.55 (HPC-UndE / DecE / BuE (UndE: DecE: BuE = 0.22: 0.20: 2.55)).
 HPC誘導体9に、液晶材料の全質量に対して、2質量%になるように光重合開始剤としてHMPPを加え撹拌した。これを液晶材料9とした。 HMPP was added to the HPC derivative 9 as a photopolymerization initiator and stirred so as to be 2% by mass with respect to the total mass of the liquid crystal material. This was designated as a liquid crystal material 9.
 液晶材料9から作製した液晶セル9に対して32.4J/cmの光量の紫外線を照射して液晶フィルム9を作製した。
 なお、液晶フィルム9の膜厚は470μmであった。
A liquid crystal film 9 was produced by irradiating the liquid crystal cell 9 produced from the liquid crystal material 9 with ultraviolet rays having a light quantity of 32.4 J / cm 2 .
The film thickness of the liquid crystal film 9 was 470 μm.
 液晶フィルム8と液晶フィルム9に対して速度0.5mm/min、歪み0.3として圧縮試験を行った結果を図35に示す。また、液晶フィルム8と液晶フィルム9に対して圧縮しながら反射波長を測定した結果と図35とを組み合わせて、図36に示す反射波長と応力と歪みとの関係を求めた。図36に示すように、液晶フィルム8は4.5MPa程度の圧力で反射波長が約620nmから480nmまで短波長シフトした。一方液晶フィルム9は2.5MPa程度の圧力で同様の反射波長の短波長シフトを実現した。このように、液晶フィルム9は液晶フィルム8に対してより小さい圧力を検知して変色することができた。これは、液晶HPC誘導体9はHPC誘導体8よりもUndEの導入量が少ないため、結果として分子らせん構造を固定する架橋点が少なくなったことに起因すると推測される。 FIG. 35 shows the result of a compression test performed on the liquid crystal film 8 and the liquid crystal film 9 at a speed of 0.5 mm / min and a strain of 0.3. Further, the result of measuring the reflection wavelength while compressing the liquid crystal film 8 and the liquid crystal film 9 was combined with FIG. 35, and the relationship between the reflection wavelength, stress, and strain shown in FIG. 36 was obtained. As shown in FIG. 36, the reflection wavelength of the liquid crystal film 8 was shifted by a short wavelength from about 620 nm to 480 nm at a pressure of about 4.5 MPa. On the other hand, the liquid crystal film 9 realized a similar short wavelength shift of the reflection wavelength at a pressure of about 2.5 MPa. Thus, the liquid crystal film 9 was able to change color by detecting a smaller pressure on the liquid crystal film 8. This is presumably because the liquid crystal HPC derivative 9 has a smaller amount of UndE introduced than the HPC derivative 8, and as a result, the number of crosslinking points for fixing the molecular helical structure is reduced.
(実施例10-1)
<液晶材料10-1の作製>
 下記のスキームに準じて、HPC誘導体10-1(HPC-4HC/PrE)を合成した。
(Example 10-1)
<Preparation of liquid crystal material 10-1>
According to the following scheme, HPC derivative 10-1 (HPC-4HC / PrE) was synthesized.
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
 アルミホイルで遮光し、窒素充填させたフラスコ内にヘキサメチレンジイソシアナート(東京化成工業(株)製、製品番号;H0324)5.5mL(34mmol)及び4-ヒドロキシブチルアクリレート(東京化成工業(株)製、製品名;アクリル酸4-ヒドロキシブチル、製品番号;A1390)2.2mL(15.9mmol)を加え、24時間撹拌した。生成物300mgをクロロホルム3.0mLに溶解させたのち、HPLC(製品名;リサイクル分取HPLC装置、(株)日本分析工業)で4-(((6-イソシアナートヘキシル)カルバモイル)オキシル)ブチルアクリレート(4H)を分離して、エバポレーションによってクロロホルムを留去した。
 減圧下、室温(25℃)で24時間以上乾燥した低分子量ヒドロキシプロピルセルロース(HPC)(和光純薬工業(株)製、製品名;ヒドロキシプロピルセルロース2.0~2.9、製品番号;082-07925、重量平均分子量:5.0×10)6.0g(13.4mmol)を窒素充填させたフラスコ内で、超脱水アセトン110mLに溶解させたのち、アルミホイルで遮光した状態で、加熱(45℃)条件下で、末端に不飽和二重結合と、分子鎖中に1つのカルバメート結合を有する4H 360mg(1.2mmol)を溶解させた超脱水アセトン10.0mLを加え20時間撹拌した。
 次に、室温(25℃)条件下で、塩化プロピオニル(PrCl)15mL(172mmol)を加え24時間撹拌したのち、反応溶液を超純水に滴下させた。特級アセトンに再溶解させて、超純水への滴下による洗浄操作を3回繰り返した後、1日以上減圧乾燥することにより生成物であるHPC誘導体10-1(以下、「HPC-4HC/PrE」とも称する。)を得た。収量は、4.0gであった。
In a flask light-shielded with aluminum foil and filled with nitrogen, 5.5 mL (34 mmol) of hexamethylene diisocyanate (manufactured by Tokyo Chemical Industry Co., Ltd., product number; H0324) and 4-hydroxybutyl acrylate (Tokyo Chemical Industry Co., Ltd.) ), Product name: 4-hydroxybutyl acrylate, product number: A1390) 2.2 mL (15.9 mmol) was added and stirred for 24 hours. After 300 mg of the product was dissolved in 3.0 mL of chloroform, 4-(((6-isocyanatohexyl) carbamoyl) oxyl) butyl acrylate was obtained by HPLC (product name; recycle preparative HPLC apparatus, Japan Analytical Industrial Co., Ltd.). (4H) was separated and chloroform was distilled off by evaporation.
Low molecular weight hydroxypropylcellulose (HPC) dried at room temperature (25 ° C.) for 24 hours or more under reduced pressure (manufactured by Wako Pure Chemical Industries, Ltd., product name: hydroxypropylcellulose 2.0 to 2.9, product number: 082 -07925, weight average molecular weight: 5.0 × 10 4 ) 6.0 g (13.4 mmol) was dissolved in 110 mL of ultra-dehydrated acetone in a nitrogen-filled flask, and then heated in a light-shielded state with aluminum foil. Under conditions of (45 ° C.), 10.0 mL of ultra-dehydrated acetone in which 360 mg (1.2 mmol) of 4H having an unsaturated double bond at the terminal and one carbamate bond in the molecular chain was dissolved was added and stirred for 20 hours. .
Next, 15 mL (172 mmol) of propionyl chloride (PrCl) was added under room temperature (25 ° C.) conditions and stirred for 24 hours, and then the reaction solution was added dropwise to ultrapure water. After re-dissolving in special grade acetone and repeating the washing operation by dropping into ultrapure water three times, the product is dried under reduced pressure for 1 day or more to produce HPC derivative 10-1 (hereinafter referred to as “HPC-4HC / PrE”). Is also referred to as). The yield was 4.0 g.
H-NMRスペクトルの測定)
 上記で合成した4H及びHPC誘導体10-1のH-NMRスペクトルを測定した。
 図37において、4Hに由来するピークとして、5.8ppm、6.1ppm及び6.4ppm付近のピークは、それぞれ末端のアクリロイル基の二重結合につくプロトンのピークであり、4.8ppm付近のピークはカルバメート結合におけるアミノ基のプロトンのピークである。4.2ppm及び3.2ppm付近のピークは、4Hにおける4-ヒドロキシブチルアクリレートに由来した4つのメチレン基のプロトンのピークであり、1.2ppmから1.8ppm付近のピークは、4Hにおけるヘキサメチレンジイソシアナートに由来した6つのメチレン基のプロトンのピークである。
 図38において、HPC誘導体10-1に由来するピーク(具体的にはHPC-4HC/PrE由来)のピークとして、5.8ppm、6.1ppm及び6.4ppm付近のピークは、それぞれ末端のアクリロイル基の二重結合につくプロトンのピークであり、5.0ppm付近のピークは末端のヒドロキシプロピオニル基のメチン基のプロトンのピークである。1.0ppmから2.5ppm付近のピークは、HPC側鎖のヒドロキシプロピル基のメチル基、不飽和結合を有する基の有するメチレン基のうち酸素原子、窒素原子に隣接しないメチレン基、プロピオニル基のメチル基、メチレン基のプロトンである。2.7ppmから4.6ppm付近のピークはHPC誘導体10-1が有するその他のプロトンのピークである。
 帰属したピークをもとに、HPC側鎖(水酸基中の水素原子)において、不飽和二重結合を有する基(すなわち4HC基)への置換度及び疎水性基(すなわち、プロピオニル基)への置換度を算出した。
 HPC誘導体10-1は、4HC基(不飽和二重結合を有する基)への置換度は0.080であり、プロピオニル基(疎水性基)への置換度は2.60(HPC-4HC/PrE(4HC/PrE=0.080:2.60))であった。また、光重合開始剤を加えずに、これを液晶材料Z-1とした。
(Measurement of 1 H-NMR spectrum)
1 H-NMR spectra of 4H and HPC derivative 10-1 synthesized above were measured.
In FIG. 37, as peaks derived from 4H, peaks near 5.8 ppm, 6.1 ppm and 6.4 ppm are peaks of protons attached to the double bond of the terminal acryloyl group, and peaks around 4.8 ppm. Is the peak of the amino group proton in the carbamate bond. The peaks near 4.2 ppm and 3.2 ppm are the proton peaks of the four methylene groups derived from 4-hydroxybutyl acrylate at 4H, and the peaks near 1.2 ppm to 1.8 ppm are the hexamethylene dimethyl peaks at 4H. This is a proton peak of six methylene groups derived from isocyanate.
In FIG. 38, as peaks of the HPC derivative 10-1 (specifically, HPC-4HC / PrE), the peaks around 5.8 ppm, 6.1 ppm and 6.4 ppm are respectively acryloyl groups at the ends. This is a proton peak attached to the double bond, and the peak around 5.0 ppm is the proton peak of the methine group of the terminal hydroxypropionyl group. Peaks in the vicinity of 1.0 ppm to 2.5 ppm are the methyl group of the hydroxypropyl group of the HPC side chain, the methylene group of the group having an unsaturated bond, the methylene group not adjacent to the nitrogen atom, and the methyl of the propionyl group. Group, a proton of a methylene group. The peak around 2.7 ppm to 4.6 ppm is a peak of other protons that HPC derivative 10-1 has.
Based on the assigned peak, HPC side chain (hydrogen atom in the hydroxyl group) has a degree of substitution with a group having an unsaturated double bond (ie, 4HC group) and substitution with a hydrophobic group (ie, propionyl group). The degree was calculated.
The HPC derivative 10-1 has a substitution degree to the 4HC group (group having an unsaturated double bond) of 0.080 and a substitution degree to the propionyl group (hydrophobic group) of 2.60 (HPC-4HC / PrE (4HC / PrE = 0.080: 2.60)). Further, this was used as a liquid crystal material Z-1 without adding a photopolymerization initiator.
(実施例10-2~10-4)
<液晶材料10-2~10-4の作製>
 上記の合成方法において、添加する4Hの量を変化させることで、4HC基への置換度の異なるHPC-4HC/PrEを合成した。これをHPC誘導体10-2、10-3、10-4とした。
 HPC誘導体10-2、10-3、10-4の4HC基への置換度及びプロピオニル基への置換度を算出したところ、HPC誘導体10-2は、(HPC-4HC/PrE(4HC/PrE=0.046:2.69))、HPC誘導体10-3は、(HPC-4HC/PrE(4HC/PrE=0.023:2.68))、HPC誘導体10-4は、(HPC-4HC/PrE(4HC/PrE=0.017:2.66))となった。
(Examples 10-2 to 10-4)
<Preparation of liquid crystal materials 10-2 to 10-4>
In the synthesis method described above, HPC-4HC / PrE having different degrees of substitution with 4HC groups was synthesized by changing the amount of 4H to be added. This was designated as HPC derivatives 10-2, 10-3 and 10-4.
When the substitution degree to the 4HC group and the substitution degree to the propionyl group of the HPC derivatives 10-2, 10-3, and 10-4 were calculated, the HPC derivative 10-2 was (HPC-4HC / PrE (4HC / PrE = 0.046: 2.69)), HPC derivative 10-3 is (HPC-4HC / PrE (4HC / PrE = 0.023: 2.68)), and HPC derivative 10-4 is (HPC-4HC / PrE (4HC / PrE = 0.177: 2.66)).
 HPC誘導体10-2、10-3、10-4に、液晶材料の全質量に対して、1質量%になるように光重合開始剤としてHMPPを加え撹拌した。これらを液晶材料10-2、10-3、10-4とした。 HMPP as a photopolymerization initiator was added to HPC derivatives 10-2, 10-3, and 10-4 as a photopolymerization initiator so as to be 1% by mass with respect to the total mass of the liquid crystal material, followed by stirring. These were designated as liquid crystal materials 10-2, 10-3, and 10-4.
 調製した液晶材料10-1を用いて、室温(25℃)で紫外線(波長:365nm、強度10.0mW/cm)照射を30分間照射することで液晶フィルム10-1を作製した。また、液晶材料10-2、10-3、10-4を用いて、紫外線の照射時間が1時間である点を除き、液晶材料10-1と同様な操作を行うことで、液晶フィルム10-2、10-3、10-4を作製した。なお、液晶フィルム10-1、10-2、10-3、10-4の膜厚はそれぞれ500μm、560μm、450μm、470μmであった。 Using the prepared liquid crystal material 10-1, the liquid crystal film 10-1 was produced by irradiation with ultraviolet rays (wavelength: 365 nm, intensity 10.0 mW / cm 2 ) for 30 minutes at room temperature (25 ° C.). Further, by using the liquid crystal materials 10-2, 10-3, and 10-4, and performing the same operation as the liquid crystal material 10-1, except that the ultraviolet irradiation time is 1 hour, the liquid crystal film 10- 2, 10-3 and 10-4 were prepared. The film thicknesses of the liquid crystal films 10-1, 10-2, 10-3, and 10-4 were 500 μm, 560 μm, 450 μm, and 470 μm, respectively.
 液晶フィルム10-1は、幅が12mm、長さが30mmで、平行部の幅が5mm、長さが10mmのダンベル試験片、液晶フィルム10-2、10-3、10-4はJIS7号ダンベル試験片について、小型卓上試験機(製品名;EZ-LX、(株)島津製作所製)を用いて、引張速度を10mm/minとし、引張試験を行った。 The liquid crystal film 10-1 is a dumbbell test piece having a width of 12 mm, a length of 30 mm, a parallel part width of 5 mm, and a length of 10 mm. The liquid crystal films 10-2, 10-3, and 10-4 are JIS No. 7 dumbbells. The test piece was subjected to a tensile test using a small tabletop testing machine (product name: EZ-LX, manufactured by Shimadzu Corporation) at a tensile speed of 10 mm / min.
 図39には、液晶フィルム10-1の延伸過程における応力-歪み曲線を示す。また、結果詳細を表3に示す。 FIG. 39 shows a stress-strain curve in the stretching process of the liquid crystal film 10-1. Details of the results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000059
 図39及び表3に示すように、液晶フィルム10-1は100%以上の延伸が可能であることが分かった。これは、不飽和結合を有する側鎖の長鎖長化によって、延伸に伴い側鎖が伸張するため、フィルムが柔軟に変形しやすくなったことに起因する。また、100%以上の延伸に伴い、反射波長が短波長シフトしていることも確認できた。これは、延伸方向の歪みの増大に伴い、鉛直方向の厚みは減少するため、らせんピッチが収縮することに起因すると推測される。 As shown in FIG. 39 and Table 3, it was found that the liquid crystal film 10-1 can be stretched by 100% or more. This is due to the fact that the side chain stretches with stretching due to the lengthening of the side chain having an unsaturated bond, so that the film is easily deformed flexibly. It was also confirmed that the reflection wavelength was shifted by a short wavelength with 100% or more stretching. This is presumed to be due to the shrinkage of the helical pitch because the thickness in the vertical direction decreases as the strain in the stretching direction increases.
 図40には、液晶フィルム10-2、10-3、10-4の延伸過程における応力-歪み曲線を示す。また、結果詳細を表4に示す。 FIG. 40 shows stress-strain curves in the stretching process of the liquid crystal films 10-2, 10-3, and 10-4. Details of the results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000060
 塑性的であった液晶フィルム10-1と比較して、光重合開始剤の添加によって、光架橋反応が十分に進行し、ゴム弾性が向上した。さらに、4HC基(不飽和二重結合を有する基)の導入量が多いほど、弾性率及び最大応力は増大し、破断歪みは減少することが分かった。これらは、実施例6及び比較例7と比較して、破断歪み(最大歪み)が大きいことから、4HC基の導入によって引張特性が向上したことが分かった。 Compared to the plastic liquid crystal film 10-1, the addition of the photopolymerization initiator allowed the photocrosslinking reaction to proceed sufficiently to improve the rubber elasticity. Furthermore, it was found that the greater the amount of 4HC groups (groups having unsaturated double bonds) introduced, the greater the modulus of elasticity and the maximum stress and the smaller the breaking strain. As compared with Example 6 and Comparative Example 7, these had larger breaking strain (maximum strain), and it was found that the tensile properties were improved by the introduction of 4HC groups.
 図41には、液晶フィルム10-3の延伸解放過程における透過スペクトル変化を示した。延伸に伴いブラッグ反射波長は短波長シフトし、解放すると初期波長に戻ることが分かった。これは、液晶フィルムのゴム弾性の向上に伴い、少なくとも歪み0.2の範囲内において可逆的な伸縮が可能であることを意味している。 FIG. 41 shows the change in the transmission spectrum during the stretching release process of the liquid crystal film 10-3. It was found that the Bragg reflection wavelength shifts shortly with stretching and returns to the initial wavelength when released. This means that reversible expansion and contraction is possible at least within the range of strain 0.2 with improvement in rubber elasticity of the liquid crystal film.
 2018年3月28日に出願された日本国特許出願2018-63259の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2018-63259 filed on Mar. 28, 2018 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually stated to be incorporated by reference, Incorporated herein by reference.
 10,10A 液晶セル、12 第1の基板、14 第2の基板、16 フォトマスク、18 液晶材料、20 液晶フィルム 10, 10A liquid crystal cell, 12 first substrate, 14 second substrate, 16 photomask, 18 liquid crystal material, 20 liquid crystal film

Claims (18)

  1.  下記一般式(1A)で表される分子構造を有するセルロース誘導体を含む、液晶材料。
    Figure JPOXMLDOC01-appb-C000001

     
    (一般式(1A)中、X11、X12及びX13は、それぞれ独立に、単結合、アルキレン基、-(R14-O)-、又は、-C(=O)-R15-を表し、R11、R12及びR13は、それぞれ独立に、水素原子、不飽和二重結合を有する基、又は、疎水性基を表し、R14及びR15は、それぞれ独立に、アルキレン基を表し、hは、1以上10以下の整数を表し、n11は、2以上800以下の整数を表す。但し、R11、R12及びR13の少なくとも1つは、下記一般式(3C)で表される不飽和二重結合を有する基及び炭素数5~20の直鎖若しくは分岐のアシル基の少なくとも一方を表す。)
    Figure JPOXMLDOC01-appb-C000002

     
    (一般式(3C)中、R3Cは、水素原子又はメチル基を表し、X38は、炭素数3~20の直鎖若しくは分岐のアルキレン基、-NH-、-C(=O)O-、カルボニル基、炭素数2~20の直鎖若しくは分岐のアルキレンオキシ基、アリール基及び炭素数3~10のシクロアルキレン基からなる群より選ばれる基又はこれらの少なくとも1つを連結した基を表し、**は、上記一般式(1A)中、X11、X12、若しくはX13と結合する部分、又は、セルロース骨格の2位、3位、若しくは6位にある酸素原子と結合する部分を表す。)
    A liquid crystal material comprising a cellulose derivative having a molecular structure represented by the following general formula (1A).
    Figure JPOXMLDOC01-appb-C000001


    (In the general formula (1A), X 11 , X 12 and X 13 are each independently a single bond, an alkylene group, — (R 14 —O) h —, or —C (═O) —R 15 —. R 11 , R 12 and R 13 each independently represent a hydrogen atom, a group having an unsaturated double bond, or a hydrophobic group, and R 14 and R 15 each independently represents an alkylene group. H represents an integer of 1 to 10, and n11 represents an integer of 2 to 800, provided that at least one of R 11 , R 12 and R 13 is represented by the following general formula (3C). It represents at least one of the group having an unsaturated double bond and a linear or branched acyl group having 5 to 20 carbon atoms.)
    Figure JPOXMLDOC01-appb-C000002


    (In the general formula (3C), R 3C represents a hydrogen atom or a methyl group, and X 38 represents a linear or branched alkylene group having 3 to 20 carbon atoms, —NH—, —C (═O) O— Represents a group selected from the group consisting of a carbonyl group, a linear or branched alkyleneoxy group having 2 to 20 carbon atoms, an aryl group and a cycloalkylene group having 3 to 10 carbon atoms, or a group obtained by linking at least one of these groups. ** represents a moiety bonded to X 11 , X 12 , or X 13 in the general formula (1A), or a moiety bonded to an oxygen atom at the 2-position, 3-position, or 6-position of the cellulose skeleton. To express.)
  2.  前記一般式(1A)で表される分子構造が、下記一般式(1A-1)で表される分子構造である、請求項1に記載の液晶材料。
    Figure JPOXMLDOC01-appb-C000003

     
    (一般式(1A-1)中、Rは、-CH-CH-、又は、-CH-CH(CH)-を表し、R11、R12及びR13は、それぞれ独立に、水素原子、不飽和二重結合を有する基、又は、疎水性基を表し、m1、t1及びr1は、それぞれ独立に、0以上10以下の整数を表し、n13は、2以上800以下の整数を表す。但し、R11、R12及びR13の少なくとも1つは、下記一般式(3C)で表される不飽和二重結合を有する基及び炭素数5~20の直鎖若しくは分岐のアシル基の少なくとも一方を表す。)
    Figure JPOXMLDOC01-appb-C000004

     
    (一般式(3C)中、R3Cは、水素原子又はメチル基を表し、X38は、炭素数3~20の直鎖若しくは分岐のアルキレン基、-NH-、-C(=O)O-、カルボニル基、炭素数2~20の直鎖若しくは分岐のアルキレンオキシ基、アリール基及び炭素数3~10のシクロアルキレン基からなる群より選ばれる基又はこれらの少なくとも1つを連結した基を表し、**は、上記一般式(1A)中、X11、X12、若しくはX13と結合する部分、又は、セルロース骨格の2位、3位、若しくは6位にある酸素原子と結合する部分を表す。)
    The liquid crystal material according to claim 1, wherein the molecular structure represented by the general formula (1A) is a molecular structure represented by the following general formula (1A-1).
    Figure JPOXMLDOC01-appb-C000003


    (In the general formula (1A-1), R 1 represents —CH 2 —CH 2 — or —CH 2 —CH (CH 3 ) —, and R 11 , R 12 and R 13 are each independently , A hydrogen atom, a group having an unsaturated double bond, or a hydrophobic group, m1, t1 and r1 each independently represents an integer of 0 to 10, and n13 is an integer of 2 to 800 Provided that at least one of R 11 , R 12 and R 13 is a group having an unsaturated double bond represented by the following general formula (3C) and a linear or branched acyl having 5 to 20 carbon atoms. Represents at least one of the groups.)
    Figure JPOXMLDOC01-appb-C000004


    (In the general formula (3C), R 3C represents a hydrogen atom or a methyl group, and X 38 represents a linear or branched alkylene group having 3 to 20 carbon atoms, —NH—, —C (═O) O— Represents a group selected from the group consisting of a carbonyl group, a linear or branched alkyleneoxy group having 2 to 20 carbon atoms, an aryl group and a cycloalkylene group having 3 to 10 carbon atoms, or a group obtained by linking at least one of these groups. ** represents a moiety bonded to X 11 , X 12 , or X 13 in the general formula (1A), or a moiety bonded to an oxygen atom at the 2-position, 3-position, or 6-position of the cellulose skeleton. To express.)
  3.  前記不飽和二重結合を有する基が、下記一般式(1C)で表される基を更に含み、
     前記疎水性基が、炭素数1~18の直鎖若しくは分岐のアルキル基、炭素数3~18のシクロアルキル基、炭素数6~18のアリール基、炭素数7~20のアラルキル基、炭素数2~4の直鎖若しくは分岐のアシル基、炭素数1~18の直鎖若しくは分岐のアルコキシ基、-COOR1Aで表されるカルボン酸エステル基、又はハロゲン原子であり、前記R1Aが、炭素数1~12の直鎖若しくは分岐のアルキル基、炭素数3~12のシクロアルキル基、又は、炭素数6~12のアリール基を更に含む、請求項1又は請求項2に記載の液晶材料。
    Figure JPOXMLDOC01-appb-C000005

     
    (一般式(1C)中、R1Cは、水素原子又はメチル基を表し、X18は、単結合、炭素数1~18の直鎖若しくは分岐のアルキレン基、炭素数3~18のシクロアルキレン基、炭素数6~18のアリーレン基、-O-、-NH-、-S-、-C(=O)-、炭素数1~18の直鎖若しくは分岐のアルカンから3つの水素原子を除いた基、炭素数3~18のシクロアルカンから3つの水素原子を除いた基、炭素数6~18のアレーンから3つの水素原子を除いた基及びアンモニアから3つの水素原子を除いた基からなる群より選ばれる基又はこれらの少なくとも1つを連結した基を表し、p1は、1又は2の整数を表す。但し、X18の価数は、p1+1である。**は、上記一般式(1A)中、X11、X12、若しくはX13と結合する部分、又は、セルロース骨格の2位、3位、若しくは6位にある酸素原子と結合する部分を表す。)
    The group having an unsaturated double bond further includes a group represented by the following general formula (1C),
    The hydrophobic group is a linear or branched alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 3 to 18 carbon atoms, an aryl group having 6 to 18 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, a carbon number A linear or branched acyl group having 2 to 4 carbon atoms, a linear or branched alkoxy group having 1 to 18 carbon atoms, a carboxylic acid ester group represented by —COOR 1A , or a halogen atom, wherein R 1A is a carbon atom 3. The liquid crystal material according to claim 1, further comprising a linear or branched alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, or an aryl group having 6 to 12 carbon atoms.
    Figure JPOXMLDOC01-appb-C000005


    (In the general formula (1C), R 1C represents a hydrogen atom or a methyl group, X 18 represents a single bond, a linear or branched alkylene group having 1 to 18 carbon atoms, or a cycloalkylene group having 3 to 18 carbon atoms. Three hydrogen atoms were removed from an arylene group having 6 to 18 carbon atoms, —O—, —NH—, —S—, —C (═O) —, or a linear or branched alkane having 1 to 18 carbon atoms. A group consisting of a group obtained by removing 3 hydrogen atoms from a cycloalkane having 3 to 18 carbon atoms, a group obtained by removing 3 hydrogen atoms from an arene having 6 to 18 carbon atoms, and a group obtained by removing 3 hydrogen atoms from ammonia Or a group obtained by linking at least one of them, and p1 represents an integer of 1 or 2. However, X 18 has a valence of p1 + 1, and ** represents the above general formula (1A). ) in, X 11, X 12, or X 13 and forming Part, or represents a 2-position, 3-position, or a moiety that binds to be an oxygen atom in the 6-position of the cellulose backbone.)
  4.  前記一般式(1C)において、X18が、単結合、又は、-C(=O)-NH-(CH-O-であり、p1が1である、請求項3に記載の液晶材料。 The liquid crystal according to claim 3, wherein, in the general formula (1C), X 18 is a single bond or —C (═O) —NH— (CH 2 ) 2 —O—, and p1 is 1. material.
  5.  前記疎水性基が、直鎖若しくは分岐の炭素数2~4のアシル基である、請求項3又は請求項4に記載の液晶材料。 5. The liquid crystal material according to claim 3, wherein the hydrophobic group is a linear or branched acyl group having 2 to 4 carbon atoms.
  6.  前記不飽和二重結合を有する基のモノマー単位あたりの置換度が、0.01以上2.0以下である請求項1~請求項5のいずれか1項に記載の液晶材料。 6. The liquid crystal material according to claim 1, wherein the degree of substitution per monomer unit of the group having an unsaturated double bond is 0.01 or more and 2.0 or less.
  7.  前記不飽和二重結合を有する基のモノマー単位あたりの置換度と、前記疎水性基のモノマー単位あたりの置換度との比(前記不飽和二重結合を有する基/前記疎水性基)が、3.0×10-3以上2.0以下である、請求項1~請求項6のいずれか1項に記載の液晶材料。 The ratio of the degree of substitution per monomer unit of the group having an unsaturated double bond and the degree of substitution per monomer unit of the hydrophobic group (the group having an unsaturated double bond / the hydrophobic group) is: 7. The liquid crystal material according to claim 1, which is 3.0 × 10 −3 or more and 2.0 or less.
  8.  三次元構造を有し、
     下記一般式(2A)で表される分子構造を有するセルロース誘導体を含み、
     前記セルロース誘導体が、モノマー単位同士を連結する基を有する基を含む、液晶フィルム。
    Figure JPOXMLDOC01-appb-C000006

     
    (一般式(2A)中、X21、X22及びX23は、それぞれ独立に、単結合、アルキレン基、-(R24-O)-、又は、-C(=O)-R25-を表し、R21、R22及びR23は、それぞれ独立に、水素原子、前記モノマー単位同士を連結する基を有する基、又は、疎水性基であり、R24及びR25は、それぞれ独立に、アルキレン基を表し、jは、1以上10以下の整数を表し、n21は、2以上800以下の整数を表す。但し、R21、R22及びR23の少なくとも1つは、下記一般式(4C)で表されるモノマー単位同士を連結する基及び炭素数5~20の直鎖若しくは分岐のアシル基の少なくとも一方を表す。)
    Figure JPOXMLDOC01-appb-C000007

     
    (一般式(4C)中、R4Cは、水素原子又はメチル基を表し、X48は、炭素数3~20の直鎖若しくは分岐のアルキレン基、-NH-、-C(=O)O-、カルボニル基、炭素数2~20の直鎖若しくは分岐のアルキレンオキシ基、アリール基及び炭素数3~10のシクロアルキレン基からなる群より選ばれる基又はこれらを連結した基を表し、*は、モノマー単位同士が連結されたときの結合位置を表し、**は、上記一般式(2A)中、X21、X22、若しくはX23と結合する部分、又は、セルロース骨格の2位、3位、若しくは6位にある酸素原子と結合する部分を表す。)
    Has a three-dimensional structure,
    Including a cellulose derivative having a molecular structure represented by the following general formula (2A),
    The liquid crystal film in which the cellulose derivative includes a group having a group for connecting monomer units to each other.
    Figure JPOXMLDOC01-appb-C000006


    (In the general formula (2A), X 21 , X 22 and X 23 are each independently a single bond, an alkylene group, — (R 24 —O) j —, or —C (═O) —R 25 —. R 21 , R 22 and R 23 are each independently a hydrogen atom, a group having a group connecting the monomer units, or a hydrophobic group, and R 24 and R 25 are each independently Represents an alkylene group, j represents an integer of 1 to 10, and n21 represents an integer of 2 to 800, provided that at least one of R 21 , R 22 and R 23 has the following general formula ( 4C) represents at least one of a group connecting the monomer units to each other and a linear or branched acyl group having 5 to 20 carbon atoms.)
    Figure JPOXMLDOC01-appb-C000007


    (In the general formula (4C), R 4C represents a hydrogen atom or a methyl group, and X 48 represents a linear or branched alkylene group having 3 to 20 carbon atoms, —NH—, —C (═O) O— Represents a group selected from the group consisting of a carbonyl group, a linear or branched alkyleneoxy group having 2 to 20 carbon atoms, an aryl group, and a cycloalkylene group having 3 to 10 carbon atoms, or a group obtained by linking these, * The bond position when the monomer units are linked to each other is represented, and ** represents the portion bonded to X 21 , X 22 , or X 23 in the general formula (2A), or the 2nd and 3rd positions of the cellulose skeleton. Or represents a moiety bonded to the oxygen atom at the 6-position.)
  9.  前記疎水性基のモノマー単位あたりの置換度が、1.0以上2.9以下である、請求項8に記載の液晶フィルム。 The liquid crystal film according to claim 8, wherein the degree of substitution per monomer unit of the hydrophobic group is 1.0 or more and 2.9 or less.
  10.  前記一般式(2A)で表される分子構造が、下記一般式(2A-1)で表される分子構造である、請求項8又は請求項9に記載の液晶フィルム。
    Figure JPOXMLDOC01-appb-C000008

     
    (一般式(2A-1)中、Rは、-CH-CH-、又は、-CH-CH(CH)-を表し、R21、R22及びR23は、それぞれ独立に、水素原子、前記連結基を有する基、又は、疎水性基を表し、m2、t2及びr2は、それぞれ独立に、0以上10以下の整数を表し、n23は、2以上800以下の整数を表す。但し、R21、R22及びR23の少なくとも1つは、下記一般式(4C)で表されるモノマー単位同士を連結する基及び炭素数5~20の直鎖若しくは分岐のアシル基の少なくとも一方を表す。)
    Figure JPOXMLDOC01-appb-C000009

     
    (一般式(4C)中、R4Cは、水素原子又はメチル基を表し、X48は、炭素数3~20の直鎖若しくは分岐のアルキレン基、-NH-、-C(=O)O-、カルボニル基、炭素数2~20の直鎖若しくは分岐のアルキレンオキシ基、アリール基及び炭素数3~10のシクロアルキレン基からなる群より選ばれる基又はこれらを連結した基を表し、*は、モノマー単位同士が連結されたときの結合位置を表し、**は、上記一般式(2A)中、X21、X22、若しくはX23と結合する部分、又は、セルロース骨格の2位、3位、若しくは6位にある酸素原子と結合する部分を表す。)
    The liquid crystal film according to claim 8 or 9, wherein the molecular structure represented by the general formula (2A) is a molecular structure represented by the following general formula (2A-1).
    Figure JPOXMLDOC01-appb-C000008


    (In the general formula (2A-1), R 2 represents —CH 2 —CH 2 — or —CH 2 —CH (CH 3 ) —, and R 21 , R 22 and R 23 are each independently , A hydrogen atom, a group having the linking group, or a hydrophobic group, m2, t2 and r2 each independently represents an integer of 0 to 10, and n23 represents an integer of 2 to 800. However, at least one of R 21 , R 22 and R 23 is at least a group connecting monomer units represented by the following general formula (4C) and a linear or branched acyl group having 5 to 20 carbon atoms. Represents one side.)
    Figure JPOXMLDOC01-appb-C000009


    (In the general formula (4C), R 4C represents a hydrogen atom or a methyl group, and X 48 represents a linear or branched alkylene group having 3 to 20 carbon atoms, —NH—, —C (═O) O— Represents a group selected from the group consisting of a carbonyl group, a linear or branched alkyleneoxy group having 2 to 20 carbon atoms, an aryl group, and a cycloalkylene group having 3 to 10 carbon atoms, or a group obtained by linking these, * The bond position when the monomer units are linked to each other is represented, and ** represents the portion bonded to X 21 , X 22 , or X 23 in the general formula (2A), or the 2nd and 3rd positions of the cellulose skeleton. Or represents a moiety bonded to the oxygen atom at the 6-position.)
  11.  前記モノマー単位同士を連結する基が、下記一般式(2C)で表される基を含み、
     前記疎水性基が、炭素数1~18の直鎖若しくは分岐のアルキル基、炭素数3~18のシクロアルキル基、炭素数6~18のアリール基、炭素数7~20のアラルキル基、炭素数2~4の直鎖若しくは分岐のアシル基、炭素数1~18の直鎖若しくは分岐のアルコキシ基、-COOR2Aで表されるカルボン酸エステル基、又はハロゲン原子であり、前記R2Aが、炭素数1~12の直鎖若しくは分岐のアルキル基、炭素数3~12のシクロアルキル基、又は、炭素数6~12のアリール基を含む、請求項8~請求項10のいずれか1項に記載の液晶フィルム。
    Figure JPOXMLDOC01-appb-C000010

     
    (一般式(2C)中、R2Cは、水素原子又はメチル基を表し、X28は、単結合、炭素数1~18の直鎖若しくは分岐のアルキレン基、炭素数3~18のシクロアルキレン基、炭素数6~18のアリーレン基、-O-、-NH-、-S-、-C(=O)-、炭素数1~18の直鎖若しくは分岐のアルカンから3つの水素原子を除いた基、炭素数3~18のシクロアルカンから3つの水素原子を除いた基、炭素数6~18のアレーンから3つの水素原子を除いた基及びアンモニアから3つの水素原子を除いた基からなる群より選ばれる基又はこれらを連結した基を表し、p2は、1又は2の整数を表す。但し、X28の価数は、p2+1である。*は、モノマー単位同士が連結されたときの結合位置を表す。**は、上記一般式(2A)中、X21、X22、若しくはX23と結合する部分、又は、セルロース骨格の2位、3位、若しくは6位にある酸素原子と結合する部分を表す。)
    The group connecting the monomer units includes a group represented by the following general formula (2C),
    The hydrophobic group is a linear or branched alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 3 to 18 carbon atoms, an aryl group having 6 to 18 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, a carbon number A linear or branched acyl group having 2 to 4 carbon atoms, a linear or branched alkoxy group having 1 to 18 carbon atoms, a carboxylic acid ester group represented by —COOR 2A , or a halogen atom, wherein R 2A is carbon The straight chain or branched alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, or an aryl group having 6 to 12 carbon atoms is described in any one of claims 8 to 10. Liquid crystal film.
    Figure JPOXMLDOC01-appb-C000010


    (In the general formula (2C), R 2C represents a hydrogen atom or a methyl group, X 28 represents a single bond, a linear or branched alkylene group having 1 to 18 carbon atoms, or a cycloalkylene group having 3 to 18 carbon atoms. Three hydrogen atoms were removed from an arylene group having 6 to 18 carbon atoms, —O—, —NH—, —S—, —C (═O) —, or a linear or branched alkane having 1 to 18 carbon atoms. A group consisting of a group obtained by removing 3 hydrogen atoms from a cycloalkane having 3 to 18 carbon atoms, a group obtained by removing 3 hydrogen atoms from an arene having 6 to 18 carbon atoms, and a group obtained by removing 3 hydrogen atoms from ammonia Represents a group selected from the above or a group obtained by linking them, and p2 represents an integer of 1 or 2. However, X 28 has a valence of p2 + 1, * represents a bond when monomer units are linked to each other. ** represents the position in the above general formula (2A) X 21, X 22, or a moiety that binds with X 23, or represents a 2-position, 3-position, or a moiety that binds to be an oxygen atom in the 6-position of the cellulose backbone.)
  12.  前記一般式(2C)において、X28が、単結合、又は、-C(=O)-NH-(CH-O-であり、p2が1である、請求項11に記載の液晶フィルム。 The liquid crystal according to claim 11, wherein, in the general formula (2C), X 28 is a single bond or —C (═O) —NH— (CH 2 ) 2 —O—, and p2 is 1. the film.
  13.  前記疎水性基が、炭素数2~4の直鎖若しくは分岐のアシル基である、請求項11又は請求項12に記載の液晶フィルム。 The liquid crystal film according to claim 11 or 12, wherein the hydrophobic group is a linear or branched acyl group having 2 to 4 carbon atoms.
  14.  請求項1~請求項7のいずれか1項に記載の液晶材料を基板上に付与する工程と、
     基板上に付与された前記液晶材料に、熱を加える工程又は紫外線を照射する工程と、
    を有する、液晶フィルムの製造方法。
    Applying a liquid crystal material according to any one of claims 1 to 7 on a substrate;
    A step of applying heat or irradiating ultraviolet rays to the liquid crystal material applied on the substrate;
    A method for producing a liquid crystal film, comprising:
  15.  請求項8~請求項13のいずれか1項に記載の液晶フィルムを備えるセンサー。 A sensor comprising the liquid crystal film according to any one of claims 8 to 13.
  16.  物体の歪みを検出する歪みセンサーである請求項15に記載のセンサー。 The sensor according to claim 15, wherein the sensor is a distortion sensor that detects distortion of an object.
  17.  生体情報を検出するウェアラブルセンサーである請求項16に記載のセンサー。 The sensor according to claim 16, which is a wearable sensor that detects biological information.
  18.  請求項8~請求項13のいずれか1項に記載の液晶フィルムを備える光学素子。 An optical element comprising the liquid crystal film according to any one of claims 8 to 13.
PCT/JP2019/013328 2018-03-28 2019-03-27 Liquid-crystal material, liquid-crystal film, method for producing same, sensor, and optical element WO2019189444A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020509240A JP7296134B2 (en) 2018-03-28 2019-03-27 Liquid crystal material, liquid crystal film and its manufacturing method, sensor, and optical element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018063259 2018-03-28
JP2018-063259 2018-03-28

Publications (1)

Publication Number Publication Date
WO2019189444A1 true WO2019189444A1 (en) 2019-10-03

Family

ID=68062089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013328 WO2019189444A1 (en) 2018-03-28 2019-03-27 Liquid-crystal material, liquid-crystal film, method for producing same, sensor, and optical element

Country Status (2)

Country Link
JP (1) JP7296134B2 (en)
WO (1) WO2019189444A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021060371A1 (en) * 2019-09-27 2021-04-01 富士フイルム株式会社 Optical element

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1143501A (en) * 1997-07-29 1999-02-16 Tokyo Ohka Kogyo Co Ltd Modified cellulose compound and photo polymerizable resin composition containing the same
WO2006090700A1 (en) * 2005-02-22 2006-08-31 Nippon Kayaku Kabushiki Kaisha Retardation film made by using cellulose derivative
JP2008248020A (en) * 2007-03-29 2008-10-16 Fujifilm Corp Cellulosic composition, cellulosic film, retardation film, optical compensation film, polarizing plate and image display apparatus
JP2008285650A (en) * 2007-04-19 2008-11-27 Fujifilm Corp Cellulose composition, cellulose film, retardation film, optical compensation film, antireflection film, polarizing plate and image display device
WO2013133436A1 (en) * 2012-03-09 2013-09-12 国立大学法人京都大学 Modified nano-cellulose and method for producing same, and resin composition containing modified nano-cellulose
JP2015048365A (en) * 2013-08-30 2015-03-16 国立大学法人 大分大学 Cellulose derivative having liquid crystallinity, production method thereof, and resin material comprising the same
JP2017203051A (en) * 2016-05-09 2017-11-16 株式会社ダイセル Mixed fatty acid cellulose ester and production method of mixed fatty acid cellulose ester
JP2018048289A (en) * 2016-09-23 2018-03-29 学校法人東京理科大学 Liquid crystal material, liquid crystal film and production method of the same, sensor, and optical element

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4654233A (en) * 1984-11-21 1987-03-31 Minnesota Mining And Manufacturing Company Radiation-curable thermoplastic coating
JP5560317B2 (en) 2012-12-04 2014-07-23 大日本塗料株式会社 Painted body
CN109475825A (en) 2016-07-28 2019-03-15 伊士曼化工公司 The gas separation membrane of cellulose esters comprising crosslinking

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1143501A (en) * 1997-07-29 1999-02-16 Tokyo Ohka Kogyo Co Ltd Modified cellulose compound and photo polymerizable resin composition containing the same
WO2006090700A1 (en) * 2005-02-22 2006-08-31 Nippon Kayaku Kabushiki Kaisha Retardation film made by using cellulose derivative
JP2008248020A (en) * 2007-03-29 2008-10-16 Fujifilm Corp Cellulosic composition, cellulosic film, retardation film, optical compensation film, polarizing plate and image display apparatus
JP2008285650A (en) * 2007-04-19 2008-11-27 Fujifilm Corp Cellulose composition, cellulose film, retardation film, optical compensation film, antireflection film, polarizing plate and image display device
WO2013133436A1 (en) * 2012-03-09 2013-09-12 国立大学法人京都大学 Modified nano-cellulose and method for producing same, and resin composition containing modified nano-cellulose
JP2015048365A (en) * 2013-08-30 2015-03-16 国立大学法人 大分大学 Cellulose derivative having liquid crystallinity, production method thereof, and resin material comprising the same
JP2017203051A (en) * 2016-05-09 2017-11-16 株式会社ダイセル Mixed fatty acid cellulose ester and production method of mixed fatty acid cellulose ester
JP2018048289A (en) * 2016-09-23 2018-03-29 学校法人東京理科大学 Liquid crystal material, liquid crystal film and production method of the same, sensor, and optical element

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Liquid crystal device handbook, first edition , first printing", THE 142TH COMMITEE OF JAPN SOCIETY THE PROMOTION OF SCIENCE, 29 November 1989 (1989-11-29), pages 622 - 633 *
MATSUMOT SHOICHI ET AL: "Liquid crystals: fundamentals & applications", MEASUREMENT APPLICATION OF CHOLESTERIC LIQUID CRYSTALS, FIRST EDITION SECOND PRINTING, 20 November 1992 (1992-11-20), pages 361 - 371 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021060371A1 (en) * 2019-09-27 2021-04-01 富士フイルム株式会社 Optical element
JPWO2021060371A1 (en) * 2019-09-27 2021-04-01
JP7225424B2 (en) 2019-09-27 2023-02-20 富士フイルム株式会社 optical element

Also Published As

Publication number Publication date
JPWO2019189444A1 (en) 2021-07-15
JP7296134B2 (en) 2023-06-22

Similar Documents

Publication Publication Date Title
JP6182218B2 (en) Method for preparing biomass polymer emulsion
KR20030095403A (en) Liquid crystalline compound and phase difference film using the same
US20220153934A1 (en) Polymer material and method for producing same
JP7296134B2 (en) Liquid crystal material, liquid crystal film and its manufacturing method, sensor, and optical element
KR20210013075A (en) Bendable optical laminate and its manufacturing method
JP2010159337A (en) Thermoresponsive polymer gel film
JP5423913B2 (en) Fluoropolymer and production method thereof
JP6782485B2 (en) Liquid crystal materials, liquid crystal films and their manufacturing methods, sensors, and optical elements
JP7370002B2 (en) Liquid crystal materials, liquid crystal films, sensors and optical elements
BR112020005943A2 (en) polymers of haloalkyl and haloalkenyl (meth) acrylates
KR20130073024A (en) Binding agent and composition for preparing photoalignment layer comprising the same
JP3890022B2 (en) Perfluoro group-containing (meth) acrylic acid ester
JP7296124B2 (en) Lyotropic liquid crystal material, lyotropic liquid crystal film and manufacturing method thereof, sensor, and optical element
CN101825734B (en) Phase difference film and manufacturing method thereof
JP2021181564A (en) Liquid crystal film-forming composition, liquid crystal film, sensor, and optical element
Podgórski Thermo-mechanical behavior and specific volume of highly crosslinked networks based on glycerol dimethacrylate and its derivatives
JP2024025563A (en) Cellulose derivative, liquid crystal material, liquid crystal film, and method for producing liquid crystal film
KR20010033816A (en) Partially polymerized mixture of diethylene glycol(allyl carbonate) compounds
JP6561446B2 (en) Method for producing photocurable resin molding
JP2019035018A (en) Thermoplastic resin composition, optical film, and polarizing plate
WO2021187344A1 (en) Copolymer including benzotriazole-based ultraviolet-absorbing unit and composition thereof
TW202128794A (en) Thermoplastic copolymer and resin molded body
JP6455115B2 (en) Photo-curable resin molding, polarizing plate, and transmissive liquid crystal display
WO2020027103A1 (en) Curable resin composition, polymer, (meth)acrylic elastomer and sheet
JP2010175650A (en) Polarizing plate and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19777438

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2020509240

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19777438

Country of ref document: EP

Kind code of ref document: A1