WO2019189298A1 - Control device and fluid delivery device - Google Patents

Control device and fluid delivery device Download PDF

Info

Publication number
WO2019189298A1
WO2019189298A1 PCT/JP2019/013080 JP2019013080W WO2019189298A1 WO 2019189298 A1 WO2019189298 A1 WO 2019189298A1 JP 2019013080 W JP2019013080 W JP 2019013080W WO 2019189298 A1 WO2019189298 A1 WO 2019189298A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotational speed
target rotational
fluid
pwm control
motor
Prior art date
Application number
PCT/JP2019/013080
Other languages
French (fr)
Japanese (ja)
Inventor
八十八 原
清水 大介
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Publication of WO2019189298A1 publication Critical patent/WO2019189298A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D20/00Hair drying devices; Accessories therefor
    • A45D20/04Hot-air producers
    • A45D20/08Hot-air producers heated electrically
    • A45D20/10Hand-held drying devices, e.g. air douches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/285Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only
    • H02P7/29Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using pulse modulation

Definitions

  • the present invention relates to a control device and a fluid delivery device.
  • Japanese Laid-Open Publication teaches a hair dryer that changes its output according to the cross-sectional area of the air outlet.
  • the switch rod provided in the microswitch is pushed in according to the attachment depth of the air collector, and the circuit is switched. Thereby, the output of the hair dryer is changed.
  • An object of the present invention is to control driving of a DC motor, for example, with a simple configuration.
  • An exemplary control device of the present invention performs PWM control on a DC motor that rotates an impeller that flows the fluid from a suction port to the delivery port in a fluid delivery device in which the fluid flow at the outlet is variable.
  • a control unit configured to set a target rotational speed of the DC motor according to the ease of flow of the fluid; a receiving unit configured to receive a rotational speed signal indicating the rotational speed of the DC motor; and a stator of the DC motor.
  • a drive control unit that changes the rotational speed toward the target rotational speed by adjusting a PWM control value of the drive voltage supplied to the storage, a storage unit that stores the PWM control value in time series, and the predetermined time before
  • a calculation unit that calculates a lower threshold value and an upper threshold value based on a PWM control value and a lower limit change amount and an upper limit change amount associated with the target rotational speed set by the setting unit.
  • the setting unit increases the target rotational speed by one step when the PWM control value is equal to or lower than the lower threshold value, and decreases the target rotational speed by one step when the PWM control value is equal to or higher than the upper threshold value.
  • An exemplary fluid delivery device of the present invention includes an impeller having blades that can rotate about a central axis, a DC motor that rotates the impeller, a housing that houses the impeller, and a drive for controlling the DC motor.
  • the housing has a delivery port through which fluid is delivered.
  • a delivery changing member that changes the flowability of the fluid stepwise can be attached to and detached from the delivery port.
  • the driving of the DC motor can be controlled with a simple configuration.
  • FIG. 1A is a schematic configuration diagram of a fluid delivery device in the present embodiment.
  • FIG. 1B is a block diagram showing the configuration of the fluid delivery device in the present embodiment.
  • FIG. 2 is a graph showing an example of drive characteristics of the DC motor in the present embodiment.
  • FIG. 3 is a graph showing a change in the internal pressure of the fluid delivery device with respect to the fluid delivery rate.
  • FIG. 4 is a graph showing changes in the rotational speed with respect to the torque of the DC motor.
  • FIG. 5 is a flowchart for explaining an example of PWM control of the DC motor in accordance with the ease of fluid flow at the delivery port.
  • FIG. 6 is a graph illustrating an example of drive characteristics of a DC motor according to a modification.
  • FIG. 1A is a schematic configuration diagram of a fluid delivery device 100 in the present embodiment.
  • FIG. 1B is a block diagram showing a configuration of the fluid delivery device 100 in the present embodiment. *
  • the fluid delivery device 100 delivers the fluid F sucked from the suction port 3a from the delivery port 3b. Moreover, as will be described later, the ease of flow of the fluid F at the delivery port 3b can be changed.
  • the fluid F is air
  • the fluid delivery device 100 is a blower such as a hair dryer.
  • the fluid F may be a gas other than air or a liquid.
  • the fluid delivery device 100 may be a blower other than a hair dryer, or a pump device that performs suction and delivery of the fluid F. *
  • the fluid delivery device 100 includes an impeller 1, a DC motor 2, and a housing 3. *
  • the impeller 1 has blades (not shown) that can rotate around a central axis.
  • the impeller 1 can rotate around the central axis, and the fluid F flows from the suction port 3a to the delivery port 3b by the rotation.
  • the DC motor 2 is driven by a plurality of drive voltages and rotates the impeller 1.
  • the DC motor 2 includes a rotor 21, a stator 22, a drive driver 23, a rotation speed detection unit 24, a power supply unit 25, and a control device 4.
  • the fluid delivery device 100 further includes the control device 4.
  • the control device 4 may be provided outside the DC motor 2.
  • the control device 4 may be accommodated in the housing 3 together with the impeller 1 and the DC motor 2, or may be provided outside the housing 3.
  • the drive driver 23, the rotation speed detection part 24, and the power supply part 25 are not limited to the illustration of FIG. 1B, You may be mounted in the control apparatus 4. FIG. The control device 4 will be described later. *
  • the impeller 1 is attached to the rotor 21.
  • the rotor 21 can rotate together with the impeller 1 about the central axis.
  • the rotational speed N of the rotor 21 may be referred to as the rotational speed N of the DC motor 2.
  • the stator 22 rotates the rotor 21 based on the drive voltage supplied from the drive driver 23.
  • the DC motor 2 may be expressed as being driven with a driving voltage, but this expression means that the rotor 21 is driven and rotated by supplying the driving voltage to the stator 22.
  • the drive driver 23 generates a drive voltage based on the drive voltage control signal output from the control device 4 and outputs the drive voltage to the stator 22.
  • the rotation speed detection unit 24 detects the rotation speed N of the rotor 21 and outputs a rotation speed signal to the control device 4 based on the detection result.
  • the rotation speed detection unit 24 detects the rotation speed N based on a back electromotive voltage generated in the DC motor 2 when the rotor 21 rotates.
  • the means for detecting the rotational speed N is not limited to this example.
  • the rotation speed detection unit 24 may have a configuration having components for detecting the rotation speed N, such as a Hall IC and an encoder unit. *
  • the power supply unit 25 is a power supply source for the DC motor 2.
  • the power supply unit 25 receives supply of power from the outside of the DC motor 2 and supplies power to each component of the DC motor 2, such as the drive driver 23 and the control device 4. Further, the power supply unit 25 outputs a power supply voltage signal indicating the power supply voltage supplied from the outside of the DC motor 2 to the control device 4.
  • the housing 3 accommodates the impeller 1.
  • the housing 3 further houses the DC motor 2.
  • the housing 3 is provided with a suction port 3a through which the fluid F is sucked and a delivery port 3b through which the fluid F is delivered.
  • the housing 3 has a suction port 3a and a delivery port 3b.
  • a delivery changing member 31 that changes the ease of flow of the fluid F can be attached to and detached from the delivery port 3b.
  • the delivery changing member 31 is, for example, a nozzle that limits the delivery amount of the fluid F delivered from the delivery port 3b, and changes the ease of flow of the fluid F at the delivery port 3b in two stages. Therefore, when the delivery changing member 31 is attached to the delivery port 3b, the delivery amount of the fluid F delivered from the delivery port 3b is smaller than when the delivery change member 31 is not attached.
  • the fluid delivery device 100 includes a delivery change member 31.
  • the housing 3 may include the delivery changing member 31 without being limited to this example. That is, the delivery changing member 31 may be a part of the housing 3. Further, the delivery changing member 31 is not limited to the above example, and may be a member that increases the delivery amount of the fluid F at the delivery port 3b by attachment. *
  • the control device 4 controls the DC motor 2 that rotates the impeller 1 that flows the fluid F from the suction port 3a to the delivery port 3b in the fluid delivery device 100 in which the flow ease of the fluid F at the delivery port 3b can be changed.
  • the control device 4 controls driving of the DC motor 2 using a program and information stored in the storage unit 44 described later. More specifically, the control device 4 outputs a PMW control signal to the drive driver 23, thereby performing PWM control of the drive voltage supplied to the stator 22 and controlling the rotational drive of the rotor 21.
  • the rotational speed N of the DC motor 2 increases. To do.
  • the control device 4 that changes the rotational speed N of the DC motor 2 toward the target rotational speed causes the DC motor 2 to maintain the same rotational speed N as the target rotational speed.
  • the PWM duty ratio Td is changed according to the ease of flow of the fluid F.
  • control device 4 decreases the PWM duty ratio Td such as PWM duty (ratio), for example, when the fluid F hardly flows at the outlet 3b and the rotational speed N of the DC motor 2 increases. .
  • control device 4 increases the PWM duty ratio Td when the fluid F easily flows at the outlet 3b and the rotational speed N of the DC motor 2 decreases.
  • the control device 4 utilizes the fact that the PWM duty ratio Td exceeds the threshold when the ease of flow of the fluid F at the delivery port 3b greatly changes in accordance with the attachment / detachment of the delivery change member 31 in such an operation. A change in the ease of flow of the fluid F at the outlet 3b is detected, and the control device 4 increases or decreases the rotational speed N of the DC motor 2 by a change in the target rotational speed according to the change, and the fluid delivery device 100 Adjust the delivery amount of. *
  • the control device 4 includes a drive control unit 41, a reception unit 42, a setting unit 43, a storage unit 44, a calculation unit 45, and a determination unit 46.
  • the determination unit 46 includes a timer 461. *
  • the drive control unit 41 performs PWM control of the drive voltage supplied to the stator 22 of the DC motor 2 by outputting a PWM control signal to the drive driver 23. More specifically, the drive control unit 41 changes the rotation speed N toward the target rotation speed by adjusting the PWM duty ratio Td of the drive voltage supplied to the stator 22 of the DC motor 2.
  • the PWM duty ratio Td is an example of the PWM control value of the present invention.
  • the receiving unit 42 receives various signals. For example, the receiving unit 42 receives a rotation number signal from the rotation number detection unit 24 and receives a power supply voltage signal from the power supply unit 25.
  • the rotation speed signal is a signal indicating the rotation speed N of the DC motor 2.
  • the power supply voltage signal is a signal indicating the power supply voltage of the DC motor 2.
  • the setting unit 43 sets a target rotational speed of the DC motor 2 according to the ease of flow of the fluid F. More specifically, the setting unit 43 selects and sets the target rotational speed of the DC motor 2 from among selectable multi-stage target rotational speeds according to the ease of flow of the fluid F. . For example, as will be described later, if the PWM duty ratio Td is equal to or lower than the lower threshold value TsL at the current target rotational speed, the setting unit 43 increases the target rotational speed of the DC motor 2 by one step. On the other hand, if the PWM duty ratio Td is equal to or higher than the upper threshold value TsH at the current target rotational speed, the setting unit 43 decreases the target rotational speed of the DC motor 2 by one step.
  • the lower threshold value TsL is a threshold value of the PWM duty ratio Td when the PWM duty ratio Td is decreased
  • the upper threshold value TsH is a threshold value of the PWM duty ratio Td when the PWM duty ratio Td is increased.
  • the lower threshold value TsL and the upper threshold value TsH are set for each target rotational speed and are associated with each target rotational speed.
  • the storage unit 44 is a non-transitory storage medium that maintains storage even when there is no power supply, and stores various data.
  • the storage unit 44 stores data indicated by various signals received by the receiving unit 42, for example.
  • the storage unit 44 has multistage target rotation speeds that can be set by the setting unit 43 for the DC motor 2 and a lower limit change amount
  • the storage unit 44 stores the PWM duty ratio Td indicated by the PWM control signal output from the drive control unit 41 to the drive driver 23 in time series.
  • the PWM duty ratio Td is stored every 0.1 [sec], for example. *
  • the calculation unit 45 performs various calculations, and in particular, performs various calculations using data indicated by various signals received by the reception unit 42 and data stored in the storage unit 44. For example, the calculation unit 45 calculates the following based on the PWM duty ratio Td a predetermined time ago and the lower limit change amount
  • the fixed time is, for example, 2 [sec] in this embodiment, but is not limited to this example. *
  • is a threshold value for the amount of decrease in the PWM duty ratio Td for a certain time, and the PWM duty ratio Td before the certain time when the PWM duty ratio Td decreases. Is the threshold value of the difference in PWM duty ratio Td.
  • is a threshold value of the increase amount of the PWM duty ratio Td in a certain time, and the difference between the PWM duty ratio Td and the PWM duty ratio Td before the certain time when the PWM duty ratio Td increases. Is the threshold value.
  • the calculation unit 45 calculates the lower threshold value TsL by subtracting the lower limit change amount
  • the lower threshold value TsL is a value obtained by subtracting the lower limit change amount
  • the upper threshold value TsH is a value obtained by adding the upper limit change amount
  • is a threshold value of the ratio of the PWM duty ratio Td to the PWM duty ratio Td before a certain time when the PWM duty ratio Td decreases.
  • may be a threshold value of the ratio of the PWM duty ratio Td to the PWM duty ratio Td before a certain time when the PWM duty ratio Td increases.
  • the calculation unit 45 calculates the lower threshold value TsL by multiplying the PWM duty ratio Td before a certain time by the lower limit change amount
  • the calculation unit 45 calculates the upper threshold value TsH by multiplying the PWM duty ratio Td before a certain time by the upper limit change amount
  • the upper threshold value TsH is a value obtained by multiplying the PWM duty ratio Td before a certain time by the upper limit change amount
  • ). a threshold that is, a lower limit change amount
  • the determination unit 46 performs various determinations.
  • the timer 461 acquires the date and time at each time point, measures the elapsed time from a predetermined time point to another predetermined time point, and the like. *
  • FIG. 2 is a graph showing an example of drive characteristics of the DC motor 2 in the present embodiment.
  • FIG. 3 is a graph showing a change in the internal pressure of the fluid delivery device with respect to the fluid delivery rate.
  • FIG. 4 is a graph showing changes in the rotational speed with respect to the torque of the DC motor. *
  • FIG. 2 illustrates a graph when the ease of flow of the fluid F at the outlet 3b changes in two stages.
  • the “ease of flow” in “two stages” here refers to the ease of flow of the fluid F at the delivery port 3b when the delivery change member 31 is attached to the delivery port 3b, and the delivery change member 31 attached to the delivery port 3b.
  • the flow of the fluid F at the delivery port 3b in the case of not being present.
  • the fluid F is less likely to flow through the delivery port 3b than when the delivery changing member 31 is not attached to the delivery port 3b.
  • the horizontal axis represents the PWM duty ratio indicated by the PWM control signal
  • the vertical axis represents the rotational speed N of the DC motor 2.
  • the first target rotational speed of the DC motor 2 when the fluid F easily flows at the outlet 3b is the same value as the rotational speed N1.
  • the second target rotational speed of the DC motor 2 when the fluid F hardly flows at the delivery port 3b is the same value as the rotational speed N2.
  • the sign of the first target speed is “N1”
  • the sign of the second target speed is “N2”.
  • the drive control unit 41 of the control device 4 performs PWM control on the drive voltage of the DC motor 2 so that the rotation speed N of the DC motor 2 changes toward the target rotation speed set by the setting unit 43.
  • the PWM duty ratio Td at the time is changed.
  • the internal pressure of the fluid delivery device 100 increases as shown in FIG.
  • the suction amount of the fluid F at the time decreases. Therefore, the torque of the DC motor 2 that drives the fluid delivery device 100 decreases. Therefore, as shown in FIG. 4, the rotational speed N of the DC motor 2 increases as the torque decreases, compared to before the fluid F hardly flows at the fluid F outlet 3 b.
  • the rotational speed N increases greatly and the PWM duty ratio Td that decreases decreases compared to the above temporary case.
  • the amount of change in time (for example, the absolute value of the difference and the change ratio) also increases. Therefore, the decreasing PWM duty ratio Td is equal to or lower than the lower threshold value TsL.
  • the control device 4 detects that the delivery changing member 31 is attached to the delivery port 3b when Td ⁇ TsL. Then, the setting unit 43 changes the target rotational speed of the DC motor 2 to the second target rotational speed N2 (> N1) in order to suppress a decrease in the delivery amount of the fluid F at the delivery port 3b. Accordingly, the drive control unit 41 increases the PWM duty ratio Td so as to increase the rotational speed N of the DC motor 2 toward the second target rotational speed N2.
  • the decrease amount of the rotation speed N to be eliminated is not so large, and therefore the increase amount of the PWM duty ratio Td in a certain time is not so much. It doesn't grow up. Therefore, the decreasing PWM duty ratio Td does not exceed the upper threshold value.
  • the rotational speed N is greatly reduced and the PWM duty ratio Td is increased as compared with the temporary case described above.
  • the amount of change in time (for example, the absolute value of the difference and the change ratio) also increases. Accordingly, the increasing PWM duty ratio Td is equal to or higher than the upper threshold value TsH.
  • the control device 4 detects that the delivery changing member 31 has been removed from the delivery port 3b when Td ⁇ TsH. Then, the setting unit 43 changes the target rotational speed of the DC motor 2 to the first target rotational speed N1 ( ⁇ N2) in order to suppress an increase in the amount of fluid F delivered at the delivery port 3b. Accordingly, the drive control unit 41 decreases the PWM duty ratio Td so as to decrease the rotational speed N of the DC motor 2 toward the first target rotational speed N1.
  • FIG. 5 is a flowchart for explaining an example of the open loop control of the DC motor 2 in accordance with the ease of flow of the fluid F at the delivery port 3b. *
  • the drive control unit 41 causes the rotational speed N of the DC motor 2 to change toward the target rotational speed set by the setting unit 43 in parallel with the processing of FIG. PWM control for changing the PWM duty ratio Td is performed. Moreover, the process of FIG. 5 is complete
  • the control device 4 starts the operation of FIG.
  • the setting unit 43 sets an initial value of the target rotational speed of the DC motor 2 (S101).
  • the initial value is set to the first target rotational speed N1.
  • the drive control part 41 changes the rotation speed N of the DC motor 2 toward the 1st target rotation speed N1 by the output of a PWM control signal.
  • the determination unit 46 determines whether or not the power supply voltage difference between the preset voltage and the power supply voltage is 0 (S102). More specifically, the receiving unit 42 receives a power supply voltage signal. The calculation unit 45 calculates a power supply voltage difference between the rated voltage of power supplied from the outside of the DC motor 2 to the power supply unit 25 and the power supply voltage of the power supply voltage signal, for example. The determination unit 46 determines whether or not the power supply voltage difference is zero. If the power supply voltage difference is 0 (YES in S102), the process proceeds to S104 described later.
  • the calculation unit 45 calculates the lower limit change amount
  • the drive control unit 41 stores the PWM duty ratio Td indicated by the PWM control signal output to the drive driver 23 in the storage unit 44 in time series (S104).
  • the determination unit 46 determines whether the PWM duty ratio Td before a certain time is stored in the storage unit 44 (S105). If the PWM duty ratio Td before a certain time is not stored (NO in S105), the process returns to S102. On the other hand, when the PWM duty ratio Td of a predetermined time is stored (YES in S105), the calculation unit 45 calculates the lower limit change amount
  • the lower threshold value TsL and the upper threshold value TsH associated with each target rotational speed are respectively calculated (S106). More specifically, the calculation unit 45 calculates the lower threshold value TsL at the first target rotational speed N1 using the lower limit change amount
  • the determination unit 46 determines whether or not the target rotational speed set by the setting unit 43 is the first target rotational speed N1 (S107). If it is determined that the target rotational speed is the first target rotational speed N1 (YES in S107), the process proceeds to S111 described later. On the other hand, when it is not determined that the target rotational speed is the first target rotational speed N1 (NO in S107), the process proceeds to S121 described later. *
  • the determination unit 46 determines whether or not the PWM duty ratio Td is equal to or lower than the lower threshold value TsL at the first target rotation speed N1. If it is determined that Td ⁇ TsL is not satisfied (NO in S111), the process returns to S102. When it is determined that Td ⁇ TsL is satisfied (YES in S111), it is estimated that the fluid F is difficult to flow through the delivery port 3b by one stage because the delivery change member 31 such as a nozzle is attached to the delivery port 3b. . In this case, the setting unit 43 further determines whether or not the determination result is maintained longer than a predetermined first time (S113). In addition, although 1st time is 2.0 [sec] in this embodiment, for example, it is not limited to this illustration.
  • the process returns to S102.
  • the setting unit 43 sets the second target rotation speed N2 by raising the target rotation speed by one step from the current time (S114). Then, the process returns to S102.
  • the determination unit 46 determines whether or not the PWM duty ratio Td is equal to or higher than the upper threshold value TsH at the second target rotation speed N2. If it is determined that Td ⁇ TsH is not satisfied (NO in S121), the process returns to S102. When it is determined that Td ⁇ TsH is satisfied (YES in S121), it is estimated that the fluid F easily flows through the delivery port 3b by one stage because the delivery change member 31 such as the nozzle is removed from the delivery port 3b. . In this case, the setting unit 43 further determines whether or not the determination result is maintained longer than a predetermined second time (S123).
  • 2nd time is 1.5 [sec] in this embodiment, for example, it is not limited to this illustration.
  • At least one of S102, S103, S113, and S123 may be omitted. Even in this way, the control device 4 can perform PWM control of the DC motor 2.
  • the setting unit 43 increases the target rotational speed by one step if the PWM duty ratio Td is equal to or lower than the lower threshold value TsL. If the PWM duty ratio is equal to or higher than the upper threshold value TsH, the setting unit 43 decreases the target rotational speed by one step.
  • the control device 4 performs transmission according to the mounting of the transmission changing member 31 or the like. It is detected that the fluid F becomes difficult to flow at the outlet 3b. Then, the control device 4 increases the rotational speed N of the DC motor 2 toward the second target rotational speed N2 that is one step higher by increasing the target rotational speed by one stage. By this control, the control device 4 suppresses a decrease in the delivery amount of the fluid F due to the difficulty of the fluid F flowing at the delivery port 3b.
  • the control device 4 determines whether the delivery changing member 31 is removed or the like. It is detected that the fluid F easily flows. Then, the control device 4 decreases the rotational speed N of the DC motor 2 toward the first target rotational speed N1 that is one step lower by lowering the target rotational speed by one step. By this control, the control device 4 suppresses an increase in the delivery amount of the fluid F due to the fluid F easily flowing at the delivery port 3b. Therefore, the control device 4 can appropriately control the rotational speed N of the DC motor 2 without providing, for example, a control element or means for operating the element. Therefore, the control device 4 can control the driving of the DC motor 2 with a simple configuration. *
  • control device 4 can perform stable control with respect to the performance change of the DC motor 2 by the PWM control based on the change of the PWM duty ratio Td. Furthermore, even if there are individual differences in the impeller 1, the DC motor 2, the housing 3, and the like by the closed loop control, the number of rotations is controlled in the same manner, so there is little variation in the fluid delivery amount for each product. *
  • the calculation unit 45 calculates the lower limit change amount
  • is adjusted. If it does in this way, rotation speed N of DC motor 2 will fluctuate by change of power supply voltage. Therefore, for example, if there is a power supply voltage difference between the rated voltage and the power supply voltage that is actually supplied to the DC motor 2, a deviation due to the power supply voltage difference also occurs in the drive voltage, and the delivery amount of the fluid delivery device 100 Variations also occur.
  • the above-described deviation is corrected by adjusting the lower limit change amount
  • the drive voltage can be PWM controlled more accurately and more stably depending on whether or not the ease of flow of the fluid F at the delivery port 3b has changed. Therefore, the fluctuation
  • the drive control unit 41 changes the rotation speed N toward the minimum first target rotation speed N1 among the multi-stage target rotation speeds.
  • the setting unit 43 increases the target rotational speed by one step from the first target rotational speed N1 if the PWM duty ratio Td is equal to or lower than the lower threshold value TsL at the first target rotational speed N1.
  • the PWM duty ratio Td is larger than the lower threshold value TsL, the setting unit 43 maintains the target rotational speed at the first target rotational speed N1.
  • control apparatus 4 will detect mounting
  • the drive control unit 41 changes the rotational speed N toward the maximum second target rotational speed N2 among the multi-stage target rotational speeds.
  • the setting unit 43 decreases the target rotation speed by one step from the second target rotation speed N2.
  • the setting unit 43 maintains the target rotational speed at the second target rotational speed N2 if the PWM duty ratio Td is smaller than the upper threshold value TsH at the second target rotational speed N2.
  • control device 4 detects the removal of the delivery changing member 31 at the delivery port 3b, for example, and reduces the rotational speed of the DC motor 2 by lowering the target rotational speed by one step from the second target rotational speed N2. Decrease. Therefore, the control device 4 can suppress an excessive increase in the delivery amount of the fluid F at the delivery port 3b due to the removal of the delivery change member 31.
  • the setting unit 43 determines that the time during which the first state in which the PWM duty ratio Td is equal to or lower than the lower threshold value TsL is longer than the predetermined first time. Increases the target rotational speed by one step.
  • the setting unit 43 sets the target rotational speed to 1 when the time during which the second state in which the PWM duty ratio Td is equal to or higher than the upper threshold value TsH is longer than the predetermined second time. Step down. In this way, the temporary change in the rotational speed N hardly affects the drive control of the DC motor 2.
  • the drive The control unit 41 does not change the drive voltage. Therefore, the DC motor 2 can be controlled more stably.
  • the first time in S113 is preferably longer than the second time in S123.
  • the time corresponding to the unexpected situation when the rotational speed is increased toward the new target rotational speed is longer than when the rotational speed is decreased toward the new target rotational speed. Therefore, it is effective, for example, when eliminating temporary clogging of the delivery port of the fluid delivery device.
  • the present invention is not limited to this example, and the first time in S113 may be the same as the second time in S123, or may be shorter than the second time in S123.
  • the target rotation speed of the DC motor 2 is the first target rotation speed N1 and the second target rotation speed.
  • One of the rotation speeds N2 is set.
  • the DC motor 2 may be set from among three or more target rotational speeds without being limited to this example. In this way, even when the ease of flow of the fluid F at the outlet 3b changes in multiple stages of 3 or more, the drive of the DC motor 2 can be PWM-controlled, and the rotational speed N of the DC motor 2 can be set to the target rotational speed. It can be changed automatically.
  • FIG. 6 is a graph showing an example of drive characteristics of the DC motor 2 in the modification.
  • the horizontal axis represents the PWM duty ratio indicated by the PWM control signal
  • the vertical axis represents the rotational speed N of the DC motor 2.
  • the third target rotational speed of the DC motor 2 when the fluid F easily flows at the delivery port 3b is the same value as the rotational speed N3.
  • the third target rotation speed is assumed to be “N3”. Further, the third target speed N3 is larger than the first target speed N1 and smaller than the second target speed N2.
  • Each target rotational speed is set with at least one of a lower limit change amount
  • is set for the first target rotation speed N1.
  • is set for the second target rotation speed N2.
  • are set in the third target rotation speed N3.
  • the setting unit 43 maintains the target rotational speed at the first target rotational speed N1. Further, the setting unit 43 may immediately reset the target rotational speed, but preferably, when the state maintaining time during which Td ⁇ TsL1 is maintained is longer than a predetermined first time, the target rotational speed is set. To change. *
  • the control device 4 changes the rotation speed N of the DC motor 2 toward the third target rotation speed N3, the fluid F easily flows at the outlet 3b, whereby the PWM duty ratio Td becomes the third target rotation speed N3.
  • the setting unit 43 sets the first target rotational speed N1 that is one step smaller than the third target rotational speed N3 as the target rotational speed of the DC motor 2.
  • the control apparatus 4 changes the rotation speed N of the DC motor 2 toward the 1st target rotation speed N1 ( ⁇ N3) smaller than the 3rd target rotation speed N3. Therefore, since the delivery amount of the fluid F decreases, it is possible to suppress an excessive increase in the delivery amount caused by the fluid F easily flowing at the delivery port 3b.
  • the setting unit 43 maintains the target rotational speed at the third target rotational speed N3.
  • the setting unit 43 may change the target rotational speed immediately, but preferably the target rotational speed is set when the state maintaining time during which Td ⁇ TsH3 is maintained is longer than a predetermined second time. Change. *
  • the control device 4 changes the rotation speed N of the DC motor 2 toward the third target rotation speed N3, the fluid F becomes more difficult to flow at the outlet 3b, so that the PWM duty ratio Td becomes the third target rotation speed.
  • the setting unit 43 sets the second target rotation speed N2 that is one step larger than the third target rotation speed N3 as the target rotation speed of the DC motor 2.
  • the control apparatus 4 changes the rotation speed N of the DC motor 2 toward the 2nd target rotation speed N2 (> N3) larger than the 3rd target rotation speed N3.
  • the setting unit 43 maintains the target rotational speed at the third target rotational speed N3. Further, the setting unit 43 may change the target rotational speed immediately, but preferably, the target rotational speed is set when the state maintaining time in which Td ⁇ TsL3 is maintained is longer than the predetermined first time. Change. *
  • the first time may be equal to or shorter than the second time, but is preferably longer than the second time.
  • the higher the rotational speed N of the DC motor 2 the longer the time until the drive voltage changes, and for example, it becomes easier to obtain time corresponding to an unexpected situation.
  • the control device 4 changes the rotational speed N of the DC motor 2 toward the minimum first target rotational speed N1.
  • the PWM duty ratio Td becomes equal to or higher than the upper threshold value TsH2 at the second target rotational speed N2 due to the fluid F easily flowing at the delivery port 3b
  • the setting unit 43 is one step smaller than the second target rotational speed N2.
  • the rotational speed N3 is set to the target rotational speed of the DC motor 2.
  • the control device 4 changes the rotational speed N of the DC motor 2 toward the third target rotational speed N3 ( ⁇ N2) smaller than the second target rotational speed N2.
  • the setting unit 43 maintains the target rotational speed at the second target rotational speed N2. Further, the setting unit 43 may change the target rotational speed immediately, but preferably, the target rotational speed is set when the state maintaining time during which Td ⁇ TsH2 is maintained is longer than a predetermined second time. Change. *
  • the delivery amount of the fluid delivery device 100 can be adjusted satisfactorily by simple control.
  • the multi-stage target rotational speed includes at least one third target rotational speed N3 that is larger than the minimum target rotational speed and smaller than the maximum target rotational speed.
  • the drive control unit 41 changes the rotation speed N toward the third target rotation speed N3.
  • the setting unit 43 increases the target rotational speed by one step from the third target rotational speed N3.
  • the setting unit 43 decreases the target rotational speed by one step from the third target rotational speed N3.
  • the control apparatus 4 will detect that the fluid F becomes difficult to flow through the delivery port 3b by mounting
  • the control device 4 detects that the fluid F is likely to flow at the delivery port 3b by removing the delivery changing member 31, for example, the control device 4 reduces the target rotational speed by one step from the third target rotational speed N3. The number of rotations of 2 is further reduced.
  • the control device 4 can suppress an excessive increase / decrease in the delivery amount of the fluid F at the delivery port 3b due to a change in the ease of flow of the fluid F at the delivery port 3b.
  • control device 4 allows the fluid F to be discharged from the suction port 3a in the fluid delivery device 100 in which the flowability of the fluid F at the delivery port 3b can be changed.
  • the DC motor 2 that rotates the impeller 1 that flows to the delivery port 3b is PWM-controlled.
  • the control device 4 includes a setting unit 43 that sets a target rotational speed of the DC motor 2 according to the ease of flow of the fluid F, a receiving unit 42 that receives a rotational speed signal indicating the rotational speed N of the DC motor 2, and a DC A drive control unit 41 that changes the rotational speed N toward the target rotational speed by adjusting the PWM duty ratio Td of the drive voltage supplied to the stator 22 of the motor 2, and a storage unit 44 that stores the PWM duty ratio Td in time series.
  • the lower threshold value TsL and the upper threshold value TsH based on the PWM duty ratio Td before a predetermined time and the lower limit change amount
  • a calculation unit 45 that calculates If the PWM duty ratio Td is equal to or lower than the lower threshold value TsL, the setting unit 43 increases the target rotational speed by one step. The setting unit 43 decreases the target rotational speed by one step if the PWM duty ratio Td is equal to or greater than the upper threshold value TsH.
  • the control device 4 when the PWM duty ratio Td becomes equal to or lower than the lower threshold value TsL associated with the first target rotational speed N1 set by the setting unit 43, the control device 4 responds to the attachment of the transmission changing member 31 or the like. Then, it is detected that the fluid F is difficult to flow at the delivery port 3b. Then, the control device 4 increases the rotational speed N of the DC motor 2 toward the second target rotational speed N2 that is one step higher by increasing the target rotational speed by one stage. By this control, the control device 4 suppresses a decrease in the delivery amount of the fluid F due to the difficulty of the fluid F flowing at the delivery port 3b.
  • the control device 4 determines whether the delivery changing member 31 is removed or the like. It is detected that the fluid F easily flows. Then, the control device 4 decreases the rotational speed N of the DC motor 2 toward the first target rotational speed N1 that is one step lower by lowering the target rotational speed by one step. By this control, the control device 4 suppresses an increase in the delivery amount of the fluid F due to the fluid F easily flowing at the delivery port 3b. Therefore, the control device 4 can appropriately control the rotational speed N of the DC motor 2 without providing, for example, a control element or means for operating the element. Therefore, the control device 4 can control the driving of the DC motor 2 with a simple configuration. *
  • control device 4 can perform stable control with respect to the performance change of the DC motor 2 by the PWM control based on the change of the PWM duty ratio Td. Furthermore, even if there are individual differences in the impeller 1, the DC motor 2, the housing 3, and the like by the closed loop control, the number of rotations is controlled in the same manner, so there is little variation in the fluid delivery amount for each product. *
  • the fluid delivery device 100 includes the impeller 1 having blades that can rotate around the central axis, the DC motor 2 that rotates the impeller 1, the housing 3 that houses the impeller 1, and the control that controls the driving of the DC motor 2. And a device 4.
  • the housing 3 has a delivery port 3b through which the fluid F is delivered.
  • a delivery changing member 31 that changes the flowability of the fluid F stepwise can be attached to and detached from the delivery port 3b.
  • the rotational speed N of the DC motor 2 can be automatically changed according to the attachment / detachment of the delivery changing member 31.
  • the driving of the DC motor 2 can be controlled with a simple configuration.
  • the PWM duty ratio Td is adopted as an example of the PWM control value of the present invention.
  • the present invention is not limited to this example, and the PWM duty may be adopted.
  • This invention is useful for control of the motor mounted in the fluid delivery apparatus which can attach or detach the member which changes the easiness of a fluid flow to a delivery outlet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Direct Current Motors (AREA)

Abstract

Provided is a fluid delivery device including an impeller for causing a fluid to flow from a suction port to a delivery port, a DC motor for rotating the impeller, a housing that houses the impeller, and a control device for PWM controlling the DC motor. A delivery change member that changes the flowability of the fluid can be detachably attached to the delivery port of the housing. The control device includes a setting unit that sets a target revolution speed of the DC motor according to the flowability of the fluid, a receiving unit which receives a revolution speed signal indicating the revolution speed of the DC motor, a drive control unit that changes the revolution speed toward the target revolution speed by adjusting the PWM control value, and a calculation unit for calculating a lower threshold and an upper threshold on the basis of the PWM control value before a predetermined time and a lower limit change amount and an upper limit change amount associated with the target revolution speed. The setting unit increases the target revolution speed by one step if the PWM control value is equal to or less than the lower threshold, and decreases the target revolution speed by one step if the PWM control value is equal to or higher than the upper threshold.

Description

制御装置、流体送出装置Control device, fluid delivery device
本発明は、制御装置、流体送出装置に関する。 The present invention relates to a control device and a fluid delivery device.
従来、モータによるインペラの回転駆動により気流を送出する装置が知られている。たとえば、日本国公開公報は、吹出口の断面積に応じて出力を変更するヘアードライヤーを教示している。このヘアードライヤーでは、集風器を本体の吹出口に取り付けると、集風器の取り付け深さに応じて、マイクロスイッチに設けられたスイッチ棒が押し込まれ、回路が切り替わる。これにより、ヘアードライヤーの出力が変更される。 2. Description of the Related Art Conventionally, an apparatus that sends an air current by driving an impeller with a motor is known. For example, Japanese Laid-Open Publication teaches a hair dryer that changes its output according to the cross-sectional area of the air outlet. In this hair dryer, when the air collector is attached to the outlet of the main body, the switch rod provided in the microswitch is pushed in according to the attachment depth of the air collector, and the circuit is switched. Thereby, the output of the hair dryer is changed.
日本国公開公報2004-243049号Japanese Publication No. 2004-243049
しかしながら、日本国公開公報では、上述のような複雑な構成に応じて集風器の形状、回路及び回路基板などの変更が必要となる。そのため、部品点数が増えて、製造コストが増大する。また、マイクロスイッチの経時的な状態変化などによって、回路の切り替えがうまくいかなくなる恐れがある。  However, in the Japanese publication, it is necessary to change the shape of the air collector, the circuit, the circuit board, and the like according to the complicated configuration as described above. Therefore, the number of parts increases and the manufacturing cost increases. In addition, there is a risk that the circuit switching may not be successful due to changes in the state of the microswitch over time. *
本発明は、簡易な構成で、例えば、DCモータの駆動を制御することを目的とする。 An object of the present invention is to control driving of a DC motor, for example, with a simple configuration.
本発明の例示的な制御装置は、出口での流体の流れ易さが変化可能である流体送出装置において、前記流体を吸引口から前記送出口に流すインペラを回転させるDCモータをPWM制御する。制御装置は、前記流体の流れ易さに応じた前記DCモータの目標回転数を設定する設定部と、前記DCモータの回転数を示す回転数信号を受信する受信部と、前記DCモータのステータに供給される駆動電圧のPWM制御値の調節によって前記回転数を前記目標回転数に向かって変化させる駆動制御部と、前記PWM制御値を時系列に記憶する記憶部と、一定時間前の前記PWM制御値と前記設定部で設定された前記目標回転数に関連付けられた下限変化量及び上限変化量とに基づいて下側閾値及び上側閾値を算出する算出部と、を備える。前記設定部は、前記PWM制御値が前記下側閾値以下であれば、前記目標回転数を1段階上げ、前記PWM制御値が前記上側閾値以上であれば、前記目標回転数を1段階下げる。  An exemplary control device of the present invention performs PWM control on a DC motor that rotates an impeller that flows the fluid from a suction port to the delivery port in a fluid delivery device in which the fluid flow at the outlet is variable. A control unit configured to set a target rotational speed of the DC motor according to the ease of flow of the fluid; a receiving unit configured to receive a rotational speed signal indicating the rotational speed of the DC motor; and a stator of the DC motor. A drive control unit that changes the rotational speed toward the target rotational speed by adjusting a PWM control value of the drive voltage supplied to the storage, a storage unit that stores the PWM control value in time series, and the predetermined time before A calculation unit that calculates a lower threshold value and an upper threshold value based on a PWM control value and a lower limit change amount and an upper limit change amount associated with the target rotational speed set by the setting unit. The setting unit increases the target rotational speed by one step when the PWM control value is equal to or lower than the lower threshold value, and decreases the target rotational speed by one step when the PWM control value is equal to or higher than the upper threshold value. *
本発明の例示的な流体送出装置は、中心軸回りに回転可能な羽根を有するインペラと、前記インペラを回転させるDCモータと、前記インペラを収容するハウジングと、前記DCモータの駆動を制御する上記の制御装置と、を備える。前記ハウジングは、流体が送出される送出口を有する。前記送出口には、前記流体の流れ易さを段階的に変化させる送出変化部材が着脱可能である。 An exemplary fluid delivery device of the present invention includes an impeller having blades that can rotate about a central axis, a DC motor that rotates the impeller, a housing that houses the impeller, and a drive for controlling the DC motor. A control device. The housing has a delivery port through which fluid is delivered. A delivery changing member that changes the flowability of the fluid stepwise can be attached to and detached from the delivery port.
本発明の例示的な制御装置、流体送出装置によれば、簡易な構成でDCモータの駆動を制御することができる。 According to the exemplary control device and fluid delivery device of the present invention, the driving of the DC motor can be controlled with a simple configuration.
図1Aは、本実施形態における流体送出装置の概略構成図である。FIG. 1A is a schematic configuration diagram of a fluid delivery device in the present embodiment. 図1Bは、本実施形態における流体送出装置の構成を示すブロック図である。FIG. 1B is a block diagram showing the configuration of the fluid delivery device in the present embodiment. 図2は、本実施形態におけるDCモータの駆動特性の一例を示すグラフである。FIG. 2 is a graph showing an example of drive characteristics of the DC motor in the present embodiment. 図3は、流体の送出量に対する流体送出装置の内部圧力の変化を示すグラフである。FIG. 3 is a graph showing a change in the internal pressure of the fluid delivery device with respect to the fluid delivery rate. 図4は、DCモータのトルクに対する回転数の変化を示すグラフである。FIG. 4 is a graph showing changes in the rotational speed with respect to the torque of the DC motor. 図5は、送出口での流体の流れ易さに応じたDCモータのPWM制御の一例を説明するためのフローチャートである。FIG. 5 is a flowchart for explaining an example of PWM control of the DC motor in accordance with the ease of fluid flow at the delivery port. 図6は、変形例におけるDCモータの駆動特性の一例を示すグラフである。FIG. 6 is a graph illustrating an example of drive characteristics of a DC motor according to a modification.
<1.実施形態> 以下に図面を参照して本発明の例示的な実施形態を説明する。  <1. Embodiment> Hereinafter, an exemplary embodiment of the present invention will be described with reference to the drawings. *
<1-1.流体送出装置> 図1Aは、本実施形態における流体送出装置100の概略構成図である。図1Bは、本実施形態における流体送出装置100の構成を示すブロック図である。  <1-1. Fluid Delivery Device> FIG. 1A is a schematic configuration diagram of a fluid delivery device 100 in the present embodiment. FIG. 1B is a block diagram showing a configuration of the fluid delivery device 100 in the present embodiment. *
流体送出装置100は、吸引口3aから吸引する流体Fを送出口3bから送出する。また、後述するように、送出口3bでの流体Fの流れ易さが変化可能である。本実施形態では、流体Fは空気であり、流体送出装置100はたとえばヘアードライヤーなどの送風装置である。但し、これらは、本実施形態の例示に限定されない。たとえば、流体Fは、空気以外の気体、液体であってもよい。また、流体送出装置100は、ヘアードライヤー以外の送風装置であってもよいし、流体Fの吸引及び送出を行うポンプ装置などであってもよい。  The fluid delivery device 100 delivers the fluid F sucked from the suction port 3a from the delivery port 3b. Moreover, as will be described later, the ease of flow of the fluid F at the delivery port 3b can be changed. In the present embodiment, the fluid F is air, and the fluid delivery device 100 is a blower such as a hair dryer. However, these are not limited to the illustration of this embodiment. For example, the fluid F may be a gas other than air or a liquid. The fluid delivery device 100 may be a blower other than a hair dryer, or a pump device that performs suction and delivery of the fluid F. *
流体送出装置100は、インペラ1と、DCモータ2と、ハウジング3と、を備える。  The fluid delivery device 100 includes an impeller 1, a DC motor 2, and a housing 3. *
インペラ1は、中心軸回りに回転可能な羽根(図示省略)を有する。インペラ1は、中心軸回りに回転可能であり、回転によって流体Fを吸引口3aから送出口3bに流す。  The impeller 1 has blades (not shown) that can rotate around a central axis. The impeller 1 can rotate around the central axis, and the fluid F flows from the suction port 3a to the delivery port 3b by the rotation. *
DCモータ2は、複数の駆動電圧で駆動され、インペラ1を回転させる。DCモータ2は、ロータ21と、ステータ22と、駆動ドライバ23と、回転数検出部24と、電源部25と、制御装置4と、を有する。言い換えると、流体送出装置100は、制御装置4をさらに備える。但し、この例示に限定されず、制御装置4は、DCモータ2の外部に設けられてもよい。たとえば、制御装置4は、インペラ1及びDCモータ2とともにハウジング3に収容されてもよいし、ハウジング3の外部に設けられてもよい。また、駆動ドライバ23、回転数検出部24、及び電源部25は、図1Bの例示に限定されず、制御装置4に搭載されていてもよい。なお、制御装置4については後に説明する。  The DC motor 2 is driven by a plurality of drive voltages and rotates the impeller 1. The DC motor 2 includes a rotor 21, a stator 22, a drive driver 23, a rotation speed detection unit 24, a power supply unit 25, and a control device 4. In other words, the fluid delivery device 100 further includes the control device 4. However, the present invention is not limited to this example, and the control device 4 may be provided outside the DC motor 2. For example, the control device 4 may be accommodated in the housing 3 together with the impeller 1 and the DC motor 2, or may be provided outside the housing 3. Moreover, the drive driver 23, the rotation speed detection part 24, and the power supply part 25 are not limited to the illustration of FIG. 1B, You may be mounted in the control apparatus 4. FIG. The control device 4 will be described later. *
ロータ21には、インペラ1が取り付けられる。ロータ21は、中心軸を中心として、インペラ1とともに回転可能である。なお、以下では、ロータ21の回転数NをDCモータ2の回転数Nと呼ぶことがある。  The impeller 1 is attached to the rotor 21. The rotor 21 can rotate together with the impeller 1 about the central axis. Hereinafter, the rotational speed N of the rotor 21 may be referred to as the rotational speed N of the DC motor 2. *
ステータ22は、駆動ドライバ23から供給される駆動電圧に基づいて、ロータ21を回転させる。なお、以下では、DCモータ2を駆動電圧で駆動すると表現することがあるが、この表現は、駆動電圧をステータ22に供給することによって、ロータ21が駆動されて回転することを意味する。  The stator 22 rotates the rotor 21 based on the drive voltage supplied from the drive driver 23. In the following description, the DC motor 2 may be expressed as being driven with a driving voltage, but this expression means that the rotor 21 is driven and rotated by supplying the driving voltage to the stator 22. *
駆動ドライバ23は、制御装置4から出力される駆動電圧制御信号に基づいて駆動電圧を生成し、該駆動電圧をステータ22に出力する。  The drive driver 23 generates a drive voltage based on the drive voltage control signal output from the control device 4 and outputs the drive voltage to the stator 22. *
回転数検出部24は、ロータ21の回転数Nを検出し、検出結果に基づいて回転数信号を制御装置4に出力する。なお、回転数検出部24は、本実施形態ではロータ21が回転する際にDCモータ2に発生する逆起電圧に基づいて回転数Nを検出する。但し、回転数Nの検出手段は、この例に限定されない。たとえば、回転数検出部24は、ホールIC、エンコーダ部などの回転数Nを検出するための構成要素を有する構成であってもよい。  The rotation speed detection unit 24 detects the rotation speed N of the rotor 21 and outputs a rotation speed signal to the control device 4 based on the detection result. In the present embodiment, the rotation speed detection unit 24 detects the rotation speed N based on a back electromotive voltage generated in the DC motor 2 when the rotor 21 rotates. However, the means for detecting the rotational speed N is not limited to this example. For example, the rotation speed detection unit 24 may have a configuration having components for detecting the rotation speed N, such as a Hall IC and an encoder unit. *
電源部25は、DCモータ2の電力供給源である。電源部25は、DCモータ2の外部から電源電力の供給を受け、DCモータ2の各構成要素、たとえば駆動ドライバ23及び制御装置4などに電力を供給する。また、電源部25は、DCモータ2の外部から供給される電源の電圧を示す電源電圧信号を制御装置4に出力する。  The power supply unit 25 is a power supply source for the DC motor 2. The power supply unit 25 receives supply of power from the outside of the DC motor 2 and supplies power to each component of the DC motor 2, such as the drive driver 23 and the control device 4. Further, the power supply unit 25 outputs a power supply voltage signal indicating the power supply voltage supplied from the outside of the DC motor 2 to the control device 4. *
ハウジング3は、インペラ1を収容する。また、本実施形態では、ハウジング3は、DCモータ2をさらに収容する。ハウジング3には、流体Fが吸引される吸引口3aと、流体Fが送出される送出口3bと、が設けられる。言い換えると、ハウジング3は、吸引口3aと送出口3bとを有する。DCモータ2の駆動によりインペラ1が回転すると、流体Fが、吸引口3aを通じてハウジング3の外部から内部に吸引され、送出口3bを通じてハウジング3の内部から外部に送出される。  The housing 3 accommodates the impeller 1. In the present embodiment, the housing 3 further houses the DC motor 2. The housing 3 is provided with a suction port 3a through which the fluid F is sucked and a delivery port 3b through which the fluid F is delivered. In other words, the housing 3 has a suction port 3a and a delivery port 3b. When the impeller 1 is rotated by driving the DC motor 2, the fluid F is sucked from the outside of the housing 3 through the suction port 3a, and is sent out from the inside of the housing 3 through the delivery port 3b. *
送出口3bには、流体Fの流れ易さを変化させる送出変化部材31が着脱可能である。送出変化部材31の着脱により、送出口3bでの流体Fの流れ易さは、段階的に変化可能である。送出変化部材31は、本実施形態では、たとえば、送出口3bから送出される流体Fの送出量を制限するノズルであり、送出口3bでの流体Fの流れ易さを2段階に変化させる。そのため、送出変化部材31が送出口3bに取り付けられると、送出口3bから送出される流体Fの送出量は、送出変化部材31が取り付けられていない場合よりも減少する。送出変化部材31が送出口3bから外されると、送出口3bから送出される流体Fの送出量は、送出変化部材31が取り付けられる場合よりも増加する。なお、本実施形態では、流体送出装置100が、送出変化部材31を有する。但し、この例示に限定されず、ハウジング3が、送出変化部材31を有してもよい。つまり、送出変化部材31は、ハウジング3の一部であってもよい。また、送出変化部材31は、上述の例示に限定されず、取り付けにより送出口3bでの流体Fの送出量を増加させる部材であってもよい。  A delivery changing member 31 that changes the ease of flow of the fluid F can be attached to and detached from the delivery port 3b. By attaching and detaching the delivery changing member 31, the ease of flow of the fluid F at the delivery port 3b can be changed in stages. In the present embodiment, the delivery changing member 31 is, for example, a nozzle that limits the delivery amount of the fluid F delivered from the delivery port 3b, and changes the ease of flow of the fluid F at the delivery port 3b in two stages. Therefore, when the delivery changing member 31 is attached to the delivery port 3b, the delivery amount of the fluid F delivered from the delivery port 3b is smaller than when the delivery change member 31 is not attached. When the delivery changing member 31 is removed from the delivery port 3b, the delivery amount of the fluid F delivered from the delivery port 3b increases more than when the delivery change member 31 is attached. In the present embodiment, the fluid delivery device 100 includes a delivery change member 31. However, the housing 3 may include the delivery changing member 31 without being limited to this example. That is, the delivery changing member 31 may be a part of the housing 3. Further, the delivery changing member 31 is not limited to the above example, and may be a member that increases the delivery amount of the fluid F at the delivery port 3b by attachment. *
<1-2.制御装置> 次に、制御装置4について説明する。制御装置4は、送出口3bでの流体Fの流れ易さが変化可能である流体送出装置100において、流体Fを吸引口3aから送出口3bに流すインペラ1を回転させるDCモータ2を制御する装置である。制御装置4は、後述する記憶部44に記憶されたプログラム及び情報を用いて、DCモータ2の駆動を制御する。より具体的には、制御装置4は、駆動ドライバ23にPMW制御信号を出力することによって、ステータ22に供給される駆動電圧をPWM制御し、ロータ21の回転駆動を制御する。  <1-2. Control Device> Next, the control device 4 will be described. The control device 4 controls the DC motor 2 that rotates the impeller 1 that flows the fluid F from the suction port 3a to the delivery port 3b in the fluid delivery device 100 in which the flow ease of the fluid F at the delivery port 3b can be changed. Device. The control device 4 controls driving of the DC motor 2 using a program and information stored in the storage unit 44 described later. More specifically, the control device 4 outputs a PMW control signal to the drive driver 23, thereby performing PWM control of the drive voltage supplied to the stator 22 and controlling the rotational drive of the rotor 21. *
本実施形態の流体送出装置100では、後述する図2に示すように、送出変化部材31の装着などに応じて送出口3bにて流体Fが流れ難くなると、DCモータ2の回転数Nが増加する。一方、送出変化部材31の取り外しなどに応じて送出口3bにて流体Fが流れ易くなると、DCモータ2の回転数は減少する。従って、DCモータ2の回転数Nを目標回転数に向かって変化させる制御装置4は、目標回転数と同じ回転数NをDCモータ2に維持させるため、所謂クローズループ制御によって、送出口3bでの流体Fの流れ易さに応じてPWMデューティー比Tdを変える。より具体的には、制御装置4は、送出口3bにて流体Fが流れ難くなって、DCモータ2の回転数Nが増加すると、たとえばPWMデューティ(比)などのPWMデューティー比Tdを下降させる。一方、制御装置4は、送出口3bにて流体Fが流れ易くなって、DCモータ2の回転数Nが減少すると、PWMデューティー比Tdを上昇させる。  In the fluid delivery device 100 of the present embodiment, as shown in FIG. 2 to be described later, when the fluid F becomes difficult to flow at the delivery port 3b according to the attachment of the delivery change member 31, the rotational speed N of the DC motor 2 increases. To do. On the other hand, when the fluid F easily flows at the delivery port 3b according to the removal of the delivery changing member 31, the rotational speed of the DC motor 2 decreases. Accordingly, the control device 4 that changes the rotational speed N of the DC motor 2 toward the target rotational speed causes the DC motor 2 to maintain the same rotational speed N as the target rotational speed. The PWM duty ratio Td is changed according to the ease of flow of the fluid F. More specifically, the control device 4 decreases the PWM duty ratio Td such as PWM duty (ratio), for example, when the fluid F hardly flows at the outlet 3b and the rotational speed N of the DC motor 2 increases. . On the other hand, the control device 4 increases the PWM duty ratio Td when the fluid F easily flows at the outlet 3b and the rotational speed N of the DC motor 2 decreases. *
制御装置4は、このような動作において送出変化部材31の脱着などに応じて送出口3bでの流体Fの流れ易さが大きく変化するとPWMデューティー比Tdが閾値を越えることを利用して、送出口3bでの流体Fの流れ易さの変化を検知する、そして、制御装置4は、該変化に応じた目標回転数の変化によりDCモータ2の回転数Nを増減させて、流体送出装置100の送出量を調整する。  The control device 4 utilizes the fact that the PWM duty ratio Td exceeds the threshold when the ease of flow of the fluid F at the delivery port 3b greatly changes in accordance with the attachment / detachment of the delivery change member 31 in such an operation. A change in the ease of flow of the fluid F at the outlet 3b is detected, and the control device 4 increases or decreases the rotational speed N of the DC motor 2 by a change in the target rotational speed according to the change, and the fluid delivery device 100 Adjust the delivery amount of. *
<1-2-1.制御装置の構成> 図1Bに示すように、制御装置4は、駆動制御部41と、受信部42と、設定部43と、記憶部44、算出部45と、判定部46と、を備える。また、判定部46は、タイマ461を有する。  <1-2-1. Configuration of Control Device> As illustrated in FIG. 1B, the control device 4 includes a drive control unit 41, a reception unit 42, a setting unit 43, a storage unit 44, a calculation unit 45, and a determination unit 46. The determination unit 46 includes a timer 461. *
駆動制御部41は、駆動ドライバ23にPWM制御信号を出力することにより、DCモータ2のステータ22に供給される駆動電圧をPWM制御する。より具体的には、駆動制御部41は、DCモータ2のステータ22に供給される駆動電圧のPWMデューティー比Tdの調節によって、回転数Nを目標回転数に向かって変化させる。なお、PWMデューティー比Tdは、本発明のPWM制御値の一例である。  The drive control unit 41 performs PWM control of the drive voltage supplied to the stator 22 of the DC motor 2 by outputting a PWM control signal to the drive driver 23. More specifically, the drive control unit 41 changes the rotation speed N toward the target rotation speed by adjusting the PWM duty ratio Td of the drive voltage supplied to the stator 22 of the DC motor 2. The PWM duty ratio Td is an example of the PWM control value of the present invention. *
受信部42は、各種の信号を受信する。たとえば、受信部42は、回転数検出部24から回転数信号を受信し、電源部25から電源電圧信号を受信する。回転数信号は、DCモータ2の回転数Nを示す信号である。電源電圧信号は、DCモータ2の電源電圧を示す信号である。  The receiving unit 42 receives various signals. For example, the receiving unit 42 receives a rotation number signal from the rotation number detection unit 24 and receives a power supply voltage signal from the power supply unit 25. The rotation speed signal is a signal indicating the rotation speed N of the DC motor 2. The power supply voltage signal is a signal indicating the power supply voltage of the DC motor 2. *
設定部43は、流体Fの流れ易さに応じたDCモータ2の目標回転数を設定する。より具体的には、設定部43は
、選択可能な多段階の目標回転数のうちから、DCモータ2の目標回転数を流体Fの流れ易さに応じた目標回転数を選択して設定する。たとえば、後述するように、設定部43は、PWMデューティー比Tdが現時点の目標回転数における下側閾値TsL以下であれば、DCモータ2の目標回転数を1段階上げる。一方、設定部43は、PWMデューティー比Tdが現時点の目標回転数における上側閾値TsH以上であれば、DCモータ2の目標回転数を1段階下げる。なお、下側閾値TsLはPWMデューティー比Tdが下降する際のPWMデューティー比Tdの閾値であり、上側閾値TsHはPWMデューティー比Tdが上昇する際のPWMデューティー比Tdの閾値である。下側閾値TsL及び上側閾値TsHは、目標回転数毎に設定され、各々の目標回転数と関連付けられている。 
The setting unit 43 sets a target rotational speed of the DC motor 2 according to the ease of flow of the fluid F. More specifically, the setting unit 43 selects and sets the target rotational speed of the DC motor 2 from among selectable multi-stage target rotational speeds according to the ease of flow of the fluid F. . For example, as will be described later, if the PWM duty ratio Td is equal to or lower than the lower threshold value TsL at the current target rotational speed, the setting unit 43 increases the target rotational speed of the DC motor 2 by one step. On the other hand, if the PWM duty ratio Td is equal to or higher than the upper threshold value TsH at the current target rotational speed, the setting unit 43 decreases the target rotational speed of the DC motor 2 by one step. The lower threshold value TsL is a threshold value of the PWM duty ratio Td when the PWM duty ratio Td is decreased, and the upper threshold value TsH is a threshold value of the PWM duty ratio Td when the PWM duty ratio Td is increased. The lower threshold value TsL and the upper threshold value TsH are set for each target rotational speed and are associated with each target rotational speed.
記憶部44は、電力供給が無くても記憶を維持する非一過性の記憶媒体であり、各種のデータを記憶する。記憶部44は、たとえば受信部42が受信する各種の信号が示すデータを記憶する。たとえば、記憶部44は、DCモータ2に対して設定部43が設定可能な多段階の目標回転数と、各々の目標回転数に関連付けられたPWMデューティー比Tdの後述する下限変化量|ΔTsL|及び上限変化量|ΔTsH|と、を記憶する。また、記憶部44は、駆動制御部41が駆動ドライバ23に出力するPWM制御信号が示すPWMデューティー比Tdを時系列に記憶する。なお、記憶部44がPWMデューティー比Tdを記憶する周期は特に限定されないが、本実施形態では、PWMデューティー比Tdがたとえば0.1[sec]毎に記憶される。  The storage unit 44 is a non-transitory storage medium that maintains storage even when there is no power supply, and stores various data. The storage unit 44 stores data indicated by various signals received by the receiving unit 42, for example. For example, the storage unit 44 has multistage target rotation speeds that can be set by the setting unit 43 for the DC motor 2 and a lower limit change amount | ΔTsL |, which will be described later, of the PWM duty ratio Td associated with each target rotation speed. And the upper limit change amount | ΔTsH |. Further, the storage unit 44 stores the PWM duty ratio Td indicated by the PWM control signal output from the drive control unit 41 to the drive driver 23 in time series. In addition, although the period in which the storage unit 44 stores the PWM duty ratio Td is not particularly limited, in the present embodiment, the PWM duty ratio Td is stored every 0.1 [sec], for example. *
算出部45は、各種の演算を行い、特に受信部42が受信する各種の信号が示すデータ及び記憶部44に記憶されたデータなどを用いた各種の演算を行う。たとえば、算出部45は、一定時間前のPWMデューティー比Tdと、設定部43で設定された目標回転数に関連付けられた下限変化量|ΔTsL|及び上限変化量|ΔTsH|とに基づいて、下側閾値TsL及び上側閾値TsHを算出する。なお、一定時間は、本実施形態ではたとえば2[sec]であるが、この例示には限定されない。  The calculation unit 45 performs various calculations, and in particular, performs various calculations using data indicated by various signals received by the reception unit 42 and data stored in the storage unit 44. For example, the calculation unit 45 calculates the following based on the PWM duty ratio Td a predetermined time ago and the lower limit change amount | ΔTsL | and the upper limit change amount | ΔTsH | associated with the target rotational speed set by the setting unit 43. A side threshold value TsL and an upper threshold value TsH are calculated. The fixed time is, for example, 2 [sec] in this embodiment, but is not limited to this example. *
たとえば、各々の目標回転数において、下限変化量|ΔTsL|は、PWMデューティー比Tdの一定時間における下降量の閾値であり、PWMデューティー比Tdが下降する際での一定時間前のPWMデューティー比Tdに対するPWMデューティー比Tdの差分の閾値である。また、上限変化量|ΔTsH|は、PWMデューティー比Tdの一定時間における上昇量の閾値であり、PWMデューティー比Tdが上昇する際での一定時間前のPWMデューティー比Tdに対するPWMデューティー比Tdの差分の閾値である。この場合、算出部45は、一定時間前のPWMデューティー比Tdから下限変化量|ΔTsL|を減じることによって下側閾値TsLを算出する。また、算出部45は、一定時間前のPWMデューティー比Tdから上限変化量|ΔTsH|を加えることによって上側閾値TsHを算出する。たとえば、下限変化量が5%で予め設定され、上限変化量が8%で予め設定され、一定時間前のPWMデューティー比Tdが53%であった場合、下側閾値は48%(=53%-5%)と算出され、上側閾値は61%(=53%+8%)と算出される。つまり、下側閾値TsLは、一定時間前のPWMデューティー比Tdから下限変化量|ΔTsL|を減じた値である。上側閾値TsHは、一定時間前のPWMデューティー比Tdに上限変化量|ΔTsH|を加えた値である。このように算出すれば、設定部43は、現時点のPWMデューティー比Tdと一定時間前のPWMデューティー比Tdとの間のPWM差が閾値(つまり下限変化量|ΔTsL|、上限変化量|ΔTsH|)を越えるか否か応じて、目標回転数を変化させることができる。  For example, at each target rotational speed, the lower limit change amount | ΔTsL | is a threshold value for the amount of decrease in the PWM duty ratio Td for a certain time, and the PWM duty ratio Td before the certain time when the PWM duty ratio Td decreases. Is the threshold value of the difference in PWM duty ratio Td. Further, the upper limit change amount | ΔTsH | is a threshold value of the increase amount of the PWM duty ratio Td in a certain time, and the difference between the PWM duty ratio Td and the PWM duty ratio Td before the certain time when the PWM duty ratio Td increases. Is the threshold value. In this case, the calculation unit 45 calculates the lower threshold value TsL by subtracting the lower limit change amount | ΔTsL | from the PWM duty ratio Td before a certain time. Further, the calculation unit 45 calculates the upper threshold value TsH by adding the upper limit change amount | ΔTsH | from the PWM duty ratio Td before a certain time. For example, when the lower limit change amount is preset at 5%, the upper limit change amount is preset at 8%, and the PWM duty ratio Td before a certain time is 53%, the lower threshold value is 48% (= 53% −5%), and the upper threshold value is calculated as 61% (= 53% + 8%). That is, the lower threshold value TsL is a value obtained by subtracting the lower limit change amount | ΔTsL | from the PWM duty ratio Td before a certain time. The upper threshold value TsH is a value obtained by adding the upper limit change amount | ΔTsH | to the PWM duty ratio Td before a certain time. If calculated in this way, the setting unit 43 determines that the PWM difference between the current PWM duty ratio Td and the PWM duty ratio Td of a predetermined time is a threshold (that is, the lower limit change amount | ΔTsL | and the upper limit change amount | ΔTsH | ), The target rotational speed can be changed. *
或いは、各々の目標回転数において、下限変化量|ΔTsL|は、PWMデューティー比Tdが下降する際での一定時間前のPWMデューティー比Tdに対するPWMデューティー比Tdの比率の閾値である。また、上限変化量|ΔTsH|は、PWMデューティー比Tdが上昇する際での一定時間前のPWMデューティー比Tdに対するPWMデューティー比Tdの比率の閾値であってもよい。この場合、算出部45は、一定時間前のPWMデューティー比Tdに下限変化量|ΔTsL|を乗算することによって下側閾値TsLを算出する。また、算出部45は、一定時間前のPWMデューティー比Tdに上限変化量|ΔTsH|を乗算することによって上側閾値TsHを算出する。たとえば、下限変化量が95%で予め設定され、上限変化量が105%で予め設定され、一定時間前のPWMデューティー比Tdが64%であった場合、下側閾値は60.8%(=64%×0.95)と算出され、上側閾値は67.2%(=64%×1.05)と算出される。つまり、下側閾値TsLは、一定時間前のPWMデューティー比Tdに下限変化量|ΔTsL|を乗算した値である。上側閾値TsHは、一定時間前のPWMデューティー比Tdに上限変化量|ΔTsH|を乗算した値である。このように算出すれば、設定部43は、一定時間前のPWMデューティー比Tdに対する現時点のPWMデューティー比TdのPWM比率が閾値(つまり下限変化量|ΔTsL|、上限変化量|ΔTsH|)を越えるか否か応じて、目標回転数を変化させることができる。  Alternatively, at each target rotational speed, the lower limit change amount | ΔTsL | is a threshold value of the ratio of the PWM duty ratio Td to the PWM duty ratio Td before a certain time when the PWM duty ratio Td decreases. Further, the upper limit change amount | ΔTsH | may be a threshold value of the ratio of the PWM duty ratio Td to the PWM duty ratio Td before a certain time when the PWM duty ratio Td increases. In this case, the calculation unit 45 calculates the lower threshold value TsL by multiplying the PWM duty ratio Td before a certain time by the lower limit change amount | ΔTsL |. In addition, the calculation unit 45 calculates the upper threshold value TsH by multiplying the PWM duty ratio Td before a certain time by the upper limit change amount | ΔTsH |. For example, when the lower limit change amount is preset at 95%, the upper limit change amount is preset at 105%, and the PWM duty ratio Td before a certain time is 64%, the lower threshold value is 60.8% (= 64% × 0.95), and the upper threshold value is calculated as 67.2% (= 64% × 1.05). That is, the lower threshold value TsL is a value obtained by multiplying the PWM duty ratio Td before a certain time by the lower limit change amount | ΔTsL |. The upper threshold value TsH is a value obtained by multiplying the PWM duty ratio Td before a certain time by the upper limit change amount | ΔTsH |. If calculated in this way, the setting unit 43 causes the PWM ratio of the current PWM duty ratio Td to the PWM duty ratio Td before a certain time to exceed a threshold (that is, a lower limit change amount | ΔTsL |, an upper limit change amount | ΔTsH |). Depending on whether or not, the target rotational speed can be changed. *
判定部46は、各種の判定を行う。タイマ461は、各時点での日付及び時刻の取得、所定の時点から他の所定の時点までの経過時間の測定などを行う。  The determination unit 46 performs various determinations. The timer 461 acquires the date and time at each time point, measures the elapsed time from a predetermined time point to another predetermined time point, and the like. *
<1-2-2.制御装置の動作> 次に、制御装置4の動作を説明する。図2は、本実施形態におけるDCモータ2の駆動特性の一例を示すグラフである。図3は、流体の送出量に対する流体送出装置の内部圧力の変化を示すグラフである。図4は、DCモータのトルクに対する回転数の変化を示すグラフである。  <1-2-2. Operation of Control Device> Next, the operation of the control device 4 will be described. FIG. 2 is a graph showing an example of drive characteristics of the DC motor 2 in the present embodiment. FIG. 3 is a graph showing a change in the internal pressure of the fluid delivery device with respect to the fluid delivery rate. FIG. 4 is a graph showing changes in the rotational speed with respect to the torque of the DC motor. *
なお、図2は、送出口3bでの流体Fの流れ易さが2段階に変化する場合のグラフを例示する。ここでの「2段階」の流れ易さは、送出口3bに送出変化部材31が取り付けられる場合での送出口3bでの流体Fの流れ易さと、送出口3bに送出変化部材31が取り付けられない場合での送出口3bでの流体Fの流れ易さと、を有する。本実施形態では、送出口3bに送出変化部材31が取り付けられる場合では、送出口3bに送出変化部材31が取り付けられない場合よりも送出口3bで流体Fが流れ難くなる。また、図2において、横軸はPWM制御信号が示すPWMデューティー比であり、縦軸はDCモータ2の回転数Nである。なお、送出口3bで流体Fが流れ易い場合におけるDCモータ2の第1目標回転数は回転数N1と同じ値である。送出口3bで流体Fが流れ難い場合におけるDCモータ2の第2目標回転数は回転数N2と同じ値である。以下では、第1目標回転数の符号を「N1」とし、第2目標回転数の符号を「N2」とする。  FIG. 2 illustrates a graph when the ease of flow of the fluid F at the outlet 3b changes in two stages. The “ease of flow” in “two stages” here refers to the ease of flow of the fluid F at the delivery port 3b when the delivery change member 31 is attached to the delivery port 3b, and the delivery change member 31 attached to the delivery port 3b. The flow of the fluid F at the delivery port 3b in the case of not being present. In this embodiment, when the delivery changing member 31 is attached to the delivery port 3b, the fluid F is less likely to flow through the delivery port 3b than when the delivery changing member 31 is not attached to the delivery port 3b. In FIG. 2, the horizontal axis represents the PWM duty ratio indicated by the PWM control signal, and the vertical axis represents the rotational speed N of the DC motor 2. Note that the first target rotational speed of the DC motor 2 when the fluid F easily flows at the outlet 3b is the same value as the rotational speed N1. The second target rotational speed of the DC motor 2 when the fluid F hardly flows at the delivery port 3b is the same value as the rotational speed N2. In the following, the sign of the first target speed is “N1”, and the sign of the second target speed is “N2”. *
制御装置4の駆動制御部41は、前述の如く、DCモータ2の回転数Nが設定部43で設定される目標回転数に向かって変化するように、DCモータ2の駆動電圧をPWM制御する際のPWMデューティー比Tdを変化させる。一方、流体送出装置100では、送出口3bで流体Fが流れ難くなると、流体Fの送出量の減少に起因して、流体送出装置100の内部圧力が図3のように増加し、吸引口3aでの流体Fの吸引量が減少する。そのため、流体送出装置100を駆動するDCモータ2のトルクが減少する。従って、トルクの減少に伴って図4のように、DCモータ2の回転数Nは、流体Fの送出口3bで流体Fが流れ難くなる前よりも増加する。  As described above, the drive control unit 41 of the control device 4 performs PWM control on the drive voltage of the DC motor 2 so that the rotation speed N of the DC motor 2 changes toward the target rotation speed set by the setting unit 43. The PWM duty ratio Td at the time is changed. On the other hand, in the fluid delivery device 100, when it becomes difficult for the fluid F to flow at the delivery port 3b, the internal pressure of the fluid delivery device 100 increases as shown in FIG. The suction amount of the fluid F at the time decreases. Therefore, the torque of the DC motor 2 that drives the fluid delivery device 100 decreases. Therefore, as shown in FIG. 4, the rotational speed N of the DC motor 2 increases as the torque decreases, compared to before the fluid F hardly flows at the fluid F outlet 3 b. *
DCモータ2の回転数Nが第1目標回転数N1と同じである際に、送出口3bで流体Fが流れ難くなると、送出口3bでの流体Fの送出量は減少し、回転数Nは第1目標回転数N1よりも大きくなる。駆動制御部41は、このような回転数Nの増加を解消すべく、PWMデューティー比Tdを下降させる。  When the rotational speed N of the DC motor 2 is the same as the first target rotational speed N1, if the fluid F becomes difficult to flow at the delivery port 3b, the amount of fluid F delivered at the delivery port 3b decreases, and the rotational speed N becomes It becomes larger than the first target rotational speed N1. The drive control unit 41 decreases the PWM duty ratio Td in order to eliminate such an increase in the rotational speed N. *
ここで、送出口3bでの流体Fの送出量が一時的に減少している場合、解消すべき回転数Nの増加量はあまり大きくないため、PWMデューティー比Tdの一定時間における下降量もあまり大きくならない。従って、下降するPWMデューティー比Tdは、下側閾値以下にはならない。  Here, when the delivery amount of the fluid F at the delivery port 3b is temporarily reduced, the increase amount of the rotation speed N to be eliminated is not so large, and therefore the decrease amount of the PWM duty ratio Td in a certain time is also not so great. It doesn't grow up. Therefore, the decreasing PWM duty ratio Td does not fall below the lower threshold value. *
対して、送出変化部材31の装着により送出口3bでの流体Fの送出量が減少する場合、上記の一時的な場合よりも、回転数Nが大きく増加し、下降するPWMデューティー比Tdの一定時間における変化量(たとえば差分の絶対値、変化比率)も大きくなる。従って、下降するPWMデューティー比Tdは、下側閾値TsL以下になる。  On the other hand, when the delivery amount of the fluid F at the delivery port 3b decreases due to the attachment of the delivery changing member 31, the rotational speed N increases greatly and the PWM duty ratio Td that decreases decreases compared to the above temporary case. The amount of change in time (for example, the absolute value of the difference and the change ratio) also increases. Therefore, the decreasing PWM duty ratio Td is equal to or lower than the lower threshold value TsL. *
このような作用を利用して、制御装置4は、Td≦TsLになると、送出変化部材31が送出口3bに装着されたことを検知する。そして、設定部43は、送出口3bでの流体Fの送出量の減少を抑制すべく、DCモータ2の目標回転数を第2目標回転数N2(>N1)に変更する。これにより、駆動制御部41は、DCモータ2の回転数Nを第2目標回転数N2に向かって増加させるべく、PWMデューティー比Tdを上昇させる。  Using such an action, the control device 4 detects that the delivery changing member 31 is attached to the delivery port 3b when Td ≦ TsL. Then, the setting unit 43 changes the target rotational speed of the DC motor 2 to the second target rotational speed N2 (> N1) in order to suppress a decrease in the delivery amount of the fluid F at the delivery port 3b. Accordingly, the drive control unit 41 increases the PWM duty ratio Td so as to increase the rotational speed N of the DC motor 2 toward the second target rotational speed N2. *
次に、DCモータ2の回転数Nが第2目標回転数N2と同じである際に、送出口3bで流体Fが流れ易くなると、送出口3bでの流体Fの送出量は増加し、回転数Nは第2目標回転数N2よりも小さくなる。駆動制御部41は、このような回転数Nの減少を解消すべく、PWMデューティー比Tdを上昇させる。  Next, when the rotational speed N of the DC motor 2 is the same as the second target rotational speed N2, if the fluid F easily flows at the delivery port 3b, the amount of fluid F delivered at the delivery port 3b increases, and the rotation The number N is smaller than the second target rotational speed N2. The drive control unit 41 increases the PWM duty ratio Td in order to eliminate such a decrease in the rotational speed N. *
ここで、送出口3bでの流体Fの送出量が一時的に増加している場合、解消すべき回転数Nの減少量はあまり大きくないため、PWMデューティー比Tdの一定時間における上昇量もあまり大きくならない。従って、下降するPWMデューティー比Tdは、上側閾値以上にはならない。  Here, when the delivery amount of the fluid F at the delivery port 3b is temporarily increased, the decrease amount of the rotation speed N to be eliminated is not so large, and therefore the increase amount of the PWM duty ratio Td in a certain time is not so much. It doesn't grow up. Therefore, the decreasing PWM duty ratio Td does not exceed the upper threshold value. *
対して、送出変化部材31の取り外しにより送出口3bでの流体Fの送出量が増加する場合、上記の一時的な場合よりも、回転数Nが大きく減少し、上昇するPWMデューティー比Tdの一定時間における変化量(たとえば差分の絶対値、変化比率)も大きくなる。従って、上昇するPWMデューティー比Tdは、上側閾値TsH以上になる。  On the other hand, when the delivery amount of the fluid F at the delivery port 3b increases due to the removal of the delivery change member 31, the rotational speed N is greatly reduced and the PWM duty ratio Td is increased as compared with the temporary case described above. The amount of change in time (for example, the absolute value of the difference and the change ratio) also increases. Accordingly, the increasing PWM duty ratio Td is equal to or higher than the upper threshold value TsH. *
このような作用を利用して、制御装置4は、Td≧TsHになると、送出変化部材31が送出口3bから取り外されたことを検知する。そして、設定部43は、送出口3bでの流体Fの送出量の増加を抑制すべく、DCモータ2の目標回転数を第1目標回転数N1(<N2)に変更する。これにより、駆動制御部41は、DCモータ2の回転数Nを第1目標回転数N1に向かって減少させるべく、PWMデューティー比Tdを下降させる。  Using such an action, the control device 4 detects that the delivery changing member 31 has been removed from the delivery port 3b when Td ≧ TsH. Then, the setting unit 43 changes the target rotational speed of the DC motor 2 to the first target rotational speed N1 (<N2) in order to suppress an increase in the amount of fluid F delivered at the delivery port 3b. Accordingly, the drive control unit 41 decreases the PWM duty ratio Td so as to decrease the rotational speed N of the DC motor 2 toward the first target rotational speed N1. *
<1-2-3.制御装置によるDCモータのPWM制御> 次に、本実施形態における制御装置4によるDCモータ2のPWM制御の一例を説明する。図5は、送出口3bでの流体Fの流れ易さに応じたDCモータ2のオープンループ制御の一例を説明するためのフローチャートである。  <1-2-3. PWM control of DC motor by control device> Next, an example of PWM control of the DC motor 2 by the control device 4 in the present embodiment will be described. FIG. 5 is a flowchart for explaining an example of the open loop control of the DC motor 2 in accordance with the ease of flow of the fluid F at the delivery port 3b. *
なお、以下に説明するPWM制御において、駆動制御部41は、図5の処理と並行して、DCモータ2の回転数Nが設定部43で設定される目標回転数に向かって変化するように、PWMデューティー比Tdを変化させるPWM制御を行っている。また、図5の処理は、たとえば、流体送出装置100の電源スイッチ(不図示)がOFFになると終了する。  In the PWM control described below, the drive control unit 41 causes the rotational speed N of the DC motor 2 to change toward the target rotational speed set by the setting unit 43 in parallel with the processing of FIG. PWM control for changing the PWM duty ratio Td is performed. Moreover, the process of FIG. 5 is complete | finished, for example when the power switch (not shown) of the fluid delivery apparatus 100 turns OFF. *
たとえば流体送出装置100の電源がONになると、制御装置4は、図5の動作を開始する。まず、設定部43は、DCモータ2の目標回転数の初期値を設定する(S101)。なお、本実施形態では、初期値として、第1目標回転数N1に設定する。そして、駆動制御部41は、PWM制御信号の出力により、DCモータ2の回転数Nを第1目標回転数N1に向かって変化させる。  For example, when the power of the fluid delivery device 100 is turned on, the control device 4 starts the operation of FIG. First, the setting unit 43 sets an initial value of the target rotational speed of the DC motor 2 (S101). In the present embodiment, the initial value is set to the first target rotational speed N1. And the drive control part 41 changes the rotation speed N of the DC motor 2 toward the 1st target rotation speed N1 by the output of a PWM control signal. *
次に、判定部46は、予め設定された電圧と電源電圧との電源電圧差が0であるか否かを判定する(S102)。より具体的には、受信部
42が電源電圧信号を受信する。算出部45は、たとえばDCモータ2の外部から電源部25に供給される電力の定格電圧と電源電圧信号の電源電圧との電源電圧差を算出する。判定部46は、電源電圧差が0であるか否かを判定する。電源電圧差が0であれば(S102でYES)、処理は後述するS104に進む。電源電圧差が0でなければ(S102でNO)、算出部45は、電源電圧差に基づいて、各々の目標回転数に関連付けられた下限変化量|ΔTsL|、上限変化量|ΔTsH|をそれぞれ調整する(S103)。この際、算出部45は、PWMデューティー比Tdの第1目標回転数N1に関連付けられた下限変化量|ΔTsL|と、第2目標回転数N2に関連付けられた上限変化量|ΔTsH|と、電源電圧差に基づいて調整し、記憶部44に記憶する。そして、処理はS104に進む。 
Next, the determination unit 46 determines whether or not the power supply voltage difference between the preset voltage and the power supply voltage is 0 (S102). More specifically, the receiving unit 42 receives a power supply voltage signal. The calculation unit 45 calculates a power supply voltage difference between the rated voltage of power supplied from the outside of the DC motor 2 to the power supply unit 25 and the power supply voltage of the power supply voltage signal, for example. The determination unit 46 determines whether or not the power supply voltage difference is zero. If the power supply voltage difference is 0 (YES in S102), the process proceeds to S104 described later. If the power supply voltage difference is not 0 (NO in S102), the calculation unit 45 calculates the lower limit change amount | ΔTsL | and the upper limit change amount | ΔTsH | associated with each target rotational speed based on the power supply voltage difference. Adjust (S103). At this time, the calculation unit 45 calculates the lower limit change amount | ΔTsL | associated with the first target rotational speed N1 of the PWM duty ratio Td, the upper limit change amount | ΔTsH | associated with the second target rotational speed N2, and the power source Adjustment is made based on the voltage difference and the result is stored in the storage unit 44. Then, the process proceeds to S104.
駆動制御部41は、駆動ドライバ23に出力するPWM制御信号が示すPWMデューティー比Tdを記憶部44に時系列に記憶する(S104)。判定部46は、一定時間前のPWMデューティー比Tdが記憶部44に記憶されているか否かを判定する(S105)。一定時間前のPWMデューティー比Tdが記憶されていない場合(S105でNO)、処理はS102に戻る。一方、一定時間前のPWMデューティー比Tdが記憶されている場合(S105でYES)、算出部45は、各々の目標回転数に関連付けられた下限変化量|ΔTsL|、上限変化量|ΔTsH|を用いて、各々の目標回転数に関連付けられた下側閾値TsL、上側閾値TsHをそれぞれ算出する(S106)。より具体的には、算出部45は、第1目標回転数N1に関連付けられた下限変化量|ΔTsL|を用いて、第1目標回転数N1における下側閾値TsLを算出する。また、算出部45は、第2目標回転数N2に関連付けられた上限変化量|ΔTsH|を用いて、第2目標回転数N2における上側閾値TsHを算出する。  The drive control unit 41 stores the PWM duty ratio Td indicated by the PWM control signal output to the drive driver 23 in the storage unit 44 in time series (S104). The determination unit 46 determines whether the PWM duty ratio Td before a certain time is stored in the storage unit 44 (S105). If the PWM duty ratio Td before a certain time is not stored (NO in S105), the process returns to S102. On the other hand, when the PWM duty ratio Td of a predetermined time is stored (YES in S105), the calculation unit 45 calculates the lower limit change amount | ΔTsL | and the upper limit change amount | ΔTsH | associated with each target rotational speed. The lower threshold value TsL and the upper threshold value TsH associated with each target rotational speed are respectively calculated (S106). More specifically, the calculation unit 45 calculates the lower threshold value TsL at the first target rotational speed N1 using the lower limit change amount | ΔTsL | associated with the first target rotational speed N1. Further, the calculation unit 45 calculates the upper threshold value TsH at the second target rotation speed N2 using the upper limit change amount | ΔTsH | associated with the second target rotation speed N2. *
次に、判定部46は、設定部43により設定されている目標回転数が第1目標回転数N1であるか否かを判定する(S107)。目標回転数が第1目標回転数N1であると判定される場合(S107でYES)、処理は後述するS111に進む。一方、目標回転数が第1目標回転数N1であると判定されない場合(S107でNO)、処理は後述するS121に進む。  Next, the determination unit 46 determines whether or not the target rotational speed set by the setting unit 43 is the first target rotational speed N1 (S107). If it is determined that the target rotational speed is the first target rotational speed N1 (YES in S107), the process proceeds to S111 described later. On the other hand, when it is not determined that the target rotational speed is the first target rotational speed N1 (NO in S107), the process proceeds to S121 described later. *
S111では、判定部46は、PWMデューティー比Tdが第1目標回転数N1における下側閾値TsL以下であるか否かを判定する。Td≦TsLではないと判定される場合(S111でNO)、処理はS102に戻る。Td≦TsLであると判定される場合(S111でYES)、ノズルなどの送出変化部材31が送出口3bに装着されたことにより、送出口3bで流体Fが一段階流れ難くなったと推定される。この場合、設定部43はさらに、該判定結果が予め定められた第1時間よりも長く維持されているか否かを判定する(S113)。なお、第1時間は、本実施形態ではたとえば2.0[sec]であるが、この例示には限定されない。判定結果が第1時間よりも長く維持されていない場合(S113でNO)、処理はS102に戻る。判定結果が第1時間よりも長く維持されている場合(S113でYES)、設定部43は、目標回転数を現時点よりも一段階上げて、第2目標回転数N2を設定する(S114)。そして、処理はS102に戻る。  In S111, the determination unit 46 determines whether or not the PWM duty ratio Td is equal to or lower than the lower threshold value TsL at the first target rotation speed N1. If it is determined that Td ≦ TsL is not satisfied (NO in S111), the process returns to S102. When it is determined that Td ≦ TsL is satisfied (YES in S111), it is estimated that the fluid F is difficult to flow through the delivery port 3b by one stage because the delivery change member 31 such as a nozzle is attached to the delivery port 3b. . In this case, the setting unit 43 further determines whether or not the determination result is maintained longer than a predetermined first time (S113). In addition, although 1st time is 2.0 [sec] in this embodiment, for example, it is not limited to this illustration. If the determination result is not maintained longer than the first time (NO in S113), the process returns to S102. When the determination result is maintained longer than the first time (YES in S113), the setting unit 43 sets the second target rotation speed N2 by raising the target rotation speed by one step from the current time (S114). Then, the process returns to S102. *
一方、S121では、判定部46は、PWMデューティー比Tdが第2目標回転数N2における上側閾値TsH以上であるか否かを判定する。Td≧TsHではないと判定される場合(S121でNO)、処理はS102に戻る。Td≧TsHであると判定される場合(S121でYES)、ノズルなどの送出変化部材31が送出口3bから取り外されたことにより、送出口3bで流体Fが一段階流れ易くなったと推定される。この場合、設定部43はさらに、該判定結果が予め定められた第2時間よりも長く維持されているか否かを判定する(S123)。なお、第2時間は、本実施形態ではたとえば1.5[sec]であるが、この例示には限定されない。判定結果が第2時間よりも長く維持されていない場合(S123でNO)、処理はS102に戻る。判定結果が第2時間よりも長く維持されている場合(S123でYES)、設定部43は、目標回転数を現時点よりも一段階下げて、第1目標回転数N1を設定する(S124)。そして、処理はS102に戻る。  On the other hand, in S121, the determination unit 46 determines whether or not the PWM duty ratio Td is equal to or higher than the upper threshold value TsH at the second target rotation speed N2. If it is determined that Td ≧ TsH is not satisfied (NO in S121), the process returns to S102. When it is determined that Td ≧ TsH is satisfied (YES in S121), it is estimated that the fluid F easily flows through the delivery port 3b by one stage because the delivery change member 31 such as the nozzle is removed from the delivery port 3b. . In this case, the setting unit 43 further determines whether or not the determination result is maintained longer than a predetermined second time (S123). In addition, although 2nd time is 1.5 [sec] in this embodiment, for example, it is not limited to this illustration. If the determination result is not maintained longer than the second time (NO in S123), the process returns to S102. When the determination result is maintained longer than the second time (YES in S123), the setting unit 43 sets the first target rotation speed N1 by lowering the target rotation speed by one step from the current time (S124). Then, the process returns to S102. *
なお、上述のPWM制御において、S102及びS103と、S113と、S123とのうちの少なくともいずれかは省略されてもよい。このようにしても、制御装置4は、DCモータ2のPWM制御を行うことができる。  In the PWM control described above, at least one of S102, S103, S113, and S123 may be omitted. Even in this way, the control device 4 can perform PWM control of the DC motor 2. *
以上に説明したPWM制御では、設定部43は、PWMデューティー比Tdが下側閾値TsL以下であれば、目標回転数を1段階上げる。また、設定部43は、PWMデューティー比が上側閾値TsH以上であれば、目標回転数を1段階下げる。  In the PWM control described above, the setting unit 43 increases the target rotational speed by one step if the PWM duty ratio Td is equal to or lower than the lower threshold value TsL. If the PWM duty ratio is equal to or higher than the upper threshold value TsH, the setting unit 43 decreases the target rotational speed by one step. *
こうすれば、PWMデューティー比Tdが設定部43で設定された第1目標回転数N1に関連付けられた下側閾値TsL以下になると、制御装置4は、送出変化部材31の装着などに応じて送出口3bにて流体Fが流れ難くなったことを検知する。そして、制御装置4は、目標回転数を1段階上げることによって、一段階上の第2目標回転数N2に向かってDCモータ2の回転数Nを増加させる。この制御により、制御装置4は、送出口3bで流体Fが流れ難くなったことに起因する流体Fの送出量の減少を抑制する。次に、PWMデューティー比Tdが設定部43で設定された第2目標回転数N2に関連付けられた上側閾値TsH以上になると、制御装置4は、送出変化部材31の取り外しなどに応じて送出口3bにて流体Fが流れ易くなったことを検知する。そして、制御装置4は、目標回転数を1段階下げることによって、一段階下の第1目標回転数N1に向かってDCモータ2の回転数Nを減少させる。この制御により、制御装置4は、送出口3bで流体Fが流れ易くなったことに起因する流体Fの送出量の増加を抑制する。従って、制御装置4は、たとえば制御用の素子を設けたり該素子を操作する手段を設けたりすることなく、DCモータ2の回転数Nを適宜制御できる。よって、制御装置4は、簡易な構成でDCモータ2の駆動を制御することができる。  In this way, when the PWM duty ratio Td becomes equal to or lower than the lower threshold value TsL associated with the first target rotational speed N1 set by the setting unit 43, the control device 4 performs transmission according to the mounting of the transmission changing member 31 or the like. It is detected that the fluid F becomes difficult to flow at the outlet 3b. Then, the control device 4 increases the rotational speed N of the DC motor 2 toward the second target rotational speed N2 that is one step higher by increasing the target rotational speed by one stage. By this control, the control device 4 suppresses a decrease in the delivery amount of the fluid F due to the difficulty of the fluid F flowing at the delivery port 3b. Next, when the PWM duty ratio Td becomes equal to or greater than the upper threshold value TsH associated with the second target rotational speed N2 set by the setting unit 43, the control device 4 determines whether the delivery changing member 31 is removed or the like. It is detected that the fluid F easily flows. Then, the control device 4 decreases the rotational speed N of the DC motor 2 toward the first target rotational speed N1 that is one step lower by lowering the target rotational speed by one step. By this control, the control device 4 suppresses an increase in the delivery amount of the fluid F due to the fluid F easily flowing at the delivery port 3b. Therefore, the control device 4 can appropriately control the rotational speed N of the DC motor 2 without providing, for example, a control element or means for operating the element. Therefore, the control device 4 can control the driving of the DC motor 2 with a simple configuration. *
また、制御装置4は、PWMデューティー比Tdの変化に基づくPWM制御により、DCモータ2の性能変化に対して安定した制御を行うことができる。さらに、クローズループ制御により、インペラ1、DCモータ2、及びハウジング3などに個体差があっても、同様に回転数を制御するので、製品毎の流体の送出量のばらつきが少ない。  Further, the control device 4 can perform stable control with respect to the performance change of the DC motor 2 by the PWM control based on the change of the PWM duty ratio Td. Furthermore, even if there are individual differences in the impeller 1, the DC motor 2, the housing 3, and the like by the closed loop control, the number of rotations is controlled in the same manner, so there is little variation in the fluid delivery amount for each product. *
上述のPWM制御では、S102及びS103において、算出部45は、予め設定された電圧と電源電圧との電源電圧差に基づいて、各々の目標回転数に関連付けられた下限変化量|ΔTsL|と上限変化量|ΔTSH|とをそれぞれ調整する。このようにすれば、DCモータ2の回転数Nは、電源電圧の変化により変動する。従って、たとえば、定格電圧と実際にDCモータ2に供給される電源電圧との間に電源電圧差があれば、電源電圧差に起因するずれが駆動電圧にも生じ、流体送出装置100の送出量にも変動が生じる。従って、電源電圧差に基づいて、下限変化量|ΔTsL|と上限変化量|ΔTSH|とを調整することにより上述のずれを補正する。これにより、送出口3bでの流体Fの流れ易さが変化したか否かに応じて駆動電圧をより正確且つより安定的にPWM制御することができる。よって、流体送出装置100の送出量に生じる変動を抑制できる。  In the PWM control described above, in S102 and S103, the calculation unit 45 calculates the lower limit change amount | ΔTsL | associated with each target rotation speed and the upper limit based on the power supply voltage difference between the preset voltage and the power supply voltage. The amount of change | ΔTSH | is adjusted. If it does in this way, rotation speed N of DC motor 2 will fluctuate by change of power supply voltage. Therefore, for example, if there is a power supply voltage difference between the rated voltage and the power supply voltage that is actually supplied to the DC motor 2, a deviation due to the power supply voltage difference also occurs in the drive voltage, and the delivery amount of the fluid delivery device 100 Variations also occur. Therefore, the above-described deviation is corrected by adjusting the lower limit change amount | ΔTsL | and the upper limit change amount | ΔTSH | based on the power supply voltage difference. As a result, the drive voltage can be PWM controlled more accurately and more stably depending on whether or not the ease of flow of the fluid F at the delivery port 3b has changed. Therefore, the fluctuation | variation which arises in the delivery amount of the fluid delivery apparatus 100 can be suppressed. *
また、上述のPWM制御では、駆動制御部41が多段階の目標回転数のうちの最小の第1目標回転数N1に向かって回転数Nを変化させる。この際、S111及びS114において、設定部43は、PWMデューティー比Tdが第1目標回転数N1における下側閾値TsL以下であれば、目標回転数を第1目標回転数N1から1段階上げる。一方、設定部43は、PWMデューティー比Tdが下側閾値TsLよりも大きければ、目標回転数を第1目標回転数N1に維持する。このようにすれば、制御装置4は、たとえば送出口3bでの送出変化部材31の装着を検知し、目標回転数を第1目標回転数N1から1段階上げることによりDCモータ2の回転数を増加させる。従って、制御装置4は、送出変化部材31の装着に起因する送出口3bでの流体Fの送出量の過剰な減少を抑制できる。  In the above-described PWM control, the drive control unit 41 changes the rotation speed N toward the minimum first target rotation speed N1 among the multi-stage target rotation speeds. At this time, in S111 and S114, the setting unit 43 increases the target rotational speed by one step from the first target rotational speed N1 if the PWM duty ratio Td is equal to or lower than the lower threshold value TsL at the first target rotational speed N1. On the other hand, if the PWM duty ratio Td is larger than the lower threshold value TsL, the setting unit 43 maintains the target rotational speed at the first target rotational speed N1. If it does in this way, the control apparatus 4 will detect mounting | wearing of the sending change member 31 in the delivery port 3b, for example, will raise the rotation speed of the DC motor 2 by raising the target rotation speed 1 step | paragraph from 1st target rotation speed N1. increase. Therefore, the control device 4 can suppress an excessive decrease in the delivery amount of the fluid F at the delivery port 3b due to the attachment of the delivery change member 31. *
また、上述のPWM制御では、駆動制御部41が多段階の目標回転数のうちの最大の第2目標回転数N2に向かって回転数Nを変化させる。この際、S121及びS124において、設定部43は、PWMデューティー比Tdが第2目標回転数N2における上側閾値TsH以上であれば、目標回転数を第2目標回転数N2から1段階下げる。また、設定部43は、PWMデューティー比Tdが第2目標回転数N2における上側閾値TsHよりも小さければ、目標回転数を第2目標回転数N2に維持する。このようにすれば、制御装置4は、たとえば送出口3bでの送出変化部材31の取り外しを検知し、目標回転数を第2目標回転数N2から1段階下げることによりDCモータ2の回転数を減少させる。従って、制御装置4は、送出変化部材31の取り外しに起因する送出口3bでの流体Fの送出量の過剰な増加を抑制できる。  In the PWM control described above, the drive control unit 41 changes the rotational speed N toward the maximum second target rotational speed N2 among the multi-stage target rotational speeds. At this time, in S121 and S124, if the PWM duty ratio Td is equal to or higher than the upper threshold value TsH at the second target rotation speed N2, the setting unit 43 decreases the target rotation speed by one step from the second target rotation speed N2. The setting unit 43 maintains the target rotational speed at the second target rotational speed N2 if the PWM duty ratio Td is smaller than the upper threshold value TsH at the second target rotational speed N2. In this way, the control device 4 detects the removal of the delivery changing member 31 at the delivery port 3b, for example, and reduces the rotational speed of the DC motor 2 by lowering the target rotational speed by one step from the second target rotational speed N2. Decrease. Therefore, the control device 4 can suppress an excessive increase in the delivery amount of the fluid F at the delivery port 3b due to the removal of the delivery change member 31. *
また、上述のPWM制御では、S113において、設定部43は、PWMデューティー比Tdが下側閾値TsL以下である第1状態が維持される時間が、予め定められた第1時間よりも長い場合には、目標回転数を1段階上げる。また、S123において、設定部43は、PWMデューティー比Tdが上側閾値TsH以上である第2状態が維持される時間が、予め定められた第2時間よりも長い場合には、目標回転数を1段階下げる。このようにすれば、一時的な回転数Nの変化が、DCモータ2の駆動制御に影響し難くなる。たとえば、流体送出装置100の送出口3bが一時的に詰まった場合でも、送出口3bで流体Fが流れ難くなったとの判定結果が維持される期間が予め定められた時間以下であれば、駆動制御部41は、駆動電圧を変化させない。従って、DCモータ2をさらに安定して制御することができる。  In the above-described PWM control, in S113, the setting unit 43 determines that the time during which the first state in which the PWM duty ratio Td is equal to or lower than the lower threshold value TsL is longer than the predetermined first time. Increases the target rotational speed by one step. In S123, the setting unit 43 sets the target rotational speed to 1 when the time during which the second state in which the PWM duty ratio Td is equal to or higher than the upper threshold value TsH is longer than the predetermined second time. Step down. In this way, the temporary change in the rotational speed N hardly affects the drive control of the DC motor 2. For example, even if the delivery port 3b of the fluid delivery device 100 is temporarily clogged, if the period during which the determination result that the fluid F is difficult to flow at the delivery port 3b is maintained is equal to or less than a predetermined time, the drive The control unit 41 does not change the drive voltage. Therefore, the DC motor 2 can be controlled more stably. *
この際、S113における第1時間は、好ましくは、S123における第2時間よりも長い。このようにすれば、新たな目標回転数に向かって回転数を増加させる場合に不測の事態に対応する時間が、新たな目標回転数に向かって回転数を減少させる場合よりも長くなる。従って、たとえば、流体送出装置の送出口の一時的な詰まりを解消する際などに有効である。但し、この例示に限定されず、S113における第1時間は、S123における第2時間と同じであってもよいし、S123における第2時間よりも短くてもよい。  At this time, the first time in S113 is preferably longer than the second time in S123. In this way, the time corresponding to the unexpected situation when the rotational speed is increased toward the new target rotational speed is longer than when the rotational speed is decreased toward the new target rotational speed. Therefore, it is effective, for example, when eliminating temporary clogging of the delivery port of the fluid delivery device. However, the present invention is not limited to this example, and the first time in S113 may be the same as the second time in S123, or may be shorter than the second time in S123. *
<1-3.実施形態の変形例> 上述の実施形態では、送出口3bでの流体Fの流れ易さが2段階で変化するため、DCモータ2の目標回転数は、第1目標回転数N1及び第2目標回転数N2のうちの一方に設定される。但し、この例示に限定されず、DCモータ2は、3以上の目標回転数のうちから設定されてもよい。こうすれば、送出口3bでの流体Fの流れ易さが3以上の多段階で変化する場合にも、DCモータ2の駆動をPWM制御でき、DCモータ2の回転数Nを目標回転数に向かって自動で変化させることができる。  <1-3. Modification of Embodiment> In the above-described embodiment, since the ease of flow of the fluid F at the delivery port 3b changes in two stages, the target rotation speed of the DC motor 2 is the first target rotation speed N1 and the second target rotation speed. One of the rotation speeds N2 is set. However, the DC motor 2 may be set from among three or more target rotational speeds without being limited to this example. In this way, even when the ease of flow of the fluid F at the outlet 3b changes in multiple stages of 3 or more, the drive of the DC motor 2 can be PWM-controlled, and the rotational speed N of the DC motor 2 can be set to the target rotational speed. It can be changed automatically. *
以下に、実施形態の変形例を説明する。なお、本変形例では、前述の実施形態と異なる構成を説明する。また、前述の実施形態と同様の構成要素には同じ符号を付し、その説明を省略することがある。  Below, the modification of embodiment is demonstrated. In this modification, a configuration different from the above-described embodiment will be described. Moreover, the same code | symbol may be attached | subjected to the component similar to the above-mentioned embodiment, and the description may be abbreviate | omitted. *
図6は、変形例におけるDCモータ2の駆動特性の一例を示すグラフである。図6において、横軸はPWM制御信号が示すPWMデューティー比であり、縦軸はDCモータ2の回転数Nである。なお、送出口3bでの流体Fの流れ易さが中間の流れ易さである場合におけるDCモータ2の第3目標回転数は回転数N3と同じ値である。以下では
、第3目標回転数を「N3」とする。また、第3目標回転数N3は、第1目標回転数N1よりも大きく、第2目標回転数N2よりも小さい。 
FIG. 6 is a graph showing an example of drive characteristics of the DC motor 2 in the modification. In FIG. 6, the horizontal axis represents the PWM duty ratio indicated by the PWM control signal, and the vertical axis represents the rotational speed N of the DC motor 2. Note that the third target rotational speed of the DC motor 2 when the fluid F easily flows at the delivery port 3b is the same value as the rotational speed N3. Hereinafter, the third target rotation speed is assumed to be “N3”. Further, the third target speed N3 is larger than the first target speed N1 and smaller than the second target speed N2.
各々の目標回転数には、下限変化量|ΔTsL|及び上限変化量|ΔTsH|のうちの少なくともどちらかが設定される。たとえば、第1目標回転数N1には、下限変化量|ΔTsL1|が設定される。第2目標回転数N2には、上限変化量|ΔTsH2|が設定される。第3目標回転数N3には、下限変化量|ΔTsL3|及び上限変化量|ΔTsH3|が設定される。  Each target rotational speed is set with at least one of a lower limit change amount | ΔTsL | and an upper limit change amount | ΔTsH |. For example, the lower limit change amount | ΔTsL1 | is set for the first target rotation speed N1. An upper limit change amount | ΔTsH2 | is set for the second target rotation speed N2. A lower limit change amount | ΔTsL3 | and an upper limit change amount | ΔTsH3 | are set in the third target rotation speed N3. *
<1-3-1.変形例におけるDCモータのPWM制御> 図6において、送出口3bで流体Fが最も流れ易くなる場合には、制御装置4は、DCモータ2の回転数Nは最小の第1目標回転数N1に向かって変化させる。この後に、送出口3bで流体Fが流れ難くなることによってPWMデューティー比Tdが第1目標回転数N1における下側閾値TsL1以下になると、設定部43は、第1目標回転数N1よりも1段階大きい第2目標回転数N2をDCモータ2の目標回転数に設定する。これにより、制御装置4は、DCモータ2の回転数Nを第3目標回転数N3(N1<N3<N2)に向かって変化させる。従って、流体Fの送出量が増加するので、送出口3bで流体Fが流れ難くなることに起因する送出量の過剰な減少を抑制できる。なお、Td>TsL1であれば、設定部43は、目標回転数を第1目標回転数N1に維持する。また、設定部43は、直ちに目標回転数を再設定してもよいが、好ましくは、Td≦TsL1が維持される状態維持時間が、予め定められた第1時間よりも長い場合に目標回転数を変化させる。  <1-3-1. PWM Control of DC Motor in Modified Example> In FIG. 6, when the fluid F is most likely to flow at the outlet 3b, the control device 4 sets the rotational speed N of the DC motor 2 to the minimum first target rotational speed N1. Change towards. After this, when the PWM duty ratio Td becomes equal to or lower than the lower threshold value TsL1 at the first target rotational speed N1 due to the difficulty of flowing the fluid F at the delivery port 3b, the setting unit 43 performs one step from the first target rotational speed N1. The large second target rotational speed N2 is set as the target rotational speed of the DC motor 2. Thereby, the control apparatus 4 changes the rotation speed N of the DC motor 2 toward the third target rotation speed N3 (N1 <N3 <N2). Therefore, since the delivery amount of the fluid F increases, it is possible to suppress an excessive decrease in the delivery amount due to the difficulty in flowing the fluid F at the delivery port 3b. If Td> TsL1, the setting unit 43 maintains the target rotational speed at the first target rotational speed N1. Further, the setting unit 43 may immediately reset the target rotational speed, but preferably, when the state maintaining time during which Td ≦ TsL1 is maintained is longer than a predetermined first time, the target rotational speed is set. To change. *
また、制御装置4がDCモータ2の回転数Nを第3目標回転数N3に向かって変化させる際、送出口3bで流体Fが流れ易くなることによってPWMデューティー比Tdが第3目標回転数N3における上側閾値TsH3以上になると、設定部43は、第3目標回転数N3よりも1段階小さい第1目標回転数N1をDCモータ2の目標回転数に設定する。これにより、制御装置4は、第3目標回転数N3よりも小さい第1目標回転数N1(<N3)に向かってDCモータ2の回転数Nを変化させる。従って、流体Fの送出量が減少するので、送出口3bで流体Fが流れ易くなることに起因する送出量の過剰な増加を抑制できる。なお、Td<TsH3であれば、設定部43は、目標回転数を第3目標回転数N3に維持する。また、設定部43は、直ちに目標回転数を変化させてもよいが、好ましくは、Td≧TsH3が維持される状態維持時間が、予め定められた第2時間よりも長い場合に目標回転数を変化させる。  Further, when the control device 4 changes the rotation speed N of the DC motor 2 toward the third target rotation speed N3, the fluid F easily flows at the outlet 3b, whereby the PWM duty ratio Td becomes the third target rotation speed N3. When the value becomes equal to or greater than the upper threshold value TsH3, the setting unit 43 sets the first target rotational speed N1 that is one step smaller than the third target rotational speed N3 as the target rotational speed of the DC motor 2. Thereby, the control apparatus 4 changes the rotation speed N of the DC motor 2 toward the 1st target rotation speed N1 (<N3) smaller than the 3rd target rotation speed N3. Therefore, since the delivery amount of the fluid F decreases, it is possible to suppress an excessive increase in the delivery amount caused by the fluid F easily flowing at the delivery port 3b. If Td <TsH3, the setting unit 43 maintains the target rotational speed at the third target rotational speed N3. The setting unit 43 may change the target rotational speed immediately, but preferably the target rotational speed is set when the state maintaining time during which Td ≧ TsH3 is maintained is longer than a predetermined second time. Change. *
一方、制御装置4がDCモータ2の回転数Nを第3目標回転数N3に向かって変化させる際、送出口3bで流体Fがさらに流れ難くなることによってPWMデューティー比Tdが第3目標回転数N3における下側閾値TsL3以下になると、設定部43は、第3目標回転数N3よりも1段階大きい第2目標回転数N2をDCモータ2の目標回転数に設定する。これにより、制御装置4は、第3目標回転数N3よりも大きい第2目標回転数N2(>N3)に向かってDCモータ2の回転数Nを変化させる。従って、流体Fの送出量が増加するので、送出口3bで流体Fが流れ難くなることに起因する送出量の過剰な減少を抑制できる。なお、Td>TsH3であれば、設定部43は、目標回転数を第3目標回転数N3に維持する。また、設定部43は、直ちに目標回転数を変化させてもよいが、好ましくは、Td≦TsL3が維持される状態維持時間が、予め定められた第1時間よりも長い場合に目標回転数を変化させる。  On the other hand, when the control device 4 changes the rotation speed N of the DC motor 2 toward the third target rotation speed N3, the fluid F becomes more difficult to flow at the outlet 3b, so that the PWM duty ratio Td becomes the third target rotation speed. When the value is equal to or lower than the lower threshold value TsL3 in N3, the setting unit 43 sets the second target rotation speed N2 that is one step larger than the third target rotation speed N3 as the target rotation speed of the DC motor 2. Thereby, the control apparatus 4 changes the rotation speed N of the DC motor 2 toward the 2nd target rotation speed N2 (> N3) larger than the 3rd target rotation speed N3. Therefore, since the delivery amount of the fluid F increases, it is possible to suppress an excessive decrease in the delivery amount due to the difficulty in flowing the fluid F at the delivery port 3b. If Td> TsH3, the setting unit 43 maintains the target rotational speed at the third target rotational speed N3. Further, the setting unit 43 may change the target rotational speed immediately, but preferably, the target rotational speed is set when the state maintaining time in which Td ≦ TsL3 is maintained is longer than the predetermined first time. Change. *
また、この際、第1時間は、上記の第2時間以下であってもよいが、好ましくは、上記の第2時間よりも長いことが好ましい。このようにすれば、DCモータ2の回転数Nが高いほど、駆動電圧が変化するまでの時間が長くなり、たとえば不測の事態に対応する時間が得られ易くなる。  At this time, the first time may be equal to or shorter than the second time, but is preferably longer than the second time. In this way, the higher the rotational speed N of the DC motor 2, the longer the time until the drive voltage changes, and for example, it becomes easier to obtain time corresponding to an unexpected situation. *
また、送出口3bで流体Fが最も流れ難くなる場合には、制御装置4は、DCモータ2の回転数Nは最小の第1目標回転数N1に向かって変化させる。送出口3bで流体Fが流れ易くなることによってPWMデューティー比Tdが第2目標回転数N2における上側閾値TsH2以上になると、設定部43は、第2目標回転数N2よりも1段階小さい第3目標回転数N3をDCモータ2の目標回転数に設定する。これにより、制御装置4は、第2目標回転数N2よりも小さい第3目標回転数N3(<N2)に向かってDCモータ2の回転数Nを変化させる。従って、流体Fの送出量が減少するので、送出口3bで流体Fが流れ易くなることに起因する送出量の過剰な増加を抑制できる。なお、Td<TsL2であれば、設定部43は、目標回転数を第2目標回転数N2に維持する。また、設定部43は、直ちに目標回転数を変化させてもよいが、好ましくは、Td≧TsH2が維持される状態維持時間が、予め定められた第2時間よりも長い場合に目標回転数を変化させる。  When the fluid F is most difficult to flow at the outlet 3b, the control device 4 changes the rotational speed N of the DC motor 2 toward the minimum first target rotational speed N1. When the PWM duty ratio Td becomes equal to or higher than the upper threshold value TsH2 at the second target rotational speed N2 due to the fluid F easily flowing at the delivery port 3b, the setting unit 43 is one step smaller than the second target rotational speed N2. The rotational speed N3 is set to the target rotational speed of the DC motor 2. Thereby, the control device 4 changes the rotational speed N of the DC motor 2 toward the third target rotational speed N3 (<N2) smaller than the second target rotational speed N2. Therefore, since the delivery amount of the fluid F decreases, it is possible to suppress an excessive increase in the delivery amount caused by the fluid F easily flowing at the delivery port 3b. If Td <TsL2, the setting unit 43 maintains the target rotational speed at the second target rotational speed N2. Further, the setting unit 43 may change the target rotational speed immediately, but preferably, the target rotational speed is set when the state maintaining time during which Td ≧ TsH2 is maintained is longer than a predetermined second time. Change. *
以上より、図6において、簡易な制御により、流体送出装置100の送出量を良好に調整できる。  From the above, in FIG. 6, the delivery amount of the fluid delivery device 100 can be adjusted satisfactorily by simple control. *
多段階の目標回転数は、最小の目標回転数よりも大きく且つ最大の目標回転数よりも小さい第3目標回転数N3を少なくとも1つ含む。上述のPWM制御では、送出口での流体の流れ易さが中間の流れ易さである場合、駆動制御部41が第3目標回転数N3に向かって回転数Nを変化させる。この際、設定部43は、PWMデューティー比Tdが第3目標回転数N3における下側閾値TsL3以下である場合には、目標回転数を第3目標回転数N3から1段階上げる。一方、設定部43は、PWMデューティー比Tdが第3目標回転数N3における上側閾値TsH以上である場合には、目標回転数を第3目標回転数N3から1段階下げる。  The multi-stage target rotational speed includes at least one third target rotational speed N3 that is larger than the minimum target rotational speed and smaller than the maximum target rotational speed. In the above-described PWM control, when the ease of fluid flow at the delivery port is intermediate, the drive control unit 41 changes the rotation speed N toward the third target rotation speed N3. At this time, when the PWM duty ratio Td is equal to or lower than the lower threshold value TsL3 at the third target rotational speed N3, the setting unit 43 increases the target rotational speed by one step from the third target rotational speed N3. On the other hand, when the PWM duty ratio Td is equal to or higher than the upper threshold value TsH at the third target rotational speed N3, the setting unit 43 decreases the target rotational speed by one step from the third target rotational speed N3. *
このようにすれば、制御装置4は、たとえば送出変化部材31の装着により送出口3bにて流体Fが流れ難くなったことを検知すると、目標回転数を第3目標回転数N3から1段階上げることによりDCモータ2の回転数をさらに増加させる。これにより、送出口3bでの流体Fの送出量の過剰な減少を抑制できる。また、制御装置4は、たとえば送出変化部材31の取り外しにより送出口3bにて流体Fが流れ易くなったことを検知すると、目標回転数を第3目標回転数N3から1段階下げることによりDCモータ2の回転数をさらに減少させる。これにより、送出口3bでの流体Fの送出量の過剰な増加を抑制できる。従って、制御装置4は、送出口3bでの流体Fの流れ易さの変化に起因する送出口3bでの流体Fの送出量の過剰な増減を抑制できる。  If it does in this way, if the control apparatus 4 will detect that the fluid F becomes difficult to flow through the delivery port 3b by mounting | wearing with the delivery change member 31, for example, it will raise a target rotational speed one step from the 3rd target rotational speed N3. As a result, the rotational speed of the DC motor 2 is further increased. Thereby, an excessive decrease in the delivery amount of the fluid F at the delivery port 3b can be suppressed. In addition, when the control device 4 detects that the fluid F is likely to flow at the delivery port 3b by removing the delivery changing member 31, for example, the control device 4 reduces the target rotational speed by one step from the third target rotational speed N3. The number of rotations of 2 is further reduced. Thereby, the excessive increase in the sending amount of the fluid F at the delivery port 3b can be suppressed. Therefore, the control device 4 can suppress an excessive increase / decrease in the delivery amount of the fluid F at the delivery port 3b due to a change in the ease of flow of the fluid F at the delivery port 3b. *
<1-4.まとめ> 以上に説明した実施形態及びその変形例によれば、制御装置4は、送出口3bでの流体Fの流れ易さが変化可能である流体送出装置100において、流体Fを吸引口3aから送出口3bに流すインペラ1を回転させるDCモータ2をPWM制御する。制御装置4は、流体Fの流れ易さに応じたDCモータ2の目標回転数を設定する設定部43と、DCモータ2の回転数Nを示す回転数信号を受信する受信部42と、DCモータ2のステータ22に供給される駆動電圧のPWMデューティー比Tdの調節によって回転数Nを目標回転数に向かって変化させる駆動制御部41と、PWMデューティー比Tdを時系列に記憶する記憶部44と、一定時間前のPWMデューティー比Tdと設定部43で設定された目標回転数に関連付けられた下限変化量|ΔTsL|及び上限変化量|ΔTsH|とに基づいて下側閾値TsL及び上側閾値TsHを算出する算出部45と、を備える。設定部43は、PWMデューティー比Tdが下側閾値TsL以下であれば、目標回転数を1段階上げる。また、設定部43は、PWMデューティー比Tdが上側閾値TsH以上であれば、目標回転数を1段階下げる。  <1-4. Summary> According to the embodiment described above and the modification thereof, the control device 4 allows the fluid F to be discharged from the suction port 3a in the fluid delivery device 100 in which the flowability of the fluid F at the delivery port 3b can be changed. The DC motor 2 that rotates the impeller 1 that flows to the delivery port 3b is PWM-controlled. The control device 4 includes a setting unit 43 that sets a target rotational speed of the DC motor 2 according to the ease of flow of the fluid F, a receiving unit 42 that receives a rotational speed signal indicating the rotational speed N of the DC motor 2, and a DC A drive control unit 41 that changes the rotational speed N toward the target rotational speed by adjusting the PWM duty ratio Td of the drive voltage supplied to the stator 22 of the motor 2, and a storage unit 44 that stores the PWM duty ratio Td in time series. And the lower threshold value TsL and the upper threshold value TsH based on the PWM duty ratio Td before a predetermined time and the lower limit change amount | ΔTsL | and the upper limit change amount | ΔTsH | associated with the target rotational speed set by the setting unit 43 And a calculation unit 45 that calculates If the PWM duty ratio Td is equal to or lower than the lower threshold value TsL, the setting unit 43 increases the target rotational speed by one step. The setting unit 43 decreases the target rotational speed by one step if the PWM duty ratio Td is equal to or greater than the upper threshold value TsH. *
この構成によれば、PWMデューティー比Tdが設定部43で設定された第1目標回転数N1に関連付けられた下側閾値TsL以下になると、制御装置4は、送出変化部材31の装着などに応じて送出口3bにて流体Fが流れ難くなったことを検知する。そして、制御装置4は、目標回転数を1段階上げることによって、一段階上の第2目標回転数N2に向かってDCモータ2の回転数Nを増加させる。この制御により、制御装置4は、送出口3bで流体Fが流れ難くなったことに起因する流体Fの送出量の減少を抑制する。次に、PWMデューティー比Tdが設定部43で設定された第2目標回転数N2に関連付けられた上側閾値TsH以上になると、制御装置4は、送出変化部材31の取り外しなどに応じて送出口3bにて流体Fが流れ易くなったことを検知する。そして、制御装置4は、目標回転数を1段階下げることによって、一段階下の第1目標回転数N1に向かってDCモータ2の回転数Nを減少させる。この制御により、制御装置4は、送出口3bで流体Fが流れ易くなったことに起因する流体Fの送出量の増加を抑制する。従って、制御装置4は、たとえば制御用の素子を設けたり該素子を操作する手段を設けたりすることなく、DCモータ2の回転数Nを適宜制御できる。よって、制御装置4は、簡易な構成でDCモータ2の駆動を制御することができる。  According to this configuration, when the PWM duty ratio Td becomes equal to or lower than the lower threshold value TsL associated with the first target rotational speed N1 set by the setting unit 43, the control device 4 responds to the attachment of the transmission changing member 31 or the like. Then, it is detected that the fluid F is difficult to flow at the delivery port 3b. Then, the control device 4 increases the rotational speed N of the DC motor 2 toward the second target rotational speed N2 that is one step higher by increasing the target rotational speed by one stage. By this control, the control device 4 suppresses a decrease in the delivery amount of the fluid F due to the difficulty of the fluid F flowing at the delivery port 3b. Next, when the PWM duty ratio Td becomes equal to or greater than the upper threshold value TsH associated with the second target rotational speed N2 set by the setting unit 43, the control device 4 determines whether the delivery changing member 31 is removed or the like. It is detected that the fluid F easily flows. Then, the control device 4 decreases the rotational speed N of the DC motor 2 toward the first target rotational speed N1 that is one step lower by lowering the target rotational speed by one step. By this control, the control device 4 suppresses an increase in the delivery amount of the fluid F due to the fluid F easily flowing at the delivery port 3b. Therefore, the control device 4 can appropriately control the rotational speed N of the DC motor 2 without providing, for example, a control element or means for operating the element. Therefore, the control device 4 can control the driving of the DC motor 2 with a simple configuration. *
また、制御装置4は、PWMデューティー比Tdの変化に基づくPWM制御により、DCモータ2の性能変化に対して安定した制御を行うことができる。さらに、クローズループ制御により、インペラ1、DCモータ2、及びハウジング3などに個体差があっても、同様に回転数を制御するので、製品毎の流体の送出量のばらつきが少ない。  Further, the control device 4 can perform stable control with respect to the performance change of the DC motor 2 by the PWM control based on the change of the PWM duty ratio Td. Furthermore, even if there are individual differences in the impeller 1, the DC motor 2, the housing 3, and the like by the closed loop control, the number of rotations is controlled in the same manner, so there is little variation in the fluid delivery amount for each product. *
流体送出装置100は、中心軸回りに回転可能な羽根を有するインペラ1と、インペラ1を回転させるDCモータ2と、インペラ1を収容するハウジング3と、DCモータ2の駆動を制御する上記の制御装置4と、を備える。ハウジング3は、流体Fが送出される送出口3bを有する。送出口3bには、流体Fの流れ易さを段階的に変化させる送出変化部材31が着脱可能である。  The fluid delivery device 100 includes the impeller 1 having blades that can rotate around the central axis, the DC motor 2 that rotates the impeller 1, the housing 3 that houses the impeller 1, and the control that controls the driving of the DC motor 2. And a device 4. The housing 3 has a delivery port 3b through which the fluid F is delivered. A delivery changing member 31 that changes the flowability of the fluid F stepwise can be attached to and detached from the delivery port 3b. *
この構成によれば、送出変化部材31の着脱に応じて、DCモータ2の回転数Nを自動で変化させることができる。たとえば制御用の素子を設けたり、該素子を操作する手段を設けたりする必要がないので、簡易な構成でDCモータ2の駆動を制御できる。  According to this configuration, the rotational speed N of the DC motor 2 can be automatically changed according to the attachment / detachment of the delivery changing member 31. For example, since it is not necessary to provide a control element or a means for operating the element, the driving of the DC motor 2 can be controlled with a simple configuration. *
<2.その他> 以上、本発明の実施形態について説明した。なお、本発明の範囲は上述の実施形態に限定されない。本発明は、発明の主旨を逸脱しない範囲で種々の変更を加えて実施することができる。また、上述の実施形態で説明した事項は、矛盾を生じない範囲で適宜任意に組み合わせることができる。  <2. Others> The embodiment of the present invention has been described above. The scope of the present invention is not limited to the above-described embodiment. The present invention can be implemented with various modifications without departing from the spirit of the invention. In addition, the items described in the above embodiments can be arbitrarily combined as long as no contradiction occurs. *
たとえば、上述の実施形態及び変形例では、本発明のPWM制御値の一例として、PWMデューティー比Tdを採用しているが、この例示に限定されず、PWMデューティーを採用してもよい。 For example, in the above-described embodiment and modification, the PWM duty ratio Td is adopted as an example of the PWM control value of the present invention. However, the present invention is not limited to this example, and the PWM duty may be adopted.
本発明は、流体の流れ易さを変化させる部材を送出口に着脱可能な流体送出装置に搭載されるモータの制御に有用である。 INDUSTRIAL APPLICATION This invention is useful for control of the motor mounted in the fluid delivery apparatus which can attach or detach the member which changes the easiness of a fluid flow to a delivery outlet.

Claims (10)


  1.  送出口での流体の流れ易さが変化可能である流体送出装置において、前記流体を吸引口から前記送出口に流すインペラを回転させるDCモータをPWM制御する制御装置であって、

     前記流体の流れ易さに応じた前記DCモータの目標回転数を設定する設定部と、

     前記DCモータの回転数を示す回転数信号を受信する受信部と、

     前記DCモータのステータに供給される駆動電圧のPWM制御値の調節によって前記回転数を前記目標回転数に向かって変化させる駆動制御部と、

     前記PWM制御値を時系列に記憶する記憶部と、

     一定時間前の前記PWM制御値と前記設定部で設定された前記目標回転数に関連付けられた下限変化量及び上限変化量とに基づいて下側閾値及び上側閾値を算出する算出部と、

    を備え、

     前記設定部は、

      前記PWM制御値が前記下側閾値以下であれば、前記目標回転数を1段階上げ、

      前記PWM制御値が前記上側閾値以上であれば、前記目標回転数を1段階下げる、制御装置。

    In the fluid delivery device in which the ease of fluid flow at the delivery port is variable, the control device performs PWM control of a DC motor that rotates an impeller that flows the fluid from the suction port to the delivery port,

    A setting unit for setting a target rotational speed of the DC motor according to the ease of flow of the fluid;

    A receiving unit for receiving a rotation speed signal indicating the rotation speed of the DC motor;

    A drive controller that changes the rotational speed toward the target rotational speed by adjusting a PWM control value of a driving voltage supplied to the stator of the DC motor;

    A storage unit for storing the PWM control values in time series;

    A calculation unit that calculates a lower threshold value and an upper threshold value based on the PWM control value of a predetermined time and a lower limit change amount and an upper limit change amount associated with the target rotation speed set by the setting unit;

    With

    The setting unit

    If the PWM control value is less than or equal to the lower threshold, the target rotational speed is increased by one step,

    If the PWM control value is greater than or equal to the upper threshold value, the control device reduces the target rotational speed by one step.

  2.  前記下限変化量は、前記PWM制御値の前記一定時間における下降量の閾値であり、

      前記下側閾値は、前記一定時間前の前記PWM制御値から前記下限変化量を減じた値であり、

     前記上限変化量は、前記PWM制御値の前記一定時間における上昇量の閾値であり、

      前記上側閾値は、前記一定時間前の前記PWM制御値に前記上限変化量を加えた値である、請求項1に記載の制御装置。

    The lower limit change amount is a threshold value of a decrease amount of the PWM control value in the fixed time,

    The lower threshold is a value obtained by subtracting the lower limit change amount from the PWM control value before the predetermined time,

    The upper limit change amount is a threshold value of an increase amount in the certain time of the PWM control value,

    The control device according to claim 1, wherein the upper threshold value is a value obtained by adding the upper limit change amount to the PWM control value before the predetermined time.

  3.  前記下限変化量は、前記PWM制御値が下降する際での前記一定時間前の前記PWM制御値に対する前記PWM制御値の比率の閾値であり、

      前記下側閾値は、前記一定時間前のPWM制御値に前記下限変化量を乗算した値であり、

     前記上限変化量は、前記PWM制御値が上昇する際での前記一定時間前の前記PWM制御値に対する前記PWM制御値の比率の閾値であり、

      前記上側閾値は、前記一定時間前のPWM制御値に前記上限変化量を乗算した値である、請求項1に記載の制御装置。

    The lower limit change amount is a threshold value of a ratio of the PWM control value to the PWM control value before the certain time when the PWM control value decreases,

    The lower threshold is a value obtained by multiplying the PWM control value before the predetermined time by the lower limit change amount,

    The upper limit change amount is a threshold value of a ratio of the PWM control value to the PWM control value before the certain time when the PWM control value increases,

    The control device according to claim 1, wherein the upper threshold value is a value obtained by multiplying the PWM control value before the predetermined time by the upper limit change amount.

  4.  前記駆動制御部が多段階の前記目標回転数のうちの最小の第1目標回転数に向かって前記回転数を変化させる際、

      前記設定部は、

       前記PWM制御値が前記第1目標回転数における前記下側閾値以下であれば、前記目標回転数を前記第1目標回転数から1段階上げ、

       前記PWM制御値が前記下側閾値よりも大きければ、前記目標回転数を前記第1目標回転数に維持する、請求項1~請求項3のいずれかに記載の制御装置。

    When the drive control unit changes the rotation speed toward a minimum first target rotation speed among the multi-stage target rotation speeds,

    The setting unit

    If the PWM control value is less than or equal to the lower threshold value in the first target rotational speed, the target rotational speed is increased by one step from the first target rotational speed,

    The control device according to any one of claims 1 to 3, wherein if the PWM control value is larger than the lower threshold value, the target rotational speed is maintained at the first target rotational speed.

  5.  前記駆動制御部が多段階の前記目標回転数のうちの最大の第2目標回転数に向かって前記回転数を変化させる際、

      前記設定部は、

       前記PWM制御値が前記第2目標回転数における前記上側閾値以上であれば、前記目標回転数を前記第2目標回転数から1段階下げ、

       前記PWM制御値が前記第2目標回転数における前記上側閾値よりも小さければ、前記目標回転数を前記第2目標回転数に維持する、請求項1~請求項4のいずれかに記載の制御装置。

    When the drive control unit changes the rotational speed toward the maximum second target rotational speed among the multi-stage target rotational speeds,

    The setting unit

    If the PWM control value is greater than or equal to the upper threshold value in the second target rotational speed, the target rotational speed is decreased by one step from the second target rotational speed,

    The control device according to any one of claims 1 to 4, wherein if the PWM control value is smaller than the upper threshold value at the second target rotational speed, the target rotational speed is maintained at the second target rotational speed. .

  6.  多段階の前記目標回転数は、最小の前記目標回転数よりも大きく且つ最大の前記目標回転数よりも小さい第3目標回転数を少なくとも1つ含み、

     前記駆動制御部が前記第3目標回転数に向かって前記回転数を変化させる際、

      前記設定部は、

       前記PWM制御値が前記第3目標回転数における前記下側閾値以下である場合には、前記目標回転数を前記第3目標回転数から1段階上げ、

       前記PWM制御値が前記第3目標回転数における前記上側閾値以上である場合には、前記目標回転数を前記第3目標回転数から1段階下げる、請求項1~請求項5のいずれかに記載の制御装置。

    The target rotational speeds in multiple stages include at least one third target rotational speed that is larger than the minimum target rotational speed and smaller than the maximum target rotational speed,

    When the drive control unit changes the rotation speed toward the third target rotation speed,

    The setting unit

    When the PWM control value is equal to or lower than the lower threshold value in the third target rotational speed, the target rotational speed is increased by one step from the third target rotational speed,

    The target rotational speed is decreased by one step from the third target rotational speed when the PWM control value is equal to or higher than the upper threshold value at the third target rotational speed. Control device.

  7.  前記受信部は、前記DCモータの電源電圧を示す電源電圧信号をさらに受信し、

     前記算出部は、予め設定された電圧と前記電源電圧との電源電圧差に基づいて、各々の前記目標回転数に関連付けられた前記下限変化量と前記上限変化量とをそれぞれ調整する、請求項1~請求項6のいずれかに記載の制御装置。

    The receiving unit further receives a power supply voltage signal indicating a power supply voltage of the DC motor,

    The calculation unit adjusts the lower limit change amount and the upper limit change amount associated with each target rotational speed based on a power supply voltage difference between a preset voltage and the power supply voltage, respectively. The control device according to any one of claims 1 to 6.

  8.  前記設定部は、

      前記PWM制御値が前記下側閾値以下である第1状態が維持される時間が、予め定められた第1時間よりも長い場合には、前記目標回転数を1段階上げ、

      前記PWM制御値が前記上側閾値以上である第2状態が維持される時間が、予め定められた第2時間よりも長い場合には、前記目標回転数を1段階下げる、請求項1~請求項7のいずれかに記載の制御装置。

    The setting unit

    When the time during which the first state in which the PWM control value is equal to or lower than the lower threshold is maintained is longer than a predetermined first time, the target rotational speed is increased by one step,

    The target rotational speed is decreased by one step when the time during which the second state in which the PWM control value is equal to or higher than the upper threshold is maintained is longer than a predetermined second time. The control device according to any one of 7.

  9.  前記第1時間は、前記第2時間よりも長い、請求項8に記載の制御装置。

    The control device according to claim 8, wherein the first time is longer than the second time.

  10.  中心軸回りに回転可能な羽根を有するインペラと、

     前記インペラを回転させるDCモータと、

     前記インペラを収容するハウジングと、

     前記DCモータの駆動を制御する請求項1~請求項9のいずれかに記載の制御装置と、

    を備え、

     前記ハウジングは、流体が送出される送出口を有し、

      前記送出口には、前記流体の流れ易さを段階的に変化させる送出変化部材が着脱可能である、流体送出装置。

    An impeller having blades rotatable around a central axis;

    A DC motor for rotating the impeller;

    A housing that houses the impeller;

    The control device according to any one of claims 1 to 9, which controls driving of the DC motor;

    With

    The housing has a delivery port through which fluid is delivered;

    A fluid delivery device, wherein a delivery changing member that changes the flowability of the fluid stepwise can be attached to and detached from the delivery port.
PCT/JP2019/013080 2018-03-28 2019-03-27 Control device and fluid delivery device WO2019189298A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-062353 2018-03-28
JP2018062353 2018-03-28

Publications (1)

Publication Number Publication Date
WO2019189298A1 true WO2019189298A1 (en) 2019-10-03

Family

ID=68060168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013080 WO2019189298A1 (en) 2018-03-28 2019-03-27 Control device and fluid delivery device

Country Status (1)

Country Link
WO (1) WO2019189298A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08266080A (en) * 1995-03-23 1996-10-11 Noritz Corp Controller of motor
JP2001177984A (en) * 1999-12-09 2001-06-29 Toshiba Kyaria Kk Fan device with filter
JP2001204536A (en) * 2000-01-27 2001-07-31 Matsushita Electric Works Ltd Hair dryer
JP2006075194A (en) * 2004-09-07 2006-03-23 Sanyo Electric Co Ltd Hair dryer
JP2013087715A (en) * 2011-10-20 2013-05-13 Sharp Corp Air blower

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08266080A (en) * 1995-03-23 1996-10-11 Noritz Corp Controller of motor
JP2001177984A (en) * 1999-12-09 2001-06-29 Toshiba Kyaria Kk Fan device with filter
JP2001204536A (en) * 2000-01-27 2001-07-31 Matsushita Electric Works Ltd Hair dryer
JP2006075194A (en) * 2004-09-07 2006-03-23 Sanyo Electric Co Ltd Hair dryer
JP2013087715A (en) * 2011-10-20 2013-05-13 Sharp Corp Air blower

Similar Documents

Publication Publication Date Title
EP2431004A1 (en) Motor control method and device for dental handpiece
EP2501033B1 (en) Control systems and methods for electronically commutated motors
EP2582034A1 (en) Motor drive device, brushless motor, and motor drive method
JP2011085044A (en) Operating device and method for hydraulic pump in hydraulic system
US20070098373A1 (en) Dc motor drive unit
EP2659824A2 (en) Fluid apparatus
WO2019011233A9 (en) Control system of vacuum cleaner motor, vacuum cleaner, and control method
US20230374995A1 (en) Motor drive control device, fan and motor drive control method
CN102454617A (en) Pump control device and pump device
WO2019189298A1 (en) Control device and fluid delivery device
US9853590B1 (en) System and method for improving the operation of electronically controlled motors
JP2006149097A (en) Motor controller
JP6313186B2 (en) Motor drive control device and control method of motor drive control device
JP6982511B2 (en) Electric compressor
WO2019150758A1 (en) Control device and fluid discharge device
US10103668B2 (en) Motor control system and method for skipping resonant operating frequencies
WO2019150759A1 (en) Control device and fluid discharge device
AU2020340666A1 (en) Electric breast pump
JP6855435B2 (en) Electric pump
JP4329435B2 (en) Pump operation system
JP2023080158A (en) Motor drive control device, fan, and motor drive control method
CN115733393A (en) Electric working machine
JP7256033B2 (en) MOTOR DRIVE CONTROL DEVICE, FAN, AND MOTOR DRIVE CONTROL METHOD
JP2018121384A (en) Variable speed motor system with power-assisted fan
CN111431441B (en) Motor rotating speed control method and device, air conditioner and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776238

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19776238

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP