WO2019189276A1 - Method for manufacturing polymer, polymer and polymer composition - Google Patents

Method for manufacturing polymer, polymer and polymer composition Download PDF

Info

Publication number
WO2019189276A1
WO2019189276A1 PCT/JP2019/013038 JP2019013038W WO2019189276A1 WO 2019189276 A1 WO2019189276 A1 WO 2019189276A1 JP 2019013038 W JP2019013038 W JP 2019013038W WO 2019189276 A1 WO2019189276 A1 WO 2019189276A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
group
compound
meth
polymerization
Prior art date
Application number
PCT/JP2019/013038
Other languages
French (fr)
Japanese (ja)
Inventor
桂生 野々山
秀則 成瀬
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2020510973A priority Critical patent/JP7226434B2/en
Publication of WO2019189276A1 publication Critical patent/WO2019189276A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation

Definitions

  • the present disclosure relates to a method for producing a polymer, a polymer, and a polymer composition.
  • RAFT reversible addition-fragmentation chain transfer
  • Patent Document 1 discloses a method of bringing a metal having a thiocarbonylthio group at a terminal into contact with a metal phosphite salt and a radical generator.
  • Non-Patent Document 1 discloses a method for removing a thiocarbonylthio group at a polymer terminal using a tin compound as a metal catalyst.
  • a free radical source (radical generator) is added to a polymer having a thiocarbonylthio group at the end, thereby replacing the thiocarbonylthio group with a partial structure derived from the free radical source.
  • a method is disclosed.
  • Patent Document 3 discloses a method for converting a terminal structure of a polymer by adding a chain transfer agent and a free radical source to a polymer having a thiocarbonylthio group at the terminal.
  • Non-Patent Document 2 discloses that a polymer having a thiocarbonylthio group at the terminal is reacted with a thiol compound and azobisisobutyronitrile (AIBN).
  • the present disclosure has been made in view of the above problems, and provides a method for producing a polymer capable of easily and highly selectively replacing a thiocarbonylthio group bonded to a polymer terminal with a hydrogen atom. For one purpose.
  • step A A step B in which the polymer T is brought into contact with the thiol group-containing compound without adding a radical generator to replace the group “—SC ( ⁇ S) R 1 ” of the polymer T with a hydrogen atom;
  • a method for producing a polymer comprising: [2] A radical generator is added to the polymer T having a group “—SC ( ⁇ S) R 1 ” (where R 1 is a monovalent organic group) and a thiol group-containing compound. The group “—SC ( ⁇ S) R 1 ” of the polymer T is replaced with a hydrogen atom without contact. [3] A polymer obtained by the production method of [1] above. [4] A polymer composition containing the polymer of [3] above.
  • the polymer having the group “—SC ( ⁇ S) R 1 ” at the terminal and the thiol group-containing compound are contacted without adding a radical generator,
  • the group “—SC ( ⁇ S) R 1 ” at the end of the polymer can be replaced with a hydrogen atom with high selectivity.
  • FIG. 1 is a diagram showing an analysis result of a polymer terminal structure by pyrolysis gas chromatography mass spectrometry.
  • FIG. 2 is a diagram showing the analysis results of the polymer terminal structure by matrix-assisted laser desorption / ionization time-of-flight mass spectrometry.
  • Step A a step of polymerizing a monomer in the presence of a thiocarbonylthio compound to obtain a polymer having a group “—SC ( ⁇ S) R 1 ” at its terminal (hereinafter also referred to as “polymer T”).
  • Step B A step of bringing the polymer “T” and the thiol group-containing compound into contact with each other without adding a radical generator and replacing the group “—SC ( ⁇ S) R 1 ” of the polymer T with a hydrogen atom.
  • the monomer used for polymerization is not particularly limited as long as it can be polymerized, but a compound having a radical polymerizable unsaturated bond (hereinafter also referred to as “polymerizable unsaturated compound”) can be preferably used.
  • a compound having a radical polymerizable unsaturated bond hereinafter also referred to as “polymerizable unsaturated compound”.
  • the (meth) acrylic compound means to include an acrylic compound and a methacrylic compound.
  • the (meth) acrylic compound include, for example, (meth) acrylic acid, (meth) acrylic acid ⁇ -carboxypolycaprolactone, crotonic acid, ⁇ -ethylacrylic acid, ⁇ -n-propylacrylic acid, maleic acid, Unsaturated carboxylic acids such as fumaric acid, citraconic acid, mesaconic acid, itaconic acid, vinyl benzoic acid; Methyl (meth) acrylate, ethyl (meth) acrylate, (meth) acrylate-n-propyl, isopropyl (meth) acrylate, allyl (meth) acrylate, (meth) acrylate-n-butyl, (meth ) Acrylic acid-isobutyl, (meth) acrylic acid-t-butyl, (meth) acrylic acid cyclohexyl, (meth) acrylic acid-1-methylcyclopentyl, (meth) acrylic acid-2-methyl
  • ⁇ , ⁇ -unsaturated carbonyl compounds such as methyl vinyl ketone, ethyl vinyl ketone, methyl isopropenyl ketone, ethyl isopropenyl ketone; vinyl carboxylates such as vinyl acetate, vinyl butyrate, vinyl benzoate; maleic anhydride, itaconic anhydride Cyclic vinyl compounds such as acids, N-butylmaleimide, N-phenylmaleimide; N-vinyl compounds such as N-vinylpyrrolidone, vinylcarbazole, vinylimidazole; ethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) Examples thereof include compounds having two or more carbon-carbon double bonds such as acrylate; (meth) acrylonitrile and the like.
  • a monomer (B) can be used individually by 1 type or in combination of 2 or more types.
  • (Meth) acryl in this specification indicates acrylic and methacrylic.
  • a styrene compound can be preferably used. Specifically, for example, styrene, hydroxystyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, ⁇ -methylstyrene, 2,4-dimethylstyrene, 2,4-diisopropylstyrene, 4-t-butyl.
  • Examples thereof include styrene, m-ethylstyrene, p-ethylstyrene, t-butoxystyrene, vinylbenzyldimethylamine, N, N-dimethylaminomethylstyrene, 4-vinylbenzylglycidyl ether, and p-acetoxystyrene.
  • 1 type may be used independently and 2 or more types may be used in combination.
  • the proportion of the (meth) acrylic compound used is preferably 20% by mass or more, more preferably 50% by mass or more, and more preferably 60% by mass or more, based on the total amount of monomers used for the polymerization. More preferably.
  • the use ratio of the aromatic vinyl compound is preferably less than 50% by mass, more preferably 40% by mass, and still more preferably 20% by mass with respect to the total amount of monomers used for the polymerization.
  • other monomers other than the (meth) acryl compound and the aromatic vinyl compound may be used.
  • examples of other monomers include ethylene, propylene, 1,3-butadiene, isoprene, 1,3-pentadiene and the like.
  • the proportion of other monomers used is preferably 10% by mass or less, and more preferably 5% by mass or less, based on the total amount of monomers used for polymerization.
  • the monomer is polymerized in the presence of the thiocarbonylthio compound to introduce the monovalent group “—SC ( ⁇ S) R 1 ” derived from the thiocarbonylthio compound at the end of the polymer.
  • the monovalent organic group for R 1 include alkyl groups having 1 to 30 carbon atoms, cycloalkyl groups, aryl groups, aralkyl groups, alkylthio groups, aralkylthio groups, heterocyclyl groups, —NR 11 R 12 , —NR 11 —.
  • R 11 R 12 may be a monovalent group in which one or more hydrogen atoms bonded to the carbon atom in each of the above groups are substituted with a cyano group, a carboxy group, or the like.
  • the thiocarbonylthio compound can be appropriately selected from chain transfer agents (RAFT agents) used in RAFT polymerization according to the type of monomer.
  • RAFT agents chain transfer agents
  • a bis (thiocarbonyl) disulfide compound compound represented by the following formula (s-1)
  • a dithioester compound represented by the following formula (s-2)
  • at least one selected from the group consisting of trithiocarbonate compounds compounds represented by the following formula (s-3)
  • at least one selected from the group consisting of bis (thiocarbonyl) disulfide compounds and trithiocarbonate compounds can be used more preferably.
  • Z 1 to Z 6 are each independently a monovalent organic group.
  • Examples of the monovalent organic group in Z 1 to Z 6 in the above formulas (s-1) to (s-3) include, for example, an alkyl group having 1 to 30 carbon atoms, a cycloalkyl group, an aryl group, an aralkyl group, Alkylthio group, aralkylthio group, heterocyclyl group, —NR 11 R 12 , —NR 11 —NR 12 R 13 , —COOR 11 , —OCOR 11 , —CONR 11 R 12 , —P ( ⁇ O) (OR 11 ) 2 Alternatively, —O—P ( ⁇ O) R 11 R 12 and the like can be given.
  • R 1 may be a monovalent group in which one or more hydrogen atoms bonded to the carbon atom in each of the above groups are substituted with a cyano group, a carboxy group, or the like.
  • Z 4 in the above formula (s-2) is preferably an aromatic group such as a phenyl group, and Z 6 in the above formula (s-3) is preferably an alkyl group.
  • thiocarbonylthio compounds include bis (thiocarbonyl) disulfide compounds such as tetraethylthiuram disulfide, tetramethylthiuram disulfide, bis (n-octylmercapto-thiocarbonyl) disulfide, bis (n-dodecylmercapto-thiocarbonyl).
  • Disulfide bis (benzylmercapto-thiocarbonyl) disulfide, bis (n-butylmercapto-thiocarbonyl) disulfide, bis (t-butylmercapto-thiocarbonyl) disulfide, bis (n-heptylmercapto-thiocarbonyl) disulfide, bis (N-hexyl mercapto-thiocarbonyl) disulfide, bis (n-pentyl mercapto-thiocarbonyl) disulfide, bis (n-nonyl mercapto-thio) Carbonyl) disulfide, bis (n-decylmercapto-thiocarbonyl) disulfide, bis (t-dodecylmercapto-thiocarbonyl) disulfide, bis (n-tetradecylmercapto-thiocarbonyl) disulfide, bis (n-hexadecylmercapto-
  • the ratio of the thiocarbonylthio compound used in the above polymerization is preferably 0.05 parts by mass or more, more preferably 0.1 parts by mass or more, with respect to 100 parts by mass of the total amount of monomers.
  • the usage-amount of a thiocarbonylthio compound becomes like this. Preferably it is 20 mass parts or less with respect to a total of 100 mass parts of a monomer, More preferably, it is 10 mass parts or less.
  • 1 type can be used individually or in combination of 2 or more types.
  • the polymerization is preferably performed in the presence of a radical generator from the viewpoint of productivity.
  • the radical generator can be appropriately selected from radical polymerization initiators generally used in conventionally known radical polymerization. Specifically, it is a compound that generates radicals by heat or light. For example, a compound that generates radicals by heating, such as peroxides, azo compounds, or redox initiators, or a compound that generates radicals by irradiation with radiation. Can be mentioned.
  • compounds that generate radicals upon heating include peroxides such as t-butyl hydroperoxide, cumene hydroperoxide, t-butyl peroxyacetate, t-butyl peroxybenzoate, t-butyl peroxyoctanoate, peroxy T-butyl neodecanoate, t-butyl peroxyisobutyrate, lauroyl peroxide, t-amyl peroxypivalate, t-butyl peroxypivalate, dicumyl peroxide, benzoyl peroxide, potassium persulfate, ammonium persulfate, etc .;
  • the azo compound include azobisisobutyronitrile (AIBN), 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2-butanenitrile), 4,4′-azobis (4- Pentanoic acid), 1,1′-azobis (cyclohexanecarbonitrile), 2-
  • redox initiators include a combination of sulfite, acidic sodium sulfite and ferrous sulfate, a combination of t-butyl hydroperoxide, acidic sodium sulfite and ferrous sulfate, and p-menthane hydroperoxide. And a combination of ferrous sulfate, sodium ethylenediaminetetraacetate and sodium formaldehyde sulfoxylate;
  • an azo compound is preferable in that a side reaction product due to oxygen or the like is not easily generated, and azobisisobutyronitrile is particularly preferable.
  • compounds that generate radicals upon irradiation with radiation include, for example, acetophenone, acetophenone benzyl ketal, 1-hydroxycyclohexyl phenyl ketone, 2,2-dimethoxy-1,2-diphenylethane-1-one, xanthone, benzaldehyde, Fluorene, anthraquinone, triphenylamine, carbazole, 3-methylacetophenone, 4-chlorobenzophenone, 4,4'-dimethoxybenzophenone, benzoin propyl ether, benzyldimethyl ketal, 1- (4-isopropylphenyl) -2-hydroxy-2 -Methylpropan-1-one, 2-hydroxy-2-methyl-1-phenylpropan-1-one, diethylthioxanthone, 2-methyl-1- [4- (methylthio) phenyl] -2- Ruphorino-propan-1-one, 2-benzyl-2-d
  • the proportion of the radical generator used is preferably 1 part by mass or more, more preferably 10 parts by mass with respect to 100 parts by mass of the thiocarbonylthio compound used in the polymerization. More than a part.
  • the usage-amount of a radical generator becomes like this.
  • it is 1,000 mass parts or less with respect to 100 mass parts of thiocarbonylthio compounds used in superposition
  • 1 type can be used individually or in combination of 2 or more types.
  • the polymerization is preferably performed by solution polymerization.
  • the solvent to be used may be an organic solvent inert to the reaction, and examples thereof include alcohols, ethers, ketones, esters, and mixtures thereof.
  • the solvent used for the polymerization include alcohols such as ethyl alcohol, isopropyl alcohol, cyclohexanol, ethylene glycol, propylene glycol, 1,4-butanediol, triethylene glycol, 1-methoxy-2-propanol, 3-methoxy-1-butanol, 3-methoxy-3-methylbutanol and the like;
  • ethers include 1,4-dioxane, tetrahydrofuran, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate and the like;
  • ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, 4-methylcyclohexanone, diisobutyl ketone and the like;
  • esters include methyl acetate, ethyl acetate, butyl acetate, methyl methoxypropionate, and the like.
  • the ratio of the solvent used in the solution polymerization may be appropriately set according to the solubility of the monomer in the solvent, etc., but from the viewpoint of reaction efficiency, it is 30 to 1,000 parts by mass with respect to 100 parts by mass of the total amount of monomers. It is preferably 50 to 800 parts by mass.
  • the polymerization temperature is not particularly limited as long as the polymerization can proceed, but is preferably 0 ° C. or more from the viewpoint of productivity, and more preferably in the range of 0 ° C. to 140 ° C., A range of 20 ° C to 100 ° C is more preferable, and a range of 50 ° C to 90 ° C is particularly preferable.
  • the polymerization temperature is preferably set considering that the polymerization reaction is an exothermic reaction.
  • the polymerization temperature can be controlled by adjusting the feed rate and temperature of the radical generator, monomer and solvent, and cooling and heating from the outside of the reactor.
  • the polymerization reaction is preferably carried out under a pressure sufficient to keep the monomer in a substantially liquid phase.
  • the polymerization reaction time is preferably 30 minutes to 20 hours, more preferably 1 to 10 hours.
  • Polymer T may be isolated from the polymer solution after completion of the polymerization.
  • a conventionally known method can be employed. Specifically, for example, the solvent is separated by, for example, steam stripping, and then the polymer is filtered and further dehydrated and dried to obtain the polymer; the polymer is concentrated in a flushing tank, and further removed by a vent extruder or the like.
  • Step B the polymer T obtained in the step A is brought into contact with the thiol group-containing compound after the polymerization in the step A without adding a radical generator.
  • the terminal group “—SC ( ⁇ S) R 1 ” of the polymer T is replaced with a hydrogen atom.
  • the radical generator is not added in Step B, and the radical generator used in Step A is usually decomposed by heating or radiation irradiation for generating radicals.
  • an undecomposed radical generator may be present among the radical generators used in step A as long as the effects of the present invention are not impaired.
  • the thiol group-containing compound to be used is not particularly limited as long as it has a function of a chain transfer agent.
  • a compound represented by the following formula (1) can be preferably used.
  • R 2 -SH (1) (In the formula (1), R 2 represents a monovalent hydrocarbon group having 1 to 30 carbon atoms, or —C ( ⁇ O) O— between carbon-carbon bonds of a hydrocarbon group having 2 to 30 carbon atoms. And at least one hydrogen atom may be substituted with a hydroxyl group, a carboxy group or —SO 3 Na.)
  • examples of the monovalent hydrocarbon group for R 2 include 1 to 30 alkyl groups, cycloalkyl groups, aryl groups, and aralkyl groups.
  • R 2 is preferably a monovalent hydrocarbon group, more preferably an alkyl group having 1 to 30 carbon atoms, and still more preferably an alkyl group having 4 to 30 carbon atoms.
  • Specific examples of the thiol group-containing compound include, for example, 2-mercaptoethanol, 3-mercapto-1,2-propanediol, mercaptoacetic acid, methyl mercaptoacetate, ethyl mercaptoacetate, 2-ethylhexyl mercaptoacetate, 3-mercaptopropionic acid.
  • the ratio of the thiol group-containing compound used in Step B is preferably 0.1% by mass or more based on the total amount of the polymer T used when the thiol group-containing compound and the polymer T are brought into contact with each other. More preferably 3% by mass or more. Moreover, it is preferable to set it as 20 mass% or less with respect to the whole quantity of the polymer T to be used, and, as for the usage-amount of a thiol group containing compound, it is more preferable to set it as 15 mass% or less. In addition, as a thiol group containing compound, 1 type can be used individually or in combination of 2 or more types.
  • the contact between the polymer T obtained in the above step A and the thiol group-containing compound is preferably carried out in an organic solvent.
  • an organic solvent used the organic solvent illustrated as a solvent which can be used for superposition
  • the use ratio of the thiol group-containing compound is preferably 0.1 to 20 parts by mass, more preferably 0.3 to 15 parts by mass with respect to 100 parts by mass of the polymer. It is desirable to set the usage ratio of the monomer and the usage ratio of the thiol group-containing compound in this step.
  • the temperature at which the polymer T and the thiol group-containing compound are brought into contact with each other is a value obtained by replacing the group “—S—C ( ⁇ S) R 1 ” with a hydrogen atom. It is preferably 40 ° C. or higher in that it can be performed with high selectivity.
  • the modification temperature is more preferably 50 ° C. or higher, still more preferably 60 ° C. or higher, and particularly preferably 70 ° C. or higher.
  • the denaturation temperature is preferably 130 ° C. or less, more preferably 120 ° C. or less, and even more preferably 110 ° C. or less, from the viewpoint that the effect of suppressing a decrease in reactivity due to heat is high.
  • the reaction time is preferably 15 minutes to 15 hours, more preferably 30 minutes to 8 hours.
  • Step B the polymer T and the thiol group-containing compound are preferably contacted in an organic solvent without adding a radical generator into the system after the completion of the polymerization in Step A.
  • reaction of terminal hydrogenation of the polymer T by a thiol group containing compound As long as the mechanism is not hindered, the undecomposed component of the radical generator added as the polymerization initiator in Step A is slightly contained in the system containing the polymer T and the thiol group-containing compound in Step B. It is permissible.
  • the content ratio of the undecomposed radical generator in the system is preferably 1% by mass or less based on the total amount of the thiol group-containing compounds used when the polymer T and the thiol group-containing compound are brought into contact with each other. More preferably, it is 0.5 mass% or less.
  • a solution containing a polymer obtained by the reaction (hereinafter also referred to as “polymer P”) can be isolated by, for example, steam. It can be performed by a known desolvation method such as stripping and a drying operation such as heat treatment.
  • the polymer P is suitable in that it is difficult to limit the use of the polymer P for electric materials.
  • the conversion efficiency from the group “—SC ( ⁇ S) R 1 ” to a hydrogen atom at the terminal of the polymer T is preferably 40% or more, more preferably 50%. More preferably, it is 60% or more.
  • R1 is the integral value of the peak of the whole polymer excluding the terminal group after contact between the polymer T and the thiol group-containing compound
  • R2 is the polymer T and the thiol. (This is the peak integrated value of the entire polymer excluding the end groups before contact with the group-containing compound.)
  • the weight average molecular weight (Mw) in terms of polystyrene by gel permeation chromatography (GPC) of the obtained polymer P may be appropriately selected according to the use of the polymer, etc., but preferably 1.0 ⁇ 10 3 to 2.0 ⁇ 10 6 , more preferably 1.0 ⁇ 10 3 to 1.0 ⁇ 10 5 . Further, the molecular weight distribution (Mw / Mn) represented by the ratio of Mw to the polystyrene-equivalent number average molecular weight (Mn) measured by GPC is preferably 3 or less, more preferably 2.5 or less. .
  • the polymer composition of the present disclosure includes, as a polymer component, a polymer in which a polymer terminal group “—SC ( ⁇ S) R 1 ” is substituted with a hydrogen atom by the production method of the present disclosure.
  • the polymer and polymer composition obtained by the production method of the present disclosure are used for various applications. Specifically, for example, various resin compositions such as a photoresist composition, a liquid immersion composition, an upper layer film-forming composition, an adhesive, a dispersant, a compatibilizing agent, a surfactant, a footwear material, various It can be applied to various uses such as automobile parts, industrial articles, asphalt compositions, paints, and biomaterials.
  • Example 1 To a 50 ml flask under a nitrogen atmosphere, 2.9 g of 2-cyano-2-propyldodecyltrithiocarbonate, 16 g of p-acetoxystyrene, and 0.080 g of 1-methoxy-2-propanol as a polymerization solvent were added and stirred. Subsequently, 7.7 g of a 1-methoxy-2-propanol solution of azobisisobutyronitrile (0.1 mol / L) was added, and then the flask temperature was raised to 80 ° C. to initiate polymerization.
  • the polymer powder A was obtained by reprecipitation in a hexane solvent.
  • 3.2 g of polymer powder A was dissolved in 2.1 g of 1-methoxy-2-propanol, 1.7 g of t-dodecyl mercaptan was added, and the reaction was performed at a temperature of 80 ° C. for 1 hour. I let you.
  • the obtained polymer Ap was reprecipitated and purified, and polymer analysis was performed by 1 H-NMR. As a result, a decrease in the peak derived from the polymer terminal end was confirmed (terminal conversion efficiency was 78%).
  • Example 2 To a 50 ml flask under a nitrogen atmosphere, 2.9 g of 2-cyano-2-propyldodecyltrithiocarbonate, 17 g of 1-methylcyclopentyl methacrylate, and 0.37 g of 1-methoxy-2-propanol as a polymerization solvent were added and stirred. . Subsequently, 7.7 g of a 1-methoxy-2-propanol solution of azobisisobutyronitrile (0.1 mol / L) was added, and then the flask temperature was raised to 80 ° C. to initiate polymerization. After reacting for 3 hours, polymer powder B was obtained by reprecipitation in a hexane solvent.
  • Example 3 To a 50 ml flask under a nitrogen atmosphere, 0.86 g of 2-cyano-2-propyldodecyltrithiocarbonate, 8.4 g of methyl methacrylate, and 1.7 g of 1-methoxy-2-propanol as a polymerization solvent were added and stirred. Next, 2.5 g of a 1-methoxy-2-propanol solution of azobisisobutyronitrile (0.1 mol / L) was added, and the temperature was raised to 80 ° C. to initiate polymerization. Polymer solution C was obtained by reacting for 3 hours.
  • Example 4 In a 100 ml flask under a nitrogen atmosphere, 2.2 g of 2-cyano-2-propyldodecyltrithiocarbonate, 13 g of p-acetoxystyrene, 20 g of 1-methylcyclopentyl methacrylate, 1-methoxy-2-propanol as a polymerization solvent 9. 8 g was added and stirred. Subsequently, 5.9 g of a 1-methoxy-2-propanol solution of azobisisobutyronitrile (0.1 mol / L) was added, and then the flask temperature was raised to 80 ° C. to initiate polymerization.
  • a polymer solution was obtained by reacting for 6 hours while adding 5.3 g of a 1-methoxy-2-propanol solution (0.1 mol / L) of azobisisobutyronitrile. Further, the obtained polymer solution was purified by reprecipitation in a hexane solvent to obtain a polymer powder D. Next, 4.4 g of polymer powder D was dissolved in 2.6 g of 1-methoxy-2-propanol in a 30 ml flask under a nitrogen atmosphere, 0.80 g of t-dodecyl mercaptan was added, and the mixture was reacted at 80 ° C. for 1 hour. The obtained polymer Dp was reprecipitated and purified, and polymer analysis was performed by 1 H-NMR. As a result, a decrease in peak derived from the polymer terminal end was confirmed (terminal conversion efficiency was 63%).
  • Example 5 Polymer powder D was obtained by performing the same operation as in Example 4. Next, 4.4 g of the polymer powder D obtained in Example 4 was dissolved in 2.6 g of 1-methoxy-2-propanol in a 30 ml flask under a nitrogen atmosphere, and 0.80 g of t-dodecyl mercaptan was added. And reacted at 80 ° C. for 3 hours. The obtained polymer Ep was reprecipitated and purified, and polymer analysis was performed by 1 H-NMR. As a result, a decrease in the peak derived from the polymer terminal end was confirmed (terminal conversion efficiency was 80%).
  • the polymer molecular weight was measured by (MALDI-TOF-MS), and the terminal structure was analyzed.
  • the measurement results are shown in FIG.
  • the inverted triangle mark is a peak of a polymer having an azo compound-derived terminal structure (structure represented by the following formula (2)), and the circle mark is a hydrogen terminal (following formula (3). It is a peak derived from a polymer structure converted into (represented structure).
  • the polymer having the functional group derived from the RAFT agent and the thiol group-containing compound are brought into contact with each other without adding a radical generator after the polymerization, whereby the functional group derived from the RAFT agent is brought into a hydrogen atom. It was found that it was replaced. Moreover, the terminal conversion efficiency was also a high numerical value. From these, according to the method in which the polymer having a functional group derived from the RAFT agent and the thiol group-containing compound are brought into contact with each other without adding a radical generator after the polymerization, the functional group derived from the RAFT agent is It became clear that it can be easily and highly selectively removed and replaced with hydrogen atoms without using metal.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

Provided is a method for manufacturing a polymer whereby a thiocarbonylthio group bound to an end of a polymer can be easily and highly selectively replaced by a hydrogen atom without using a metal. A polymer is produced by a method that comprises: step A for polymerizing a monomer in the presence of a thiocarbonylthio compound to give polymer T having a group [-SC(=S)R1] (wherein R1 represents a monovalent organic group) at one end; and step B for contacting polymer T with a thiol group-containing compound without adding a radical generator to thereby replace the group [-SC(=S)R1] in polymer T by a hydrogen atom.

Description

重合体の製造方法、重合体及び重合体組成物Production method of polymer, polymer and polymer composition 関連出願の相互参照Cross-reference of related applications
 本出願は、2018年3月28日に出願された日本出願番号2018-62480号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2018-62480 filed on March 28, 2018, the contents of which are incorporated herein by reference.
 本開示は、重合体の製造方法、重合体及び重合体組成物に関する。 The present disclosure relates to a method for producing a polymer, a polymer, and a polymer composition.
 可逆的付加-開裂連鎖移動(RAFT)重合は、モノマーの重合反応を精密に制御できることから、例えばレジスト技術や分散剤、接着剤等といった種々の用途に適用することが試みられている。RAFT重合により生成される重合体の末端には、RAFT剤に由来するチオカルボニルチオ基が結合している。このため、重合体に紫外線が照射されることによってラジカルが発生した場合に、着色等が生じることが懸念される。こうした不都合を回避するために、RAFT重合により得られた重合体の末端に結合するチオカルボニルチオ基を、除去又は変換して不活性化する方法が、従来、種々提案されている(例えば、特許文献1~3、非特許文献1,2参照)。 Since reversible addition-fragmentation chain transfer (RAFT) polymerization can precisely control the polymerization reaction of monomers, it has been attempted to be applied to various applications such as resist technology, dispersants, adhesives and the like. A thiocarbonylthio group derived from the RAFT agent is bonded to the end of the polymer produced by RAFT polymerization. For this reason, when a radical generate | occur | produces by irradiating a polymer with an ultraviolet-ray, there exists a concern that coloring etc. may arise. In order to avoid such inconveniences, various methods for inactivating the thiocarbonylthio group bonded to the terminal of the polymer obtained by RAFT polymerization by removing or converting it have been proposed (for example, patents). Documents 1 to 3 and Non-Patent Documents 1 and 2).
 特許文献1には、チオカルボニルチオ基を末端に有する重合体に、亜リン酸金属塩及びラジカル発生剤を接触させる方法が開示されている。非特許文献1には、金属触媒としてスズ化合物を用いて、重合体末端のチオカルボニルチオ基を除去する方法が開示されている。また、特許文献2には、チオカルボニルチオ基を末端に有する重合体に、遊離ラジカル源(ラジカル発生剤)を添加することにより、チオカルボニルチオ基を、遊離ラジカル源に由来する部分構造に置換する方法が開示されている。特許文献3には、チオカルボニルチオ基を末端に有する重合体に、連鎖移動剤と遊離ラジカル源とを添加して、重合体の末端構造を変換する方法が開示されている。非特許文献2には、チオカルボニルチオ基を末端に有する重合体に、チオール化合物とアゾビスイソブチロニトリル(AIBN)とを反応させることが開示されている。 Patent Document 1 discloses a method of bringing a metal having a thiocarbonylthio group at a terminal into contact with a metal phosphite salt and a radical generator. Non-Patent Document 1 discloses a method for removing a thiocarbonylthio group at a polymer terminal using a tin compound as a metal catalyst. In Patent Document 2, a free radical source (radical generator) is added to a polymer having a thiocarbonylthio group at the end, thereby replacing the thiocarbonylthio group with a partial structure derived from the free radical source. A method is disclosed. Patent Document 3 discloses a method for converting a terminal structure of a polymer by adding a chain transfer agent and a free radical source to a polymer having a thiocarbonylthio group at the terminal. Non-Patent Document 2 discloses that a polymer having a thiocarbonylthio group at the terminal is reacted with a thiol compound and azobisisobutyronitrile (AIBN).
特表2007-537341号公報Special Table 2007-537341 特開2005-226051号公報Japanese Patent Laid-Open No. 2005-226051 特開2006-2096号公報JP 2006-2096 A
 従来の方法は、重合体末端の不活性化の際に使用される化合物に由来する構造が重合体末端に導入され、重合体末端のチオカルボニルチオ基を水素原子に置換する(水素化する)効率が十分に高いとはいえない。また、特許文献1や非特許文献1のように、ラジカル発生剤として又はラジカル発生剤と共に金属を使用して重合体末端のチオカルボニルチオ基を除去又は変換して不活性化する場合、電材用途への使用が制限されることが懸念される。RAFT重合により得られた重合体の末端を水素原子に置換した重合体は、電材用途のほか、各種用途への適用が期待される。 In the conventional method, a structure derived from a compound used for deactivation of a polymer terminal is introduced into the polymer terminal, and the thiocarbonylthio group at the polymer terminal is replaced with a hydrogen atom (hydrogenation). The efficiency is not high enough. Further, as in Patent Document 1 and Non-Patent Document 1, when a metal is used as a radical generator or together with a radical generator to remove or convert the thiocarbonylthio group at the end of the polymer to inactivate it, There is a concern that its use will be limited. A polymer obtained by replacing the terminal of a polymer obtained by RAFT polymerization with a hydrogen atom is expected to be applied to various uses in addition to electric materials.
 本開示は上記課題に鑑みなされてものであり、重合体末端に結合するチオカルボニルチオ基を、簡便に、しかも高選択的に水素原子に置換することができる重合体の製造方法を提供することを一つの目的とする。 The present disclosure has been made in view of the above problems, and provides a method for producing a polymer capable of easily and highly selectively replacing a thiocarbonylthio group bonded to a polymer terminal with a hydrogen atom. For one purpose.
 本開示によれば、以下の手段が提供される。
 [1] チオカルボニルチオ化合物の存在下でモノマーを重合して、基「-SC(=S)R」(ただし、Rは1価の有機基である。)を末端に有する重合体Tを得る工程Aと、
 ラジカル発生剤を添加せずに前記重合体Tとチオール基含有化合物とを接触させて、前記重合体Tが有する基「-SC(=S)R」を水素原子に置換する工程Bと、を含む、重合体の製造方法。
 [2] 基「-SC(=S)R」(ただし、Rは1価の有機基である。)を末端に有する重合体Tと、チオール基含有化合物とをラジカル発生剤を添加せずに接触させて、前記重合体Tが有する基「-SC(=S)R」を水素原子に置換する方法。
 [3] 上記[1]の製造方法により得られた重合体。
 [4] 上記[3]の重合体を含有する、重合体組成物。
According to the present disclosure, the following means are provided.
[1] A polymer T having a group “—SC (═S) R 1 ” (where R 1 is a monovalent organic group) polymerized by polymerizing a monomer in the presence of a thiocarbonylthio compound. Obtaining step A;
A step B in which the polymer T is brought into contact with the thiol group-containing compound without adding a radical generator to replace the group “—SC (═S) R 1 ” of the polymer T with a hydrogen atom; A method for producing a polymer, comprising:
[2] A radical generator is added to the polymer T having a group “—SC (═S) R 1 ” (where R 1 is a monovalent organic group) and a thiol group-containing compound. The group “—SC (═S) R 1 ” of the polymer T is replaced with a hydrogen atom without contact.
[3] A polymer obtained by the production method of [1] above.
[4] A polymer composition containing the polymer of [3] above.
 本開示の製造方法によれば、基「-SC(=S)R」を末端に有する重合体とチオール基含有化合物とを、ラジカル発生剤を添加せずに接触させるという簡便な操作によって、重合体末端の基「-SC(=S)R」を高選択的に水素原子に置換することができる。また、重合体末端の不活性化に際して金属を使わなくてもよく、電材用途への使用が制限されにくい点で好適である。 According to the production method of the present disclosure, the polymer having the group “—SC (═S) R 1 ” at the terminal and the thiol group-containing compound are contacted without adding a radical generator, The group “—SC (═S) R 1 ” at the end of the polymer can be replaced with a hydrogen atom with high selectivity. Moreover, it is not necessary to use a metal for deactivation of the polymer terminal, which is preferable in that it is difficult to limit the use of the polymer terminal.
図1は、熱分解ガスクロマトグラフ質量分析によるポリマー末端構造の解析結果を示す図である。FIG. 1 is a diagram showing an analysis result of a polymer terminal structure by pyrolysis gas chromatography mass spectrometry. 図2は、マトリックス支援レーザー脱離イオン化飛行時間型質量分析によるポリマー末端構造の解析結果を示す図である。FIG. 2 is a diagram showing the analysis results of the polymer terminal structure by matrix-assisted laser desorption / ionization time-of-flight mass spectrometry.
[重合体の製造方法]
 以下、本開示の重合体の製造方法について説明する。本製造方法は、以下の工程A及び工程Bを含む。
工程A;チオカルボニルチオ化合物の存在下でモノマーを重合して、基「-SC(=S)R」を末端に有する重合体(以下、「重合体T」ともいう。)を得る工程。
工程B;ラジカル発生剤を添加せずに重合体Tとチオール基含有化合物とを接触させて、重合体Tが有する基「-SC(=S)R」を水素原子に置換する工程。
[Method for producing polymer]
Hereinafter, a method for producing the polymer of the present disclosure will be described. This manufacturing method includes the following step A and step B.
Step A: a step of polymerizing a monomer in the presence of a thiocarbonylthio compound to obtain a polymer having a group “—SC (═S) R 1 ” at its terminal (hereinafter also referred to as “polymer T”).
Step B: A step of bringing the polymer “T” and the thiol group-containing compound into contact with each other without adding a radical generator and replacing the group “—SC (═S) R 1 ” of the polymer T with a hydrogen atom.
≪工程A≫
<モノマー>
 重合に使用するモノマーとしては、重合可能であれば特に制限されないが、ラジカル重合性不飽和結合を有する化合物(以下、「重合性不飽和化合物」ともいう。)を好ましく用いることができる。これらのうち、(メタ)アクリル化合物及び芳香族ビニル化合物よりなる群から選ばれる少なくとも一種を含むことがより好ましく、(メタ)アクリル化合物を少なくとも含むことがさらに好ましい。なお、本明細書において(メタ)アクリル化合物は、アクリル化合物及びメタクリル化合物を含む意味である。
≪Process A≫
<Monomer>
The monomer used for polymerization is not particularly limited as long as it can be polymerized, but a compound having a radical polymerizable unsaturated bond (hereinafter also referred to as “polymerizable unsaturated compound”) can be preferably used. Among these, it is more preferable to include at least one selected from the group consisting of (meth) acrylic compounds and aromatic vinyl compounds, and it is more preferable to include at least a (meth) acrylic compound. In the present specification, the (meth) acrylic compound means to include an acrylic compound and a methacrylic compound.
 (メタ)アクリル化合物の具体例としては、例えば、(メタ)アクリル酸、(メタ)アクリル酸ω-カルボキシポリカプロラクトン、クロトン酸、α-エチルアクリル酸、α-n-プロピルアクリル酸、マレイン酸、フマル酸、シトラコン酸、メサコン酸、イタコン酸、ビニル安息香酸等の不飽和カルボン酸;
(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸-n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸アリル、(メタ)アクリル酸-n-ブチル、(メタ)アクリル酸-イソブチル、(メタ)アクリル酸-t-ブチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸-1-メチルシクロペンチル、(メタ)アクリル酸-2-メチル-2-アダマンチル、(メタ)アクリル酸-2-エチル-2-アダマンチル、(メタ)アクリル酸-3-ヒドロキシ-1-アダマンチル、(メタ)アクリル酸-α-ヒドロキシ-γ-ブチロラクトン、(メタ)アクリル酸ノルボルナンカルボラクチル、α-(メタ)アクリルオキシ-γ-ブチロラクトン、β-(メタ)アクリルオキシ-γ-ブチロラクトン、3-(2,2-ビス(トリフルオロメチル)-2-ヒドロキシエチル)-エンド-2-(2-メチルプロペノイル)-ビシクロ[2.2.1]-へプタン、(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸2-フェニルエチル、(メタ)アクリル酸-2-エチルヘキシル、イソボルニル(メタ)アクリレート、(メタ)アクリル酸ラウリル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸トリメトキシシリルプロピル、(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸-N,N-ジメチルアミノエチル、(メタ)アクリル酸-N,N-ジエチルアミノエチル、(メタ)アクリル酸メトキシポリエチレングリコール、(メタ)アクリル酸オクトキシポリエチレングリコール、α-メトキシアクリル酸メチル、α-エトキシアクリル酸メチル、3-メトキシアクリル酸エステル、クロトン酸メチル、クロトン酸エチル、フマル酸ジアルキル等のα,β-不飽和カルボン酸エステル化合物;
N-イソプロピル(メタ)アクリルアミド、N-t-ブチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド等などのα,β-不飽和カルボン酸アミド化合物;
メチルビニルケトン、エチルビニルケトン、メチルイソプロペニルケトン、エチルイソプロペニルケトン等のα,β-不飽和カルボニル化合物;酢酸ビニル、酪酸ビニル、安息香酸ビニル等のカルボン酸ビニル化合物;無水マレイン酸、無水イタコン酸、N-ブチルマレイミド、N-フェニルマレイミド等の環式ビニル化合物;N-ビニルピロリドン、ビニルカルバゾール、ビニルイミダゾール等のN-ビニル化合物;エチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート等の炭素-炭素二重結合を2つ以上有する化合物;(メタ)アクリロニトリル等を挙げることができる。なお、単量体(B)は1種を単独で又は2種以上を組み合わせて使用することができる。本明細書中の(メタ)アクリルは、アクリル及びメタクリルであることを示す。
Specific examples of the (meth) acrylic compound include, for example, (meth) acrylic acid, (meth) acrylic acid ω-carboxypolycaprolactone, crotonic acid, α-ethylacrylic acid, α-n-propylacrylic acid, maleic acid, Unsaturated carboxylic acids such as fumaric acid, citraconic acid, mesaconic acid, itaconic acid, vinyl benzoic acid;
Methyl (meth) acrylate, ethyl (meth) acrylate, (meth) acrylate-n-propyl, isopropyl (meth) acrylate, allyl (meth) acrylate, (meth) acrylate-n-butyl, (meth ) Acrylic acid-isobutyl, (meth) acrylic acid-t-butyl, (meth) acrylic acid cyclohexyl, (meth) acrylic acid-1-methylcyclopentyl, (meth) acrylic acid-2-methyl-2-adamantyl, (meth) ) -2-ethyl-2-adamantyl acrylate, 3-hydroxy-1-adamantyl (meth) acrylate, (meth) acrylic acid-α-hydroxy-γ-butyrolactone, norbornanecarbolactyl (meth) acrylate, α- (Meth) acryloxy-γ-butyrolactone, β- (meth) acryloxy-γ-butyrolactone 3- (2,2-bis (trifluoromethyl) -2-hydroxyethyl) -endo-2- (2-methylpropenoyl) -bicyclo [2.2.1] -heptane, phenyl (meth) acrylate , Benzyl (meth) acrylate, 2-phenylethyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isobornyl (meth) acrylate, lauryl (meth) acrylate, glycidyl (meth) acrylate, (meth ) Trimethoxysilylpropyl acrylate, methoxyethyl (meth) acrylate, (N) N-dimethylaminoethyl (meth) acrylate, (N) N-diethylaminoethyl (meth) acrylate, methoxypolyethylene (meth) acrylate Glycol, octoxypolyethylene glycol (meth) acrylate, α-methoxyacrylate Α, β-unsaturated carboxylic acid ester compounds such as methyl oxalate, methyl α-ethoxyacrylate, 3-methoxyacrylic acid ester, methyl crotonic acid, ethyl crotonic acid, dialkyl fumarate;
Α, β-unsaturated carboxylic acid amide compounds such as N-isopropyl (meth) acrylamide, Nt-butyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, etc. ;
Α, β-unsaturated carbonyl compounds such as methyl vinyl ketone, ethyl vinyl ketone, methyl isopropenyl ketone, ethyl isopropenyl ketone; vinyl carboxylates such as vinyl acetate, vinyl butyrate, vinyl benzoate; maleic anhydride, itaconic anhydride Cyclic vinyl compounds such as acids, N-butylmaleimide, N-phenylmaleimide; N-vinyl compounds such as N-vinylpyrrolidone, vinylcarbazole, vinylimidazole; ethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) Examples thereof include compounds having two or more carbon-carbon double bonds such as acrylate; (meth) acrylonitrile and the like. In addition, a monomer (B) can be used individually by 1 type or in combination of 2 or more types. (Meth) acryl in this specification indicates acrylic and methacrylic.
 芳香族ビニル化合物としては、スチレン系化合物を好ましく使用することができる。具体的には、例えばスチレン、ヒドロキシスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、α-メチルスチレン、2,4-ジメチルスチレン、2,4-ジイソプロピルスチレン、4-t-ブチルスチレン、m-エチルスチレン、p-エチルスチレン、t-ブトキシスチレン、ビニルベンジルジメチルアミン、N,N-ジメチルアミノメチルスチレン、4-ビニルベンジルグリシジルエーテル、p-アセトキシスチレン等が挙げられる。なお、芳香族ビニル化合物としては、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。 As the aromatic vinyl compound, a styrene compound can be preferably used. Specifically, for example, styrene, hydroxystyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, α-methylstyrene, 2,4-dimethylstyrene, 2,4-diisopropylstyrene, 4-t-butyl. Examples thereof include styrene, m-ethylstyrene, p-ethylstyrene, t-butoxystyrene, vinylbenzyldimethylamine, N, N-dimethylaminomethylstyrene, 4-vinylbenzylglycidyl ether, and p-acetoxystyrene. In addition, as an aromatic vinyl compound, 1 type may be used independently and 2 or more types may be used in combination.
 重合に際し、(メタ)アクリル化合物の使用割合は、重合に使用するモノマーの全量に対して、20質量%以上とすることが好ましく、50質量%以上とすることがより好ましく、60質量%以上とすることがさらに好ましい。芳香族ビニル化合物の使用割合は、重合に使用するモノマーの全量に対して、50質量%未満とすることが好ましく、40質量%とすることがより好ましく、20質量%とすることがさらに好ましい。 In the polymerization, the proportion of the (meth) acrylic compound used is preferably 20% by mass or more, more preferably 50% by mass or more, and more preferably 60% by mass or more, based on the total amount of monomers used for the polymerization. More preferably. The use ratio of the aromatic vinyl compound is preferably less than 50% by mass, more preferably 40% by mass, and still more preferably 20% by mass with respect to the total amount of monomers used for the polymerization.
 上記重合に際しては、(メタ)アクリル化合物及び芳香族ビニル化合物以外のその他のモノマーを使用してもよい。その他のモノマーとしては、例えばエチレン、プロピレン、1,3-ブタジエン、イソプレン、1,3-ペンタジエン等が挙げられる。その他のモノマーの使用割合は、重合に使用するモノマーの全量に対して、10質量%以下とすることが好ましく、5質量%以下とすることがより好ましい。 In the polymerization, other monomers other than the (meth) acryl compound and the aromatic vinyl compound may be used. Examples of other monomers include ethylene, propylene, 1,3-butadiene, isoprene, 1,3-pentadiene and the like. The proportion of other monomers used is preferably 10% by mass or less, and more preferably 5% by mass or less, based on the total amount of monomers used for polymerization.
<チオカルボニルチオ化合物>
 本工程では、チオカルボニルチオ化合物の存在下でモノマーを重合することにより、重合体の末端に、チオカルボニルチオ化合物に由来する1価の基「-SC(=S)R」が導入される。
 Rの1価の有機基としては、炭素数1~30のアルキル基、シクロアルキル基、アリール基、アラルキル基、アルキルチオ基、アラルキルチオ基、ヘテロシクリル基、-NR1112、-NR11-NR1213、-COOR11、-OCOR11、-CONR1112、-P(=O)(OR11又は-O-P(=O)R1112(ただし、R11、R12及びR13は、それぞれ独立にアルキル基、シクロアルキル基、アリール基又はアラルキル基である。以下同じ。)等を挙げることができる。また、Rは、上記の各基における炭素原子に結合する水素原子の1個以上が、シアノ基、カルボキシ基等で置換された1価の基であっていてもよい。
<Thiocarbonylthio compound>
In this step, the monomer is polymerized in the presence of the thiocarbonylthio compound to introduce the monovalent group “—SC (═S) R 1 ” derived from the thiocarbonylthio compound at the end of the polymer. .
Examples of the monovalent organic group for R 1 include alkyl groups having 1 to 30 carbon atoms, cycloalkyl groups, aryl groups, aralkyl groups, alkylthio groups, aralkylthio groups, heterocyclyl groups, —NR 11 R 12 , —NR 11 —. NR 12 R 13 , —COOR 11 , —OCOR 11 , —CONR 11 R 12 , —P (═O) (OR 11 ) 2 or —O—P (═O) R 11 R 12 (where R 11 , R 12 and R 13 each independently represents an alkyl group, a cycloalkyl group, an aryl group, or an aralkyl group, and the same shall apply hereinafter. R 1 may be a monovalent group in which one or more hydrogen atoms bonded to the carbon atom in each of the above groups are substituted with a cyano group, a carboxy group, or the like.
 チオカルボニルチオ化合物としては、RAFT重合において用いられる連鎖移動剤(RAFT剤)から、モノマーの種類に応じて適宜選択して使用することができる。モノマーとして(メタ)アクリル化合物を用いる場合には、ビス(チオカルボニル)ジスルフィド化合物(下記式(s-1)で表される化合物)、ジチオエステル化合物(下記式(s-2)で表される化合物)、及びトリチオカルボナート化合物(下記式(s-3)で表される化合物)よりなる群から選ばれる少なくとも一種を好ましく使用することができる。これらのうち、ビス(チオカルボニル)ジスルフィド化合物及びトリチオカルボナート化合物よりなる群から選ばれる少なくとも一種をより好ましく使用することができる。
Figure JPOXMLDOC01-appb-C000001
(式(s-1)~式(s-3)中、Z~Zはそれぞれ独立に1価の有機基である。)
The thiocarbonylthio compound can be appropriately selected from chain transfer agents (RAFT agents) used in RAFT polymerization according to the type of monomer. When a (meth) acrylic compound is used as a monomer, a bis (thiocarbonyl) disulfide compound (compound represented by the following formula (s-1)), a dithioester compound (represented by the following formula (s-2)) Compound) and at least one selected from the group consisting of trithiocarbonate compounds (compounds represented by the following formula (s-3)) can be preferably used. Of these, at least one selected from the group consisting of bis (thiocarbonyl) disulfide compounds and trithiocarbonate compounds can be used more preferably.
Figure JPOXMLDOC01-appb-C000001
(In the formulas (s-1) to (s-3), Z 1 to Z 6 are each independently a monovalent organic group.)
 上記式(s-1)~式(s-3)中のZ~Zにおける1価の有機基としては、例えば炭素数1~30のアルキル基、シクロアルキル基、アリール基、アラルキル基、アルキルチオ基、アラルキルチオ基、ヘテロシクリル基、-NR1112、-NR11-NR1213、-COOR11、-OCOR11、-CONR1112、-P(=O)(OR11又は-O-P(=O)R1112等を挙げることができる。また、Rは、上記の各基における炭素原子に結合する水素原子の1個以上が、シアノ基、カルボキシ基等で置換された1価の基であっていてもよい。
 上記式(s-2)中のZは、フェニル基等の芳香族基であることが好ましく、上記式(s-3)中のZはアルキル基であることが好ましい。
Examples of the monovalent organic group in Z 1 to Z 6 in the above formulas (s-1) to (s-3) include, for example, an alkyl group having 1 to 30 carbon atoms, a cycloalkyl group, an aryl group, an aralkyl group, Alkylthio group, aralkylthio group, heterocyclyl group, —NR 11 R 12 , —NR 11 —NR 12 R 13 , —COOR 11 , —OCOR 11 , —CONR 11 R 12 , —P (═O) (OR 11 ) 2 Alternatively, —O—P (═O) R 11 R 12 and the like can be given. R 1 may be a monovalent group in which one or more hydrogen atoms bonded to the carbon atom in each of the above groups are substituted with a cyano group, a carboxy group, or the like.
Z 4 in the above formula (s-2) is preferably an aromatic group such as a phenyl group, and Z 6 in the above formula (s-3) is preferably an alkyl group.
 チオカルボニルチオ化合物の具体例としては、ビス(チオカルボニル)ジスルフィド化合物として、例えばテトラエチルチウラムジスルフィド、テトラメチルチウラムジスルフィド、ビス(n-オクチルメルカプト-チオカルボニル)ジスルフィド、ビス(n-ドデシルメルカプト-チオカルボニル)ジスルフィド、ビス(ベンジルメルカプト-チオカルボニル)ジスルフィド、ビス(n-ブチルメルカプト-チオカルボニル)ジスルフィド、ビス(t-ブチルメルカプト-チオカルボニル)ジスルフィド、ビス(n-ヘプチルメルカプト-チオカルボニル)ジスルフィド、ビス(n-ヘキシルメルカプト-チオカルボニル)ジスルフィド、ビス(n-ペンチルメルカプト-チオカルボニル)ジスルフィド、ビス(n-ノニルメルカプト-チオカルボニル)ジスルフィド、ビス(n-デシルメルカプト-チオカルボニル)ジスルフィド、ビス(t-ドデシルメルカプト-チオカルボニル)ジスルフィド、ビス(n-テトラデシルメルカプト-チオカルボニル)ジスルフィド、ビス(n-ヘキサデシルメルカプト-チオカルボニル)ジスルフィド、ビス(n-オクタデシルメルカプト-チオカルボニル)ジスルフィド等を;
 ジチオエステル化合物として、例えば2-フェニル-2-プロピルベンゾチオエート、4-シアノ-4-(フェニルチオカルボニルチオ)ペンタン酸、2-シアノ-2-プロピルベンゾジチオエート等を;
 トリチオカルボナート化合物として、例えばS-(2-シアノ-2-プロピル)-S-ドデシルトリチオカーボネート、4-シアノ-4-[(ドデシルスルファニル-チオカルボニル)スルファニル]ペンタン酸、シアノメチルドデシルトリチオ-カルボナート、2-(ドデシルチオカルボノチオールチオ)-2-メチルプロピオン酸等を、それぞれ挙げることができる。
Specific examples of thiocarbonylthio compounds include bis (thiocarbonyl) disulfide compounds such as tetraethylthiuram disulfide, tetramethylthiuram disulfide, bis (n-octylmercapto-thiocarbonyl) disulfide, bis (n-dodecylmercapto-thiocarbonyl). ) Disulfide, bis (benzylmercapto-thiocarbonyl) disulfide, bis (n-butylmercapto-thiocarbonyl) disulfide, bis (t-butylmercapto-thiocarbonyl) disulfide, bis (n-heptylmercapto-thiocarbonyl) disulfide, bis (N-hexyl mercapto-thiocarbonyl) disulfide, bis (n-pentyl mercapto-thiocarbonyl) disulfide, bis (n-nonyl mercapto-thio) Carbonyl) disulfide, bis (n-decylmercapto-thiocarbonyl) disulfide, bis (t-dodecylmercapto-thiocarbonyl) disulfide, bis (n-tetradecylmercapto-thiocarbonyl) disulfide, bis (n-hexadecylmercapto-thio) Carbonyl) disulfide, bis (n-octadecylmercapto-thiocarbonyl) disulfide and the like;
Examples of dithioester compounds include 2-phenyl-2-propylbenzothioate, 4-cyano-4- (phenylthiocarbonylthio) pentanoic acid, 2-cyano-2-propylbenzodithioate and the like;
Examples of trithiocarbonate compounds include S- (2-cyano-2-propyl) -S-dodecyltrithiocarbonate, 4-cyano-4-[(dodecylsulfanyl-thiocarbonyl) sulfanyl] pentanoic acid, cyanomethyldodecyltri Examples thereof include thio-carbonate, 2- (dodecylthiocarbonothiolthio) -2-methylpropionic acid, and the like.
 上記重合におけるチオカルボニルチオ化合物の使用割合は、モノマーの合計100質量部に対して、好ましくは0.05質量部以上であり、より好ましくは0.1質量部以上である。また、チオカルボニルチオ化合物の使用割合は、モノマーの合計100質量部に対して、好ましくは20質量部以下であり、より好ましくは10質量部以下である。なお、チオカルボニルチオ化合物としては、1種を単独で又は2種以上を組み合わせて使用することができる。 The ratio of the thiocarbonylthio compound used in the above polymerization is preferably 0.05 parts by mass or more, more preferably 0.1 parts by mass or more, with respect to 100 parts by mass of the total amount of monomers. Moreover, the usage-amount of a thiocarbonylthio compound becomes like this. Preferably it is 20 mass parts or less with respect to a total of 100 mass parts of a monomer, More preferably, it is 10 mass parts or less. In addition, as a thiocarbonylthio compound, 1 type can be used individually or in combination of 2 or more types.
<ラジカル発生剤>
 上記重合は、生産性の観点から、ラジカル発生剤の存在下で行うことが好ましい。ラジカル発生剤は、従来公知のラジカル重合において一般に用いられるラジカル重合開始剤から適宜選択することができる。具体的には、熱や光によりラジカルを発生させる化合物であり、例えば過酸化物、アゾ化合物、レドックス系開始剤等の加熱によりラジカルを発生する化合物や、放射線の照射によりラジカルを発生する化合物を挙げることができる。
<Radical generator>
The polymerization is preferably performed in the presence of a radical generator from the viewpoint of productivity. The radical generator can be appropriately selected from radical polymerization initiators generally used in conventionally known radical polymerization. Specifically, it is a compound that generates radicals by heat or light. For example, a compound that generates radicals by heating, such as peroxides, azo compounds, or redox initiators, or a compound that generates radicals by irradiation with radiation. Can be mentioned.
 加熱によりラジカルを発生する化合物の具体例としては、過酸化物として、例えばt-ブチルヒドロペルオキシド、クメンヒドロペルオキシド、ペルオキシ酢酸t-ブチル、ペルオキシ安息香酸t-ブチル、ペルオキシオクタン酸t-ブチル、ペルオキシネオデカン酸t-ブチル、ペルオキシイソ酪酸t-ブチル、過酸化ラウロイル、ペルオキシピバル酸t-アミル、ペルオキシピバル酸t-ブチル、過酸化ジクミル、過酸化ベンゾイル、過硫酸カリウム、過硫酸アンモニウム等を;
 アゾ化合物として、例えばアゾビスイソブチロニトリル(AIBN)、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2-ブタンニトリル)、4,4’-アゾビス(4-ペンタン酸)、1,1’-アゾビス(シクロヘキサンカルボニトリル)、2-(t-ブチルアゾ)-2-シアノプロパン、2,2’-アゾビス[2-メチル-N-(1,1)-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロピオンアミド、2,2’-アゾビス(2-メチル-N-ヒドロキシエチル)プロピオンアミド、2,2’-アゾビス(N,N’-ジメチレンイソブチルアミジン)ジクロリド、2,2’-アゾビス(2-アミジノプロパン)ジクロリド、2,2’-アゾビス(N,N-ジメチレンイソブチルアミド)、2,2’-アゾビス(2-メチル-N-[1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロピオンアミド)、2,2’-アゾビス(2-メチル-N-[1,1-ビス(ヒドロキシメチル)エチル]プロピオンアミド)、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]、2,2’-アゾビス(イソブチルアミド)二水和物等を;
Specific examples of compounds that generate radicals upon heating include peroxides such as t-butyl hydroperoxide, cumene hydroperoxide, t-butyl peroxyacetate, t-butyl peroxybenzoate, t-butyl peroxyoctanoate, peroxy T-butyl neodecanoate, t-butyl peroxyisobutyrate, lauroyl peroxide, t-amyl peroxypivalate, t-butyl peroxypivalate, dicumyl peroxide, benzoyl peroxide, potassium persulfate, ammonium persulfate, etc .;
Examples of the azo compound include azobisisobutyronitrile (AIBN), 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2-butanenitrile), 4,4′-azobis (4- Pentanoic acid), 1,1′-azobis (cyclohexanecarbonitrile), 2- (t-butylazo) -2-cyanopropane, 2,2′-azobis [2-methyl-N- (1,1) -bis ( Hydroxymethyl) -2-hydroxyethyl] propionamide, 2,2′-azobis (2-methyl-N-hydroxyethyl) propionamide, 2,2′-azobis (N, N′-dimethyleneisobutylamidine) dichloride, 2,2′-azobis (2-amidinopropane) dichloride, 2,2′-azobis (N, N-dimethyleneisobutyramide), 2,2′-azobis (2-methyl) -N- [1,1-bis (hydroxymethyl) -2-hydroxyethyl] propionamide), 2,2'-azobis (2-methyl-N- [1,1-bis (hydroxymethyl) ethyl] propionamide) ), 2,2′-azobis [2-methyl-N- (2-hydroxyethyl) propionamide], 2,2′-azobis (isobutyramide) dihydrate and the like;
 レドックス系開始剤として、例えば加硫酸塩と酸性亜硫酸ナトリウムと硫酸第一鉄との組み合わせ物、t-ブチルハイドロパーオキサイドと酸性亜硫酸ナトリウムと硫酸第一鉄との組み合わせ物、p-メンタンハイドロパーオキサイドと硫酸第一鉄とエチレンジアミン四酢酸ナトリウムとナトリウムホルムアルデヒドサルホキシレートとの組み合わせ物等を;それぞれ挙げることができる。加熱によりラジカルを発生する化合物としては、酸素などによる副反応物が生成されにくい点でアゾ化合物が好ましく、アゾビスイソブチロニトリルが特に好ましい。 Examples of redox initiators include a combination of sulfite, acidic sodium sulfite and ferrous sulfate, a combination of t-butyl hydroperoxide, acidic sodium sulfite and ferrous sulfate, and p-menthane hydroperoxide. And a combination of ferrous sulfate, sodium ethylenediaminetetraacetate and sodium formaldehyde sulfoxylate; As the compound that generates radicals upon heating, an azo compound is preferable in that a side reaction product due to oxygen or the like is not easily generated, and azobisisobutyronitrile is particularly preferable.
 放射線の照射によりラジカルを発生する化合物の具体例としては、例えばアセトフェノン、アセトフェノンベンジルケタール、1-ヒドロキシシクロヘキシルフェニルケトン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、キサントン、ベンズアルデヒド、フルオレン、アントラキノン、トリフェニルアミン、カルバゾール、3-メチルアセトフェノン、4-クロロベンゾフェノン、4,4’-ジメトキシベンゾフェノン、ベンゾインプロピルエーテル、ベンジルジメチルケタール、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ジエチルチオキサントン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1,4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキシド、オリゴ(2-ヒドロキシ-2-メチル-1-(4-(1-メチルビニル)フェニル)プロパノン)等が挙げられる。 Specific examples of compounds that generate radicals upon irradiation with radiation include, for example, acetophenone, acetophenone benzyl ketal, 1-hydroxycyclohexyl phenyl ketone, 2,2-dimethoxy-1,2-diphenylethane-1-one, xanthone, benzaldehyde, Fluorene, anthraquinone, triphenylamine, carbazole, 3-methylacetophenone, 4-chlorobenzophenone, 4,4'-dimethoxybenzophenone, benzoin propyl ether, benzyldimethyl ketal, 1- (4-isopropylphenyl) -2-hydroxy-2 -Methylpropan-1-one, 2-hydroxy-2-methyl-1-phenylpropan-1-one, diethylthioxanthone, 2-methyl-1- [4- (methylthio) phenyl] -2- Ruphorino-propan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1,4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2-propyl) ketone 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis- (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide, oligo (2-hydroxy-2-methyl-1- (4- (1-methylvinyl) phenyl) propanone) and the like.
 上記重合をラジカル発生剤の存在下で行う場合、ラジカル発生剤の使用割合は、重合に際し使用するチオカルボニルチオ化合物100質量部に対して、好ましくは1質量部以上であり、より好ましくは10質量部以上である。また、ラジカル発生剤の使用割合は、重合に際し使用するチオカルボニルチオ化合物100質量部に対して、好ましくは1,000質量部以下であり、より好ましくは100質量部以下である。なお、ラジカル発生剤としては、1種を単独で又は2種以上を組み合わせて用いることができる。 When the polymerization is carried out in the presence of a radical generator, the proportion of the radical generator used is preferably 1 part by mass or more, more preferably 10 parts by mass with respect to 100 parts by mass of the thiocarbonylthio compound used in the polymerization. More than a part. Moreover, the usage-amount of a radical generator becomes like this. Preferably it is 1,000 mass parts or less with respect to 100 mass parts of thiocarbonylthio compounds used in superposition | polymerization, More preferably, it is 100 mass parts or less. In addition, as a radical generator, 1 type can be used individually or in combination of 2 or more types.
 上記重合は、溶液重合により行うことが好ましい。重合形式は、回分式及び連続式のいずれを用いてもよい。使用する溶媒は、反応に不活性な有機溶媒であればよく、例えばアルコール類、エーテル類、ケトン類、エステル類又はそれらの混合物等が挙げられる。
 重合に使用する溶媒の具体例としては、アルコール類として、例えばエチルアルコール、イソプロピルアルコール、シクロヘキサノール、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、トリエチレングリコール、1-メトキシ-2-プロパノール、3-メトキシ-1-ブタノール、3-メトキシ-3-メチルブタノール等を;
エーテル類として、例えば1,4-ジオキサン、テトラヒドロフラン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等を;
ケトン類として、例えばアセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、4-メチルシクロヘキサノン、ジイソブチルケトン等を;
エステル類として、例えば酢酸メチル、酢酸エチル、酢酸ブチル、メチルメトキシプロピオネ-ト等を、それぞれ挙げることができる。なお、溶媒としては、一種を単独で又は二種以上を組み合わせて使用することができる。
The polymerization is preferably performed by solution polymerization. As the polymerization method, either a batch type or a continuous type may be used. The solvent to be used may be an organic solvent inert to the reaction, and examples thereof include alcohols, ethers, ketones, esters, and mixtures thereof.
Specific examples of the solvent used for the polymerization include alcohols such as ethyl alcohol, isopropyl alcohol, cyclohexanol, ethylene glycol, propylene glycol, 1,4-butanediol, triethylene glycol, 1-methoxy-2-propanol, 3-methoxy-1-butanol, 3-methoxy-3-methylbutanol and the like;
Examples of ethers include 1,4-dioxane, tetrahydrofuran, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate and the like;
Examples of ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, 4-methylcyclohexanone, diisobutyl ketone and the like;
Examples of esters include methyl acetate, ethyl acetate, butyl acetate, methyl methoxypropionate, and the like. In addition, as a solvent, 1 type can be used individually or in combination of 2 or more types.
 溶液重合において溶媒の使用割合は、モノマーの溶媒に対する溶解度等に応じて適宜設定すればよいが、反応効率の観点から、モノマーの全量100質量部に対して、30~1,000質量部とすることが好ましく、50~800質量部とすることがより好ましい。 The ratio of the solvent used in the solution polymerization may be appropriately set according to the solubility of the monomer in the solvent, etc., but from the viewpoint of reaction efficiency, it is 30 to 1,000 parts by mass with respect to 100 parts by mass of the total amount of monomers. It is preferably 50 to 800 parts by mass.
 重合温度は、重合が進行可能な温度であれば特に制限されるものではないが、生産性の観点から0℃以上とすることが好ましく、0℃~140℃の範囲とすることがより好ましく、20℃~100℃の範囲とすることがさらに好ましく、50℃~90℃の範囲とすることが特に好ましい。なお、重合温度は、上記重合反応が発熱反応であることを考慮して設定することが好ましい。重合温度は、ラジカル発生剤、モノマー及び溶媒のフィード速度及び温度を調整し、反応器外部からの冷却や加熱を行うことにより制御することができる。重合反応は、モノマーを実質的に液相に保つのに十分な圧力の下で行うことが好ましい。上記重合の反応時間は、好ましくは30分~20時間であり、より好ましくは1~10時間である。上記重合反応により、チオカルボニルチオ化合物に由来する基「-SC(=S)R」を末端に有する重合体Tを含む重合体溶液が得られる。 The polymerization temperature is not particularly limited as long as the polymerization can proceed, but is preferably 0 ° C. or more from the viewpoint of productivity, and more preferably in the range of 0 ° C. to 140 ° C., A range of 20 ° C to 100 ° C is more preferable, and a range of 50 ° C to 90 ° C is particularly preferable. The polymerization temperature is preferably set considering that the polymerization reaction is an exothermic reaction. The polymerization temperature can be controlled by adjusting the feed rate and temperature of the radical generator, monomer and solvent, and cooling and heating from the outside of the reactor. The polymerization reaction is preferably carried out under a pressure sufficient to keep the monomer in a substantially liquid phase. The polymerization reaction time is preferably 30 minutes to 20 hours, more preferably 1 to 10 hours. By the above polymerization reaction, a polymer solution containing a polymer T having a group “—SC (═S) R 1 ” derived from a thiocarbonylthio compound at its terminal is obtained.
 重合の終了後に重合体溶液から重合体Tを単離してもよい。重合体Tの単離に際しては従来公知の方法を採用することができる。具体的には、例えばスチームストリッピング等で溶媒を分離した後、重合体を濾別し、さらに脱水及び乾燥して重合体を取得する方法;フラッシングタンクで濃縮し、さらにベント押し出し機等で脱揮する方法;ドラムドライヤー等で直接脱揮する方法;等を適用できる。 Polymer T may be isolated from the polymer solution after completion of the polymerization. For isolation of the polymer T, a conventionally known method can be employed. Specifically, for example, the solvent is separated by, for example, steam stripping, and then the polymer is filtered and further dehydrated and dried to obtain the polymer; the polymer is concentrated in a flushing tank, and further removed by a vent extruder or the like. A method of volatilizing; a method of directly devolatilizing with a drum dryer or the like;
≪工程B≫
 続く工程Bでは、上記工程Aにより得られた重合体Tと、チオール基含有化合物とを、上記工程Aの重合後において、ラジカル発生剤を添加せずに接触させる。この操作により、重合体Tが有する末端の基「-SC(=S)R」が、水素原子に置換される。なお、本製造方法では、工程Bではラジカル発生剤を添加せず、また、工程Aで使用したラジカル発生剤は通常、ラジカル発生のための加熱又は放射線照射によって分解される。ただし、工程Bにおいて、本発明の効果を損なわない範囲で、工程Aで使用したラジカル発生剤のうち未分解のラジカル発生剤が存在していてもよい。
≪Process B≫
In the subsequent step B, the polymer T obtained in the step A is brought into contact with the thiol group-containing compound after the polymerization in the step A without adding a radical generator. By this operation, the terminal group “—SC (═S) R 1 ” of the polymer T is replaced with a hydrogen atom. In this production method, the radical generator is not added in Step B, and the radical generator used in Step A is usually decomposed by heating or radiation irradiation for generating radicals. However, in step B, an undecomposed radical generator may be present among the radical generators used in step A as long as the effects of the present invention are not impaired.
<チオール基含有化合物>
 使用するチオール基含有化合物は、連鎖移動剤の機能を有していれば特に限定されない。チオール基含有化合物としては、下記式(1)で表される化合物を好ましく使用することができる。
 R-SH  …(1)
(式(1)中、Rは、炭素数1~30の1価の炭化水素基、又は炭素数2~30の炭化水素基の炭素-炭素結合間に-C(=O)O-を有する基であり、少なくとも1個の水素原子が水酸基、カルボキシ基又は-SONaで置換されていてもよい。)
<Thiol group-containing compound>
The thiol group-containing compound to be used is not particularly limited as long as it has a function of a chain transfer agent. As the thiol group-containing compound, a compound represented by the following formula (1) can be preferably used.
R 2 -SH (1)
(In the formula (1), R 2 represents a monovalent hydrocarbon group having 1 to 30 carbon atoms, or —C (═O) O— between carbon-carbon bonds of a hydrocarbon group having 2 to 30 carbon atoms. And at least one hydrogen atom may be substituted with a hydroxyl group, a carboxy group or —SO 3 Na.)
 上記式(1)において、Rの1価の炭化水素基としては、1~30のアルキル基、シクロアルキル基、アリール基、アラルキル基等が挙げられる。これらのうち、Rは、好ましくは1価の炭化水素基であり、より好ましくは炭素数1~30のアルキル基であり、さらに好ましくは炭素数4~30のアルキル基である。
 チオール基含有化合物の具体例としては、例えば、2-メルカプトエタノール、3-メルカプト-1,2-プロパンジオール、メルカプト酢酸、メチルメルカプトアセテート、エチルメルカプトアセテート、2-エチルヘキシルメルカプトアセテート、3-メルカプトプロピオン酸、メチル-3-メルカプトプロピオネート、ヘキシル3-メルカプトプロピオネート、シクロヘキシル3-メルカプトプロピオナート、2-エチルヘキシル3-メルカプトプロピオナート、オクチル3-メルカプトプロピオナート、ドデシル3-メルカプトプロピオナート、トリデシル3-メルカプトプロピオナート、オクタデシル3-メルカプトプロピオナート、メルカプトこはく酸、2-メルカプトエタンスルホン酸ナトリウム、1-エタンチオール、1-プロパンチオール、1-ブタンチオール、2-ブタンチオール、1-ペンタンチオール、1-ヘキサンチオール、1-ヘプタンチオール、1-オクタンチオール、1-デカンチオール、1-ドデカンチオール、1-ヘキサデカンチオール、1-オクタデカンチオール、2-メチル-1-プロパンチオール、t-ドデシルメルカプタン、シクロヘキサンチオール、チオフェノール等が挙げられる。
In the above formula (1), examples of the monovalent hydrocarbon group for R 2 include 1 to 30 alkyl groups, cycloalkyl groups, aryl groups, and aralkyl groups. Among these, R 2 is preferably a monovalent hydrocarbon group, more preferably an alkyl group having 1 to 30 carbon atoms, and still more preferably an alkyl group having 4 to 30 carbon atoms.
Specific examples of the thiol group-containing compound include, for example, 2-mercaptoethanol, 3-mercapto-1,2-propanediol, mercaptoacetic acid, methyl mercaptoacetate, ethyl mercaptoacetate, 2-ethylhexyl mercaptoacetate, 3-mercaptopropionic acid. , Methyl-3-mercaptopropionate, hexyl 3-mercaptopropionate, cyclohexyl 3-mercaptopropionate, 2-ethylhexyl 3-mercaptopropionate, octyl 3-mercaptopropionate, dodecyl 3-mercaptopropionate Narate, tridecyl 3-mercaptopropionate, octadecyl 3-mercaptopropionate, mercaptosuccinic acid, sodium 2-mercaptoethanesulfonate, 1-ethanethiol, 1- Lopanthiol, 1-butanethiol, 2-butanethiol, 1-pentanethiol, 1-hexanethiol, 1-heptanethiol, 1-octanethiol, 1-decanethiol, 1-dodecanethiol, 1-hexadecanethiol, 1 -Octadecanethiol, 2-methyl-1-propanethiol, t-dodecyl mercaptan, cyclohexanethiol, thiophenol and the like.
 工程Bにおいてチオール基含有化合物の使用割合は、チオール基含有化合物と重合体Tとを接触させる際に使用する重合体Tの全量に対して、0.1質量%以上とすることが好ましく、0.3質量%以上とすることがより好ましい。また、チオール基含有化合物の使用割合は、使用する重合体Tの全量に対して、20質量%以下とすることが好ましく、15質量%以下とすることがより好ましい。なお、チオール基含有化合物としては、1種を単独で又は2種以上を組み合わせて使用することができる。 The ratio of the thiol group-containing compound used in Step B is preferably 0.1% by mass or more based on the total amount of the polymer T used when the thiol group-containing compound and the polymer T are brought into contact with each other. More preferably 3% by mass or more. Moreover, it is preferable to set it as 20 mass% or less with respect to the whole quantity of the polymer T to be used, and, as for the usage-amount of a thiol group containing compound, it is more preferable to set it as 15 mass% or less. In addition, as a thiol group containing compound, 1 type can be used individually or in combination of 2 or more types.
 上記工程Aで得られた重合体Tと、チオール基含有化合物との接触は、好ましくは有機溶媒中で実施される。使用される有機溶媒としては、重合に用いることができる溶媒として例示した有機溶媒を挙げることができる。生産性の観点からすると、上記工程Aで得られた重合体溶液をそのまま用い、この重合体溶液中にチオール基含有化合物を添加することが好ましい。その場合、チオール基含有化合物の使用割合が、重合体100質量部に対して、好ましくは0.1~20質量部、より好ましくは0.3~15質量部となるように、上記工程Aにおけるモノマーの使用割合、及び本工程におけるチオール基含有化合物の使用割合を設定することが望ましい。 The contact between the polymer T obtained in the above step A and the thiol group-containing compound is preferably carried out in an organic solvent. As an organic solvent used, the organic solvent illustrated as a solvent which can be used for superposition | polymerization can be mentioned. From the viewpoint of productivity, it is preferable to use the polymer solution obtained in the above step A as it is and add a thiol group-containing compound to the polymer solution. In that case, the use ratio of the thiol group-containing compound is preferably 0.1 to 20 parts by mass, more preferably 0.3 to 15 parts by mass with respect to 100 parts by mass of the polymer. It is desirable to set the usage ratio of the monomer and the usage ratio of the thiol group-containing compound in this step.
 重合体Tとチオール基含有化合物とを接触させる際の温度(以下、「変性温度」ともいう。)は、基「-S-C(=S)R」を水素原子に置換する反応をより高選択的に行わせることができる点で、40℃以上とすることが好ましい。変性温度は、より好ましくは50℃以上であり、さらに好ましくは60℃以上であり、70℃以上とすることが特に好ましい。また、変性温度は、熱による反応性の低下を抑制する効果が高い点で、130℃以下とすることが好ましく、120℃以下とすることがより好ましく、110℃以下とすることがさらに好ましい。反応時間は、好ましくは15分~15時間であり、より好ましくは30分~8時間である。 The temperature at which the polymer T and the thiol group-containing compound are brought into contact with each other (hereinafter also referred to as “modification temperature”) is a value obtained by replacing the group “—S—C (═S) R 1 ” with a hydrogen atom. It is preferably 40 ° C. or higher in that it can be performed with high selectivity. The modification temperature is more preferably 50 ° C. or higher, still more preferably 60 ° C. or higher, and particularly preferably 70 ° C. or higher. The denaturation temperature is preferably 130 ° C. or less, more preferably 120 ° C. or less, and even more preferably 110 ° C. or less, from the viewpoint that the effect of suppressing a decrease in reactivity due to heat is high. The reaction time is preferably 15 minutes to 15 hours, more preferably 30 minutes to 8 hours.
 工程Bでは、工程Aによる重合終了後にラジカル発生剤を系内に添加することなく、重合体Tとチオール基含有化合物とを、好ましくは有機溶媒中で接触させる。なお、上記工程Aで得られた重合体溶液をそのまま用い、その重合体溶液中でチオール基含有化合物と重合体Tとを接触させる場合、チオール基含有化合物による重合体Tの末端水素化の反応機構の妨げとならない限り、工程Aで重合開始剤として添加したラジカル発生剤のうち未分解成分が、工程Bにおいて、重合体Tとチオール基含有化合物とを含む系内に僅かに含有されていることは許容される。この場合、未分解のラジカル発生剤の系内における含有割合は、重合体Tとチオール基含有化合物とを接触させる際に使用するチオール基含有化合物の合計量に対して、好ましくは1質量%以下であり、より好ましくは0.5質量%以下である。 In Step B, the polymer T and the thiol group-containing compound are preferably contacted in an organic solvent without adding a radical generator into the system after the completion of the polymerization in Step A. In addition, when using the polymer solution obtained by the said process A as it is and making a thiol group containing compound and the polymer T contact in the polymer solution, reaction of terminal hydrogenation of the polymer T by a thiol group containing compound As long as the mechanism is not hindered, the undecomposed component of the radical generator added as the polymerization initiator in Step A is slightly contained in the system containing the polymer T and the thiol group-containing compound in Step B. It is permissible. In this case, the content ratio of the undecomposed radical generator in the system is preferably 1% by mass or less based on the total amount of the thiol group-containing compounds used when the polymer T and the thiol group-containing compound are brought into contact with each other. More preferably, it is 0.5 mass% or less.
 重合体Tとチオール基含有化合物とを溶液中で接触させた場合、その反応によって得られた重合体(以下、「重合体P」とも示す。)を含む溶液を単離するには、例えばスチームストリッピング等の公知の脱溶媒方法及び熱処理等の乾燥の操作によって行うことができる。この工程Bでは、重合体Tの末端のチオカルボニルチオ基を、金属を添加せずに水素化するため、重合体Pにつき、電材用途への使用が制限されにくい点で好適である。 When the polymer T and the thiol group-containing compound are brought into contact with each other in a solution, a solution containing a polymer obtained by the reaction (hereinafter also referred to as “polymer P”) can be isolated by, for example, steam. It can be performed by a known desolvation method such as stripping and a drying operation such as heat treatment. In this step B, since the thiocarbonylthio group at the terminal of the polymer T is hydrogenated without adding a metal, the polymer P is suitable in that it is difficult to limit the use of the polymer P for electric materials.
 重合体Tの末端において、基「-SC(=S)R」から水素原子への変換効率(以下、「末端変換効率」ともいう。)は、好ましくは40%以上、より好ましくは50%以上、さらに好ましくは60%以上である。なお、末端変換効率(%)は、H-NMRの測定データを用いて算出された値であり、以下の式(3)で表される。
末端変換効率=100-[{(A1/R1)/(A2/R2)}×100]
                             …(3)
(式(3)中、A1は、重合体Tとチオール基含有化合物との接触後の末端基に由来するピークの積分値であり、A2は、重合体Tとチオール基含有化合物との接触前の末端基に由来するピークの積分値であり、R1は、重合体Tとチオール基含有化合物との接触後における末端基を除くポリマー全体のピーク積分値であり、R2は、重合体Tとチオール基含有化合物との接触前における末端基を除くポリマー全体のピーク積分値である。)
The conversion efficiency from the group “—SC (═S) R 1 ” to a hydrogen atom at the terminal of the polymer T (hereinafter also referred to as “terminal conversion efficiency”) is preferably 40% or more, more preferably 50%. More preferably, it is 60% or more. The terminal conversion efficiency (%) is a value calculated using 1 H-NMR measurement data, and is represented by the following formula (3).
Terminal conversion efficiency = 100 − [{(A1 / R1) / (A2 / R2)} × 100]
... (3)
(In Formula (3), A1 is the integrated value of the peak derived from the terminal group after the contact between the polymer T and the thiol group-containing compound, and A2 is before the contact between the polymer T and the thiol group-containing compound. R1 is the integral value of the peak of the whole polymer excluding the terminal group after contact between the polymer T and the thiol group-containing compound, and R2 is the polymer T and the thiol. (This is the peak integrated value of the entire polymer excluding the end groups before contact with the group-containing compound.)
 得られる重合体Pのゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算の重量平均分子量(Mw)は、重合体の用途等に応じて適宜選択すればよいが、好ましくは1.0×10~2.0×10であり、より好ましくは1.0×10~1.0×10である。また、Mwと、GPCにより測定したポリスチレン換算の数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)は、好ましくは3以下であり、より好ましくは2.5以下である。 The weight average molecular weight (Mw) in terms of polystyrene by gel permeation chromatography (GPC) of the obtained polymer P may be appropriately selected according to the use of the polymer, etc., but preferably 1.0 × 10 3 to 2.0 × 10 6 , more preferably 1.0 × 10 3 to 1.0 × 10 5 . Further, the molecular weight distribution (Mw / Mn) represented by the ratio of Mw to the polystyrene-equivalent number average molecular weight (Mn) measured by GPC is preferably 3 or less, more preferably 2.5 or less. .
[重合体組成物]
 本開示の重合体組成物は、重合体成分として、本開示の製造方法によって重合体末端の基「-SC(=S)R」が水素原子に置換された重合体を含む。本開示の製造方法により得られた重合体及び重合体組成物は、種々の用途に使用される。具体的には、例えば、フォトレジスト用組成物や液浸用組成物、上層膜形成組成物等の各種樹脂組成物、粘着剤、分散剤、相溶化剤、界面活性剤、履物用素材、各種自動車部品、工業用品、アスファルト組成物、塗料、生体材料等の各種用途に適用することができる。
[Polymer composition]
The polymer composition of the present disclosure includes, as a polymer component, a polymer in which a polymer terminal group “—SC (═S) R 1 ” is substituted with a hydrogen atom by the production method of the present disclosure. The polymer and polymer composition obtained by the production method of the present disclosure are used for various applications. Specifically, for example, various resin compositions such as a photoresist composition, a liquid immersion composition, an upper layer film-forming composition, an adhesive, a dispersant, a compatibilizing agent, a surfactant, a footwear material, various It can be applied to various uses such as automobile parts, industrial articles, asphalt compositions, paints, and biomaterials.
 以下、実施例に基づいて具体的に説明するが、本開示の内容はこれらの実施例に限定されるものではない。なお、実施例及び比較例中の「部」及び「%」は、特に断らない限り質量基準である。重合体の各種物性値の測定方法は以下のとおりである。
[質量平均分子量Mw及び数平均分子量Mn]
 以下の条件で、ゲルパーミエーションクロマトグラフィー(商品名「HLC-8120GPC」、東ソー社製)を使用して得られたGPC曲線の最大ピークの頂点に相当する保持時間からポリスチレン換算で求めた。
  カラム:商品名「GMHXL」(東ソー社製)2本
  カラム温度:40℃
  移動相;テトラヒドロフラン
  流速;1.0ml/分
  サンプル濃度;10mg/20ml
[末端変換効率]
 末端変換効率(%)は、H-NMRによる測定データを用いて上記式(3)により算出した。
[熱分解ガスクロマトグラフ質量分析]
 以下の条件で、熱分解ガスクロマトグラフ質量分析装置を使用してポリマー末端基を解析した。サンプルについては、パイロホイルに包んで測定した。
(測定条件)
Figure JPOXMLDOC01-appb-T000002
Hereinafter, although it demonstrates concretely based on an Example, the content of this indication is not limited to these Examples. In the examples and comparative examples, “parts” and “%” are based on mass unless otherwise specified. The measuring method of various physical property values of the polymer is as follows.
[Mass average molecular weight Mw and number average molecular weight Mn]
It calculated | required in polystyrene conversion from the retention time corresponded to the peak peak of the GPC curve obtained using gel permeation chromatography (Brand name "HLC-8120GPC", the Tosoh company make) on the following conditions.
Column: Two brand names “GMHXL” (manufactured by Tosoh Corporation) Column temperature: 40 ° C.
Mobile phase; tetrahydrofuran flow rate; 1.0 ml / min sample concentration; 10 mg / 20 ml
[Terminal conversion efficiency]
Terminal conversion efficiency (%) was calculated by the above formula (3) using measurement data by 1 H-NMR.
[Pyrolysis gas chromatograph mass spectrometry]
Polymer end groups were analyzed using a pyrolysis gas chromatograph mass spectrometer under the following conditions. About the sample, it wrapped in the pyrofoil and measured.
(Measurement condition)
Figure JPOXMLDOC01-appb-T000002
[実施例1]
 窒素雰囲気下の50mlフラスコに、2-シアノ-2-プロピルドデシルトリチオカルボナート 2.9g、p-アセトキシスチレン 16g、重合溶媒として1-メトキシ-2-プロパノール 0.080gを加えて攪拌した。続いて、アゾビスイソブチロニトリルの1-メトキシ-2-プロパノール溶液(0.1mol/L) 7.7gを添加した後、フラスコ温度を80℃に昇温し、重合を開始した。3時間重合反応を行った後、ヘキサン溶媒に再沈殿することでポリマー粉体Aを得た。
 次いで、窒素雰囲気下の30mlフラスコにて、ポリマー粉末A 3.2gを1-メトキシ-2-プロパノール 2.1gに溶解し、t-ドデシルメルカプタンを1.7g添加し、温度80℃で1時間反応させた。得られたポリマーApを再沈殿精製し、H-NMRによってポリマー解析を実施したところ、ポリマー停止末端由来のピークの減少が確認された(末端変換効率は78%)。
[Example 1]
To a 50 ml flask under a nitrogen atmosphere, 2.9 g of 2-cyano-2-propyldodecyltrithiocarbonate, 16 g of p-acetoxystyrene, and 0.080 g of 1-methoxy-2-propanol as a polymerization solvent were added and stirred. Subsequently, 7.7 g of a 1-methoxy-2-propanol solution of azobisisobutyronitrile (0.1 mol / L) was added, and then the flask temperature was raised to 80 ° C. to initiate polymerization. After performing the polymerization reaction for 3 hours, the polymer powder A was obtained by reprecipitation in a hexane solvent.
Next, in a 30 ml flask under nitrogen atmosphere, 3.2 g of polymer powder A was dissolved in 2.1 g of 1-methoxy-2-propanol, 1.7 g of t-dodecyl mercaptan was added, and the reaction was performed at a temperature of 80 ° C. for 1 hour. I let you. The obtained polymer Ap was reprecipitated and purified, and polymer analysis was performed by 1 H-NMR. As a result, a decrease in the peak derived from the polymer terminal end was confirmed (terminal conversion efficiency was 78%).
[実施例2]
 窒素雰囲気下の50mlフラスコに、2-シアノ-2-プロピルドデシルトリチオカルボナート 2.9g、メタクリル酸 1-メチルシクロペンチル 17g、重合溶媒として1-メトキシ-2-プロパノール 0.37gを加えて攪拌した。続いて、アゾビスイソブチロニトリルの1-メトキシ-2-プロパノール溶液(0.1mol/L) 7.7gを添加した後、フラスコ温度を80℃に昇温し、重合を開始した。3時間反応を行った後、ヘキサン溶媒に再沈殿することでポリマー粉体Bを得た。
 次いで、窒素雰囲気下の30mlフラスコにて、ポリマー粉体B 3.4gを1-メトキシ-2-プロパノール 2.2gに溶解し、t-ドデシルメルカプタンを1.7g添加し、変性温度80℃にて1時間反応させた。得られたポリマーBpを再沈殿精製し、H-NMRによってポリマー解析を実施したところ、ポリマー停止末端由来のピークの減少が確認された(末端変換効率は86%)。
[Example 2]
To a 50 ml flask under a nitrogen atmosphere, 2.9 g of 2-cyano-2-propyldodecyltrithiocarbonate, 17 g of 1-methylcyclopentyl methacrylate, and 0.37 g of 1-methoxy-2-propanol as a polymerization solvent were added and stirred. . Subsequently, 7.7 g of a 1-methoxy-2-propanol solution of azobisisobutyronitrile (0.1 mol / L) was added, and then the flask temperature was raised to 80 ° C. to initiate polymerization. After reacting for 3 hours, polymer powder B was obtained by reprecipitation in a hexane solvent.
Next, in a 30 ml flask under nitrogen atmosphere, 3.4 g of the polymer powder B was dissolved in 2.2 g of 1-methoxy-2-propanol, 1.7 g of t-dodecyl mercaptan was added, and the modification temperature was 80 ° C. The reaction was carried out for 1 hour. The obtained polymer Bp was reprecipitated and purified, and polymer analysis was conducted by 1 H-NMR. As a result, a decrease in the peak derived from the polymer terminal end was confirmed (terminal conversion efficiency was 86%).
[実施例3]
 窒素雰囲気下の50mlフラスコに、2-シアノ-2-プロピルドデシルトリチオカルボナート 0.86g、メタクリル酸メチル 8.4g、重合溶媒として1-メトキシ-2-プロパノール 1.7gを加えて攪拌した。次いで、アゾビスイソブチロニトリルの1-メトキシ-2-プロパノール溶液(0.1mol/L) 2.5gを添加した後、温度80℃に昇温し、重合を開始した。3時間反応させることでポリマー溶液Cを得た。
 次いで、窒素雰囲気下の30mlフラスコにポリマー溶液C 6.7g(ポリマー濃度66質量%)及びt-ドデシルメルカプタン1.0gを添加し、80℃3時間反応させた。得られたポリマーCpを再沈殿精製し、H-NMRにてポリマー解析を実施したところ、ポリマー停止末端由来のピークの減少が確認された(末端変換効率は42%)。
[Example 3]
To a 50 ml flask under a nitrogen atmosphere, 0.86 g of 2-cyano-2-propyldodecyltrithiocarbonate, 8.4 g of methyl methacrylate, and 1.7 g of 1-methoxy-2-propanol as a polymerization solvent were added and stirred. Next, 2.5 g of a 1-methoxy-2-propanol solution of azobisisobutyronitrile (0.1 mol / L) was added, and the temperature was raised to 80 ° C. to initiate polymerization. Polymer solution C was obtained by reacting for 3 hours.
Next, 6.7 g of polymer solution C (polymer concentration 66% by mass) and 1.0 g of t-dodecyl mercaptan were added to a 30 ml flask under a nitrogen atmosphere and reacted at 80 ° C. for 3 hours. The obtained polymer Cp was reprecipitated and purified, and polymer analysis was performed by 1 H-NMR. As a result, a decrease in the peak derived from the polymer terminal end was confirmed (terminal conversion efficiency was 42%).
[実施例4]
 窒素雰囲気下の100mlフラスコに、2-シアノ-2-プロピルドデシルトリチオカルボナート 2.2g、p-アセトキシスチレン 13g、メタクリル酸 1-メチルシクロペンチル 20g、重合溶媒として1-メトキシ-2-プロパノール 9.8gを加えて攪拌した。続いて、アゾビスイソブチロニトリルの1-メトキシ-2-プロパノール溶液(0.1mol/L) 5.9gを添加した後、フラスコ温度を80℃に昇温し、重合を開始した。途中、アゾビスイソブチロニトリルの1-メトキシ-2-プロパノール溶液(0.1mol/L)5.3gを添加しながら6時間反応させることでポリマー溶液を得た。また、得られたポリマー溶液をヘキサン溶媒に再沈殿することにより精製し、ポリマー粉体Dを得た。
 次いで、窒素雰囲気下の30mlフラスコにて、ポリマー粉末D 4.4gを1-メトキシ-2-プロパノール 2.6gに溶解し、t-ドデシルメルカプタン0.80gを添加し80℃1時間反応させた。得られたポリマーDpを再沈殿精製し、H-NMRにてポリマー解析を実施したところ、ポリマー停止末端由来のピークの減少が確認された(末端変換効率は63%)。
[Example 4]
In a 100 ml flask under a nitrogen atmosphere, 2.2 g of 2-cyano-2-propyldodecyltrithiocarbonate, 13 g of p-acetoxystyrene, 20 g of 1-methylcyclopentyl methacrylate, 1-methoxy-2-propanol as a polymerization solvent 9. 8 g was added and stirred. Subsequently, 5.9 g of a 1-methoxy-2-propanol solution of azobisisobutyronitrile (0.1 mol / L) was added, and then the flask temperature was raised to 80 ° C. to initiate polymerization. On the way, a polymer solution was obtained by reacting for 6 hours while adding 5.3 g of a 1-methoxy-2-propanol solution (0.1 mol / L) of azobisisobutyronitrile. Further, the obtained polymer solution was purified by reprecipitation in a hexane solvent to obtain a polymer powder D.
Next, 4.4 g of polymer powder D was dissolved in 2.6 g of 1-methoxy-2-propanol in a 30 ml flask under a nitrogen atmosphere, 0.80 g of t-dodecyl mercaptan was added, and the mixture was reacted at 80 ° C. for 1 hour. The obtained polymer Dp was reprecipitated and purified, and polymer analysis was performed by 1 H-NMR. As a result, a decrease in peak derived from the polymer terminal end was confirmed (terminal conversion efficiency was 63%).
[実施例5]
 実施例4と同様の操作を行うことによりポリマー粉末Dを得た。次いで、窒素雰囲気下の30mlフラスコにて、実施例4で得られたポリマー粉体D 4.4gを1-メトキシ-2-プロパノール 2.6gに溶解し、t-ドデシルメルカプタンを0.80g添加して80℃3時間反応させた。得られたポリマーEpを再沈殿精製し、H-NMRにてポリマー解析を実施したところ、ポリマー停止末端由来のピークの減少が確認された(末端変換効率は80%)。
[Example 5]
Polymer powder D was obtained by performing the same operation as in Example 4. Next, 4.4 g of the polymer powder D obtained in Example 4 was dissolved in 2.6 g of 1-methoxy-2-propanol in a 30 ml flask under a nitrogen atmosphere, and 0.80 g of t-dodecyl mercaptan was added. And reacted at 80 ° C. for 3 hours. The obtained polymer Ep was reprecipitated and purified, and polymer analysis was performed by 1 H-NMR. As a result, a decrease in the peak derived from the polymer terminal end was confirmed (terminal conversion efficiency was 80%).
[比較例1]
 実施例2と同様の操作を行うことによりポリマー粉末Bを得た。次いで、窒素雰囲気下の30mlフラスコにて、ポリマー粉末B 3.2gを1-メトキシ-2-プロパノール36gに溶解し、2,2’-アゾビス(2,4-ジメチルバレロニトリル)を 7.9g添加し、温度80℃で1時間反応させた。得られたポリマーB1を再沈殿及び精製した。
[比較例2]
 実施例2と同様の操作を行うことによりポリマー粉末Bを得た。次いで、窒素雰囲気下の30mlフラスコにて、ポリマー粉末B 3.2gを1-メトキシ-2-プロパノール 9.0gに溶解し、2,2’-アゾビス(2,4-ジメチルバレロニトリル)を1.6g及びt-ドデシルメルカプタンを1.6g添加し、温度80℃で1時間反応させた。得られたポリマーB2を再沈殿及び精製した。
[Comparative Example 1]
Polymer powder B was obtained by performing the same operation as in Example 2. Next, in a 30 ml flask under nitrogen atmosphere, 3.2 g of polymer powder B was dissolved in 36 g of 1-methoxy-2-propanol, and 7.9 g of 2,2′-azobis (2,4-dimethylvaleronitrile) was added. And reacted at a temperature of 80 ° C. for 1 hour. The resulting polymer B1 was reprecipitated and purified.
[Comparative Example 2]
Polymer powder B was obtained by performing the same operation as in Example 2. Next, in a 30 ml flask under a nitrogen atmosphere, 3.2 g of polymer powder B was dissolved in 9.0 g of 1-methoxy-2-propanol, and 2,2′-azobis (2,4-dimethylvaleronitrile) was 1. 6 g and 1.6 g of t-dodecyl mercaptan were added and reacted at a temperature of 80 ° C. for 1 hour. The resulting polymer B2 was reprecipitated and purified.
(ポリマー末端基の同定)
1.熱分解ガスクロマトグラフ質量分析
 実施例2で得られた末端水素変性ポリマーBpにつき、熱分解ガスクロマトグラフ質量分析装置(pyGCMS)により末端構造を解析した。その測定結果を図1に示した。なお、図1中、上段のグラフ中の逆三角印は、変性反応で得られた水素末端構造近傍由来のピークである。
2.マトリックス支援レーザー脱離イオン化飛行時間型質量分析
 実施例2、比較例1及び比較例2のそれぞれで得られたポリマーBp、ポリマーB1及びポリマーB2につき、マトリックス支援レーザー脱離イオン化飛行時間型質量分析計(MALDI-TOF-MS)によりポリマー分子量を測定し、末端構造について解析した。その測定結果を図2に示した。なお、図2中、逆三角印は、アゾ化合物由来の末端構造(下記式(2)で表される構造)を有するポリマーのピークであり、丸印は、水素末端(下記式(3)で表される構造)に変換されたポリマー構造由来のピークである。
Figure JPOXMLDOC01-appb-C000003
(Identification of polymer end groups)
1. Thermal decomposition gas chromatograph mass spectrometry About the terminal hydrogen-modified polymer Bp obtained in Example 2, the terminal structure was analyzed by a thermal decomposition gas chromatograph mass spectrometer (pyGCMS). The measurement results are shown in FIG. In FIG. 1, the inverted triangle mark in the upper graph is a peak derived from the vicinity of the hydrogen terminal structure obtained by the modification reaction.
2. Matrix Assisted Laser Desorption / Ionization Time-of-Flight Mass Spectrometry Matrix Assisted Laser Desorption / Ionization Time-of-Flight Mass Spectrometer for Polymer Bp, Polymer B1, and Polymer B2 obtained in Example 2, Comparative Example 1 and Comparative Example 2, respectively. The polymer molecular weight was measured by (MALDI-TOF-MS), and the terminal structure was analyzed. The measurement results are shown in FIG. In FIG. 2, the inverted triangle mark is a peak of a polymer having an azo compound-derived terminal structure (structure represented by the following formula (2)), and the circle mark is a hydrogen terminal (following formula (3). It is a peak derived from a polymer structure converted into (represented structure).
Figure JPOXMLDOC01-appb-C000003
 これらの測定結果から、実施例2のポリマーBpは、末端構造が水素原子に置換されていることが確認された。また、実施例2のポリマーBpは、比較例1のポリマーB1及び比較例2のポリマーB2に対し、アゾ化合物由来の末端構造体の混入が無く、高選択的に水素原子に置換されたことが確認された。 From these measurement results, it was confirmed that the terminal structure of the polymer Bp of Example 2 was replaced with a hydrogen atom. In addition, the polymer Bp of Example 2 was not selectively mixed with an azo compound-derived terminal structure and was highly selectively substituted with hydrogen atoms with respect to the polymer B1 of Comparative Example 1 and the polymer B2 of Comparative Example 2. confirmed.
 以上の結果から、RAFT剤由来の官能基を末端に有するポリマーとチオール基含有化合物とを、重合終了後にラジカル発生剤を添加せずに接触させることにより、RAFT剤由来の官能基が水素原子に置換されたことが分かった。また、末端変換効率も高い数値であった。これらのことから、RAFT剤由来の官能基を末端に有するポリマーとチオール基含有化合物とを、重合終了後にラジカル発生剤を添加せずに接触させる方法によれば、RAFT剤由来の官能基を、金属を使わずに簡便に、かつ高選択的に除去して水素原子に置換できることが明らかとなった。 From the above results, the polymer having the functional group derived from the RAFT agent and the thiol group-containing compound are brought into contact with each other without adding a radical generator after the polymerization, whereby the functional group derived from the RAFT agent is brought into a hydrogen atom. It was found that it was replaced. Moreover, the terminal conversion efficiency was also a high numerical value. From these, according to the method in which the polymer having a functional group derived from the RAFT agent and the thiol group-containing compound are brought into contact with each other without adding a radical generator after the polymerization, the functional group derived from the RAFT agent is It became clear that it can be easily and highly selectively removed and replaced with hydrogen atoms without using metal.

Claims (8)

  1.  チオカルボニルチオ化合物の存在下でモノマーを重合して、基「-SC(=S)R」(ただし、Rは1価の有機基である。)を末端に有する重合体Tを得る工程Aと、
     ラジカル発生剤を添加せずに前記重合体Tとチオール基含有化合物とを接触させて、前記重合体Tが有する基「-SC(=S)R」を水素原子に置換する工程Bと、を含む、重合体の製造方法。
    A step of polymerizing a monomer in the presence of a thiocarbonylthio compound to obtain a polymer T having a group “—SC (═S) R 1 ” (where R 1 is a monovalent organic group) as a terminal. A and
    A step B in which the polymer T is brought into contact with the thiol group-containing compound without adding a radical generator to replace the group “—SC (═S) R 1 ” of the polymer T with a hydrogen atom; A method for producing a polymer, comprising:
  2.  前記工程Bにおいて、前記重合体Tと前記チオール基含有化合物とを40℃以上130℃以下で接触させる、請求項1に記載の重合体の製造方法。 The method for producing a polymer according to claim 1, wherein in the step B, the polymer T and the thiol group-containing compound are contacted at 40 ° C or higher and 130 ° C or lower.
  3.  前記モノマーは、(メタ)アクリル化合物及び芳香族ビニル化合物よりなる群から選ばれる少なくとも一種を含む、請求項1又は2に記載の重合体の製造方法。 The method for producing a polymer according to claim 1 or 2, wherein the monomer contains at least one selected from the group consisting of (meth) acrylic compounds and aromatic vinyl compounds.
  4.  基「-SC(=S)R」から水素原子への変換効率が40%以上である、請求項1~3のいずれか一項に記載の重合体の製造方法。 The method for producing a polymer according to any one of claims 1 to 3, wherein the conversion efficiency from the group "-SC (= S) R 1 " to a hydrogen atom is 40% or more.
  5.  前記チオール基含有化合物は、下記式(1)で表される化合物である、請求項1~4のいずれか一項に記載の重合体の製造方法。
     R-SH  …(1)
    (式(1)中、Rは、炭素数1~30の1価の炭化水素基、又は炭素数2~30の炭化水素基の炭素-炭素結合間に-C(=O)O-を有する基であり、少なくとも1個の水素原子が水酸基、カルボキシ基又は-SONaで置換されていてもよい。)
    The method for producing a polymer according to any one of claims 1 to 4, wherein the thiol group-containing compound is a compound represented by the following formula (1).
    R 2 -SH (1)
    (In the formula (1), R 2 represents a monovalent hydrocarbon group having 1 to 30 carbon atoms, or —C (═O) O— between carbon-carbon bonds of a hydrocarbon group having 2 to 30 carbon atoms. And at least one hydrogen atom may be substituted with a hydroxyl group, a carboxy group or —SO 3 Na.)
  6.  基「-SC(=S)R」(ただし、Rは1価の有機基である。)を末端に有する重合体Tと、チオール基含有化合物とをラジカル発生剤を添加せずに接触させて、前記重合体Tが有する基「-SC(=S)R」を水素原子に置換する方法。 The polymer T having the group “—SC (═S) R 1 ” (where R 1 is a monovalent organic group) and the thiol group-containing compound are contacted without adding a radical generator. Then, the group “—SC (═S) R 1 ” of the polymer T is replaced with a hydrogen atom.
  7.  請求項1~5のいずれか一項に記載の製造方法により得られた重合体。 A polymer obtained by the production method according to any one of claims 1 to 5.
  8.  請求項7に記載の重合体を含有する、重合体組成物。 A polymer composition containing the polymer according to claim 7.
PCT/JP2019/013038 2018-03-28 2019-03-26 Method for manufacturing polymer, polymer and polymer composition WO2019189276A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020510973A JP7226434B2 (en) 2018-03-28 2019-03-26 Polymer production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-062480 2018-03-28
JP2018062480 2018-03-28

Publications (1)

Publication Number Publication Date
WO2019189276A1 true WO2019189276A1 (en) 2019-10-03

Family

ID=68060038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013038 WO2019189276A1 (en) 2018-03-28 2019-03-26 Method for manufacturing polymer, polymer and polymer composition

Country Status (3)

Country Link
JP (1) JP7226434B2 (en)
TW (1) TW201942147A (en)
WO (1) WO2019189276A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307097A (en) * 2004-04-26 2005-11-04 Kaneka Corp Macromonomer
JP2013136748A (en) * 2011-12-21 2013-07-11 Goodyear Tire & Rubber Co:The Method of making graft copolymer
JP2015505881A (en) * 2011-12-14 2015-02-26 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガナイゼーション Method for removing thiocarbonylthio groups from polymers produced by RAFT polymerization

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307097A (en) * 2004-04-26 2005-11-04 Kaneka Corp Macromonomer
JP2015505881A (en) * 2011-12-14 2015-02-26 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガナイゼーション Method for removing thiocarbonylthio groups from polymers produced by RAFT polymerization
JP2013136748A (en) * 2011-12-21 2013-07-11 Goodyear Tire & Rubber Co:The Method of making graft copolymer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHONG YEN K. ET AL.: "Thiocarbonylthio End Group Removal from RAFT-Synthesized Polymers by Radical- Induced Reduction", MACROMOLECULES, vol. 40, no. 13, 2007, pages 4446 - 4455, XP002599495, ISSN: 0024-9297, doi:10.1021/MA062919U *

Also Published As

Publication number Publication date
JP7226434B2 (en) 2023-02-21
TW201942147A (en) 2019-11-01
JPWO2019189276A1 (en) 2021-03-18

Similar Documents

Publication Publication Date Title
CN110546224B (en) Adhesive composition
JP5805916B1 (en) Modified liquid diene rubber and method for producing the same
JP2005320549A (en) Free radical polymerization process
TWI685507B (en) Modified liquid diene rubber and resin composition containing the modified liquid diene rubber
JP6103470B2 (en) Chain transfer agent having condensed polycyclic aromatic skeleton, polymer having condensed polycyclic aromatic skeleton, and method for producing polymer
KR20140070551A (en) (meth)acrylate-functional polyacrylate resins with narrow but bimodal molecular weight distributions
JPWO2015045450A1 (en) Resin composition, cured product obtained by curing the same, and optical pressure-sensitive adhesive containing the resin composition
US20070293595A1 (en) Initiation of polymerization by hydrogen atom donation
WO2019189276A1 (en) Method for manufacturing polymer, polymer and polymer composition
JP3443970B2 (en) Photopolymerizable resin composition
JP2016094499A (en) Vinyl polymer and manufacturing method therefor, and curable composition
JP6394075B2 (en) Method for producing graft copolymer
WO2000078709A1 (en) Vinylated alkoxyamine, use thereof, and process for producing the same
JP2016186017A (en) Diallyl phthalate resin modified with thiol compound, and photocurable resin composition comprising the resin and use of the same
JP2020007503A (en) Active energy ray-curable composition
JP6332994B2 (en) Main chain ether ring polymer containing conjugated diene structure
JP6394937B2 (en) Method for producing polymer with controlled molecular weight using polymerization controller having condensed polycyclic aromatic skeleton
JP2013014674A (en) Chain transfer agent comprising (meth)acrylate compound having condensed polycyclic aromatic skeleton, polymer having the condensed polycyclic aromatic skeleton, and method of manufacturing polymer
Fang Directed network structure through controlled radical photopolymerization
WO2018047588A1 (en) Diallyl phthalate resin modified by thiol compound, photo-curable resin composition including said resin, and use thereof
JP6784294B2 (en) Polymers modified with thiol compounds, photocurable compositions containing the polymers, and their uses
JP2021059635A (en) Active energy ray-curable composition and production method of the same
JP2015164995A (en) Method of producing polymer having controlled molecular weight using polymerization control agent having condensed polycyclic aromatic skeleton
JP2001064308A (en) Polymeric radical polymerization initiator, its production, and graft polymer obtained by using the same
JP2004285113A (en) Active energy ray curing composition and thermosetting composition composed of (co)polymer having double bond in side chain

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19774248

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020510973

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19774248

Country of ref document: EP

Kind code of ref document: A1