WO2019189256A1 - Method for manufacturing resin thin film stripped pieces - Google Patents

Method for manufacturing resin thin film stripped pieces Download PDF

Info

Publication number
WO2019189256A1
WO2019189256A1 PCT/JP2019/013007 JP2019013007W WO2019189256A1 WO 2019189256 A1 WO2019189256 A1 WO 2019189256A1 JP 2019013007 W JP2019013007 W JP 2019013007W WO 2019189256 A1 WO2019189256 A1 WO 2019189256A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
resin thin
film
liquid
group
Prior art date
Application number
PCT/JP2019/013007
Other languages
French (fr)
Japanese (ja)
Inventor
祐介 蕨南
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2020510963A priority Critical patent/JP7272351B2/en
Publication of WO2019189256A1 publication Critical patent/WO2019189256A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/34Component parts, details or accessories; Auxiliary operations
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells

Definitions

  • the present invention relates to a method for producing a peeled piece of a resin thin film.
  • Such a pigment is generally produced by forming a resin thin film on a base film, peeling the resin thin film from the base film, and then crushing the peeled resin thin film (see Patent Document 1). ).
  • the conventional method has a problem that it is difficult to efficiently perform the process of peeling the resin thin film from the base film.
  • an object of the present invention is to provide a method for producing a release piece of a resin thin film formed on a base film, which can efficiently produce the release piece.
  • the present inventor has found that a peeling piece can be efficiently manufactured by spraying a liquid on a resin thin film to form a crack and then peeling the resin thin film.
  • the headline and the present invention were completed. That is, the present invention is as follows.
  • a method for producing a peeled piece of a resin thin film. [2] The method for producing a peeled piece of a resin thin film according to [1], wherein the liquid is pure water. [3] The method for producing a peeled piece of a resin thin film according to [1] or [2], wherein the step (2) is performed at a spraying pressure of 0.15 MPa to 50 MPa.
  • [4] The method for producing a peelable piece of a resin thin film according to any one of [1] to [3], wherein the resin thin film is made of a cured product of a photocurable liquid crystal composition.
  • [5] The method for producing a peeled piece of a resin thin film according to any one of [1] to [4], wherein the resin thin film is a cholesteric resin layer.
  • [6] The method for producing a peeled piece of a resin thin film according to any one of [1] to [5], wherein the peel strength between the base film and the resin thin film is 500 N / m or less.
  • [7] The method for producing a peeled piece of a resin thin film according to any one of [1] to [6], wherein the thickness of the resin thin film is 0.1 ⁇ m or more and 200 ⁇ m or less.
  • the present invention it is possible to provide a method for producing a release piece of a resin thin film formed on a substrate film, which can efficiently produce the release piece.
  • FIG. 1 is a side view schematically showing an apparatus used in the method for producing a peelable piece of a resin thin film according to Embodiment 1.
  • FIG. 2 is a cross-sectional view schematically showing a multilayer film used in the manufacturing method of Embodiment 1.
  • FIG. 3 is a cross-sectional view schematically showing a multilayer film in which cracks are formed by spraying a liquid.
  • FIG. 4 is a side view schematically showing a part of the manufacturing apparatus according to the first modification.
  • FIG. 5 is a side view schematically showing a part of the manufacturing apparatus according to the second modification.
  • FIG. 6 is a side view schematically showing a peeling piece manufacturing apparatus used in Comparative Example 1.
  • FIG. FIG. 7 is a side view schematically showing a part of the manufacturing apparatus according to the third modification.
  • the “long” film refers to a film having a length of about 5 times or more, preferably 10 times or more of the film width. Refers to those having a length that is wound in a roll and stored or transported.
  • the upper limit of the length of the long film is not particularly limited, and can be, for example, 100,000 times the width.
  • the directions of the elements are “parallel”, “vertical” and “orthogonal”, unless otherwise specified, within a range that does not impair the effect of the present invention, for example, within ⁇ 5 °. May be included. Further, “along” in a certain direction means “in parallel” in a certain direction.
  • (meth) acryl includes acrylic, methacrylic, and combinations thereof.
  • (meth) acrylate includes acrylate, methacrylate, and combinations thereof.
  • (thio) epoxy includes epoxy, thioepoxy, and combinations thereof.
  • the “iso (thio) cyanate” includes isocyanate, isothiocyanate, and combinations thereof.
  • the method for producing a peeled piece of a resin thin film according to this embodiment includes a step (1) of forming a resin thin film on a base film to obtain a multilayer film, and a step of spraying a liquid on the resin thin film to form a crack ( 2) and a step (3) of peeling the resin thin film from the base film to obtain a peeled piece.
  • FIG. 1 is a side view schematically showing a manufacturing apparatus used in the method for manufacturing a peelable piece of a resin thin film according to Embodiment 1 of the present invention.
  • This manufacturing apparatus is an apparatus that performs steps (2) to (3) among steps (1) to (3) of the manufacturing method of the present invention.
  • FIG. 2 is a cross-sectional view of a multilayer film used in this embodiment.
  • an apparatus 100 for producing a peeled piece of a resin thin film used in this embodiment includes a feeding device 101 for feeding out a multilayer film 10, and a liquid is sprayed on the multilayer film 10 to form a crack to form a multilayer film.
  • 10 includes a liquid spraying device 120 that peels the resin thin film from 10, a peeling chamber 110 that houses the liquid spraying device, and a peeling piece collection unit 115 that collects the peeled resin thin film 11 (peeling piece).
  • the feeding device 101 is a device for sending the multilayer film 10 manufactured in the step (1) at a desired delivery speed.
  • a film roll obtained by winding the multilayer film 10 in the longitudinal direction can be attached to the feeding device 101.
  • the feeding device 101 has a structure capable of feeding the multilayer film 10 in the longitudinal direction from the mounted film roll.
  • the multilayer film 10 includes a base film 12 and a resin thin film 11 formed on the base film.
  • the multilayer film 10 is transported so that the surface on the resin thin film 11 side is on the upper side when the multilayer film 10 is unwound from the unwinding apparatus 101 and is transported to the liquid spraying apparatus 120.
  • the multilayer film 10 fed from the feeding device 101 is transported in the direction indicated by A1 by the transport roll 102. As the transported multilayer film 10 is sprayed with a liquid, a crack is formed in the resin thin film 11 (step (2)).
  • the resin thin film 11 is peeled off from the base film 12 by spraying a liquid further on the multilayer film 10 in which the crack is formed to obtain a peeled piece 11A (step (3)).
  • a liquid is further sprayed from the liquid spraying device 120 to a portion where the crack is formed, and the resin thin film 11 (peeling piece with the crack formed) is formed. 11A) is blown off and peeled off.
  • the resin thin film 11 (peeled piece 11A) thus peeled moves to the peeled piece collection unit 115 together with the liquid.
  • the peeling piece collection unit 115 the peeling piece 11 ⁇ / b> A is collected from the liquid by the filter 116. Specifically, the peeling piece 11 ⁇ / b> A remains on the filter 116, and the liquid passes through the filter 116 and is recovered by the liquid recovery unit 130.
  • the liquid recovered by the liquid recovery unit 130 can be discarded or reused through the liquid channel 131.
  • the collected resin thin film 11 (peeling piece 11A) can be subjected to the next step depending on the application to be used. Hereinafter, each step will be described in detail.
  • Step (1) is a step of forming a resin thin film on a base film to obtain a multilayer film.
  • a composition containing a resin for forming a resin thin film is applied on a base film, and a film of the composition is provided. Then, the film of the composition is cured to form a resin thin film.
  • a multilayer film can be manufactured by forming.
  • the base film used for manufacturing the multilayer film is a film for supporting the resin thin film.
  • This base film is preferably a film having a mechanical strength that is strong enough not to break in the step (2) of forming a crack in the resin thin film.
  • a long film is preferable from a viewpoint that it can manufacture efficiently by the roll toe roll method.
  • a film having a base layer made of a resin can be used as such a base film.
  • the polymer contained in the resin that forms the base layer include: chain olefin polymer, cycloolefin polymer, polycarbonate, polyester, polysulfone, polyethersulfone, polystyrene, polyvinyl alcohol, cellulose acetate polymer, poly Examples thereof include vinyl chloride and polymethacrylate.
  • the resin one containing one kind of polymer alone may be used, or one containing two or more kinds of polymers combined in an arbitrary ratio may be used.
  • the resin may contain any compounding agent as long as the effects of the present invention are not significantly impaired.
  • the base film may be a single-layer film having only one layer, or may be a multilayer film having two or more layers. Accordingly, the base film may be a film including only the base layer, or may be a film including an arbitrary layer in addition to the base layer.
  • the base film when using a liquid crystal composition as a composition for forming a resin thin film, the base film may have an alignment film from the viewpoint of satisfactorily aligning the liquid crystal composition.
  • the base film may have an orientation regulating force on the surface.
  • the treatment for imparting the orientation regulating force to the base film include rubbing treatment, photo-alignment treatment, and alignment treatment by photolithography.
  • the rubbing treatment is a treatment for imparting an orientation regulating force by rubbing the surface of the film.
  • the alignment film can be formed of a resin containing a polymer such as polyimide, polyvinyl alcohol, polyester, polyarylate, polyamideimide, polyetherimide, polyamide, and the like. Moreover, these polymers may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the alignment film can be manufactured by applying a solution containing the polymer, drying, and rubbing.
  • the thickness of the alignment film is preferably 0.01 ⁇ m or more, more preferably 0.05 ⁇ m or more, preferably 5 ⁇ m or less, more preferably 1 ⁇ m or less.
  • the base film may have an orientation film in addition to the base layer or may not have an orientation film.
  • a base film having an orientation regulating force can be obtained by directly rubbing the base layer.
  • the photo-alignment treatment is a treatment for imparting alignment regulating force by irradiating the light distribution film with linearly polarized ultraviolet rays and imparting anisotropy.
  • the alignment process by photolithography is a process of forming a structure that exhibits an alignment regulating force on the surface of the base film using photolithography.
  • the base film may be a non-stretched unstretched film or a stretched stretched film. Further, the base film may be an isotropic film or an anisotropic film. Furthermore, the base film may have been subjected to surface treatment on one side or both sides. By performing the surface treatment, adhesion with other layers directly formed on the surface of the base film can be improved. Examples of the surface treatment include energy ray irradiation treatment and chemical treatment.
  • the thickness of the base film is preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more, preferably 500 ⁇ m or less, more preferably 200 ⁇ m or less, from the viewpoints of handling properties at the time of manufacture, material cost, thickness reduction and weight reduction. is there.
  • the resin thin film is a film formed on the surface of the base film with a resin.
  • the resin thin film can be directly formed on the surface of the base film. Another layer may be provided between the base film and the resin thin film.
  • the resin thin film may be a single-layer film having only one layer, or may be a multilayer film having two or more layers.
  • the specific peel strength between the base film and the resin thin film is preferably 500 N / m or less, more preferably 100 N / m or less, more preferably 10 N / m or less, and particularly preferably 5 N / m or less.
  • the lower limit is not particularly limited, but is usually 1 N / m or more.
  • the peel strength between the base film and the resin thin film can be measured by the following method.
  • the adhesive sheet of a 3 layer structure provided with the peeling liner as a protective film, an adhesive layer, and a peeling liner in this order is prepared. Cut the adhesive sheet to the same size as the glass plate.
  • One release liner of the pressure-sensitive adhesive sheet is peeled to expose the surface of the pressure-sensitive adhesive layer.
  • the exposed surface of the pressure-sensitive adhesive layer is bonded to a glass plate using a roller having a load of 1 kg.
  • the other release liner of the pressure-sensitive adhesive sheet is peeled off to expose the surface of the pressure-sensitive adhesive layer.
  • the exposed surface of the pressure-sensitive adhesive layer is bonded to the surface on the resin thin film side of the multilayer film including the base film and the resin thin film using a roller having a load of 1 kg. Then, the part which protruded from the glass plate of a multilayer film is cut off. Thereby, the sample provided with a glass plate, an adhesive layer, a resin thin film, and a base film in this order is obtained. The sample is sandwiched between jigs of a tensile tester (for example, “MX-500N-L550-E” manufactured by IMADA) and fixed.
  • a tensile tester for example, “MX-500N-L550-E” manufactured by IMADA
  • the base film of this sample is pulled in the 90 ° direction (that is, the normal direction of the surface of the glass plate) in accordance with JIS K6854-1, thereby peeling the base film from the resin thin film and measuring the peel strength. To do.
  • the tensile speed during the measurement is 20 mm / min.
  • the thickness of the resin thin film is preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more, particularly preferably 2 ⁇ m or more, preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less, and particularly preferably 10 ⁇ m or less.
  • a film made of a cured product cured using a photocurable liquid crystal composition as a composition containing a resin can be used as the resin thin film. That is, as the resin for forming the resin thin film, for example, a cured product of a photocurable liquid crystal composition can be used. A cured product of the photocurable liquid crystal composition is relatively brittle and tends to be easily broken by stress. Therefore, a film made of a cured product of a photocurable liquid crystal composition is suitable for the above-described method for manufacturing a release piece.
  • a material referred to as a “liquid crystal composition” includes not only a mixture of two or more substances but also a material composed of a single substance.
  • a cholesteric resin layer may be used as the resin thin film.
  • the cholesteric resin layer refers to a resin layer having cholesteric regularity.
  • the cholesteric regularity of the resin layer having the cholesteric regularity is that the molecular axes are aligned in a certain direction on one plane, but the direction of the molecular axis is slightly offset in the next plane that overlaps it,
  • the structure is such that the angle of the molecular axis in the plane is shifted (twisted) as it sequentially passes through the overlapping planes so that the angle is further shifted in the next plane.
  • the molecules in the layer have cholesteric regularity, the molecules are aligned in a manner that forms a layer of many molecules in the resin layer.
  • the molecules are aligned such that the molecular axis is in a certain direction, and in the layer B adjacent thereto, the molecules are displaced at an angle from the direction in the layer A.
  • Molecules are aligned in the direction, and in the layer C adjacent thereto, the molecules are aligned in a direction further at an angle with the direction in the layer B.
  • the angle of the molecular axes is continuously shifted to form a structure in which the molecules are twisted.
  • the structure in which the direction of the molecular axis is twisted becomes an optically chiral structure.
  • the cholesteric resin layer usually has a circularly polarized light separation function. That is, it has a property of transmitting one circularly polarized light of right circularly polarized light and left circularly polarized light and reflecting a part or all of the other circularly polarized light. Moreover, the reflection in the cholesteric resin layer reflects circularly polarized light while maintaining its chirality.
  • the cholesteric resin layer preferably has as high a reflectance as possible, and as a result, a layer having a high average reflectance in the wavelength range to be reflected is preferable. Thereby, when the peeling piece of the resin thin film is used as the material of the anti-counterfeit article, authenticity identification becomes clear. Moreover, when the peeling piece of a resin thin film is used as a material for a decorative article, the degree of freedom in design can be increased.
  • the wavelength that exhibits the circularly polarized light separation function generally depends on the pitch of the helical structure in the cholesteric resin layer.
  • the pitch of the helical structure is the distance in the plane normal direction until the angle of the molecular axis in the helical structure is continuously shifted gradually as it advances along the plane, and then returns to the original molecular axis direction again. .
  • the wavelength at which the circularly polarized light separating function is exhibited can be changed.
  • the cholesteric resin layer capable of exhibiting a circularly polarized light separating function in a wide wavelength range includes, for example, (i) a cholesteric resin layer in which the pitch of the helical structure is changed stepwise, and (ii) the pitch of the helical structure. And a cholesteric resin layer in which is continuously changed.
  • the resin thin film peeling piece utilizing the circularly polarized light separation function can be efficiently manufactured by the manufacturing method of the present embodiment.
  • a cholesteric resin layer made of a cured product of a photocurable liquid crystal composition will be described as an example of a suitable resin thin film.
  • a cholesteric resin layer can be obtained, for example, by providing a film of a photocurable liquid crystal composition on a substrate film and curing the film of the liquid crystal composition.
  • the liquid crystal composition for example, a composition containing a liquid crystal compound and capable of exhibiting a cholesteric liquid crystal phase when a film is formed on the base film can be used.
  • liquid crystal compound contained in the liquid crystal composition a polymerizable liquid crystal compound can be used as the liquid crystal compound contained in the liquid crystal composition.
  • a non-liquid crystalline cholesteric resin layer cured by polymerizing the liquid crystalline compound having such polymerizability in a state exhibiting cholesteric regularity to cure the film of the liquid crystal composition and exhibiting cholesteric regularity. Can be obtained.
  • liquid crystal composition examples include a liquid crystal composition containing a compound represented by the following formula (1) and a specific rod-like liquid crystal compound.
  • R 1 -A 1 -BA 2 -R 2 are each independently a linear or branched alkyl group having 1 to 20 carbon atoms, or a straight chain having 1 to 20 carbon atoms. Or a branched alkylene oxide group, a hydrogen atom, a halogen atom, a hydroxyl group, a carboxyl group, a (meth) acryl group, an epoxy group, a mercapto group, an isocyanate group, an amino group, which may have an arbitrary linking group interposed, And a group selected from the group consisting of a cyano group.
  • the alkyl group and alkylene oxide group may be unsubstituted or substituted with one or more halogen atoms.
  • the halogen atom, hydroxyl group, carboxyl group, (meth) acryl group, epoxy group, mercapto group, isocyanate group, amino group, and cyano group are an alkyl group having 1 to 2 carbon atoms, and an alkylene oxide. It may be bonded to a group.
  • R 1 and R 2 include a halogen atom, a hydroxyl group, a carboxyl group, a (meth) acryl group, an epoxy group, a mercapto group, an isocyanate group, an amino group, and a cyano group.
  • At least one of R 1 and R 2 is a reactive group.
  • the compound represented by the formula (1) is fixed in the cholesteric resin layer at the time of curing, and a stronger layer can be formed.
  • the reactive group include a carboxyl group, a (meth) acryl group, an epoxy group, a mercapto group, an isocyanate group, and an amino group.
  • a 1 and A 2 are each independently 1,4-phenylene group, 1,4-cyclohexylene group, 1,4-cyclohexenylene group, 4,4′-biphenylene group, 4 , 4′-bicyclohexylene group and a group selected from the group consisting of 2,6-naphthylene group.
  • 1,4-phenylene group, 1,4-cyclohexylene group, 1,4-cyclohexenylene group, 4,4′-biphenylene group, 4,4′-bicyclohexylene group, and 2,6-naphthylene group Is unsubstituted or substituted with one or more substituents such as a halogen atom, a hydroxyl group, a carboxyl group, a cyano group, an amino group, an alkyl group having 1 to 10 carbon atoms, and a halogenated alkyl group. It may be. In each of A 1 and A 2 , when two or more substituents are present, they may be the same or different.
  • a 1 and A 2 include groups selected from the group consisting of 1,4-phenylene group, 4,4′-biphenylene group, and 2,6-naphthylene group. These aromatic ring skeletons are relatively rigid as compared with the alicyclic skeletons, have high affinity with the mesogen of the rod-like liquid crystal compound, and higher alignment uniformity.
  • At least one of the compounds represented by the formula (1) preferably has liquid crystallinity, and preferably has chirality.
  • the compound represented by the formula (1) is preferably used in combination of a plurality of optical isomers. For example, a mixture of a plurality of types of enantiomers, a mixture of a plurality of types of diastereomers, or a mixture of enantiomers and diastereomers may be used.
  • At least one of the compounds represented by formula (1) preferably has a melting point in the range of 50 ° C to 150 ° C.
  • the refractive index anisotropy ⁇ n is preferably high.
  • the refractive index anisotropy ⁇ n of a liquid crystal composition containing the compound can be improved, and circularly polarized light is reflected.
  • a cholesteric resin layer having a wide possible wavelength range can be produced.
  • the refractive index anisotropy ⁇ n of the compound represented by the formula (1) is preferably 0.18 or more, more preferably 0.22 or more.
  • the refractive index anisotropy ⁇ n can be measured by the Senarmon method.
  • the cured resin layer is extinguished using an optical microscope (ECLIPSE E600POL (transmission / reflection type) with a sensitive color plate, ⁇ / 4 wavelength plate, Senarmon compensator, GIF filter 546 nm, manufactured by Nikon Corporation).
  • particularly preferred compounds represented by the formula (1) include the following compounds (A1) to (A10). Moreover, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • the rod-like liquid crystalline compound used in combination with the compound represented by the formula (1) has a refractive index anisotropy ⁇ n of 0.18 or more and at least two or more reactivities in one molecule.
  • a rod-like liquid crystalline compound having a group is preferred.
  • An example of such a rod-like liquid crystalline compound is a compound represented by the formula (2).
  • R 3 and R 4 are reactive groups, each independently (meth) acryl group, (thio) epoxy group, oxetane group, thietanyl group, aziridinyl group, pyrrole group, vinyl group. , An allyl group, a fumarate group, a cinnamoyl group, an oxazoline group, a mercapto group, an iso (thio) cyanate group, an amino group, a hydroxyl group, a carboxyl group, and an alkoxysilyl group.
  • the film strength that can withstand practical use is pencil hardness (JIS K5400), which is usually HB or higher, preferably H or higher. By increasing the film strength in this way, it is difficult to damage the film, so that handling properties can be improved.
  • D 3 and D 4 are a single bond, a linear or branched alkyl group having 1 to 20 carbon atoms, and a straight chain having 1 to 20 carbon atoms or Represents a group selected from the group consisting of branched alkylene oxide groups.
  • C 3 to C 6 are a single bond, —O—, —S—, —S—S—, —CO—, —CS—, —OCO—, —CH 2 —, —OCH 2.
  • M represents a mesogenic group.
  • M is an azomethine group, azoxy group, phenyl group, biphenyl group, terphenyl group, naphthalene group, anthracene group, benzoic acid ester group, cyclohexanecarboxyl group, which may be unsubstituted or substituted.
  • Examples of the substituent that the mesogenic group M may have include a halogen atom, an optionally substituted alkyl group having 1 to 10 carbon atoms, a cyano group, a nitro group, —O—R 5 , — O—C ( ⁇ O) —R 5 , —C ( ⁇ O) —O—R 5 , —O—C ( ⁇ O) —O—R 5 , —NR 5 —C ( ⁇ O) —R 5 , —C ( ⁇ O) —NR 5 R 7 , or —O—C ( ⁇ O) —NR 5 R 7 may be mentioned.
  • R 5 and R 7 represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • the alkyl group includes —O—, —S—, —O—C ( ⁇ O) —, —C ( ⁇ O) —O—, —O—C. ( ⁇ O) —O—, —NR 6 —C ( ⁇ O) —, —C ( ⁇ O) —NR 6 —, —NR 6 —, or —C ( ⁇ O) — may be present. (However, the case where two or more of —O— and —S— are adjacent to each other is excluded).
  • R 6 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • substituent in the “optionally substituted alkyl group having 1 to 10 carbon atoms” include, for example, a halogen atom, a hydroxyl group, a carboxyl group, a cyano group, an amino group, and a carbon atom number of 1 to 6 alkoxy groups, alkoxyalkoxy groups having 2 to 8 carbon atoms, alkoxyalkoxyalkoxy groups having 3 to 15 carbon atoms, alkoxycarbonyl groups having 2 to 7 carbon atoms, 2 carbon atoms A 7 to 7 alkylcarbonyloxy group, an alkoxycarbonyloxy group having 2 to 7 carbon atoms, and the like.
  • the rod-like liquid crystal compound preferably has an asymmetric structure.
  • the asymmetric structure is a structure in which R 3 -C 3 -D 3 -C 5 -and -C 6 -D 4 -C 4 -R 4 are different in the formula (2) with the mesogenic group M as the center.
  • R 3 -C 3 -D 3 -C 5 -and -C 6 -D 4 -C 4 -R 4 are different in the formula (2) with the mesogenic group M as the center.
  • the refractive index anisotropy ⁇ n of the rod-like liquid crystal compound is preferably 0.18 or more, more preferably 0.22 or more.
  • a rod-like liquid crystalline compound having a refractive index anisotropy ⁇ n of 0.30 or more the absorption edge on the long wavelength side of the ultraviolet absorption spectrum may extend to the visible region, but the absorption edge of the spectrum extends to the visible region. However, it can be used as long as the desired optical performance is not adversely affected.
  • a cholesteric resin layer having high optical performance for example, selective reflection performance of circularly polarized light
  • rod-like liquid crystalline compound examples include the following compounds (B1) to (B10). Moreover, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • the weight ratio represented by (total weight of compounds represented by formula (1)) / (total weight of rod-like liquid crystalline compounds) is preferably 0.05 or more, more preferably 0.1 or more, and particularly preferably 0. .15 or more, preferably 1 or less, more preferably 0.65 or less, and particularly preferably 0.45 or less.
  • the weight ratio is preferably 0.05 or more, more preferably 0.1 or more, and particularly preferably 0. .15 or more, preferably 1 or less, more preferably 0.65 or less, and particularly preferably 0.45 or less.
  • the refractive index anisotropy ⁇ n of the liquid crystal composition can be increased, a cholesteric resin layer having desired optical performance (for example, selective reflection performance of circularly polarized light) can be stably obtained.
  • the total weight indicates the weight when one type is used, and indicates the total weight when two or more types are used.
  • the molecular weight of the compound represented by Formula (1) is less than 600, and the molecular weight of a rod-shaped liquid crystalline compound is It is preferable that it is 600 or more.
  • the liquid crystal composition can optionally contain a cross-linking agent in order to improve the film strength and durability after curing.
  • a crosslinking agent it reacts simultaneously when the film of the liquid crystal composition is cured, or a heat treatment is performed after curing to accelerate the reaction, or the reaction proceeds spontaneously by moisture, thereby increasing the crosslinking density of the cholesteric resin layer.
  • crosslinking agent examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and 2- (2-vinyloxyethoxy).
  • Polyfunctional acrylate compounds such as ethyl acrylate; epoxy compounds such as glycidyl (meth) acrylate, ethylene glycol diglycidyl ether, glycerin triglycidyl ether, pentaerythritol tetraglycidyl ether; 2,2-bishydroxymethylbutanol-tris [3- ( 1-aziridinyl) propionate], 4,4-bis (ethyleneiminocarbonylamino) diphenylmethane, trimethylolpropane-tri- ⁇ -aziridinylpropionate Aziridine compounds such as onate; Isocyanurate type isocyanate derived from hexamethylene diisocyanate, hexamethylene diisocyanate, biuret type isocyanate, adduct type isocyanate, etc .; Polyoxazoline compound having an oxazoline group in the side chain; Vinyltrimethoxysilane; N- (2
  • a crosslinking agent may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. Furthermore, you may use a well-known catalyst according to the reactivity of a crosslinking agent. By using the catalyst, productivity can be improved in addition to the improvement of the film strength and durability of the cholesteric resin layer.
  • the amount of the crosslinking agent is preferably such that the amount of the crosslinking agent in the cholesteric resin layer obtained by curing the film of the liquid crystal composition is 0.1 wt% to 15 wt%.
  • the liquid crystal composition since it has photocurability, it usually contains a photoinitiator.
  • a photoinitiator the well-known compound which generate
  • the photoinitiator examples include benzoin, benzylmethyl ketal, benzophenone, biacetyl, acetophenone, Michler's ketone, benzyl, benzylisobutyl ether, tetramethylthiuram mono (di) sulfide, 2,2-azobisisobutyronitrile, 2 , 2-azobis-2,4-dimethylvaleronitrile, benzoyl peroxide, di-tert-butyl peroxide, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, 2,4-diethylthioxanthone, methylbenzoyl formate, , 2-diethoxyacetophenone,
  • these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios. Furthermore, you may control sclerosis
  • the amount of the photoinitiator is preferably 0.03% to 7% by weight in the liquid crystal composition.
  • the amount of the photoinitiator is preferably 0.03% to 7% by weight in the liquid crystal composition.
  • the liquid crystal composition can optionally contain a surfactant.
  • a surfactant for example, one that does not inhibit the orientation can be appropriately selected and used.
  • a surfactant for example, a nonionic surfactant containing a siloxane or a fluorinated alkyl group in the hydrophobic group portion is preferably exemplified.
  • oligomers having two or more hydrophobic group moieties in one molecule are particularly suitable.
  • surfactants include PolyFox PF-151N, PF-636, PF-6320, PF-656, PF-6520, PF-3320, PF-651, PF-652 from OMNOVA; Neos FTX-209F, FTX-208G, FTX-204D of Surfactant, KH-40 of Surflon of Seimi Chemical Co., etc. can be used.
  • surfactant may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • the amount of the surfactant is preferably such that the amount of the surfactant in the cholesteric resin layer obtained by curing the liquid crystal composition is 0.05% by weight to 3% by weight.
  • the liquid crystal composition can optionally contain a chiral agent.
  • the twist direction of the cholesteric resin layer can be appropriately selected depending on the type and structure of the chiral agent to be used. This can be realized by using a chiral agent that imparts dextrorotability when the twist is in the right direction, and by using a chiral agent that imparts levorotation when the twist direction is in the left direction.
  • Specific examples of the chiral agent include JP-A-2005-289881, JP-A-2004-115414, JP-A-2003-66214, JP-A-2003-313187, JP-A-2003-342219, JP-A-2003-342219.
  • a chiral agent may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the amount of the chiral agent can be arbitrarily set within a range not deteriorating the desired optical performance.
  • the specific amount of the chiral agent is usually 1% by weight to 60% by weight in the liquid crystal composition.
  • the liquid crystal composition may further contain other optional components as necessary.
  • the optional component include a solvent, a polymerization inhibitor for improving pot life, an antioxidant for improving durability, an ultraviolet absorber, and a light stabilizer.
  • these arbitrary components may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. The amount of these optional components can be arbitrarily set within a range that does not deteriorate the desired optical performance.
  • the method for producing the liquid crystal composition is not particularly limited, and can be produced by mixing the above-described components.
  • a film of the liquid crystal composition is provided on the base film.
  • a film of a liquid crystal composition is provided by applying the liquid crystal composition to the surface of a base film.
  • a liquid crystal composition film is usually provided on the alignment film.
  • treatments such as corona discharge treatment and rubbing treatment may be applied to the surface of the base film as necessary.
  • the liquid crystal composition can be applied by a known method such as an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, a die coating method, or a bar coating method.
  • an alignment treatment may be performed as necessary.
  • the alignment treatment can be performed, for example, by heating a liquid crystal composition film at 50 to 150 ° C. for 0.5 to 10 minutes. By performing the alignment treatment, the liquid crystal composition in the film can be aligned well.
  • a curing process is performed to cure the film of the liquid crystal composition.
  • the curing process can be performed, for example, by a combination of one or more light irradiations and a heating process.
  • the heating conditions are, for example, usually 40 ° C. or higher, preferably 50 ° C. or higher, and usually 200 ° C. or lower, preferably 140 ° C. or lower, usually 1 second or longer, preferably 5 seconds or longer, and usually 3 minutes.
  • the time may be preferably 120 seconds or less.
  • the light used for light irradiation includes not only visible light but also ultraviolet rays and other electromagnetic waves.
  • the light irradiation can be performed, for example, by irradiating light having a wavelength of 200 nm to 500 nm for 0.01 second to 3 minutes.
  • the energy of the irradiated light can be, for example, 0.01 mJ / cm 2 to 50 mJ / cm 2 .
  • a cholesteric resin layer having a polarization separation function can be obtained.
  • the expansion of the reflection band and the irradiation with strong ultraviolet rays may be performed in the air, or a part or all of the process may be performed in an atmosphere in which the oxygen concentration is controlled (for example, in a nitrogen atmosphere). .
  • the step of applying and curing the liquid crystal composition as described above is not limited to once, and the application and curing may be repeated a plurality of times. Thereby, the cholesteric resin layer containing two or more layers can be formed.
  • a cholesteric resin layer containing a well-oriented rod-like liquid crystalline compound and having a thickness of 5 ⁇ m or more can be obtained by applying and curing the liquid crystal composition only once. Can be easily formed.
  • the multilayer film 10 obtained in the step 1 can be configured as shown in FIG. This multilayer film 10 is subjected to step 2.
  • Step (2) is a step of forming a crack by spraying a liquid on the resin thin film.
  • FIG. 3 is a cross-sectional view schematically showing a multilayer film in which cracks are formed by spraying a liquid.
  • the step of spraying the liquid onto the resin thin film is performed using a liquid spraying device 120 provided in the peeling chamber 110 as shown in FIG.
  • the liquid spraying device 120 includes a liquid supply unit 121 and a nozzle 120A that sprays liquid.
  • a pair of tension rolls 111A and 111B capable of pressing the multilayer film 10 from one side in the thickness direction (the upper side in the figure) when the liquid is sprayed are provided rotatably in the circumferential direction.
  • the peeling chamber 110 is provided with a support plate 112 that is provided on the opposite side of the multilayer film 10 with respect to the tension rolls 111 ⁇ / b> A and 111 ⁇ / b> B and supports the multilayer film 10.
  • the liquid is sprayed from the nozzle 120A provided above in a state where the lower surface is supported by the support plate 112. It is possible to perform the spraying work while preventing the film from sagging.
  • the pressure of the liquid sprayed from the nozzle 120A is set to such a high pressure that a crack is generated in the resin thin film 11 and the cracked resin thin film 11 can be blown off from the base film 12.
  • the spray pressure of the liquid is preferably 0.15 MPa or more, more preferably 0.5 MPa or more, preferably 50 MPa or less, more preferably 40 MPa or less.
  • the installation direction of the nozzle 120A is set so that the resin thin film 11 can be peeled off by the liquid ejected from the nozzle 120A.
  • the spray angle of the liquid with respect to the base film 12 can be an angle at which a crack can be formed in the resin thin film 11.
  • the liquid is not particularly limited, but tap water, ion exchange water, pure water; chloroform, methylene chloride, fluorocarbon and other (chlorine, fluorine, bromine) organic solvents; benzene, toluene, xylene and other aromatics Hydrocarbon solvents; aliphatic hydrocarbon solvents such as n-pentane, n-hexane, n-heptane; surfactants. These may be used alone or in combination of two or more. From the viewpoint of facilitating crack penetration and promoting the peeling of the resin thin film, a liquid selected from organic solvents, hydrocarbon solvents, and surfactants can be used.
  • pure water refers to water having a water quality equivalent to “A1” defined in JIS K0557 “Water used for water / wastewater tests” or higher.
  • the surface on which the liquid is sprayed (the upper surface in the drawing) is the surface on which the resin thin film 11 is formed.
  • the liquid collides with the resin thin film 11 and a crack 10C is formed.
  • the multilayer film 10 in which the crack 10C is formed is obtained (see FIG. 2).
  • Step (3) is a step of peeling the resin thin film from the base film to obtain a peeled piece.
  • the step (3) is a step (3A) of blowing the resin thin film in which the crack is formed from the base film by spraying the liquid onto the multilayer film in which the crack is formed, following the step (2).
  • the step (3A) of spraying a liquid onto the cracked multilayer film and blowing the resin thin film continues from step (2), and the same device (the liquid spraying device 120 provided in the peeling chamber 110). Can be used.
  • the liquid sprayed on the multilayer film is preferably the same liquid as the step (2) from the viewpoint of easy recovery, but may be different.
  • the liquid spray pressure and the liquid spray angle in the step (3A) may be the same as or different from those in the step (2). That is, the step (3) may be performed as a separate step from the step (2), or may be performed simultaneously by the same operation as the step (2).
  • the blown-off resin thin film 11 moves together with the liquid from the peeling chamber 110 to the peeling piece collecting unit 115 that is continuous.
  • the filter 116 that can filter the peel piece 11A from the liquid is provided, and thus the peel piece 11A is recovered from the liquid.
  • the stripped strip 11 ⁇ / b> A remains on the filter 116, and the liquid passes through the filter 116 and is recovered by the liquid recovery unit 130.
  • the liquid recovered by the liquid recovery unit 130 moves in the direction indicated by L1 through the liquid channel 131 and can be discarded or reused.
  • the resin thin film 11 (peeling piece 11A) recovered by the filter 116 can be subjected to the next step depending on the application to be used.
  • the base film 12 after the resin thin film 11 has been peeled is transported outside the peeling device 103 by the transport roll 103 and collected.
  • the resin thin film (peeling piece) collected by the filter may contain a liquid component, a drying process is performed as necessary. A drying process is normally performed using drying apparatuses, such as oven.
  • the resin thin film (peeled piece) collected by the filter can be pulverized as it is or after performing a drying step.
  • the resin thin film is usually pulverized using a pulverizer. Examples of the pulverizer include a ball mill, a bead mill, a roll mill, a rod mill, and a stone mill type pulverizer.
  • the average particle diameter of the peeled pieces of the resin thin film obtained by pulverization is preferably 1 ⁇ m or more for obtaining decorative properties, and preferably 500 ⁇ m or less for obtaining moldability and printability of the film. More preferably, it is 100 ⁇ m or less.
  • the average particle diameter of the peeled pieces of the resin thin film can be measured as follows. First, using several sieves having different openings, the ratio of the peeled pieces of the resin thin film passing through the sieve having the openings is measured. The particle size distribution of the resin thin film pigment is expressed as an integrated weight percentage from the size of the openings and the ratio of the peeled pieces of the resin thin film passing through the sieve having the openings. In this particle size distribution, the particle size having an integrated value of 50% by weight is defined as the average particle size.
  • the peeled piece of the resin thin film manufactured by the manufacturing method described above can be applied to a paint as a pigment.
  • This paint includes a dispersion medium and a release piece (pigment) of a resin thin film dispersed in the dispersion medium.
  • a resin thin film pigment what applied the peeling piece of the resin thin film as a pigment is called a resin thin film pigment.
  • a layer containing a resin thin film pigment can be formed on the surface of the article by applying a coating containing the resin thin film pigment to the article and drying it.
  • An article having a layer containing a resin thin film pigment can be used for various applications by taking advantage of the properties of the resin thin film pigment.
  • the resin thin film is a cholesteric resin layer
  • the layer containing the resin thin film pigment produced from the resin thin film has a circularly polarized light separating function, like the resin thin film itself. Therefore, a film having a circularly polarized light separation function can be prepared on the surface of the article by using a paint manufactured using a resin thin film made of a cholesteric resin layer.
  • Examples of the application target of the layer containing the resin thin film pigment include anti-counterfeit articles, security articles, and decorative articles.
  • Examples of the anti-counterfeit article include a label for authenticity identification, a seal, and a display medium.
  • Examples of the security article include an authentication medium such as a cash voucher, a gift certificate, a ticket, a certificate, and a security card.
  • Examples of the decorative article include ornaments, stationery, furniture, automobiles (interior and exterior), home appliances, PCs, cosmetic packages, and the like.
  • the resin thin film pigment has a circularly polarized light separating function, it is preferably applied to a display medium for authenticity identification.
  • the liquid is sprayed on the multilayer film to form a crack in the resin thin film, and the peeled peeled piece flows together with the sprayed liquid, so that the resin thin film is crushed dryly.
  • the risk of dust explosion can be reduced, and the risk of clogging can be reduced.
  • a liquid spraying device including a nozzle 120A for spraying liquid from above into the peeling chamber 110, a pair of tension rolls 111A and 111B capable of pressing the multilayer film 10 from above in the thickness direction, and tension rolls 111A,
  • 111B showed the aspect which has the support plate 112 provided in the other side in the thickness direction of the multilayer film 10, this invention is not limited to such an aspect.
  • the aspect shown in the following modified examples 1 and 2 may be sufficient.
  • FIG. 4 is a side view schematically showing a part of the manufacturing apparatus according to the first modification.
  • the liquid spraying apparatus 200 including the nozzle 220 ⁇ / b> A capable of spraying the liquid L from the lower side in the drawing and a pair of tension rolls 211 ⁇ / b> A capable of pressing the multilayer film 10 from the upper side in the thickness direction. , 211B and a support plate 212 that supports the multilayer film 10 from the same direction as the tension roll.
  • positioning the multilayer film 10 so that the resin thin film 11 may become a lower side, a liquid is sprayed directly on the resin thin film 11, a crack is formed and it peels.
  • FIG. 5 is a side view schematically showing a part of the manufacturing apparatus according to the first modification.
  • the peeling chamber does not include a tension roll, and includes a roll-shaped support 310 (support roll 310) as a support that supports the multilayer film 11.
  • the support roll 310 is rotatable in the circumferential direction.
  • the support roll 310 is provided in contact with the surface (lower surface) opposite to the surface (upper surface) to which the liquid L of the multilayer film 11 is sprayed, and the portion of the multilayer film 11 to which the liquid L is sprayed is provided.
  • FIG. 7 is a side view schematically showing a part of the manufacturing apparatus according to the third modification.
  • the manufacturing apparatus 700 includes a feeding device 701 for feeding out the multilayer film 10, a liquid spraying device 720 for spraying a liquid on the multilayer film 10 to form a crack and peeling the resin thin film from the multilayer film 10, A peeling chamber 710 that houses the liquid spraying device and a peeling piece collection unit 115 that collects the peeled resin thin film 11 (peeling piece) are provided.
  • the feeding device 701 is a device for delivering the multilayer film 10 manufactured in the step (1) at a desired delivery speed.
  • a film roll obtained by winding the multilayer film 10 in the longitudinal direction can be attached to the feeding device 701.
  • the feeding device 701 has a structure capable of feeding the multilayer film 10 in the longitudinal direction from the attached film roll.
  • the surface on the resin thin film 11 side is the nozzle 720A side (left side in FIG. 7). It is conveyed to become.
  • the multilayer film 10 fed from the feeding device 701 is conveyed in the direction indicated by the arrow A7 by an appropriate conveyance roll (not shown).
  • the multilayer film 10 is conveyed in the direction of arrow A8 while being tensioned by a pair of tension rolls 711A and 711B and supported by the support plate 712 from the base film side (right side in FIG. 7).
  • it is provided to step (2) and step (3).
  • the liquid is supplied from the liquid supply unit 721 of the liquid spraying device 720 to the nozzle 720A, and the liquid is ejected from the nozzle 720A in the direction of the arrow A9. Spray.
  • the resulting strip 11A and the liquid used are separated by the strip recovery unit 115, the filter 116, the liquid recovery unit 130, and other components by the same mechanism as in the first embodiment shown in FIG. Collected.
  • both the tension rolls 111 ⁇ / b> A and 111 ⁇ / b> B and the liquid spraying device 120 are arranged on the resin thin film 11 side in the transport path of the multilayer film 10, whereas FIG. In Modification 3, spraying by the liquid spraying device 720 is performed on the resin thin film 11 side, while tension rolls 711A and 711B are disposed on the base film 12 side.
  • the tension rolls 111 ⁇ / b> A and 111 ⁇ / b> B are arranged horizontally, and the multilayer film 10 is conveyed horizontally between them, whereas the third modification shown in FIG. 7 is performed. Then, the tension rolls 711A and 711B are arranged substantially vertically, and the multilayer film 10 is conveyed substantially vertically between them.
  • Such a feature can be a particularly advantageous effect when a long film having a particularly long length is used as the multilayer film 10 and the production method of the present invention is carried out continuously for a long time.
  • the vertical direction (gravity direction) can be 0 °, preferably 0-20 °, more preferably 5-15 °.
  • the transport direction is set to other than 0 ° and tilted from the vertical direction, it is preferable to tilt so that the surface on the resin thin film side is on the upper side.
  • the multilayer film 10 is transported upward from the lower tension roll 711A to the upper tension roll 711B, and sprayed by blowing liquid downward from the liquid spraying device 720.
  • the direction of conveyance and spraying is not limited to this.
  • the liquid may be conveyed downward and the liquid may be blown upward and sprayed.
  • photopolymerizable liquid crystalline compound 1 As the photopolymerizable liquid crystalline compound 1, a compound having the following structure was used.
  • LC756 As the chiral agent, “LC756” manufactured by BASF Corporation was used. As a photopolymerization initiator, “Irgacure OXEO2” manufactured by Ciba Japan was used. As the surfactant, “Factent 209F” manufactured by Neos Co., Ltd. was used.
  • the one release liner of the pressure-sensitive adhesive sheet was peeled off to expose the surface of the pressure-sensitive adhesive layer.
  • the exposed surface of the pressure-sensitive adhesive layer was bonded to a glass plate using a roller having a load of 1 kg.
  • the other release liner of the pressure-sensitive adhesive sheet was peeled off to expose the surface of the pressure-sensitive adhesive layer.
  • the exposed surface of the pressure-sensitive adhesive layer was bonded to the surface on the resin thin film side of the multilayer film including the base film and the resin thin film, using a roller with a load of 1 kg. Then, the part which protruded from the glass plate of a multilayer film was cut off. Thereby, the sample provided with a glass plate, an adhesive layer, a resin thin film, and a base film in this order was obtained.
  • the sample was sandwiched between fixtures of a tensile testing machine (“MX-500N-L550-E” manufactured by IMADA) and fixed.
  • MX-500N-L550-E manufactured by IMADA
  • JIS K6854-1 that is, the normal direction of the surface of the glass plate
  • the base film is peeled from the resin thin film, and the peel strength is measured. did.
  • a load cell having a maximum load of 5N was used. Further, the tensile speed during the measurement was 20 mm / min.
  • the resin thin film was peeled well at 60 minutes and 150 minutes after the start of the production of the resin thin film release piece (continuous step (2) and step (3)). It was determined whether or not. As a result of the determination, when it was determined that the resin thin film was peeled well, the operation of the apparatus was continued as it was. When it was determined that the resin thin film was not peeled well, the operation of the apparatus was interrupted, the apparatus was cleaned, and then the operation was resumed. The result of determination was evaluated according to the following evaluation criteria. 60: It was determined that peeling of the resin thin film was not performed well 60 minutes after the start of production.
  • a long polyethylene terephthalate film (“PET film A4100” manufactured by Toyobo Co., Ltd .; thickness 100 ⁇ m) having an in-plane refractive index isotropic and having an in-plane refractive index was prepared as a base film.
  • This base film was attached to the feeding part of the film transport apparatus, and the following operations were performed while transporting the base film in the longitudinal direction.
  • the rubbing process was performed in the longitudinal direction parallel to the transport direction.
  • the liquid crystal composition prepared in (1-1) was applied to the surface subjected to the rubbing treatment using a die coater. Thereby, the film
  • the film of the obtained liquid crystal composition is subjected to an alignment treatment at 100 ° C. for 5 minutes, and the film is irradiated with weak ultraviolet rays of 0.1 mJ / cm 2 to 45 mJ / cm 2 , followed by 1 at 100 ° C. The process consisting of a minute warming treatment was repeated twice. Thereafter, the liquid crystal composition film was irradiated with ultraviolet rays of 800 mJ / cm 2 in a nitrogen atmosphere to completely cure the liquid crystal composition film. Thereby, the multilayer film provided with the resin thin film of the thickness shown in Table 1 on the single side
  • the resin thin film 11 was placed on the upper side of the feeding device 101, the multilayer film 10 was attached, and the film was conveyed at the line speed shown in Table 1, and the following operations were performed. Pure water was used as the liquid, the spraying pressure was set to 30 MPa, and sprayed from the nozzle 120 ⁇ / b> A to the upper surface side of the multilayer film 10. The conveyance direction of the multilayer film at the time of spraying was set to the horizontal direction as shown in FIG.
  • the peeled piece 11A of the obtained resin thin film 11 was recovered from the liquid by the filter 116.
  • the collected peeled pieces 11A were dried with a dryer, the size of the obtained peeled pieces was visually observed, and the particle size of the peeled pieces was evaluated according to the evaluation criteria described above.
  • Example 2 Except that the composition of the liquid crystal composition was changed as shown in Table 1 in step (1-1), the same procedure as in Example 1 was performed to produce a release piece. The magnitude
  • the liquid spraying time was 0.2 seconds, but at the time immediately after the start of operation of the apparatus, the entire amount of the resin thin film 11 was peeled off. Thereafter, the operation of the apparatus was continued and the continuous processing time was evaluated.
  • Example 3 After the multilayer film obtained in (1-2) of Example 1 was roll-pressed using a press apparatus (roll press apparatus SA-602 manufactured by Tester Sangyo Co., Ltd.) at a press pressure of 30 MPa and a press time of 0.06 seconds, Except that the operation (1-3) of Example 1 was performed, the same operation as in Example 1 was performed to produce a peeled piece, and the size of the obtained peeled piece was visually observed, Particle size was evaluated.
  • a crack is generated in the resin thin film by pressing, and when the liquid is sprayed after pressing, more cracks are generated. By spraying the liquid further, the resin thin film 11 having the crack is peeled off and blown away by the liquid. It was done.
  • the liquid spraying time was 0.2 seconds, but at the time immediately after the start of operation of the apparatus, the entire amount of the resin thin film 11 was peeled off. Thereafter, the operation of the apparatus was continued and the continuous processing time was evaluated.
  • Example 4 Except for the following changes, the same operation as in Example 1 was performed to produce a peeled piece, and the evaluation of the continuous treatment time of the apparatus and the particle size of the peeled piece were performed.
  • the apparatus 700 shown in FIG. 7 is used as the apparatus, and the transport direction of the multilayer film at the time of spraying is as shown in FIG. It was.
  • the set pressure for spraying was changed from 30 MPa to 20 MPa.
  • Example 5 Except for the following changes, the same operation as in Example 1 was performed to produce a peeled piece, and the evaluation of the continuous treatment time of the apparatus and the particle size of the peeled piece were performed.
  • step (1-1) the composition of the liquid crystal composition was changed as shown in Table 1.
  • step (1-3) instead of the apparatus 100, the apparatus 700 shown in FIG. 7 is used as the apparatus, and the transport direction of the multilayer film at the time of spraying is as shown in FIG. It was.
  • step (1-3) the set pressure for spraying was changed from 30 MPa to 20 MPa.
  • FIG. 6 is a side view schematically showing a peeling piece manufacturing apparatus used in Comparative Example 1.
  • the manufacturing apparatus 400 provided with the film delivery part 420, the peeling part 430, and the film collection
  • the peeling portion 430 was provided with a bar 434 having a corner portion 435 provided at an acute angle, and a nozzle 436 capable of injecting air provided immediately downstream of the corner portion 435.
  • the angle of the corner portion 435 of the bar 434 was set so that the multilayer film 10 could be folded back at an angle ⁇ (60 °).
  • the multilayer film 10 was attached to the film delivery section 420 in such a direction that the multilayer film 10 could be folded back with the resin thin film 11 outside the base film 12 at the corner portion 435 of the bar 434. And the multilayer film 10 was sent out from the film delivery part 420 in the state which gave the tension
  • FIG. At this time, the magnitude of the tension applied to the multilayer film 10 was set to 80 N / m. Air was injected from the nozzle 436 at a pressure of 0.5 MPa.
  • the multilayer film 10 was folded at the corner portion 435 of the bar 434, and many cracks were formed. Thereafter, the resin thin film 11 with cracks formed was peeled off and blown off by the air jetted from the nozzle 436, and a peeled piece 11A was obtained.
  • the multilayer film 10 was conveyed at a line speed of 20 m / min, only a part of the resin thin film having cracks could be peeled off. Therefore, when the multilayer film 10 is transported at a line speed of 10 m / min, 5 m / min, and 1 m / min, by transporting at a line speed of 1 m / min, the total amount in the width direction of the cracked resin thin film is reduced. It peeled.

Abstract

The present invention is a method for manufacturing resin thin film stripped pieces, said method including: a step (1) for obtaining a multilayer film by forming a resin thin film on a base material film; a step (2) for forming cracks in the resin thin film by spraying a liquid thereon; and a step (3) for obtaining stripped pieces by stripping the resin thin film from the base material film. The liquid is preferably pure water. The step (2) is preferably performed with a spraying pressure of 0.15-50 MPa inclusive. The resin thin film is preferably formed of a cured product of a photo-curable liquid crystal composition. The resin thin film is preferably a cholesteric resin layer.

Description

樹脂薄膜の剥離片の製造方法Method for producing release piece of resin thin film
 本発明は、樹脂薄膜の剥離片の製造方法に関する。 The present invention relates to a method for producing a peeled piece of a resin thin film.
 従来から、樹脂薄膜を粉砕した小片を顔料として用いる技術が知られている。このような顔料は、一般に、基材フィルム上に樹脂薄膜を形成し、その樹脂薄膜を基材フィルムから剥離した後で、剥がした樹脂薄膜を粉砕することにより製造される(特許文献1を参照)。 Conventionally, a technique using a small piece obtained by pulverizing a resin thin film as a pigment is known. Such a pigment is generally produced by forming a resin thin film on a base film, peeling the resin thin film from the base film, and then crushing the peeled resin thin film (see Patent Document 1). ).
特開2001-261739号公報(対応公報:米国特許出願公開第2002/017633号明細書)JP 2001-261739 A (corresponding publication: US Patent Application Publication No. 2002/017633)
 しかしながら、従来の方法では、基材フィルムから樹脂薄膜を剥離する工程を効率的に行うことが難しいという問題があった。 However, the conventional method has a problem that it is difficult to efficiently perform the process of peeling the resin thin film from the base film.
 従って、本発明の目的は、剥離片を、効率的に製造することができる、基材フィルム上に形成された樹脂薄膜の剥離片の製造方法を提供することにある。 Therefore, an object of the present invention is to provide a method for producing a release piece of a resin thin film formed on a base film, which can efficiently produce the release piece.
 本発明者は前記の課題を解決するべく鋭意検討した結果、樹脂薄膜に液体を吹き付けて亀裂を形成させてから、樹脂薄膜を剥離することにより、剥離片を効率的に製造することができることを見出し、本発明を完成させた。
 すなわち、本発明は以下の通りである。
As a result of intensive studies to solve the above-mentioned problems, the present inventor has found that a peeling piece can be efficiently manufactured by spraying a liquid on a resin thin film to form a crack and then peeling the resin thin film. The headline and the present invention were completed.
That is, the present invention is as follows.
 〔1〕 基材フィルム上に、樹脂薄膜を形成して複層フィルムを得る工程(1)と、
 前記樹脂薄膜に液体を吹き付けて亀裂を形成する工程(2)と、
 前記基材フィルムから前記樹脂薄膜を剥離して剥離片を得る工程(3)と、を含む、
 樹脂薄膜の剥離片の製造方法。
 〔2〕 前記液体が純水である、〔1〕に記載の樹脂薄膜の剥離片の製造方法。
 〔3〕 前記工程(2)を、吹付圧力0.15MPa以上50MPa以下で行う、〔1〕または〔2〕に記載の樹脂薄膜の剥離片の製造方法。
 〔4〕 前記樹脂薄膜が、光硬化性の液晶組成物の硬化物からなる、〔1〕~〔3〕のいずれか一項に記載の樹脂薄膜の剥離片の製造方法。
 〔5〕 前記樹脂薄膜が、コレステリック樹脂層である、〔1〕~〔4〕のいずれか一項に記載の樹脂薄膜の剥離片の製造方法。
 〔6〕 前記基材フィルムと前記樹脂薄膜との剥離強度が500N/m以下である、〔1〕~〔5〕のいずれか一項に記載の樹脂薄膜の剥離片の製造方法。
 〔7〕 前記樹脂薄膜の厚さが、0.1μm以上200μm以下である、〔1〕~〔6〕のいずれか一項に記載の樹脂薄膜の剥離片の製造方法。
[1] A step (1) of forming a resin thin film on a base film to obtain a multilayer film;
(2) forming a crack by spraying a liquid on the resin thin film;
And (3) obtaining a peeled piece by peeling the resin thin film from the base film.
A method for producing a peeled piece of a resin thin film.
[2] The method for producing a peeled piece of a resin thin film according to [1], wherein the liquid is pure water.
[3] The method for producing a peeled piece of a resin thin film according to [1] or [2], wherein the step (2) is performed at a spraying pressure of 0.15 MPa to 50 MPa.
[4] The method for producing a peelable piece of a resin thin film according to any one of [1] to [3], wherein the resin thin film is made of a cured product of a photocurable liquid crystal composition.
[5] The method for producing a peeled piece of a resin thin film according to any one of [1] to [4], wherein the resin thin film is a cholesteric resin layer.
[6] The method for producing a peeled piece of a resin thin film according to any one of [1] to [5], wherein the peel strength between the base film and the resin thin film is 500 N / m or less.
[7] The method for producing a peeled piece of a resin thin film according to any one of [1] to [6], wherein the thickness of the resin thin film is 0.1 μm or more and 200 μm or less.
 本発明によれば、剥離片を、効率的に製造することができる、基材フィルム上に形成された樹脂薄膜の剥離片の製造方法を提供することができる。 According to the present invention, it is possible to provide a method for producing a release piece of a resin thin film formed on a substrate film, which can efficiently produce the release piece.
図1は、実施形態1の樹脂薄膜の剥離片の製造方法で用いる装置を模式的に示す側面図である。FIG. 1 is a side view schematically showing an apparatus used in the method for producing a peelable piece of a resin thin film according to Embodiment 1. 図2は、実施形態1の製造方法で用いる複層フィルムを模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing a multilayer film used in the manufacturing method of Embodiment 1. 図3は、液体を吹き付けることにより亀裂が形成された複層フィルムを模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing a multilayer film in which cracks are formed by spraying a liquid. 図4は、変形例1に係る製造装置の一部を模式的に示す側面図である。FIG. 4 is a side view schematically showing a part of the manufacturing apparatus according to the first modification. 図5は、変形例2に係る製造装置の一部を模式的に示す側面図である。FIG. 5 is a side view schematically showing a part of the manufacturing apparatus according to the second modification. 図6は、比較例1で用いる剥離片の製造装置を模式的に示す側面図である。FIG. 6 is a side view schematically showing a peeling piece manufacturing apparatus used in Comparative Example 1. FIG. 図7は、変形例3に係る製造装置の一部を模式的に示す側面図である。FIG. 7 is a side view schematically showing a part of the manufacturing apparatus according to the third modification.
 以下、実施形態及び例示物を示して本発明について詳細に説明する。ただし、本発明は以下に示す実施形態に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。 Hereinafter, the present invention will be described in detail with reference to embodiments and examples. However, this invention is not limited to embodiment shown below, In the range which does not deviate from the range of the claim of this invention, and its equivalent, it can implement arbitrarily.
 以下の説明において、「長尺」のフィルムとは、フィルムの幅に対して、5倍程度以上の長さを有するものをいい、好ましくは10倍若しくはそれ以上の長さを有し、具体的にはロール状に巻回されて保管又は運搬される程度の長さを有するものをいう。長尺のフィルムの長さの上限は特に制限は無く、例えば、幅に対して10万倍としうる。 In the following description, the “long” film refers to a film having a length of about 5 times or more, preferably 10 times or more of the film width. Refers to those having a length that is wound in a roll and stored or transported. The upper limit of the length of the long film is not particularly limited, and can be, for example, 100,000 times the width.
 また、以下の説明において、要素の方向が「平行」、「垂直」及び「直交」とは、特に断らない限り、本発明の効果を損ねない範囲内、例えば±5°の範囲内での誤差を含んでいてもよい。さらに、ある方向に「沿って」とは、ある方向に「平行に」との意味である。 In the following description, the directions of the elements are “parallel”, “vertical” and “orthogonal”, unless otherwise specified, within a range that does not impair the effect of the present invention, for example, within ± 5 °. May be included. Further, “along” in a certain direction means “in parallel” in a certain direction.
 また、以下の説明において、「(メタ)アクリル」とは、アクリル、メタクリル、及びこれらの組み合わせを包含する。また、「(メタ)アクリレート」は、アクリレート、メタクリレート及びこれらの組み合わせを包含する。また、「(チオ)エポキシ」とは、エポキシ、チオエポキシ及びこれらの組み合わせを包含する。また、「イソ(チオ)シアネート」とは、イソシアネート、イソチオシアネート及びこれらの組み合わせを包含する。 In the following description, “(meth) acryl” includes acrylic, methacrylic, and combinations thereof. Further, “(meth) acrylate” includes acrylate, methacrylate, and combinations thereof. Further, “(thio) epoxy” includes epoxy, thioepoxy, and combinations thereof. The “iso (thio) cyanate” includes isocyanate, isothiocyanate, and combinations thereof.
 [実施形態1:樹脂薄膜の剥離片の製造方法]
 [1.樹脂薄膜の剥離片の製造方法の概要]
 以下、本発明の実施形態1に係る樹脂薄膜の剥離片の製造方法について、図1~3を参照しつつ、説明する。
 本実施形態の樹脂薄膜の剥離片の製造方法は、基材フィルム上に、樹脂薄膜を形成して複層フィルムを得る工程(1)と、樹脂薄膜に液体を吹き付けて亀裂を形成する工程(2)と、基材フィルムから樹脂薄膜を剥離して剥離片を得る工程(3)と、を含む。
[Embodiment 1: Manufacturing Method of Release Piece of Resin Thin Film]
[1. Overview of the method for producing a resin thin film release piece]
Hereinafter, a method for producing a peelable piece of a resin thin film according to Embodiment 1 of the present invention will be described with reference to FIGS.
The method for producing a peeled piece of a resin thin film according to this embodiment includes a step (1) of forming a resin thin film on a base film to obtain a multilayer film, and a step of spraying a liquid on the resin thin film to form a crack ( 2) and a step (3) of peeling the resin thin film from the base film to obtain a peeled piece.
 図1は、本発明の実施形態1に係る樹脂薄膜の剥離片の製造方法で用いる製造装置を模式的に示す側面図である。この製造装置は、本発明の製造方法の工程(1)~(3)のうち工程(2)~(3)を実施する装置である。図2は本実施形態で用いる複層フィルムの断面図である。
 図1に示すように、本実施形態で用いる樹脂薄膜の剥離片の製造装置100は、複層フィルム10を繰り出す繰出し装置101と、複層フィルム10に液体を吹き付けて亀裂を形成し複層フィルム10から樹脂薄膜を剥離する液体吹付装置120と、当該液体吹付装置を収容する剥離室110と、剥離された樹脂薄膜11(剥離片)を回収する剥離片回収部115とを備える。
FIG. 1 is a side view schematically showing a manufacturing apparatus used in the method for manufacturing a peelable piece of a resin thin film according to Embodiment 1 of the present invention. This manufacturing apparatus is an apparatus that performs steps (2) to (3) among steps (1) to (3) of the manufacturing method of the present invention. FIG. 2 is a cross-sectional view of a multilayer film used in this embodiment.
As shown in FIG. 1, an apparatus 100 for producing a peeled piece of a resin thin film used in this embodiment includes a feeding device 101 for feeding out a multilayer film 10, and a liquid is sprayed on the multilayer film 10 to form a crack to form a multilayer film. 10 includes a liquid spraying device 120 that peels the resin thin film from 10, a peeling chamber 110 that houses the liquid spraying device, and a peeling piece collection unit 115 that collects the peeled resin thin film 11 (peeling piece).
 繰出し装置101は、工程(1)で製造した複層フィルム10を所望の送出速度で送出するための装置である。繰出し装置101には、複層フィルム10を長尺方向に巻き取ったフィルムロールが装着可能である。繰出し装置101は、装着されたフィルムロールから複層フィルム10を長尺方向へ向けて送出しうる構造を有している。
 複層フィルム10は、図2に示す通り、基材フィルム12と、その基材フィルム上に形成された樹脂薄膜11とを備える。図1において、複層フィルム10は、繰出し装置101から繰出されて液体吹付装置120へ搬送される時点において、樹脂薄膜11側の面が上側となるよう搬送される。
The feeding device 101 is a device for sending the multilayer film 10 manufactured in the step (1) at a desired delivery speed. A film roll obtained by winding the multilayer film 10 in the longitudinal direction can be attached to the feeding device 101. The feeding device 101 has a structure capable of feeding the multilayer film 10 in the longitudinal direction from the mounted film roll.
As shown in FIG. 2, the multilayer film 10 includes a base film 12 and a resin thin film 11 formed on the base film. In FIG. 1, the multilayer film 10 is transported so that the surface on the resin thin film 11 side is on the upper side when the multilayer film 10 is unwound from the unwinding apparatus 101 and is transported to the liquid spraying apparatus 120.
 繰出し装置101から繰り出された複層フィルム10は、搬送ロール102によりA1に示す方向に搬送される。搬送された複層フィルム10は、液体を吹き付けられることで、樹脂薄膜11に亀裂が形成される(工程(2))。 The multilayer film 10 fed from the feeding device 101 is transported in the direction indicated by A1 by the transport roll 102. As the transported multilayer film 10 is sprayed with a liquid, a crack is formed in the resin thin film 11 (step (2)).
 亀裂が形成された複層フィルム10にさらに液体を吹き付けることにより基材フィルム12から樹脂薄膜11を剥離して剥離片11Aを得る(工程(3))。 Further, the resin thin film 11 is peeled off from the base film 12 by spraying a liquid further on the multilayer film 10 in which the crack is formed to obtain a peeled piece 11A (step (3)).
 本実施形態では、剥離室110において、樹脂薄膜11に亀裂を形成した後、さらに、亀裂が形成された部分に液体吹付装置120から液体を吹き付けて、亀裂が形成された樹脂薄膜11(剥離片11A)を吹き飛ばし剥離する。このようにして剥離された樹脂薄膜11(剥離片11A)は、液体とともに剥離片回収部115へ移動する。剥離片回収部115では、フィルター116により、剥離片11Aを液体から回収される。具体的には、剥離片11Aはフィルター116上に残り、液体はフィルター116を通過して液体回収部130にて回収される。液体回収部130で回収された液体は、液体流路131を通って、廃棄または再利用されうる。回収された樹脂薄膜11(剥離片11A)は、使用する用途に応じて次の工程に供し得る。
 以下、各工程について詳しく説明する。
In the present embodiment, after a crack is formed in the resin thin film 11 in the peeling chamber 110, a liquid is further sprayed from the liquid spraying device 120 to a portion where the crack is formed, and the resin thin film 11 (peeling piece with the crack formed) is formed. 11A) is blown off and peeled off. The resin thin film 11 (peeled piece 11A) thus peeled moves to the peeled piece collection unit 115 together with the liquid. In the peeling piece collection unit 115, the peeling piece 11 </ b> A is collected from the liquid by the filter 116. Specifically, the peeling piece 11 </ b> A remains on the filter 116, and the liquid passes through the filter 116 and is recovered by the liquid recovery unit 130. The liquid recovered by the liquid recovery unit 130 can be discarded or reused through the liquid channel 131. The collected resin thin film 11 (peeling piece 11A) can be subjected to the next step depending on the application to be used.
Hereinafter, each step will be described in detail.
 [2.工程(1)]
 工程(1)は、基材フィルム上に樹脂薄膜を形成して複層フィルムを得る工程である。工程(1)では、基材フィルム上に、樹脂薄膜を形成するための樹脂を含む組成物を塗布して、組成物の膜を設けた後、当該組成物の膜を硬化させて樹脂薄膜を形成することにより、複層フィルムを製造しうる。以下、工程(1)で用いる材料及び工程(1)における操作について説明する。
[2. Step (1)]
Step (1) is a step of forming a resin thin film on a base film to obtain a multilayer film. In the step (1), a composition containing a resin for forming a resin thin film is applied on a base film, and a film of the composition is provided. Then, the film of the composition is cured to form a resin thin film. A multilayer film can be manufactured by forming. Hereinafter, materials used in the step (1) and operations in the step (1) will be described.
 [2.1.基材フィルム]
 複層フィルムの製造に用いる基材フィルムは、樹脂薄膜を支持するためのフィルムである。この基材フィルムは、樹脂薄膜に亀裂を形成する工程(2)において、破損しない程度に強い機械的強度を有するフィルムであることが好ましい。また、基材フィルムとしては、ロールトゥロール法によって効率的に製造できるという観点から、長尺のフィルムが好ましい。
[2.1. Base film]
The base film used for manufacturing the multilayer film is a film for supporting the resin thin film. This base film is preferably a film having a mechanical strength that is strong enough not to break in the step (2) of forming a crack in the resin thin film. Moreover, as a base film, a long film is preferable from a viewpoint that it can manufacture efficiently by the roll toe roll method.
 このような基材フィルムとしては、樹脂からなる基材層を備えるフィルムを用いうる。基材層を形成する樹脂が含む重合体の例を挙げると、鎖状オレフィン重合体、シクロオレフィン重合体、ポリカーボネート、ポリエステル、ポリスルホン、ポリエーテルスルホン、ポリスチレン、ポリビニルアルコール、酢酸セルロース系重合体、ポリ塩化ビニル、ポリメタクリレートなどが挙げられる。 As such a base film, a film having a base layer made of a resin can be used. Examples of the polymer contained in the resin that forms the base layer include: chain olefin polymer, cycloolefin polymer, polycarbonate, polyester, polysulfone, polyethersulfone, polystyrene, polyvinyl alcohol, cellulose acetate polymer, poly Examples thereof include vinyl chloride and polymethacrylate.
 ここで、樹脂は、1種類の重合体を単独で含むものを用いてもよく、2種類以上の重合体を任意の比率で組み合わせて含むものを用いてもよい。また、樹脂は、本発明の効果を著しく損なわない限り、任意の配合剤を含んでいてもよい。 Here, as the resin, one containing one kind of polymer alone may be used, or one containing two or more kinds of polymers combined in an arbitrary ratio may be used. In addition, the resin may contain any compounding agent as long as the effects of the present invention are not significantly impaired.
 また、基材フィルムは、一層のみを備える単層構造のフィルムであってもよく、二層以上の層を備える複層構造のフィルムであってもよい。したがって、基材フィルムは、前記の基材層のみを備えるフィルムであってもよく、前記の基材層に加えて任意の層を備えるフィルムであってもよい。例えば、樹脂薄膜を形成する組成物として液晶組成物を用いる場合、液晶組成物を良好に配向させる観点から、基材フィルムは、配向膜を有していてもよい。 The base film may be a single-layer film having only one layer, or may be a multilayer film having two or more layers. Accordingly, the base film may be a film including only the base layer, or may be a film including an arbitrary layer in addition to the base layer. For example, when using a liquid crystal composition as a composition for forming a resin thin film, the base film may have an alignment film from the viewpoint of satisfactorily aligning the liquid crystal composition.
 基材フィルムは、その表面において、配向規制力を有するものとしうる。基材フィルムに配向規制力を付与するための処理の例としては、ラビング処理、光配向処理、及びフォトリソグラフィによる配向処理が挙げられる。
 ラビング処理は、フィルムの表面を擦ることにより配向規制力を付与する処理である。この場合において、配向膜は、例えば、ポリイミド、ポリビニルアルコール、ポリエステル、ポリアリレート、ポリアミドイミド、ポリエーテルイミド、ポリアミド等の重合体を含む樹脂により形成しうる。また、これらの重合体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。配向膜は、前記の重合体を含む溶液を塗布し、乾燥させ、ラビング処理を施すことにより製造しうる。この場合において、配向膜の厚みは、好ましくは0.01μm以上、より好ましくは0.05μm以上であり、好ましくは5μm以下、より好ましくは1μm以下である。
 但し、基材フィルムに配向規制力を付与する場合、基材フィルムは基材層に加えて配向膜を有するものであってもよく、配向膜を有しないものであってもよい。例えば、基材層に直接ラビング処理を行い、配向規制力を有する基材フィルムを得うる。
The base film may have an orientation regulating force on the surface. Examples of the treatment for imparting the orientation regulating force to the base film include rubbing treatment, photo-alignment treatment, and alignment treatment by photolithography.
The rubbing treatment is a treatment for imparting an orientation regulating force by rubbing the surface of the film. In this case, the alignment film can be formed of a resin containing a polymer such as polyimide, polyvinyl alcohol, polyester, polyarylate, polyamideimide, polyetherimide, polyamide, and the like. Moreover, these polymers may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. The alignment film can be manufactured by applying a solution containing the polymer, drying, and rubbing. In this case, the thickness of the alignment film is preferably 0.01 μm or more, more preferably 0.05 μm or more, preferably 5 μm or less, more preferably 1 μm or less.
However, when the orientation regulating force is applied to the base film, the base film may have an orientation film in addition to the base layer or may not have an orientation film. For example, a base film having an orientation regulating force can be obtained by directly rubbing the base layer.
 光配向処理とは、配光膜に直線偏光の紫外線を照射し、異方性を付与することにより、配向規制力を付与する処理である。フォトリソグラフィにより配向処理とは、基材フィルムの表面において、配向規制力を発現する構造物を、フォトリソグラフィを用いて形成する処理である。 The photo-alignment treatment is a treatment for imparting alignment regulating force by irradiating the light distribution film with linearly polarized ultraviolet rays and imparting anisotropy. The alignment process by photolithography is a process of forming a structure that exhibits an alignment regulating force on the surface of the base film using photolithography.
 基材フィルムは、延伸されていない未延伸フィルムであってもよく、延伸された延伸フィルムであってもよい。
 また、基材フィルムは、等方なフィルムであってもよく、異方性を有するフィルムであってもよい。
 さらに、基材フィルムは、その片面又は両面に表面処理が施されたものであってもよい。表面処理を施すことにより、基材フィルムの表面に直接形成される他の層との密着性を向上させることができる。表面処理としては、例えば、エネルギー線照射処理及び薬品処理などが挙げられる。
The base film may be a non-stretched unstretched film or a stretched stretched film.
Further, the base film may be an isotropic film or an anisotropic film.
Furthermore, the base film may have been subjected to surface treatment on one side or both sides. By performing the surface treatment, adhesion with other layers directly formed on the surface of the base film can be improved. Examples of the surface treatment include energy ray irradiation treatment and chemical treatment.
 基材フィルムの厚みは、製造時のハンドリング性、材料のコスト、薄型化及び軽量化の観点から、好ましくは1μm以上、より好ましくは5μm以上であり、好ましくは500μm以下、より好ましくは200μm以下である。 The thickness of the base film is preferably 1 μm or more, more preferably 5 μm or more, preferably 500 μm or less, more preferably 200 μm or less, from the viewpoints of handling properties at the time of manufacture, material cost, thickness reduction and weight reduction. is there.
 [2.2.樹脂薄膜]
 樹脂薄膜は、樹脂によって基材フィルムの表面に形成された膜である。樹脂薄膜は、基材フィルムの表面に直接形成しうる。基材フィルムと樹脂薄膜との間には、他の層が設けられていてもよい。また、樹脂薄膜は、1層のみを有する単層構造の膜であってもよく、2層以上の層を有する複層構造の膜であってもよい。
[2.2. Resin thin film]
The resin thin film is a film formed on the surface of the base film with a resin. The resin thin film can be directly formed on the surface of the base film. Another layer may be provided between the base film and the resin thin film. The resin thin film may be a single-layer film having only one layer, or may be a multilayer film having two or more layers.
 樹脂薄膜としては、基材フィルムからの樹脂薄膜の剥離を容易に行う観点から、基材フィルムとの剥離強度が小さいものが好ましい。基材フィルムと樹脂薄膜との間の具体的な剥離強度は、好ましくは500N/m以下、より好ましくは100N/m以下、より好ましくは10N/m以下、特に好ましくは5N/m以下である。また、下限に特に制限は無いが、通常1N/m以上である。 As the resin thin film, those having a small peel strength from the base film are preferable from the viewpoint of easily peeling the resin thin film from the base film. The specific peel strength between the base film and the resin thin film is preferably 500 N / m or less, more preferably 100 N / m or less, more preferably 10 N / m or less, and particularly preferably 5 N / m or less. The lower limit is not particularly limited, but is usually 1 N / m or more.
 ここで、基材フィルムと樹脂薄膜との間の剥離強度は、次の方法により測定しうる。
 ガラス板を用意する。また、保護フィルムとしての剥離ライナー、粘着剤層及び剥離ライナーをこの順に備える3層構造の粘着シートを用意する。
 粘着シートを、ガラス板と同じサイズにカットする。粘着シートの一方の剥離ライナーを剥離し、粘着剤層の表面を露出させる。この露出した粘着剤層の表面をガラス板に、荷重1Kgのローラーを用いて貼り合わせる。
 粘着シートのもう一方の剥離ライナーを剥離し、粘着剤層の表面を露出させる。この露出した粘着剤層の表面を、基材フィルム及び樹脂薄膜を備える複層フィルムの樹脂薄膜側の面と、荷重1Kgのローラーを用いて貼り合わせる。その後、複層フィルムのガラス板からはみ出した部分を切り除く。これにより、ガラス板、粘着剤層、樹脂薄膜及び基材フィルムをこの順に備えるサンプルを得る。
 前記のサンプルを、引張試験機(例えば、IMADA製「MX-500N-L550-E」)の冶具に挟み、固定する。このサンプルの基材フィルムを、JIS K6854-1に準じて90°方向(即ち、ガラス板の表面の法線方向)に引っ張ることにより、樹脂薄膜から基材フィルムを剥がして、その剥離強度を測定する。測定の際の引張速度は、20mm/分とする。
Here, the peel strength between the base film and the resin thin film can be measured by the following method.
Prepare a glass plate. Moreover, the adhesive sheet of a 3 layer structure provided with the peeling liner as a protective film, an adhesive layer, and a peeling liner in this order is prepared.
Cut the adhesive sheet to the same size as the glass plate. One release liner of the pressure-sensitive adhesive sheet is peeled to expose the surface of the pressure-sensitive adhesive layer. The exposed surface of the pressure-sensitive adhesive layer is bonded to a glass plate using a roller having a load of 1 kg.
The other release liner of the pressure-sensitive adhesive sheet is peeled off to expose the surface of the pressure-sensitive adhesive layer. The exposed surface of the pressure-sensitive adhesive layer is bonded to the surface on the resin thin film side of the multilayer film including the base film and the resin thin film using a roller having a load of 1 kg. Then, the part which protruded from the glass plate of a multilayer film is cut off. Thereby, the sample provided with a glass plate, an adhesive layer, a resin thin film, and a base film in this order is obtained.
The sample is sandwiched between jigs of a tensile tester (for example, “MX-500N-L550-E” manufactured by IMADA) and fixed. The base film of this sample is pulled in the 90 ° direction (that is, the normal direction of the surface of the glass plate) in accordance with JIS K6854-1, thereby peeling the base film from the resin thin film and measuring the peel strength. To do. The tensile speed during the measurement is 20 mm / min.
 樹脂薄膜の厚みは、好ましくは0.1μm以上、より好ましくは1μm以上、特に好ましくは2μm以上であり、好ましくは200μm以下、より好ましくは100μm以下、特に好ましくは10μm以下である。樹脂薄膜の厚みを下限値以上とすることにより、亀裂を形成する際に基材フィルムの破損を防止し、樹脂薄膜の厚みを上限値以下とすることにより、剥離作業を効率よく行うことができる。 The thickness of the resin thin film is preferably 0.1 μm or more, more preferably 1 μm or more, particularly preferably 2 μm or more, preferably 200 μm or less, more preferably 100 μm or less, and particularly preferably 10 μm or less. By making the thickness of the resin thin film equal to or higher than the lower limit value, the base film is prevented from being damaged when forming a crack, and by making the thickness of the resin thin film equal to or lower than the upper limit value, the peeling work can be efficiently performed. .
 樹脂薄膜としては、例えば、樹脂を含む組成物として光硬化性の液晶組成物を用いて硬化させた硬化物からなる膜を用いうる。すなわち、樹脂薄膜を形成する樹脂としては、例えば、光硬化性の液晶組成物の硬化物を用いうる。光硬化性の液晶組成物の硬化物は、比較的脆く、応力によって破壊されやすい傾向がある。そのため、光硬化性の液晶組成物の硬化物からなる膜は、上述した剥離片の製造方法に適している。ここで便宜上「液晶組成物」と称する材料は、2種類以上の物質の混合物のみならず、単一の物質からなる材料をも包含する。 As the resin thin film, for example, a film made of a cured product cured using a photocurable liquid crystal composition as a composition containing a resin can be used. That is, as the resin for forming the resin thin film, for example, a cured product of a photocurable liquid crystal composition can be used. A cured product of the photocurable liquid crystal composition is relatively brittle and tends to be easily broken by stress. Therefore, a film made of a cured product of a photocurable liquid crystal composition is suitable for the above-described method for manufacturing a release piece. Here, for convenience, a material referred to as a “liquid crystal composition” includes not only a mixture of two or more substances but also a material composed of a single substance.
 また、樹脂薄膜としては、例えば、コレステリック樹脂層を用いてもよい。コレステリック樹脂層とは、コレステリック規則性を有する樹脂層のことをいう。コレステリック規則性を有する樹脂層が有するコレステリック規則性とは、一平面上では分子軸が一定の方向に並んでいるが、それに重なる次の平面では分子軸の方向が少し角度をなしてずれ、更に次の平面ではさらに角度がずれるというように、重なって配列している平面を順次透過して進むに従って当該平面中の分子軸の角度がずれて(ねじれて)いく構造である。即ち、層内の分子がコレステリック規則性を有する場合、分子は、樹脂層内において、多数の分子の層をなす態様で整列する。かかる多数の分子の層の中のある層Aにおいては、分子の軸がある一定の方向となるよう分子が整列し、それに隣接する層Bでは、層Aにおける方向と角度を成してずれた方向に分子が整列し、それにさらに隣接する層Cでは層Bにおける方向と角度を成してさらにずれた方向に分子が整列する。このように、多数の分子の層において、分子の軸の角度が連続的にずれて、分子がねじれる構造が形成される。このように分子軸の方向がねじれてゆく構造は光学的にカイラルな構造となる。 Further, as the resin thin film, for example, a cholesteric resin layer may be used. The cholesteric resin layer refers to a resin layer having cholesteric regularity. The cholesteric regularity of the resin layer having the cholesteric regularity is that the molecular axes are aligned in a certain direction on one plane, but the direction of the molecular axis is slightly offset in the next plane that overlaps it, The structure is such that the angle of the molecular axis in the plane is shifted (twisted) as it sequentially passes through the overlapping planes so that the angle is further shifted in the next plane. That is, when the molecules in the layer have cholesteric regularity, the molecules are aligned in a manner that forms a layer of many molecules in the resin layer. In a certain layer A of the many molecular layers, the molecules are aligned such that the molecular axis is in a certain direction, and in the layer B adjacent thereto, the molecules are displaced at an angle from the direction in the layer A. Molecules are aligned in the direction, and in the layer C adjacent thereto, the molecules are aligned in a direction further at an angle with the direction in the layer B. In this way, in a large number of molecular layers, the angle of the molecular axes is continuously shifted to form a structure in which the molecules are twisted. Thus, the structure in which the direction of the molecular axis is twisted becomes an optically chiral structure.
 コレステリック樹脂層は、通常、円偏光分離機能を有する。すなわち、右円偏光及び左円偏光のうちの一方の円偏光を透過させ、他方の円偏光の一部又は全部を反射させる性質を有する。また、コレステリック樹脂層における反射は、円偏光を、そのキラリティを維持したまま反射する。コレステリック樹脂層は、なるべく高い反射率を有し、その結果、反射すべき波長範囲における平均反射率が高いものが好ましい。これにより、樹脂薄膜の剥離片を偽造防止物品の材料として用いた場合に、真正性の識別が明確になる。また、樹脂薄膜の剥離片を加飾性物品の材料として用いた場合に、デザインの自由度を高めることができる。 The cholesteric resin layer usually has a circularly polarized light separation function. That is, it has a property of transmitting one circularly polarized light of right circularly polarized light and left circularly polarized light and reflecting a part or all of the other circularly polarized light. Moreover, the reflection in the cholesteric resin layer reflects circularly polarized light while maintaining its chirality. The cholesteric resin layer preferably has as high a reflectance as possible, and as a result, a layer having a high average reflectance in the wavelength range to be reflected is preferable. Thereby, when the peeling piece of the resin thin film is used as the material of the anti-counterfeit article, authenticity identification becomes clear. Moreover, when the peeling piece of a resin thin film is used as a material for a decorative article, the degree of freedom in design can be increased.
 円偏光分離機能を発揮する波長は、一般に、コレステリック樹脂層におけるらせん構造のピッチに依存する。らせん構造のピッチとは、らせん構造において分子軸の方向が平面を進むに従って少しずつ角度が連続的にずれていき、そして再びもとの分子軸方向に戻るまでの平面法線方向の距離である。このらせん構造のピッチの大きさを変えることによって、円偏光分離機能を発揮する波長を変えることができる。広い波長範囲において円偏光分離機能を発揮しうるコレステリック樹脂層は、例えば、(i)らせん構造のピッチの大きさを段階的に変化させたコレステリック樹脂層、(ii)らせん構造のピッチの大きさを連続的に変化させたコレステリック樹脂層、などが挙げられる。 The wavelength that exhibits the circularly polarized light separation function generally depends on the pitch of the helical structure in the cholesteric resin layer. The pitch of the helical structure is the distance in the plane normal direction until the angle of the molecular axis in the helical structure is continuously shifted gradually as it advances along the plane, and then returns to the original molecular axis direction again. . By changing the pitch of the helical structure, the wavelength at which the circularly polarized light separating function is exhibited can be changed. The cholesteric resin layer capable of exhibiting a circularly polarized light separating function in a wide wavelength range includes, for example, (i) a cholesteric resin layer in which the pitch of the helical structure is changed stepwise, and (ii) the pitch of the helical structure. And a cholesteric resin layer in which is continuously changed.
 樹脂薄膜として前記のようなコレステリック樹脂層を用いた場合、本実施形態の製造方法によって、円偏光分離機能を活かした樹脂薄膜の剥離片を効率よく製造できる。 When the cholesteric resin layer as described above is used as the resin thin film, the resin thin film peeling piece utilizing the circularly polarized light separation function can be efficiently manufactured by the manufacturing method of the present embodiment.
 以下、好適な樹脂薄膜の一例として、光硬化性の液晶組成物の硬化物からなるコレステリック樹脂層について説明する。このようなコレステリック樹脂層は、例えば、基材フィルム上に光硬化性の液晶組成物の膜を設け、この液晶組成物の膜を硬化して得ることができる。この際、液晶組成物としては、例えば、液晶性化合物を含有し、基材フィルム上に膜を形成した際にコレステリック液晶相を呈しうる組成物を用いうる。 Hereinafter, a cholesteric resin layer made of a cured product of a photocurable liquid crystal composition will be described as an example of a suitable resin thin film. Such a cholesteric resin layer can be obtained, for example, by providing a film of a photocurable liquid crystal composition on a substrate film and curing the film of the liquid crystal composition. In this case, as the liquid crystal composition, for example, a composition containing a liquid crystal compound and capable of exhibiting a cholesteric liquid crystal phase when a film is formed on the base film can be used.
 ここで、液晶組成物が含む液晶性化合物としては、重合性を有する液晶性化合物を用いうる。かかる重合性を有する液晶性化合物を、コレステリック規則性を呈した状態で重合させることにより、前記の液晶組成物の膜を硬化させ、コレステリック規則性を呈したまま硬化した非液晶性のコレステリック樹脂層を得ることができる。 Here, as the liquid crystal compound contained in the liquid crystal composition, a polymerizable liquid crystal compound can be used. A non-liquid crystalline cholesteric resin layer cured by polymerizing the liquid crystalline compound having such polymerizability in a state exhibiting cholesteric regularity to cure the film of the liquid crystal composition and exhibiting cholesteric regularity. Can be obtained.
 このような液晶組成物の中でも好適な例としては、下記式(1)で表される化合物、及び特定の棒状液晶性化合物を含有する液晶組成物が挙げられる。 Preferred examples of such a liquid crystal composition include a liquid crystal composition containing a compound represented by the following formula (1) and a specific rod-like liquid crystal compound.
 R1-A1-B-A2-R2 (1)
 式(1)において、R1及びR2は、それぞれ独立して、炭素原子数1個~20個の直鎖状又は分岐鎖状のアルキル基、炭素原子数1個~20個の直鎖状又は分岐鎖状のアルキレンオキサイド基、水素原子、ハロゲン原子、ヒドロキシル基、カルボキシル基、任意の連結基が介在していてもよい(メタ)アクリル基、エポキシ基、メルカプト基、イソシアネート基、アミノ基、及びシアノ基からなる群より選択される基である。
R 1 -A 1 -BA 2 -R 2 (1)
In the formula (1), R 1 and R 2 are each independently a linear or branched alkyl group having 1 to 20 carbon atoms, or a straight chain having 1 to 20 carbon atoms. Or a branched alkylene oxide group, a hydrogen atom, a halogen atom, a hydroxyl group, a carboxyl group, a (meth) acryl group, an epoxy group, a mercapto group, an isocyanate group, an amino group, which may have an arbitrary linking group interposed, And a group selected from the group consisting of a cyano group.
 前記アルキル基及びアルキレンオキサイド基は、置換されていないか、若しくはハロゲン原子で1つ以上置換されていてもよい。さらに、前記ハロゲン原子、ヒドロキシル基、カルボキシル基、(メタ)アクリル基、エポキシ基、メルカプト基、イソシアネート基、アミノ基、及びシアノ基は、炭素原子数1個~2個のアルキル基、及びアルキレンオキサイド基と結合していてもよい。 The alkyl group and alkylene oxide group may be unsubstituted or substituted with one or more halogen atoms. Further, the halogen atom, hydroxyl group, carboxyl group, (meth) acryl group, epoxy group, mercapto group, isocyanate group, amino group, and cyano group are an alkyl group having 1 to 2 carbon atoms, and an alkylene oxide. It may be bonded to a group.
 R1及びR2として好ましい例としては、ハロゲン原子、ヒドロキシル基、カルボキシル基、(メタ)アクリル基、エポキシ基、メルカプト基、イソシアネート基、アミノ基、及びシアノ基が挙げられる。 Preferred examples of R 1 and R 2 include a halogen atom, a hydroxyl group, a carboxyl group, a (meth) acryl group, an epoxy group, a mercapto group, an isocyanate group, an amino group, and a cyano group.
 また、R1及びR2の少なくとも一方は、反応性基であることが好ましい。R1及びR2の少なくとも一方として反応性基を有することにより、前記式(1)で表される化合物が硬化時にコレステリック樹脂層中に固定され、より強固な層を形成することができる。ここで反応性基とは、例えば、カルボキシル基、(メタ)アクリル基、エポキシ基、メルカプト基、イソシアネート基、及びアミノ基を挙げることができる。 Moreover, it is preferable that at least one of R 1 and R 2 is a reactive group. By having a reactive group as at least one of R 1 and R 2, the compound represented by the formula (1) is fixed in the cholesteric resin layer at the time of curing, and a stronger layer can be formed. Here, examples of the reactive group include a carboxyl group, a (meth) acryl group, an epoxy group, a mercapto group, an isocyanate group, and an amino group.
 式(1)において、A1及びA2はそれぞれ独立して、1,4-フェニレン基、1,4-シクロヘキシレン基、1,4-シクロヘキセニレン基、4,4’-ビフェニレン基、4,4’-ビシクロヘキシレン基、及び2,6-ナフチレン基からなる群より選択される基を表す。前記1,4-フェニレン基、1,4-シクロヘキシレン基、1,4-シクロヘキセニレン基、4,4’-ビフェニレン基、4,4’-ビシクロヘキシレン基、及び2,6-ナフチレン基は、置換されていないか、若しくはハロゲン原子、ヒドロキシル基、カルボキシル基、シアノ基、アミノ基、炭素原子数1個~10個のアルキル基、ハロゲン化アルキル基等の置換基で1つ以上置換されていてもよい。A1及びA2のそれぞれにおいて、2以上の置換基が存在する場合、それらは同一でも異なっていてもよい。 In the formula (1), A 1 and A 2 are each independently 1,4-phenylene group, 1,4-cyclohexylene group, 1,4-cyclohexenylene group, 4,4′-biphenylene group, 4 , 4′-bicyclohexylene group and a group selected from the group consisting of 2,6-naphthylene group. 1,4-phenylene group, 1,4-cyclohexylene group, 1,4-cyclohexenylene group, 4,4′-biphenylene group, 4,4′-bicyclohexylene group, and 2,6-naphthylene group Is unsubstituted or substituted with one or more substituents such as a halogen atom, a hydroxyl group, a carboxyl group, a cyano group, an amino group, an alkyl group having 1 to 10 carbon atoms, and a halogenated alkyl group. It may be. In each of A 1 and A 2 , when two or more substituents are present, they may be the same or different.
 A1及びA2として特に好ましいものとしては、1,4-フェニレン基、4,4’-ビフェニレン基、及び2,6-ナフチレン基からなる群より選択される基が挙げられる。これらの芳香環骨格は脂環式骨格と比較して比較的剛直であり、棒状液晶性化合物のメソゲンとの親和性が高く、配向均一性がより高くなる。 Particularly preferable examples of A 1 and A 2 include groups selected from the group consisting of 1,4-phenylene group, 4,4′-biphenylene group, and 2,6-naphthylene group. These aromatic ring skeletons are relatively rigid as compared with the alicyclic skeletons, have high affinity with the mesogen of the rod-like liquid crystal compound, and higher alignment uniformity.
 式(1)において、Bは、単結合、-O-、-S-、-S-S-、-CO-、-CS-、-OCO-、-CH2-、-OCH2-、-CH=N-N=CH-、-NHCO-、-O-(C=O)-O-、-CH2-(C=O)-O-、及び-CH2O-(C=O)-からなる群より選択される。
 Bとして特に好ましいものとしては、単結合、-O-(C=O)-及び-CH=N-N=CH-が挙げられる。
In the formula (1), B is a single bond, —O—, —S—, —SS—, —CO—, —CS—, —OCO—, —CH 2 —, —OCH 2 —, —CH. = N-N = CH -, - NHCO -, - O- (C = O) -O -, - CH 2 - (C = O) -O-, and -CH 2 O- (C = O) - from the Selected from the group consisting of
Particularly preferred examples of B include a single bond, —O— (C═O) —, and —CH═NN—CH—.
 式(1)で表される化合物は、少なくとも一種類が液晶性を有することが好ましく、また、キラリティを有することが好ましい。また、式(1)で表される化合物は、複数の光学異性体を組み合わせて用いることが好ましい。例えば、複数種類のエナンチオマーの混合物、複数種類のジアステレオマーの混合物、又は、エナンチオマーとジアステレオマーとの混合物を用いてもよい。式(1)で表される化合物の少なくとも一種は、その融点が、50℃~150℃の範囲内であることが好ましい。 At least one of the compounds represented by the formula (1) preferably has liquid crystallinity, and preferably has chirality. In addition, the compound represented by the formula (1) is preferably used in combination of a plurality of optical isomers. For example, a mixture of a plurality of types of enantiomers, a mixture of a plurality of types of diastereomers, or a mixture of enantiomers and diastereomers may be used. At least one of the compounds represented by formula (1) preferably has a melting point in the range of 50 ° C to 150 ° C.
 式(1)で表される化合物が液晶性を有する場合には、屈折率異方性Δnが高いことが好ましい。屈折率異方性Δnが高い液晶性化合物を式(1)で表される化合物として用いることによって、それを含む液晶組成物の屈折率異方性Δnを向上させることができ、円偏光を反射可能な波長範囲が広いコレステリック樹脂層を作製することができる。式(1)で表される化合物の少なくとも一種の屈折率異方性Δnは、好ましくは0.18以上、より好ましくは0.22以上である。ここで、屈折率異方性Δnは、セナルモン法により測定しうる。例えば、硬化樹脂層を光学顕微鏡(ECLIPSE E600POL(透過・反射タイプ)に鋭敏色板、λ/4波長板、セナルモンコンペンセータ、GIFフィルター546nmを装着、ニコン社製)を用いて消光位(θ)を観察することからレタデーション(Re)をRe=λ(546nm)×θ/180の計算式により算出し、別に求めた液晶層の膜厚(d)から計算式Δn=Re/dによりΔnを算出できる。 When the compound represented by the formula (1) has liquid crystallinity, the refractive index anisotropy Δn is preferably high. By using a liquid crystalline compound having a high refractive index anisotropy Δn as the compound represented by the formula (1), the refractive index anisotropy Δn of a liquid crystal composition containing the compound can be improved, and circularly polarized light is reflected. A cholesteric resin layer having a wide possible wavelength range can be produced. The refractive index anisotropy Δn of the compound represented by the formula (1) is preferably 0.18 or more, more preferably 0.22 or more. Here, the refractive index anisotropy Δn can be measured by the Senarmon method. For example, the cured resin layer is extinguished using an optical microscope (ECLIPSE E600POL (transmission / reflection type) with a sensitive color plate, λ / 4 wavelength plate, Senarmon compensator, GIF filter 546 nm, manufactured by Nikon Corporation). The retardation (Re) is calculated from the equation of Re = λ (546 nm) × θ / 180, and Δn is calculated from the thickness (d) of the liquid crystal layer obtained separately by the equation Δn = Re / d. it can.
 式(1)で表される化合物として特に好ましい具体例としては、例えば下記の化合物(A1)~(A10)が挙げられる。また、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Specific examples of particularly preferred compounds represented by the formula (1) include the following compounds (A1) to (A10). Moreover, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記化合物(A3)において、「*」はキラル中心を表す。 In the above compound (A3), “*” represents a chiral center.
 前記の式(1)で表される化合物と組み合わせて用いる棒状液晶性化合物としては、屈折率異方性Δnが0.18以上であって、且つ、1分子中に少なくとも2つ以上の反応性基を有する棒状液晶性化合物が好ましい。このような棒状液晶性化合物としては、例えば、式(2)で表される化合物を挙げることができる。
 R3-C3-D3-C5-M-C6-D4-C4-R4 式(2)
The rod-like liquid crystalline compound used in combination with the compound represented by the formula (1) has a refractive index anisotropy Δn of 0.18 or more and at least two or more reactivities in one molecule. A rod-like liquid crystalline compound having a group is preferred. An example of such a rod-like liquid crystalline compound is a compound represented by the formula (2).
R 3 -C 3 -D 3 -C 5 -MC 6 -D 4 -C 4 -R 4 Formula (2)
 式(2)において、R3及びR4は、反応性基であり、それぞれ独立して、(メタ)アクリル基、(チオ)エポキシ基、オキセタン基、チエタニル基、アジリジニル基、ピロール基、ビニル基、アリル基、フマレート基、シンナモイル基、オキサゾリン基、メルカプト基、イソ(チオ)シアネート基、アミノ基、ヒドロキシル基、カルボキシル基、及びアルコキシシリル基からなる群より選択される基を表す。これらの反応性基を有することにより、液晶組成物を硬化させた際に、実用に耐えうる膜強度を有した硬化物を得ることができる。ここで、実用に耐えうる膜強度とは、鉛筆硬度(JIS K5400)で、通常HB以上、好ましくはH以上である。膜強度をこのように高くすることにより、傷をつきにくくできるので、ハンドリング性を高めることができる。 In the formula (2), R 3 and R 4 are reactive groups, each independently (meth) acryl group, (thio) epoxy group, oxetane group, thietanyl group, aziridinyl group, pyrrole group, vinyl group. , An allyl group, a fumarate group, a cinnamoyl group, an oxazoline group, a mercapto group, an iso (thio) cyanate group, an amino group, a hydroxyl group, a carboxyl group, and an alkoxysilyl group. By having these reactive groups, a cured product having a film strength that can withstand practical use can be obtained when the liquid crystal composition is cured. Here, the film strength that can withstand practical use is pencil hardness (JIS K5400), which is usually HB or higher, preferably H or higher. By increasing the film strength in this way, it is difficult to damage the film, so that handling properties can be improved.
 式(2)において、D3及びD4は、単結合、炭素原子数1個~20個の直鎖状又は分岐鎖状のアルキル基、及び炭素原子数1個~20個の直鎖状又は分岐鎖状のアルキレンオキサイド基からなる群より選択される基を表す。 In the formula (2), D 3 and D 4 are a single bond, a linear or branched alkyl group having 1 to 20 carbon atoms, and a straight chain having 1 to 20 carbon atoms or Represents a group selected from the group consisting of branched alkylene oxide groups.
 式(2)において、C3~C6は、単結合、-O-、-S-、-S-S-、-CO-、-CS-、-OCO-、-CH2-、-OCH2-、-CH=N-N=CH-、-NHCO-、-O-(C=O)-O-、-CH2-(C=O)-O-、及び-CH2O-(C=O)-からなる群より選択される基を表す。 In the formula (2), C 3 to C 6 are a single bond, —O—, —S—, —S—S—, —CO—, —CS—, —OCO—, —CH 2 —, —OCH 2. -, - CH = N-N = CH -, - NHCO -, - O- (C = O) -O -, - CH 2 - (C = O) -O-, and -CH 2 O- (C = O) represents a group selected from the group consisting of:
 式(2)において、Mは、メソゲン基を表す。具体的には、Mは、非置換又は置換基を有していてもよい、アゾメチン類、アゾキシ類、フェニル類、ビフェニル類、ターフェニル類、ナフタレン類、アントラセン類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類、アルケニルシクロヘキシルベンゾニトリル類の群から選択された2個~4個の骨格を、-O-、-S-、-S-S-、-CO-、-CS-、-OCO-、-CH2-、-OCH2-、-CH=N-N=CH-、-NHCO-、-O-(C=O)-O-、-CH2-(C=O)-O-、及び-CH2O-(C=O)-等の結合基によって結合された基を表す。 In the formula (2), M represents a mesogenic group. Specifically, M is an azomethine group, azoxy group, phenyl group, biphenyl group, terphenyl group, naphthalene group, anthracene group, benzoic acid ester group, cyclohexanecarboxyl group, which may be unsubstituted or substituted. 2 to 4 skeletons selected from the group consisting of acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted phenylpyrimidines, phenyldioxanes, tolanes, alkenylcyclohexylbenzonitriles, O—, —S—, —S—S—, —CO—, —CS—, —OCO—, —CH 2 —, —OCH 2 —, —CH═N—N═CH—, —NHCO—, — O- (C = O) -O - , - CH 2 - (C = O) -O-, and -CH 2 O- (C = O) - represents a group bonded through by a linking group such as
 前記メソゲン基Mが有しうる置換基としては、例えば、ハロゲン原子、置換基を有してもよい炭素数1個~10個のアルキル基、シアノ基、ニトロ基、-O-R5、-O-C(=O)-R5、-C(=O)-O-R5、-O-C(=O)-O-R5、-NR5-C(=O)-R5、-C(=O)-NR5、または-O-C(=O)-NR5が挙げられる。ここで、R5及びRは、水素原子又は炭素数1個~10個のアルキル基を表す。R及びRがアルキル基である場合、当該アルキル基には、-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR6-C(=O)-、-C(=O)-NR6-、-NR6-、または-C(=O)-が介在していてもよい(ただし、-O-および-S-がそれぞれ2以上隣接して介在する場合を除く。)。ここで、R6は、水素原子または炭素数1個~6個のアルキル基を表す。 Examples of the substituent that the mesogenic group M may have include a halogen atom, an optionally substituted alkyl group having 1 to 10 carbon atoms, a cyano group, a nitro group, —O—R 5 , — O—C (═O) —R 5 , —C (═O) —O—R 5 , —O—C (═O) —O—R 5 , —NR 5 —C (═O) —R 5 , —C (═O) —NR 5 R 7 , or —O—C (═O) —NR 5 R 7 may be mentioned. Here, R 5 and R 7 represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. When R 5 and R 7 are alkyl groups, the alkyl group includes —O—, —S—, —O—C (═O) —, —C (═O) —O—, —O—C. (═O) —O—, —NR 6 —C (═O) —, —C (═O) —NR 6 —, —NR 6 —, or —C (═O) — may be present. (However, the case where two or more of —O— and —S— are adjacent to each other is excluded). Here, R 6 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
 前記「置換基を有してもよい炭素数1個~10個のアルキル基」における置換基としては、例えば、ハロゲン原子、ヒドロキシル基、カルボキシル基、シアノ基、アミノ基、炭素原子数1個~6個のアルコキシ基、炭素原子数2個~8個のアルコキシアルコキシ基、炭素原子数3個~15個のアルコキシアルコキシアルコキシ基、炭素原子数2個~7個のアルコキシカルボニル基、炭素原子数2個~7個のアルキルカルボニルオキシ基、炭素原子数2~7個のアルコキシカルボニルオキシ基等が挙げられる。 Examples of the substituent in the “optionally substituted alkyl group having 1 to 10 carbon atoms” include, for example, a halogen atom, a hydroxyl group, a carboxyl group, a cyano group, an amino group, and a carbon atom number of 1 to 6 alkoxy groups, alkoxyalkoxy groups having 2 to 8 carbon atoms, alkoxyalkoxyalkoxy groups having 3 to 15 carbon atoms, alkoxycarbonyl groups having 2 to 7 carbon atoms, 2 carbon atoms A 7 to 7 alkylcarbonyloxy group, an alkoxycarbonyloxy group having 2 to 7 carbon atoms, and the like.
 また、棒状液晶性化合物は、非対称構造であることが好ましい。ここで非対称構造とは、式(2)において、メソゲン基Mを中心として、R3-C3-D3-C5-と-C6-D4-C4-R4が異なる構造のことをいう。棒状液晶性化合物として非対称構造のものを用いることにより、配向均一性をより高めることができる。 The rod-like liquid crystal compound preferably has an asymmetric structure. Here, the asymmetric structure is a structure in which R 3 -C 3 -D 3 -C 5 -and -C 6 -D 4 -C 4 -R 4 are different in the formula (2) with the mesogenic group M as the center. Say. By using a rod-shaped liquid crystalline compound having an asymmetric structure, alignment uniformity can be further improved.
 棒状液晶性化合物の屈折率異方性Δnは、好ましくは0.18以上、より好ましくは0.22以上である。屈折率異方性Δnが0.30以上の棒状液晶性化合物を用いると、紫外線吸収スペクトルの長波長側の吸収端が可視域に及ぶ場合があるが、該スペクトルの吸収端が可視域に及んでも所望する光学的性能に悪影響を及ぼさない限り、使用可能である。このような高い屈折率異方性Δnを有する棒状液晶性化合物を用いることにより、高い光学的性能(例えば、円偏光の選択反射性能)を有するコレステリック樹脂層を得ることができる。 The refractive index anisotropy Δn of the rod-like liquid crystal compound is preferably 0.18 or more, more preferably 0.22 or more. When a rod-like liquid crystalline compound having a refractive index anisotropy Δn of 0.30 or more is used, the absorption edge on the long wavelength side of the ultraviolet absorption spectrum may extend to the visible region, but the absorption edge of the spectrum extends to the visible region. However, it can be used as long as the desired optical performance is not adversely affected. By using such a rod-like liquid crystalline compound having a high refractive index anisotropy Δn, a cholesteric resin layer having high optical performance (for example, selective reflection performance of circularly polarized light) can be obtained.
 棒状液晶性化合物の好ましい具体例としては、以下の化合物(B1)~(B10)が挙げられる。また、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Preferred specific examples of the rod-like liquid crystalline compound include the following compounds (B1) to (B10). Moreover, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 (式(1)で表される化合物の合計重量)/(棒状液晶性化合物の合計重量)で示される重量比は、好ましくは0.05以上、より好ましくは0.1以上、特に好ましくは0.15以上であり、好ましくは1以下、より好ましくは0.65以下、特に好ましくは0.45以下である。前記の重量比を前記範囲の下限値以上にすることにより、液晶組成物の膜において配向均一性を高めることができる。また、上限値以下にすることにより、配向均一性を高くできる。また、液晶組成物の液晶相の安定性を高くできる。さらに、液晶組成物の屈折率異方性Δnを高くできるので、所望の光学的性能(例えば、円偏光の選択反射性能)を有するコレステリック樹脂層を安定して得ることができる。ここで、合計重量とは、1種類を用いた場合にはその重量を示し、2種類以上を用いた場合には合計の重量を示す。 The weight ratio represented by (total weight of compounds represented by formula (1)) / (total weight of rod-like liquid crystalline compounds) is preferably 0.05 or more, more preferably 0.1 or more, and particularly preferably 0. .15 or more, preferably 1 or less, more preferably 0.65 or less, and particularly preferably 0.45 or less. By setting the weight ratio to be equal to or higher than the lower limit of the range, it is possible to improve alignment uniformity in the liquid crystal composition film. Further, by setting the upper limit value or less, the alignment uniformity can be increased. In addition, the stability of the liquid crystal phase of the liquid crystal composition can be increased. Furthermore, since the refractive index anisotropy Δn of the liquid crystal composition can be increased, a cholesteric resin layer having desired optical performance (for example, selective reflection performance of circularly polarized light) can be stably obtained. Here, the total weight indicates the weight when one type is used, and indicates the total weight when two or more types are used.
 また、式(1)で表される化合物と棒状液晶性化合物とを組み合わせて用いる場合、式(1)で表される化合物の分子量が600未満であることが好ましく、棒状液晶性化合物の分子量が600以上であることが好ましい。これにより、式(1)で表される化合物が、それよりも分子量の大きい棒状液晶性化合物の隙間に入り込むことができるので、配向均一性を向上させることができる。 Moreover, when using the compound represented by Formula (1) and a rod-shaped liquid crystalline compound in combination, it is preferable that the molecular weight of the compound represented by Formula (1) is less than 600, and the molecular weight of a rod-shaped liquid crystalline compound is It is preferable that it is 600 or more. Thereby, since the compound represented by Formula (1) can enter into the gaps between the rod-like liquid crystal compounds having a higher molecular weight than that, the alignment uniformity can be improved.
 液晶組成物は、硬化後の膜強度向上及び耐久性向上のために、任意に架橋剤を含有しうる。架橋剤としては、液晶組成物の膜の硬化時に同時に反応したり、硬化後に熱処理を行って反応を促進したり、又は湿気により自然に反応が進行して、コレステリック樹脂層の架橋密度を高めることができ、かつ配向均一性を悪化させないものを適宜選択し用いることができる。そのため、例えば、紫外線、熱、湿気等で硬化する任意の架橋剤を好適に使用できる。架橋剤としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、2-(2-ビニロキシエトキシ)エチルアクリレート等の多官能アクリレート化合物;グリシジル(メタ)アクリレート、エチレングリコールジグリシジルエーテル、グリセリントリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル等のエポキシ化合物;2,2-ビスヒドロキシメチルブタノール-トリス[3-(1-アジリジニル)プロピオネート]、4,4-ビス(エチレンイミノカルボニルアミノ)ジフェニルメタン、トリメチロールプロパン-トリ-β-アジリジニルプロピオネート等のアジリジン化合物;ヘキサメチレンジイソシアネート、ヘキサメチレンジイソシアネートから誘導されるイソシアヌレート型イソシアネート、ビウレット型イソシアネート、アダクト型イソシアネート等のイソシアネート化合物;オキサゾリン基を側鎖に有するポリオキサゾリン化合物;ビニルトリメトキシシラン、N-(2-アミノエチル)3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-(メタ)アクリロキシプロピルトリメトキシシラン、N-(1,3-ジメチルブチリデン)-3-(トリエトキシシリル)-1-プロパンアミン等のアルコキシシラン化合物;が挙げられる。また、架橋剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。さらに、架橋剤の反応性に応じて公知の触媒を用いてもよい。触媒を用いることにより、コレステリック樹脂層の膜強度及び耐久性向上に加えて、生産性を向上させることができる。 The liquid crystal composition can optionally contain a cross-linking agent in order to improve the film strength and durability after curing. As a crosslinking agent, it reacts simultaneously when the film of the liquid crystal composition is cured, or a heat treatment is performed after curing to accelerate the reaction, or the reaction proceeds spontaneously by moisture, thereby increasing the crosslinking density of the cholesteric resin layer. Can be appropriately selected and used without causing deterioration in alignment uniformity. Therefore, for example, any cross-linking agent that is cured by ultraviolet rays, heat, moisture, or the like can be suitably used. Examples of the crosslinking agent include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and 2- (2-vinyloxyethoxy). Polyfunctional acrylate compounds such as ethyl acrylate; epoxy compounds such as glycidyl (meth) acrylate, ethylene glycol diglycidyl ether, glycerin triglycidyl ether, pentaerythritol tetraglycidyl ether; 2,2-bishydroxymethylbutanol-tris [3- ( 1-aziridinyl) propionate], 4,4-bis (ethyleneiminocarbonylamino) diphenylmethane, trimethylolpropane-tri-β-aziridinylpropionate Aziridine compounds such as onate; Isocyanurate type isocyanate derived from hexamethylene diisocyanate, hexamethylene diisocyanate, biuret type isocyanate, adduct type isocyanate, etc .; Polyoxazoline compound having an oxazoline group in the side chain; Vinyltrimethoxysilane; N- (2-aminoethyl) 3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3- (meth) acryloxypropyltrimethoxysilane, N- (1 , 3-dimethylbutylidene) -3- (triethoxysilyl) -1-propanamine and the like. Moreover, a crosslinking agent may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. Furthermore, you may use a well-known catalyst according to the reactivity of a crosslinking agent. By using the catalyst, productivity can be improved in addition to the improvement of the film strength and durability of the cholesteric resin layer.
 架橋剤の量は、液晶組成物の膜を硬化して得られるコレステリック樹脂層における架橋剤の量が0.1重量%~15重量%となるようにすることが好ましい。架橋剤の量を前記範囲の下限値以上にすることにより、架橋密度を効果的に高めることができる。また、上限値以下にすることにより、液晶組成物の膜の安定性を高めることができる。 The amount of the crosslinking agent is preferably such that the amount of the crosslinking agent in the cholesteric resin layer obtained by curing the film of the liquid crystal composition is 0.1 wt% to 15 wt%. By setting the amount of the crosslinking agent to be not less than the lower limit of the above range, the crosslinking density can be effectively increased. Moreover, the stability of the film | membrane of a liquid-crystal composition can be improved by making it into an upper limit or less.
 また、液晶組成物は、光硬化性を有するために、通常は、光開始剤を含有する。光開始剤としては、例えば、紫外線又は可視光線によってラジカル又は酸を発生させる公知の化合物が使用できる。光開始剤の具体例としては、ベンゾイン、ベンジルメチルケタール、ベンゾフェノン、ビアセチル、アセトフェノン、ミヒラーケトン、ベンジル、ベンジルイソブチルエーテル、テトラメチルチウラムモノ(ジ)スルフィド、2,2-アゾビスイソブチロニトリル、2,2-アゾビス-2,4-ジメチルバレロニトリル、ベンゾイルパーオキサイド、ジ-tert-ブチルパーオキサイド、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、チオキサントン、2-クロロチオキサントン、2-メチルチオキサントン、2,4-ジエチルチオキサントン、メチルベンゾイルフォーメート、2,2-ジエトキシアセトフェノン、β-アイオノン、β-ブロモスチレン、ジアゾアミノベンゼン、α-アミルシンナミックアルデヒド、p-ジメチルアミノアセトフェノン、p-ジメチルアミノプロピオフェノン、2-クロロベンゾフェノン、pp’-ジクロロベンゾフェノン、pp’-ビスジエチルアミノベンゾフェノン、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインn-プロピルエーテル、ベンゾインn-ブチルエーテル、ジフェニルスルフィド、ビス(2,6-メトキシベンゾイル)-2,4,4-トリメチル-ペンチルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、2-メチル-1[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン、アントラセンベンゾフェノン、α-クロロアントラキノン、ジフェニルジスルフィド、ヘキサクロルブタジエン、ペンタクロルブタジエン、オクタクロロブテン、1-クロルメチルナフタリン、1,2-オクタンジオン-1-[4-(フェニルチオ)-2-(o-ベンゾイルオキシム)]や1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エタノン1-(o-アセチルオキシム)などのカルバゾールオキシム化合物、(4-メチルフェニル)[4-(2-メチルプロピル)フェニル]ヨードニウムヘキサフルオロフォスフェート、3-メチル-2-ブチニルテトラメチルスルホニウムヘキサフルオロアンチモネート、ジフェニル-(p-フェニルチオフェニル)スルホニウムヘキサフルオロアンチモネート等が挙げられる。また、これらは1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。さらに、必要に応じて公知の光増感剤又は重合促進剤としての三級アミン化合物を用いて、硬化性をコントロールしてもよい。 In addition, since the liquid crystal composition has photocurability, it usually contains a photoinitiator. As a photoinitiator, the well-known compound which generate | occur | produces a radical or an acid with an ultraviolet-ray or visible light can be used, for example. Specific examples of the photoinitiator include benzoin, benzylmethyl ketal, benzophenone, biacetyl, acetophenone, Michler's ketone, benzyl, benzylisobutyl ether, tetramethylthiuram mono (di) sulfide, 2,2-azobisisobutyronitrile, 2 , 2-azobis-2,4-dimethylvaleronitrile, benzoyl peroxide, di-tert-butyl peroxide, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, 2,4-diethylthioxanthone, methylbenzoyl formate, , 2-diethoxyacetophenone, β-ionone, β-bromostyrene, diazoaminobenzene, α-amylcinnamic aldehyde, p-dimethylaminoacetophenone, p-dimethylaminopropiophenone, 2-chlorobenzophenone, pp'-dichloro Benzophenone, pp'-bisdiethylaminobenzophenone, benzoin ethyl ether, benzoin isopropyl ether, benzoin n-propyl ether, benzoin n-butyl ether, diphenyl sulfide, bis (2,6-methoxybenzoyl) -2,4,4-trimethyl-pentyl Phosphine oxide, 2,4,6-trimethylbenzoyldiphenyl-phosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide 2-methyl-1 [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butan-1-one, Anthracene benzophenone, α-chloroanthraquinone, diphenyl disulfide, hexachlorobutadiene, pentachlorobutadiene, octachlorobutene, 1-chloromethylnaphthalene, 1,2-octanedione-1- [4- (phenylthio) -2- (o- Benzoyloxime)] and 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl] ethanone 1- (o-acetyloxime), (4-methylphenyl) [4- (2-Methylpropyl) phenyl] iodonium hexafluoroph Sufeto, 3-methyl-2-butynyl tetramethyl hexafluoroantimonate, diphenyl - (p-phenylthiophenyl) sulfonium hexafluoroantimonate, and the like. Moreover, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios. Furthermore, you may control sclerosis | hardenability using the tertiary amine compound as a well-known photosensitizer or a polymerization accelerator as needed.
 光開始剤の量は、液晶組成物中0.03重量%~7重量%であることが好ましい。光開始剤の量を前記範囲の下限値以上にすることにより、重合度を高くできるので、コレステリック樹脂層の膜強度を高めることができる。また、上限値以下にすることにより、液晶性化合物の配向を良好にできるので、液晶組成物の液晶相を安定にできる。 The amount of the photoinitiator is preferably 0.03% to 7% by weight in the liquid crystal composition. By setting the amount of the photoinitiator to be equal to or higher than the lower limit of the above range, the degree of polymerization can be increased, so that the film strength of the cholesteric resin layer can be increased. Moreover, since the orientation of a liquid crystalline compound can be made favorable by setting it to the upper limit value or less, the liquid crystal phase of the liquid crystal composition can be stabilized.
 液晶組成物は、任意に界面活性剤を含有しうる。界面活性剤としては、例えば、配向を阻害しないものを適宜選択して使用しうる。このような界面活性剤としては、例えば、疎水基部分にシロキサン又はフッ化アルキル基を含有するノニオン系界面活性剤が好適に挙げられる。中でも、1分子中に2個以上の疎水基部分を持つオリゴマーが特に好適である。これらの界面活性剤の具体例としては、OMNOVA社のPolyFoxのPF-151N、PF-636、PF-6320、PF-656、PF-6520、PF-3320、PF-651、PF-652;ネオス社のフタージェントのFTX-209F、FTX-208G、FTX-204D;セイミケミカル社のサーフロンのKH-40;等を用いることができる。また、界面活性剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The liquid crystal composition can optionally contain a surfactant. As the surfactant, for example, one that does not inhibit the orientation can be appropriately selected and used. As such a surfactant, for example, a nonionic surfactant containing a siloxane or a fluorinated alkyl group in the hydrophobic group portion is preferably exemplified. Of these, oligomers having two or more hydrophobic group moieties in one molecule are particularly suitable. Specific examples of these surfactants include PolyFox PF-151N, PF-636, PF-6320, PF-656, PF-6520, PF-3320, PF-651, PF-652 from OMNOVA; Neos FTX-209F, FTX-208G, FTX-204D of Surfactant, KH-40 of Surflon of Seimi Chemical Co., etc. can be used. Moreover, surfactant may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
 界面活性剤の量は、液晶組成物を硬化して得られるコレステリック樹脂層における界面活性剤の量が0.05重量%~3重量%となるようにすることが好ましい。界面活性剤の量を前記範囲の下限値以上にすることにより、空気界面における配向規制力を高くできるので、配向欠陥を防止できる。また、上限値以下にすることにより、過剰の界面活性剤が液晶分子間に入り込むことによる配向均一性の低下を防止できる。 The amount of the surfactant is preferably such that the amount of the surfactant in the cholesteric resin layer obtained by curing the liquid crystal composition is 0.05% by weight to 3% by weight. By setting the amount of the surfactant to be equal to or higher than the lower limit of the above range, the alignment regulating force at the air interface can be increased, so that alignment defects can be prevented. Moreover, by making it into the upper limit value or less, it is possible to prevent a decrease in alignment uniformity due to excessive surfactant entering between liquid crystal molecules.
 液晶組成物は、任意にカイラル剤を含有しうる。通常、コレステリック樹脂層のねじれ方向は、使用するカイラル剤の種類及び構造により適宜選択できる。ねじれを右方向とする場合には、右旋性を付与するカイラル剤を用い、ねじれ方向を左方向とする場合には、左旋性を付与するカイラル剤を用いることで、実現できる。カイラル剤の具体例としては、特開2005-289881号公報、特開2004-115414号公報、特開2003-66214号公報、特開2003-313187号公報、特開2003-342219号公報、特開2000-290315号公報、特開平6-072962号公報、米国特許第6468444号明細書、国際公開第98/00428号、特開2007-176870号公報、等に掲載されるものを適宜使用することができ、例えばBASF社パリオカラーのLC756として入手できる。また、カイラル剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The liquid crystal composition can optionally contain a chiral agent. Usually, the twist direction of the cholesteric resin layer can be appropriately selected depending on the type and structure of the chiral agent to be used. This can be realized by using a chiral agent that imparts dextrorotability when the twist is in the right direction, and by using a chiral agent that imparts levorotation when the twist direction is in the left direction. Specific examples of the chiral agent include JP-A-2005-289881, JP-A-2004-115414, JP-A-2003-66214, JP-A-2003-313187, JP-A-2003-342219, JP-A-2003-342219. Appropriate use can be made of those described in 2000-290315, JP-A-6-072962, U.S. Pat. No. 6,468,444, WO 98/00428, JP-A-2007-176870, and the like. For example, it is available as LC756 of BASF Corporation Paliocolor. Moreover, a chiral agent may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 カイラル剤の量は、所望する光学的性能を低下させない範囲で任意に設定しうる。カイラル剤の具体的な量は、液晶組成物中で、通常1重量%~60重量%である。 The amount of the chiral agent can be arbitrarily set within a range not deteriorating the desired optical performance. The specific amount of the chiral agent is usually 1% by weight to 60% by weight in the liquid crystal composition.
 液晶組成物は、必要に応じてさらに他の任意成分を含有しうる。この任意成分としては、例えば、溶媒、ポットライフ向上のための重合禁止剤、耐久性向上のための酸化防止剤、紫外線吸収剤、光安定化剤等を挙げることができる。また、これらの任意成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。これらの任意成分の量は、所望する光学的性能を低下させない範囲で任意に設定しうる。 The liquid crystal composition may further contain other optional components as necessary. Examples of the optional component include a solvent, a polymerization inhibitor for improving pot life, an antioxidant for improving durability, an ultraviolet absorber, and a light stabilizer. Moreover, these arbitrary components may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. The amount of these optional components can be arbitrarily set within a range that does not deteriorate the desired optical performance.
 液晶組成物の製造方法は、特に限定されず、上記各成分を混合することにより製造することができる。 The method for producing the liquid crystal composition is not particularly limited, and can be produced by mixing the above-described components.
 前記の光硬化性の液晶組成物を用意した後で、基材フィルム上にその液晶組成物の膜を設ける。通常、液晶組成物を基材フィルムの表面に塗布することにより、液晶組成物の膜を設ける。また、基材フィルムが配向膜を有する場合には、通常、配向膜上に液晶組成物の膜を設ける。さらに、液晶組成物を塗布する前に、必要に応じて、基材フィルムの表面にコロナ放電処理及びラビング処理等の処理を施してもよい。 After preparing the photocurable liquid crystal composition, a film of the liquid crystal composition is provided on the base film. Usually, a film of a liquid crystal composition is provided by applying the liquid crystal composition to the surface of a base film. When the substrate film has an alignment film, a liquid crystal composition film is usually provided on the alignment film. Furthermore, before applying the liquid crystal composition, treatments such as corona discharge treatment and rubbing treatment may be applied to the surface of the base film as necessary.
 液晶組成物の塗布は、公知の方法、例えば押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法、バーコーティング法等により実施することができる。 The liquid crystal composition can be applied by a known method such as an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, a die coating method, or a bar coating method.
 基材フィルム上に液晶組成物の膜を設けた後で、必要に応じて、配向処理を行ってもよい。配向処理は、例えば液晶組成物の膜を50℃~150℃で0.5分間~10分間加温することにより行いうる。配向処理を施すことにより、膜中の液晶組成物を良好に配向させることができる。 After providing the film of the liquid crystal composition on the base film, an alignment treatment may be performed as necessary. The alignment treatment can be performed, for example, by heating a liquid crystal composition film at 50 to 150 ° C. for 0.5 to 10 minutes. By performing the alignment treatment, the liquid crystal composition in the film can be aligned well.
 その後、液晶組成物の膜を硬化させるために、硬化処理を行う。硬化処理は、例えば、1回以上の光照射と加温処理との組み合わせにより行うことができる。
 加温条件は、例えば、通常40℃以上、好ましくは50℃以上、また、通常200℃以下、好ましくは140℃以下の温度において、通常1秒以上、好ましくは5秒以上、また、通常3分以下、好ましくは120秒以下の時間としうる。
 また、光照射に用いる光とは、可視光のみならず紫外線及びその他の電磁波をも含む。光照射は、例えば、波長200nm~500nmの光を0.01秒~3分照射することにより行うことができる。この際、照射される光のエネルギーは、例えば、0.01mJ/cm~50mJ/cm2としうる。
Thereafter, a curing process is performed to cure the film of the liquid crystal composition. The curing process can be performed, for example, by a combination of one or more light irradiations and a heating process.
The heating conditions are, for example, usually 40 ° C. or higher, preferably 50 ° C. or higher, and usually 200 ° C. or lower, preferably 140 ° C. or lower, usually 1 second or longer, preferably 5 seconds or longer, and usually 3 minutes. Hereinafter, the time may be preferably 120 seconds or less.
Moreover, the light used for light irradiation includes not only visible light but also ultraviolet rays and other electromagnetic waves. The light irradiation can be performed, for example, by irradiating light having a wavelength of 200 nm to 500 nm for 0.01 second to 3 minutes. At this time, the energy of the irradiated light can be, for example, 0.01 mJ / cm 2 to 50 mJ / cm 2 .
 0.01mJ/cm~50mJ/cm2の微弱な紫外線照射と加温とを複数回交互に繰り返すことにより、らせん構造のピッチの大きさを連続的に大きく変化させた、反射帯域の広い円偏光分離機能を有するコレステリック樹脂層を得ることができる。さらに、上記の微弱な紫外線照射等による反射帯域の拡張を行った後に、50mJ/cm~10,000mJ/cm2といった比較的強い紫外線を照射し、液晶性化合物を完全に重合させることにより、機械的強度の高いコレステリック樹脂層を得ることができる。上記の反射帯域の拡張及び強い紫外線の照射は、空気下で行ってもよく、又はその工程の一部又は全部を、酸素濃度を制御した雰囲気(例えば、窒素雰囲気下)中で行ってもよい。 A circle with a wide reflection band in which the pitch of the helical structure is continuously changed greatly by repeating the weak UV irradiation and heating of 0.01 mJ / cm 2 to 50 mJ / cm 2 alternately several times. A cholesteric resin layer having a polarization separation function can be obtained. Further, after the extension of the reflection band by weak ultraviolet irradiation, or the like described above was irradiated with a relatively strong ultraviolet such 50mJ / cm 2 ~ 10,000mJ / cm 2, by completely polymerizing the liquid crystalline compounds, A cholesteric resin layer having high mechanical strength can be obtained. The expansion of the reflection band and the irradiation with strong ultraviolet rays may be performed in the air, or a part or all of the process may be performed in an atmosphere in which the oxygen concentration is controlled (for example, in a nitrogen atmosphere). .
 前記のような液晶組成物の塗布及び硬化の工程は、1回に限られず、塗布及び硬化を複数回繰り返して行ってもよい。これにより、2層以上を含むコレステリック樹脂層を形成できる。ただし、上記の例において説明した液晶組成物を用いることにより、1回のみの液晶組成物の塗布及び硬化によっても、良好に配向した棒状液晶性化合物を含み、かつ5μm以上といった厚みのコレステリック樹脂層を容易に形成することができる。 The step of applying and curing the liquid crystal composition as described above is not limited to once, and the application and curing may be repeated a plurality of times. Thereby, the cholesteric resin layer containing two or more layers can be formed. However, by using the liquid crystal composition described in the above example, a cholesteric resin layer containing a well-oriented rod-like liquid crystalline compound and having a thickness of 5 μm or more can be obtained by applying and curing the liquid crystal composition only once. Can be easily formed.
 [2.3.複層フィルムの構成]
 工程1で得られる複層フィルム10は、図2に示す構成としうる。この複層フィルム10は工程2に供される。
[2.3. Configuration of multilayer film]
The multilayer film 10 obtained in the step 1 can be configured as shown in FIG. This multilayer film 10 is subjected to step 2.
 [3.工程(2)]
 工程(2)は、樹脂薄膜に液体を吹き付けて亀裂を形成する工程である。
[3. Step (2)]
Step (2) is a step of forming a crack by spraying a liquid on the resin thin film.
 工程(2)について上述の図1および図3を参照しつつ説明する。図3は、液体を吹き付けることにより亀裂が形成された複層フィルムを模式的に示す断面図である。 Process (2) will be described with reference to FIGS. 1 and 3 described above. FIG. 3 is a cross-sectional view schematically showing a multilayer film in which cracks are formed by spraying a liquid.
 樹脂薄膜に液体を吹き付ける工程は、図1に示すように、剥離室110内に設けた液体吹付装置120を用いて行う。液体吹付装置120は液体供給部121、液体を吹き付けるノズル120Aを有する。剥離室110には、液体の吹き付けを行う際に、複層フィルム10を厚み方向の一方(図示上方)から押さえつけうる一対のテンションロール111A,111Bが、周方向に回転可能に設けられている。また、剥離室110には、テンションロール111A,111Bとは、複層フィルム10の厚み方向における反対側に設けられ、複層フィルム10を支持する支持板112が設けられている。 The step of spraying the liquid onto the resin thin film is performed using a liquid spraying device 120 provided in the peeling chamber 110 as shown in FIG. The liquid spraying device 120 includes a liquid supply unit 121 and a nozzle 120A that sprays liquid. In the peeling chamber 110, a pair of tension rolls 111A and 111B capable of pressing the multilayer film 10 from one side in the thickness direction (the upper side in the figure) when the liquid is sprayed are provided rotatably in the circumferential direction. Further, the peeling chamber 110 is provided with a support plate 112 that is provided on the opposite side of the multilayer film 10 with respect to the tension rolls 111 </ b> A and 111 </ b> B and supports the multilayer film 10.
 本実施形態において、複層フィルム10は、テンションロール111A及び111Bにより上方から押さえつけられつつ、下側面を支持板112により支持された状態で、上方に設けられたノズル120Aから液体が吹き付けられるので、フィルムのたるみを防止しつつ吹付作業を行うことが可能である。 In the present embodiment, since the multilayer film 10 is pressed from above by the tension rolls 111A and 111B, the liquid is sprayed from the nozzle 120A provided above in a state where the lower surface is supported by the support plate 112. It is possible to perform the spraying work while preventing the film from sagging.
 ノズル120Aから吹き付けられる液体の圧力(吹付圧力)は、樹脂薄膜11に亀裂を生じさせ、亀裂が形成された樹脂薄膜11を基材フィルム12から吹き飛ばすことができる程度に高圧に設定されている。液体の吹付圧力は好ましくは0.15MPa以上、より好ましくは0.5MPa以上であり、好ましくは50MPa以下、より好ましくは40MPa以下である。液体の吹付圧力を下限値以上とすることにより、樹脂薄膜に充分な深さの亀裂を形成し、かつ基材フィルムから樹脂薄膜を剥離することができ、液体の吹付圧力を上限値以下とすることにより基材フィルムの破損を防止することができる。 The pressure of the liquid sprayed from the nozzle 120A (spraying pressure) is set to such a high pressure that a crack is generated in the resin thin film 11 and the cracked resin thin film 11 can be blown off from the base film 12. The spray pressure of the liquid is preferably 0.15 MPa or more, more preferably 0.5 MPa or more, preferably 50 MPa or less, more preferably 40 MPa or less. By setting the spray pressure of the liquid to the lower limit value or more, a crack having a sufficient depth can be formed in the resin thin film, and the resin thin film can be peeled from the base film, and the spray pressure of the liquid is set to the upper limit value or less. This can prevent the base film from being damaged.
 ノズル120Aの設置方向は、ノズル120Aから噴射される液体によって、樹脂薄膜11を剥離できるように設定されている。基材フィルム12に対する液体の吹付角度は、樹脂薄膜11に亀裂を形成することができる角度にしうる。 The installation direction of the nozzle 120A is set so that the resin thin film 11 can be peeled off by the liquid ejected from the nozzle 120A. The spray angle of the liquid with respect to the base film 12 can be an angle at which a crack can be formed in the resin thin film 11.
 液体としては、特に限定はないが、水道水、イオン交換水、純水;クロロホルム、塩化メチレン、フルオロカーボンなどの(塩素系、フッ素系、臭素系)有機溶剤;ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶剤;n-ペンタン、n-ヘキサン、n-ヘプタン等の脂肪族炭化水素系溶剤;界面活性剤が挙げられる。これらは一種または二種以上を組み合わせて用い得る。亀裂に入り込みやすく樹脂薄膜の剥離を促進するという観点から、有機溶剤及び炭化水素系溶剤、および界面活性剤から選ばれる液体を用いうる。安全な管理が可能で、樹脂薄膜の侵食を防止し、紛体(剥離片)の凝集の発生を抑制するという観点から、純水が好ましい。本願において、「純水」とはJISK0557「用水・排水の試験に用いる水」に規定されている「A1」に相当する水質又はそれ以上の清浄な水質を有するものをいう。 The liquid is not particularly limited, but tap water, ion exchange water, pure water; chloroform, methylene chloride, fluorocarbon and other (chlorine, fluorine, bromine) organic solvents; benzene, toluene, xylene and other aromatics Hydrocarbon solvents; aliphatic hydrocarbon solvents such as n-pentane, n-hexane, n-heptane; surfactants. These may be used alone or in combination of two or more. From the viewpoint of facilitating crack penetration and promoting the peeling of the resin thin film, a liquid selected from organic solvents, hydrocarbon solvents, and surfactants can be used. From the viewpoints of safe management, prevention of erosion of the resin thin film, and suppression of the occurrence of aggregation of the powder (peeling pieces), pure water is preferable. In the present application, “pure water” refers to water having a water quality equivalent to “A1” defined in JIS K0557 “Water used for water / wastewater tests” or higher.
 複層フィルム10の面のうち、液体が吹き付けられる側の面(図示上面)は、樹脂薄膜11が形成されている面である。複層フィルム10の樹脂薄膜が形成されている面に、液体を吹き付けると液体が樹脂薄膜11に衝突し亀裂10Cが形成される。このようにして、亀裂10Cが形成された複層フィルム10が得られる(図2を参照)。 Of the surfaces of the multilayer film 10, the surface on which the liquid is sprayed (the upper surface in the drawing) is the surface on which the resin thin film 11 is formed. When a liquid is sprayed on the surface of the multilayer film 10 on which the resin thin film is formed, the liquid collides with the resin thin film 11 and a crack 10C is formed. Thus, the multilayer film 10 in which the crack 10C is formed is obtained (see FIG. 2).
 [工程(2)で得られる亀裂が形成された複層フィルム]
 工程(2)を行うことにより、複層フィルム10の樹脂薄膜11には、図3に示すように、亀裂10Cが形成される。亀裂10Cが形成された複層フィルム10は工程(3)に供される。
[Multilayer film with cracks formed in step (2)]
By performing the step (2), a crack 10C is formed in the resin thin film 11 of the multilayer film 10 as shown in FIG. The multilayer film 10 in which the crack 10C is formed is subjected to the step (3).
 [4.工程(3)]
 工程(3)は、基材フィルムから樹脂薄膜を剥離して剥離片を得る工程である。本実施形態において、工程(3)は、工程(2)から引き続き、液体を亀裂が形成された複層フィルムに吹き付けることにより、基材フィルムから亀裂が形成された樹脂薄膜を吹き飛ばす工程(3A)と、吹き飛ばされた樹脂薄膜を回収する工程(3B)とを含みうる。
[4. Step (3)]
Step (3) is a step of peeling the resin thin film from the base film to obtain a peeled piece. In the present embodiment, the step (3) is a step (3A) of blowing the resin thin film in which the crack is formed from the base film by spraying the liquid onto the multilayer film in which the crack is formed, following the step (2). And a step (3B) of collecting the blown-off resin thin film.
 本実施形態では、亀裂が形成された複層フィルムに液体を吹き付けて樹脂薄膜を吹き飛ばす工程(3A)は、工程(2)から引き続き、同じ装置(剥離室110内に設けた液体吹付装置120)を用いて行いうる。工程(3A)において、複層フィルムに吹き付ける液体は、回収が容易であるという観点から、工程(2)と同一の液体であるのが好ましいが、相違していてもよい。工程(3A)における液体の吹付圧力、及び液体の吹付角度は、工程(2)と同一でも、相違していてもよい。即ち、工程(3)の実施の工程は、工程(2)の実施の工程と別の工程として行ってもよく、工程(2)の実施の工程と共通の操作により、同時に行ってもよい。 In the present embodiment, the step (3A) of spraying a liquid onto the cracked multilayer film and blowing the resin thin film continues from step (2), and the same device (the liquid spraying device 120 provided in the peeling chamber 110). Can be used. In the step (3A), the liquid sprayed on the multilayer film is preferably the same liquid as the step (2) from the viewpoint of easy recovery, but may be different. The liquid spray pressure and the liquid spray angle in the step (3A) may be the same as or different from those in the step (2). That is, the step (3) may be performed as a separate step from the step (2), or may be performed simultaneously by the same operation as the step (2).
 工程(2)から引き続き、液体を吹き付けることにより、吹き飛ばされた樹脂薄膜11(剥離片11A)は、液体とともに、剥離室110から連なる剥離片回収部115へ移動する。剥離片回収部115では、剥離片11Aを液体から濾取しうるフィルター116が設けられているので、剥離片11Aは液体から回収される。濾取された剥離片11Aはフィルター116上に残り、液体はフィルター116を通過して液体回収部130にて回収される。液体回収部130で回収された液体は、液体流路131を通って、L1で示す方向に移動し廃棄または再利用されうる。フィルター116により回収された樹脂薄膜11(剥離片11A)は、使用する用途に応じて次の工程に供し得る。 By continuing to spray the liquid from the step (2), the blown-off resin thin film 11 (peeling piece 11A) moves together with the liquid from the peeling chamber 110 to the peeling piece collecting unit 115 that is continuous. In the peel piece recovery unit 115, the filter 116 that can filter the peel piece 11A from the liquid is provided, and thus the peel piece 11A is recovered from the liquid. The stripped strip 11 </ b> A remains on the filter 116, and the liquid passes through the filter 116 and is recovered by the liquid recovery unit 130. The liquid recovered by the liquid recovery unit 130 moves in the direction indicated by L1 through the liquid channel 131 and can be discarded or reused. The resin thin film 11 (peeling piece 11A) recovered by the filter 116 can be subjected to the next step depending on the application to be used.
 樹脂薄膜11が剥離された後の基材フィルム12は搬送ロール103により剥離装置103の外に搬送され回収される。 The base film 12 after the resin thin film 11 has been peeled is transported outside the peeling device 103 by the transport roll 103 and collected.
 フィルターにより回収された樹脂薄膜(剥離片)は、液体成分を含み得るので、必要に応じて乾燥工程を行う。乾燥工程は、通常、オーブン等の乾燥装置を用いて行う。フィルターにより回収された樹脂薄膜(剥離片)は、そのまま、または乾燥工程を行った後、用途に応じて粉砕されうる。樹脂薄膜の粉砕は、通常、粉砕機を用いて行う。粉砕機としては、例えば、ボールミル、ビーズミル、ロールミル、ロッドミル、石臼式粉砕機等が挙げられる。 Since the resin thin film (peeling piece) collected by the filter may contain a liquid component, a drying process is performed as necessary. A drying process is normally performed using drying apparatuses, such as oven. The resin thin film (peeled piece) collected by the filter can be pulverized as it is or after performing a drying step. The resin thin film is usually pulverized using a pulverizer. Examples of the pulverizer include a ball mill, a bead mill, a roll mill, a rod mill, and a stone mill type pulverizer.
 粉砕により得られる樹脂薄膜の剥離片の平均粒子径は、装飾性を得る上で1μm以上であることが好ましく、また、フィルムの成形性や印刷適性を得る上で500μm以下であることが好ましく、100μm以下であることがより好ましい。 The average particle diameter of the peeled pieces of the resin thin film obtained by pulverization is preferably 1 μm or more for obtaining decorative properties, and preferably 500 μm or less for obtaining moldability and printability of the film. More preferably, it is 100 μm or less.
 樹脂薄膜の剥離片の平均粒子径は、次のようにして測定しうる。まず、目開きの異なるいくつかの篩を用いて、その目開きを有する篩を通過する樹脂薄膜の剥離片の割合を測定する。そして、目開きの大きさと、その目開きを有する篩を通過する樹脂薄膜の剥離片の割合から、樹脂薄膜顔料の粒子径分布を積算重量百分率で表す。この粒子径分布において、その重量の積算値が50%の粒子径を、平均粒子径とする。 The average particle diameter of the peeled pieces of the resin thin film can be measured as follows. First, using several sieves having different openings, the ratio of the peeled pieces of the resin thin film passing through the sieve having the openings is measured. The particle size distribution of the resin thin film pigment is expressed as an integrated weight percentage from the size of the openings and the ratio of the peeled pieces of the resin thin film passing through the sieve having the openings. In this particle size distribution, the particle size having an integrated value of 50% by weight is defined as the average particle size.
 [5.樹脂薄膜の剥離片の用途]
 上述した製造方法によって製造された樹脂薄膜の剥離片は、顔料として塗料に適用することができる。この塗料は、分散媒と、その分散媒に分散した樹脂薄膜の剥離片(顔料)とを含む。以下、樹脂薄膜の剥離片を顔料として適用したものを、樹脂薄膜顔料と呼ぶ。
[5. Application of resin thin film strips]
The peeled piece of the resin thin film manufactured by the manufacturing method described above can be applied to a paint as a pigment. This paint includes a dispersion medium and a release piece (pigment) of a resin thin film dispersed in the dispersion medium. Hereinafter, what applied the peeling piece of the resin thin film as a pigment is called a resin thin film pigment.
 樹脂薄膜顔料を含む塗料を物品に塗布し、乾燥させることにより、樹脂薄膜顔料を含む層を物品の表面に形成することができる。樹脂薄膜顔料を含む層を有する物品は、樹脂薄膜顔料が有する特性を活かして、多様な用途に用いることができる。例えば、樹脂薄膜がコレステリック樹脂層である場合、その樹脂薄膜から製造された樹脂薄膜顔料を含む層は、樹脂薄膜自体と同様に、円偏光分離機能を有する。そのため、コレステリック樹脂層からなる樹脂薄膜を用いて製造された塗料を用いることにより、物品の表面に円偏光分離機能を有する膜を用意に形成することができる。 A layer containing a resin thin film pigment can be formed on the surface of the article by applying a coating containing the resin thin film pigment to the article and drying it. An article having a layer containing a resin thin film pigment can be used for various applications by taking advantage of the properties of the resin thin film pigment. For example, when the resin thin film is a cholesteric resin layer, the layer containing the resin thin film pigment produced from the resin thin film has a circularly polarized light separating function, like the resin thin film itself. Therefore, a film having a circularly polarized light separation function can be prepared on the surface of the article by using a paint manufactured using a resin thin film made of a cholesteric resin layer.
 樹脂薄膜顔料を含む層の適用対象としては、例えば、偽造防止物品、セキュリティ物品、加飾性物品などが挙げられる。
 偽造防止物品としては、例えば、真正性識別用のラベル、シール、表示媒体などが挙げられる。
 セキュリティ物品としては、例えば、金券、商品券、チケット、証明書、セキュリティカード等の認証媒体等が挙げられる。
 加飾性物品としては、例えば、装飾品、文具、家具、自動車(内外装)、家電、PC、化粧品パッケージ等が挙げられる。
 中でも、樹脂薄膜顔料が円偏光分離機能を有する場合、真正性識別用の表示媒体に適用することが好ましい。
Examples of the application target of the layer containing the resin thin film pigment include anti-counterfeit articles, security articles, and decorative articles.
Examples of the anti-counterfeit article include a label for authenticity identification, a seal, and a display medium.
Examples of the security article include an authentication medium such as a cash voucher, a gift certificate, a ticket, a certificate, and a security card.
Examples of the decorative article include ornaments, stationery, furniture, automobiles (interior and exterior), home appliances, PCs, cosmetic packages, and the like.
In particular, when the resin thin film pigment has a circularly polarized light separating function, it is preferably applied to a display medium for authenticity identification.
 [6.本実施形態の作用・効果]
 本実施形態によれば、樹脂薄膜は、亀裂を形成した後に基材フィルムから剥離されるので、樹脂薄膜を基材フィルムから剥離した後に当該剥離した樹脂薄膜を粉砕するよりも、容易に樹脂薄膜の剥離片を製造することが可能である。また、本実施形態によれば、複層フィルムに液体を吹き付けることにより、樹脂薄膜に亀裂を形成し剥離するので、製造工程を簡素化することができる。その結果、本実施形態によれば、剥離片を効率的に製造する製造方法を提供することができる。
 さらに、本実施形態によれば、複層フィルムに液体を吹き付けることにより樹脂薄膜に亀裂を形成し、剥離された剥離片は吹き付けられた液体とともに流れるので、乾式で樹脂薄膜を粉砕する場合よりも、粉塵爆発のリスクを小さくすることができ、配管つまりのリスクも小さくすることができる。
[6. Action and effect of this embodiment]
According to this embodiment, since the resin thin film is peeled off from the base film after forming a crack, the resin thin film is easier than pulverizing the peeled resin thin film after peeling the resin thin film from the base film. It is possible to manufacture the peeling piece. Moreover, according to this embodiment, since a crack is formed and peeled in a resin thin film by spraying a liquid on a multilayer film, a manufacturing process can be simplified. As a result, according to the present embodiment, it is possible to provide a manufacturing method for efficiently manufacturing a peeling piece.
Furthermore, according to the present embodiment, the liquid is sprayed on the multilayer film to form a crack in the resin thin film, and the peeled peeled piece flows together with the sprayed liquid, so that the resin thin film is crushed dryly. In addition, the risk of dust explosion can be reduced, and the risk of clogging can be reduced.
 [他の実施形態]
 上記実施形態では、剥離室110内に、上方から液体を吹き付けるノズル120Aを備える液体吹付装置と、複層フィルム10を厚み方向の上方から押さえつけうる一対のテンションロール111A,111Bと、テンションロール111A,111Bとは、複層フィルム10の厚み方向における反対側に設けられた支持板112と、を有する態様を示したが、本発明はこのような態様に限定されない。例えば、以下の変形例1および2に示す態様であってもよい。
[Other Embodiments]
In the above embodiment, a liquid spraying device including a nozzle 120A for spraying liquid from above into the peeling chamber 110, a pair of tension rolls 111A and 111B capable of pressing the multilayer film 10 from above in the thickness direction, and tension rolls 111A, Although 111B showed the aspect which has the support plate 112 provided in the other side in the thickness direction of the multilayer film 10, this invention is not limited to such an aspect. For example, the aspect shown in the following modified examples 1 and 2 may be sufficient.
 (変形例1)
 実施形態1において、液体吹付装置の配置位置及び、支持板の配置位置を変えた変形例1について図4を参照しつつ説明する。図4は、変形例1に係る製造装置の一部を模式的に示す側面図である。図4に示すように、変形例1の態様では、図示下方から液体Lを吹き付け可能なノズル220Aを備える液体吹付装置200と、複層フィルム10を厚み方向の上方から押さえつけうる一対のテンションロール211A,211Bと、当該テンションロールと同じ方向から複層フィルム10を支持する支持板212と、を有する。当該態様の場合、複層フィルム10を、樹脂薄膜11が下側になるように配することにより、樹脂薄膜11に直接液体が吹き付けられ、亀裂が形成され剥離される。
(Modification 1)
In Embodiment 1, Modification 1 in which the arrangement position of the liquid spraying device and the arrangement position of the support plate are changed will be described with reference to FIG. FIG. 4 is a side view schematically showing a part of the manufacturing apparatus according to the first modification. As shown in FIG. 4, in the aspect of the first modification, the liquid spraying apparatus 200 including the nozzle 220 </ b> A capable of spraying the liquid L from the lower side in the drawing and a pair of tension rolls 211 </ b> A capable of pressing the multilayer film 10 from the upper side in the thickness direction. , 211B and a support plate 212 that supports the multilayer film 10 from the same direction as the tension roll. In the case of the said aspect, by arrange | positioning the multilayer film 10 so that the resin thin film 11 may become a lower side, a liquid is sprayed directly on the resin thin film 11, a crack is formed and it peels.
 (変形例2)
 実施形態1において、支持板を、ロール形状の支持体(支持ロール310)に代えた変形例2について図5を参照しつつ説明する。図5は、変形例1に係る製造装置の一部を模式的に示す側面図である。図5に示すように、変形例2では、剥離室は、テンションロールを備えず、複層フィルム11を支持する支持体として、ロール状の支持体310(支持ロール310)を備える。当該支持ロール310は周方向に回転可能である。支持ロール310は、複層フィルム11の液体Lが吹き付けられる面(上面)とは反対側の面(下側面)に接触して設けられており、複層フィルム11の液体Lが吹き付けられる部分を下側から支持している。当該態様の場合、複層フィルム10を樹脂薄膜11が上側になるように配することにより、上方に設けられたノズル320Aによって、樹脂薄膜11に直接液体が吹き付けられ、亀裂が形成され剥離される。図5中、321は液体供給部、300は液体吹付装置である。
(Modification 2)
In Embodiment 1, Modification 2 in which the support plate is replaced with a roll-shaped support (support roll 310) will be described with reference to FIG. FIG. 5 is a side view schematically showing a part of the manufacturing apparatus according to the first modification. As shown in FIG. 5, in Modification 2, the peeling chamber does not include a tension roll, and includes a roll-shaped support 310 (support roll 310) as a support that supports the multilayer film 11. The support roll 310 is rotatable in the circumferential direction. The support roll 310 is provided in contact with the surface (lower surface) opposite to the surface (upper surface) to which the liquid L of the multilayer film 11 is sprayed, and the portion of the multilayer film 11 to which the liquid L is sprayed is provided. Support from below. In the case of this aspect, by arranging the multilayer film 10 so that the resin thin film 11 is on the upper side, the liquid is directly sprayed on the resin thin film 11 by the nozzle 320A provided above, and a crack is formed and peeled off. . In FIG. 5, 321 is a liquid supply part, 300 is a liquid spraying apparatus.
 (変形例3)
 実施形態1とは異なるフィルムの搬送経路を有する変形例3について図7を参照しつつ説明する。図7は、変形例3に係る製造装置の一部を模式的に示す側面図である。図7において、製造装置700は、複層フィルム10を繰り出す繰出し装置701と、複層フィルム10に液体を吹き付けて亀裂を形成し複層フィルム10から樹脂薄膜を剥離する液体吹付装置720と、当該液体吹付装置を収容する剥離室710と、剥離された樹脂薄膜11(剥離片)を回収する剥離片回収部115とを備える。
(Modification 3)
Modification 3 having a film transport path different from that of the first embodiment will be described with reference to FIG. FIG. 7 is a side view schematically showing a part of the manufacturing apparatus according to the third modification. In FIG. 7, the manufacturing apparatus 700 includes a feeding device 701 for feeding out the multilayer film 10, a liquid spraying device 720 for spraying a liquid on the multilayer film 10 to form a crack and peeling the resin thin film from the multilayer film 10, A peeling chamber 710 that houses the liquid spraying device and a peeling piece collection unit 115 that collects the peeled resin thin film 11 (peeling piece) are provided.
 繰出し装置701は、工程(1)で製造した複層フィルム10を所望の送出速度で送出するための装置である。繰出し装置701には、複層フィルム10を長尺方向に巻き取ったフィルムロールが装着可能である。繰出し装置701は、装着されたフィルムロールから複層フィルム10を長尺方向へ向けて送出しうる構造を有している。図7において、複層フィルム10は、繰出し装置701から繰出されて液体吹付装置720へ搬送される時点において、樹脂薄膜11側の面(図2参照)がノズル720A側(図7において左側)となるよう搬送される。 The feeding device 701 is a device for delivering the multilayer film 10 manufactured in the step (1) at a desired delivery speed. A film roll obtained by winding the multilayer film 10 in the longitudinal direction can be attached to the feeding device 701. The feeding device 701 has a structure capable of feeding the multilayer film 10 in the longitudinal direction from the attached film roll. In FIG. 7, when the multilayer film 10 is fed from the feeding device 701 and conveyed to the liquid spraying device 720, the surface on the resin thin film 11 side (see FIG. 2) is the nozzle 720A side (left side in FIG. 7). It is conveyed to become.
 繰出し装置701から繰り出された複層フィルム10は、適切な搬送ロール(不図示)により、矢印A7に示す方向に搬送される。複層フィルム10は、一対のテンションロール711A及び711Bにより張力を付与された状態で、且つ支持板712により基材フィルム側(図7において右側)から支持された状態で、矢印A8の方向に搬送され、工程(2)及び工程(3)に供される。工程(2)及び(3)では、液体吹付装置720の液体供給部721からノズル720Aに液体を供給し、液体をノズル720Aから矢印A9の方向に噴出させ、それにより液体を複層フィルム10に吹き付ける。その結果得られた剥離片11A及び使用された液体は、図1に示した実施形態1におけるものと同様の機構により、剥離片回収部115、フィルター116及び液体回収部130及びその他の構成要素により回収される。 The multilayer film 10 fed from the feeding device 701 is conveyed in the direction indicated by the arrow A7 by an appropriate conveyance roll (not shown). The multilayer film 10 is conveyed in the direction of arrow A8 while being tensioned by a pair of tension rolls 711A and 711B and supported by the support plate 712 from the base film side (right side in FIG. 7). Then, it is provided to step (2) and step (3). In the steps (2) and (3), the liquid is supplied from the liquid supply unit 721 of the liquid spraying device 720 to the nozzle 720A, and the liquid is ejected from the nozzle 720A in the direction of the arrow A9. Spray. The resulting strip 11A and the liquid used are separated by the strip recovery unit 115, the filter 116, the liquid recovery unit 130, and other components by the same mechanism as in the first embodiment shown in FIG. Collected.
 図1に示した実施形態1では、テンションロール111A及び111B並びに液体吹付装置120の両方が、複層フィルム10の搬送経路において、樹脂薄膜11側に配置されていたのに対し、図7に示す変形例3では、液体吹付装置720による吹き付けが樹脂薄膜11側で行われる一方、テンションロール711A及び711Bが基材フィルム12側に配置される。加えて、図1に示した実施形態1では、テンションロール111A及び111Bが水平に配置され、これらの間において複層フィルム10が水平に搬送されていたのに対し、図7に示す変形例3では、テンションロール711A及び711Bが略垂直に配置され、これらの間において複層フィルム10が略垂直に搬送される。 In Embodiment 1 shown in FIG. 1, both the tension rolls 111 </ b> A and 111 </ b> B and the liquid spraying device 120 are arranged on the resin thin film 11 side in the transport path of the multilayer film 10, whereas FIG. In Modification 3, spraying by the liquid spraying device 720 is performed on the resin thin film 11 side, while tension rolls 711A and 711B are disposed on the base film 12 side. In addition, in the first embodiment shown in FIG. 1, the tension rolls 111 </ b> A and 111 </ b> B are arranged horizontally, and the multilayer film 10 is conveyed horizontally between them, whereas the third modification shown in FIG. 7 is performed. Then, the tension rolls 711A and 711B are arranged substantially vertically, and the multilayer film 10 is conveyed substantially vertically between them.
 このような配置及び搬送方向を採用することにより、変形例3では、吹き付けが行われた後の液体の排出及び回収を円滑に行うことができる。即ち、実施形態1の配置では、ノズル120から吹き付けられた液体が、複層フィルム10並びにテンションロール111A及び111Bに囲まれた空間に容易に蓄積しうる。このような液体の蓄積が発生すると、ノズル120からの吹き付けのエネルギーが十分に樹脂薄膜に到達しない可能性がある。また、液体の蓄積により、複層フィルム10の搬送に不具合が発生する可能性もある。これに対し、変形例3の配置では、液体吹付装置720から吹き付けられた液体は、複層フィルム10並びにテンションロール711A及び711Bに妨げられることなく、容易に下方に落下する。そのため、液体の排出及び回収を円滑に行うことができ、且つ剥離の工程を円滑に行うことができる。このような特徴は、複層フィルム10として特に長さの長い長尺のフィルムを用い、本発明の製造方法を長時間連続して行う場合、特に有利な効果となり得る。 By adopting such an arrangement and a transport direction, in Modification 3, it is possible to smoothly discharge and collect the liquid after spraying. That is, in the arrangement of the first embodiment, the liquid sprayed from the nozzle 120 can easily accumulate in the space surrounded by the multilayer film 10 and the tension rolls 111A and 111B. When such liquid accumulation occurs, there is a possibility that the energy of spraying from the nozzle 120 does not sufficiently reach the resin thin film. Further, there is a possibility that a trouble occurs in the transportation of the multilayer film 10 due to the accumulation of liquid. On the other hand, in the arrangement of the modified example 3, the liquid sprayed from the liquid spraying device 720 easily falls downward without being disturbed by the multilayer film 10 and the tension rolls 711A and 711B. Therefore, the liquid can be discharged and collected smoothly, and the peeling process can be performed smoothly. Such a feature can be a particularly advantageous effect when a long film having a particularly long length is used as the multilayer film 10 and the production method of the present invention is carried out continuously for a long time.
 吹き付けに際しての複層フィルムの搬送方向を略垂直にする場合において、その方向は、鉛直方向(重力方向)を基準0°として、好ましくは0~20°、より好ましくは5~15°としうる。搬送方向を0°以外とし、鉛直方向から傾ける場合は、樹脂薄膜側の面が上側になるように傾けることが好ましい。このような搬送方向とすることにより、剥離の工程を円滑に行うことができ、且つ液体の蓄積を効果的に抑制することができる。 When the transport direction of the multilayer film at the time of spraying is substantially vertical, the vertical direction (gravity direction) can be 0 °, preferably 0-20 °, more preferably 5-15 °. When the transport direction is set to other than 0 ° and tilted from the vertical direction, it is preferable to tilt so that the surface on the resin thin film side is on the upper side. By setting it as such a conveyance direction, the peeling process can be performed smoothly and accumulation of liquid can be suppressed effectively.
 変形例3では、複層フィルム10は、下側のテンションロール711Aから上側のテンションロール711Bへ上向きに搬送し、液体吹付装置720より液体を下向きに吹き出して吹き付けを行っている。搬送及び吹き付けの向きはこれには限られず、例えば下向きに搬送を行い、液体を上向きに吹き出して吹き付けを行ってもよい。しかし、下側から上向きに搬送を行うことが、安定した搬送を行う上で有利である。具体的には、上向きで搬送し且つ複層フィルム10に張力を負荷した場合、複層フィルム10を上側に牽引する方向に力を付与することになる。その結果、逆向きで搬送する場合に比べて、吹き付けの操作において複層フィルム10がたわむ傾向を少なくすることができる。 In Modification 3, the multilayer film 10 is transported upward from the lower tension roll 711A to the upper tension roll 711B, and sprayed by blowing liquid downward from the liquid spraying device 720. The direction of conveyance and spraying is not limited to this. For example, the liquid may be conveyed downward and the liquid may be blown upward and sprayed. However, it is advantageous to carry out the conveyance upward from the lower side in order to carry out stable conveyance. Specifically, when the film is conveyed upward and tension is applied to the multilayer film 10, a force is applied in a direction of pulling the multilayer film 10 upward. As a result, it is possible to reduce the tendency of the multilayer film 10 to bend in the operation of spraying, compared to the case of transporting in the reverse direction.
 以下、実施例を示して本発明について具体的に説明する。ただし、本発明は、以下に示す実施例に限定されるものでは無い。
 以下の説明において、量を表す「%」及び「部」は、別に断らない限り、重量基準である。また、以下に説明する操作は、別に断らない限り、常温及び常圧の条件において行った。
Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the following examples.
In the following description, “%” and “parts” representing amounts are based on weight unless otherwise specified. In addition, the operations described below were performed under normal temperature and normal pressure conditions unless otherwise specified.
 [試薬の説明]
 以下の実施例で使用した試薬は、以下の通りである。
[Explanation of reagents]
The reagents used in the following examples are as follows.
 光重合性液晶性化合物1としては、下記の構造を有する化合物を用いた。 As the photopolymerizable liquid crystalline compound 1, a compound having the following structure was used.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 光重合性液晶性化合物2としては、下記の構造を有する化合物を用いた。 As the photopolymerizable liquid crystalline compound 2, a compound having the following structure was used.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 光重合性非液晶性化合物としては、下記の構造を有する化合物を用いた。 As the photopolymerizable non-liquid crystalline compound, a compound having the following structure was used.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 カイラル剤としては、BASF社製「LC756」を用いた。
 光重合開始剤としては、チバ・ジャパン社製「イルガキュアOXEO2」を用いた。
 界面活性剤としては、ネオス社製「フタージェント209F」を用いた。
As the chiral agent, “LC756” manufactured by BASF Corporation was used.
As a photopolymerization initiator, “Irgacure OXEO2” manufactured by Ciba Japan was used.
As the surfactant, “Factent 209F” manufactured by Neos Co., Ltd. was used.
 液体として、以下のものを用いた。
 ・純水(TRUSCO製の精製水、JISK0557に規定する「A1」以上に相当する水質のもの)
The following were used as the liquid.
・ Pure water (purified water made by TRUSCO, water quality equivalent to "A1" or higher specified in JISK0557)
 [評価方法]
 (基材フィルムからの樹脂薄膜の剥離強度の測定方法)
 ガラス板(大きさ:25mm幅×長さ100mm、厚さ2mm)を用意した。また、このガラス板と同じサイズに、粘着シート(日東電工製「LUCIACS CS9621T」、厚さ25μm)をカットした。この粘着シートは、保護フィルムとしての剥離ライナー、粘着剤層及び剥離ライナーをこの順に備える3層構造のフィルムであった。
[Evaluation methods]
(Measurement method of peel strength of resin thin film from base film)
A glass plate (size: 25 mm width × length 100 mm, thickness 2 mm) was prepared. Further, an adhesive sheet (“LUCIACS CS9621T” manufactured by Nitto Denko, thickness of 25 μm) was cut into the same size as this glass plate. This pressure-sensitive adhesive sheet was a film having a three-layer structure including a release liner as a protective film, a pressure-sensitive adhesive layer, and a release liner in this order.
 粘着シートの一方の剥離ライナーを剥離し、粘着剤層の表面を露出させた。この露出した粘着剤層の表面をガラス板に、荷重1Kgのローラーを用いて貼り合わせた。 The one release liner of the pressure-sensitive adhesive sheet was peeled off to expose the surface of the pressure-sensitive adhesive layer. The exposed surface of the pressure-sensitive adhesive layer was bonded to a glass plate using a roller having a load of 1 kg.
 粘着シートのもう一方の剥離ライナーを剥離し、粘着剤層の表面を露出させた。この露出した粘着剤層の表面を、基材フィルム及び樹脂薄膜を備える複層フィルムの樹脂薄膜側の面と、荷重1Kgのローラーを用いて貼り合わせた。その後、複層フィルムのガラス板からはみ出した部分を切り除いた。これにより、ガラス板、粘着剤層、樹脂薄膜及び基材フィルムをこの順に備えるサンプルを得た。 The other release liner of the pressure-sensitive adhesive sheet was peeled off to expose the surface of the pressure-sensitive adhesive layer. The exposed surface of the pressure-sensitive adhesive layer was bonded to the surface on the resin thin film side of the multilayer film including the base film and the resin thin film, using a roller with a load of 1 kg. Then, the part which protruded from the glass plate of a multilayer film was cut off. Thereby, the sample provided with a glass plate, an adhesive layer, a resin thin film, and a base film in this order was obtained.
 前記のサンプルを、引張試験機(IMADA製「MX-500N-L550-E」)の冶具に挟み、固定した。このサンプルの基材フィルムを、JIS K6854-1に準じて90°方向(即ち、ガラス板の表面の法線方向)に引っ張ることにより、樹脂薄膜から基材フィルムを剥がして、その剥離強度を測定した。測定の際、ロードセルとしては、最大荷重5Nのものを使用した。また、測定の際の引張速度は、20mm/分とした。 The sample was sandwiched between fixtures of a tensile testing machine (“MX-500N-L550-E” manufactured by IMADA) and fixed. By pulling the base film of this sample in the direction of 90 ° according to JIS K6854-1 (that is, the normal direction of the surface of the glass plate), the base film is peeled from the resin thin film, and the peel strength is measured. did. In the measurement, a load cell having a maximum load of 5N was used. Further, the tensile speed during the measurement was 20 mm / min.
 (樹脂薄膜の剥離片の粒度の評価)
 目視により、各例により得られた剥離片の粒径と、比較例1により得られた剥離片の粒径とを比較し、以下の判定基準により評価した。
 「良」:ほとんどの剥離片の粒径が比較例1の剥離片の粒径よりも小さい。
 「不良」:ほとんどの剥離片の粒径が比較例1の剥離片の粒径以上である。
(Evaluation of particle size of the peeled piece of resin thin film)
By visual observation, the particle size of the peeled piece obtained in each example was compared with the particle size of the peeled piece obtained in Comparative Example 1, and evaluated by the following criteria.
“Good”: The particle size of most of the peeled pieces is smaller than the particle size of the peeled piece of Comparative Example 1.
“Bad”: The particle size of most of the peeled pieces is equal to or larger than the particle size of the peeled piece of Comparative Example 1.
 (樹脂薄膜の剥離片の剥離速度の評価)
 樹脂薄膜の亀裂が形成された部分に流体(液体または気体)を吹き付けることにより、樹脂薄膜の全量が剥離したときの複層フィルムの搬送速度を比較した。
(Evaluation of peeling speed of resin thin film peeling piece)
By transporting fluid (liquid or gas) to the cracked portion of the resin thin film, the transport speed of the multilayer film when the entire amount of the resin thin film was peeled was compared.
 (連続処理時間の評価)
 樹脂薄膜の剥離片の製造(連続的な工程(2)及び工程(3)の実施)を開始してから、60分後、及び150分後のそれぞれにおいて、樹脂薄膜の剥離が良好に行われているか否かを判定した。判定の結果、樹脂薄膜の剥離が良好に行われていると判定された場合、そのまま装置の運転を続行した。樹脂薄膜の剥離が良好に行われていないと判定された場合、装置の運転を中断して装置のクリーニングを実施し、その後運転を再開した。
 判定の結果を、下記の評価基準で評価した。
 60:製造開始60分後において、樹脂薄膜の剥離が良好に行われていないと判定された。
 150:製造開始60分後においては樹脂薄膜の剥離が良好に行われていると判定されたが、製造開始150分後においては、樹脂薄膜の剥離が良好に行われていないと判定された。
 >150:製造開始60分後においても、製造開始150分後においても、樹脂薄膜の剥離が良好に行われていると判定された。
(Evaluation of continuous processing time)
The resin thin film was peeled well at 60 minutes and 150 minutes after the start of the production of the resin thin film release piece (continuous step (2) and step (3)). It was determined whether or not. As a result of the determination, when it was determined that the resin thin film was peeled well, the operation of the apparatus was continued as it was. When it was determined that the resin thin film was not peeled well, the operation of the apparatus was interrupted, the apparatus was cleaned, and then the operation was resumed.
The result of determination was evaluated according to the following evaluation criteria.
60: It was determined that peeling of the resin thin film was not performed well 60 minutes after the start of production.
150: It was determined that the resin thin film was peeled well 60 minutes after the start of production, but it was determined that the resin thin film was not peeled well 150 minutes after the start of production.
> 150: It was determined that the resin thin film was peeled well both 60 minutes after the start of production and 150 minutes after the start of production.
 [実施例1]
 (1-1.光硬化性の液晶組成物の調製)
 表1に示す比率で光重合性液晶性化合物1、光重合性非液晶性化合物、カイラル剤、光重合開始剤、界面活性剤及びシクロペンタノンを混合して、光硬化性の液晶組成物を調製した。
[Example 1]
(1-1. Preparation of Photocurable Liquid Crystal Composition)
Photopolymerizable liquid crystal compound 1, photopolymerizable non-liquid crystal compound, chiral agent, photopolymerization initiator, surfactant and cyclopentanone were mixed at the ratio shown in Table 1 to obtain a photocurable liquid crystal composition. Prepared.
 (1-2.長尺の複層フィルムの製造)
 基材フィルムとして、面内の屈折率が等方性で長尺のポリエチレンテレフタレートフィルム(東洋紡社製「PETフィルムA4100」;厚み100μm)を用意した。この基材フィルムをフィルム搬送装置の繰り出し部に取り付け、当該基材フィルムを長尺方向に搬送しながら以下の操作を行った。まず、搬送方向と平行な長尺方向にラビング処理を施した。次に、ラビング処理を施した面に、(1-1)で調製した液晶組成物をダイコーターを使用して塗布した。これにより、基材フィルムの片面に、未硬化状態の液晶組成物の膜を形成した。
(1-2. Production of long multilayer film)
A long polyethylene terephthalate film (“PET film A4100” manufactured by Toyobo Co., Ltd .; thickness 100 μm) having an in-plane refractive index isotropic and having an in-plane refractive index was prepared as a base film. This base film was attached to the feeding part of the film transport apparatus, and the following operations were performed while transporting the base film in the longitudinal direction. First, the rubbing process was performed in the longitudinal direction parallel to the transport direction. Next, the liquid crystal composition prepared in (1-1) was applied to the surface subjected to the rubbing treatment using a die coater. Thereby, the film | membrane of the uncured liquid crystal composition was formed in the single side | surface of a base film.
 得られた液晶組成物の膜に100℃で5分間配向処理を施し、当該膜に対して0.1mJ/cm~45mJ/cmの微弱な紫外線による照射処理と、それに続く100℃で1分間の加温処理からなるプロセスを2回繰り返した。その後、液晶組成物の膜に、窒素雰囲気下で800mJ/cmの紫外線を照射して、液晶組成物の膜を完全に硬化させた。これにより、長尺の基材フィルムの片面に、表1に示す厚みの樹脂薄膜を備える複層フィルムを得た。得られた複層フィルムについて、上述した方法で、基材フィルムからの樹脂薄膜の剥離強度を測定した。 The film of the obtained liquid crystal composition is subjected to an alignment treatment at 100 ° C. for 5 minutes, and the film is irradiated with weak ultraviolet rays of 0.1 mJ / cm 2 to 45 mJ / cm 2 , followed by 1 at 100 ° C. The process consisting of a minute warming treatment was repeated twice. Thereafter, the liquid crystal composition film was irradiated with ultraviolet rays of 800 mJ / cm 2 in a nitrogen atmosphere to completely cure the liquid crystal composition film. Thereby, the multilayer film provided with the resin thin film of the thickness shown in Table 1 on the single side | surface of a elongate base film was obtained. About the obtained multilayer film, the peeling strength of the resin thin film from a base film was measured by the method mentioned above.
 (1-3.樹脂薄膜の剥離片の製造)
 図1に示す、繰出し装置101、剥離室110、液体吹付装置120、剥離片回収部115、液体回収部130を有する装置100を用意した。
(1-3. Manufacture of peeling piece of resin thin film)
An apparatus 100 having a feeding device 101, a peeling chamber 110, a liquid spraying device 120, a peeling piece collecting unit 115, and a liquid collecting unit 130 shown in FIG. 1 was prepared.
 繰出し装置101に樹脂薄膜11を上側に配して複層フィルム10を取り付けて、表1に示すライン速度で搬送し、以下の作業を行った。液体として純水を用い、吹付圧力を30MPaに設定し、ノズル120Aから複層フィルム10の上面側に吹き付けた。吹付に際しての複層フィルムの搬送方向は、図1に示す通り水平方向とした。 The resin thin film 11 was placed on the upper side of the feeding device 101, the multilayer film 10 was attached, and the film was conveyed at the line speed shown in Table 1, and the following operations were performed. Pure water was used as the liquid, the spraying pressure was set to 30 MPa, and sprayed from the nozzle 120 </ b> A to the upper surface side of the multilayer film 10. The conveyance direction of the multilayer film at the time of spraying was set to the horizontal direction as shown in FIG.
 液体を吹き付けると、吹付開始直後から、樹脂薄膜に亀裂が発生した。その後、さらに複層フィルム10に、液体を吹き付けると、亀裂の形成された樹脂薄膜11が剥離し液体により吹き飛ばされた。本例では複層フィルム10をライン速度20m/分で搬送したので、液体吹付時間は0.2秒であったが、装置の運転開始直後の時点では、樹脂薄膜11の全量が剥離した。その後、装置の運転を続け、及び連続処理時間の評価を行った。 When the liquid was sprayed, a crack occurred in the resin thin film immediately after the spraying started. Then, when the liquid was further sprayed on the multilayer film 10, the resin thin film 11 in which the crack was formed peeled off and was blown off by the liquid. In this example, since the multilayer film 10 was conveyed at a line speed of 20 m / min, the liquid spraying time was 0.2 seconds, but at the time immediately after the start of operation of the apparatus, the entire amount of the resin thin film 11 was peeled off. Thereafter, the operation of the apparatus was continued and the continuous processing time was evaluated.
 その後、得られた樹脂薄膜11の剥離片11Aをフィルター116により、液体から回収した。回収した剥離片11Aを、乾燥機にて乾燥し、得られた剥離片の大きさを目視にて観察し、上述した評価基準により剥離片の粒度の評価を行った。 Thereafter, the peeled piece 11A of the obtained resin thin film 11 was recovered from the liquid by the filter 116. The collected peeled pieces 11A were dried with a dryer, the size of the obtained peeled pieces was visually observed, and the particle size of the peeled pieces was evaluated according to the evaluation criteria described above.
 [実施例2]
 工程(1-1)において、液晶組成物の組成を、表1に示す通りに変更した以外は、実施例1と同じ操作を行って剥離片を製造した。得られた剥離片の大きさを目視にて観察し剥離片の粒度の評価を行った。
 本例においても液体を吹き付けると、吹付開始直後から、樹脂薄膜に亀裂が発生した。その後、さらに複層フィルム10に、液体を吹き付けると、亀裂の形成された樹脂薄膜11が剥離し液体により吹き飛ばされた。本例では複層フィルム10をライン速度20m/分で搬送したので、液体吹付時間は0.2秒であったが、装置の運転開始直後の時点では、樹脂薄膜11の全量が剥離した。その後、装置の運転を続け、及び連続処理時間の評価を行った。
[Example 2]
Except that the composition of the liquid crystal composition was changed as shown in Table 1 in step (1-1), the same procedure as in Example 1 was performed to produce a release piece. The magnitude | size of the obtained peeling piece was observed visually, and the particle size of the peeling piece was evaluated.
Also in this example, when the liquid was sprayed, a crack occurred in the resin thin film immediately after the spraying started. Then, when the liquid was further sprayed on the multilayer film 10, the resin thin film 11 in which the crack was formed peeled off and was blown off by the liquid. In this example, since the multilayer film 10 was conveyed at a line speed of 20 m / min, the liquid spraying time was 0.2 seconds, but at the time immediately after the start of operation of the apparatus, the entire amount of the resin thin film 11 was peeled off. Thereafter, the operation of the apparatus was continued and the continuous processing time was evaluated.
 [実施例3]
 実施例1の(1-2)で得られた複層フィルムを、プレス装置(テスター産業製ロールプレス装置 SA-602)を用いてプレス圧30MPa、プレス時間0.06秒でロールプレスした後に、実施例1の(1-3)の操作を行ったこと以外は、実施例1と同じ操作を行って剥離片を製造し、得られた剥離片の大きさを目視にて観察し剥離片の粒度の評価を行った。
 本例においてはプレスにより樹脂薄膜に亀裂が発生し、プレス後に液体を吹き付けると、更に多くの亀裂が発生し、さらに液体を吹き付けることにより、亀裂の形成された樹脂薄膜11が剥離し液体により吹き飛ばされた。本例では複層フィルム10をライン速度20m/分で搬送したので、液体吹付時間は0.2秒であったが、装置の運転開始直後の時点では、樹脂薄膜11の全量が剥離した。その後、装置の運転を続け、及び連続処理時間の評価を行った。
[Example 3]
After the multilayer film obtained in (1-2) of Example 1 was roll-pressed using a press apparatus (roll press apparatus SA-602 manufactured by Tester Sangyo Co., Ltd.) at a press pressure of 30 MPa and a press time of 0.06 seconds, Except that the operation (1-3) of Example 1 was performed, the same operation as in Example 1 was performed to produce a peeled piece, and the size of the obtained peeled piece was visually observed, Particle size was evaluated.
In this example, a crack is generated in the resin thin film by pressing, and when the liquid is sprayed after pressing, more cracks are generated. By spraying the liquid further, the resin thin film 11 having the crack is peeled off and blown away by the liquid. It was done. In this example, since the multilayer film 10 was conveyed at a line speed of 20 m / min, the liquid spraying time was 0.2 seconds, but at the time immediately after the start of operation of the apparatus, the entire amount of the resin thin film 11 was peeled off. Thereafter, the operation of the apparatus was continued and the continuous processing time was evaluated.
 [実施例4]
 下記の変更点以外は、実施例1と同じ操作を行って剥離片を製造し、装置の連続処理時間の評価及び剥離片の粒度の評価を行った。
 ・工程(1-3)において、装置として、装置100に代えて、図7に示す装置700を用い、吹付に際しての複層フィルムの搬送方向を、図7に示す通り下から上への上向き方向とした。
 ・工程(1-3)において、吹付の設定圧力を30MPaから20MPaに変更した。
[Example 4]
Except for the following changes, the same operation as in Example 1 was performed to produce a peeled piece, and the evaluation of the continuous treatment time of the apparatus and the particle size of the peeled piece were performed.
In the step (1-3), instead of the apparatus 100, the apparatus 700 shown in FIG. 7 is used as the apparatus, and the transport direction of the multilayer film at the time of spraying is as shown in FIG. It was.
In step (1-3), the set pressure for spraying was changed from 30 MPa to 20 MPa.
 [実施例5]
 下記の変更点以外は、実施例1と同じ操作を行って剥離片を製造し、装置の連続処理時間の評価及び剥離片の粒度の評価を行った。
 ・工程(1-1)において、液晶組成物の組成を、表1に示す通りに変更した。
 ・工程(1-3)において、装置として、装置100に代えて、図7に示す装置700を用い、吹付に際しての複層フィルムの搬送方向を、図7に示す通り下から上への上向き方向とした。
 ・工程(1-3)において、吹付の設定圧力を30MPaから20MPaに変更した。
[Example 5]
Except for the following changes, the same operation as in Example 1 was performed to produce a peeled piece, and the evaluation of the continuous treatment time of the apparatus and the particle size of the peeled piece were performed.
In step (1-1), the composition of the liquid crystal composition was changed as shown in Table 1.
In the step (1-3), instead of the apparatus 100, the apparatus 700 shown in FIG. 7 is used as the apparatus, and the transport direction of the multilayer film at the time of spraying is as shown in FIG. It was.
In step (1-3), the set pressure for spraying was changed from 30 MPa to 20 MPa.
 [比較例1]
 実施例1の(1-2)で製造した複層フィルムを用いて、図6に示す製造装置を用いて、以下の方法により樹脂薄膜の剥離片を製造した。得られた剥離片は実施例の剥離片の粒度を評価するための対比対象とした。
[Comparative Example 1]
Using the multi-layer film produced in (1-2) of Example 1 and using the production apparatus shown in FIG. 6, a peeled piece of the resin thin film was produced by the following method. The obtained peeling piece was used as a comparison object for evaluating the particle size of the peeling piece of the example.
 (樹脂薄膜の剥離片の製造)
 図6は、比較例1で用いる剥離片の製造装置を模式的に示す側面図である。図6に示したように、フィルム送出部420、剥離部430、及び、フィルム回収部440を備える製造装置400を用意した。剥離部430は、鋭角に設けられた角部分435を有するバー434、及び、角部分435の直ぐ下流に設けられた空気を噴射しうるノズル436を備えていた。この際、バー434の角部分435の角度は、複層フィルム10を角度θ(60°)で折り返せるように設定した。角部分はR=0.2mm~0.3mmの面取り構造となっている。
(Manufacture of peeling pieces of resin thin film)
FIG. 6 is a side view schematically showing a peeling piece manufacturing apparatus used in Comparative Example 1. FIG. As shown in FIG. 6, the manufacturing apparatus 400 provided with the film delivery part 420, the peeling part 430, and the film collection | recovery part 440 was prepared. The peeling portion 430 was provided with a bar 434 having a corner portion 435 provided at an acute angle, and a nozzle 436 capable of injecting air provided immediately downstream of the corner portion 435. At this time, the angle of the corner portion 435 of the bar 434 was set so that the multilayer film 10 could be folded back at an angle θ (60 °). The corner portion has a chamfered structure of R = 0.2 mm to 0.3 mm.
 フィルム送出部420に、バー434の角部分435において基材フィルム12よりも樹脂薄膜11を外にして複層フィルム10を折り返せる向きで、複層フィルム10を取り付けた。そして、フィルム回収部440によって複層フィルム10に対して搬送方向に張力を与えた状態で、フィルム送出部420から複層フィルム10を送り出した。この際、複層フィルム10に与える張力の大きさは、80N/mに設定した。また、ノズル436からは空気を圧力0.5MPaで噴射させた。 The multilayer film 10 was attached to the film delivery section 420 in such a direction that the multilayer film 10 could be folded back with the resin thin film 11 outside the base film 12 at the corner portion 435 of the bar 434. And the multilayer film 10 was sent out from the film delivery part 420 in the state which gave the tension | tensile_strength in the conveyance direction with respect to the multilayer film 10 by the film collection | recovery part 440. FIG. At this time, the magnitude of the tension applied to the multilayer film 10 was set to 80 N / m. Air was injected from the nozzle 436 at a pressure of 0.5 MPa.
 複層フィルム10は、バー434の角部分435において折り返され、多くの亀裂が形成された。その後、ノズル436から噴射された空気により亀裂の形成された樹脂薄膜11が剥離し吹き飛ばされ、剥離片11Aが得られた。複層フィルム10をライン速度20m/分で搬送したところ、亀裂の形成された樹脂薄膜の一部しか剥離できなかった。そこで、複層フィルム10を、ライン速度10m/分、5m/分、1m/分として搬送したところ、ライン速度1m/分で搬送することにより、亀裂の形成された樹脂薄膜の幅方向の全量が剥離した。 The multilayer film 10 was folded at the corner portion 435 of the bar 434, and many cracks were formed. Thereafter, the resin thin film 11 with cracks formed was peeled off and blown off by the air jetted from the nozzle 436, and a peeled piece 11A was obtained. When the multilayer film 10 was conveyed at a line speed of 20 m / min, only a part of the resin thin film having cracks could be peeled off. Therefore, when the multilayer film 10 is transported at a line speed of 10 m / min, 5 m / min, and 1 m / min, by transporting at a line speed of 1 m / min, the total amount in the width direction of the cracked resin thin film is reduced. It peeled.
 前記の実施例の評価結果を、下記の表1に示す。 The evaluation results of the above examples are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 [結果]
 表1に示すように、実施例1~5によれば、剥離片を、効率的に製造することができる、基材フィルム上に形成された樹脂薄膜の剥離片の製造方法を提供することができた。
 実施例4及び5では、吹付圧力を、他の実施例より低い圧力としたにも関わらず、他の実施例と同等の粒度評価が得られ、かつ、連続処理をより長時間で行うことができた。したがって、実施例4及び5で行った上向きの搬送での吹付によれば、特に有利な製造を行うことができることが分かる。
[result]
As shown in Table 1, according to Examples 1 to 5, it is possible to provide a method for producing a peeling piece of a resin thin film formed on a base film, which can efficiently produce the peeling piece. did it.
In Examples 4 and 5, although the spraying pressure was set to a pressure lower than that of the other examples, the particle size evaluation equivalent to that of the other examples can be obtained, and the continuous treatment can be performed for a longer time. did it. Therefore, it can be seen that particularly advantageous production can be performed by spraying in the upward conveyance performed in Examples 4 and 5.
10…複層フィルム
10C…亀裂
11…樹脂薄膜
11A…剥離片
12…基材フィルム
100…樹脂薄膜の剥離片の製造装置
101…繰出し装置
102,103…搬送ロール
110…剥離室
111A,111B,211A,211B…テンションロール
112…支持板
115…剥離片回収部
116…フィルター
120,200,300…液体吹付装置
120A,220A,320A…ノズル
121,221,321…液体供給部
130…液体回収部
131…液体流路
310…支持ロール
L…液体
L1…液体の移動方向
700…製造装置
701…繰出し装置
710…剥離室
711A,711B…テンションロール
720…液体吹付装置
720A…ノズル
721…液体供給部
DESCRIPTION OF SYMBOLS 10 ... Multilayer film 10C ... Crack 11 ... Resin thin film 11A ... Stripping piece 12 ... Base film 100 ... Manufacturing apparatus 101 of peeling piece of resin thin film ... Feeding apparatus 102, 103 ... Conveyance roll 110 ... Stripping chamber 111A, 111B, 211A 211B ... Tension roll 112 ... Support plate 115 ... Peeling piece collection unit 116 ... Filters 120, 200, 300 ... Liquid spraying devices 120A, 220A, 320A ... Nozzles 121, 221, 321 ... Liquid supply unit 130 ... Liquid collection unit 131 ... Liquid flow path 310 ... support roll L ... liquid L1 ... liquid moving direction 700 ... manufacturing apparatus 701 ... feeding apparatus 710 ... peeling chamber 711A, 711B ... tension roll 720 ... liquid spraying apparatus 720A ... nozzle 721 ... liquid supply section

Claims (7)

  1.  基材フィルム上に、樹脂薄膜を形成して複層フィルムを得る工程(1)と、
     前記樹脂薄膜に液体を吹き付けて亀裂を形成する工程(2)と、
     前記基材フィルムから前記樹脂薄膜を剥離して剥離片を得る工程(3)と、を含む、
     樹脂薄膜の剥離片の製造方法。
    Forming a resin thin film on the base film to obtain a multilayer film (1);
    (2) forming a crack by spraying a liquid on the resin thin film;
    And (3) obtaining a peeled piece by peeling the resin thin film from the base film.
    A method for producing a peeled piece of a resin thin film.
  2.  前記液体が純水である、請求項1に記載の樹脂薄膜の剥離片の製造方法。 The method for producing a peeled piece of a resin thin film according to claim 1, wherein the liquid is pure water.
  3.  前記工程(2)を、吹付圧力0.15MPa以上50MPa以下で行う、請求項1または2に記載の樹脂薄膜の剥離片の製造方法。 The method for producing a peeled piece of a resin thin film according to claim 1 or 2, wherein the step (2) is performed at a spraying pressure of 0.15 MPa to 50 MPa.
  4.  前記樹脂薄膜が、光硬化性の液晶組成物の硬化物からなる、請求項1~3のいずれか一項に記載の樹脂薄膜の剥離片の製造方法。 The method for producing a peeled piece of a resin thin film according to any one of claims 1 to 3, wherein the resin thin film comprises a cured product of a photocurable liquid crystal composition.
  5.  前記樹脂薄膜が、コレステリック樹脂層である、請求項1~4のいずれか一項に記載の樹脂薄膜の剥離片の製造方法。 The method for producing a peeled piece of a resin thin film according to any one of claims 1 to 4, wherein the resin thin film is a cholesteric resin layer.
  6.  前記基材フィルムと前記樹脂薄膜との剥離強度が500N/m以下である、請求項1~5のいずれか一項に記載の樹脂薄膜の剥離片の製造方法。 The method for producing a peelable piece of a resin thin film according to any one of claims 1 to 5, wherein the peel strength between the base film and the resin thin film is 500 N / m or less.
  7.  前記樹脂薄膜の厚さが、0.1μm以上200μm以下である、請求項1~6のいずれか一項に記載の樹脂薄膜の剥離片の製造方法。 The method for producing a peeled piece of a resin thin film according to any one of claims 1 to 6, wherein the thickness of the resin thin film is 0.1 μm or more and 200 μm or less.
PCT/JP2019/013007 2018-03-30 2019-03-26 Method for manufacturing resin thin film stripped pieces WO2019189256A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020510963A JP7272351B2 (en) 2018-03-30 2019-03-26 Method for manufacturing peeled piece of resin thin film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-069668 2018-03-30
JP2018069668 2018-03-30

Publications (1)

Publication Number Publication Date
WO2019189256A1 true WO2019189256A1 (en) 2019-10-03

Family

ID=68060146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013007 WO2019189256A1 (en) 2018-03-30 2019-03-26 Method for manufacturing resin thin film stripped pieces

Country Status (3)

Country Link
JP (1) JP7272351B2 (en)
TW (1) TW201942158A (en)
WO (1) WO2019189256A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111420829A (en) * 2020-04-20 2020-07-17 绍兴中松智能科技有限公司 Rotary injection pressure fixed type anti-counterfeit label production robot and production method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230154802A (en) * 2021-03-12 2023-11-09 도레이 카부시키가이샤 Method for peeling film from film with film attached and film peeling device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07304983A (en) * 1994-05-06 1995-11-21 Consortium Elektrochem Ind Gmbh Pigment with platelet structure, composition containing same, data memory medium, and production of this pigment
JP2004026614A (en) * 2002-06-28 2004-01-29 Nippon Sheet Glass Co Ltd Sol solution and flaky substance, method for manufacturing the same, and cosmetics using the same
JP2015027743A (en) * 2013-07-30 2015-02-12 日本ゼオン株式会社 Method of producing peeled piece of resin thin film, method of producing resin thin film pigment, paint, forgery prevention article, security article and decorative article

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3701022B2 (en) 2002-12-19 2005-09-28 日東電工株式会社 Manufacturing method of birefringent optical film, film obtained by the manufacturing method, elliptically polarizing plate using the same, and liquid crystal display device using them
WO2013108890A1 (en) 2012-01-20 2013-07-25 旭化成イーマテリアルズ株式会社 Resin composition, layered product, multilayered printed wiring board, multilayered flexible wiring board, and process for producing same
JP6307864B2 (en) 2013-12-16 2018-04-11 日本ゼオン株式会社 Method for manufacturing identification medium for authenticity identification

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07304983A (en) * 1994-05-06 1995-11-21 Consortium Elektrochem Ind Gmbh Pigment with platelet structure, composition containing same, data memory medium, and production of this pigment
JP2004026614A (en) * 2002-06-28 2004-01-29 Nippon Sheet Glass Co Ltd Sol solution and flaky substance, method for manufacturing the same, and cosmetics using the same
JP2015027743A (en) * 2013-07-30 2015-02-12 日本ゼオン株式会社 Method of producing peeled piece of resin thin film, method of producing resin thin film pigment, paint, forgery prevention article, security article and decorative article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111420829A (en) * 2020-04-20 2020-07-17 绍兴中松智能科技有限公司 Rotary injection pressure fixed type anti-counterfeit label production robot and production method

Also Published As

Publication number Publication date
JP7272351B2 (en) 2023-05-12
TW201942158A (en) 2019-11-01
JPWO2019189256A1 (en) 2021-04-01

Similar Documents

Publication Publication Date Title
JP6142714B2 (en) Method for producing peeled piece of resin thin film, method for producing resin thin film pigment, paint, anti-counterfeit article, security article and decorative article
EP3816683A1 (en) Identification medium, authenticity determination method, and article
WO2007142206A1 (en) Cholesteric liquid-crystal composition, circular polarization separation sheet, and use thereof
JP5532974B2 (en) Composition for forming liquid crystal layer, circularly polarized light separating sheet and method for producing the same, brightness enhancement film, and liquid crystal display device
WO2016002765A1 (en) Identification medium, method for producing identification medium, and method for using identification medium
JP7099519B2 (en) Method for manufacturing peeled pieces of resin thin film
WO2020261923A1 (en) Display medium, authenticity determination method, and article including display medium
JP2014174321A (en) Production method of optical film having surface shape, polymerizable liquid crystal film, and polymerizable liquid crystal film having surface shape
WO2019189256A1 (en) Method for manufacturing resin thin film stripped pieces
EP2128223A1 (en) Cholesteric liquid-crystal composition, circularly polarizing separation sheet, and production process
JP6349699B2 (en) Optical laminate and method for producing optical laminate
JP2019188740A (en) Laminate and method for producing laminate
JPWO2008007782A1 (en) Method for producing circularly polarized light separating sheet and coating film forming apparatus
JP6980988B2 (en) Embossed film and its manufacturing method, embossed product manufacturing method, and security article manufacturing method
JP2011186158A (en) Film, film roll and method for manufacturing film
EP4159454A1 (en) Authenticity determination member and authenticity determination method therefor
EP4006108A1 (en) Composite pigment, identification medium, and authenticity determination method
JP5540630B2 (en) Composition for forming liquid crystal layer, circularly polarized light separating sheet and method for producing the same, brightness enhancement film, and liquid crystal display device
WO2019230840A1 (en) Identification medium and method for authenticating identification medium
JP2009240994A (en) Method and apparatus for manufacturing laminated body
US11975557B2 (en) Identification medium, authenticity determination method, and article
JP5773029B2 (en) Composition for forming liquid crystal layer, circularly polarized light separating sheet and method for producing the same, brightness enhancement film, and liquid crystal display device
WO2023189967A1 (en) Identification medium
WO2023189966A1 (en) Identification medium and article
US20220275213A1 (en) Composite pigment, identification medium, and method for determining authenticity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19774756

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020510963

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19774756

Country of ref document: EP

Kind code of ref document: A1