WO2019189167A1 - Identification method and identification device for identifying type of brushless dc motor - Google Patents

Identification method and identification device for identifying type of brushless dc motor Download PDF

Info

Publication number
WO2019189167A1
WO2019189167A1 PCT/JP2019/012831 JP2019012831W WO2019189167A1 WO 2019189167 A1 WO2019189167 A1 WO 2019189167A1 JP 2019012831 W JP2019012831 W JP 2019012831W WO 2019189167 A1 WO2019189167 A1 WO 2019189167A1
Authority
WO
WIPO (PCT)
Prior art keywords
brushless
motor
type
speed
speed command
Prior art date
Application number
PCT/JP2019/012831
Other languages
French (fr)
Japanese (ja)
Inventor
秀幸 竹本
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Publication of WO2019189167A1 publication Critical patent/WO2019189167A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor

Definitions

  • the present disclosure relates to an identification method, an identification device, and a brushless DC motor for identifying the type of a brushless DC motor.
  • a fan motor as a cooling device for releasing heat generated inside to the outside.
  • a fan motor is electrically connected to a system controller and operates under the control of the system controller.
  • Patent Document 1 discloses an identification method in which a fan motor and a system controller communicate to acquire fan identification information. For example, the mode is switched from the normal mode to the command mode, and the fan motor and the system controller transmit and receive commands via a power supply line, a PWM (Pulse Width Modulation) line, and a TACH (Tachometer) line.
  • the system controller acquires fan identification information by handshaking and determines compatibility with the fan motor. In this case, both the system controller and the fan require complicated control software such as switching between the normal mode and the command mode.
  • a method for more easily identifying the type of brushless DC motor is desired.
  • the exemplary embodiment of the present disclosure provides a brushless DC motor identification method and identification apparatus capable of identifying the type of a brushless DC motor without particularly performing a handshake.
  • An exemplary identification method of the present disclosure is an identification method used for an identification device that identifies a type of a brushless DC motor, and an output response characteristic of the brushless DC motor is different for each type of a plurality of brushless DC motors.
  • the power supply voltage is supplied from the identification device to the brushless DC motor via a power supply line
  • the power supply voltage is supplied from the identification device to the brushless DC motor via the power supply line.
  • An exemplary identification device of the present disclosure is an identification device that identifies a type of a brushless DC motor, and an output response characteristic of the brushless DC motor is different for each type of a plurality of brushless DC motors.
  • a power supply terminal for supplying a power supply voltage via a power supply line, and a controller for identifying the type of the brushless DC motor, wherein the controller supplies the brushless DC motor with the power supply voltage and a speed
  • the type of the brushless DC motor is identified based on the drive current that flows through the power supply line according to the rotational speed of the brassless DC motor that accelerates in response to the command and that has passed a predetermined time after the speed command is given. .
  • a power supply voltage is applied to a brushless DC motor having different output response characteristics for each of a plurality of types of brushless DC motors, and the brushless DC motor is accelerated in response to a speed command. And measure the drive current flowing through the power line.
  • a brushless DC motor identification method and identification apparatus capable of identifying the type of the brushless DC motor without performing handshake are provided.
  • FIG. 1 is a block diagram illustrating a typical block configuration example of a user system 100 and a brushless DC motor 200 according to an exemplary embodiment 1.
  • FIG. 2 is a block diagram illustrating another block configuration example of the user system 100 and the brushless DC motor 200 according to the exemplary embodiment 1.
  • FIG. 3 is a block diagram illustrating still another block configuration example of the user system 100 and the brushless DC motor 200 according to the exemplary embodiment 1.
  • FIG. 4 is a flowchart of an identification method for identifying the type of the brushless DC motor 200 according to the exemplary embodiment 1.
  • FIG. 5A is a graph illustrating a change in speed command applied to the brushless DC motor 200.
  • FIG. 5B is a graph illustrating output response characteristics with respect to a speed command for each of a plurality of suppliers.
  • FIG. 6 is a diagram illustrating a table used to identify the type of the brushless DC motor 200 in the exemplary embodiment 1.
  • FIG. 7 is another flowchart of an identification method for identifying the type of the brushless DC motor 200 according to the exemplary embodiment 1.
  • FIG. 8 is still another flowchart of the identification method for identifying the type of the brushless DC motor 200 according to the exemplary embodiment 1.
  • FIG. 9 is a flowchart of an identification method for identifying the type of the brushless DC motor 200 according to the variation of the exemplary first embodiment.
  • FIG. 10 is a graph illustrating output response characteristics with respect to a speed command for each of a plurality of suppliers.
  • FIG. 11 is a diagram illustrating a table used to identify the type of the brushless DC motor 200 in the exemplary variation of the first embodiment.
  • FIG. 12 is a graph illustrating the identification speed of suppliers A, B, and C.
  • FIG. 13 is a block diagram illustrating a typical block configuration example of the user system 100 and the brushless DC motor 200 according to Exemplary Embodiment 2.
  • FIG. 14 is a block diagram showing a more detailed block configuration example inside the user system 100.
  • FIG. 15 is a flowchart of an identification method for identifying the type of the brushless DC motor 200 according to the second exemplary embodiment.
  • FIG. 16A is a graph illustrating a change in speed command applied to the brushless DC motor.
  • FIG. 16B is a graph showing the waveform of the drive current flowing in response to the speed command in the brushless DC motor of supplier A.
  • FIG. 16C is a graph showing the waveform of the drive current flowing in response to the speed command in the brushless DC motor of supplier B.
  • FIG. 16D is a graph showing a waveform of a drive current flowing in response to a speed command in the brushless DC motor of supplier C.
  • FIG. 17 is a diagram illustrating a table used to identify the type of the brushless DC motor 200 in the exemplary embodiment 2.
  • FIG. 18 is a flowchart of an identification method for identifying the type of the brushless DC motor 200 according to the second exemplary embodiment.
  • FIG. 19 is a block diagram illustrating a typical block configuration example of the user system 100, the identification device 100A, and the brushless DC motor 200 according to Exemplary Embodiment 3.
  • FIG. 20 is a block diagram illustrating another block configuration example of the user system 100, the identification device 100A, and the brushless DC motor 200 according to Exemplary Embodiment 3.
  • FIG. 1 schematically shows a typical block configuration example of a user system 100 and a brushless DC motor 200 according to the present embodiment.
  • the brushless DC motor 200 of the present disclosure includes an inner rotor type or an outer rotor type motor.
  • the brushless DC motor 200 is not limited to a fan motor, but is a brushless DC motor 200 used for various applications.
  • the brushless DC motor 200 is, for example, a motor used in home appliances such as an air conditioner or a washing machine and a vehicle-mounted motor.
  • the user system 100 is electrically connected to the brushless DC motor 200.
  • the user system 100 can supply power to the brushless DC motor 200.
  • the user system 100 can be installed in a production management system for the brushless DC motor 200 in a factory that produces a variety of products.
  • the user system 100 is a system in an electronic device or an in-vehicle system in which the brushless DC motor 200 can be mounted.
  • the brushless DC motor 200 is suitably mounted on an electronic device such as a server, a desktop personal computer main body, or a game machine.
  • the user system 100 is a part of a series of inspection systems.
  • the brushless DC motor 200 is mounted as a fan motor in the main body of a server or a desktop personal computer, the user system 100 is an entire system composed of various electronic components mounted on a motherboard or one of them. Part.
  • the user system 100 includes a controller 110 and a memory 120, for example. As will be described later, the user system 100 according to the present embodiment has a function of identifying the type of the brushless DC motor 200. In other words, the user system 100 can be used as an identification device that identifies the type of the brushless DC motor 200. Therefore, in this specification, the user system 100 may be referred to as the identification device 100.
  • the identification device 100 includes a power supply terminal for supplying a power supply voltage to the brushless DC motor 200 and a controller for identifying the type of the brushless DC motor 200. The identification device 100 supplies a power supply voltage to the brushless DC motor 200.
  • the controller 110 mainly controls the entire user system 100 and controls power supply to the brushless DC motor 200.
  • the controller 110 can further identify the type of the brushless DC motor 200.
  • the controller 110 is, for example, a semiconductor integrated circuit such as MCU (micro control unit) or FPGA (field programmable gate array).
  • the controller 110 identifies the type of the brushless DC motor 200 based on the pulse signal in a state where the power supply voltage is supplied to the brushless DC motor.
  • the controller 110 includes a tachometer input terminal that is electrically connected to the tachometer output terminal and receives a pulse signal from the brushless DC motor 200.
  • the controller 110 outputs a pulse representing the rotational speed of the brushless DC motor 200 output from the TACH terminal in accordance with the rotation of the brushless DC motor 200 that accelerates in response to the speed command in a state where the power supply voltage is supplied to the brushless DC motor 200.
  • the type of the brushless DC motor 200 is identified based on the signal.
  • the type of the brushless DC motor 200 is identified based on the pulse signal representing the rotation speed of the brushless DC motor 200. Thereby, it is possible to identify the type of the brushless DC motor 200 without performing a handshake. The identification of the type of the brushless DC motor 200 will be described later in detail.
  • the memory 120 is, for example, a writable memory (for example, PROM), a rewritable memory (for example, flash memory), or a read-only memory.
  • the memory 120 stores a control program having a command group for causing the controller 110 to identify the type of the brushless DC motor 200.
  • the control program is temporarily expanded in a RAM (not shown) at the time of booting.
  • the memory 120 does not need to be externally attached to the controller 110 and may be mounted on the controller 110.
  • the controller 110 equipped with the memory 120 is, for example, the MCU described above.
  • the user system 100 includes, for example, a Vmot terminal, a speed command (CONTROL) terminal, a TACH terminal, and a GND terminal as connection terminals for connection to the brushless DC motor 200.
  • the speed command terminal of the user system 100 is an output terminal
  • the TACH terminal is a tachometer input terminal.
  • the Vmot terminal is a terminal for motor power.
  • the motor power supply voltage Vmot in the range of 7.0 to 13.8V is supplied to the brushless DC motor 200 from the Vmot terminal.
  • the speed command terminal is a motor speed control terminal, for example, a PWM terminal, and is electrically connected to the speed command terminal of the brushless DC motor 200.
  • the controller 110 generates a PWM signal for controlling the rotation of the motor and outputs the PWM signal to the brushless DC motor 200 via the speed command terminal.
  • the signal transmission method, that is, the speed command input is not limited to PWM, and may be, for example, PFM (pulse frequency modulation), PAM (pulse amplitude modulation), FLL (frequency locked loop), or PLL (phase locked loop).
  • the TACH terminal is an input terminal for a tachometer for monitoring the rotational speed of the motor, and is electrically connected to the TACH terminal of the brushless DC motor 200.
  • the rotation speed is represented by, for example, the number of rotations (rpm) at which the motor rotates per unit time (1 minute) or the number of rotations (rps) at which the motor rotates per unit time (1 second).
  • Two pulses per motor rotation are generally output from the TACH terminal of the fan motor.
  • a pulse signal output from the TACH terminal of the brushless DC motor 200 in accordance with the rotation speed of the motor is input to the TACH terminal of the user system 100.
  • the brushless DC motor 200 is a fan motor having an impeller. Therefore, even in the brushless DC motor 200 that is a fan motor having an impeller, it is possible to identify the type of the brushless DC motor 200 without performing handshaking.
  • the brushless DC motor 200 is a DC fan including an impeller, for example.
  • the brushless DC motor 200 is, for example, an axial fan, a centrifugal fan, a cross flow fan, or a sirocco fan.
  • the brushless DC motor 200 typically includes a regulator 210, a motor drive IC 220, an inverter 230, a circuit board CB on which those electronic components are mounted, a coil 240, and a hall element 250.
  • the regulator 210, the motor drive IC 220, the inverter 230, and the hall element 250 constitute a motor drive circuit for energizing the coil 240 to drive the motor.
  • the brushless DC motor 200 energizes a circuit board CB on which a power supply terminal for supplying a power supply voltage from the outside and a tachometer output terminal for outputting a pulse signal representing a rotation speed are arranged, and a coil and a coil.
  • a driving circuit is provided.
  • the regulator 210 steps down the motor power supply voltage Vmot of 13.8V, for example, and generates the power supply voltage Vcc (for example, 5.0V) for the motor drive IC 220.
  • the power supply voltage Vcc supplied to the motor drive IC 220 is preferably generated based on the motor power supply voltage Vmot. Thereby, it is not necessary to provide a terminal for the power supply voltage Vcc in the brushless DC motor 200, and the number of terminals and lead wires can be reduced.
  • the power supply voltage Vcc may be supplied from the user system 100 to the brushless DC motor 200 separately from the motor power supply voltage Vmot.
  • the motor drive IC 220 is connected to the inverter 230.
  • the motor drive IC 220 generates a control signal for controlling the inverter 230 according to the PWM signal transmitted from the user system 100.
  • the motor drive IC 220 monitors the rotational speed of the motor based on the output from the hall element 250, for example, and generates a pulse signal corresponding to the rotational speed of the motor, that is, a TACH signal.
  • the output method is, for example, 2 pulses per rotation.
  • a technique for generating a TACH signal without using a Hall element is known. When utilizing such a technique, the Hall element 250 is not required.
  • the inverter 230 is electrically connected to the motor drive IC 220 and the motor coil 240.
  • the inverter 230 energizes the coil 240 of the motor by converting the power of the motor power supply voltage Vmot into the power supplied to the fan motor under the control of the motor drive IC 220.
  • the coil 240 is a winding of the motor.
  • the brushless DC motor 200 includes, for example, a circuit board CB on which a Vmot terminal, a speed command terminal, a TACH terminal, and a GND terminal corresponding to the terminal on the user system 100 side are arranged.
  • the speed command terminal of the brushless DC motor 200 is an input terminal
  • the TACH terminal is an output terminal. That is, the brushless DC motor 200 has a circuit board CB on which a tachometer output terminal for outputting a pulse signal corresponding to the rotation speed is arranged.
  • the output response characteristic of the brushless DC motor 200 is defined by the output response characteristic of the motor drive IC 220.
  • the output response indicates a response of the rotational speed to the speed command value. More specifically, it means a response time (or delay time) from when the speed command value is given until the motor rotation speed reaches a speed corresponding to the command value. In other words, the response time is a time until the rotation speed of the motor shifts from the transient state to the steady state. In this embodiment, the response time is assigned to each type of the plurality of brushless DC motors 200 as unique information of the brushless DC motor 200.
  • a different response time can be assigned as unique information of the brushless DC motor 200. That is, the output response characteristics of the brushless DC motor 200 are different for each type of the plurality of brushless DC motors 200. It is possible to identify the type of brushless DC motor based on the output response characteristics. For example, a response time of 1 second (hereinafter referred to as “sec”) ⁇ 0.3 sec is assigned to supplier A, a response time of 2 sec ⁇ 0.3 sec is assigned to supplier B, and a response time of 3 sec ⁇ 0.3 sec. Can be assigned to supplier C. Furthermore, different response times can be assigned to multiple suppliers.
  • response time can be assigned as specific information for each product lot. For example, a response time of 1 sec ⁇ 0.3 sec is assigned to product lot number A, a response time of 2 sec ⁇ 0.3 sec is assigned to product lot number B, and a response time of 3 sec ⁇ 0.3 sec is assigned to product lot number C. Can do. Further, different response times can be assigned to a plurality of product lot numbers. As described above, the types of the plurality of brushless DC motors 200 exist, for example, as many as the number of suppliers or as many as the number of product lots to be managed.
  • FIG. 2 schematically shows another block configuration example of the user system 100 and the brushless DC motor 200 according to the present embodiment.
  • identification of the type of the brushless DC motor 200 does not necessarily require a speed command terminal.
  • an MCU 221 mounted on the motor drive IC 220 can be used.
  • the MCU 221 generates a PWM signal for controlling the rotation of the motor after the power supply voltage Vcc is turned on.
  • the motor drive IC 220 generates a control signal for the inverter 230 in accordance with the PWM signal from the MCU 221 and outputs the control signal to the inverter 230.
  • FIG. 3 schematically shows still another block configuration example of the user system 100 and the brushless DC motor 200.
  • the user system 100 may further include a light emitting element 130.
  • the light emitting element 130 includes, for example, a plurality of LEDs (Light Emitted Diode).
  • the light emitting element 130 is a notification device that notifies the identification result of the type of the brushless DC motor 200. That is, the identification device 100 is used to notify the result of identifying the type of the brushless DC motor 200. Thereby, the identification result can be easily recognized.
  • the plurality of LEDs can be provided as many as the number of types of the plurality of brushless DC motors 200. For example, if there are two types of brushless DC motors 200 of suppliers A and B, two LEDs having different emission colors can be provided.
  • a red LED for supplier A and a blue LED for supplier B can be provided. That is, as a result of identifying the type of the brushless DC motor 200 from among the plurality of light emitting elements 130 assigned for each type of the brushless DC motor 200, the light emitting element 130 assigned to the brushless DC motor 200 to be identified. The light is emitted based on the above. Thereby, for example, a worker in a factory can visually recognize which supplier's motor the brushless DC motor 200 to be identified is.
  • FIG. 4 shows a flowchart of an identification method for identifying the type of the brushless DC motor 200 according to the present embodiment.
  • the type of the brushless DC motor 200 is identified by measuring the response time until the rotational speed reaches the threshold value from the initial speed based on the frequency of the pulse signal.
  • the identification device 100 can identify the type of the brushless DC motor 200 only by measuring the response time.
  • FIG. 5A illustrates a change in the speed command applied to the brushless DC motor 200
  • FIG. 5B illustrates an output response characteristic with respect to the speed command for each of a plurality of suppliers.
  • the horizontal axis represents time (seconds)
  • the vertical axis represents rotation speed (rpm).
  • the identification method according to the present embodiment is a method used for the identification device 100, for example.
  • the identification method in the present embodiment is an identification method used for the identification device 100 that identifies the type of the brushless DC motor 200.
  • the identification method of the present disclosure is suitably used as a method for inspecting the suitability of the brushless DC motor 200 with respect to a user system when manufacturing a product in a factory.
  • the process of checking the suitability of the brushless DC motor 200 can be incorporated into a part of the product manufacturing process.
  • a test mode is provided separately from the normal operation mode in which the brushless DC motor 200 is driven.
  • the identification device 100 identifies the type of the brushless DC motor 200 by sequentially executing the following steps S100 to S300 in the test mode.
  • Step S100 A power supply voltage is supplied from the identification device 100 to the brushless DC motor 200 while the terminals of the identification device 100 (user system 100) and the brushless DC motor 200 are electrically connected to each other.
  • the power supply voltage for identification for example, a voltage equal to the motor power supply voltage Vmot supplied to the brushless DC motor 200 in the normal operation mode is supplied.
  • Step S210A The controller 110 obtains a pulse signal representing the rotational speed of the brushless DC motor 200 output from the TACH terminal as the brushless DC motor 200 accelerates toward the first speed in response to the first speed command value. . That is, the pulse signal represents the rotation speed of the brushless DC motor output from the tachometer output terminal in accordance with the rotation of the brushless DC motor 200 that accelerates toward the first speed in response to the first speed command value. For example, the controller 110 gives the first speed command value to the brushless DC motor 200 while the brushless DC motor 200 is stopped. In response to the first speed command value, the brushless DC motor 200 starts acceleration from the initial speed toward the first speed. The first speed is a speed given by the first speed command value. For example, the initial speed is zero when the motor is stopped. The controller 110 receives a pulse signal output from the TACH terminal as the brushless DC motor 200 rotates.
  • Step S210B The controller 110 measures the response time until the motor rotation speed reaches the threshold value from the initial speed based on the frequency of the pulse signal.
  • the frequency of the pulse signal represents the rotational speed of the brushless DC motor 200.
  • the controller 110 can grasp the rotational speed of the brushless DC motor 200 by monitoring the frequency of the pulse signal.
  • the second speed command value is a command value for giving a second speed that is an initial speed.
  • the circuit board CB is further provided with a control terminal for inputting a speed command value for controlling the rotation speed, and before the first speed command value is given from the identification device 100 to the brushless DC motor, A second speed command value different from the first speed command value is given as the initial speed.
  • the response time can be measured more accurately, so that more products can be identified.
  • the second speed command value is zero when identification is started from a state where the motor is stopped. That is, the initial speed is zero.
  • the identification can be started from the state where the motor is stopped, and the identification of the product from the measurement time is easy.
  • Fig. 5B shows the linearly changing motor rotation speed for each supplier.
  • the present invention is not limited to this example.
  • a delay time until the speed change is started may be set for each motor type, and the rotational speed may be changed exponentially according to the delay time.
  • the output response characteristics when the speed command value is changed are intentionally made different for each supplier, for example.
  • the output response characteristics of the brushless DC motor 200 are different for each type of the plurality of brushless DC motors 200.
  • the response time of supplier A is 1 sec ⁇ 0.3 sec
  • the response time of supplier B is 2 sec ⁇ 0.3 sec
  • the response time of supplier C is 3 sec ⁇ 0.3 sec.
  • ⁇ 0.3 sec is the tolerance of the guaranteed value.
  • the controller 110 measures the response time until the threshold value is reached by monitoring the frequency of the pulse signal at a time interval of 50 ⁇ s.
  • the threshold value is set to the first speed command value.
  • the threshold value is preferably set to a speed in the range of 10% to 90% of the first speed command value.
  • the threshold value is a speed in a range of 10% to 90% of the first speed command value.
  • the threshold value may be set to a speed lower than the first speed command value by a predetermined value.
  • the threshold value is a speed that is lower than the first speed command value by a predetermined value. Thereby, the calculation can be performed more easily than when the threshold value is determined by the ratio of the first speed command value.
  • the controller 110 measures the response time Tr ⁇ 0.5 sec until the threshold value is reached in the identification of supplier A.
  • the response time 2Tr ⁇ 0.5 sec is measured
  • the response time 3Tr ⁇ 0.5 sec is measured.
  • the controller 110 measures a response time of 1 sec ⁇ 0.5 sec in the identification of supplier A, and a response of 2 sec ⁇ 0.5 sec in the identification of supplier B. The time is measured, and in the identification of supplier C, a response time of 3 sec ⁇ 0.5 sec is measured.
  • the tolerance of the allowable value is set to ⁇ 0.5 sec.
  • Step S300 The controller 110 identifies the type of the brushless DC motor 200 based on the measured response time. That is, the controller 110 outputs the brushless DC motor output from the tachometer output terminal in accordance with the rotation of the brushless DC motor that accelerates in response to a speed command value in a state where the power supply voltage is supplied to the brushless DC motor 200.
  • the type of the brushless DC motor 200 is identified based on the pulse signal representing the rotation speed of the brushless DC motor 200.
  • the controller 110 refers to the table and identifies the type of motor based on the measured response time.
  • the type of the brushless DC motor 200 is identified based on the measured response time with reference to a table that associates the types of the plurality of brushless DC motors 200 with the unique information of the plurality of brushless DC motors 200. This facilitates processing for identifying the type of the brushless DC motor 200 and programming.
  • FIG. 6 illustrates a table used to identify the type of the brushless DC motor 200.
  • the table is a lookup table (LUT) that associates the types of the plurality of brushless DC motors 200 with the unique information of the plurality of brushless DC motors 200.
  • the unique information of the brushless DC motor 200 represents a response time that differs for each of the plurality of brushless DC motors 200.
  • the table is stored in the memory 120, for example.
  • the types of the plurality of brushless DC motors 200 exist for each supplier, for example, and there are three types of suppliers A, B, and C, for example.
  • the type of motor can be expressed by, for example, a 3-bit digital signal.
  • the controller 110 may have an AD converter (not shown).
  • the controller 110 converts the measured response time (analog value) into a digital signal.
  • the unique information of the brushless DC motor 200 can also be expressed by a digital value having the same bit width as the resolution of AD conversion.
  • the identification device 100 that is, the user system 100 completes the identification of the type of the brushless DC motor 200
  • the mode is switched from the test mode to the normal control mode. Thereafter, the user system 100 shifts to a normal motor drive sequence.
  • FIG. 7 shows another flowchart of the identification method for identifying the type of the brushless DC motor 200 according to the present embodiment.
  • This processing flow is different from the processing flow shown in FIG. 4 in that the first speed command value is further given after the second speed command value is given as the initial speed.
  • the second speed command value is a non-zero speed, resulting in a non-zero initial speed.
  • the second speed command value is smaller than the first speed command value.
  • the second speed command value is given to the brushless DC motor 200 (step S210C).
  • the rotation speed of the motor is changed from the second speed to the first speed based on the output response characteristics. Change to speed.
  • the type of the brushless DC motor 200 can be identified by measuring the response time from the second speed to the first speed while the brushless DC motor 200 is rotating.
  • the identification method of the present embodiment it is possible to identify the type of the brushless DC motor 200 based on the response time only by changing the software used for the controller 110 on the system side. No hardware changes are necessary. Communication by the handshake between the identification device 100 and the brushless DC motor 200 as in the related art is unnecessary. Moreover, an existing power supply terminal can be used, and a dedicated terminal for identification need not be newly provided. Product cost can be reduced by reducing the number of parts.
  • the identification method of the present disclosure is suitably used not only when a product is manufactured, but also when, for example, a failed brushless DC motor 200 is replaced with a new brushless DC motor 200. It can be confirmed whether or not the replaced brushless DC motor 200 is compatible with the system.
  • individual products equipped with the brushless DC motor 200 are connected to the Internet. So-called IoT (Internet of Things) is realized.
  • IoT Internet of Things
  • a supplier of an individual product equipped with the brushless DC motor 200 can identify a product equipped with a specific brushless DC motor 200 by analyzing big data including unique information of the brushless DC motor 200. . As a result, quality can be stabilized, for example, by preventing occurrence of defects.
  • FIG. 8 shows still another flowchart of the identification method for identifying the type of the brushless DC motor 200.
  • the identification method according to the present embodiment can further include step S ⁇ b> 400 for notifying the result of identifying the type of the brushless DC motor 200.
  • the notification method it is possible to notify the result of identifying the type of the brushless DC motor 200 using the light emitting element 130 (for example, a plurality of LEDs) shown in FIG.
  • the controller 110 of the identification device 100 identifies the type of the brushless DC motor 200 from among the plurality of LEDs allocated for each type of the plurality of brushless DC motors 200, and the LED allocated to the brushless DC motor 200 to be identified.
  • the light is emitted based on the result.
  • the light emitting element 130 is not limited to an LED, and may be an element that notifies by light.
  • a red LED can be assigned to the A supplier
  • a blue LED can be assigned to the B supplier
  • a green LED can be assigned to the C supplier.
  • the controller 110 of the identification device 100 identifies the brushless DC motor 200 of the C supplier
  • the controller 110 causes the green LED to emit light.
  • a worker in a factory can visually recognize whether or not the brushless DC motor 200 to be identified is a motor of a C supplier.
  • the identification result can be displayed on the liquid crystal display as character information.
  • the controller 110 of the identification apparatus 100 may once write the identification result in the memory 120 or may transmit the identification result to another apparatus or device that requires the identification result. These forms are also modes for notifying the identification result.
  • FIG. 9 shows a flowchart of an identification method for identifying the type of the brushless DC motor 200 according to the variation of the present embodiment.
  • FIG. 10 illustrates the output response characteristics with respect to the speed command for each of a plurality of suppliers.
  • the horizontal axis indicates time (seconds), and the vertical axis indicates the rotation speed (rpm).
  • the controller 110 supplies a first speed command value in response to the rotation of the brushless DC motor 200 that accelerates in response to the speed command in a state where the power supply voltage is supplied to the brushless DC motor 200.
  • the type of the brushless DC motor 200 is identified based on a pulse signal output from the TACH terminal later. That is, with the rotation of the brushless DC motor 200 that accelerates toward the first speed in response to the first speed command value, it is output from the tachometer output terminal after a predetermined time has elapsed since the first speed command value was given.
  • the type of the brushless DC motor 200 is identified based on the pulse signal representing the rotation speed of the brushless DC motor 200.
  • the identification device 100 identifies the type of the brushless DC motor 200 by sequentially executing the following steps S100 to S300 in the test mode.
  • the identification device 100 supplies a power supply voltage to the brushless DC motor 200 (step S100).
  • Controller 110 obtains a pulse signal output from the TACH terminal after a predetermined time has elapsed since the first speed command value was given (step S210D).
  • the predetermined time is shorter than the response time until the rotational speed reaches the threshold value from the initial speed in the brushless DC motor 200 having the second best output response characteristic among the types of the plurality of brushless DC motors 200. It is set to become.
  • the predetermined time is set to the response time of supplier B having the second best output response characteristic among suppliers A, B, and C, for example, 1.5 sec shorter than 2 sec.
  • the threshold value is a speed in a range of 10% to 90% of the first speed command value.
  • the threshold value is a speed in a range of 10% to 90% of the first speed command value.
  • the threshold value may be set to a speed lower than the first speed command value by a predetermined value.
  • the threshold value is a speed that is lower than the first speed command value by a predetermined value.
  • the brushless DC motor 200 of the supplier A has already reached the first speed, and the brushless DC motor 200 of the suppliers B and C It is accelerating towards speed. According to different output response characteristics among suppliers A, B and C, the rotational speeds of the brushless DC motor 200 after 1.5 seconds are different from each other.
  • Controller 110 measures the rotational speed of brushless DC motor 200 after a predetermined time has elapsed based on the frequency of the pulse signal (step S210E). That is, the type of the brushless DC motor 200 is identified by measuring the rotational speed of the brushless DC motor 200 after a predetermined time has elapsed based on the frequency of the pulse signal. Since it is only necessary to detect the rotational speed after a predetermined time has passed since the speed command value is given, the calculation load on the user system 100 side can be reduced. In addition, the time required for identification can be determined in advance. For example, 1.5 seconds after the first speed command value is given, the rotational speed of the brushless DC motor 200 of supplier A reaches the first speed v1.
  • the controller 110 measures the rotation speed v1 in the identification of the supplier A, measures the rotation speed 0.825v1 in the identification of the supplier B, and measures the rotation speed 0.65v1 in the identification of the supplier C.
  • FIG. 11 illustrates a table used to identify the type of the brushless DC motor 200 in this variation.
  • the controller 110 refers to the table shown in FIG. 11 and identifies the type of the brushless DC motor 200 based on the rotational speed of the brushless DC motor 200 measured after a predetermined time has elapsed.
  • the unique information of the brushless DC motor 200 is the rotation speed after a predetermined time has elapsed. That is, the type of the brushless DC motor 200 is identified by referring to a table that associates the types of the plurality of brushless DC motors 200 with the unique information of the plurality of brushless DC motors 200 and measured after a predetermined time has elapsed. This is based on the rotation speed. This facilitates processing for identifying the type of the brushless DC motor 200 and programming.
  • the controller 110 refers to the table to identify the brushless DC motor 200 to be identified as the motor of the supplier B based on the measured rotation speed 0.825v1. Also in this variation, the controller 110 may give the second speed command value as the initial speed before giving the first speed command value to the brushless DC motor 200. That is, the circuit board CB is further provided with a control terminal for inputting a speed command value for controlling the rotation speed, and before the first speed command value is given from the identification device 100 to the brushless DC motor, the first terminal is provided. A second speed command value different from the speed command value is given as the initial speed. Accordingly, since the response time can be measured more accurately, more brushless DC motors 200 can be identified. For example, the initial speed is zero. Thereby, since the identification can be started from the state where the motor is stopped, the identification of the brushless DC motor 200 from the response time is easy.
  • a different second speed command value can be assigned to each type of the plurality of brushless DC motors 200.
  • the MCU 221 supplies the motor drive IC 220 with a command value for a different identification speed for each type of the plurality of brushless DC motors 200 as the second speed command value.
  • the controller 110 gives the first speed command value to the brushless DC motor 200.
  • FIG. 12 illustrates the identification speed of suppliers A, B, and C.
  • the horizontal axis indicates time (seconds), and the vertical axis indicates the rotation speed (rpm).
  • the identification speed command value A is assigned to the brushless DC motor 200 of the supplier A.
  • the MCU gives the identification speed command value A to the motor drive IC as the second speed command value.
  • the rotational speed of the motor reaches the identification speed A.
  • the identification speed command value B is assigned to the brushless DC motor 200 of the supplier B.
  • the MCU gives the identification speed command value B to the motor drive IC as the second speed command value.
  • the rotational speed of the motor reaches the identification speed B.
  • the identification speed command value C is assigned to the brushless DC motor 200 of the supplier C.
  • the MCU gives the identification speed command value C to the motor drive IC as the second speed command value. As a result, the rotational speed of the motor reaches the identification speed C.
  • the identification speed A is a speed given by the identification speed command value A.
  • the identification speed B is a speed given by the identification speed command value B
  • the identification speed C is a speed given by the identification speed command value C.
  • the relationship between the magnitudes of the command values is first speed command value> identification speed command value C> identification speed command value B> identification speed command value A.
  • the arrival time for the brushless DC motor 200 to reach the first speed from the identification speed is common among the suppliers A, B and C.
  • the time is Tr.
  • the brushless DC motor 200 reaches the first speed after the time Tr has elapsed since reaching the identification speed.
  • the second speed command value differs for each type of the plurality of brushless DC motors 200, and the type of the brushless DC motor 200 is identified based on the initial speed and the rotation speed after a predetermined time has elapsed.
  • the type of the brushless DC motor 200 is identified based on the amount of change ⁇ in the rotational speed during the time Tr.
  • the change amount ⁇ of supplier A is represented by “first speed ⁇ identification speed A”
  • the change amount ⁇ of supplier B is represented by “first speed ⁇ identification speed B”
  • the change amount ⁇ of supplier C is It is expressed as “first speed-identification speed C”.
  • the controller 110 identifies the brushless DC motor 200 to be identified as the motor of the supplier A.
  • the controller 110 can identify the type of the brushless DC motor 200 based on the amount of change ⁇ in the rotational speed during the time Tr.
  • the controller 110 is based on the drive current flowing through the power supply line according to the rotational speed of the brassless DC motor 200 that accelerates in response to the speed command in a state where the power supply voltage is supplied to the brushless DC motor 200.
  • the type of the DC motor 200 is identified. That is, in the present embodiment, the type of brushless DC motor 200 is based on the drive current flowing through the power supply line according to the rotational speed of the brassless DC motor 200 that accelerates toward the first speed in response to the first speed command value. Identify Hereinafter, differences from the first embodiment will be mainly described.
  • FIG. 13 schematically shows a block configuration example of the user system 100 and the brushless DC motor 200 according to the present embodiment.
  • FIG. 14 schematically shows a more detailed block configuration example inside the user system 100.
  • the pulse signal output from the TACH terminal is not measured. Therefore, this embodiment does not particularly require a TACH terminal, and the brushless DC motor 200 can be, for example, a two-wire motor having a power supply terminal and a GND terminal shown in FIG. Similarly to the first embodiment, the brushless DC motor 200 may further include a speed command terminal.
  • the user system 100 further includes, for example, a DC power supply 151, a current detector 152, and a discriminator 153.
  • a DC power supply 151 for example, a DC power supply 151, a current detector 152, and a discriminator 153.
  • the components of the controller 110, the DC power supply 151, the current detector 152, and the discriminator 153 may be simply referred to as “controller 110”. .
  • the DC power supply 151 is a constant voltage source, for example, and generates a motor power supply voltage Vmot (for example, 7.0 to 13.8 V) to be supplied to the brushless DC motor 200 in motor control in normal control and test modes.
  • Vmot motor power supply voltage
  • the DC power supply 151 may have a current limiting function for limiting the current.
  • the current detector 152 detects the drive current flowing through the power line in identifying the type of the brushless DC motor 200.
  • the current detector 152 detects (or samples) the drive current at a time interval of 50 ⁇ s, for example.
  • a drive current flows through the power supply line according to the rotation speed of the brushless DC motor 200. For example, in the case of a fan motor, it is known that a drive current proportional to the square or the cube of the rotation speed (or the number of rotations) flows in the power supply line. When the rotation speed changes, the drive current changes. That is, the drive current also changes according to the change in speed command.
  • the discriminator 153 measures the arrival time until the drive current reaches the threshold value from the initial current by monitoring the current detection value output from the current detector 152.
  • the initial current is, for example, zero. This facilitates identification of the type of the brushless DC motor 200 from the response time.
  • the threshold value is set to a current in the range of 10% to 90% of the rated current. Thereby, variation in response time to be measured can be suppressed, and more accurate identification is possible.
  • the threshold value is set to a current smaller than the rated current by a predetermined value. Thereby, calculation can be performed more easily than when the threshold value is determined by the ratio of the first speed command value.
  • the arrival time differs for each type of the plurality of brushless DC motors 200.
  • the discriminator 153 identifies the type of the brushless DC motor 200 based on the measured arrival time.
  • the discriminator 153 is typically mounted on the controller 110. That is, in this embodiment, the type of the brushless DC motor 200 is identified by measuring the arrival time until the drive current reaches the threshold value from the initial current. Thereby, for example, the identification device 100 can identify the type of the brushless DC motor 200 only by measuring the response time.
  • FIG. 15 shows a flowchart of an identification method for identifying the type of the brushless DC motor 200 according to the present embodiment.
  • Step S100 A power supply voltage is supplied from the identification device 100 to the brushless DC motor 200 while the terminals of the identification device 100 (user system 100) and the brushless DC motor 200 are electrically connected to each other. That is, the identification device 100 supplies a power supply voltage to the brushless DC motor 200 via the power supply line.
  • Step S220A Before giving the first speed command value from the identification device 100 to the brushless DC motor 200, the second speed command value is given and an initial current is passed.
  • the brushless DC motor 200 has a circuit board on which a control terminal for inputting a speed command value for controlling the rotation speed is arranged, and gives the first speed command value from the identification device 100 to the brushless DC motor 200.
  • an initial current Prior to applying the second speed command value different from the first speed command value, an initial current is caused to flow through the power supply line. Accordingly, since the response time can be measured more carefully, more types of brushless DC motors 200 can be identified.
  • the initial speed of the motor is zero. In that case, the second speed command value may not be given to the brushless DC motor 200 in particular.
  • the brushless DC motor 200 starts acceleration toward the first speed.
  • Step S220B The drive current flowing according to the rotation speed of the brushless DC motor 200 that accelerates toward the first speed is detected by the current detector 152 at a time interval of 50 ⁇ s, for example.
  • FIG. 16A illustrates the change in the speed command given to the brushless DC motor.
  • FIG. 16B illustrates the waveform of the drive current that flows in response to the speed command in the brushless DC motor of supplier A
  • FIG. 16C illustrates the waveform of the drive current that flows in response to the speed command in the brushless DC motor of supplier B
  • FIG. 16D illustrates the waveform of the drive current that flows in response to the speed command in the brushless DC motor of supplier C.
  • the horizontal axis indicates time (seconds).
  • the vertical axis in FIG. 16A indicates the rotational speed (krpm), and the vertical axis in FIGS. 16B to 16D indicates the drive current (A).
  • the speed command shown in FIG. 16A is given to the brushless DC motor 200.
  • the drive current shown in FIG. 16B flows in response to the speed command.
  • the initial current is 0.5A and the rated current is 1.2A.
  • the threshold value is set in a range of 10% to 90% of the rated current, that is, a range of 0.12A to 1.08A.
  • 1 sec ⁇ 0.3 sec is assigned to the response time of supplier A
  • 2 sec ⁇ 0.3 sec is assigned to the response time of supplier B
  • 3 sec ⁇ 0. Allocate 3 seconds As shown in FIG. 16B to FIG. 16D, the arrival time for the drive current to reach from the initial current to the threshold value varies depending on the output response characteristics assigned to each supplier, and as a result, for the suppliers A, B and C, Different values are shown.
  • Step S220C The discriminator 153 monitors the current detection value output from the current detector 152, that is, the time change of the current waveform, thereby measuring the arrival time until the drive current reaches the threshold value from the initial current. For example, when the threshold value is set to 0.9 A, the discriminator 153 measures arrival time 0.0025 sec in identifying supplier A, and measures arrival time 0.005 sec in identifying supplier B. Supplier C In the identification, the arrival time of 0.01 sec is measured.
  • FIG. 17 illustrates a table used for identifying the type of the brushless DC motor 200.
  • the discriminator 153 refers to a table that associates the types of the plurality of brushless DC motors 200 with the unique information of the plurality of brushless DC motors 200, and identifies the type of the brushless DC motor 200 based on the measured arrival time.
  • the unique information of the brushless DC motor 200 is the arrival time described above. That is, the type of the brushless DC motor 200 is identified based on the measured arrival time with reference to a table that associates the types of the plurality of brushless DC motors 200 with the unique information of the plurality of brushless DC motors 200. This facilitates processing for identifying the type of the brushless DC motor 200 and programming. For example, the discriminator 153 identifies the brushless DC motor 200 to be identified as the motor of the supplier B based on the measured arrival time 0.005 sec by referring to the table.
  • the identification method of the present embodiment communication by handshake between the identification device 100 and the brushless DC motor 200 is unnecessary as in the first embodiment. Moreover, an existing power supply terminal can be used, and a dedicated terminal for identification need not be newly provided. Product cost can be reduced by reducing the number of parts.
  • the identification method can be suitably used for a two-wire motor.
  • FIG. 18 shows a flowchart of an identification method for identifying the type of the brushless DC motor 200 according to the variation of this embodiment.
  • the drive current that flows in response to the speed command changes according to the output response characteristic unique to the brushless DC motor 200. Therefore, the drive currents that flow after a predetermined time has elapsed since the speed command changes are different among suppliers A, B, and C.
  • the type of the brushless DC motor 200 is identified using this characteristic.
  • the identification method in this variation provides the first speed command value that flows through the power supply line according to the rotational speed of the brushless DC motor 200 that accelerates toward the first speed in response to the first speed command value.
  • the type of the brushless DC motor 200 is identified based on the drive current after a predetermined time.
  • the controller 110 gives a speed command value that flows through the power line in accordance with the rotational speed of the brushless DC motor 200 that accelerates in response to the speed command in a state where the power supply voltage is supplied to the brushless DC motor 200.
  • the type of the brushless DC motor 200 is identified based on the drive current after a predetermined time has elapsed.
  • the current detector 152 responds to the first speed command value and flows according to the rotation speed of the brushless DC motor 200 that accelerates toward the first speed.
  • the drive current after a predetermined time has elapsed since the speed command value changed. Is detected (step S20D).
  • the second speed command value may be given and the initial current may flow.
  • a second speed command value that is different for each type of the plurality of brushless DC motors 200 may be given to the brushless DC motor 200 as an identification speed command value.
  • the controller 110 can identify the type of the brushless DC motor 200 based on the amount of change in the drive current during a certain time.
  • the predetermined time is shorter than the arrival time until the drive current reaches the threshold value from the initial current in the brushless DC motor 200 having the second best output response characteristic among the types of the plurality of brushless DC motors 200. Is set. Thereby, it can suppress that the drive current of the some brushless DC motor 200 reaches a threshold value, and it becomes difficult to identify the kind of brushless DC motor 200.
  • the predetermined time can be set to the arrival time of supplier B, for example, 0.004 sec, which is shorter than 0.005 sec. In that case, the current detector 152 detects the drive current flowing through the power supply line 0.004 sec after the speed command changes.
  • the classifier 153 refers to a table that associates the types of the plurality of brushless DC motors 200 with the unique information of the plurality of brushless DC motors 200, and determines the types of the brushless DC motors 200 based on the drive current measured after 0.004 sec. Identify.
  • the unique information of the brushless DC motor 200 is a drive current measured after 0.004 sec. That is, identification of the type of the brushless DC motor 200 is based on a drive current measured after a predetermined time has elapsed with reference to a table that associates the types of the plurality of brushless DC motors 200 with the unique information of the plurality of brushless DC motors 200. Do it. Further, when the above-described identification speed command value is given, for example, the discriminator 153 identifies the type of the brushless DC motor 200 based on the initial current and the drive current measured after 0.004 sec.
  • the unique information of the brushless DC motor 200 is acquired by measuring the drive current flowing through the power supply line after a predetermined time has elapsed. According to this variation, it is only necessary to detect the drive current after a predetermined time has elapsed after giving the speed command value, so that the calculation load on the user system 100 side can be reduced. In addition, the time required for identification can be determined in advance.
  • FIG. 19 schematically illustrates a typical block configuration example of the user system 100, the identification device 100A, and the brushless DC motor 200.
  • the identification device 100A is a separate device from the user system 100.
  • FIG. 19 shows a configuration and connection example of an identification device 100A that is connected to the brushless DC motor 200 shown in FIG. 1 and includes a Vmot terminal, a GND terminal, a speed command terminal, and a TACH terminal.
  • Vmot terminal a Vmot terminal
  • GND terminal a GND terminal
  • speed command terminal a speed command terminal
  • TACH terminal a TACH terminal
  • the identification device 100A includes, for example, an MCU 110A and a light emitting element 130.
  • the identification device 100A includes a Vmot terminal, a GND terminal, and a TACH terminal as terminals necessary for identifying the type of the brushless DC motor 200.
  • the user system 100, the identification device 100A, and the brushless DC motor 200 are electrically connected to each other among the Vmot terminal, the GND terminal, and the TACH terminal.
  • the power supply voltage is supplied from the identification device 100A to the brushless DC motor 200 via the Vmot terminal
  • the PWM signal is supplied from the user system 100 to the brushless DC motor 200 via the speed command terminal.
  • the identification device 100A can identify the type of the brushless DC motor 200, for example, according to the processing flow shown in FIG.
  • the MCU 110A may transmit the identification result to the controller 110 of the user system 100.
  • FIG. 20 schematically illustrates another block configuration example of the user system 100, the identification device 100A, and the brushless DC motor 200.
  • the identification device 100A is electrically connected to the user system 100 and the brushless DC motor 200 through, for example, a test point (TP).
  • TP1 is a power supply TP.
  • TP2 is a TP for TACH.
  • TP3 is a TP for GND.
  • a dedicated probe can be connected to the identification device 100A and the type of the brushless DC motor 200 can be identified by applying the probe to the TP.
  • the embodiment of the present disclosure is widely used in various devices including various fan motors such as a personal computer, a game machine, a vacuum cleaner, a dryer, a washing machine, and a refrigerator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

An exemplary identification method according to the present disclosure is used for an identification device that identifies the type of a brushless DC motor. Output response characteristics of the brushless DC motor vary from one type to another of a plurality of brushless DC motors. This method includes: supplying a power supply voltage from the identification device to the brushless DC motor through a power supply line; and identifying the type of the brushless DC motor on the basis of a driving current that, after the lapse of a prescribed time period after a first speed command value is given, flows through the power supply line in accordance with the rotational speed of the brushless DC motor which is accelerated toward a first speed in response to the first speed command value.

Description

ブラシレスDCモータの種類を識別する識別方法および識別装置Identification method and identification device for identifying type of brushless DC motor
 本開示は、ブラシレスDCモータの種類を識別する識別方法、識別装置およびブラシレスDCモータに関する。 The present disclosure relates to an identification method, an identification device, and a brushless DC motor for identifying the type of a brushless DC motor.
 多くの電子機器は、例えば、内部で発生する熱を外部に逃がすための冷却装置としてファンモータを備える。電子機器において、ファンモータは、システムコントローラに電気的に接続され、そのシステムコントローラの制御を受けて動作する。 Many electronic devices include, for example, a fan motor as a cooling device for releasing heat generated inside to the outside. In an electronic device, a fan motor is electrically connected to a system controller and operates under the control of the system controller.
 特許文献1は、ファンモータとシステムコントローラとが通信を行ってファン識別情報を取得する識別方法を開示している。例えば、通常モードからコマンドモードに切り替わり、ファンモータおよびシステムコントローラは、電源線、PWM(Pulse Width Modulation)線およびTACH(Tachometer)線を介しコマンドを送受信する。システムコントローラは、ファン識別情報をハンドシェイクにより取得し、ファンモータとの適合性を判断する。この場合、システムコントローラ、ファン共に、通常モードと、コマンドモードの切り替えなど、複雑な制御ソフトを必要としていた。 Patent Document 1 discloses an identification method in which a fan motor and a system controller communicate to acquire fan identification information. For example, the mode is switched from the normal mode to the command mode, and the fan motor and the system controller transmit and receive commands via a power supply line, a PWM (Pulse Width Modulation) line, and a TACH (Tachometer) line. The system controller acquires fan identification information by handshaking and determines compatibility with the fan motor. In this case, both the system controller and the fan require complicated control software such as switching between the normal mode and the command mode.
米国特許出願公開第2006/0152891号明細書US Patent Application Publication No. 2006/0152891
 ブラシレスDCモータの種類をより簡単に識別する手法が望まれている。 A method for more easily identifying the type of brushless DC motor is desired.
 本開示の例示的な実施形態は、ハンドシェイクを特に行うことなくブラシレスDCモータの種類を識別することが可能な、ブラシレスDCモータの識別方法および識別装置を提供する。 The exemplary embodiment of the present disclosure provides a brushless DC motor identification method and identification apparatus capable of identifying the type of a brushless DC motor without particularly performing a handshake.
 本開示の例示的な識別方法は、ブラシレスDCモータの種類を識別する、識別装置に用いる識別方法であって、前記ブラシレスDCモータの出力応答特性は、複数のブラシレスDCモータの種類毎に異なり、前記識別装置から前記ブラシレスDCモータに電源ラインを介して前記電源電圧を供給し、前記識別装置から前記ブラシレスDCモータに電源ラインを介して電源電圧を供給し、第1速度指令値に応答して第1速度に向けて加速する前記ブラスレスDCモータの回転速度に応じて前記電源ラインを流れる、前記第1速度指令値を与えてから所定時間経過後における駆動電流に基づいて、前記ブラシレスDCモータの種類を識別することを包含する。 An exemplary identification method of the present disclosure is an identification method used for an identification device that identifies a type of a brushless DC motor, and an output response characteristic of the brushless DC motor is different for each type of a plurality of brushless DC motors. In response to the first speed command value, the power supply voltage is supplied from the identification device to the brushless DC motor via a power supply line, the power supply voltage is supplied from the identification device to the brushless DC motor via the power supply line. Based on the drive current after a predetermined time has elapsed since the first speed command value was applied, which flows through the power supply line according to the rotational speed of the brassless DC motor accelerating toward the first speed. Includes identifying the type.
 本開示の例示的な識別装置は、ブラシレスDCモータの種類を識別する識別装置であって、前記ブラシレスDCモータの出力応答特性は、複数のブラシレスDCモータの種類毎に異なり、前記ブラシレスDCモータに電源電圧を電源ラインを介して供給するための電源端子と、前記ブラシレスDCモータの種類を識別するコントローラと、を備え、前記コントローラは、前記ブラシレスDCモータに前記電源電圧を供給した状態で、速度指令に応答して加速する前記ブラスレスDCモータの回転速度に応じて前記電源ラインを流れる、前記速度指令を与えてから所定時間経過後における駆動電流に基づいて、前記ブラシレスDCモータの種類を識別する。 An exemplary identification device of the present disclosure is an identification device that identifies a type of a brushless DC motor, and an output response characteristic of the brushless DC motor is different for each type of a plurality of brushless DC motors. A power supply terminal for supplying a power supply voltage via a power supply line, and a controller for identifying the type of the brushless DC motor, wherein the controller supplies the brushless DC motor with the power supply voltage and a speed The type of the brushless DC motor is identified based on the drive current that flows through the power supply line according to the rotational speed of the brassless DC motor that accelerates in response to the command and that has passed a predetermined time after the speed command is given. .
 本開示の例示的な実施形態によると、出力応答特性が複数のブラシレスDCモータの種類毎に異なるブラシレスDCモータに電源電圧を与え、速度指令に応答して加速するブラシレスDCモータの回転速度に応じて電源ラインを流れる駆動電流を計測する。これにより、ハンドシェイクを行うことなくブラシレスDCモータの種類を識別することが可能な、ブラシレスDCモータの識別方法および識別装置が提供される。 According to an exemplary embodiment of the present disclosure, a power supply voltage is applied to a brushless DC motor having different output response characteristics for each of a plurality of types of brushless DC motors, and the brushless DC motor is accelerated in response to a speed command. And measure the drive current flowing through the power line. Thus, a brushless DC motor identification method and identification apparatus capable of identifying the type of the brushless DC motor without performing handshake are provided.
図1は、例示的な実施形態1によるユーザシステム100およびブラシレスDCモータ200の典型的なブロック構成例を示すブロック図である。FIG. 1 is a block diagram illustrating a typical block configuration example of a user system 100 and a brushless DC motor 200 according to an exemplary embodiment 1. 図2は、例示的な実施形態1によるユーザシステム100およびブラシレスDCモータ200の他のブロック構成例を示すブロック図である。FIG. 2 is a block diagram illustrating another block configuration example of the user system 100 and the brushless DC motor 200 according to the exemplary embodiment 1. 図3は、例示的な実施形態1によるユーザシステム100およびブラシレスDCモータ200のさらなる他のブロック構成例を示すブロック図である。FIG. 3 is a block diagram illustrating still another block configuration example of the user system 100 and the brushless DC motor 200 according to the exemplary embodiment 1. 図4は、例示的な実施形態1によるブラシレスDCモータ200の種類を識別する識別方法のフローチャートである。FIG. 4 is a flowchart of an identification method for identifying the type of the brushless DC motor 200 according to the exemplary embodiment 1. 図5Aは、ブラシレスDCモータ200に与える速度指令の変化を例示するグラフである。FIG. 5A is a graph illustrating a change in speed command applied to the brushless DC motor 200. 図5Bは、速度指令に対する出力応答特性を複数のサプライヤー毎に例示するグラフである。FIG. 5B is a graph illustrating output response characteristics with respect to a speed command for each of a plurality of suppliers. 図6は、例示的な実施形態1においてブラシレスDCモータ200の種類を識別するために用いるテーブルを示す図である。FIG. 6 is a diagram illustrating a table used to identify the type of the brushless DC motor 200 in the exemplary embodiment 1. 図7は、例示的な実施形態1によるブラシレスDCモータ200の種類を識別する識別方法の他のフローチャートである。FIG. 7 is another flowchart of an identification method for identifying the type of the brushless DC motor 200 according to the exemplary embodiment 1. 図8は、例示的な実施形態1によるブラシレスDCモータ200の種類を識別する識別方法のさらなる他のフローチャートである。FIG. 8 is still another flowchart of the identification method for identifying the type of the brushless DC motor 200 according to the exemplary embodiment 1. 図9は、例示的な本実施形態1のバリエーションによるブラシレスDCモータ200の種類を識別する識別方法のフローチャートである。FIG. 9 is a flowchart of an identification method for identifying the type of the brushless DC motor 200 according to the variation of the exemplary first embodiment. 図10は、速度指令に対する出力応答特性を複数のサプライヤー毎に例示するグラフである。FIG. 10 is a graph illustrating output response characteristics with respect to a speed command for each of a plurality of suppliers. 図11は、例示的な本実施形態1のバリエーションにおいてブラシレスDCモータ200の種類を識別するために用いるテーブルを示す図である。FIG. 11 is a diagram illustrating a table used to identify the type of the brushless DC motor 200 in the exemplary variation of the first embodiment. 図12は、サプライヤーA、BおよびCの識別速度を例示するグラフである。FIG. 12 is a graph illustrating the identification speed of suppliers A, B, and C. 図13は、例示的な実施形態2によるユーザシステム100およびブラシレスDCモータ200の典型的なブロック構成例を示すブロック図である。FIG. 13 is a block diagram illustrating a typical block configuration example of the user system 100 and the brushless DC motor 200 according to Exemplary Embodiment 2. 図14は、ユーザシステム100の内部のより詳細なブロック構成例を示すブロック図である。FIG. 14 is a block diagram showing a more detailed block configuration example inside the user system 100. 図15は、例示的な実施形態2によるブラシレスDCモータ200の種類を識別する識別方法のフローチャートである。FIG. 15 is a flowchart of an identification method for identifying the type of the brushless DC motor 200 according to the second exemplary embodiment. 図16Aは、ブラシレスDCモータに与える速度指令の変化を例示するグラフである。FIG. 16A is a graph illustrating a change in speed command applied to the brushless DC motor. 図16Bは、サプライヤーAのブラシレスDCモータにおいて、速度指令に応答して流れる駆動電流の波形を表すグラフである。FIG. 16B is a graph showing the waveform of the drive current flowing in response to the speed command in the brushless DC motor of supplier A. 図16Cは、サプライヤーBのブラシレスDCモータにおいて、速度指令に応答して流れる駆動電流の波形を表すグラフである。FIG. 16C is a graph showing the waveform of the drive current flowing in response to the speed command in the brushless DC motor of supplier B. 図16Dは、サプライヤーCのブラシレスDCモータにおいて、速度指令に応答して流れる駆動電流の波形を表すグラフである。FIG. 16D is a graph showing a waveform of a drive current flowing in response to a speed command in the brushless DC motor of supplier C. 図17は、例示的な実施形態2においてブラシレスDCモータ200の種類を識別するために用いるテーブルを示す図である。FIG. 17 is a diagram illustrating a table used to identify the type of the brushless DC motor 200 in the exemplary embodiment 2. 図18は、例示的な実施形態2によるブラシレスDCモータ200の種類を識別する識別方法のフローチャートである。FIG. 18 is a flowchart of an identification method for identifying the type of the brushless DC motor 200 according to the second exemplary embodiment. 図19は、例示的な実施形態3による、ユーザシステム100、識別装置100AおよびブラシレスDCモータ200の典型的なブロック構成例を示すブロック図である。FIG. 19 is a block diagram illustrating a typical block configuration example of the user system 100, the identification device 100A, and the brushless DC motor 200 according to Exemplary Embodiment 3. 図20は、例示的な実施形態3による、ユーザシステム100、識別装置100AおよびブラシレスDCモータ200の他のブロック構成例を示すブロック図である。FIG. 20 is a block diagram illustrating another block configuration example of the user system 100, the identification device 100A, and the brushless DC motor 200 according to Exemplary Embodiment 3.
 以下、添付の図面を参照しながら、本開示のブラシレスDCモータの種類を識別する識別方法および識別装置の実施形態を詳細に説明する。但し、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするため、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。また、本発明の実施形態は、以下で例示する装置または方法に限られない。例えば、一の実施形態と、他の実施形態とを組み合わせることも可能である。 Hereinafter, embodiments of an identification method and an identification apparatus for identifying the type of a brushless DC motor according to the present disclosure will be described in detail with reference to the accompanying drawings. However, in order to avoid the following description from being unnecessarily redundant and to facilitate understanding by those skilled in the art, a more detailed description than necessary may be omitted. For example, detailed descriptions of already well-known matters and repeated descriptions for substantially the same configuration may be omitted. The embodiments of the present invention are not limited to the apparatus or method exemplified below. For example, it is possible to combine one embodiment with another embodiment.
 〔1-1.ユーザシステム100およびブラシレスDCモータ200の構成例〕
 図1は、本実施形態による、ユーザシステム100およびブラシレスDCモータ200の典型的なブロック構成例を模式的に示している。本明細書では、ファンモータを例にしてブラシレスDCモータ200の構造および動作を説明する。本開示のブラシレスDCモータ200は、インナーロータ型またはアウターロータ型モータを含む。ブラシレスDCモータ200は、ファンモータに限られず、様々な用途に用いられるブラシレスDCモータ200である。ブラシレスDCモータ200は、例えば、空調装置または洗濯機などの家電製品に用いられるモータおよび車載用モータである。
[1-1. Configuration example of user system 100 and brushless DC motor 200]
FIG. 1 schematically shows a typical block configuration example of a user system 100 and a brushless DC motor 200 according to the present embodiment. In the present specification, the structure and operation of the brushless DC motor 200 will be described using a fan motor as an example. The brushless DC motor 200 of the present disclosure includes an inner rotor type or an outer rotor type motor. The brushless DC motor 200 is not limited to a fan motor, but is a brushless DC motor 200 used for various applications. The brushless DC motor 200 is, for example, a motor used in home appliances such as an air conditioner or a washing machine and a vehicle-mounted motor.
 ユーザシステム100は、ブラシレスDCモータ200に電気的に接続される。ユーザシステム100は、ブラシレスDCモータ200に電力を供給することが可能である。ユーザシステム100は、多品種を生産する工場で、ブラシレスDCモータ200の生産管理システムに搭載できる。また、ユーザシステム100は、ブラシレスDCモータ200を搭載することが可能な電子機器内のシステムまたは車載システムである。例えば、ブラシレスDCモータ200は、サーバー、デスクトップ型のパーソナルコンピュータの本体またはゲーム機などの電子機器に好適に搭載される。例えば、仕様の異なるブラシレスDCモータ200が、同一の場所で生産される場合、ユーザシステム100は、一連の検査システムの一部である。または、ブラシレスDCモータ200が、ファンモータとして、サーバー、デスクトップ型のパーソナルコンピュータの本体に搭載される場合、ユーザシステム100は、マザーボードに実装される種々の電子部品で構成されるシステム全体またはその一部である。 The user system 100 is electrically connected to the brushless DC motor 200. The user system 100 can supply power to the brushless DC motor 200. The user system 100 can be installed in a production management system for the brushless DC motor 200 in a factory that produces a variety of products. The user system 100 is a system in an electronic device or an in-vehicle system in which the brushless DC motor 200 can be mounted. For example, the brushless DC motor 200 is suitably mounted on an electronic device such as a server, a desktop personal computer main body, or a game machine. For example, when the brushless DC motor 200 having different specifications is produced at the same place, the user system 100 is a part of a series of inspection systems. Alternatively, when the brushless DC motor 200 is mounted as a fan motor in the main body of a server or a desktop personal computer, the user system 100 is an entire system composed of various electronic components mounted on a motherboard or one of them. Part.
 ユーザシステム100は、例えば、コントローラ110およびメモリ120を備える。本実施形態によるユーザシステム100は、後述するように、ブラシレスDCモータ200の種類を識別する機能を有する。換言すると、ユーザシステム100は、ブラシレスDCモータ200の種類を識別する識別装置として使用することができる。そのため、本明細書では、ユーザシステム100を識別装置100と呼ぶ場合がある。識別装置100は、ブラシレスDCモータ200に電源電圧を供給するための電源端子と、ブラシレスDCモータ200の種類を識別するコントローラと、を備える。識別装置100は、ブラシレスDCモータ200に電源電圧を供給する。 The user system 100 includes a controller 110 and a memory 120, for example. As will be described later, the user system 100 according to the present embodiment has a function of identifying the type of the brushless DC motor 200. In other words, the user system 100 can be used as an identification device that identifies the type of the brushless DC motor 200. Therefore, in this specification, the user system 100 may be referred to as the identification device 100. The identification device 100 includes a power supply terminal for supplying a power supply voltage to the brushless DC motor 200 and a controller for identifying the type of the brushless DC motor 200. The identification device 100 supplies a power supply voltage to the brushless DC motor 200.
 コントローラ110は、ユーザシステム100の全体を主に制御し、ブラシレスDCモータ200への電力供給を制御する。コントローラ110は、さらに、ブラシレスDCモータ200の種類を識別することが可能である。コントローラ110は、例えば、MCU(マイクロコントロールユニット)またはFPGA(フィールド・プログラマブル・ゲートアレイ)などの半導体集積回路である。 The controller 110 mainly controls the entire user system 100 and controls power supply to the brushless DC motor 200. The controller 110 can further identify the type of the brushless DC motor 200. The controller 110 is, for example, a semiconductor integrated circuit such as MCU (micro control unit) or FPGA (field programmable gate array).
 例えば、コントローラ110は、ブラシレスDCモータに電源電圧を供給した状態で、パルス信号に基づいて、ブラシレスDCモータ200の種類を識別する。例えば、コントローラ110は、タコメータ用出力端子に電気的に接続され、ブラシレスDCモータ200からパルス信号を受信するためのタコメータ用入力端子を備える。コントローラ110は、ブラシレスDCモータ200に電源電圧を供給した状態で、速度指令に応答して加速するブラシレスDCモータ200の回転に伴いTACH端子から出力される、ブラシレスDCモータ200の回転速度を表すパルス信号に基づいてブラシレスDCモータ200の種類を識別する。すなわち、ブラシレスDCモータ200の回転速度を表すパルス信号に基づいて、ブラシレスDCモータ200の種類を識別する。これにより、ハンドシェイクを行うことなく、ブラシレスDCモータ200の種類を識別することが可能である。ブラシレスDCモータ200の種類の識別については、後で詳細に説明する。 For example, the controller 110 identifies the type of the brushless DC motor 200 based on the pulse signal in a state where the power supply voltage is supplied to the brushless DC motor. For example, the controller 110 includes a tachometer input terminal that is electrically connected to the tachometer output terminal and receives a pulse signal from the brushless DC motor 200. The controller 110 outputs a pulse representing the rotational speed of the brushless DC motor 200 output from the TACH terminal in accordance with the rotation of the brushless DC motor 200 that accelerates in response to the speed command in a state where the power supply voltage is supplied to the brushless DC motor 200. The type of the brushless DC motor 200 is identified based on the signal. That is, the type of the brushless DC motor 200 is identified based on the pulse signal representing the rotation speed of the brushless DC motor 200. Thereby, it is possible to identify the type of the brushless DC motor 200 without performing a handshake. The identification of the type of the brushless DC motor 200 will be described later in detail.
 メモリ120は、例えば書き込み可能なメモリ(例えばPROM)、書き換え可能なメモリ(例えばフラッシュメモリ)または読み出し専用のメモリである。メモリ120は、例えば、ブラシレスDCモータ200の種類をコントローラ110に識別させるための命令群を有する制御プログラムを格納する。例えば、その制御プログラムはブート時にRAM(不図示)に一旦展開される。なお、メモリ120は、コントローラ110に外付けされる必要はなく、コントローラ110に搭載されていてもよい。メモリ120を搭載したコントローラ110は、例えば上述したMCUである。 The memory 120 is, for example, a writable memory (for example, PROM), a rewritable memory (for example, flash memory), or a read-only memory. For example, the memory 120 stores a control program having a command group for causing the controller 110 to identify the type of the brushless DC motor 200. For example, the control program is temporarily expanded in a RAM (not shown) at the time of booting. Note that the memory 120 does not need to be externally attached to the controller 110 and may be mounted on the controller 110. The controller 110 equipped with the memory 120 is, for example, the MCU described above.
 ユーザシステム100は、ブラシレスDCモータ200に接続するための接続端子として、例えばVmot端子、速度指令(CONTROL)端子、TACH端子およびGND端子を備える。ユーザシステム100の速度指令端子は出力端子であり、TACH端子はタコメータ用入力端子である。 The user system 100 includes, for example, a Vmot terminal, a speed command (CONTROL) terminal, a TACH terminal, and a GND terminal as connection terminals for connection to the brushless DC motor 200. The speed command terminal of the user system 100 is an output terminal, and the TACH terminal is a tachometer input terminal.
 Vmot端子は、モータ電源用の端子である。例えば、7.0~13.8Vの範囲のモータ電源電圧Vmotが、Vmot端子からブラシレスDCモータ200に供給される。 The Vmot terminal is a terminal for motor power. For example, the motor power supply voltage Vmot in the range of 7.0 to 13.8V is supplied to the brushless DC motor 200 from the Vmot terminal.
 速度指令端子は、モータの回転数制御用端子、例えばPWM端子であり、ブラシレスDCモータ200の速度指令端子に電気的に接続される。例えば、コントローラ110は、モータの回転を制御するためのPWM信号を生成し、速度指令端子を介してブラシレスDCモータ200に出力する。信号伝達方式、つまり、速度指令入力は、PWMに限られず、例えばPFM(パルス周波数変調)、PAM(パルス振幅変調)、FLL(周波数同期ループ)またはPLL(位相同期ループ)であってもよい。 The speed command terminal is a motor speed control terminal, for example, a PWM terminal, and is electrically connected to the speed command terminal of the brushless DC motor 200. For example, the controller 110 generates a PWM signal for controlling the rotation of the motor and outputs the PWM signal to the brushless DC motor 200 via the speed command terminal. The signal transmission method, that is, the speed command input is not limited to PWM, and may be, for example, PFM (pulse frequency modulation), PAM (pulse amplitude modulation), FLL (frequency locked loop), or PLL (phase locked loop).
 TACH端子は、モータの回転速度を監視するためのタコメータ用の入力端子であり、ブラシレスDCモータ200のTACH端子に電気的に接続される。回転速度は、例えば、単位時間(1分間)にモータが回転する回転数(rpm)または単位時間(1秒間)にモータが回転する回転数(rps)で表される。モータの一回転当たり2パルスが、一般的にはファンモータのTACH端子から出力される。モータの回転速度に応じてブラシレスDCモータ200のTACH端子から出力されるパルス信号は、ユーザシステム100のTACH端子に入力される。 The TACH terminal is an input terminal for a tachometer for monitoring the rotational speed of the motor, and is electrically connected to the TACH terminal of the brushless DC motor 200. The rotation speed is represented by, for example, the number of rotations (rpm) at which the motor rotates per unit time (1 minute) or the number of rotations (rps) at which the motor rotates per unit time (1 second). Two pulses per motor rotation are generally output from the TACH terminal of the fan motor. A pulse signal output from the TACH terminal of the brushless DC motor 200 in accordance with the rotation speed of the motor is input to the TACH terminal of the user system 100.
 ブラシレスDCモータ200は、インペラを有するファンモータである。そのため、インペラを有するファンモータであるブラシレスDCモータ200においても、ハンドシェイクを行うことなく、ブラシレスDCモータ200の種類を識別することが可能である。ブラシレスDCモータ200は、例えば、インペラを備えるDCファンである。ブラシレスDCモータ200は、例えば、軸流ファン、遠心ファン、クロスフローファンまたはシロッコファンである。ブラシレスDCモータ200は、典型的に、レギュレータ210、モータドライブIC220、インバータ230、それらの電子部品を実装する回路基板CB、コイル240およびホール素子250を備える。例えば、レギュレータ210、モータドライブIC220、インバータ230およびホール素子250によって、コイル240を通電してモータを駆動するためのモータ駆動回路が構成される。例えば、ブラシレスDCモータ200は、外部から電源電圧を供給するための電源端子および回転速度を表すパルス信号を出力するためのタコメータ用出力端子が配置された回路基板CBを、コイルと、コイルを通電する駆動回路を備える。 The brushless DC motor 200 is a fan motor having an impeller. Therefore, even in the brushless DC motor 200 that is a fan motor having an impeller, it is possible to identify the type of the brushless DC motor 200 without performing handshaking. The brushless DC motor 200 is a DC fan including an impeller, for example. The brushless DC motor 200 is, for example, an axial fan, a centrifugal fan, a cross flow fan, or a sirocco fan. The brushless DC motor 200 typically includes a regulator 210, a motor drive IC 220, an inverter 230, a circuit board CB on which those electronic components are mounted, a coil 240, and a hall element 250. For example, the regulator 210, the motor drive IC 220, the inverter 230, and the hall element 250 constitute a motor drive circuit for energizing the coil 240 to drive the motor. For example, the brushless DC motor 200 energizes a circuit board CB on which a power supply terminal for supplying a power supply voltage from the outside and a tachometer output terminal for outputting a pulse signal representing a rotation speed are arranged, and a coil and a coil. A driving circuit is provided.
 レギュレータ210は、例えば13.8Vのモータ電源電圧Vmotを降圧してモータドライブIC220用の電源電圧Vcc(例えば5.0V)を生成する。ブラシレスDCモータ200において、モータドライブIC220に供給する電源電圧Vccをモータ電源電圧Vmotに基づいて生成することが好ましい。これにより、電源電圧Vcc用の端子をブラシレスDCモータ200に設ける必要がなくなり、端子およびリード線の数を減らすことができる。ただし、モータ電源電圧Vmotとは別に、ユーザシステム100からブラシレスDCモータ200に電源電圧Vccを供給するようにしてもよい。 The regulator 210 steps down the motor power supply voltage Vmot of 13.8V, for example, and generates the power supply voltage Vcc (for example, 5.0V) for the motor drive IC 220. In the brushless DC motor 200, the power supply voltage Vcc supplied to the motor drive IC 220 is preferably generated based on the motor power supply voltage Vmot. Thereby, it is not necessary to provide a terminal for the power supply voltage Vcc in the brushless DC motor 200, and the number of terminals and lead wires can be reduced. However, the power supply voltage Vcc may be supplied from the user system 100 to the brushless DC motor 200 separately from the motor power supply voltage Vmot.
 モータドライブIC220は、インバータ230に接続される。モータドライブIC220は、ユーザシステム100から送信されるPWM信号に従って、インバータ230を制御する制御信号を生成する。 The motor drive IC 220 is connected to the inverter 230. The motor drive IC 220 generates a control signal for controlling the inverter 230 according to the PWM signal transmitted from the user system 100.
 モータドライブIC220は、例えばホール素子250からの出力に基づいてモータの回転速度を監視し、モータの回転速度に応じたパルス信号、つまりTACH信号を生成する。その出力方式は、例えば、一回転当たり2パルスである。ただし、ホール素子を用いずにTACH信号を生成する技術が知られている。そのような技術を利用する場合、ホール素子250は必要とされない。 The motor drive IC 220 monitors the rotational speed of the motor based on the output from the hall element 250, for example, and generates a pulse signal corresponding to the rotational speed of the motor, that is, a TACH signal. The output method is, for example, 2 pulses per rotation. However, a technique for generating a TACH signal without using a Hall element is known. When utilizing such a technique, the Hall element 250 is not required.
 インバータ230は、モータドライブIC220およびモータのコイル240に電気的に接続される。インバータ230は、モータドライブIC220の制御の下でモータ電源電圧Vmotの電力をファンモータに供給する電力に変換することにより、モータのコイル240を通電する。 The inverter 230 is electrically connected to the motor drive IC 220 and the motor coil 240. The inverter 230 energizes the coil 240 of the motor by converting the power of the motor power supply voltage Vmot into the power supplied to the fan motor under the control of the motor drive IC 220.
 コイル240は、モータの巻線である。 The coil 240 is a winding of the motor.
 ブラシレスDCモータ200は、例えば、ユーザシステム100側の端子に対応した、Vmot端子、速度指令端子、TACH端子およびGND端子が配置された回路基板CBを備える。ブラシレスDCモータ200の速度指令端子は入力端子であり、TACH端子は出力端子である。すなわち、ブラシレスDCモータ200は、回転速度に応じたパルス信号を出力するためのタコメータ用出力端子が配置された回路基板CBを有する。 The brushless DC motor 200 includes, for example, a circuit board CB on which a Vmot terminal, a speed command terminal, a TACH terminal, and a GND terminal corresponding to the terminal on the user system 100 side are arranged. The speed command terminal of the brushless DC motor 200 is an input terminal, and the TACH terminal is an output terminal. That is, the brushless DC motor 200 has a circuit board CB on which a tachometer output terminal for outputting a pulse signal corresponding to the rotation speed is arranged.
 ブラシレスDCモータ200の出力応答特性は、モータドライブIC220の出力応答特性によって定義される。出力応答とは、速度指令値に対する回転速度の応答を示す。より詳細には、速度指令値が与えられてから、モータの回転速度がその指令値に相当する速度に到達するまでの応答時間(または遅延時間)を意味する。換言すると、応答時間は、モータの回転速度が過渡状態から定常状態に移行するまでの時間である。本実施形態では、その応答時間を、ブラシレスDCモータ200の固有情報として、複数のブラシレスDCモータ200の種類毎に割り当てる。 The output response characteristic of the brushless DC motor 200 is defined by the output response characteristic of the motor drive IC 220. The output response indicates a response of the rotational speed to the speed command value. More specifically, it means a response time (or delay time) from when the speed command value is given until the motor rotation speed reaches a speed corresponding to the command value. In other words, the response time is a time until the rotation speed of the motor shifts from the transient state to the steady state. In this embodiment, the response time is assigned to each type of the plurality of brushless DC motors 200 as unique information of the brushless DC motor 200.
 例えば、ブラシレスDCモータ200を製造するサプライヤー毎に、ブラシレスDCモータ200の固有情報として異なる応答時間を割り当てることができる。すなわち、ブラシレスDCモータ200の出力応答特性は、複数のブラシレスDCモータ200の種類毎に異なる。出力応答特性に基づいて、ブラシレスDCモータの種類を識別することが可能である。例えば、1秒(以下、「sec」と表記する。)±0.3secの応答時間をサプライヤーAに割り当て、2sec±0.3secの応答時間をサプライヤーBに割り当て、3sec±0.3secの応答時間をサプライヤーCに割り当てることができる。さらに、これらと異なる応答時間を複数のサプライヤーにそれぞれ割り当てることができる。 For example, for each supplier that manufactures the brushless DC motor 200, a different response time can be assigned as unique information of the brushless DC motor 200. That is, the output response characteristics of the brushless DC motor 200 are different for each type of the plurality of brushless DC motors 200. It is possible to identify the type of brushless DC motor based on the output response characteristics. For example, a response time of 1 second (hereinafter referred to as “sec”) ± 0.3 sec is assigned to supplier A, a response time of 2 sec ± 0.3 sec is assigned to supplier B, and a response time of 3 sec ± 0.3 sec. Can be assigned to supplier C. Furthermore, different response times can be assigned to multiple suppliers.
 例えば、製品ロット毎に応答時間を固有情報として割り当てることができる。例えば、1sec±0.3secの応答時間を製品ロット番号Aに割り当て、2sec±0.3secの応答時間を製品ロット番号Bに割り当て、3sec±0.3secの応答時間を製品ロット番号Cに割り当てることができる。さらに、これらと異なる応答時間を複数の製品ロット番号にそれぞれ割り当てることができる。このように、複数のブラシレスDCモータ200の種類は、例えば、サプライヤーの数だけ存在し、または、管理対象の製品ロットの数だけ存在する。 For example, response time can be assigned as specific information for each product lot. For example, a response time of 1 sec ± 0.3 sec is assigned to product lot number A, a response time of 2 sec ± 0.3 sec is assigned to product lot number B, and a response time of 3 sec ± 0.3 sec is assigned to product lot number C. Can do. Further, different response times can be assigned to a plurality of product lot numbers. As described above, the types of the plurality of brushless DC motors 200 exist, for example, as many as the number of suppliers or as many as the number of product lots to be managed.
 図2は、本実施形態による、ユーザシステム100およびブラシレスDCモータ200の他のブロック構成例を模式的に示している。 FIG. 2 schematically shows another block configuration example of the user system 100 and the brushless DC motor 200 according to the present embodiment.
 図示するように、本実施形態によるブラシレスDCモータ200の種類の識別は、速度指令端子を必ずしも必要としない。外部からブラシレスDCモータ200に速度指令値を与える代わりに、例えば、モータドライブIC220に搭載されたMCU221を用いることができる。MCU221は、電源電圧Vccの投入後、モータの回転を制御するためのPWM信号を生成する。その場合、モータドライブIC220は、MCU221からのPWM信号に従ってインバータ230の制御信号を生成し、インバータ230に出力する。 As shown in the figure, identification of the type of the brushless DC motor 200 according to the present embodiment does not necessarily require a speed command terminal. Instead of giving a speed command value to the brushless DC motor 200 from the outside, for example, an MCU 221 mounted on the motor drive IC 220 can be used. The MCU 221 generates a PWM signal for controlling the rotation of the motor after the power supply voltage Vcc is turned on. In that case, the motor drive IC 220 generates a control signal for the inverter 230 in accordance with the PWM signal from the MCU 221 and outputs the control signal to the inverter 230.
 図3は、ユーザシステム100およびブラシレスDCモータ200のさらなる他のブロック構成例を模式的に示している。 FIG. 3 schematically shows still another block configuration example of the user system 100 and the brushless DC motor 200.
 ユーザシステム100は、発光素子130をさらに備えていてもよい。発光素子130は、例えば、複数のLED(Light Emitted Diode)を有する。発光素子130は、ブラシレスDCモータ200の種類の識別結果を報知する報知装置である。すなわち、識別装置100を用いて、ブラシレスDCモータ200の種類を識別した結果を報知する。これにより、識別結果を容易に認識することができる。例えば、複数のLEDは、複数のブラシレスDCモータ200の種類の数だけ設けることができる。例えば、サプライヤーAおよびBの2種類のブラシレスDCモータ200があれば、発光色の異なる2個のLEDを設けることができる。例えば、サプライヤーA用の赤色LED、サプライヤーB用の青色LEDを設けることができる。すなわち、複数のブラシレスDCモータ200の種類毎に割り当てられた複数の発光素子130の中から、識別対象のブラシレスDCモータ200に割り当てられた発光素子130を、ブラシレスDCモータ200の種類を識別した結果に基づいて発光させる。これによって、例えば工場の作業者は、識別対象のブラシレスDCモータ200がどのサプライヤーのモータであるか否かを視覚的に認識することができる。 The user system 100 may further include a light emitting element 130. The light emitting element 130 includes, for example, a plurality of LEDs (Light Emitted Diode). The light emitting element 130 is a notification device that notifies the identification result of the type of the brushless DC motor 200. That is, the identification device 100 is used to notify the result of identifying the type of the brushless DC motor 200. Thereby, the identification result can be easily recognized. For example, the plurality of LEDs can be provided as many as the number of types of the plurality of brushless DC motors 200. For example, if there are two types of brushless DC motors 200 of suppliers A and B, two LEDs having different emission colors can be provided. For example, a red LED for supplier A and a blue LED for supplier B can be provided. That is, as a result of identifying the type of the brushless DC motor 200 from among the plurality of light emitting elements 130 assigned for each type of the brushless DC motor 200, the light emitting element 130 assigned to the brushless DC motor 200 to be identified. The light is emitted based on the above. Thereby, for example, a worker in a factory can visually recognize which supplier's motor the brushless DC motor 200 to be identified is.
 〔1-2.ブラシレスDCモータ200の種類の識別方法〕
 図4は、本実施形態によるブラシレスDCモータ200の種類を識別する識別方法のフローチャートを示している。本実施形態では、ブラシレスDCモータ200の種類の識別は、回転速度が初期速度からしきい値に到達するまでの応答時間をパルス信号の周波数に基づいて計測することによって行う。これによって、例えば、識別装置100は、応答時間を計測するだけでブラシレスDCモータ200の種類の識別が可能である。図5Aは、ブラシレスDCモータ200に与える速度指令の変化を例示し、図5Bは、その速度指令に対する出力応答特性を複数のサプライヤー毎に例示している。図5A、5Bの横軸は時間(秒)を示し、縦軸は回転速度(rpm)を示す。
[1-2. Method for identifying type of brushless DC motor 200]
FIG. 4 shows a flowchart of an identification method for identifying the type of the brushless DC motor 200 according to the present embodiment. In this embodiment, the type of the brushless DC motor 200 is identified by measuring the response time until the rotational speed reaches the threshold value from the initial speed based on the frequency of the pulse signal. Thereby, for example, the identification device 100 can identify the type of the brushless DC motor 200 only by measuring the response time. FIG. 5A illustrates a change in the speed command applied to the brushless DC motor 200, and FIG. 5B illustrates an output response characteristic with respect to the speed command for each of a plurality of suppliers. 5A and 5B, the horizontal axis represents time (seconds), and the vertical axis represents rotation speed (rpm).
 本実施形態による識別方法は、例えば識別装置100に用いる方法である。モータを搭載する多品種の製品を製造する工程において、異なる種類のモータの混入を防止するために、一般に、ブラシレスDCモータ200の種類の識別が必要とされる。つまり、本実施形態における識別方法は、ブラシレスDCモータ200の種類を識別する、識別装置100に用いる識別方法である。例えば、工場における製品製造時、ユーザシステムに対するブラシレスDCモータ200の適合性を検査する方法に、本開示の識別方法は好適に利用される。例えば、ブラシレスDCモータ200の適合性を検査する工程は、製品製造の工程の一部に組み込むことができる。 The identification method according to the present embodiment is a method used for the identification device 100, for example. In order to prevent mixing of different types of motors in the process of manufacturing a wide variety of products equipped with motors, it is generally necessary to identify the type of brushless DC motor 200. That is, the identification method in the present embodiment is an identification method used for the identification device 100 that identifies the type of the brushless DC motor 200. For example, the identification method of the present disclosure is suitably used as a method for inspecting the suitability of the brushless DC motor 200 with respect to a user system when manufacturing a product in a factory. For example, the process of checking the suitability of the brushless DC motor 200 can be incorporated into a part of the product manufacturing process.
 例えば、ブラシレスDCモータ200を駆動する通常時の動作モードとは別にテストモードを設ける。識別装置100は、テストモードにおいて以下のステップS100~S300を逐次実行することにより、ブラシレスDCモータ200の種類を識別する。 For example, a test mode is provided separately from the normal operation mode in which the brushless DC motor 200 is driven. The identification device 100 identifies the type of the brushless DC motor 200 by sequentially executing the following steps S100 to S300 in the test mode.
 (ステップS100)
 識別装置100(ユーザシステム100)とブラシレスDCモータ200との端子同士を電気的に接続した状態で、識別装置100からブラシレスDCモータ200に電源電圧を供給する。識別用の電源電圧として、例えば、通常時の動作モードにおいてブラシレスDCモータ200に供給するモータ電源電圧Vmotに等しい電圧を供給する。
(Step S100)
A power supply voltage is supplied from the identification device 100 to the brushless DC motor 200 while the terminals of the identification device 100 (user system 100) and the brushless DC motor 200 are electrically connected to each other. As the power supply voltage for identification, for example, a voltage equal to the motor power supply voltage Vmot supplied to the brushless DC motor 200 in the normal operation mode is supplied.
 (ステップS210A)
 コントローラ110によって、第1速度指令値に応答して第1速度に向けて加速するブラシレスDCモータ200の回転に伴いTACH端子から出力される、ブラシレスDCモータ200の回転速度を表すパルス信号を取得する。すなわち、パルス信号は、第1速度指令値に応答して第1速度に向けて加速するブラシレスDCモータ200の回転に伴い、タコメータ用出力端子から出力される、ブラシレスDCモータの回転速度を表す。例えば、コントローラ110は、ブラシレスDCモータ200が停止した状態で、第1速度指令値をブラシレスDCモータ200に与える。ブラシレスDCモータ200は、第1速度指令値に応答して、初期速度から第1速度に向けて加速を開始する。第1速度は、第1速度指令値によって与えられる速度である。例えば、初期速度は、モータの停止状態においてゼロである。コントローラ110は、ブラシレスDCモータ200の回転に伴いTACH端子から出力されるパルス信号を受信する。
(Step S210A)
The controller 110 obtains a pulse signal representing the rotational speed of the brushless DC motor 200 output from the TACH terminal as the brushless DC motor 200 accelerates toward the first speed in response to the first speed command value. . That is, the pulse signal represents the rotation speed of the brushless DC motor output from the tachometer output terminal in accordance with the rotation of the brushless DC motor 200 that accelerates toward the first speed in response to the first speed command value. For example, the controller 110 gives the first speed command value to the brushless DC motor 200 while the brushless DC motor 200 is stopped. In response to the first speed command value, the brushless DC motor 200 starts acceleration from the initial speed toward the first speed. The first speed is a speed given by the first speed command value. For example, the initial speed is zero when the motor is stopped. The controller 110 receives a pulse signal output from the TACH terminal as the brushless DC motor 200 rotates.
 (ステップS210B)
 コントローラ110によって、モータの回転速度が初期速度からしきい値に到達するまでの応答時間をパルス信号の周波数に基づいて計測する。パルス信号の周波数は、ブラシレスDCモータ200の回転速度を表す。コントローラ110は、パルス信号の周波数を監視することによりブラシレスDCモータ200の回転速度を把握できる。
(Step S210B)
The controller 110 measures the response time until the motor rotation speed reaches the threshold value from the initial speed based on the frequency of the pulse signal. The frequency of the pulse signal represents the rotational speed of the brushless DC motor 200. The controller 110 can grasp the rotational speed of the brushless DC motor 200 by monitoring the frequency of the pulse signal.
 例えば図5Aに示す速度指令をブラシレスDCモータ200に与えると、ブラシレスDCモータ200は、図5Bに示すように、第1速度指令値が与えられてから加速を開始し、応答時間後に第1速度に達する。第2速度指令値は、初期速度である第2速度を与えるための指令値である。このとき、回路基板CBには、回転速度を制御する速度指令値を入力するための制御端子がさらに配置されており、識別装置100からブラシレスDCモータに第1速度指令値を与える前に、第1速度指令値とは異なる第2速度指令値を初期速度として与える。これによって、応答時間をより正確に測定できるため、より多くの製品の識別ができる。例えば、第2速度指令値は、モータが停止した状態から識別を開始する場合にはゼロとなる。すなわち、初期速度はゼロである。これによって、モータが停止した状態から識別を開始することができ、計測時間からの製品の識別が容易である。 For example, when the speed command shown in FIG. 5A is given to the brushless DC motor 200, the brushless DC motor 200 starts accelerating after the first speed command value is given, as shown in FIG. To reach. The second speed command value is a command value for giving a second speed that is an initial speed. At this time, the circuit board CB is further provided with a control terminal for inputting a speed command value for controlling the rotation speed, and before the first speed command value is given from the identification device 100 to the brushless DC motor, A second speed command value different from the first speed command value is given as the initial speed. As a result, the response time can be measured more accurately, so that more products can be identified. For example, the second speed command value is zero when identification is started from a state where the motor is stopped. That is, the initial speed is zero. As a result, the identification can be started from the state where the motor is stopped, and the identification of the product from the measurement time is easy.
 図5Bには、線形に変化するモータの回転速度をサプライヤー毎に示す。ただし、この例に限られず、例えば、速度変化を開始するまでの遅延時間をモータの種類毎に設定し、その遅延時間に応じて回転速度を指数関数的に変化させてもよい。 Fig. 5B shows the linearly changing motor rotation speed for each supplier. However, the present invention is not limited to this example. For example, a delay time until the speed change is started may be set for each motor type, and the rotational speed may be changed exponentially according to the delay time.
 本実施形態では、速度指令値を変更したときの出力応答特性を例えばサプライヤー毎に意図的に異ならせている。その結果、ブラシレスDCモータ200の出力応答特性は、複数のブラシレスDCモータ200の種類毎に異なる。例えば、サプライヤーAの応答時間は、1sec±0.3secであり、サプライヤーBの応答時間は、2sec±0.3secであり、サプライヤーCの応答時間は、3sec±0.3secである。±0.3secは保証値の公差である。 In the present embodiment, the output response characteristics when the speed command value is changed are intentionally made different for each supplier, for example. As a result, the output response characteristics of the brushless DC motor 200 are different for each type of the plurality of brushless DC motors 200. For example, the response time of supplier A is 1 sec ± 0.3 sec, the response time of supplier B is 2 sec ± 0.3 sec, and the response time of supplier C is 3 sec ± 0.3 sec. ± 0.3 sec is the tolerance of the guaranteed value.
 例えば、コントローラ110は、パルス信号の周波数を50μsの時間間隔で監視することにより、しきい値に到達するまでの応答時間を計測する。しきい値は、例えば第1速度指令値に設定される。例えば、回転速度が指数関数的に変化する場合、第1速度指令値の10%以上90%以下の範囲の速度にしきい値を設定することが好ましいと言える。ここで、しきい値は、第1速度指令値の10%以上90%以下の範囲の速度である。これによって、計測する応答時間のばらつきを抑制し、より正確な識別が可能である。または、第1速度指令値よりも所定値だけ低い速度にしきい値を設定してもよい。ここで、しきい値は、第1速度指令値よりも所定値だけ低い速度である。これによって、しきい値を第1速度指令値の割合で定める場合よりも、容易に計算を行うことができる。 For example, the controller 110 measures the response time until the threshold value is reached by monitoring the frequency of the pulse signal at a time interval of 50 μs. For example, the threshold value is set to the first speed command value. For example, when the rotational speed changes exponentially, it can be said that the threshold is preferably set to a speed in the range of 10% to 90% of the first speed command value. Here, the threshold value is a speed in a range of 10% to 90% of the first speed command value. Thereby, variation in response time to be measured is suppressed, and more accurate identification is possible. Alternatively, the threshold value may be set to a speed lower than the first speed command value by a predetermined value. Here, the threshold value is a speed that is lower than the first speed command value by a predetermined value. Thereby, the calculation can be performed more easily than when the threshold value is determined by the ratio of the first speed command value.
 例えば、しきい値を第1速度指令値の60%に設定した場合、コントローラ110は、サプライヤーAの識別において、そのしきい値に到達するまでの応答時間Tr±0.5secを計測し、サプライヤーBの識別において、応答時間2Tr±0.5secを計測し、サプライヤーCの識別において、応答時間3Tr±0.5secを計測する。例えば、第1速度指令値にしきい値を設定した場合、コントローラ110は、サプライヤーAの識別において、1sec±0.5secの応答時間を計測し、サプライヤーBの識別において、2sec±0.5secの応答時間を計測し、サプライヤーCの識別において、3sec±0.5secの応答時間を計測する。本実施形態では、上記の保証値の公差±0.3secに対するマージンを考慮し、許容値の公差を±0.5secとしている。 For example, when the threshold value is set to 60% of the first speed command value, the controller 110 measures the response time Tr ± 0.5 sec until the threshold value is reached in the identification of supplier A. In the identification of B, the response time 2Tr ± 0.5 sec is measured, and in the identification of the supplier C, the response time 3Tr ± 0.5 sec is measured. For example, when a threshold is set for the first speed command value, the controller 110 measures a response time of 1 sec ± 0.5 sec in the identification of supplier A, and a response of 2 sec ± 0.5 sec in the identification of supplier B. The time is measured, and in the identification of supplier C, a response time of 3 sec ± 0.5 sec is measured. In the present embodiment, in consideration of a margin with respect to the tolerance of the guaranteed value ± 0.3 sec, the tolerance of the allowable value is set to ± 0.5 sec.
 (ステップS300)
 コントローラ110によって、計測した応答時間に基づいてブラシレスDCモータ200の種類を識別する。すなわち、コントローラ110は、ブラシレスDCモータ200に電源電圧を供給した状態で、速度指令値に応答して加速する前記ブラシレスDCモータの回転に伴い前記タコメータ用出力端子から出力される、前記ブラシレスDCモータの回転速度を表すパルス信号に基づいて、ブラシレスDCモータ200の種類を識別する。具体的には、コントローラ110は、テーブルを参照して、計測した応答時間に基づいてモータの種類を識別する。すなわち、ブラシレスDCモータ200の種類の識別は、複数のブラシレスDCモータ200の種類と、複数のブラシレスDCモータ200の固有情報とを関連付けるテーブルを参照して、計測した応答時間に基づいて行う。これにより、ブラシレスDCモータ200の種類の識別のための処理や、プログラミングが容易となる。
(Step S300)
The controller 110 identifies the type of the brushless DC motor 200 based on the measured response time. That is, the controller 110 outputs the brushless DC motor output from the tachometer output terminal in accordance with the rotation of the brushless DC motor that accelerates in response to a speed command value in a state where the power supply voltage is supplied to the brushless DC motor 200. The type of the brushless DC motor 200 is identified based on the pulse signal representing the rotation speed of the brushless DC motor 200. Specifically, the controller 110 refers to the table and identifies the type of motor based on the measured response time. That is, the type of the brushless DC motor 200 is identified based on the measured response time with reference to a table that associates the types of the plurality of brushless DC motors 200 with the unique information of the plurality of brushless DC motors 200. This facilitates processing for identifying the type of the brushless DC motor 200 and programming.
 図6は、ブラシレスDCモータ200の種類を識別するために用いるテーブルを例示している。テーブルは、複数のブラシレスDCモータ200の種類と、複数のブラシレスDCモータ200の固有情報と、を関連付けるルックアップテーブル(LUT)である。ブラシレスDCモータ200の固有情報は、複数のブラシレスDCモータ200毎に異なる応答時間を表す。テーブルは、例えばメモリ120に格納される。上述したとおり、複数のブラシレスDCモータ200の種類は、例えば、サプライヤー毎に存在し、例えば、サプライヤーA、BおよびCの3種類が存在する。例えば、モータの種類は、例えば3ビットのデジタル信号で表現することができる。 FIG. 6 illustrates a table used to identify the type of the brushless DC motor 200. The table is a lookup table (LUT) that associates the types of the plurality of brushless DC motors 200 with the unique information of the plurality of brushless DC motors 200. The unique information of the brushless DC motor 200 represents a response time that differs for each of the plurality of brushless DC motors 200. The table is stored in the memory 120, for example. As described above, the types of the plurality of brushless DC motors 200 exist for each supplier, for example, and there are three types of suppliers A, B, and C, for example. For example, the type of motor can be expressed by, for example, a 3-bit digital signal.
 例えば、コントローラ110は、AD変換器(不図示)を有していてもよい。コントローラ110は、計測した応答時間(アナログ値)をデジタル信号に変換する。ブラシレスDCモータ200の固有情報は、AD変換の分解能と同じビット幅のデジタル値によっても表現され得る。 For example, the controller 110 may have an AD converter (not shown). The controller 110 converts the measured response time (analog value) into a digital signal. The unique information of the brushless DC motor 200 can also be expressed by a digital value having the same bit width as the resolution of AD conversion.
 識別装置100、つまり、ユーザシステム100は、ブラシレスDCモータ200の種類の識別が完了すると、テストモードから通常時の制御モードにモードを切替える。その後、ユーザシステム100は、通常時のモータ駆動のシーケンスに移行する。 When the identification device 100, that is, the user system 100 completes the identification of the type of the brushless DC motor 200, the mode is switched from the test mode to the normal control mode. Thereafter, the user system 100 shifts to a normal motor drive sequence.
 図7は、本実施形態によるブラシレスDCモータ200の種類を識別する識別方法の他のフローチャートを示している。 FIG. 7 shows another flowchart of the identification method for identifying the type of the brushless DC motor 200 according to the present embodiment.
 この処理フローは、第2速度指令値を初期速度として与えた後で第1速度指令値をさらに与える点で、図4に示す処理フローとは異なる。第2速度指令値はゼロではない速度であり、その結果、ゼロではない初期速度が与えられる。第2速度指令値は第1速度指令値よりも小さい。 This processing flow is different from the processing flow shown in FIG. 4 in that the first speed command value is further given after the second speed command value is given as the initial speed. The second speed command value is a non-zero speed, resulting in a non-zero initial speed. The second speed command value is smaller than the first speed command value.
 第1速度指令値を与える前に、ブラシレスDCモータ200に第2速度指令値を与える(ステップS210C)。図5Aに示すように、第2速度指令値(つまり初期速度)から第1速度指令値に速度指令を変化させた場合、モータの回転速度は、出力応答特性に基づいて第2速度から第1速度に変化する。ブラシレスDCモータ200が回転している状態で、第2速度から第1速度に到達するまでの応答時間を計測することにより、ブラシレスDCモータ200の種類を識別することができる。 Before giving the first speed command value, the second speed command value is given to the brushless DC motor 200 (step S210C). As shown in FIG. 5A, when the speed command is changed from the second speed command value (that is, the initial speed) to the first speed command value, the rotation speed of the motor is changed from the second speed to the first speed based on the output response characteristics. Change to speed. The type of the brushless DC motor 200 can be identified by measuring the response time from the second speed to the first speed while the brushless DC motor 200 is rotating.
 本実施形態の識別方法によれば、システム側のコントローラ110に用いるソフトウェアを変更するだけで、応答時間に基づいてブラシレスDCモータ200の種類を識別することが可能となる。ハードウェアの変更は必要ない。従来のような、識別装置100およびブラシレスDCモータ200の間のハンドシェイクによる通信は不要である。また、既存の電源端子を利用することができ、識別用の専用端子を新たに設けなくてもよい。部品数の削減により、製品コストを低減することができる。 According to the identification method of the present embodiment, it is possible to identify the type of the brushless DC motor 200 based on the response time only by changing the software used for the controller 110 on the system side. No hardware changes are necessary. Communication by the handshake between the identification device 100 and the brushless DC motor 200 as in the related art is unnecessary. Moreover, an existing power supply terminal can be used, and a dedicated terminal for identification need not be newly provided. Product cost can be reduced by reducing the number of parts.
 本開示の識別方法は、製品製造時に限らず、例えば、故障したブラシレスDCモータ200を新しいブラシレスDCモータ200に交換するときなどにも好適に用いられる。交換したブラシレスDCモータ200がそのシステムに適合しているか否かを確認することができる。また、例えば、ブラシレスDCモータ200を搭載した個々の製品はインターネットに接続される。いわゆる、IoT(Internet of Things)が実現される。例えば、ブラシレスDCモータ200を搭載した個々の製品のサプライヤーは、ブラシレスDCモータ200の固有情報を含むビッグデータを解析することにより、特定のブラシレスDCモータ200が搭載された製品を特定することができる。これにより不具合の発生を未然に防ぐなど品質の安定化が図れる。 The identification method of the present disclosure is suitably used not only when a product is manufactured, but also when, for example, a failed brushless DC motor 200 is replaced with a new brushless DC motor 200. It can be confirmed whether or not the replaced brushless DC motor 200 is compatible with the system. Also, for example, individual products equipped with the brushless DC motor 200 are connected to the Internet. So-called IoT (Internet of Things) is realized. For example, a supplier of an individual product equipped with the brushless DC motor 200 can identify a product equipped with a specific brushless DC motor 200 by analyzing big data including unique information of the brushless DC motor 200. . As a result, quality can be stabilized, for example, by preventing occurrence of defects.
 図8は、ブラシレスDCモータ200の種類を識別する識別方法のさらなる他のフローチャートを示している。 FIG. 8 shows still another flowchart of the identification method for identifying the type of the brushless DC motor 200.
 図8に示すように、本実施形態による識別方法は、ブラシレスDCモータ200の種類を識別した結果を報知するステップS400をさらに包含することができる。 As shown in FIG. 8, the identification method according to the present embodiment can further include step S <b> 400 for notifying the result of identifying the type of the brushless DC motor 200.
 報知の手法の一例として、図3に示す発光素子130(例えば複数のLED)を用いてブラシレスDCモータ200の種類を識別した結果を報知することが可能である。識別装置100のコントローラ110は、複数のブラシレスDCモータ200の種類毎に割り当てられた複数のLEDの中から、識別対象のブラシレスDCモータ200に割り当てられたLEDを、ブラシレスDCモータ200の種類を識別した結果に基づいて発光させる。なお、発光素子130は、LEDに限らず、光によって報知する素子であってもよい。 As an example of the notification method, it is possible to notify the result of identifying the type of the brushless DC motor 200 using the light emitting element 130 (for example, a plurality of LEDs) shown in FIG. The controller 110 of the identification device 100 identifies the type of the brushless DC motor 200 from among the plurality of LEDs allocated for each type of the plurality of brushless DC motors 200, and the LED allocated to the brushless DC motor 200 to be identified. The light is emitted based on the result. The light emitting element 130 is not limited to an LED, and may be an element that notifies by light.
 例えば、Aサプライヤー用に赤色LEDを割り当て、Bサプライヤー用に青色LEDを割り当て、Cサプライヤー用に緑色LEDを割り当てることができる。識別装置100のコントローラ110は、CサプライヤーのブラシレスDCモータ200を識別した場合、緑色LEDを発光させる。これにより、例えば工場の作業者は、識別対象のブラシレスDCモータ200がCサプライヤーのモータであるか否かを視覚的に認識することができる。 For example, a red LED can be assigned to the A supplier, a blue LED can be assigned to the B supplier, and a green LED can be assigned to the C supplier. When the controller 110 of the identification device 100 identifies the brushless DC motor 200 of the C supplier, the controller 110 causes the green LED to emit light. Thereby, for example, a worker in a factory can visually recognize whether or not the brushless DC motor 200 to be identified is a motor of a C supplier.
 他の一例として、表示装置(例えば、液晶ディスプレイ)またはスピーカーなどを用いてブラシレスDCモータ200の種類を識別した結果を報知することが可能である。例えば、その識別結果を文字情報として液晶ディスプレイに表示させることができる。例えば、複数のブラシレスDCモータ200の種類毎に音の高低を変えてスピーカーを鳴らすことが可能である。 As another example, it is possible to notify the result of identifying the type of the brushless DC motor 200 using a display device (for example, a liquid crystal display) or a speaker. For example, the identification result can be displayed on the liquid crystal display as character information. For example, it is possible to change the level of the sound for each type of the plurality of brushless DC motors 200 and sound the speaker.
 他の一例として、識別装置100のコントローラ110は、識別結果をメモリ120に一旦書き込んでもよいし、識別結果を必要とする他の装置またはデバイスに識別結果を送信してもよい。これらの形態も、識別結果を報知する一態様である。 As another example, the controller 110 of the identification apparatus 100 may once write the identification result in the memory 120 or may transmit the identification result to another apparatus or device that requires the identification result. These forms are also modes for notifying the identification result.
 図9は、本実施形態のバリエーションによるブラシレスDCモータ200の種類を識別する識別方法のフローチャートを示している。図10は、速度指令に対する出力応答特性を複数のサプライヤー毎に例示している。横軸は時間(秒)を示し、縦軸は回転速度(rpm)を示す。 FIG. 9 shows a flowchart of an identification method for identifying the type of the brushless DC motor 200 according to the variation of the present embodiment. FIG. 10 illustrates the output response characteristics with respect to the speed command for each of a plurality of suppliers. The horizontal axis indicates time (seconds), and the vertical axis indicates the rotation speed (rpm).
 本バリエーションでは、コントローラ110は、ブラシレスDCモータ200に電源電圧を供給した状態で、速度指令に応答して加速するブラシレスDCモータ200の回転に伴い、第1速度指令値を与えてから所定時間経過後にTACH端子から出力されるパルス信号に基づいて、ブラシレスDCモータ200の種類を識別する。すなわち、第1速度指令値に応答して第1速度に向けて加速するブラシレスDCモータ200の回転に伴い、第1速度指令値を与えてから所定時間経過後に前記タコメータ用出力端子から出力される、ブラシレスDCモータ200の回転速度を表すパルス信号に基づいて、ブラシレスDCモータ200の種類を識別する。 In this variation, the controller 110 supplies a first speed command value in response to the rotation of the brushless DC motor 200 that accelerates in response to the speed command in a state where the power supply voltage is supplied to the brushless DC motor 200. The type of the brushless DC motor 200 is identified based on a pulse signal output from the TACH terminal later. That is, with the rotation of the brushless DC motor 200 that accelerates toward the first speed in response to the first speed command value, it is output from the tachometer output terminal after a predetermined time has elapsed since the first speed command value was given. The type of the brushless DC motor 200 is identified based on the pulse signal representing the rotation speed of the brushless DC motor 200.
 例えば、識別装置100は、テストモードにおいて以下のステップS100~S300を逐次実行することにより、ブラシレスDCモータ200の種類を識別する。 For example, the identification device 100 identifies the type of the brushless DC motor 200 by sequentially executing the following steps S100 to S300 in the test mode.
 識別装置100は、ブラシレスDCモータ200に電源電圧を供給する(ステップS100)。 The identification device 100 supplies a power supply voltage to the brushless DC motor 200 (step S100).
 コントローラ110は、第1速度指令値を与えてから所定時間経過後におけるTACH端子から出力されるパルス信号を取得する(ステップS210D)。例えば、所定時間は、複数のブラシレスDCモータ200の種類の中で出力応答特性が2番目に良いブラシレスDCモータ200において、回転速度が初期速度からしきい値に到達するまでの応答時間よりも短くなるよう設定される。本実施形態では、図10に示すように、サプライヤーA、BおよびCの中で出力応答特性が2番目に良いサプライヤーBの応答時間、例えば2secよりも短い1.5secに所定時間を設定する。これにより、複数のブラシレスDCモータ200の回転速度が、第1速度に達し、ブラシレスDCモータ200の種類の識別が困難となることを抑制できる。また、例えば、回転速度が指数関数的に変化する場合、第1速度指令値の10%以上90%以下の範囲の速度にしきい値を設定することが好ましいと言える。ここで、しきい値は、第1速度指令値の10%以上90%以下の範囲の速度である。これによって、所定時間内において測定される回転速度のばらつきを抑制し、より正確な識別が可能である。または、第1速度指令値よりも所定値だけ低い速度にしきい値を設定してもよい。ここで、しきい値は、第1速度指令値よりも所定値だけ低い速度である。これによって、しきい値を第1速度指令値の割合で定める場合よりも、容易に計算が行える。 Controller 110 obtains a pulse signal output from the TACH terminal after a predetermined time has elapsed since the first speed command value was given (step S210D). For example, the predetermined time is shorter than the response time until the rotational speed reaches the threshold value from the initial speed in the brushless DC motor 200 having the second best output response characteristic among the types of the plurality of brushless DC motors 200. It is set to become. In this embodiment, as shown in FIG. 10, the predetermined time is set to the response time of supplier B having the second best output response characteristic among suppliers A, B, and C, for example, 1.5 sec shorter than 2 sec. Thereby, it can suppress that the rotational speed of the some brushless DC motor 200 reaches a 1st speed, and the identification of the kind of brushless DC motor 200 becomes difficult. Further, for example, when the rotational speed changes exponentially, it can be said that it is preferable to set the threshold value to a speed in a range of 10% to 90% of the first speed command value. Here, the threshold value is a speed in a range of 10% to 90% of the first speed command value. As a result, variations in rotational speed measured within a predetermined time can be suppressed, and more accurate identification can be performed. Alternatively, the threshold value may be set to a speed lower than the first speed command value by a predetermined value. Here, the threshold value is a speed that is lower than the first speed command value by a predetermined value. Thus, the calculation can be performed more easily than when the threshold value is determined by the ratio of the first speed command value.
 第1速度指令値が与えられてから1.5sec後に着目すると、サプライヤーAのブラシレスDCモータ200は、第1速度に既に達した状態であり、サプライヤーB、CのブラシレスDCモータ200は、第1速度に向けて加速しているところである。サプライヤーA、BおよびCの間で異なる出力応答特性に従って、1.5sec後のブラシレスDCモータ200の回転速度は互いに異なる。 When attention is paid 1.5 seconds after the first speed command value is given, the brushless DC motor 200 of the supplier A has already reached the first speed, and the brushless DC motor 200 of the suppliers B and C It is accelerating towards speed. According to different output response characteristics among suppliers A, B and C, the rotational speeds of the brushless DC motor 200 after 1.5 seconds are different from each other.
 コントローラ110は、所定時間経過後におけるブラシレスDCモータ200の回転速度をパルス信号の周波数に基づいて計測する(ステップS210E)。すなわち、ブラシレスDCモータ200の種類の識別は、所定時間経過後におけるブラシレスDCモータ200の回転速度をパルス信号の周波数に基づいて計測することによって行う。速度指令値を与えてから所定時間経過後における回転速度を1回だけ検出すればよいので、ユーザシステム100の側の演算負荷を軽減することが可能となる。また、識別に必要な時間をあらかじめ定めることができる。例えば、第1速度指令値が与えられてから1.5sec後、サプライヤーAのブラシレスDCモータ200の回転速度は、第1速度v1に達する。その場合、理論上、サプライヤーBのブラシレスDCモータ200の回転速度は、v1の82.5%に達し、サプライヤーBのブラシレスDCモータ200の回転速度は、v1の65%に達する。この場合、コントローラ110は、サプライヤーAの識別において、回転速度v1を計測し、サプライヤーBの識別において、回転速度0.825v1を計測し、サプライヤーCの識別において、回転速度0.65v1を計測する。 Controller 110 measures the rotational speed of brushless DC motor 200 after a predetermined time has elapsed based on the frequency of the pulse signal (step S210E). That is, the type of the brushless DC motor 200 is identified by measuring the rotational speed of the brushless DC motor 200 after a predetermined time has elapsed based on the frequency of the pulse signal. Since it is only necessary to detect the rotational speed after a predetermined time has passed since the speed command value is given, the calculation load on the user system 100 side can be reduced. In addition, the time required for identification can be determined in advance. For example, 1.5 seconds after the first speed command value is given, the rotational speed of the brushless DC motor 200 of supplier A reaches the first speed v1. In this case, theoretically, the rotation speed of the brushless DC motor 200 of the supplier B reaches 82.5% of v1, and the rotation speed of the brushless DC motor 200 of the supplier B reaches 65% of v1. In this case, the controller 110 measures the rotation speed v1 in the identification of the supplier A, measures the rotation speed 0.825v1 in the identification of the supplier B, and measures the rotation speed 0.65v1 in the identification of the supplier C.
 図11は、本バリエーションにおいてブラシレスDCモータ200の種類を識別するために用いるテーブルを例示している。 FIG. 11 illustrates a table used to identify the type of the brushless DC motor 200 in this variation.
 コントローラ110は、図11に示すテーブルを参照して、所定時間経過後に計測したブラシレスDCモータ200の回転速度に基づいてブラシレスDCモータ200の種類を識別する。この例では、ブラシレスDCモータ200の固有情報は、所定時間経過後における回転速度である。すなわち、ブラシレスDCモータ200の種類の識別は、複数のブラシレスDCモータ200の種類と、複数のブラシレスDCモータ200の固有情報とを関連付けるテーブルを参照して、所定時間経過後に計測したブラシレスDCモータ200の回転速度に基づいて行う。これにより、ブラシレスDCモータ200の種類の識別のための処理や、プログラミングが容易になる。例えば、コントローラ110は、テーブルを参照することにより、計測した回転速度0.825v1に基づいて、識別対象のブラシレスDCモータ200をサプライヤーBのモータと識別する。本バリエーションにおいても、コントローラ110は、ブラシレスDCモータ200に第1速度指令値を与える前に、第2速度指令値を初期速度として与えてもよい。すなわち、回路基板CBには、回転速度を制御する速度指令値を入力するための制御端子がさらに配置されており、識別装置100からブラシレスDCモータに第1速度指令値を与える前に、第1速度指令値とは異なる第2速度指令値を初期速度として与える。これによって、応答時間をより正確に測定できるため、より多くのブラシレスDCモータ200の識別が可能である。また、例えば、初期速度はゼロである。これによって、モータが停止した状態から識別を開始することができるため、応答時間からのブラシレスDCモータ200の識別が容易である。 The controller 110 refers to the table shown in FIG. 11 and identifies the type of the brushless DC motor 200 based on the rotational speed of the brushless DC motor 200 measured after a predetermined time has elapsed. In this example, the unique information of the brushless DC motor 200 is the rotation speed after a predetermined time has elapsed. That is, the type of the brushless DC motor 200 is identified by referring to a table that associates the types of the plurality of brushless DC motors 200 with the unique information of the plurality of brushless DC motors 200 and measured after a predetermined time has elapsed. This is based on the rotation speed. This facilitates processing for identifying the type of the brushless DC motor 200 and programming. For example, the controller 110 refers to the table to identify the brushless DC motor 200 to be identified as the motor of the supplier B based on the measured rotation speed 0.825v1. Also in this variation, the controller 110 may give the second speed command value as the initial speed before giving the first speed command value to the brushless DC motor 200. That is, the circuit board CB is further provided with a control terminal for inputting a speed command value for controlling the rotation speed, and before the first speed command value is given from the identification device 100 to the brushless DC motor, the first terminal is provided. A second speed command value different from the speed command value is given as the initial speed. Accordingly, since the response time can be measured more accurately, more brushless DC motors 200 can be identified. For example, the initial speed is zero. Thereby, since the identification can be started from the state where the motor is stopped, the identification of the brushless DC motor 200 from the response time is easy.
 ある一態様において、複数のブラシレスDCモータ200の種類毎に異なる第2速度指令値を割り当てることができる。その場合、例えば、モータドライブIC220に電源電圧Vccを投入後、MCU221は、第2速度指令値として、複数のブラシレスDCモータ200の種類毎に異なる識別速度の指令値をモータドライブIC220に与える。その後、コントローラ110は、ブラシレスDCモータ200に第1速度指令値を与える。 In one aspect, a different second speed command value can be assigned to each type of the plurality of brushless DC motors 200. In this case, for example, after the power supply voltage Vcc is input to the motor drive IC 220, the MCU 221 supplies the motor drive IC 220 with a command value for a different identification speed for each type of the plurality of brushless DC motors 200 as the second speed command value. Thereafter, the controller 110 gives the first speed command value to the brushless DC motor 200.
 図12は、サプライヤーA、BおよびCの識別速度を例示している。横軸は時間(秒)を示し、縦軸は回転速度(rpm)を示す。 FIG. 12 illustrates the identification speed of suppliers A, B, and C. The horizontal axis indicates time (seconds), and the vertical axis indicates the rotation speed (rpm).
 例えば、サプライヤーAのブラシレスDCモータ200に、識別速度指令値Aを割り当てる。MCUは、第2速度指令値として識別速度指令値AをモータドライブICに与える。その結果、モータの回転速度は、識別速度Aまで達する。サプライヤーBのブラシレスDCモータ200に、識別速度指令値Bを割り当てる。MCUは、第2速度指令値として識別速度指令値BをモータドライブICに与える。その結果、モータの回転速度は、識別速度Bまで達する。サプライヤーCのブラシレスDCモータ200に、識別速度指令値Cを割り当てる。MCUは、第2速度指令値として識別速度指令値CをモータドライブICに与える。その結果、モータの回転速度は、識別速度Cまで達する。識別速度Aは、識別速度指令値Aによって与えられる速度である。これと同様に、識別速度Bは、識別速度指令値Bによって与えられる速度であり、識別速度Cは、識別速度指令値Cによって与えられる速度である。指令値の大きさの関係は、第1速度指令値>識別速度指令値C>識別速度指令値B>識別速度指令値Aである。 For example, the identification speed command value A is assigned to the brushless DC motor 200 of the supplier A. The MCU gives the identification speed command value A to the motor drive IC as the second speed command value. As a result, the rotational speed of the motor reaches the identification speed A. The identification speed command value B is assigned to the brushless DC motor 200 of the supplier B. The MCU gives the identification speed command value B to the motor drive IC as the second speed command value. As a result, the rotational speed of the motor reaches the identification speed B. The identification speed command value C is assigned to the brushless DC motor 200 of the supplier C. The MCU gives the identification speed command value C to the motor drive IC as the second speed command value. As a result, the rotational speed of the motor reaches the identification speed C. The identification speed A is a speed given by the identification speed command value A. Similarly, the identification speed B is a speed given by the identification speed command value B, and the identification speed C is a speed given by the identification speed command value C. The relationship between the magnitudes of the command values is first speed command value> identification speed command value C> identification speed command value B> identification speed command value A.
 図12に示すように、ブラシレスDCモータ200が、識別速度から第1速度に到達する到達時間は、サプライヤーA、BおよびCの間で共通する。その時間はTrである。換言すると、ブラシレスDCモータ200は、識別速度に到達してから時間Tr経過後に第1速度に達することとなる。この特性を利用して、ブラシレスDCモータ200の種類の識別を、識別速度と、時間Tr経過後の回転速度、つまり、第1速度とに基づいて行うことが可能となる。すなわち、第2速度指令値は、複数のブラシレスDCモータ200の種類ごとに異なり、ブラシレスDCモータ200の種類の識別は、初期速度と所定時間経過後の回転速度とに基づいて行う。具体的に説明すると、時間Trの間における回転速度の変化量Δに基づいてブラシレスDCモータ200の種類の識別を行う。サプライヤーAの変化量Δは、「第1速度-識別速度A」で表され、サプライヤーBの変化量Δは、「第1速度-識別速度B」で表され、サプライヤーCの変化量Δは、「第1速度-識別速度C」で表される。例えば、コントローラ110は、「第1速度-識別速度A」の変化量Δを検出すると、識別対象のブラシレスDCモータ200をサプライヤーAのモータと識別する。このように、コントローラ110は、時間Trの間の回転速度の変化量Δに基づいてブラシレスDCモータ200の種類を識別できる。 As shown in FIG. 12, the arrival time for the brushless DC motor 200 to reach the first speed from the identification speed is common among the suppliers A, B and C. The time is Tr. In other words, the brushless DC motor 200 reaches the first speed after the time Tr has elapsed since reaching the identification speed. Using this characteristic, it is possible to identify the type of the brushless DC motor 200 based on the identification speed and the rotation speed after the time Tr has elapsed, that is, the first speed. That is, the second speed command value differs for each type of the plurality of brushless DC motors 200, and the type of the brushless DC motor 200 is identified based on the initial speed and the rotation speed after a predetermined time has elapsed. More specifically, the type of the brushless DC motor 200 is identified based on the amount of change Δ in the rotational speed during the time Tr. The change amount Δ of supplier A is represented by “first speed−identification speed A”, the change amount Δ of supplier B is represented by “first speed−identification speed B”, and the change amount Δ of supplier C is It is expressed as “first speed-identification speed C”. For example, when detecting the change amount Δ of “first speed−identification speed A”, the controller 110 identifies the brushless DC motor 200 to be identified as the motor of the supplier A. Thus, the controller 110 can identify the type of the brushless DC motor 200 based on the amount of change Δ in the rotational speed during the time Tr.
 本実施形態によるコントローラ110は、ブラシレスDCモータ200に電源電圧を供給した状態で、速度指令に応答して加速するブラスレスDCモータ200の回転速度に応じて電源ラインを流れる駆動電流に基づいて、ブラシレスDCモータ200の種類を識別する。すなわち、本実施形態では、第1速度指令値に応答して第1速度に向けて加速するブラスレスDCモータ200の回転速度に応じて電源ラインを流れる駆動電流に基づいて、ブラシレスDCモータ200の種類を識別する。以下、実施形態1との差異点を主に説明する。 The controller 110 according to the present embodiment is based on the drive current flowing through the power supply line according to the rotational speed of the brassless DC motor 200 that accelerates in response to the speed command in a state where the power supply voltage is supplied to the brushless DC motor 200. The type of the DC motor 200 is identified. That is, in the present embodiment, the type of brushless DC motor 200 is based on the drive current flowing through the power supply line according to the rotational speed of the brassless DC motor 200 that accelerates toward the first speed in response to the first speed command value. Identify Hereinafter, differences from the first embodiment will be mainly described.
 〔2-1.ユーザシステム100およびブラシレスDCモータ200の構成例〕
 図13は、本実施形態による、ユーザシステム100およびブラシレスDCモータ200のブロック構成例を模式的に示している。図14は、ユーザシステム100の内部のより詳細なブロック構成例を模式的に示している。
[2-1. Configuration example of user system 100 and brushless DC motor 200]
FIG. 13 schematically shows a block configuration example of the user system 100 and the brushless DC motor 200 according to the present embodiment. FIG. 14 schematically shows a more detailed block configuration example inside the user system 100.
 本実施形態では、実施形態1とは異なり、TACH端子から出力されるパルス信号は計測されない。そのため、本実施形態は、TACH端子を特に必要とせず、ブラシレスDCモータ200は、例えば図13に示す電源端子およびGND端子を有する2ワイヤモータであり得る。ブラシレスDCモータ200は、実施形態1と同様に、速度指令端子をさらに有していてもよい。 In this embodiment, unlike Embodiment 1, the pulse signal output from the TACH terminal is not measured. Therefore, this embodiment does not particularly require a TACH terminal, and the brushless DC motor 200 can be, for example, a two-wire motor having a power supply terminal and a GND terminal shown in FIG. Similarly to the first embodiment, the brushless DC motor 200 may further include a speed command terminal.
 ユーザシステム100は、例えば、DC電源151、電流検出器152および判別器153をさらに備える。以降、ユーザシステム100または識別装置100の内部のブロック構成に言及する場合、コントローラ110、DC電源151、電流検出器152および判別器153の構成要素を纏めて単に「コントローラ110」と呼ぶ場合がある。 The user system 100 further includes, for example, a DC power supply 151, a current detector 152, and a discriminator 153. Hereinafter, when referring to the internal block configuration of the user system 100 or the identification device 100, the components of the controller 110, the DC power supply 151, the current detector 152, and the discriminator 153 may be simply referred to as “controller 110”. .
 DC電源151は、例えば定電圧源であり、通常時の制御およびテストモード時のモータ駆動においてブラシレスDCモータ200に供給するモータ電源電圧Vmot(例えば7.0~13.8V)を生成する。DC電源151は、電流を制限するための電流制限の機能を備えていてもよい。 The DC power supply 151 is a constant voltage source, for example, and generates a motor power supply voltage Vmot (for example, 7.0 to 13.8 V) to be supplied to the brushless DC motor 200 in motor control in normal control and test modes. The DC power supply 151 may have a current limiting function for limiting the current.
 電流検出器152は、ブラシレスDCモータ200の種類の識別において、電源ラインを流れる駆動電流を検出する。電流検出器152は、例えば50μsの時間間隔で駆動電流を検出(またはサンプリング)する。ブラシレスDCモータ200の回転速度に応じて電源ラインに駆動電流が流れる。例えばファンモータの場合、回転速度(または回転数)の2乗または3乗に比例する駆動電流が電源ラインに流れることが知られている。回転速度が変化すると、駆動電流は変化する。すなわち、速度指令の変化に応じて駆動電流も変わる。 The current detector 152 detects the drive current flowing through the power line in identifying the type of the brushless DC motor 200. The current detector 152 detects (or samples) the drive current at a time interval of 50 μs, for example. A drive current flows through the power supply line according to the rotation speed of the brushless DC motor 200. For example, in the case of a fan motor, it is known that a drive current proportional to the square or the cube of the rotation speed (or the number of rotations) flows in the power supply line. When the rotation speed changes, the drive current changes. That is, the drive current also changes according to the change in speed command.
 判別器153は、電流検出器152から出力される電流検出値を監視することにより、駆動電流が初期電流からしきい値に到達するまでの到達時間を計測する。初期電流は例えばゼロである。これにより、応答時間からのブラシレスDCモータ200の種類の識別が容易になる。例えば、しきい値は、定格電流の10%以上90%以下の範囲の電流に設定される。これにより、計測する応答時間のばらつきを抑えられ、より正確な識別が可能である。または、しきい値は、定格電流よりも所定値だけ小さい電流に設定される。これにより、しきい値を第1速度指令値の割合で定める場合よりも、容易に計算を行える。本実施形態において、その到達時間は、複数のブラシレスDCモータ200の種類毎に異なる。さらに、判別器153は、計測した到達時間に基づいてブラシレスDCモータ200の種類を識別する。判別器153は、典型的には、コントローラ110に実装される。すなわち、本実施形態では、ブラシレスDCモータ200の種類の識別は、駆動電流が初期電流からしきい値に到達するまでの到達時間を計測することによって行う。これにより、例えば、識別装置100は、応答時間を計測するだけでブラシレスDCモータ200の種類の識別が可能である。 The discriminator 153 measures the arrival time until the drive current reaches the threshold value from the initial current by monitoring the current detection value output from the current detector 152. The initial current is, for example, zero. This facilitates identification of the type of the brushless DC motor 200 from the response time. For example, the threshold value is set to a current in the range of 10% to 90% of the rated current. Thereby, variation in response time to be measured can be suppressed, and more accurate identification is possible. Alternatively, the threshold value is set to a current smaller than the rated current by a predetermined value. Thereby, calculation can be performed more easily than when the threshold value is determined by the ratio of the first speed command value. In the present embodiment, the arrival time differs for each type of the plurality of brushless DC motors 200. Further, the discriminator 153 identifies the type of the brushless DC motor 200 based on the measured arrival time. The discriminator 153 is typically mounted on the controller 110. That is, in this embodiment, the type of the brushless DC motor 200 is identified by measuring the arrival time until the drive current reaches the threshold value from the initial current. Thereby, for example, the identification device 100 can identify the type of the brushless DC motor 200 only by measuring the response time.
 〔2-2.ブラシレスDCモータ200の種類の識別方法〕
 図15は、本実施形態によるブラシレスDCモータ200の種類を識別する識別方法のフローチャートを示している。
[2-2. Method for identifying type of brushless DC motor 200]
FIG. 15 shows a flowchart of an identification method for identifying the type of the brushless DC motor 200 according to the present embodiment.
 (ステップS100)
 識別装置100(ユーザシステム100)とブラシレスDCモータ200との端子同士を電気的に接続した状態で、識別装置100からブラシレスDCモータ200に電源電圧を供給する。つまり、識別装置100は、ブラシレスDCモータ200に電源ラインを介して電源電圧を供給する。
(Step S100)
A power supply voltage is supplied from the identification device 100 to the brushless DC motor 200 while the terminals of the identification device 100 (user system 100) and the brushless DC motor 200 are electrically connected to each other. That is, the identification device 100 supplies a power supply voltage to the brushless DC motor 200 via the power supply line.
 (ステップS220A)
 識別装置100からブラシレスDCモータ200に第1速度指令値を与える前に、第2速度指令値を与えて初期電流を流す。ここで、ブラシレスDCモータ200は、回転速度を制御する速度指令値を入力するための制御端子が配置された回路基板を有し、識別装置100からブラシレスDCモータ200に第1速度指令値を与える前に、第1速度指令値とは異なる第2速度指令値を与えることにより、初期電流を電源ラインに流す。これによって、応答時間がよりせいかくに測定できるため、より多くのブラシレスDCモータ200の種類の識別が可能である。ブラシレスDCモータ200が停止した状態から識別を開始する場合、モータの初期速度はゼロである。その場合、ブラシレスDCモータ200に第2速度指令値を特に与えなくてもよい。第1速度指令値を与えることにより、ブラシレスDCモータ200は、第1速度に向けて加速を開始する。
(Step S220A)
Before giving the first speed command value from the identification device 100 to the brushless DC motor 200, the second speed command value is given and an initial current is passed. Here, the brushless DC motor 200 has a circuit board on which a control terminal for inputting a speed command value for controlling the rotation speed is arranged, and gives the first speed command value from the identification device 100 to the brushless DC motor 200. Prior to applying the second speed command value different from the first speed command value, an initial current is caused to flow through the power supply line. Accordingly, since the response time can be measured more carefully, more types of brushless DC motors 200 can be identified. When the identification is started from the state where the brushless DC motor 200 is stopped, the initial speed of the motor is zero. In that case, the second speed command value may not be given to the brushless DC motor 200 in particular. By giving the first speed command value, the brushless DC motor 200 starts acceleration toward the first speed.
 (ステップS220B)
 電流検出器152によって、第1速度に向けて加速するブラシレスDCモータ200の回転速度に応じて流れる駆動電流を例えば50μsの時間間隔で検出する。
(Step S220B)
The drive current flowing according to the rotation speed of the brushless DC motor 200 that accelerates toward the first speed is detected by the current detector 152 at a time interval of 50 μs, for example.
 図16Aは、ブラシレスDCモータに与える速度指令の変化を例示している。図16Bは、サプライヤーAのブラシレスDCモータにおいて、速度指令に応答して流れる駆動電流の波形を例示し、図16Cは、サプライヤーBのブラシレスDCモータにおいて、速度指令に応答して流れる駆動電流の波形を例示し、図16Dは、サプライヤーCのブラシレスDCモータにおいて、速度指令に応答して流れる駆動電流の波形を例示している。横軸は時間(秒)を示す。図16Aの縦軸は回転速度(krpm)を示し、図16Bから図16Dの縦軸は駆動電流(A)を示す。 FIG. 16A illustrates the change in the speed command given to the brushless DC motor. FIG. 16B illustrates the waveform of the drive current that flows in response to the speed command in the brushless DC motor of supplier A, and FIG. 16C illustrates the waveform of the drive current that flows in response to the speed command in the brushless DC motor of supplier B. FIG. 16D illustrates the waveform of the drive current that flows in response to the speed command in the brushless DC motor of supplier C. The horizontal axis indicates time (seconds). The vertical axis in FIG. 16A indicates the rotational speed (krpm), and the vertical axis in FIGS. 16B to 16D indicates the drive current (A).
 図16Aに示す速度指令がブラシレスDCモータ200に与えられるとする。その場合、サプライヤーAのブラシレスDCモータ200において、図16Bに示す駆動電流が速度指令に応答して流れる。初期電流は0.5Aであり、定格電流は1.2Aである。例えば、しきい値は、定格電流の10%以上90%以下の範囲、つまり、0.12Aから1.08Aの範囲に設定される。本実施形態においても、出力応答特性として、サプライヤーAの応答時間に1sec±0.3secを割り当て、サプライヤーBの応答時間に、2sec±0.3secを割り当て、サプライヤーCの応答時間に3sec±0.3secを割り当てる。図16Bから図16Dに示すように、駆動電流が初期電流からしきい値まで到達する到達時間は、サプライヤー毎に割り当てられた出力応答特性に応じて異なり、その結果、サプライヤーA、BおよびCの間で異なる値を示す。 Suppose that the speed command shown in FIG. 16A is given to the brushless DC motor 200. In that case, in the brushless DC motor 200 of supplier A, the drive current shown in FIG. 16B flows in response to the speed command. The initial current is 0.5A and the rated current is 1.2A. For example, the threshold value is set in a range of 10% to 90% of the rated current, that is, a range of 0.12A to 1.08A. Also in this embodiment, as output response characteristics, 1 sec ± 0.3 sec is assigned to the response time of supplier A, 2 sec ± 0.3 sec is assigned to the response time of supplier B, and 3 sec ± 0. Allocate 3 seconds. As shown in FIG. 16B to FIG. 16D, the arrival time for the drive current to reach from the initial current to the threshold value varies depending on the output response characteristics assigned to each supplier, and as a result, for the suppliers A, B and C, Different values are shown.
 (ステップS220C)
 判別器153によって、電流検出器152から出力される電流検出値、つまり、電流波形の時間変化を監視することにより、駆動電流が初期電流からしきい値に到達するまでの到達時間を計測する。例えばしきい値を0.9Aに設定した場合、判別器153は、サプライヤーAの識別において、到達時間0.0025secを計測し、サプライヤーBの識別において、到達時間0.005secを計測し、サプライヤーCの識別において、到達時間0.01secを計測する。
(Step S220C)
The discriminator 153 monitors the current detection value output from the current detector 152, that is, the time change of the current waveform, thereby measuring the arrival time until the drive current reaches the threshold value from the initial current. For example, when the threshold value is set to 0.9 A, the discriminator 153 measures arrival time 0.0025 sec in identifying supplier A, and measures arrival time 0.005 sec in identifying supplier B. Supplier C In the identification, the arrival time of 0.01 sec is measured.
 (ステップS300)
 図17は、ブラシレスDCモータ200の種類を識別するために用いるテーブルを例示している。
(Step S300)
FIG. 17 illustrates a table used for identifying the type of the brushless DC motor 200.
 判別器153によって、複数のブラシレスDCモータ200の種類と、複数のブラシレスDCモータ200の固有情報とを関連付けるテーブルを参照して、計測した到達時間に基づいてブラシレスDCモータ200の種類を識別する。ブラシレスDCモータ200の固有情報は、上記の到達時間である。すなわち、ブラシレスDCモータ200の種類の識別は、複数のブラシレスDCモータ200の種類と、複数のブラシレスDCモータ200の固有情報とを関連付けるテーブルを参照して、計測した到達時間に基づいて行う。これによって、ブラシレスDCモータ200の種類の識別のための処理や、プログラミングが容易になる。例えば、判別器153は、テーブルを参照することにより、計測した到達時間0.005secに基づいて、識別対象のブラシレスDCモータ200をサプライヤーBのモータと識別する。 The discriminator 153 refers to a table that associates the types of the plurality of brushless DC motors 200 with the unique information of the plurality of brushless DC motors 200, and identifies the type of the brushless DC motor 200 based on the measured arrival time. The unique information of the brushless DC motor 200 is the arrival time described above. That is, the type of the brushless DC motor 200 is identified based on the measured arrival time with reference to a table that associates the types of the plurality of brushless DC motors 200 with the unique information of the plurality of brushless DC motors 200. This facilitates processing for identifying the type of the brushless DC motor 200 and programming. For example, the discriminator 153 identifies the brushless DC motor 200 to be identified as the motor of the supplier B based on the measured arrival time 0.005 sec by referring to the table.
 本実施形態の識別方法によれば、実施形態1と同様に、識別装置100およびブラシレスDCモータ200の間のハンドシェイクによる通信は不要である。また、既存の電源端子を利用することができ、識別用の専用端子を新たに設けなくてもよい。部品数の削減により、製品コストを低減することができる。当該識別方法は、2ワイヤモータにも好適に利用できる。 According to the identification method of the present embodiment, communication by handshake between the identification device 100 and the brushless DC motor 200 is unnecessary as in the first embodiment. Moreover, an existing power supply terminal can be used, and a dedicated terminal for identification need not be newly provided. Product cost can be reduced by reducing the number of parts. The identification method can be suitably used for a two-wire motor.
 図18は、本実施形態のバリエーションによるブラシレスDCモータ200の種類を識別する識別方法のフローチャートを示している。 FIG. 18 shows a flowchart of an identification method for identifying the type of the brushless DC motor 200 according to the variation of this embodiment.
 図16Bから図16Dに示すように、速度指令に応答して流れる駆動電流は、ブラシレスDCモータ200に固有の出力応答特性に応じて変化する。そのため、速度指令が変化してから所定時間経過後において流れる駆動電流は、サプライヤーA、BおよびCの間で異なる。本バリエーションでは、この特性を利用して、ブラシレスDCモータ200の種類を識別する。すなわち、本バリエーションにおける識別方法は、第1速度指令値に応答して第1速度に向けて加速するブラシレスDCモータ200の回転速度に応じて電源ラインを流れる、第1速度指令値を与えてから所定時間後における駆動電流に基づいて、ブラシレスDCモータ200の種類を識別する。 As shown in FIG. 16B to FIG. 16D, the drive current that flows in response to the speed command changes according to the output response characteristic unique to the brushless DC motor 200. Therefore, the drive currents that flow after a predetermined time has elapsed since the speed command changes are different among suppliers A, B, and C. In this variation, the type of the brushless DC motor 200 is identified using this characteristic. In other words, the identification method in this variation provides the first speed command value that flows through the power supply line according to the rotational speed of the brushless DC motor 200 that accelerates toward the first speed in response to the first speed command value. The type of the brushless DC motor 200 is identified based on the drive current after a predetermined time.
 本バリエーションによるコントローラ110は、ブラシレスDCモータ200に電源電圧を供給した状態で、速度指令に応答して加速するブラシレスDCモータ200の回転速度に応じて電源ラインを流れる、速度指令値を与えてから所定時間経過後における駆動電流に基づいて、ブラシレスDCモータ200の種類を識別する。 The controller 110 according to this variation gives a speed command value that flows through the power line in accordance with the rotational speed of the brushless DC motor 200 that accelerates in response to the speed command in a state where the power supply voltage is supplied to the brushless DC motor 200. The type of the brushless DC motor 200 is identified based on the drive current after a predetermined time has elapsed.
 電流検出器152によって、第1速度指令値に応答して第1速度に向けて加速するブラシレスDCモータ200の回転速度に応じて流れる、速度指令値が変化してから所定時間経過後における駆動電流を検出する(ステップS20D)。本バリエーションにおいても、識別装置100からブラシレスDCモータ200に第1速度指令値を与える前に、第2速度指令値を与えて初期電流を流してもよい。さらに、実施形態1で説明したように、複数のブラシレスDCモータ200の種類毎に異なる第2速度指令値を識別速度指令値としてブラシレスDCモータ200に与えてもよい。このとき、第2速度指令値は、複数のブラシレスDCモータ200の種類ごとに異なり、ブラシレスDCモータ200の種類の識別は、初期速度と所定時間経過後の回転速度とに基づいて行う。このように、コントローラ110は、ある時間の間の駆動電流の変化量に基づいてブラシレスDCモータ200の種類を識別できる。所定時間は、複数のブラシレスDCモータ200の種類の中で出力応答特性が2番目に良いブラシレスDCモータ200において、駆動電流が初期電流からしきい値に到達するまでの到達時間よりも短くなるよう設定される。これにより、複数のブラシレスDCモータ200の駆動電流が、しきい値に達し、ブラシレスDCモータ200の種類の識別が困難となることを抑制できる。本バリエーションでは、サプライヤーBの到達時間、例えば0.005secよりも短い0.004secに所定時間を設定することができる。その場合、電流検出器152は、速度指令が変化してから0.004sec後における電源ラインを流れる駆動電流を検出する。 The current detector 152 responds to the first speed command value and flows according to the rotation speed of the brushless DC motor 200 that accelerates toward the first speed. The drive current after a predetermined time has elapsed since the speed command value changed. Is detected (step S20D). In this variation as well, before the first speed command value is given from the identification device 100 to the brushless DC motor 200, the second speed command value may be given and the initial current may flow. Furthermore, as described in the first embodiment, a second speed command value that is different for each type of the plurality of brushless DC motors 200 may be given to the brushless DC motor 200 as an identification speed command value. At this time, the second speed command value differs for each type of the plurality of brushless DC motors 200, and the type of the brushless DC motor 200 is identified based on the initial speed and the rotational speed after a predetermined time has elapsed. Thus, the controller 110 can identify the type of the brushless DC motor 200 based on the amount of change in the drive current during a certain time. The predetermined time is shorter than the arrival time until the drive current reaches the threshold value from the initial current in the brushless DC motor 200 having the second best output response characteristic among the types of the plurality of brushless DC motors 200. Is set. Thereby, it can suppress that the drive current of the some brushless DC motor 200 reaches a threshold value, and it becomes difficult to identify the kind of brushless DC motor 200. FIG. In this variation, the predetermined time can be set to the arrival time of supplier B, for example, 0.004 sec, which is shorter than 0.005 sec. In that case, the current detector 152 detects the drive current flowing through the power supply line 0.004 sec after the speed command changes.
 判別器153によって、複数のブラシレスDCモータ200の種類と、複数のブラシレスDCモータ200の固有情報とを関連付けるテーブルを参照して、0.004sec後に計測した駆動電流に基づいてブラシレスDCモータ200の種類を識別する。ブラシレスDCモータ200の固有情報は、0.004sec後に計測した駆動電流である。すなわち、ブラシレスDCモータ200の種類の識別は、複数のブラシレスDCモータ200の種類と、複数のブラシレスDCモータ200の固有情報とを関連付けるテーブルを参照して、所定時間経過後に計測した駆動電流に基づいて行う。
また、上述した識別速度指令値を与える場合、例えば、判別器153は、初期電流と0.004sec後に計測した駆動電流とに基づいてブラシレスDCモータ200の種類を識別する。
The classifier 153 refers to a table that associates the types of the plurality of brushless DC motors 200 with the unique information of the plurality of brushless DC motors 200, and determines the types of the brushless DC motors 200 based on the drive current measured after 0.004 sec. Identify. The unique information of the brushless DC motor 200 is a drive current measured after 0.004 sec. That is, identification of the type of the brushless DC motor 200 is based on a drive current measured after a predetermined time has elapsed with reference to a table that associates the types of the plurality of brushless DC motors 200 with the unique information of the plurality of brushless DC motors 200. Do it.
Further, when the above-described identification speed command value is given, for example, the discriminator 153 identifies the type of the brushless DC motor 200 based on the initial current and the drive current measured after 0.004 sec.
 本バリエーションでは、ブラシレスDCモータ200の固有情報の取得は、所定時間経過後における電源ラインを流れる駆動電流を計測することによって行う。本バリエーションによれば、速度指令値を与えてから所定時間経過後における駆動電流を1回だけ検出すればよいので、ユーザシステム100の側の演算負荷を軽減することが可能となる。また、識別に必要な時間をあらかじめ定めることができる。 In this variation, the unique information of the brushless DC motor 200 is acquired by measuring the drive current flowing through the power supply line after a predetermined time has elapsed. According to this variation, it is only necessary to detect the drive current after a predetermined time has elapsed after giving the speed command value, so that the calculation load on the user system 100 side can be reduced. In addition, the time required for identification can be determined in advance.
 図19は、ユーザシステム100、識別装置100AおよびブラシレスDCモータ200の典型的なブロック構成例を模式的に示している。 FIG. 19 schematically illustrates a typical block configuration example of the user system 100, the identification device 100A, and the brushless DC motor 200.
 本実施形態による識別装置100Aは、実施形態1または2とは異なり、ユーザシステム100とは別個の装置である。図19に、Vmot端子、GND端子、速度指令端子およびTACH端子を備える、図1に示すブラシレスDCモータ200に接続する識別装置100Aの構成および接続例を示す。ただし、実施形態2において説明した2ワイヤモータなどに識別装置100Aを接続することも可能である。 Unlike the first or second embodiment, the identification device 100A according to the present embodiment is a separate device from the user system 100. FIG. 19 shows a configuration and connection example of an identification device 100A that is connected to the brushless DC motor 200 shown in FIG. 1 and includes a Vmot terminal, a GND terminal, a speed command terminal, and a TACH terminal. However, it is also possible to connect the identification device 100A to the 2-wire motor described in the second embodiment.
 識別装置100Aは、例えば、MCU110Aおよび発光素子130を備える。識別装置100Aは、ブラシレスDCモータ200の種類の識別に必要な端子として、Vmot端子、GND端子およびTACH端子を備える。 The identification device 100A includes, for example, an MCU 110A and a light emitting element 130. The identification device 100A includes a Vmot terminal, a GND terminal, and a TACH terminal as terminals necessary for identifying the type of the brushless DC motor 200.
 ユーザシステム100、識別装置100AおよびブラシレスDCモータ200は、Vmot端子、GND端子およびTACH端子の間で互いに電気的に接続される。この構成例では、識別装置100AからブラシレスDCモータ200にVmot端子を介して電源電圧を供給し、ユーザシステム100からブラシレスDCモータ200に速度指令端子を介してPWM信号を与える。 The user system 100, the identification device 100A, and the brushless DC motor 200 are electrically connected to each other among the Vmot terminal, the GND terminal, and the TACH terminal. In this configuration example, the power supply voltage is supplied from the identification device 100A to the brushless DC motor 200 via the Vmot terminal, and the PWM signal is supplied from the user system 100 to the brushless DC motor 200 via the speed command terminal.
 識別装置100Aは、電源電圧の投入後に、例えば図4または図7に示す処理フローに従って、ブラシレスDCモータ200の種類を識別することができる。MCU110Aは、ユーザシステム100のコントローラ110に識別結果を送信してもよい。 The identification device 100A can identify the type of the brushless DC motor 200, for example, according to the processing flow shown in FIG. The MCU 110A may transmit the identification result to the controller 110 of the user system 100.
 図20は、ユーザシステム100、識別装置100AおよびブラシレスDCモータ200の他のブロック構成例を模式的に示している。 FIG. 20 schematically illustrates another block configuration example of the user system 100, the identification device 100A, and the brushless DC motor 200.
 識別装置100Aは、例えばテストポイント(TP)を介して、ユーザシステム100およびブラシレスDCモータ200に電気的に接続される。TP1は電源用TPである。TP2はTACH用TPである。TP3はGND用TPである。識別装置100Aに専用プローブを接続し、そのプローブをTPに当ててブラシレスDCモータ200の種類を識別することができる。 The identification device 100A is electrically connected to the user system 100 and the brushless DC motor 200 through, for example, a test point (TP). TP1 is a power supply TP. TP2 is a TP for TACH. TP3 is a TP for GND. A dedicated probe can be connected to the identification device 100A and the type of the brushless DC motor 200 can be identified by applying the probe to the TP.
 本開示の実施形態は、パソコン、ゲーム機、掃除機、ドライヤ、洗濯機および冷蔵庫などの、各種ファンモータを備える多様な機器に幅広く利用される。 The embodiment of the present disclosure is widely used in various devices including various fan motors such as a personal computer, a game machine, a vacuum cleaner, a dryer, a washing machine, and a refrigerator.

Claims (13)

  1.  ブラシレスDCモータの種類を識別する、識別装置に用いる識別方法であって、
     前記ブラシレスDCモータの出力応答特性は、複数のブラシレスDCモータの種類毎に異なり、
     前記識別装置から前記ブラシレスDCモータに電源ラインを介して電源電圧を供給し、
     第1速度指令値に応答して第1速度に向けて加速する前記ブラスレスDCモータの回転速度に応じて前記電源ラインを流れる、前記第1速度指令値を与えてから所定時間経過後における駆動電流に基づいて、前記ブラシレスDCモータの種類を識別する。
    An identification method used for an identification device for identifying the type of a brushless DC motor,
    The output response characteristics of the brushless DC motor are different for each type of the plurality of brushless DC motors.
    Supplying a power supply voltage from the identification device to the brushless DC motor via a power supply line;
    A driving current flowing through the power supply line according to the rotational speed of the brassless DC motor that accelerates toward the first speed in response to the first speed command value, and after a predetermined time has elapsed since the first speed command value was given. Based on the above, the type of the brushless DC motor is identified.
  2.  請求項1に記載の識別方法であって、
     前記ブラシレスDCモータの固有情報の取得は、前記所定時間経過後における前記電源ラインを流れる駆動電流を計測することによって行う。
    The identification method according to claim 1,
    Acquisition of the unique information of the brushless DC motor is performed by measuring the drive current flowing through the power line after the predetermined time has elapsed.
  3.  請求項2に記載の識別方法であって、
     前記所定時間は、前記複数のブラシレスDCモータの種類の中で前記出力応答特性が2番目に良いブラシレスDCモータにおいて、前記駆動電流が初期電流からしきい値に到達するまでの到達時間よりも短い。
    The identification method according to claim 2,
    The predetermined time is shorter than the arrival time until the drive current reaches the threshold value from the initial current in the brushless DC motor having the second best output response characteristic among the types of the plurality of brushless DC motors. .
  4.  請求項2に記載の識別方法であって、
     前記ブラシレスDCモータは、回転速度を制御する速度指令値を入力するための制御端子が配置された回路基板を有し、
     さらに、前記識別装置から前記ブラシレスDCモータに前記第1速度指令値を与える前に、前記第1速度指令値とは異なる第2速度指令値を与えることにより、前記初期電流を前記電源ラインに流す。
    The identification method according to claim 2,
    The brushless DC motor has a circuit board on which a control terminal for inputting a speed command value for controlling the rotational speed is arranged,
    Further, by supplying a second speed command value different from the first speed command value before giving the first speed command value from the identification device to the brushless DC motor, the initial current is caused to flow through the power supply line. .
  5.  請求項4に記載の識別方法であって、
     前記初期電流はゼロである。
    The identification method according to claim 4,
    The initial current is zero.
  6.  請求項3に記載の識別方法であって、
     前記第2速度指令値は、前記複数のブラシレスDCモータの種類毎に異なり、
     前記ブラシレスDCモータの種類の識別は、前記初期電流と前記所定時間経過後に計測した駆動電流とに基づいて行う。
    The identification method according to claim 3,
    The second speed command value is different for each type of the plurality of brushless DC motors,
    The type of the brushless DC motor is identified based on the initial current and the drive current measured after the predetermined time has elapsed.
  7.  請求項3から5のいずれかに記載の識別方法であって、
     前記しきい値は、定格電流の10%以上90%以下の範囲の電流である。
    The identification method according to any one of claims 3 to 5,
    The threshold value is a current in the range of 10% to 90% of the rated current.
  8.  請求項3から5のいずれかに記載の識別方法であって、
     前記しきい値は、定格電流よりも所定値だけ小さい電流である。
    The identification method according to any one of claims 3 to 5,
    The threshold value is a current smaller than a rated current by a predetermined value.
  9.  請求項2から8のいずれかに記載の識別方法であって、
     前記ブラシレスDCモータの種類の識別は、前記複数のブラシレスDCモータの種類と、複数のブラシレスDCモータの固有情報とを関連付けるテーブルを参照して、前記所定時間経過後に計測した駆動電流に基づいて行う。
    The identification method according to any one of claims 2 to 8,
    The type of the brushless DC motor is identified based on the drive current measured after the predetermined time has elapsed with reference to a table that associates the types of the plurality of brushless DC motors with the unique information of the plurality of brushless DC motors. .
  10.  請求項2から9のいずれかに記載の識別方法であって、
     さらに、前記識別装置を用いて、前記ブラシレスDCモータに関する情報を識別した結果を報知する。
    The identification method according to any one of claims 2 to 9,
    Furthermore, the identification device is used to notify the result of identifying information related to the brushless DC motor.
  11.  請求項1から9のいずれかに記載の識別方法であって、
     さらに、前記複数のブラシレスDCモータの種類毎に割り当てられた複数の発光素子の中から、識別対象のブラシレスDCモータに割り当てられた発光素子を、前記ブラシレスDCモータの種類を識別した結果に基づいて発光させる。
    The identification method according to any one of claims 1 to 9,
    Furthermore, based on the result of identifying the type of the brushless DC motor, the light emitting element assigned to the brushless DC motor to be identified is selected from the plurality of light emitting elements assigned for each type of the plurality of brushless DC motors. Make it emit light.
  12.  請求項1から11のいずれかに記載の識別方法であって、
     前記ブラシレスDCモータは、インペラを有するファンモータである。
    The identification method according to any one of claims 1 to 11,
    The brushless DC motor is a fan motor having an impeller.
  13.  ブラシレスDCモータの種類を識別する識別装置であって、
     前記ブラシレスDCモータの出力応答特性は、複数のブラシレスDCモータの種類毎に異なり、
     前記ブラシレスDCモータに電源電圧を電源ラインを介して供給するための電源端子と、
     前記ブラシレスDCモータの種類を識別するコントローラと、を備え、
     前記コントローラは、前記ブラシレスDCモータに前記電源電圧を供給した状態で、速度指令に応答して加速する前記ブラスレスDCモータの回転速度に応じて前記電源ラインを流れる、前記速度指令を与えてから所定時間経過後における駆動電流に基づいて、前記ブラシレスDCモータの種類を識別する。
    An identification device for identifying the type of a brushless DC motor,
    The output response characteristics of the brushless DC motor are different for each type of the plurality of brushless DC motors.
    A power supply terminal for supplying a power supply voltage to the brushless DC motor via a power supply line;
    A controller for identifying the type of the brushless DC motor,
    The controller supplies the speed command that flows through the power line in accordance with the rotational speed of the brassless DC motor that accelerates in response to the speed command in a state where the power supply voltage is supplied to the brushless DC motor. The type of the brushless DC motor is identified based on the drive current after the elapse of time.
PCT/JP2019/012831 2018-03-28 2019-03-26 Identification method and identification device for identifying type of brushless dc motor WO2019189167A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018062200 2018-03-28
JP2018-062200 2018-03-28

Publications (1)

Publication Number Publication Date
WO2019189167A1 true WO2019189167A1 (en) 2019-10-03

Family

ID=68061804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012831 WO2019189167A1 (en) 2018-03-28 2019-03-26 Identification method and identification device for identifying type of brushless dc motor

Country Status (1)

Country Link
WO (1) WO2019189167A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001136783A (en) * 1999-11-05 2001-05-18 Oki Data Corp Discrimination method for dc motor
JP2002095289A (en) * 2000-09-18 2002-03-29 Matsushita Electric Ind Co Ltd Motor controller
JP2005168241A (en) * 2003-12-04 2005-06-23 Toshiba Corp Electric motor vehicle control device
JP2007104874A (en) * 2005-10-07 2007-04-19 Yaskawa Electric Corp Electric power conversion apparatus with automatic motor discriminating function
JP2017046469A (en) * 2015-08-27 2017-03-02 コニカミノルタ株式会社 Method of controlling sensorless brushless motor, and image forming apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001136783A (en) * 1999-11-05 2001-05-18 Oki Data Corp Discrimination method for dc motor
JP2002095289A (en) * 2000-09-18 2002-03-29 Matsushita Electric Ind Co Ltd Motor controller
JP2005168241A (en) * 2003-12-04 2005-06-23 Toshiba Corp Electric motor vehicle control device
JP2007104874A (en) * 2005-10-07 2007-04-19 Yaskawa Electric Corp Electric power conversion apparatus with automatic motor discriminating function
JP2017046469A (en) * 2015-08-27 2017-03-02 コニカミノルタ株式会社 Method of controlling sensorless brushless motor, and image forming apparatus

Similar Documents

Publication Publication Date Title
US10439522B2 (en) Brushless DC motor, and identification method and identification apparatus of identifying type of brushless DC motor
US10439521B2 (en) Brushless DC motor, and identification method and identification apparatus of identifying type of brushless DC motor
CN101919155A (en) Motor drive control device
JP2005168287A (en) Method and apparatus for optimizing efficiency of motor operating under load
US10264704B2 (en) Brushless DC motor, and identification method and identification apparatus of identifying type of brushless DC motor
TW201314438A (en) System and method for testing fans
WO2019189165A1 (en) Identification method and identification device for identifying type of brushless dc motor
WO2019189166A1 (en) Identification method and identification device for identifying type of brushless dc motor
WO2019189167A1 (en) Identification method and identification device for identifying type of brushless dc motor
WO2019189164A1 (en) Identification method and identification device for identifying type of brushless dc motor, and brushless dc motor
US10440858B2 (en) Brushless DC motor, and identification method and identification apparatus of identifying type of brushless DC motor
WO2019181471A1 (en) Identification method for identifying types of brushless dc motors, identification device, and brushless dc motor
WO2019181470A1 (en) Identification method for identifying types of brushless dc motors, identification device, and brushless dc motor
WO2019181472A1 (en) Identification method for identifying types of brushless dc motors and identification device
US11283377B2 (en) Identification method and identification device for identifying type of brushless DC motor, and brushless DC motor
US11271498B2 (en) Brushless DC motor having drive circuit generating superimposed signal
US10609838B2 (en) Motor driving control device, motor driving system, and non-transitory computer readable medium for motor driving control device
US11171593B2 (en) Identification method to identify type of brushless DC motor, identifier, and brushless DC motor
JP6922569B2 (en) Identification method and identification device for identifying the types of brushless DC motors and brushless DC motors
US9871477B2 (en) Motor speed control circuit and control method thereof
WO2019107156A1 (en) Identification method for identifying type of brushless dc motor, identification device, and brushless dc motor
US7558035B2 (en) Anomaly control device for a dual fan of computer
TW201703621A (en) Ventilation system and control unit thereof comprising a motor having a driving axle, a fan that is pivotally connected to the driving axle and driven by the motor, and a control unit
JP2015159692A (en) air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776897

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19776897

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP