WO2019188888A1 - Electricity storage system, sensor module, and control method for electricity storage system - Google Patents

Electricity storage system, sensor module, and control method for electricity storage system Download PDF

Info

Publication number
WO2019188888A1
WO2019188888A1 PCT/JP2019/012332 JP2019012332W WO2019188888A1 WO 2019188888 A1 WO2019188888 A1 WO 2019188888A1 JP 2019012332 W JP2019012332 W JP 2019012332W WO 2019188888 A1 WO2019188888 A1 WO 2019188888A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor module
mode
measurement
storage battery
active
Prior art date
Application number
PCT/JP2019/012332
Other languages
French (fr)
Japanese (ja)
Inventor
崇弘 望月
凌 古川
Original Assignee
古河電気工業株式会社
古河電池株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社, 古河電池株式会社 filed Critical 古河電気工業株式会社
Priority to CN201980022868.2A priority Critical patent/CN112042044A/en
Priority to JP2020510023A priority patent/JP7189937B2/en
Publication of WO2019188888A1 publication Critical patent/WO2019188888A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/569Constructional details of current conducting connections for detecting conditions inside cells or batteries, e.g. details of voltage sensing terminals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power storage system, a sensor module, and a control method for the power storage system, for example, a power storage system including a sensor module that measures the state of a lead storage battery and the sensor module.
  • Patent Document 1 includes a sensor module of a slave unit that measures the state of each storage battery cell, and a sensor module of a master unit that relays communication between the sensor module of each slave unit and a higher-level device.
  • a power storage system is disclosed.
  • each sensor module includes, for example, an MCU (micro control unit) in addition to sensors such as a voltage sensor that measures the voltage of the storage battery cell and a temperature sensor that measures the surface temperature of the storage battery cell. And a semiconductor integrated circuit device such as a wireless IC (Integrated Circuit).
  • MCU micro control unit
  • sensors such as a voltage sensor that measures the voltage of the storage battery cell and a temperature sensor that measures the surface temperature of the storage battery cell.
  • a semiconductor integrated circuit device such as a wireless IC (Integrated Circuit).
  • each sensor module of the slave unit is provided corresponding to each storage battery cell, and is operated by power feeding from the corresponding storage battery cell. That is, each sensor module operates by consuming the storage battery capacity of the corresponding storage battery cell.
  • the variation in power consumption between sensor modules causes variation in characteristics between storage battery cells that supply power to the sensor modules. For example, variation in power consumption between sensor modules contributes to variation in remaining capacity (charged state, SOC: State Of Charge) between storage battery cells.
  • this SOC variation can be eliminated by the equal charge periodically performed in the power storage system, but the equal charge is performed only at a specific time determined in the operation of the system. If the SOC varies in the meantime, the above-mentioned storage battery cell will be deteriorated.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide characteristics between a plurality of storage battery cells in a power storage system including a plurality of sensor modules that respectively measure the states of the plurality of storage battery cells. It is to suppress the variation of the.
  • a power storage system is provided corresponding to each of a plurality of storage battery cells and each of the plurality of storage battery cells, and operates by supplying power from the corresponding storage battery cell.
  • a sensor module for measuring the state of the storage battery cell, and a monitor for transmitting a measurement request for instructing execution of measurement of the state of the storage battery cell and a data request for instructing transmission of a measurement result to each of the sensor modules.
  • the sensor module has, as operation modes, a sleep mode in which some functions are restricted and an active mode in which some functions are released, and the active operation is performed during a specified period. Mode, and the sleep mode is entered in other periods.
  • the power storage system of the present invention it is possible to suppress variations in characteristics among a plurality of storage battery cells.
  • FIG. 2 is a diagram illustrating a configuration of a sensor module in the power storage system according to Embodiment 1.
  • FIG. 4 is a timing chart showing the timing of communication between the monitoring device and each sensor module in the power storage system according to Embodiment 1. It is a figure which shows the outline
  • FIG. 4 is a timing chart showing switching timing of operation modes of each sensor module in the power storage system according to Embodiment 1.
  • 6 is a diagram illustrating a configuration of a power storage system according to Embodiment 2.
  • 6 is a timing chart showing switching timing of operation modes of sensor modules for each group in the power storage system according to the second embodiment.
  • 6 is a timing chart when packet re-transmission processing is not performed in each sensor module in the power storage system according to the second embodiment.
  • 9 is a timing chart when a packet retransmission process is performed in each sensor module in the power storage system according to the second embodiment.
  • 6 is a diagram showing a configuration of a sensor module in an electricity storage system according to Embodiment 3.
  • FIG. 10 is a diagram for explaining an operation mode of a sensor module in the power storage system according to Embodiment 3.
  • FIG. 12 is a timing chart showing timings for switching operation modes of the sensor modules in the power storage system according to Embodiment 3.
  • FIG. 10 is a diagram showing a configuration of a sensor module in a power storage system according to Embodiment 4.
  • FIG. 10 is a diagram for explaining a method for adjusting a period during which a sensor module is in an active mode in the power storage system according to the fourth embodiment.
  • a power storage system (100, 100A to 100C) according to a typical embodiment of the present invention corresponds to a plurality of storage battery cells (5, 5_1 to 5_n, 5_1 to 5_k) and the plurality of storage battery cells.
  • the sensor module (4, 4B, 4C) that operates by supplying power from the corresponding storage battery cell and measures the state of the corresponding storage battery cell, and for each of the sensor modules, And a monitoring device (2) for transmitting a measurement request for instructing execution of measurement of the state of the storage battery cell and a data request for instructing transmission of the measurement result.
  • the sensor module has a part of functions as an operation mode.
  • a restricted sleep mode and an active mode in which the restriction of some of the functions is released, and the active mode is entered during a specified period. Wherein said that the sleep mode period other than.
  • the sensor modules are classified into a plurality of groups (6_1 to 6_j), and a common period for entering the active mode is designated for each of the classified groups. Good.
  • the sensor module receives a measurement request for instructing measurement of the state of the storage battery cell from the monitoring device (tk1) and a processing time required for measurement according to the measurement request ( The scheduled time for receiving from the monitoring device a data request for instructing transmission of measurement data including a measurement result of measurement corresponding to the measurement request while operating in the active mode in the first active period (Ta1) including Tk1). (T2) and a second active period (Ta2) including a processing time (Tk2) required for transmitting the measurement data in response to the data request, the first active period and the second active period are operated in the active mode. You may operate
  • the first active periods of the sensor modules are set to be equal to each other, and the second active periods of the sensor modules are set to be equal to each other. May be.
  • the monitoring device outputs a synchronization signal (Vs), and the sensor modules (4B, 4B_1 to 4B_n) switch the operation mode based on the synchronization signal. You may keep time.
  • the measurement request includes the synchronization signal, and the monitoring device transmits the measurement request to the sensor modules (4B) all at once.
  • the operation mode includes an operation mode including the active mode and the sleep mode, and an initial activation mode in which the restriction on some of the functions is released, and the sensor module is activated in the initial activation mode,
  • timing for switching the operation mode may be started, and the operation mode may be switched from the initial activation mode to the operation mode.
  • the monitoring device calculates a correction time (Tc) based on the state of charge of the storage battery cell, and transmits the correction time (Tc) to the sensor module. Based on this, the preset period of the active mode may be changed.
  • a power storage system (100, 100A to 100C) according to another typical embodiment of the present invention is provided corresponding to each of the plurality of storage battery cells (5) and the plurality of storage battery cells.
  • the sensor module (4, 4B, 4C) for measuring the state of the storage battery cell, and the transmission of the measurement request and the measurement result for instructing the execution of measurement of the state of the storage battery cell to each of the sensor modules
  • a monitoring device (2) for transmitting a data request to be transmitted, wherein the monitoring device transmits the measurement request to the sensor modules all at once.
  • the sensor module (4, 4B, 4C) for measuring the state of the storage battery cell (5) includes a sleep mode in which some functions are limited, And an active mode in which restrictions on the functions of the units are released.
  • the active mode is set during a designated period, and the sleep mode is set during other periods.
  • a sensor unit (40) for detecting the state of the storage battery a communication device (41) for communicating with the external device (3, 2), and a data processing device ( 42), and the data processing device switches the operation mode based on the time measured by the timer (423) and the time measured by the timer, and controls the communication device and the sensor unit.
  • the calculation control unit stops the communication device and part of the function of the data processing device in the sleep mode, and stops the measurement time of the timer during the sleep mode.
  • the active mode may be switched to the sleep mode.
  • the timer may measure time in synchronization with a synchronization signal (Vs) input from the outside of the sensor module.
  • the operation mode includes an operation mode including the active mode and the sleep mode, and an initial activation mode in which the restriction on some of the functions is released, and the calculation The controller sets the operation mode to the initial activation mode after activation of the sensor module, and activates the operation mode when the measurement request instructing measurement of the state of the storage battery cell is received in the initial activation mode. While switching from the mode to the operation mode, timing for switching the operation mode may be started.
  • the second determination reference time of the timer is based on a correction time (Tc) calculated based on a state of charge of the storage battery cell to be measured by the sensor module. It may be changeable.
  • a method is provided corresponding to each of the plurality of storage battery cells and each of the plurality of storage battery cells, and operates by supplying power from the corresponding storage battery cell,
  • a sensor module for measuring the state of the corresponding storage battery cell, and a measurement request for instructing execution of measurement of the state of the storage battery cell and a data request for instructing transmission of the measurement result are transmitted to each of the sensor modules.
  • It is a control method of an electrical storage system provided with the monitoring apparatus to perform.
  • the sensor module has, as operation modes, a sleep mode in which some functions are restricted and an active mode in which restrictions on the some functions are released.
  • the power storage system control method includes a first step in which the sensor module enters the active mode during a designated period, and a second step in which the sensor module enters the sleep mode during a period other than the designated period. It is characterized by including.
  • the sensor modules may be classified into a plurality of groups, and a common period in which the active mode is to be set may be designated for each of the classified groups.
  • the first step corresponds to a scheduled time when the sensor module receives a measurement request instructing measurement of the state of the storage battery cell from the monitoring device and the measurement request.
  • a fourth step of operating in the active mode during a second active period including a scheduled time for receiving the monitoring data from the monitoring device and a processing time required for transmitting the measurement data in response to the data request. Operates in the sleep mode during a period other than the first active period and the second active period. It may include a fifth step.
  • the first active periods of the sensor modules are set to be equal to each other, and the second active periods of the sensor modules are equal to each other. It may be set.
  • a sixth step in which the monitoring device outputs a synchronization signal, and a step in which the sensor module performs timing for switching the operation mode based on the synchronization signal. 7 steps may be included.
  • the measurement request includes the synchronization signal
  • the sensor module has an operation mode including the active mode and the sleep mode as the operation mode, and the partial function.
  • An initial activation mode in which the restriction is released, and the monitoring device transmits the measurement request to the respective sensor modules all at once, and the sensor module is activated in the initial activation mode.
  • the sensor module receives a signal instructing execution of the measurement in the initial startup mode, starts measuring time for switching the operation mode, and sets the operation mode to the initial mode.
  • a ninth step of switching from the start mode to the operation mode may be further included.
  • a tenth step in which the monitoring device calculates a correction time based on a charge state of the storage battery cell and transmits the correction time to the sensor module; and the sensor module includes the correction time. And an eleventh step of changing a preset period of the active mode.
  • Another method includes a plurality of storage battery cells and a sensor module that is provided corresponding to each of the plurality of storage battery cells and measures a state of the corresponding storage battery cell. And a monitoring device that transmits a measurement request for instructing execution of measurement of the state of the storage battery cell and a data request for instructing transmission of a measurement result to each of the sensor modules. It is.
  • the power storage system control method includes a step in which the monitoring device transmits the measurement request to the sensor modules all at once.
  • Embodiment 1 1 is a diagram illustrating a configuration of a power storage system according to Embodiment 1.
  • FIG. The power storage system 100 shown in the figure is a power storage system including, for example, a cycle-use lead storage battery.
  • the power storage system 100 supplies power to a load from a commercial power supply during normal operation, and supplies power to the load from a lead storage battery for power backup when a power failure occurs.
  • the power storage system 100 includes a host device (EMS: Energy Management System) 1 that performs overall control of the power storage system 100, and a power storage subsystem 101.
  • EMS Energy Management System
  • the power storage subsystem 101 includes a plurality of storage battery cells 5_1 to 5_n (n is an integer of 2 or more), a sensor module 3 as a parent device, sensor modules 4_1 to 4_n as child devices, and a monitoring device 2. Yes.
  • the storage battery cells 5_1 to 5_n are, for example, lead storage battery cells configured to be able to charge and discharge electric power.
  • the storage battery cells 5_1 to 5_n are connected to each other in series to form an assembled battery, for example.
  • the sensor modules 4_1 to 4_n are devices that operate as slave units. That is, the sensor modules 4_1 to 4_n are devices that are provided corresponding to the plurality of storage battery cells 5_1 to 5_n and measure the states of the corresponding storage battery cells 5_1 to 5_n.
  • the sensor modules 4_1 to 4_n are electrically connected to the storage battery cells 5_1 to 5_n to be measured through power supply lines and measurement lines, and operate by being supplied with power from the storage battery cells 5_1 to 5_n to be measured.
  • the sensor modules 4_1 to 4_n have, as operation modes, a sleep mode in which some functions are restricted and an active mode in which the restrictions on some of the functions are released, and enters the active mode during a specified period.
  • the sleep mode is entered during other periods.
  • the part of the functions includes, for example, a communication function in which the sensor modules 4_1 to 4_n transmit / receive data to / from the monitoring device 2 (sensor module 3).
  • the partial function may include a measurement function in which the sensor modules 4_1 to 4_n measure the state of the storage battery cells 5_1 to 5_n to be measured.
  • the sensor modules 4_1 to 4_n operate in the power saving state with the communication function and the measurement function being stopped in the sleep mode, and in the active mode, the restriction of the communication function and the measurement function is released to the normal operation state, and the monitoring device 2 and the state of the storage battery cells 5_1 to 5_n are measured.
  • sensor modules 4_1 to 4_n are not distinguished from each other, they may be simply expressed as “storage battery cell 5”. Details of the sensor module 4 will be described later.
  • Sensor module 3 is a device that operates as a base unit. That is, the sensor module 3 is a device that relays communication between each of the sensor modules 4_1 to 4_n as slave units and the monitoring device 2. For example, the sensor module 3 performs wireless communication with each of the sensor modules 4_1 to 4_n and performs wired communication (for example, serial communication) with the monitoring device 2.
  • the monitoring device (BMU: Battery Management Unit) 2 is a device that monitors and diagnoses the state of each of the storage battery cells 5_1 to 5_n.
  • the monitoring device 2 communicates with the sensor modules 4_1 to 4_n serving as slave units via the sensor module 3 serving as the master unit, whereby the state of each storage battery cell 5_1 to 5_n measured by the sensor modules 4_1 to 4_n is determined.
  • Acquire measurement data including measurement results.
  • the monitoring device 2 diagnoses the state of each of the storage battery cells 5_1 to 5_n based on the acquired measurement data, and transmits a diagnosis result or the like to the host device 1 as necessary.
  • the monitoring device 2 instructs each sensor module 4_1 to 4_n to measure the state of the storage battery cells 5_1 to 5_n to be measured in order to monitor and diagnose the state of each of the storage battery cells 5_1 to 5_n.
  • a measurement request to be transmitted and a data request for instructing transmission of measurement data including the measurement results of the states of the storage battery cells 5_1 to 5_n are transmitted via the sensor module 3.
  • the sensor module 4 measures the state of the storage battery cell 5 to be measured in response to a measurement request from the monitoring device 2 and measures the state of the storage battery cell 5 to be measured in response to a data request from the monitoring device 2. Measurement data including the result is transmitted to the monitoring device 2.
  • the monitoring device 2 transmits monitoring information and diagnostic information regarding the state of each of the storage battery cells 5_1 to 5_n to the host device (EMS) 1 by wired communication (by Ethernet or the like). Based on the monitoring information and the diagnostic information transmitted from the monitoring device 2, the host device 1 executes control including execution and stop of charging / discharging of the assembled battery including the storage battery cells 5_1 to 5_n.
  • FIG. 2 is a diagram illustrating a configuration of the sensor module 4 in the power storage system 100 according to the first embodiment.
  • the sensor modules 4_1 to 4_n have the same configuration, and the sensor module 3 also has the same configuration as the sensor modules 4_1 to 4_n.
  • the sensor module 4 includes a sensor unit 40, a communication device 41, and a data processing device 42.
  • the sensor module 4 includes various peripheral circuits such as a power supply circuit in addition to the above-described functional units, but illustration thereof is omitted here.
  • the sensor unit 40 is a functional unit for measuring the state of the storage battery cell 5 to be monitored.
  • the sensor unit 40 includes, for example, a voltage sensor 401 and a temperature sensor 402.
  • the voltage sensor 401 is a device that measures the voltage (output voltage) of the storage battery cell 5.
  • the temperature sensor 402 is a device that measures the temperature of the storage battery cell 5 (for example, the surface temperature of the storage battery cell 5).
  • the communication device 41 is a functional unit for communicating with the sensor module 3 as a parent device.
  • the communication device 41 includes, for example, an antenna and a semiconductor integrated circuit device (wireless IC) for performing wireless communication with the sensor module 3 via the antenna.
  • wireless IC semiconductor integrated circuit device
  • the communication device 41 (wireless IC) is controlled to execute and stop by the control from the data processing device 42.
  • the data processing device 42 is a device that performs overall control of the sensor module 4 and executes various data processing.
  • the data processing device 42 is, for example, a program processing device (semiconductor integrated circuit device) such as an MCU (Micro Control Unit).
  • the data processing device 42 includes an arithmetic control unit 421 and a timer 423 as functional blocks. These functional units are realized by, for example, a CPU core included in the MCU as the data processing device 42 executing arithmetic processing according to a program stored in a storage device inside the MCU and controlling various peripheral circuits inside the MCU. Is done.
  • the timer 423 is a functional unit that measures time. Specifically, the timer 423 includes a counter 424, a storage unit 425, and a determination unit 426.
  • the counter 424 is a functional unit that measures time by counting clock signals having a predetermined frequency.
  • the storage unit 425 stores time information serving as a reference for switching between operation modes (sleep mode and active mode).
  • the storage unit 425 is, for example, a register (compare register).
  • active mode start time information on the first determination reference time for switching the sensor module 4 from the sleep mode to the active mode
  • determination reference time information serving as the determination reference for the operation mode switching.
  • active mode end time information information on the second determination reference time for switching the sensor module from the active mode to the sleep mode
  • the determination unit 426 compares the measurement time based on the count value of the counter 424 with the determination reference time based on the active mode start time information 4250 and the active mode end time information 4251 stored in the storage unit 425 to determine the measurement time. When the time coincides with the reference time, a determination signal Vd indicating the determination result is output.
  • the determination unit 426 changes the determination signal Vd from the first logic level (eg, low level) to the second logic level. Switch to a level (eg high level).
  • the determination unit 426 changes the determination signal Vd from the second logic level (for example, high level) to the first logic level (for example, low level). ).
  • the arithmetic control unit 421 is a functional unit that switches the operation mode based on the measurement time by the timer 423 and controls the communication device 41 and the sensor unit 40 to realize the main function as the sensor module 4.
  • the arithmetic control unit 421 switches the operation mode of the sensor module 4 from the sleep mode to the active mode, In the mode, when the measurement time of the timer 423 coincides with the second determination reference time based on the active mode end time information 4251, the operation mode of the sensor module 4 is switched from the active mode to the sleep mode.
  • the arithmetic control unit 421 includes an operation mode register 4220 that stores a value indicating an operation mode.
  • the arithmetic control unit 421 updates the set value of the operation mode register 4220 according to the switching of the logic level of the determination signal Vd output from the determination unit 426 of the timer 423, and according to the set value of the operation mode register 4220. Control of the communication apparatus 41, the sensor part 40, etc. is performed.
  • the arithmetic control unit 421 sets a value indicating the active mode in the operation mode register 4220 when the determination signal Vd is switched from the first logic level (low level) to the second logic level (high level).
  • a value indicating the sleep mode is set in the operation mode register 4220.
  • the arithmetic control unit 421 stops a part of the data processing device 42 and stops the communication device 41, and in the active mode, restores the function of the stopped data processing device 42 and causes the communication device 41 to to start.
  • the arithmetic control unit 421 stops the communication function of the communication device 41 when the set value of the operation mode register 4220 is switched from the active mode to the sleep mode.
  • the arithmetic control unit 421 controls an external device (the sensor module 3 and the monitoring device 2) of the communication device 41 by controlling a power supply circuit (not shown) and stopping the power supply to the communication device 41 (wireless IC). Stop the communication function.
  • the wireless IC that is a component of the communication device 41 has the normal operation mode and the power saving mode
  • the arithmetic control unit 421 shifts the wireless IC from the normal operation mode to the power saving mode.
  • the function of communicating with the external devices (the sensor module 3 and the monitoring device 2) of the communication device 41 is stopped.
  • the arithmetic control unit 421 may stop not only the communication device 41 but also the sensor unit 40.
  • the arithmetic control unit 421 stops some functions of the data processing device 42 and shifts to the power saving state. For example, when the MCU as the data processing device 42 has the normal operation mode and the power saving mode, the arithmetic control unit 421 shifts the data processing device 42 from the normal operation mode to the power saving mode. At this time, for example, the timer 423 performs a normal operation, and the arithmetic control unit 421 stops a part of the operation.
  • the arithmetic control unit 421 shifts the data processing device 42 from the power saving mode to the normal operation mode and stops the data processing device. 42 function is restored.
  • the arithmetic control unit 421 restores other functional units (for example, the communication device 41 and the sensor unit 40) of the sensor module 4 that have been stopped in the sleep mode.
  • the arithmetic control unit 421 controls the power supply circuit (not shown) and restarts the power supply to the communication device 41 (wireless IC), whereby the external device (the sensor module 3 and the monitoring device 2) of the communication device 41 is connected. Restore the communication function.
  • the arithmetic control unit 421 instructs the wireless IC to shift from the power saving mode to the normal operation mode, and the communication device The function of communicating with 41 external devices (the sensor module 3 and the monitoring device 2) is restored.
  • the sensor unit 40 When the sensor unit 40 is also stopped in the sleep mode, the sensor unit 40 is returned in the active mode in the same manner as the communication device 41.
  • FIG. 3 is a timing chart showing the timing of communication between the monitoring device 2 and each of the sensor modules 4_1 to 4_n in the power storage system 100 according to the first embodiment. In the figure, it is assumed that the sensor modules 4_1 to 4_n are always in the active mode.
  • the monitoring device 2 acquires measurement data of the states of the storage battery cells 5_1 to 5_n, for example, periodically in order to monitor and diagnose the state of the storage battery cells 5_1 to 5_n.
  • the monitoring device 2 transmits measurement requests to the plurality of sensor modules 4 all at once. For example, as shown in FIG. 3, the monitoring device 2 transmits a measurement request to each of the sensor modules 4_1 to 4_n by broadcasting. Each of the sensor modules 4_1 to 4_n that has received the measurement request executes a measurement process for measuring the state (voltage and temperature) of the storage battery cells 5_1 to 5_n to be measured.
  • the state of each of the storage battery cells 5_1 to 5_n can be measured simultaneously, so that the SOC of the assembled battery composed of the storage battery cells 5_1 to 5_n can be calculated with high accuracy. Further, according to this, it is not necessary to change the configuration of each of the sensor modules 4_1 to 4_n in order to synchronize the measurement start timing among the sensor modules 4_1 to 4_n.
  • the monitoring device 2 requests the sensor modules 4_1 to 4_n to transmit measurement data after the measurement processing according to the measurement requests by the sensor modules 4_1 to 4_n is completed. For example, as shown in FIG. 3, the monitoring device 2 sequentially transmits data requests to the sensor modules 4_1 to 4_n by unicast.
  • Each of the sensor modules 4_1 to 4_n that has received the data request passes measurement data including the measurement results of the state (voltage and temperature) of the storage battery cells 5_1 to 5_n measured according to the previous measurement request via the sensor module 3.
  • To the monitoring device 2 data response).
  • each of the sensor modules 4_1 to 4_n sequentially transmits measurement data to the monitoring device 2 from the sensor modules 4_1 to 4_n that have received the data request.
  • the period from when the monitoring device 2 transmits a measurement request until the monitoring device 2 receives measurement data from each of the sensor modules 4_1 to 4_n is one assembled battery measurement period.
  • FIG. 4 is a diagram showing an outline of switching of operation modes of the sensor module 4 according to the first embodiment. In the figure, the switching timing of the operation mode of one sensor module 4 is representatively shown.
  • the sensor module 4 operates in the active mode during a specific period, and operates in the sleep mode during other periods.
  • the sensor module 4 includes a scheduled time tk1 for receiving a measurement request from the monitoring device 2 and a processing time Tk1 necessary for executing a measurement according to the measurement request. It operates in the active mode during a period (hereinafter also referred to as “first active period Ta1”).
  • the sensor module 4 includes a scheduled time tk2 for receiving a data request from the monitoring device 2 and a processing time Tk2 necessary for transmitting measurement data in response to the data request ( Hereinafter, it is also referred to as “second active period Ta2”.
  • the sensor modules 4_1 to 4_n operate in the sleep mode.
  • the storage unit 425 of the timer 423 stores the start time ts1 of the first active period Ta1 and the start time ts2 of the second active period Ta2, and the active mode start time information. 4250 and the end time te1 of the first active period Ta1 and the end time te2 of the second active period Ta2 are stored as active mode end time information 4251.
  • start times ts1, ts2 and end times te1, te2 are when the time when the measurement request or the data request is scheduled to be received is shifted, when the processing time related to measurement or data transmission varies, or when data transmission / reception fails It is preferable to set in consideration of the time required for retransmission.
  • FIG. 5 is a timing chart showing switching timings of the operation modes of the sensor modules 4_1 to 4_n in the power storage system according to the first embodiment.
  • appropriate active mode start time information 4250 and active mode end time information 4251 are set in the timer 423 for each of the sensor modules 4_1 to 4_n.
  • the values of the common start time ts1 and end time te1 of the first active period Ta1 are set in the active mode start time information 4250 and the active mode end time information 4251 of the timers 423 of the sensor modules 4_1 to 4_n, respectively.
  • the values of the appropriate start time ts2 and end time te2 of the second active period Ta2 are set in the storage unit 425 of the timer 423 of the sensor modules 4_1 to 4_n, respectively.
  • the values of the start time ts2_1 and the end time te2_1 of the second active period Ta2_1 are set in the active mode start time information 4250 and the active mode end time information 4251 of the timer 423 of the sensor module 4_1.
  • values of the start time ts2_2 and the end time te2_2 of the second active period Ta2_2 are set in the active mode start time information 4250 and the active mode end time information 4251 of the timer 423 of the sensor module 4_2.
  • values of the start time ts2_n and the end time te2_n of the second active period Ta2_n are set.
  • each of the sensor modules 4_1 to 4_n can operate by switching between the active mode and the sleep mode at an appropriate timing.
  • the active mode start time information 4250 and the active mode end time information 4251 of each of the sensor modules 4_1 to 4_n are preferably set so that the periods of operation of the sensor modules 4_1 to 4_n in the active mode are equal. That is, the first active periods Ta1 of the sensor modules 4_1 to 4_n are equal to each other, and the second active periods Ta2_1 to Ta2_n of the sensor modules 4_1 to 4_n are equal to each other.
  • the power storage system according to Embodiment 1 is provided for each of the plurality of storage battery cells 5_1 to 5_n, operates with power supplied from the corresponding storage battery cells 5_1 to 5_n, and corresponds to the storage battery cells 5_1 to 5_n.
  • Each of the plurality of sensor modules 4_1 to 4_n that measure the state of each has a sleep mode in which some functions are restricted and an active mode in which some functions are released and is active during a specified period Mode, and sleep mode is entered during other periods.
  • each sensor module since the power consumption of each sensor module can be reduced in the power storage system provided with the sensor module, the influence on the SOC of each storage battery cell due to the power supply from each storage battery cell to each sensor module is reduced. Can do. Thereby, it becomes possible to suppress the characteristic between storage battery cells, ie, variation in SOC.
  • the sensor modules 4_1 to 4_n each include a first active period including a scheduled time for receiving a measurement request from the monitoring device 2 and a processing time required for measurement according to the measurement request, and data from the monitoring device 2. It operates in the active mode in the second active period including the scheduled time for receiving the request and the processing time required to transmit the measurement data in response to the data request, and the sleep mode in the period other than the first active period and the second active mode Works with.
  • first active periods of the sensor modules 4_1 to 4_n are set to be equal to each other, and the second active periods of the sensor modules 4_1 to 4_n are set to be equal to each other.
  • FIG. 6 is a diagram illustrating a configuration of the power storage system according to the second embodiment.
  • the power storage system 100A according to the second embodiment is different from the first embodiment in that a plurality of sensor modules are divided into a predetermined number of groups and a common first active period and second active period are set for each group. It differs from the electrical storage system 100 which concerns, and is the same as that of the electrical storage system 100 which concerns on Embodiment 1 in another point.
  • the sensor modules 4 are classified into a plurality of groups, and a common period in which the active mode is to be set is designated for each classified group.
  • the plurality of storage battery cells 5_1 to 5_n in the power storage system 100A are connected to each other in series to form an assembled battery, and the plurality of storage battery cells 5_1 to 5_n and a plurality of sensor modules 4_1 to 4_n provided correspondingly.
  • j is an integer of 2 or more
  • the groups 6_1 to 6_j include, for example, k (k is an integer of 1 or more) sensor modules 4_1 to 4_k, respectively. Note that if the groups 6_1 to 6_j are not distinguished from each other, they may be simply referred to as “group 6”.
  • FIG. 7 is a timing chart showing operation mode switching timings of the sensor modules 4_1 to 4_k for the groups 6_1 to 6_j in the power storage system according to the second embodiment.
  • the sensor modules 4_1 to 4_k belonging to the same group 6 switch from the active mode to the sleep mode and also switch from the sleep mode to the active mode at a predetermined time with the monitoring device 2. .
  • the sensor modules 4_1 to 4_k constituting the assembled battery in the power storage system 100A receive the measurement request from the monitoring device 2 at the same time regardless of the group 6. Therefore, the start time ts1 and the end time te1 of the first active period Ta1 of the sensor modules 4_1 to 4_k are set to be the same time regardless of the group 6.
  • time ts1 is set as the start time of the first active period Ta1
  • first active period Ta1 is set as the end time of.
  • the start time and end time of the second active period Ta2 of the sensor modules 4_1 to 4_k are set to be different times for the groups 6_1 to 6_j.
  • the active mode start time information 4250 and the active mode end time information 4251 of the timer 423 of the sensor modules 4_1 to 4_k of the group 6_1 include “time ts2_1” as the start time of the second active period Ta2_1. Is set, and “time te2_1” is set as the end time of the second active period Ta2_1.
  • time ts2_2 is set as information on the start time of the second active period Ta2_2.
  • time te2_2 is set as information on the end time of the two active periods Ta2_2.
  • time ts2_n is set as the start time information of the second active period Ta2_j
  • time te2_n is set as information on the end time of the second active period Ta2_j.
  • the sensor modules 4_1 to 4_k belonging to the same group 6 operate in the active mode at the same time and operate to shift to the sleep mode at the same time.
  • all the sensor modules 4_1 to 4_k belonging to the same group 6 receive the data request transmitted from the monitoring device 2 and transmit the data response to the data request. It is necessary to determine so that it can be executed reliably.
  • the length of the second active period Ta2 of one group 6 is “(all sensor modules 4_1 to 4 belonging to the same group 6”.
  • the sum of the processing times required for the data response of 4_k) + (the spare time Te for data retransmission determined by the system) ” is sufficient.
  • the spare time Te for data retransmission determined by the system is set when transmission / reception of a packet related to a data request and a packet related to a data response (packet communication between the monitoring device 2 and each sensor module 4) fails. This is the time required to retransmit the received packet.
  • the communication between the monitoring device 2 and each sensor module 4 is performed by relaying the sensor module 3 as a parent device, and the sensor module 3 and each sensor module 4 perform wireless communication. For this reason, communication between the sensor module 3 and the sensor module 4 may fail due to some influence.
  • the measurement processing and data collection processing are performed using the data retransmission function of the wireless IC mounted on the sensor modules 3 and 4.
  • Etc. retransmission processing of various types of packets is performed.
  • FIG. 8A is a timing chart when the packet resending process is not performed in each sensor module 4 in the power storage system 100A according to the second embodiment.
  • FIG. 8B is a timing chart when a packet retransmission process is performed in each sensor module 4 in power storage system 100A according to Embodiment 2.
  • FIG. 8A and 8B show timing charts at the time of data response by the sensor modules 4_1 to 4_k in one group 6.
  • FIG. 8A and 8B as described above, the total processing time required for data responses of all the sensor modules 4_1 to 4_k belonging to the same group 6 and the spare time Te for data retransmission determined by the system are considered. Assume that the second active time Ta2 is set.
  • the sensor module 4_1 performs a retransmission process of the packet.
  • the timing (time) at which the data request is transmitted from the monitoring device 2 to the next sensor module 4_2 is shifted.
  • the timings of receiving data requests and transmitting packets of the sensor modules 4_3 to 4_k after the sensor module 4_2 are shifted.
  • the packet retransmission process is performed in the sensor modules 4_2 to 4_k, the timing of each process of the sensor modules 4_2 to 4_k is further shifted.
  • the second active period Ta2 is set by setting the spare time Te in consideration of the case where the packet processing related to the data response is performed in each of the sensor modules 4_1 to 4_k. , Reception of data requests and retransmission of packets in all sensor modules 4_1 to 4_k can be completed.
  • the second active periods Ta2_1 to Ta2_j of the groups 6_1 to 6_j are preferably the same.
  • the number of sensor modules 4 belonging to each group 6_1 to 6_j is not the same, for example, the number of sensor modules 4 belonging to the jth group 6_j is set to the number of sensors belonging to the other groups 6_1 to 6_j-1. The number may be less than the number of modules 4.
  • the sensor module 4 is classified into a plurality of groups 6_1 to 6_j, and a common period in which the active mode is to be set is designated for each of the classified groups 6_1 to 6_j. .
  • FIG. 9 is a diagram illustrating a configuration of a sensor module in the power storage system according to Embodiment 3.
  • the power storage system 100B according to the third embodiment is different from the power storage system 100 according to the first embodiment in that the sensor module performs time measurement for switching the operation mode based on the synchronization signal. This is the same as the power storage system 100 according to the first embodiment.
  • the monitoring device 2B transmits a synchronization signal Vs to each of the sensor modules 4B_1 to 4B_n as slave units via the sensor module 3 as a master unit.
  • the synchronization signal Vs indicates the time axis for switching the operation mode in each of the sensor modules 4B_1 to 4B_n, and the timing (time) of packet transmission such as a measurement request or a data request to each of the sensor modules 4B_1 to 4B_n in the monitoring device 2B.
  • Each of the sensor modules 4B_1 to 4B_n performs time measurement for switching the operation mode based on the synchronization signal Vs transmitted from the monitoring device 2B.
  • the monitoring device 2B includes the packet of the synchronization signal Vs in the measurement request that is simultaneously transmitted to each of the sensor modules 4B_1 to 4B_n.
  • Each sensor module 4B_1 to 4B_n synchronizes the time of its own timer 423B with reference to the reception timing of the measurement request including the synchronization signal Vs. More specifically, each of the sensor modules 4B_1 to 4B_n sets the count value of the counter 424B of the timer 423B to a predetermined value when receiving the measurement request packet. For example, the count value of the counter 424B is reset.
  • the time axis related to the switching of the operation mode of each of the sensor modules 4B_1 to 4B_n can be synchronized with the time axis related to the packet transmission of the monitoring device 2B. Therefore, the sensor modules 4B_1 to 4B_n can perform operation mode switching and packet transmission / reception at appropriate timing.
  • the sensor modules 4B_1 to 4B_n preferably have an operation mode including the above-described active mode and sleep mode, and an initial startup mode as operation modes.
  • the initial activation mode is an operation mode in which restrictions on some functions of the sensor module 4B are removed.
  • the initial activation mode is an operation mode in which at least the restriction of the communication function of the sensor module 4B is released and communication with the monitoring device 2B is possible.
  • the initial operation mode may be the same mode as the active mode described above. In the present embodiment, as an example, it is assumed that the initial operation mode is the same mode as the active mode.
  • the sensor modules 4B_1 to 4B_n are first activated in the initial activation mode, and when receiving a signal instructing execution of measurement in the initial activation mode, that is, a measurement request, the operation mode is switched from the initial activation mode to the operation mode. Then, timing for switching the operation mode (active mode and sleep mode) in the operation mode is started.
  • FIG. 11 is a timing chart showing switching timings of the operation modes of the sensor modules 4B_1 to 4B_n in the power storage system 100B according to the third embodiment.
  • the sensor modules 4B_1 to 4B_n are activated at different timings.
  • the data processing device 42B of each of the sensor modules 4B_1 to 4B_n first sets a value designating “initial activation mode” in the operation mode register 4220.
  • the sensor modules 4B_1 to 4B_n are in a state in which the restriction of the functions of the sensor modules 4B_1 to 4B_n is released, that is, the state in which the communication with the monitoring device 2B and the measurement of the storage battery cell 5 are possible, as in the active mode. It becomes.
  • the monitoring device 2B transmits measurement requests to the sensor modules 4B_1 to 4B_n all at once, and the sensor modules 4B_1 to 4B_n receive the measurement requests at time t1.
  • the arithmetic control unit 421 resets the value of the counter 424B of the timer 423B based on the synchronization signal Vs included in the received measurement request packet and operates.
  • the setting value of the mode register 4220 is switched to “operation mode (active mode)”. Thereby, the sensor modules 4B_1 to 4B_n and the monitoring device 2B are synchronized, and the sensor modules 4B_1 to 4B_n operate in the active mode.
  • the counter 424B starts counting (clocking), and the determination unit 426 sets the count value of the counter 424B and the active mode set in the storage unit 425.
  • the logic level of the determination signal Vd is switched.
  • the arithmetic control unit 421 switches the set value of the operation mode register 4220 between the active mode and the sleep mode based on the determination signal Vd.
  • the sensor module 4B performs time measurement for switching the operation mode based on the synchronization signal Vs output from the monitoring device 2B, and thus each sensor module 4B_1 to 4B_n.
  • the time axis relating to the switching of the operation mode in can be synchronized with the time axis serving as a reference for the timing (time) of packet transmission such as measurement requests and data requests to the sensor modules 4B_1 to 4B_n in the monitoring device 2B. This makes it possible to reduce the power consumption of the sensor module 4B while reliably responding to measurement requests and data requests from the monitoring device 2B.
  • a sensor module when a sensor module is connected to a storage battery cell at the time of enforcement or maintenance of the power storage system, the sensor module is quickly turned on and starts operating. Therefore, at the time of construction of the power storage system, etc., there is a possibility that the sensor modules are started at different timings and the sensor modules are not synchronized with each other.
  • the sensor module 4B has, as operation modes, an operation mode including an active mode and a sleep mode, and an initial activation mode in which some functions are released.
  • an operation mode including an active mode and a sleep mode the timing for switching the operation mode is started and the operation mode is switched from the initial activation mode to the operation mode.
  • each sensor module 4B receives a measurement request transmitted from the monitoring device 2B.
  • the synchronization between the sensor modules 4B and the synchronization between the sensor modules 4B and the monitoring device 2B can be achieved. Thereby, it becomes possible for each sensor module 4B to reduce the power consumption of the sensor module 4B while responding more reliably to the measurement request and data request from the monitoring device 2B.
  • FIG. 12 is a diagram illustrating a configuration of a sensor module in the power storage system according to the fourth embodiment.
  • the power storage system 100C according to the fourth embodiment is different from the power storage system 100 according to the first embodiment in that the period during which the sensor module operates in the active mode can be adjusted. 1 is the same as the power storage system 100 according to 1.
  • each sensor module attached to a storage battery cell has characteristics of the storage battery cell itself even when the power consumption is suppressed by providing a period for operating the sleep mode as in Embodiments 1 to 3 described above. Due to individual differences or the like, there is a possibility that the SOC varies between the storage battery cells during system operation.
  • the period in which the sensor modules 4C_1 to 4C_n operate in the active mode is finely adjusted based on the SOC of each storage battery cell 5.
  • monitoring device 2 ⁇ / b> C calculates correction time Tc during which sensor module 4 ⁇ / b> C is in the active mode based on the state of charge for each storage battery cell 5, and transmits it to sensor module 4 ⁇ / b> C.
  • the data processing device 42C of the sensor module 4C changes the period during which the active mode is set based on the received correction time Tc.
  • FIG. 13 is a diagram for explaining a method of adjusting a period during which the sensor module 4C is in the active mode.
  • the second active period Ta2 of one sensor module 4C is shown as an example.
  • the sensor module 4 ⁇ / b> C has the second active period Ta ⁇ b> 2 based on the information stored in the storage unit 425 as standard control, similarly to the sensor module 4 according to the first embodiment. To decide.
  • the SOC shift of the storage battery cell 5 is caused by variations in characteristics of the storage battery cell 5 itself, a shift in power consumption between the sensor module 4C connected to the storage battery cell 5 and the other sensor modules 4C, or the like. Possible cause.
  • the monitoring device 2C calculates the correction time Tc of the second active period Ta2 of the sensor module 4C based on the amount of deviation between the SOC of the sensor module 4C and the SOC of the other storage battery cell 5.
  • the monitoring device 2C transmits the calculated correction time Tc to the sensor module 4C to be corrected.
  • the sensor module 4C stores the received correction time Tc as the correction time information 4252 in the storage unit 425 of the timer 423, and changes the end time of the period in which the active mode is set based on the correction time Tc.
  • the monitoring device 2C corrects the power consumption of the storage battery cell 5 by increasing the second active period Ta2 of the sensor module 4C. Tc is calculated and transmitted to the sensor module 4C.
  • the sensor module 4C Based on the received correction time Tc, the sensor module 4C, for example, sets the time (te2 + Tc) obtained by adding the correction time Tc to the preset end time te2 of the second active period Ta2, and the end time of the second active period Ta2. And That is, the determination unit 426 of the timer 423C switches the logic level of the determination signal Vd when the count value of the counter 424 reaches (te2 + Tc). Thereby, as shown in FIG. 13B, the second active period Ta2 of the sensor module 4C is longer than the initial period by the correction time Tc.
  • the monitoring device 2C corrects the power consumption of the storage battery cell 5 by shortening the second active period Ta2 of the sensor module 4C. Tc is calculated and transmitted to the sensor module 4C.
  • the sensor module 4C Based on the received correction time Tc, the sensor module 4C, for example, sets a time (te2-Tc) obtained by subtracting the correction time Tc from the preset end time te2 of the second active period Ta2 as a new second active period.
  • the end time of Ta2 That is, the determination unit 426 of the timer 423C switches the logic level of the determination signal Vd when the count value of the counter 424 reaches (te2-Tc).
  • the second active period Ta2 of the sensor module 4C is shorter than the initial period by the correction time Tc.
  • the monitoring device 2C corrects the period in which the sensor module 4 that measures the state of the storage battery cell 5 is in the active mode based on the charge state of the storage battery cell 5.
  • the time Tc is calculated and transmitted to the sensor module 4, and the sensor module 4 changes the period during which the active mode is set based on the received correction time Tc.
  • the active period of the sensor module 4C receiving power supply from the storage battery cell 5 can be made different from the active periods of the other sensor modules 4C. Thereby, since it can adjust so that the power consumption between the storage battery cells 5 may become equal, it becomes possible to further reduce the shift
  • the case where the second active period Ta2 is adjusted is illustrated as an example of the method for adjusting the period in which the sensor module 4C operates in the active mode. Can be adjusted.
  • the monitoring apparatus 2C calculated correction
  • the data processing device 42 of each sensor module 4 may calculate the correction time Tc.
  • the monitoring device 2 ⁇ / b> C transmits information on the SOC of each storage battery cell 5 to each sensor module 4.
  • the monitoring device 2C may include the SOC information of each storage battery cell 5 in the data request packet, or each packet including the SOC information of each storage battery cell 5 at a timing different from the data request. It may be transmitted to the sensor module 4.
  • the function which synchronizes each sensor module 4 and the monitoring apparatus 2, and the function which adjusts the period which becomes active mode of each sensor module 4 are the electrical storage system 100 which concerns on Embodiment 1.
  • FIG. 1 the present invention is not limited to this, and the functions described above may also be applied to the other second to fourth embodiments described above.
  • control technology of the sensor module 4 according to the present invention can be similarly applied to a storage battery system in which a plurality of storage battery strings (strings) including storage battery cells 5_1 to 5_n are connected in parallel.
  • the control technology of the sensor module 4 according to the present invention may be applied for each string.
  • the sensor modules 4_1 to 4_n may be divided into a plurality of groups 6_1 to 6_j in one string, and the sensor modules 4 may be controlled for each group as in the second embodiment.
  • SYMBOLS 1 High-order apparatus (EMS), 2, 2B, 2C ... Monitoring apparatus, 3 ... Sensor module (parent machine), 4, 4B, 4C, 4_1-4_n, 4_k, 4B_1-4B_n, 4C_1-4C_n ... Sensor module, 5 , 5_1 to 5_n, 5_k ... storage cell, 6, 6_1 to 6_j ... group, 40 ... sensor unit, 41 ... communication device, 42, 42B, 42C ... data processing device, 100 ... power storage system, 100A ... power storage system, 100B ... Power storage system, 100C ... Power storage system, 101 ... Power storage subsystem, 401 ... Voltage sensor, 402 ... Temperature sensor, 421 ...
  • Operation control unit 423, 423B, 423C ... Timer, 424 ... Counter, 425 ... Storage unit, 426 ... Determination , 4220 ... operation mode register, 4250 ... active mode start time information, 4251 ... Active mode end time information, 4252 ... correction time information, Vs ... synchronization signal.

Abstract

The present invention suppresses, in an electricity storage system provided with a plurality of sensor modules respectively for measuring the states of a plurality of storage battery cells, variations in characteristic between the storage battery cells. An electricity storage system (100) is characterized by being provided with: a plurality of storage battery cells (5); a sensor module (4) which is provided to correspond to each of the plurality storage of battery cells, operates by power supply from the storage battery cell corresponding thereto, and measures the state of the storage battery cell corresponding thereto; and a monitoring device (2) which transmits, to each of the sensor modules, a measurement request indicating execution of measurement of the state of the storage battery cell and a data request indicating transmission of a measurement result, the sensor module having, as an operation mode, a sleep mode in which part of the function thereof is restricted, and an active mode in which the restriction of part of the function thereof is cancelled, and being brought into the active mode for a designated period, and brought into the sleep mode for periods other than the designated period.

Description

蓄電システム、センサモジュール、および蓄電システムの制御方法Electric storage system, sensor module, and electric storage system control method
 本発明は、蓄電システム、センサモジュール、および蓄電システムの制御方法に関し、例えば鉛蓄電池の状態を測定するセンサモジュールを備えた蓄電システムおよび当該センサモジュールに関する。 The present invention relates to a power storage system, a sensor module, and a control method for the power storage system, for example, a power storage system including a sensor module that measures the state of a lead storage battery and the sensor module.
 近年、蓄電池の大容量化の要求により、鉛蓄電池等の単一の蓄電池セル(単電池)または複数の蓄電池セルを直列に接続した蓄電池列を複数並列に接続した多並列蓄電池モジュールを備えた大規模な蓄電システムが普及しつつある。 In recent years, due to demands for large capacity storage batteries, a large storage battery module with a plurality of parallel storage battery modules connected in parallel to a single storage battery cell (single battery) such as a lead storage battery or a plurality of storage battery cells connected in series Large scale power storage systems are spreading.
 このような蓄電システムでは、センサを用いて蓄電池の状態を監視している。例えば、特許文献1には、個々の蓄電池セルの状態を測定する子機のセンサモジュールと、各子機のセンサモジュールと上位側の装置との通信を中継する親機のセンサモジュールとを備えた蓄電システムが開示されている。 In such a power storage system, the state of the storage battery is monitored using a sensor. For example, Patent Document 1 includes a sensor module of a slave unit that measures the state of each storage battery cell, and a sensor module of a master unit that relays communication between the sensor module of each slave unit and a higher-level device. A power storage system is disclosed.
特許第5403191号公報Japanese Patent No. 5403191
 上述した従来の蓄電システムにおいて、各センサモジュールは、例えば、蓄電池セルの電圧を測定する電圧センサや蓄電池セルの表面の温度を測定する温度センサ等の各センサに加えて、MCU(マイクロコントロールユニット)や無線IC(Integrated Circuit)等の半導体集積回路装置をそれぞれ備えている。 In the conventional power storage system described above, each sensor module includes, for example, an MCU (micro control unit) in addition to sensors such as a voltage sensor that measures the voltage of the storage battery cell and a temperature sensor that measures the surface temperature of the storage battery cell. And a semiconductor integrated circuit device such as a wireless IC (Integrated Circuit).
 また、子機の各センサモジュールは、蓄電池セル毎に対応して設けられ、対応する蓄電池セルからの給電によって動作している。すなわち、各センサモジュールは、対応する蓄電池セルの蓄電池容量を消費して動作している。 Further, each sensor module of the slave unit is provided corresponding to each storage battery cell, and is operated by power feeding from the corresponding storage battery cell. That is, each sensor module operates by consuming the storage battery capacity of the corresponding storage battery cell.
 一般に、半導体集積回路装置は、消費電流(消費電力)がばらつくことが知られている。例えば、上述したセンサモジュールに適用されるMCUや無線IC等の半導体集積回路装置は、消費電力が小さいもので数%、大きいものではそれ以上にばらつく。そのため、上述した蓄電システムにおいて、蓄電池セル毎に設けられたセンサモジュール間にも消費電力のばらつきが生じる。 Generally, it is known that current consumption (power consumption) varies in a semiconductor integrated circuit device. For example, semiconductor integrated circuit devices such as MCUs and wireless ICs applied to the sensor module described above vary in power consumption by a few percent, and by a large one, more than that. For this reason, in the above-described power storage system, power consumption varies between sensor modules provided for each storage battery cell.
 センサモジュール間の消費電力のばらつきは、センサモジュールに電力を供給している蓄電池セル間の特性のばらつきを引き起こす。例えば、センサモジュール間の消費電力のばらつきは、蓄電池セル間の残容量(充電状態,SOC:State Of Charge)のばらつきの一因となる。 The variation in power consumption between sensor modules causes variation in characteristics between storage battery cells that supply power to the sensor modules. For example, variation in power consumption between sensor modules contributes to variation in remaining capacity (charged state, SOC: State Of Charge) between storage battery cells.
 このように蓄電池セル間のSOCがばらついた状態で蓄電池セルの充放電を繰り返した場合、過充電や過放電となる蓄電池セルが発生し、蓄電池セルの劣化が進む原因となる。 In this way, when charging / discharging of the storage battery cells is repeated in a state where the SOC between the storage battery cells varies, a storage battery cell that is overcharged or overdischarged occurs, which causes deterioration of the storage battery cell.
 また、このSOCばらつきは、蓄電システムにおいて定期的に実施される均等充電によって解消することができるが、均等充電はシステムの運用上定められた特定の時期にのみ実施されるものであり、実施間隔の間にSOCがばらついてしまうと、上述の蓄電池セルの劣化につながってしまう。 In addition, this SOC variation can be eliminated by the equal charge periodically performed in the power storage system, but the equal charge is performed only at a specific time determined in the operation of the system. If the SOC varies in the meantime, the above-mentioned storage battery cell will be deteriorated.
 本発明は、上述した課題に鑑みてなされたものであり、本発明の目的は、複数の蓄電池セルの状態をそれぞれ測定する複数のセンサモジュールを備えた蓄電システムにおいて、複数の蓄電池セル間の特性のばらつきを抑えることにある。 The present invention has been made in view of the above-described problems, and an object of the present invention is to provide characteristics between a plurality of storage battery cells in a power storage system including a plurality of sensor modules that respectively measure the states of the plurality of storage battery cells. It is to suppress the variation of the.
 本発明の代表的な実施の形態に係る蓄電システムは、複数の蓄電池セルと、前記複数の蓄電池セル毎に対応して設けられ、対応する前記蓄電池セルからの電源供給によって動作するとともに、対応する前記蓄電池セルの状態を測定するセンサモジュールと、夫々の前記センサモジュールに対して、前記蓄電池セルの状態の測定の実行を指示する測定要求と測定結果の送信を指示するデータ要求とを送信する監視装置とを備え、前記センサモジュールは、動作モードとして、一部の機能が制限されたスリープモードと前記一部の機能の制限が解除されたアクティブモードとを有し、指定された期間に前記アクティブモードとなり、それ以外の期間に前記スリープモードとなることを特徴とする。 A power storage system according to a representative embodiment of the present invention is provided corresponding to each of a plurality of storage battery cells and each of the plurality of storage battery cells, and operates by supplying power from the corresponding storage battery cell. A sensor module for measuring the state of the storage battery cell, and a monitor for transmitting a measurement request for instructing execution of measurement of the state of the storage battery cell and a data request for instructing transmission of a measurement result to each of the sensor modules. The sensor module has, as operation modes, a sleep mode in which some functions are restricted and an active mode in which some functions are released, and the active operation is performed during a specified period. Mode, and the sleep mode is entered in other periods.
 本発明に係る蓄電システムによれば、複数の蓄電池セル間の特性のばらつきを抑えることが可能となる。 According to the power storage system of the present invention, it is possible to suppress variations in characteristics among a plurality of storage battery cells.
実施の形態1に係る蓄電システムの構成を示す図である。It is a figure which shows the structure of the electrical storage system which concerns on Embodiment 1. FIG. 実施の形態1に係る蓄電システムにおけるセンサモジュールの構成を示す図である。2 is a diagram illustrating a configuration of a sensor module in the power storage system according to Embodiment 1. FIG. 実施の形態1に係る蓄電システムにおける、監視装置と各センサモジュールとの通信のタイミングを示すタイミングチャートである。4 is a timing chart showing the timing of communication between the monitoring device and each sensor module in the power storage system according to Embodiment 1. 実施の形態1に係るセンサモジュールの動作モードの切り替わりの概要を示す図である。It is a figure which shows the outline | summary of the switching of the operation mode of the sensor module which concerns on Embodiment 1. FIG. 実施の形態1に係る蓄電システムにおける、各センサモジュールの動作モードの切り替わりタイミングを示すタイミングチャートである。4 is a timing chart showing switching timing of operation modes of each sensor module in the power storage system according to Embodiment 1. 実施の形態2に係る蓄電システムの構成を示す図である。6 is a diagram illustrating a configuration of a power storage system according to Embodiment 2. FIG. 実施の形態2に係る蓄電システムにおける、グループ毎のセンサモジュールの動作モードの切り替わりタイミングを示すタイミングチャートである。6 is a timing chart showing switching timing of operation modes of sensor modules for each group in the power storage system according to the second embodiment. 実施の形態2に係る蓄電システムにおいて、各センサモジュールでパケットの再送処理が行われない場合のタイミングチャートである。6 is a timing chart when packet re-transmission processing is not performed in each sensor module in the power storage system according to the second embodiment. 実施の形態2に係る蓄電システムにおいて、各センサモジュールでパケットの再送処理が行われた場合のタイミングチャートである。9 is a timing chart when a packet retransmission process is performed in each sensor module in the power storage system according to the second embodiment. 実施の形態3に係る蓄電システムにおけるセンサモジュールの構成を示す図である。6 is a diagram showing a configuration of a sensor module in an electricity storage system according to Embodiment 3. FIG. 実施の形態3に係る蓄電システムにおけるセンサモジュールの動作モードを説明するための図である。10 is a diagram for explaining an operation mode of a sensor module in the power storage system according to Embodiment 3. FIG. 実施の形態3に係る蓄電システムにおける各センサモジュールの動作モードの切り替わりタイミングを示すタイミングチャートである。12 is a timing chart showing timings for switching operation modes of the sensor modules in the power storage system according to Embodiment 3. 実施の形態4に係る蓄電システムにおけるセンサモジュールの構成を示す図である。FIG. 10 is a diagram showing a configuration of a sensor module in a power storage system according to Embodiment 4. 実施の形態4に係る蓄電システムにおいて、センサモジュールがアクティブモードとなる期間の調整方法を説明するための図である。FIG. 10 is a diagram for explaining a method for adjusting a period during which a sensor module is in an active mode in the power storage system according to the fourth embodiment.
1.実施の形態の概要
 先ず、本願において開示される発明の代表的な実施の形態について概要を説明する。なお、以下の説明では、一例として、発明の構成要素に対応する図面上の参照符号を、括弧を付して記載している。
1. First, an outline of a typical embodiment of the invention disclosed in the present application will be described. In the following description, as an example, reference numerals on the drawings corresponding to constituent elements of the invention are shown in parentheses.
 〔1〕本発明の代表的な実施の形態に係る蓄電システム(100,100A~100C)は、複数の蓄電池セル(5,5_1~5_n,5_1~5_k)と、前記複数の蓄電池セル毎に対応して設けられ、対応する前記蓄電池セルからの電源供給によって動作するとともに、対応する前記蓄電池セルの状態を測定するセンサモジュール(4,4B,4C)と、夫々の前記センサモジュールに対して、前記蓄電池セルの状態の測定の実行を指示する測定要求と測定結果の送信を指示するデータ要求とを送信する監視装置(2)とを備え、前記センサモジュールは、動作モードとして、一部の機能が制限されたスリープモードと前記一部の機能の制限が解除されたアクティブモードとを有し、指定された期間に前記アクティブモードとなり、それ以外の期間に前記スリープモードとなることを特徴とする。 [1] A power storage system (100, 100A to 100C) according to a typical embodiment of the present invention corresponds to a plurality of storage battery cells (5, 5_1 to 5_n, 5_1 to 5_k) and the plurality of storage battery cells. The sensor module (4, 4B, 4C) that operates by supplying power from the corresponding storage battery cell and measures the state of the corresponding storage battery cell, and for each of the sensor modules, And a monitoring device (2) for transmitting a measurement request for instructing execution of measurement of the state of the storage battery cell and a data request for instructing transmission of the measurement result. The sensor module has a part of functions as an operation mode. A restricted sleep mode and an active mode in which the restriction of some of the functions is released, and the active mode is entered during a specified period. Wherein said that the sleep mode period other than.
 〔2〕上記蓄電システム(100A)において、前記センサモジュールは、複数のグループ(6_1~6_j)に分類され、分類された前記グループ毎に、前記アクティブモードとなるべき共通の期間が指定されてもよい。 [2] In the power storage system (100A), the sensor modules are classified into a plurality of groups (6_1 to 6_j), and a common period for entering the active mode is designated for each of the classified groups. Good.
 〔3〕上記蓄電システムにおいて、前記センサモジュールは、前記蓄電池セルの状態の測定を指示する測定要求を前記監視装置から受信する予定時刻(tk1)と前記測定要求に応じた測定に要する処理時間(Tk1)とを含む第1アクティブ期間(Ta1)にアクティブモードで動作するともに、前記測定要求に応じた測定の測定結果を含む測定データの送信を指示するデータ要求を前記監視装置から受信する予定時刻(tk2)と前記データ要求に応じた前記測定データの送信に要する処理時間(Tk2)とを含む第2アクティブ期間(Ta2)に前記アクティブモードで動作し、前記第1アクティブ期間および前記第2アクティブ期間以外の期間に前記スリープモードで動作してもよい。 [3] In the power storage system, the sensor module receives a measurement request for instructing measurement of the state of the storage battery cell from the monitoring device (tk1) and a processing time required for measurement according to the measurement request ( The scheduled time for receiving from the monitoring device a data request for instructing transmission of measurement data including a measurement result of measurement corresponding to the measurement request while operating in the active mode in the first active period (Ta1) including Tk1). (T2) and a second active period (Ta2) including a processing time (Tk2) required for transmitting the measurement data in response to the data request, the first active period and the second active period are operated in the active mode. You may operate | move in the said sleep mode in periods other than a period.
 〔4〕上記蓄電システムにおいて、夫々の前記センサモジュールの前記第1アクティブ期間は、互いに等しくなるように設定され、夫々の前記センサモジュールの前記第2アクティブ期間は、互いに等しくなるように設定されていてもよい。 [4] In the power storage system, the first active periods of the sensor modules are set to be equal to each other, and the second active periods of the sensor modules are set to be equal to each other. May be.
 〔5〕上記蓄電システム(100B)において、前記監視装置は、同期信号(Vs)を出力し、前記センサモジュール(4B,4B_1~4B_n)は、前記同期信号に基づいて、前記動作モードの切替のための計時を行ってもよい。 [5] In the power storage system (100B), the monitoring device outputs a synchronization signal (Vs), and the sensor modules (4B, 4B_1 to 4B_n) switch the operation mode based on the synchronization signal. You may keep time.
 〔6〕上記蓄電システム(100B)において、前記測定要求は前記同期信号を含み、前記監視装置は、前記測定要求をそれぞれの前記センサモジュール(4B)に対して一斉に送信し、前記センサモジュールは、動作モードとして、前記アクティブモードおよび前記スリープモードを含む運用モードと、前記一部の機能の制限が解除された初期起動モードとを有し、前記センサモジュールは、前記初期起動モードで起動し、前記初期起動モードにおいて前記測定の実行を指示する信号を受信した場合に、前記動作モードの切替のための計時を開始するとともに、前記動作モードを前記初期起動モードから前記運用モードに切り替えてもよい。 [6] In the power storage system (100B), the measurement request includes the synchronization signal, and the monitoring device transmits the measurement request to the sensor modules (4B) all at once. The operation mode includes an operation mode including the active mode and the sleep mode, and an initial activation mode in which the restriction on some of the functions is released, and the sensor module is activated in the initial activation mode, When a signal instructing execution of the measurement is received in the initial activation mode, timing for switching the operation mode may be started, and the operation mode may be switched from the initial activation mode to the operation mode. .
 〔7〕上記蓄電システム(100C)において、前記監視装置は、前記蓄電池セルの充電状態に基づいて補正時間(Tc)を算出し、前記センサモジュールに送信し、前記センサモジュールは、前記補正時間に基づいて、予め設定された前記アクティブモードとなる期間を変更してもよい。 [7] In the power storage system (100C), the monitoring device calculates a correction time (Tc) based on the state of charge of the storage battery cell, and transmits the correction time (Tc) to the sensor module. Based on this, the preset period of the active mode may be changed.
 〔8〕本発明の代表的な別の実施の形態に係る蓄電システム(100,100A~100C)は、複数の蓄電池セル(5)と、前記複数の蓄電池セル毎に対応して設けられ、対応する前記蓄電池セルの状態を測定するセンサモジュール(4,4B,4C)と、夫々の前記センサモジュールに対して、前記蓄電池セルの状態の測定の実行を指示する測定要求と測定結果の送信を指示するデータ要求とを送信する監視装置(2)とを備え、前記監視装置は、それぞれの前記センサモジュールに対して一斉に前記測定要求を送信することを特徴とする。 [8] A power storage system (100, 100A to 100C) according to another typical embodiment of the present invention is provided corresponding to each of the plurality of storage battery cells (5) and the plurality of storage battery cells. The sensor module (4, 4B, 4C) for measuring the state of the storage battery cell, and the transmission of the measurement request and the measurement result for instructing the execution of measurement of the state of the storage battery cell to each of the sensor modules And a monitoring device (2) for transmitting a data request to be transmitted, wherein the monitoring device transmits the measurement request to the sensor modules all at once.
 〔9〕本発明の代表的な実施の形態に係る、蓄電池セル(5)の状態を測定するセンサモジュール(4,4B,4C)は、一部の機能が制限されたスリープモードと、前記一部の機能の制限が解除されたアクティブモードとを有し、指定された期間に前記アクティブモードとなり、それ以外の期間に前記スリープモードとなることを特徴とする。 [9] The sensor module (4, 4B, 4C) for measuring the state of the storage battery cell (5) according to a representative embodiment of the present invention includes a sleep mode in which some functions are limited, And an active mode in which restrictions on the functions of the units are released. The active mode is set during a designated period, and the sleep mode is set during other periods.
 〔10〕上記センサモジュールにおいて、前記蓄電池の状態を検知するセンサ部(40)と、外部機器(3,2)と通信を行うための通信装置(41)と、データ処理を行うデータ処理装置(42)とを有し、前記データ処理装置は、計時を行うタイマ(423)と、前記タイマによる測定時刻に基づいて前記動作モードの切り替えを行うとともに前記通信装置および前記センサ部を制御する演算制御部(421)とを含み、前記演算制御部は、前記スリープモードにおいて、前記通信装置を停止させるとともに前記データ処理装置の機能の一部を停止し、前記スリープモード中に前記タイマの前記測定時刻が第1判定基準時刻(ts1,ts2)と一致した場合、前記動作モードを前記スリープモードから前記アクティブモードに切り替えて、停止していた前記データ処理装置の機能を復帰させるとともに前記通信装置を起動し、前記アクティブモードにおいて前記タイマの前記測定時刻が第2判定基準時刻(te1,te2)と一致した場合に、前記アクティブモードから前記スリープモードに切り替えてもよい。 [10] In the sensor module, a sensor unit (40) for detecting the state of the storage battery, a communication device (41) for communicating with the external device (3, 2), and a data processing device ( 42), and the data processing device switches the operation mode based on the time measured by the timer (423) and the time measured by the timer, and controls the communication device and the sensor unit. And the calculation control unit stops the communication device and part of the function of the data processing device in the sleep mode, and stops the measurement time of the timer during the sleep mode. Switches the operation mode from the sleep mode to the active mode when the time coincides with the first determination reference time (ts1, ts2) When the function of the data processing device that has been stopped is restored and the communication device is activated, and the measurement time of the timer matches the second determination reference time (te1, te2) in the active mode, The active mode may be switched to the sleep mode.
 〔11〕上記センサモジュール(4B)において、前記タイマは、前記センサモジュールの外部から入力された同期信号(Vs)に同期して計時を行ってもよい。 [11] In the sensor module (4B), the timer may measure time in synchronization with a synchronization signal (Vs) input from the outside of the sensor module.
 〔12〕上記センサモジュール(4B)において、前記動作モードとして、前記アクティブモードおよび前記スリープモードを含む運用モードと、前記一部の機能の制限が解除された初期起動モードとを有し、前記演算制御部は、前記センサモジュールの起動後、前記動作モードを前記初期起動モードとし、前記初期起動モードにおいて前記蓄電池セルの状態の測定を指示する測定要求を受信した場合に、動作モードを前記初期起動モードから前記運用モードに切り替えるとともに、前記動作モードの切替のための計時を開始してもよい。 [12] In the sensor module (4B), the operation mode includes an operation mode including the active mode and the sleep mode, and an initial activation mode in which the restriction on some of the functions is released, and the calculation The controller sets the operation mode to the initial activation mode after activation of the sensor module, and activates the operation mode when the measurement request instructing measurement of the state of the storage battery cell is received in the initial activation mode. While switching from the mode to the operation mode, timing for switching the operation mode may be started.
 〔13〕上記センサモジュール(4C)において、前記タイマの前記第2判定基準時刻は、前記センサモジュールによる測定対象の前記蓄電池セルの充電状態に基づいて算出された補正時間(Tc)に基づいて、変更可能であってもよい。 [13] In the sensor module (4C), the second determination reference time of the timer is based on a correction time (Tc) calculated based on a state of charge of the storage battery cell to be measured by the sensor module. It may be changeable.
 〔14〕本発明の代表的な実施の形態に係る方法は、複数の蓄電池セルと、前記複数の蓄電池セル毎に対応して設けられ、対応する前記蓄電池セルからの電源供給によって動作するとともに、対応する前記蓄電池セルの状態を測定するセンサモジュールと、夫々の前記センサモジュールに対して、前記蓄電池セルの状態の測定の実行を指示する測定要求と測定結果の送信を指示するデータ要求とを送信する監視装置とを備える蓄電システムの制御方法である。前記センサモジュールは、動作モードとして、一部の機能が制限されたスリープモードと前記一部の機能の制限が解除されたアクティブモードとを有する。前記蓄電システムの制御方法は、前記センサモジュールが、指定された期間に前記アクティブモードとなる第1ステップと、前記センサモジュールが、前記指定された期間以外の期間に前記スリープモードとなる第2ステップとを含むことを特徴とする。 [14] A method according to a representative embodiment of the present invention is provided corresponding to each of the plurality of storage battery cells and each of the plurality of storage battery cells, and operates by supplying power from the corresponding storage battery cell, A sensor module for measuring the state of the corresponding storage battery cell, and a measurement request for instructing execution of measurement of the state of the storage battery cell and a data request for instructing transmission of the measurement result are transmitted to each of the sensor modules. It is a control method of an electrical storage system provided with the monitoring apparatus to perform. The sensor module has, as operation modes, a sleep mode in which some functions are restricted and an active mode in which restrictions on the some functions are released. The power storage system control method includes a first step in which the sensor module enters the active mode during a designated period, and a second step in which the sensor module enters the sleep mode during a period other than the designated period. It is characterized by including.
 〔15〕上記蓄電システムの制御方法において、前記センサモジュールは、複数のグループに分類され、分類された前記グループ毎に、前記アクティブモードとなるべき共通の期間が指定されてもよい。 [15] In the power storage system control method, the sensor modules may be classified into a plurality of groups, and a common period in which the active mode is to be set may be designated for each of the classified groups.
 〔16〕上記蓄電システムの制御方法において、前記第1ステップは、前記センサモジュールが、前記蓄電池セルの状態の測定を指示する測定要求を前記監視装置から受信する予定時刻と前記測定要求に応じた測定に要する処理時間とを含む第1アクティブ期間に前記アクティブモードで動作する第3ステップと、前記センサモジュールが、前記測定要求に応じた測定の測定結果を含む測定データの送信を指示するデータ要求を前記監視装置から受信する予定時刻と前記データ要求に応じた前記測定データの送信に要する処理時間とを含む第2アクティブ期間に前記アクティブモードで動作する第4ステップとを含み、前記第2ステップは、前記第1アクティブ期間および前記第2アクティブ期間以外の期間に前記スリープモードで動作する第5ステップを含んでもよい。 [16] In the power storage system control method, the first step corresponds to a scheduled time when the sensor module receives a measurement request instructing measurement of the state of the storage battery cell from the monitoring device and the measurement request. A third step of operating in the active mode during a first active period including a processing time required for measurement, and a data request for instructing the sensor module to transmit measurement data including a measurement result of the measurement according to the measurement request And a fourth step of operating in the active mode during a second active period including a scheduled time for receiving the monitoring data from the monitoring device and a processing time required for transmitting the measurement data in response to the data request. Operates in the sleep mode during a period other than the first active period and the second active period. It may include a fifth step.
 〔17〕上記蓄電システムの制御方法において、夫々の前記センサモジュールの前記第1アクティブ期間は、互いに等しくなるように設定され、夫々の前記センサモジュールの前記第2アクティブ期間は、互いに等しくなるように設定されていてもよい。 [17] In the control method of the power storage system, the first active periods of the sensor modules are set to be equal to each other, and the second active periods of the sensor modules are equal to each other. It may be set.
 〔18〕上記蓄電システムの制御方法において、前記監視装置が、同期信号を出力する第6ステップと、前記センサモジュールが、前記同期信号に基づいて、前記動作モードの切替のための計時を行う第7ステップとを含んでもよい。 [18] In the power storage system control method, a sixth step in which the monitoring device outputs a synchronization signal, and a step in which the sensor module performs timing for switching the operation mode based on the synchronization signal. 7 steps may be included.
 〔19〕上記蓄電システムの制御方法において、前記測定要求は前記同期信号を含み、前記センサモジュールは、前記動作モードとして、前記アクティブモードおよび前記スリープモードを含む運用モードと、前記一部の機能の制限が解除された初期起動モードとを有し、前記監視装置が、前記測定要求をそれぞれの前記センサモジュールに対して一斉に送信する第8ステップと、前記センサモジュールが、前記初期起動モードで起動する第9ステップと、前記センサモジュールが、前記初期起動モードにおいて前記測定の実行を指示する信号を受信した場合に、前記動作モードの切替のための計時を開始するとともに、前記動作モードを前記初期起動モードから前記運用モードに切り替える第9ステップとを更に含んでもよい。 [19] In the control method of the power storage system, the measurement request includes the synchronization signal, and the sensor module has an operation mode including the active mode and the sleep mode as the operation mode, and the partial function. An initial activation mode in which the restriction is released, and the monitoring device transmits the measurement request to the respective sensor modules all at once, and the sensor module is activated in the initial activation mode. And when the sensor module receives a signal instructing execution of the measurement in the initial startup mode, starts measuring time for switching the operation mode, and sets the operation mode to the initial mode. A ninth step of switching from the start mode to the operation mode may be further included.
 〔20〕上記蓄電システムの制御方法において、前記監視装置が、前記蓄電池セルの充電状態に基づいて補正時間を算出して前記センサモジュールに送信する第10ステップと、前記センサモジュールが、前記補正時間に基づいて、予め設定された前記アクティブモードとなる期間を変更する第11ステップとを含んでもよい。 [20] In the control method of the power storage system, a tenth step in which the monitoring device calculates a correction time based on a charge state of the storage battery cell and transmits the correction time to the sensor module; and the sensor module includes the correction time. And an eleventh step of changing a preset period of the active mode.
 〔21〕本発明の代表的な実施の形態に係る別の方法は、複数の蓄電池セルと、前記複数の蓄電池セル毎に対応して設けられ、対応する前記蓄電池セルの状態を測定するセンサモジュールと、夫々の前記センサモジュールに対して、前記蓄電池セルの状態の測定の実行を指示する測定要求と測定結果の送信を指示するデータ要求とを送信する監視装置とを備えた蓄電システムの制御方法である。上記蓄電システムの制御方法は、前記監視装置が、それぞれの前記センサモジュールに対して一斉に前記測定要求を送信するステップを含むことを特徴とする。 [21] Another method according to a typical embodiment of the present invention includes a plurality of storage battery cells and a sensor module that is provided corresponding to each of the plurality of storage battery cells and measures a state of the corresponding storage battery cell. And a monitoring device that transmits a measurement request for instructing execution of measurement of the state of the storage battery cell and a data request for instructing transmission of a measurement result to each of the sensor modules. It is. The power storage system control method includes a step in which the monitoring device transmits the measurement request to the sensor modules all at once.
2.実施の形態の具体例
 以下、本発明の実施の形態の具体例について図を参照して説明する。なお、以下の説明において、各実施の形態において共通する構成要素には同一の参照符号を付し、繰り返しの説明を省略する。また、図面は模式的なものであり、各要素の寸法の関係、各要素の比率などは、現実と異なる場合があることに留意する必要がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。
2. Specific Examples of Embodiments Hereinafter, specific examples of embodiments of the present invention will be described with reference to the drawings. In the following description, the same reference numerals are given to components common to the respective embodiments, and repeated description is omitted. It should be noted that the drawings are schematic, and the relationship between the dimensions of each element, the ratio of each element, and the like may differ from the actual situation. Even between the drawings, there are cases in which portions having different dimensional relationships and ratios are included.
 ≪実施の形態1≫
 図1は、実施の形態1に係る蓄電システムの構成を示す図である。
 同図に示される蓄電システム100は、例えばサイクルユースの鉛蓄電池を備えた蓄電システムである。蓄電システム100は、例えば、通常時に商用電源から負荷に給電し、停電の発生時には、電源バックアップ用の鉛蓄電池から負荷に給電する。
<< Embodiment 1 >>
1 is a diagram illustrating a configuration of a power storage system according to Embodiment 1. FIG.
The power storage system 100 shown in the figure is a power storage system including, for example, a cycle-use lead storage battery. For example, the power storage system 100 supplies power to a load from a commercial power supply during normal operation, and supplies power to the load from a lead storage battery for power backup when a power failure occurs.
 図1に示すように、蓄電システム100は、蓄電システム100の統括的な制御を行う上位装置(EMS:Energy Management System)1と、蓄電サブシステム101とを備える。 1, the power storage system 100 includes a host device (EMS: Energy Management System) 1 that performs overall control of the power storage system 100, and a power storage subsystem 101.
 蓄電サブシステム101は、複数の蓄電池セル5_1~5_n(nは2以上の整数)と、親機としてのセンサモジュール3と、子機としてのセンサモジュール4_1~4_nと、監視装置2とを備えている。 The power storage subsystem 101 includes a plurality of storage battery cells 5_1 to 5_n (n is an integer of 2 or more), a sensor module 3 as a parent device, sensor modules 4_1 to 4_n as child devices, and a monitoring device 2. Yes.
 蓄電池セル5_1~5_nは、例えば、電力を充放電可能に構成された鉛蓄電池セルである。蓄電池セル5_1~5_nは、例えば、互いに直列に接続されて組電池を構成している。 The storage battery cells 5_1 to 5_n are, for example, lead storage battery cells configured to be able to charge and discharge electric power. The storage battery cells 5_1 to 5_n are connected to each other in series to form an assembled battery, for example.
 なお、本明細書において、それぞれの蓄電池セル5_1~5_nを区別しない場合には、単に「蓄電池セル5」と表記する場合がある。 In addition, in this specification, when each storage battery cell 5_1 to 5_n is not distinguished, it may be simply described as “storage battery cell 5”.
 センサモジュール4_1~4_nは、子機として動作する装置である。すなわち、センサモジュール4_1~4_nは、複数の蓄電池セル5_1~5_n毎に対応して設けられ、対応する蓄電池セル5_1~5_nの状態を測定する装置である。センサモジュール4_1~4_nは、測定対象の蓄電池セル5_1~5_nと給電線および測定線を介して電気的に接続され、測定対象の蓄電池セル5_1~5_nから電力が供給されて動作する。 The sensor modules 4_1 to 4_n are devices that operate as slave units. That is, the sensor modules 4_1 to 4_n are devices that are provided corresponding to the plurality of storage battery cells 5_1 to 5_n and measure the states of the corresponding storage battery cells 5_1 to 5_n. The sensor modules 4_1 to 4_n are electrically connected to the storage battery cells 5_1 to 5_n to be measured through power supply lines and measurement lines, and operate by being supplied with power from the storage battery cells 5_1 to 5_n to be measured.
 センサモジュール4_1~4_nは、動作モードとして、一部の機能が制限されたスリープモードと、上記一部の機能の制限が解除されたアクティブモードとを有し、指定された期間にアクティブモードとなり、それ以外の期間にスリープモードとなる。 The sensor modules 4_1 to 4_n have, as operation modes, a sleep mode in which some functions are restricted and an active mode in which the restrictions on some of the functions are released, and enters the active mode during a specified period. The sleep mode is entered during other periods.
 ここで、上記一部の機能には、例えば、センサモジュール4_1~4_nが監視装置2(センサモジュール3)との間でデータの送受信を行う通信機能を含む。また、上記一部の機能には、センサモジュール4_1~4_nが測定対象の蓄電池セル5_1~5_nの状態を測定する測定機能を含んでもよい。 Here, the part of the functions includes, for example, a communication function in which the sensor modules 4_1 to 4_n transmit / receive data to / from the monitoring device 2 (sensor module 3). The partial function may include a measurement function in which the sensor modules 4_1 to 4_n measure the state of the storage battery cells 5_1 to 5_n to be measured.
 例えば、センサモジュール4_1~4_nは、スリープモードにおいて通信機能および測定機能が停止して省電力状態で動作し、アクティブモードにおいて、通信機能および測定機能の制限が解除されて通常動作状態となり、監視装置2との間で通信を行うとともに、蓄電池セル5_1~5_nの状態の測定を行う。 For example, the sensor modules 4_1 to 4_n operate in the power saving state with the communication function and the measurement function being stopped in the sleep mode, and in the active mode, the restriction of the communication function and the measurement function is released to the normal operation state, and the monitoring device 2 and the state of the storage battery cells 5_1 to 5_n are measured.
 なお、それぞれのセンサモジュール4_1~4_nを区別しない場合には、単に、「蓄電池セル5」と表記する場合がある。センサモジュール4の詳細については後述する。 If the sensor modules 4_1 to 4_n are not distinguished from each other, they may be simply expressed as “storage battery cell 5”. Details of the sensor module 4 will be described later.
 センサモジュール3は、親機として動作する装置である。すなわち、センサモジュール3は、子機としての各センサモジュール4_1~4_nと監視装置2との間の通信を中継する装置である。例えば、センサモジュール3は、各センサモジュール4_1~4_nと無線通信を行うとともに、監視装置2と有線通信(例えば、シリアル通信等)を行う。 Sensor module 3 is a device that operates as a base unit. That is, the sensor module 3 is a device that relays communication between each of the sensor modules 4_1 to 4_n as slave units and the monitoring device 2. For example, the sensor module 3 performs wireless communication with each of the sensor modules 4_1 to 4_n and performs wired communication (for example, serial communication) with the monitoring device 2.
 監視装置(BMU:Battery Management Unit)2は、各蓄電池セル5_1~5_nの状態を監視し、診断する装置である。監視装置2は、親機としてのセンサモジュール3を介して、子機としてのセンサモジュール4_1~4_nと通信を行うことにより、センサモジュール4_1~4_nによって測定された各蓄電池セル5_1~5_nの状態の測定結果を含む測定データを取得する。監視装置2は、取得した測定データに基づいて、各蓄電池セル5_1~5_nの状態を診断するとともに、必要に応じて、診断結果等を上位装置1に送信する。 The monitoring device (BMU: Battery Management Unit) 2 is a device that monitors and diagnoses the state of each of the storage battery cells 5_1 to 5_n. The monitoring device 2 communicates with the sensor modules 4_1 to 4_n serving as slave units via the sensor module 3 serving as the master unit, whereby the state of each storage battery cell 5_1 to 5_n measured by the sensor modules 4_1 to 4_n is determined. Acquire measurement data including measurement results. The monitoring device 2 diagnoses the state of each of the storage battery cells 5_1 to 5_n based on the acquired measurement data, and transmits a diagnosis result or the like to the host device 1 as necessary.
 具体的に、監視装置2は、各蓄電池セル5_1~5_nの状態の監視および診断を行うために、各センサモジュール4_1~4_nに対して、測定対象の蓄電池セル5_1~5_nの状態の測定を指示する測定要求と、蓄電池セル5_1~5_nの状態の測定結果を含む測定データの送信を指示するデータ要求と、をセンサモジュール3を介して送信する。 Specifically, the monitoring device 2 instructs each sensor module 4_1 to 4_n to measure the state of the storage battery cells 5_1 to 5_n to be measured in order to monitor and diagnose the state of each of the storage battery cells 5_1 to 5_n. A measurement request to be transmitted and a data request for instructing transmission of measurement data including the measurement results of the states of the storage battery cells 5_1 to 5_n are transmitted via the sensor module 3.
 センサモジュール4は、監視装置2からの測定要求に応じて、測定対象の蓄電池セル5の状態を測定するとともに、監視装置2からのデータ要求に応じて、測定対象の蓄電池セル5の状態の測定結果を含む測定データを監視装置2に送信する。 The sensor module 4 measures the state of the storage battery cell 5 to be measured in response to a measurement request from the monitoring device 2 and measures the state of the storage battery cell 5 to be measured in response to a data request from the monitoring device 2. Measurement data including the result is transmitted to the monitoring device 2.
 監視装置2は、各蓄電池セル5_1~5_nの状態に関する監視情報および診断情報を、上位装置(EMS)1に有線通信(Ethernet等によって)によって送信する。上位装置1は、監視装置2から送信された監視情報および診断情報に基づいて、各蓄電池セル5_1~5_nから成る組電池の充放電の実行および停止を含む制御を実行する。 The monitoring device 2 transmits monitoring information and diagnostic information regarding the state of each of the storage battery cells 5_1 to 5_n to the host device (EMS) 1 by wired communication (by Ethernet or the like). Based on the monitoring information and the diagnostic information transmitted from the monitoring device 2, the host device 1 executes control including execution and stop of charging / discharging of the assembled battery including the storage battery cells 5_1 to 5_n.
 次に、センサモジュール4について詳細に説明する。
 図2は、実施の形態1に係る蓄電システム100におけるセンサモジュール4の構成を示す図である。
Next, the sensor module 4 will be described in detail.
FIG. 2 is a diagram illustrating a configuration of the sensor module 4 in the power storage system 100 according to the first embodiment.
 なお、本実施の形態では、各センサモジュール4_1~4_nは同一の構成を有しているものとし、センサモジュール3も、センサモジュール4_1~4_nと同一の構成を有しているものとする。 In this embodiment, the sensor modules 4_1 to 4_n have the same configuration, and the sensor module 3 also has the same configuration as the sensor modules 4_1 to 4_n.
 センサモジュール4は、センサ部40、通信装置41、およびデータ処理装置42を備えている。なお、センサモジュール4は、上述した機能部に加えて、電源回路等の各種周辺回路も備えているが、ここでは図示を省略する。 The sensor module 4 includes a sensor unit 40, a communication device 41, and a data processing device 42. The sensor module 4 includes various peripheral circuits such as a power supply circuit in addition to the above-described functional units, but illustration thereof is omitted here.
 センサ部40は、監視対象の蓄電池セル5の状態を測定するための機能部である。センサ部40は、例えば、電圧センサ401および温度センサ402を有する。電圧センサ401は、蓄電池セル5の電圧(出力電圧)を測定する装置である。温度センサ402は、蓄電池セル5の温度(例えば、蓄電池セル5の表面温度)を測定する装置である。 The sensor unit 40 is a functional unit for measuring the state of the storage battery cell 5 to be monitored. The sensor unit 40 includes, for example, a voltage sensor 401 and a temperature sensor 402. The voltage sensor 401 is a device that measures the voltage (output voltage) of the storage battery cell 5. The temperature sensor 402 is a device that measures the temperature of the storage battery cell 5 (for example, the surface temperature of the storage battery cell 5).
 通信装置41は、親機としてのセンサモジュール3と通信を行うための機能部である。通信装置41は、例えば、アンテナと、アンテナを介してセンサモジュール3と無線通信を行うための半導体集積回路装置(無線IC)とを含んで構成されている。 The communication device 41 is a functional unit for communicating with the sensor module 3 as a parent device. The communication device 41 includes, for example, an antenna and a semiconductor integrated circuit device (wireless IC) for performing wireless communication with the sensor module 3 via the antenna.
 通信装置41(無線IC)は、後述するように、データ処理装置42からの制御により、動作の実行と停止が制御される。 As described later, the communication device 41 (wireless IC) is controlled to execute and stop by the control from the data processing device 42.
 データ処理装置42は、センサモジュール4の統括的な制御を行う装置であり、各種のデータ処理を実行する。データ処理装置42は、例えば、MCU(Micro Control Unit)等のプログラム処理装置(半導体集積回路装置)である。 The data processing device 42 is a device that performs overall control of the sensor module 4 and executes various data processing. The data processing device 42 is, for example, a program processing device (semiconductor integrated circuit device) such as an MCU (Micro Control Unit).
 具体的に、データ処理装置42は、機能ブロックとして、演算制御部421およびタイマ423を有する。これらの機能部は、例えば、データ処理装置42としてのMCUが備えるCPUコアが、MCU内部の記憶装置に格納されたプログラムに従って演算処理を実行し、MCU内部の各種周辺回路を制御することによって実現される。 Specifically, the data processing device 42 includes an arithmetic control unit 421 and a timer 423 as functional blocks. These functional units are realized by, for example, a CPU core included in the MCU as the data processing device 42 executing arithmetic processing according to a program stored in a storage device inside the MCU and controlling various peripheral circuits inside the MCU. Is done.
 タイマ423は、計時を行う機能部である。具体的に、タイマ423は、カウンタ424、記憶部425、および判定部426を含む。カウンタ424は、所定の周波数のクロック信号をカウントすることにより計時を行う機能部である。 The timer 423 is a functional unit that measures time. Specifically, the timer 423 includes a counter 424, a storage unit 425, and a determination unit 426. The counter 424 is a functional unit that measures time by counting clock signals having a predetermined frequency.
 記憶部425は、動作モード(スリープモードおよびアクティブモード)の切替の基準となる時刻の情報を記憶する。記憶部425は、例えば、レジスタ(コンペアレジスタ)である。 The storage unit 425 stores time information serving as a reference for switching between operation modes (sleep mode and active mode). The storage unit 425 is, for example, a register (compare register).
 記憶部425には、動作モードの切替の判定基準となる判定基準時刻の情報として、例えば、センサモジュール4をスリープモードからアクティブモードに切り替える第1判定基準時刻の情報(以下、「アクティブモード開始時刻情報」とも称する。)4250と、センサモジュールをアクティブモードからスリープモードへ切り替える第2判定基準時刻の情報(以下、「アクティブモード終了時刻情報」とも称する)4251とが記憶されている。 In the storage unit 425, for example, information on the first determination reference time for switching the sensor module 4 from the sleep mode to the active mode (hereinafter referred to as “active mode start time”) as the determination reference time information serving as the determination reference for the operation mode switching. 4250 and information on the second determination reference time for switching the sensor module from the active mode to the sleep mode (hereinafter also referred to as “active mode end time information”) 4251 are stored.
 判定部426は、カウンタ424のカウント値に基づく測定時刻と、記憶部425に記憶されたアクティブモード開始時刻情報4250およびアクティブモード終了時刻情報4251に基づく判定基準時刻とを比較し、測定時刻が判定基準時刻と一致した場合に、判定結果を示す判定信号Vdを出力する。 The determination unit 426 compares the measurement time based on the count value of the counter 424 with the determination reference time based on the active mode start time information 4250 and the active mode end time information 4251 stored in the storage unit 425 to determine the measurement time. When the time coincides with the reference time, a determination signal Vd indicating the determination result is output.
 例えば、カウンタ424の測定時刻(カウント値)がアクティブモード開始時刻情報4250に基づく判定基準時刻と一致した場合、判定部426は、判定信号Vdを第1論理レベル(例えばローレベル)から第2論理レベル(例えばハイレベル)に切り替える。 For example, when the measurement time (count value) of the counter 424 matches the determination reference time based on the active mode start time information 4250, the determination unit 426 changes the determination signal Vd from the first logic level (eg, low level) to the second logic level. Switch to a level (eg high level).
 一方、カウンタ424の測定時刻(カウント値)がアクティブモード終了時刻情報4251と一致した場合、判定部426は、判定信号Vdを第2論理レベル(例えばハイレベル)から第1論理レベル(例えばローレベル)に切り替える。 On the other hand, when the measurement time (count value) of the counter 424 matches the active mode end time information 4251, the determination unit 426 changes the determination signal Vd from the second logic level (for example, high level) to the first logic level (for example, low level). ).
 演算制御部421は、タイマ423による測定時刻に基づいて動作モードの切り替えを行うとともに、通信装置41およびセンサ部40を制御して、センサモジュール4としての主たる機能を実現する機能部である。 The arithmetic control unit 421 is a functional unit that switches the operation mode based on the measurement time by the timer 423 and controls the communication device 41 and the sensor unit 40 to realize the main function as the sensor module 4.
 演算制御部421は、スリープモードにおいてタイマ423の測定時刻がアクティブモード開始時刻情報4250に基づく第1判定基準時刻と一致した場合に、センサモジュール4の動作モードをスリープモードからアクティブモードに切り替え、アクティブモードにおいてタイマ423の測定時刻がアクティブモード終了時刻情報4251に基づく第2判定基準時刻と一致した場合に、センサモジュール4の動作モードをアクティブモードからスリープモードに切り替える。 When the measurement time of the timer 423 coincides with the first determination reference time based on the active mode start time information 4250 in the sleep mode, the arithmetic control unit 421 switches the operation mode of the sensor module 4 from the sleep mode to the active mode, In the mode, when the measurement time of the timer 423 coincides with the second determination reference time based on the active mode end time information 4251, the operation mode of the sensor module 4 is switched from the active mode to the sleep mode.
 例えば、演算制御部421は、動作モードを示す値を記憶する動作モードレジスタ4220を有する。演算制御部421は、タイマ423の判定部426から出力された判定信号Vdの論理レベルの切り替わりに応じて、動作モードレジスタ4220の設定値を更新するとともに、動作モードレジスタ4220の設定値に応じて通信装置41およびセンサ部40等の制御を行う。 For example, the arithmetic control unit 421 includes an operation mode register 4220 that stores a value indicating an operation mode. The arithmetic control unit 421 updates the set value of the operation mode register 4220 according to the switching of the logic level of the determination signal Vd output from the determination unit 426 of the timer 423, and according to the set value of the operation mode register 4220. Control of the communication apparatus 41, the sensor part 40, etc. is performed.
 上述の例の場合、演算制御部421は、判定信号Vdが第1論理レベル(ローレベル)から第2論理レベル(ハイレベル)に切り替わったとき、動作モードレジスタ4220にアクティブモードを示す値を設定し、判定信号Vdが第2論理レベル(ハイレベル)から第1論理レベル(ローレベル)に切り替わったとき、動作モードレジスタ4220にスリープモードを示す値を設定する。 In the above example, the arithmetic control unit 421 sets a value indicating the active mode in the operation mode register 4220 when the determination signal Vd is switched from the first logic level (low level) to the second logic level (high level). When the determination signal Vd is switched from the second logic level (high level) to the first logic level (low level), a value indicating the sleep mode is set in the operation mode register 4220.
 演算制御部421は、スリープモードにおいて、データ処理装置42の一部を停止するとともに通信装置41を停止させ、アクティブモードにおいて、停止していたデータ処理装置42の機能を復帰させるとともに通信装置41を起動する。 In the sleep mode, the arithmetic control unit 421 stops a part of the data processing device 42 and stops the communication device 41, and in the active mode, restores the function of the stopped data processing device 42 and causes the communication device 41 to to start.
 より具体的には、演算制御部421は、動作モードレジスタ4220の設定値がアクティブモードからスリープモードに切り替わった場合、通信装置41の通信機能を停止させる。例えば、演算制御部421は、図示されない電源回路を制御して、通信装置41(無線IC)への電源供給を停止することにより、通信装置41の外部機器(センサモジュール3および監視装置2)と通信を行う機能を停止させる。あるいは、通信装置41の構成要素である無線ICが通常動作モードと省電力モードを有している場合には、演算制御部421は、無線ICに対して通常動作モードから省電力モードへの移行を指示し、通信装置41の外部機器(センサモジュール3および監視装置2)と通信を行う機能を停止させる。このとき、演算制御部421は、通信装置41のみならず、センサ部40も停止させてもよい。 More specifically, the arithmetic control unit 421 stops the communication function of the communication device 41 when the set value of the operation mode register 4220 is switched from the active mode to the sleep mode. For example, the arithmetic control unit 421 controls an external device (the sensor module 3 and the monitoring device 2) of the communication device 41 by controlling a power supply circuit (not shown) and stopping the power supply to the communication device 41 (wireless IC). Stop the communication function. Alternatively, when the wireless IC that is a component of the communication device 41 has the normal operation mode and the power saving mode, the arithmetic control unit 421 shifts the wireless IC from the normal operation mode to the power saving mode. And the function of communicating with the external devices (the sensor module 3 and the monitoring device 2) of the communication device 41 is stopped. At this time, the arithmetic control unit 421 may stop not only the communication device 41 but also the sensor unit 40.
 また、演算制御部421は、動作モードレジスタ4220の設定値がアクティブモードからスリープモードに切り替わった場合、データ処理装置42の一部の機能を停止して省電力状態に移行する。例えば、データ処理装置42としてのMCUが通常動作モードと省電力モードを有している場合には、演算制御部421は、データ処理装置42を通常動作モードから省電力モードに移行させる。このとき、例えば、タイマ423は通常の動作を行い、演算制御部421は一部の動作を停止する。 In addition, when the set value of the operation mode register 4220 is switched from the active mode to the sleep mode, the arithmetic control unit 421 stops some functions of the data processing device 42 and shifts to the power saving state. For example, when the MCU as the data processing device 42 has the normal operation mode and the power saving mode, the arithmetic control unit 421 shifts the data processing device 42 from the normal operation mode to the power saving mode. At this time, for example, the timer 423 performs a normal operation, and the arithmetic control unit 421 stops a part of the operation.
 一方、演算制御部421は、動作モードレジスタ4220の設定値がスリープモードからアクティブモードに切り替わった場合、データ処理装置42を省電力モードから通常動作モードに移行させて、停止しているデータ処理装置42の機能を復帰させる。 On the other hand, when the setting value of the operation mode register 4220 is switched from the sleep mode to the active mode, the arithmetic control unit 421 shifts the data processing device 42 from the power saving mode to the normal operation mode and stops the data processing device. 42 function is restored.
 また、演算制御部421は、スリープモードにおいて停止していたセンサモジュール4のその他の機能部(例えば、通信装置41およびセンサ部40)を復帰させる。例えば、演算制御部421は、図示されない電源回路を制御して、通信装置41(無線IC)への電源供給を再開することにより、通信装置41の外部機器(センサモジュール3および監視装置2)と通信を行う機能を復帰させる。あるいは、通信装置41を構成する無線ICが省電力モードに移行している場合には、演算制御部421は、無線ICに対して省電力モードから通常動作モードへの移行を指示し、通信装置41の外部機器(センサモジュール3および監視装置2)と通信を行う機能を復帰させる。 In addition, the arithmetic control unit 421 restores other functional units (for example, the communication device 41 and the sensor unit 40) of the sensor module 4 that have been stopped in the sleep mode. For example, the arithmetic control unit 421 controls the power supply circuit (not shown) and restarts the power supply to the communication device 41 (wireless IC), whereby the external device (the sensor module 3 and the monitoring device 2) of the communication device 41 is connected. Restore the communication function. Alternatively, when the wireless IC configuring the communication device 41 has shifted to the power saving mode, the arithmetic control unit 421 instructs the wireless IC to shift from the power saving mode to the normal operation mode, and the communication device The function of communicating with 41 external devices (the sensor module 3 and the monitoring device 2) is restored.
 なお、スリープモードにおいてセンサ部40も停止させている場合には、アクティブモードにおいて、通信装置41と同様に復帰させる。 When the sensor unit 40 is also stopped in the sleep mode, the sensor unit 40 is returned in the active mode in the same manner as the communication device 41.
 次に、実施の形態1に係る蓄電システム100における、監視装置2と各センサモジュール4_1~4_nとの通信のタイミングについて説明する。 Next, the timing of communication between the monitoring device 2 and each of the sensor modules 4_1 to 4_n in the power storage system 100 according to Embodiment 1 will be described.
 図3は、実施の形態1に係る蓄電システム100における、監視装置2と各センサモジュール4_1~4_nとの通信のタイミングを示すタイミングチャートである。同図では、各センサモジュール4_1~4_nが常時アクティブモードであるとする。 FIG. 3 is a timing chart showing the timing of communication between the monitoring device 2 and each of the sensor modules 4_1 to 4_n in the power storage system 100 according to the first embodiment. In the figure, it is assumed that the sensor modules 4_1 to 4_n are always in the active mode.
 蓄電システム100において、監視装置2は、各蓄電池セル5_1~5_nの状態を監視して診断を行うために、例えば定期的に、各蓄電池セル5_1~5_nの状態の測定データを取得する。 In the power storage system 100, the monitoring device 2 acquires measurement data of the states of the storage battery cells 5_1 to 5_n, for example, periodically in order to monitor and diagnose the state of the storage battery cells 5_1 to 5_n.
 具体的に、監視装置2は、複数のセンサモジュール4に対して一斉に測定要求を送信する。例えば、図3に示すように、監視装置2は、ブロードキャストにより、各センサモジュール4_1~4_nに対して測定要求を送信する。測定要求を受信した各センサモジュール4_1~4_nは、測定対象の蓄電池セル5_1~5_nの状態(電圧および温度)を測定する測定処理を実行する。 Specifically, the monitoring device 2 transmits measurement requests to the plurality of sensor modules 4 all at once. For example, as shown in FIG. 3, the monitoring device 2 transmits a measurement request to each of the sensor modules 4_1 to 4_n by broadcasting. Each of the sensor modules 4_1 to 4_n that has received the measurement request executes a measurement process for measuring the state (voltage and temperature) of the storage battery cells 5_1 to 5_n to be measured.
 これにより、各蓄電池セル5_1~5_nの状態を同時に測定することが可能となるので、蓄電池セル5_1~5_nから成る組電池のSOCを高精度に算出することが可能となる。また、これによれば、センサモジュール4_1~4_n間で測定開始タイミングを同期させるために各センサモジュール4_1~4_nの構成を変更する必要がない。 Thus, the state of each of the storage battery cells 5_1 to 5_n can be measured simultaneously, so that the SOC of the assembled battery composed of the storage battery cells 5_1 to 5_n can be calculated with high accuracy. Further, according to this, it is not necessary to change the configuration of each of the sensor modules 4_1 to 4_n in order to synchronize the measurement start timing among the sensor modules 4_1 to 4_n.
 次に、監視装置2は、各センサモジュール4_1~4_nによる測定要求に応じた測定処理が完了した後に、各センサモジュール4_1~4_nに対して測定データの送信を要求する。例えば、図3に示すように、監視装置2は、ユニキャストにより、各センサモジュール4_1~4_nに対して順次、データ要求を送信する。 Next, the monitoring device 2 requests the sensor modules 4_1 to 4_n to transmit measurement data after the measurement processing according to the measurement requests by the sensor modules 4_1 to 4_n is completed. For example, as shown in FIG. 3, the monitoring device 2 sequentially transmits data requests to the sensor modules 4_1 to 4_n by unicast.
 そして、データ要求を受信した各センサモジュール4_1~4_nは、直前の測定要求に応じて測定した蓄電池セル5_1~5_nの状態(電圧および温度)の測定結果を含む測定データを、センサモジュール3を介して監視装置2に送信する(データ応答)。例えば、図3に示すように、各センサモジュール4_1~4_nは、データ要求を受信したセンサモジュール4_1~4_nから順次、測定データを監視装置2に対して送信する。 Each of the sensor modules 4_1 to 4_n that has received the data request passes measurement data including the measurement results of the state (voltage and temperature) of the storage battery cells 5_1 to 5_n measured according to the previous measurement request via the sensor module 3. To the monitoring device 2 (data response). For example, as shown in FIG. 3, each of the sensor modules 4_1 to 4_n sequentially transmits measurement data to the monitoring device 2 from the sensor modules 4_1 to 4_n that have received the data request.
 監視装置2が測定要求を送信してから、監視装置2が各センサモジュール4_1~4_nからの測定データを受信するまでの期間が、1回の組電池測定期間となる。 The period from when the monitoring device 2 transmits a measurement request until the monitoring device 2 receives measurement data from each of the sensor modules 4_1 to 4_n is one assembled battery measurement period.
 次に、蓄電システム100における各センサモジュール4_1~4_nの動作モードの切り替わりタイミングについて説明する。 Next, the switching timing of the operation mode of each of the sensor modules 4_1 to 4_n in the power storage system 100 will be described.
 図4は、実施の形態1に係るセンサモジュール4の動作モードの切り替わりの概要を示す図である。同図には、一つのセンサモジュール4の動作モードの切り替わりタイミングが代表的に示されている。 FIG. 4 is a diagram showing an outline of switching of operation modes of the sensor module 4 according to the first embodiment. In the figure, the switching timing of the operation mode of one sensor module 4 is representatively shown.
 上述したように、蓄電システム100において、センサモジュール4は、特定の期間にアクティブモードで動作し、それ以外の期間にスリープモードで動作する。
 具体的には、図4に示すように、センサモジュール4は、監視装置2からの測定要求を受信する予定時刻tk1と測定要求に応じた測定を実行するために必要な処理時間Tk1とを含む期間(以下、「第1アクティブ期間Ta1」とも称する。)にアクティブモードで動作する。
As described above, in the power storage system 100, the sensor module 4 operates in the active mode during a specific period, and operates in the sleep mode during other periods.
Specifically, as shown in FIG. 4, the sensor module 4 includes a scheduled time tk1 for receiving a measurement request from the monitoring device 2 and a processing time Tk1 necessary for executing a measurement according to the measurement request. It operates in the active mode during a period (hereinafter also referred to as “first active period Ta1”).
 また、センサモジュール4は、図4に示すように、監視装置2からのデータ要求を受信する予定時刻tk2とデータ要求に応じて測定データを送信するために必要な処理時間Tk2とを含む期間(以下、「第2アクティブ期間Ta2」とも称する。)にアクティブモードで動作する。一方、第1アクティブ期間Ta1および第2アクティブ期間Ta2以外の期間では、各センサモジュール4_1~4_nは、スリープモードで動作する。 Further, as shown in FIG. 4, the sensor module 4 includes a scheduled time tk2 for receiving a data request from the monitoring device 2 and a processing time Tk2 necessary for transmitting measurement data in response to the data request ( Hereinafter, it is also referred to as “second active period Ta2”. On the other hand, in the periods other than the first active period Ta1 and the second active period Ta2, the sensor modules 4_1 to 4_n operate in the sleep mode.
 図4に示すようにセンサモジュール4を動作させるためには、タイマ423の記憶部425に、第1アクティブ期間Ta1の開始時刻ts1および第2アクティブ期間Ta2の開始時刻ts2を、アクティブモード開始時刻情報4250として記憶するとともに、第1アクティブ期間Ta1の終了時刻te1および第2アクティブ期間Ta2の終了時刻te2を、アクティブモード終了時刻情報4251として記憶する。 As shown in FIG. 4, in order to operate the sensor module 4, the storage unit 425 of the timer 423 stores the start time ts1 of the first active period Ta1 and the start time ts2 of the second active period Ta2, and the active mode start time information. 4250 and the end time te1 of the first active period Ta1 and the end time te2 of the second active period Ta2 are stored as active mode end time information 4251.
 なお、開始時刻ts1,ts2および終了時刻te1,te2は、測定要求やデータ要求を受信する予定の時刻がずれる場合や、測定やデータ送信に係る処理時間のばらつき、データの送受信に失敗したときの再送受信に必要な時間等も考慮して、設定することが好ましい。 Note that the start times ts1, ts2 and end times te1, te2 are when the time when the measurement request or the data request is scheduled to be received is shifted, when the processing time related to measurement or data transmission varies, or when data transmission / reception fails It is preferable to set in consideration of the time required for retransmission.
 図5は、実施の形態1に係る蓄電システムにおける、各センサモジュール4_1~4_nの動作モードの切り替わりタイミングを示すタイミングチャートである。 FIG. 5 is a timing chart showing switching timings of the operation modes of the sensor modules 4_1 to 4_n in the power storage system according to the first embodiment.
 上述したように、センサモジュール4_1~4_n毎に、適切なアクティブモード開始時刻情報4250およびアクティブモード終了時刻情報4251をタイマ423に設定する。 As described above, appropriate active mode start time information 4250 and active mode end time information 4251 are set in the timer 423 for each of the sensor modules 4_1 to 4_n.
 例えば、各センサモジュール4_1~4_nのタイマ423のアクティブモード開始時刻情報4250およびアクティブモード終了時刻情報4251には、共通の第1アクティブ期間Ta1の開始時刻ts1および終了時刻te1の値が、それぞれ設定される。 For example, the values of the common start time ts1 and end time te1 of the first active period Ta1 are set in the active mode start time information 4250 and the active mode end time information 4251 of the timers 423 of the sensor modules 4_1 to 4_n, respectively. The
 また、センサモジュール4_1~4_n毎にデータ要求を受信する予定時刻tk2とデータ応答に係る処理時間Tk2とを考慮し、適切な第2アクティブ期間Ta2の開始時刻ts2および終了時刻te2の値を、アクティブモード開始時刻情報4250およびアクティブモード終了時刻情報4251として、センサモジュール4_1~4_nのタイマ423の記憶部425にそれぞれ設定する。 Further, considering the scheduled time tk2 for receiving the data request for each of the sensor modules 4_1 to 4_n and the processing time Tk2 related to the data response, the values of the appropriate start time ts2 and end time te2 of the second active period Ta2 are The mode start time information 4250 and the active mode end time information 4251 are set in the storage unit 425 of the timer 423 of the sensor modules 4_1 to 4_n, respectively.
 例えば、図5に示すように、センサモジュール4_1のタイマ423のアクティブモード開始時刻情報4250およびアクティブモード終了時刻情報4251には、第2アクティブ期間Ta2_1の開始時刻ts2_1および終了時刻te2_1の値が設定される。 For example, as shown in FIG. 5, the values of the start time ts2_1 and the end time te2_1 of the second active period Ta2_1 are set in the active mode start time information 4250 and the active mode end time information 4251 of the timer 423 of the sensor module 4_1. The
 また、センサモジュール4_2のタイマ423のアクティブモード開始時刻情報4250およびアクティブモード終了時刻情報4251には、第2アクティブ期間Ta2_2の開始時刻ts2_2および終了時刻te2_2の値が設定される。 Also, values of the start time ts2_2 and the end time te2_2 of the second active period Ta2_2 are set in the active mode start time information 4250 and the active mode end time information 4251 of the timer 423 of the sensor module 4_2.
 更に、センサモジュール4_nのタイマ423のアクティブモード開始時刻情報4250およびアクティブモード終了時刻情報4251には、第2アクティブ期間Ta2_nの開始時刻ts2_nおよび終了時刻te2_nの値が設定される。 Furthermore, in the active mode start time information 4250 and the active mode end time information 4251 of the timer 423 of the sensor module 4_n, values of the start time ts2_n and the end time te2_n of the second active period Ta2_n are set.
 これによれば、図5に示すように、各センサモジュール4_1~4_nは、適切なタイミングでアクティブモードとスリープモードとを切り替えて動作することが可能となる。 According to this, as shown in FIG. 5, each of the sensor modules 4_1 to 4_n can operate by switching between the active mode and the sleep mode at an appropriate timing.
 ここで、各センサモジュール4_1~4_nのアクティブモード開始時刻情報4250およびアクティブモード終了時刻情報4251は、各センサモジュール4_1~4_nのアクティブモードで動作する期間が等しくなるように設定することが好ましい。すなわち、各センサモジュール4_1~4_nの第1アクティブ期間Ta1は互いに等しく、各センサモジュール4_1~4_nの第2アクティブ期間Ta2_1~Ta2_nは互いに等しい。 Here, the active mode start time information 4250 and the active mode end time information 4251 of each of the sensor modules 4_1 to 4_n are preferably set so that the periods of operation of the sensor modules 4_1 to 4_n in the active mode are equal. That is, the first active periods Ta1 of the sensor modules 4_1 to 4_n are equal to each other, and the second active periods Ta2_1 to Ta2_n of the sensor modules 4_1 to 4_n are equal to each other.
 これによれば、一回の組電池測定期間において、各センサモジュール4_1~4_nの消費電力量が等しくなるように制御することが可能となる。 According to this, it becomes possible to control the power consumption of each sensor module 4_1 to 4_n to be equal in one assembled battery measurement period.
 以上、実施の形態1に係る蓄電システムによれば、複数の蓄電池セル5_1~5_n毎に設けられ、対応する蓄電池セル5_1~5_nから電源供給を受けて動作するとともに、対応する蓄電池セル5_1~5_nの状態をそれぞれ測定する複数のセンサモジュール4_1~4_nは、一部の機能が制限されたスリープモードと、一部の機能の制限が解除されたアクティブモードとを有し、指定された期間にアクティブモードとなり、それ以外の期間にスリープモードとなる。 As described above, the power storage system according to Embodiment 1 is provided for each of the plurality of storage battery cells 5_1 to 5_n, operates with power supplied from the corresponding storage battery cells 5_1 to 5_n, and corresponds to the storage battery cells 5_1 to 5_n. Each of the plurality of sensor modules 4_1 to 4_n that measure the state of each has a sleep mode in which some functions are restricted and an active mode in which some functions are released and is active during a specified period Mode, and sleep mode is entered during other periods.
 これによれば、センサモジュールを備えた蓄電システムにおいて、各センサモジュールの消費電力を低減することができるので、各蓄電池セルから各センサモジュールへの電源供給による各蓄電池セルのSOCへの影響を低減することできる。これにより、蓄電池セル間の特性、すなわちSOCのばらつきを抑えることが可能となる。 According to this, since the power consumption of each sensor module can be reduced in the power storage system provided with the sensor module, the influence on the SOC of each storage battery cell due to the power supply from each storage battery cell to each sensor module is reduced. Can do. Thereby, it becomes possible to suppress the characteristic between storage battery cells, ie, variation in SOC.
 具体的には、センサモジュール4_1~4_nは、監視装置2からの測定要求を受信する予定時刻と測定要求に応じた測定に要する処理時間とを含む第1アクティブ期間と、監視装置2からのデータ要求を受信する予定時刻とデータ要求に応じた測定データの送信に要する処理時間とを含む第2アクティブ期間とにおいてアクティブモードで動作し、第1アクティブ期間および第2アクティブモード以外の期間においてスリープモードで動作する。 Specifically, the sensor modules 4_1 to 4_n each include a first active period including a scheduled time for receiving a measurement request from the monitoring device 2 and a processing time required for measurement according to the measurement request, and data from the monitoring device 2. It operates in the active mode in the second active period including the scheduled time for receiving the request and the processing time required to transmit the measurement data in response to the data request, and the sleep mode in the period other than the first active period and the second active mode Works with.
 これによれば、監視装置2からの要求に応じて適切に処理を実行しつつ、センサモジュール4_1~4_nの消費電力を抑えて、蓄電池セル間のSOCのばらつきを抑えることが可能となる。 According to this, it is possible to suppress power consumption of the sensor modules 4_1 to 4_n while appropriately performing processing according to a request from the monitoring device 2, and to suppress variation in SOC between storage battery cells.
 また、各センサモジュール4_1~4_nの第1アクティブ期間は、互いに等しくなるように設定され、各センサモジュール4_1~4_nの第2アクティブ期間は、互いに等しくなるように設定される。 Also, the first active periods of the sensor modules 4_1 to 4_n are set to be equal to each other, and the second active periods of the sensor modules 4_1 to 4_n are set to be equal to each other.
 これによれば、一回の組電池測定期間において、各センサモジュール4_1~4_nの消費電力量が等しくなるように制御することが可能となるので、各センサモジュール4_1~4_n間の消費電力のばらつきを抑えることができる。これにより、蓄電池セル5_1~5_n間のSOCのばらつきを更に抑えることが可能となる。 According to this, since it is possible to control the power consumption of each sensor module 4_1 to 4_n to be equal in one assembled battery measurement period, variation in power consumption among the sensor modules 4_1 to 4_n. Can be suppressed. Thereby, it is possible to further suppress the variation in SOC between the storage battery cells 5_1 to 5_n.
 ≪実施の形態2≫
 図6は、実施の形態2に係る蓄電システムの構成を示す図である。
 実施の形態2に係る蓄電システム100Aは、複数のセンサモジュールを所定数のグループに分け、そのグループ毎に、共通の第1アクティブ期間および第2アクティブ期間を設定する点において、実施の形態1に係る蓄電システム100と相違し、その他の点においては、実施の形態1に係る蓄電システム100と同様である。
<< Embodiment 2 >>
FIG. 6 is a diagram illustrating a configuration of the power storage system according to the second embodiment.
The power storage system 100A according to the second embodiment is different from the first embodiment in that a plurality of sensor modules are divided into a predetermined number of groups and a common first active period and second active period are set for each group. It differs from the electrical storage system 100 which concerns, and is the same as that of the electrical storage system 100 which concerns on Embodiment 1 in another point.
 実施の形態2に係る蓄電システム100Aにおいて、センサモジュール4は、複数のグループに分類され、分類されたグループ毎に、アクティブモードとなるべき共通の期間が指定される。 In the power storage system 100A according to Embodiment 2, the sensor modules 4 are classified into a plurality of groups, and a common period in which the active mode is to be set is designated for each classified group.
 具体的に、蓄電システム100Aにおける複数の蓄電池セル5_1~5_nは互いに直列接続されて組電池を構成しており、複数の蓄電池セル5_1~5_nおよび、対応して設けられる複数のセンサモジュール4_1~4_nは、j(nは2以上の整数)個のグループ6_1~6_jに分けられる。グループ6_1~6_jには、例えば、それぞれk(kは1以上の整数)個のセンサモジュール4_1~4_kが含まれる。なお、それぞれのグループ6_1~6_jを区別しない場合には、単に、「グループ6」と表記する場合がある。 Specifically, the plurality of storage battery cells 5_1 to 5_n in the power storage system 100A are connected to each other in series to form an assembled battery, and the plurality of storage battery cells 5_1 to 5_n and a plurality of sensor modules 4_1 to 4_n provided correspondingly. Are divided into j (n is an integer of 2 or more) groups 6_1 to 6_j. The groups 6_1 to 6_j include, for example, k (k is an integer of 1 or more) sensor modules 4_1 to 4_k, respectively. Note that if the groups 6_1 to 6_j are not distinguished from each other, they may be simply referred to as “group 6”.
 図7は、実施の形態2に係る蓄電システムにおける、グループ6_1~6_j毎のセンサモジュール4_1~4_kの動作モードの切り替わりタイミングを示すタイミングチャートである。 FIG. 7 is a timing chart showing operation mode switching timings of the sensor modules 4_1 to 4_k for the groups 6_1 to 6_j in the power storage system according to the second embodiment.
 図7に示すように、同一のグループ6に属するセンサモジュール4_1~4_kは、監視装置2との間で予め定められた時刻において、アクティブモードからスリープモードへ切り替わるとともに、スリープモードからアクティブモードに切り替わる。 As shown in FIG. 7, the sensor modules 4_1 to 4_k belonging to the same group 6 switch from the active mode to the sleep mode and also switch from the sleep mode to the active mode at a predetermined time with the monitoring device 2. .
 蓄電システム100Aにおいて組電池を構成する各センサモジュール4_1~4_kは、グループ6によらず、同時に測定要求を監視装置2から受信する。そこで、各センサモジュール4_1~4_kの第1アクティブ期間Ta1の開始時刻ts1および終了時刻te1は、グループ6によらず、同一時刻となるように設定される。 The sensor modules 4_1 to 4_k constituting the assembled battery in the power storage system 100A receive the measurement request from the monitoring device 2 at the same time regardless of the group 6. Therefore, the start time ts1 and the end time te1 of the first active period Ta1 of the sensor modules 4_1 to 4_k are set to be the same time regardless of the group 6.
 すなわち、各センサモジュール4_1~4_kのタイマ423のアクティブモード開始時刻情報4250およびアクティブモード終了時刻情報4251には、第1アクティブ期間Ta1の開始時刻として“時刻ts1”が設定され、第1アクティブ期間Ta1の終了時刻として“te1”が設定される。 That is, in the active mode start time information 4250 and the active mode end time information 4251 of the timer 423 of each sensor module 4_1 to 4_k, “time ts1” is set as the start time of the first active period Ta1, and the first active period Ta1 "Te1" is set as the end time of.
 一方、蓄電システム100Aにおいて、データ要求は、グループ6毎に順次、監視装置2から送信される。そこで、センサモジュール4_1~4_kの第2アクティブ期間Ta2の開始時刻および終了時刻は、グループ6_1~6_j毎に異なる時刻となるように設定される。 On the other hand, in the power storage system 100A, data requests are sequentially transmitted from the monitoring device 2 for each group 6. Therefore, the start time and end time of the second active period Ta2 of the sensor modules 4_1 to 4_k are set to be different times for the groups 6_1 to 6_j.
 例えば、図7に示すように、グループ6_1のセンサモジュール4_1~4_kのタイマ423のアクティブモード開始時刻情報4250およびアクティブモード終了時刻情報4251には、第2アクティブ期間Ta2_1の開始時刻として“時刻ts2_1”が設定され、第2アクティブ期間Ta2_1の終了時刻として“時刻te2_1”が設定される。 For example, as shown in FIG. 7, the active mode start time information 4250 and the active mode end time information 4251 of the timer 423 of the sensor modules 4_1 to 4_k of the group 6_1 include “time ts2_1” as the start time of the second active period Ta2_1. Is set, and “time te2_1” is set as the end time of the second active period Ta2_1.
 また、グループ6_2のセンサモジュール4_1~4_kのタイマ423のアクティブモード開始時刻情報4250およびアクティブモード終了時刻情報4251には、第2アクティブ期間Ta2_2の開始時刻の情報として“時刻ts2_2”が設定され、第2アクティブ期間Ta2_2の終了時刻の情報として“時刻te2_2”が設定される。 In addition, in the active mode start time information 4250 and the active mode end time information 4251 of the timer 423 of the sensor modules 4_1 to 4_k of the group 6_2, “time ts2_2” is set as information on the start time of the second active period Ta2_2. “Time te2_2” is set as information on the end time of the two active periods Ta2_2.
 同様に、グループ6_jのセンサモジュール4_1~4_kのタイマ423のアクティブモード開始時刻情報4250およびアクティブモード終了時刻情報4251には、第2アクティブ期間Ta2_jの開始時刻の情報として“時刻ts2_n”が設定され、第2アクティブ期間Ta2_jの終了時刻の情報として“時刻te2_n”が設定される。 Similarly, in the active mode start time information 4250 and active mode end time information 4251 of the timer 423 of the sensor modules 4_1 to 4_k of the group 6_j, “time ts2_n” is set as the start time information of the second active period Ta2_j, “Time te2_n” is set as information on the end time of the second active period Ta2_j.
 これによれば、同一のグループ6に属するセンサモジュール4_1~4_kは、同一の時刻にアクティブモードで動作し、同一の時刻にスリープモードに移行するように動作する。 According to this, the sensor modules 4_1 to 4_k belonging to the same group 6 operate in the active mode at the same time and operate to shift to the sleep mode at the same time.
 ここで、第1アクティブ期間Ta1は、同一のグループ6に属する全てのセンサモジュール4_1~4_kが、監視装置2から送信されたデータ要求を受信する処理と、当該データ要求に対するデータ応答を送信する処理とを確実に実行することができるように、定める必要がある。 Here, in the first active period Ta1, all the sensor modules 4_1 to 4_k belonging to the same group 6 receive the data request transmitted from the monitoring device 2 and transmit the data response to the data request. It is necessary to determine so that it can be executed reliably.
 例えば、一つグループ6にk個のセンサモジュール4_1~4_kが属している場合、一つのグループ6の第2アクティブ期間Ta2の長さは、“(同一のグループ6に属する全てのセンサモジュール4_1~4_kのデータ応答に要する処理時間の総和)+(システムで定められたデータ再送用の予備時間Te)”より大きければよい。 For example, when k sensor modules 4_1 to 4_k belong to one group 6, the length of the second active period Ta2 of one group 6 is “(all sensor modules 4_1 to 4 belonging to the same group 6”. The sum of the processing times required for the data response of 4_k) + (the spare time Te for data retransmission determined by the system) ”is sufficient.
 システムで定められたデータ再送用の予備時間Teとは、データ要求に係るパケットおよびデータ応答に係るパケットの送受信(監視装置2と各センサモジュール4との間のパケット通信)が失敗した場合に行われるパケットの再送に必要な時間である。 The spare time Te for data retransmission determined by the system is set when transmission / reception of a packet related to a data request and a packet related to a data response (packet communication between the monitoring device 2 and each sensor module 4) fails. This is the time required to retransmit the received packet.
 蓄電システム100Aにおいて、監視装置2と各センサモジュール4との通信は、親機としてのセンサモジュール3を中継して行われており、センサモジュール3と各センサモジュール4とは無線通信を行う。そのため、何らかの影響で、センサモジュール3とセンサモジュール4の間の通信が失敗する虞がある。 In the power storage system 100A, the communication between the monitoring device 2 and each sensor module 4 is performed by relaying the sensor module 3 as a parent device, and the sensor module 3 and each sensor module 4 perform wireless communication. For this reason, communication between the sensor module 3 and the sensor module 4 may fail due to some influence.
 そこで、蓄電システム100Aでは、センサモジュール3とセンサモジュール4の間の通信が失敗した場合には、センサモジュール3,4に実装される無線ICのデータ再送機能を用いて、測定処理およびデータ収集処理等に関する各種のパケットの再送処理が行われる。そのうちデータ収集処理に関するパケット再送が、各グループ6において、システムで定められたシステムで定められたデータ再送用の予備時間に収まるようにシステムを設計する必要がある。 Therefore, in the power storage system 100A, when the communication between the sensor module 3 and the sensor module 4 fails, the measurement processing and data collection processing are performed using the data retransmission function of the wireless IC mounted on the sensor modules 3 and 4. Etc., retransmission processing of various types of packets is performed. Of these, it is necessary to design the system so that the packet retransmission related to the data collection processing falls within the spare time for data retransmission determined by the system determined by the system in each group 6.
 図8Aは、実施の形態2に係る蓄電システム100Aにおいて、各センサモジュール4でパケットの再送処理が行われない場合のタイミングチャートである。図8Bは、実施の形態2に係る蓄電システム100Aにおいて、各センサモジュール4でパケットの再送処理が行われた場合のタイミングチャートである。 FIG. 8A is a timing chart when the packet resending process is not performed in each sensor module 4 in the power storage system 100A according to the second embodiment. FIG. 8B is a timing chart when a packet retransmission process is performed in each sensor module 4 in power storage system 100A according to Embodiment 2.
 図8Aおよび図8Bには、一つのグループ6内のセンサモジュール4_1~4_kによるデータ応答時のタイミングチャートが示されている。図8Aおよび図8Bでは、上述したように、同一のグループ6に属する全てのセンサモジュール4_1~4_kのデータ応答に要する処理時間の総和とシステムで定められたデータ再送用の予備時間Teとを考慮して第2アクティブ時間Ta2が設定されているものとする。 8A and 8B show timing charts at the time of data response by the sensor modules 4_1 to 4_k in one group 6. FIG. 8A and 8B, as described above, the total processing time required for data responses of all the sensor modules 4_1 to 4_k belonging to the same group 6 and the spare time Te for data retransmission determined by the system are considered. Assume that the second active time Ta2 is set.
 図8Aに示すように、各センサモジュール4_1~4_kにおいてパケットの再送処理が行われることなくデータ応答が無事完了した場合、全てのセンサモジュール4_1~4_kのデータ応答に係る処理が完了した後に、予備時間Teの経過後、センサモジュール4_1~4_kはアクティブモードからスリープモードに移行する。 As shown in FIG. 8A, when the data response is successfully completed without performing the packet retransmission process in each of the sensor modules 4_1 to 4_k, after the processes related to the data responses of all the sensor modules 4_1 to 4_k are completed, After the elapse of time Te, the sensor modules 4_1 to 4_k shift from the active mode to the sleep mode.
 一方、図8Bに示すように、例えば、センサモジュール4_1によるデータ応答に係るパケットの送信が失敗した場合、センサモジュール4_1においてパケットの再送処理が行われる。この場合、監視装置2から次のセンサモジュール4_2にデータ要求が送信されるタイミング(時刻)がずれる。これにより、センサモジュール4_2以降のセンサモジュール4_3~4_kのデータ要求の受信およびパケット送信のタイミングがずれることになる。また、センサモジュール4_2~4_kのおいてもパケットの再送処理が行われた場合、各センサモジュール4_2~4_kの各処理のタイミングが更にずれることになる。 On the other hand, as shown in FIG. 8B, for example, when the transmission of a packet related to the data response by the sensor module 4_1 fails, the sensor module 4_1 performs a retransmission process of the packet. In this case, the timing (time) at which the data request is transmitted from the monitoring device 2 to the next sensor module 4_2 is shifted. As a result, the timings of receiving data requests and transmitting packets of the sensor modules 4_3 to 4_k after the sensor module 4_2 are shifted. In addition, when the packet retransmission process is performed in the sensor modules 4_2 to 4_k, the timing of each process of the sensor modules 4_2 to 4_k is further shifted.
 そこで、図8Aおよび図8Bに示すように、各センサモジュール4_1~4_kにおいてデータ応答に係るパケットの再送処理が行われた場合を考慮して予備時間Teを設定することで、第2アクティブ期間Ta2において、全てのセンサモジュール4_1~4_kにおけるデータ要求の受信およびパケットの再送が完了させることが可能となる。 Therefore, as shown in FIGS. 8A and 8B, the second active period Ta2 is set by setting the spare time Te in consideration of the case where the packet processing related to the data response is performed in each of the sensor modules 4_1 to 4_k. , Reception of data requests and retransmission of packets in all sensor modules 4_1 to 4_k can be completed.
 ここで、各グループ6_1~6_jの第2アクティブ期間Ta2_1~Ta2_jは、互いに等しくなるように設定することが好ましい。そのためには、各グループ6_1~6_jに属するセンサモジュール4の個数を同一とすることが好ましい。 Here, it is preferable to set the second active periods Ta2_1 to Ta2_j of the groups 6_1 to 6_j to be equal to each other. For this purpose, the number of sensor modules 4 belonging to each of the groups 6_1 to 6_j is preferably the same.
 なお、各グループ6_1~6_jに属するセンサモジュール4の個数が同一にならない場合には、例えば、j番目のグループ6_jに属するセンサモジュール4の個数を、その他のグループ6_1~6_j-1にそれぞれ属するセンサモジュール4の個数よりも少なくすればよい。 If the number of sensor modules 4 belonging to each group 6_1 to 6_j is not the same, for example, the number of sensor modules 4 belonging to the jth group 6_j is set to the number of sensors belonging to the other groups 6_1 to 6_j-1. The number may be less than the number of modules 4.
 以上、実施の形態2に係る蓄電システム100Aにおいて、センサモジュール4は、複数のグループ6_1~6_jに分類され、分類されたグループ6_1~6_j毎に、アクティブモードとなるべき共通の期間が指定される。 As described above, in the power storage system 100A according to Embodiment 2, the sensor module 4 is classified into a plurality of groups 6_1 to 6_j, and a common period in which the active mode is to be set is designated for each of the classified groups 6_1 to 6_j. .
 これによれば、子機としてのセンサモジュール4_1~4_k毎に、個別にアクティブ期間の開始時刻と終了時刻を設定する必要がないので、例えば、数百個の蓄電池セルを備えた大規模な蓄電システムにセンサモジュール4_1~4_kを設置する場合であっても、各センサモジュール4_1~4_kの動作モードの切替に係る時刻の設定作業や管理作業を簡素化することが可能となる。 According to this, since it is not necessary to individually set the start time and end time of the active period for each of the sensor modules 4_1 to 4_k as the slave units, for example, large-scale power storage with several hundred storage battery cells Even when the sensor modules 4_1 to 4_k are installed in the system, it is possible to simplify time setting work and management work related to switching of operation modes of the sensor modules 4_1 to 4_k.
 ≪実施の形態3≫
 図9は、実施の形態3に係る蓄電システムにおけるセンサモジュールの構成を示す図である。
 実施の形態3に係る蓄電システム100Bにおいて、センサモジュールが同期信号に基づいて動作モードの切替のための計時を行う点において、実施の形態1に係る蓄電システム100と相違し、その他の点においては、実施の形態1に係る蓄電システム100と同様である。
<< Embodiment 3 >>
FIG. 9 is a diagram illustrating a configuration of a sensor module in the power storage system according to Embodiment 3.
The power storage system 100B according to the third embodiment is different from the power storage system 100 according to the first embodiment in that the sensor module performs time measurement for switching the operation mode based on the synchronization signal. This is the same as the power storage system 100 according to the first embodiment.
 蓄電システム100Bにおいて、監視装置2Bは、親機としてのセンサモジュール3を介して、子機としての各センサモジュール4B_1~4B_nに同期信号Vsを送信する。 In the power storage system 100B, the monitoring device 2B transmits a synchronization signal Vs to each of the sensor modules 4B_1 to 4B_n as slave units via the sensor module 3 as a master unit.
 ここで、同期信号Vsは、各センサモジュール4B_1~4B_nにおける動作モードの切替に係る時間軸を、監視装置2Bにおける各センサモジュール4B_1~4B_nへの測定要求やデータ要求等のパケット送信のタイミング(時刻)の基準となる時間軸に同期させるための信号である。 Here, the synchronization signal Vs indicates the time axis for switching the operation mode in each of the sensor modules 4B_1 to 4B_n, and the timing (time) of packet transmission such as a measurement request or a data request to each of the sensor modules 4B_1 to 4B_n in the monitoring device 2B. ) Is a signal for synchronizing with the time axis serving as a reference.
 各センサモジュール4B_1~4B_nは、監視装置2Bから送信された同期信号Vsに基づいて、動作モードの切替のための計時を行う。 Each of the sensor modules 4B_1 to 4B_n performs time measurement for switching the operation mode based on the synchronization signal Vs transmitted from the monitoring device 2B.
 具体的に、監視装置2Bは、各センサモジュール4B_1~4B_nに一斉に送信する測定要求に同期信号Vsのパケットを含める。各センサモジュール4B_1~4B_nは、同期信号Vsを含む測定要求の受信タイミングを基準として、自身の持つタイマ423Bの時刻を同期させる。より具体的には、各センサモジュール4B_1~4B_nは、測定要求のパケットを受信したとき、タイマ423Bのカウンタ424Bのカウント値を所定値に設定する。例えば、カウンタ424Bのカウント値をリセットする。 Specifically, the monitoring device 2B includes the packet of the synchronization signal Vs in the measurement request that is simultaneously transmitted to each of the sensor modules 4B_1 to 4B_n. Each sensor module 4B_1 to 4B_n synchronizes the time of its own timer 423B with reference to the reception timing of the measurement request including the synchronization signal Vs. More specifically, each of the sensor modules 4B_1 to 4B_n sets the count value of the counter 424B of the timer 423B to a predetermined value when receiving the measurement request packet. For example, the count value of the counter 424B is reset.
 これによれば、監視装置2Bから測定要求が送信される度に、各センサモジュール4B_1~4B_nの動作モードの切替に係る時間軸を、監視装置2Bのパケット送信に係る時間軸に同期させることができるので、センサモジュール4B_1~4B_nは、適切なタイミングで動作モードの切替とパケットの送受信を行うことが可能となる。 According to this, every time a measurement request is transmitted from the monitoring device 2B, the time axis related to the switching of the operation mode of each of the sensor modules 4B_1 to 4B_n can be synchronized with the time axis related to the packet transmission of the monitoring device 2B. Therefore, the sensor modules 4B_1 to 4B_n can perform operation mode switching and packet transmission / reception at appropriate timing.
 センサモジュール4B_1~4B_nにおいて、より確実に、動作モードの切替と監視装置2Bからの要求に応じた適切な処理を実現するためには、アクティブモードおよびスリープモードに加えて、更に別の動作モードを設けることが好ましい。以下、詳細に説明する。 In the sensor modules 4B_1 to 4B_n, in addition to the active mode and the sleep mode, in addition to the active mode and the sleep mode, another operation mode is provided in order to more surely perform the switching of the operation mode and the appropriate processing according to the request from the monitoring device 2B. It is preferable to provide it. Details will be described below.
 例えば、図10に示すように、センサモジュール4B_1~4B_nは、動作モードとして、上述したアクティブモードおよびスリープモードを含む運用モードと、初期起動モードとを有することが好ましい。 For example, as shown in FIG. 10, the sensor modules 4B_1 to 4B_n preferably have an operation mode including the above-described active mode and sleep mode, and an initial startup mode as operation modes.
 ここで、初期起動モードとは、センサモジュール4Bの一部の機能の制限が解除された動作モードである。具体的には、初期起動モードは、センサモジュール4Bの少なくとも通信機能の制限が解除され、監視装置2Bとの通信が可能な動作モードである。例えば、初期動作モードは、上述したアクティブモードと同一のモードであってもよい。本実施の形態では、一例として、初期動作モードがアクティブモードと同一のモードであるとして説明する。 Here, the initial activation mode is an operation mode in which restrictions on some functions of the sensor module 4B are removed. Specifically, the initial activation mode is an operation mode in which at least the restriction of the communication function of the sensor module 4B is released and communication with the monitoring device 2B is possible. For example, the initial operation mode may be the same mode as the active mode described above. In the present embodiment, as an example, it is assumed that the initial operation mode is the same mode as the active mode.
 センサモジュール4B_1~4B_nは、先ず、初期起動モードで起動し、初期起動モードにおいて測定の実行を指示する信号、すなわち測定要求を受信した場合に、動作モードを初期起動モードから運用モードに切り替えるととともに、運用モード内の動作モード(アクティブモードおよびスリープモード)の切替のための計時を開始する。 The sensor modules 4B_1 to 4B_n are first activated in the initial activation mode, and when receiving a signal instructing execution of measurement in the initial activation mode, that is, a measurement request, the operation mode is switched from the initial activation mode to the operation mode. Then, timing for switching the operation mode (active mode and sleep mode) in the operation mode is started.
 図11は、実施の形態3に係る蓄電システム100Bにおける、各センサモジュール4B_1~4B_nの動作モードの切り替わりタイミングを示すタイミングチャートである。 FIG. 11 is a timing chart showing switching timings of the operation modes of the sensor modules 4B_1 to 4B_n in the power storage system 100B according to the third embodiment.
 先ず、図11に示すように、センサモジュール4B_1~4B_nが異なるタイミングで起動したとする。起動後(例えば、パワーオンリセット解除後)、各センサモジュール4B_1~4B_nのデータ処理装置42Bは、先ず、動作モードレジスタ4220に“初期起動モード”を指定する値を設定する。これにより、センサモジュール4B_1~4B_nは、アクティブモードと同様に、各センサモジュール4B_1~4B_nの機能の制限が解除された状態、すなわち、監視装置2Bとの通信および蓄電池セル5の測定が可能な状態となる。 First, as shown in FIG. 11, it is assumed that the sensor modules 4B_1 to 4B_n are activated at different timings. After activation (for example, after canceling the power-on reset), the data processing device 42B of each of the sensor modules 4B_1 to 4B_n first sets a value designating “initial activation mode” in the operation mode register 4220. As a result, the sensor modules 4B_1 to 4B_n are in a state in which the restriction of the functions of the sensor modules 4B_1 to 4B_n is released, that is, the state in which the communication with the monitoring device 2B and the measurement of the storage battery cell 5 are possible, as in the active mode. It becomes.
 次に、監視装置2Bが各センサモジュール4B_1~4B_nに対して一斉に測定要求を送信し、時刻t1において、各センサモジュール4B_1~4B_nがその測定要求を受信したとする。このとき、各センサモジュール4B_1~4B_nのデータ処理装置42Bにおいて、演算制御部421は、受信した測定要求のパケットに含まれる同期信号Vsに基づいてタイマ423Bのカウンタ424Bの値をリセットするとともに、動作モードレジスタ4220の設定値を“運用モード(アクティブモード)”に切り替える。これにより、各センサモジュール4B_1~4B_nと監視装置2Bとが同期し、各センサモジュール4B_1~4B_nがアクティブモードで動作する。 Next, it is assumed that the monitoring device 2B transmits measurement requests to the sensor modules 4B_1 to 4B_n all at once, and the sensor modules 4B_1 to 4B_n receive the measurement requests at time t1. At this time, in the data processing device 42B of each of the sensor modules 4B_1 to 4B_n, the arithmetic control unit 421 resets the value of the counter 424B of the timer 423B based on the synchronization signal Vs included in the received measurement request packet and operates. The setting value of the mode register 4220 is switched to “operation mode (active mode)”. Thereby, the sensor modules 4B_1 to 4B_n and the monitoring device 2B are synchronized, and the sensor modules 4B_1 to 4B_n operate in the active mode.
 その後は、実施の形態1に係るセンサモジュール4と同様に、タイマ423Bにおいて、カウンタ424Bがカウント(計時)を開始し、判定部426がカウンタ424Bのカウント値と記憶部425に設定されたアクティブモード開始時刻情報4250およびアクティブモード終了時刻情報4251とに基づいて、判定信号Vdの論理レベルを切り替える。演算制御部421は、判定信号Vdに基づいて、動作モードレジスタ4220の設定値をアクティブモードとスリープモードとの間で切り替える。 Thereafter, similarly to the sensor module 4 according to the first embodiment, in the timer 423B, the counter 424B starts counting (clocking), and the determination unit 426 sets the count value of the counter 424B and the active mode set in the storage unit 425. Based on the start time information 4250 and the active mode end time information 4251, the logic level of the determination signal Vd is switched. The arithmetic control unit 421 switches the set value of the operation mode register 4220 between the active mode and the sleep mode based on the determination signal Vd.
 以上、実施の形態3に係る蓄電システム100Bによれば、センサモジュール4Bが監視装置2Bから出力された同期信号Vsに基づいて動作モードの切替のための計時を行うので、各センサモジュール4B_1~4B_nにおける動作モードの切替に係る時間軸を、監視装置2Bにおける各センサモジュール4B_1~4B_nへの測定要求やデータ要求等のパケット送信のタイミング(時刻)の基準となる時間軸に同期させることができる。これにより、監視装置2Bからの測定要求やデータ要求に確実に応答しつつ、センサモジュール4Bの消費電力を低減することが可能となる。 As described above, according to the power storage system 100B according to the third embodiment, the sensor module 4B performs time measurement for switching the operation mode based on the synchronization signal Vs output from the monitoring device 2B, and thus each sensor module 4B_1 to 4B_n. The time axis relating to the switching of the operation mode in can be synchronized with the time axis serving as a reference for the timing (time) of packet transmission such as measurement requests and data requests to the sensor modules 4B_1 to 4B_n in the monitoring device 2B. This makes it possible to reduce the power consumption of the sensor module 4B while reliably responding to measurement requests and data requests from the monitoring device 2B.
 一般に、蓄電システムの施行時やメンテナンス時等において、センサモジュールを蓄電池セルに接続したとき、センサモジュールは、速やかに電源投入が行われて動作を開始する。そのため、蓄電システムの施工時等においては、各センサモジュールが互いに異なるタイミングで起動し、センサモジュール同士の同期が取れていない状態になる虞がある。 Generally, when a sensor module is connected to a storage battery cell at the time of enforcement or maintenance of the power storage system, the sensor module is quickly turned on and starts operating. Therefore, at the time of construction of the power storage system, etc., there is a possibility that the sensor modules are started at different timings and the sensor modules are not synchronized with each other.
 これに対し、蓄電システム100Bにおいて、センサモジュール4Bは、動作モードとして、アクティブモードおよびスリープモードを含む運用モードと、一部の機能の制限が解除された初期起動モードとを有し、初期起動モードにおいて監視装置2Bから各センサモジュール4Bに対して一斉に送信された測定要求を受信した場合に、動作モードの切替のための計時を開始するとともに、動作モードを初期起動モードから運用モードに切り替える。 On the other hand, in the power storage system 100B, the sensor module 4B has, as operation modes, an operation mode including an active mode and a sleep mode, and an initial activation mode in which some functions are released. When the measurement request transmitted simultaneously from the monitoring device 2B to the sensor modules 4B is received, the timing for switching the operation mode is started and the operation mode is switched from the initial activation mode to the operation mode.
 これによれば、蓄電システム100Aの施工時等において各センサモジュール4Bが互いに異なるタイミングで起動した場合であっても、各センサモジュール4Bが監視装置2Bから一斉送信された測定要求を受信することにより、センサモジュール4B間の同期、および各センサモジュール4Bと監視装置2Bとの同期をとることができる。これにより、各センサモジュール4Bが監視装置2Bからの測定要求やデータ要求に対してより確実に応答しつつ、センサモジュール4Bの消費電力を低減することが可能となる。 According to this, even when the sensor modules 4B are activated at different timings during construction of the power storage system 100A, etc., each sensor module 4B receives a measurement request transmitted from the monitoring device 2B. The synchronization between the sensor modules 4B and the synchronization between the sensor modules 4B and the monitoring device 2B can be achieved. Thereby, it becomes possible for each sensor module 4B to reduce the power consumption of the sensor module 4B while responding more reliably to the measurement request and data request from the monitoring device 2B.
 ≪実施の形態4≫
 図12は、実施の形態4に係る蓄電システムにおけるセンサモジュールの構成を示す図である。
<< Embodiment 4 >>
FIG. 12 is a diagram illustrating a configuration of a sensor module in the power storage system according to the fourth embodiment.
 実施の形態4に係る蓄電システム100Cは、センサモジュールのアクティブモードで動作する期間が調整可能である点において、実施の形態1に係る蓄電システム100と相違し、その他の点においては、実施の形態1に係る蓄電システム100と同様である。 The power storage system 100C according to the fourth embodiment is different from the power storage system 100 according to the first embodiment in that the period during which the sensor module operates in the active mode can be adjusted. 1 is the same as the power storage system 100 according to 1.
 一般に、蓄電池セルに取り付けられた各センサモジュールは、上述した実施の形態1乃至3のようにスリープモードを動作する期間を設けて消費電力を抑えた場合であっても、蓄電池セル自体の特性の個体差等により、システム運用中に蓄電池セル間でSOCのばらつきが生じる虞がある。 In general, each sensor module attached to a storage battery cell has characteristics of the storage battery cell itself even when the power consumption is suppressed by providing a period for operating the sleep mode as in Embodiments 1 to 3 described above. Due to individual differences or the like, there is a possibility that the SOC varies between the storage battery cells during system operation.
 そこで、実施の形態4に係る蓄電システム100Cでは、各蓄電池セル5のSOCに基づいて、各センサモジュール4C_1~4C_nのアクティブモードで動作する期間を微調整する。
 具体的には、蓄電システム100Cにおいて、監視装置2Cは、蓄電池セル5毎の充電状態に基づいて、センサモジュール4Cがアクティブモードとなる期間の補正時間Tcを算出し、センサモジュール4Cに送信する。センサモジュール4Cのデータ処理装置42Cは、受信した補正時間Tcに基づいて、アクティブモードとなる期間を変更する。
Therefore, in the power storage system 100C according to the fourth embodiment, the period in which the sensor modules 4C_1 to 4C_n operate in the active mode is finely adjusted based on the SOC of each storage battery cell 5.
Specifically, in power storage system 100 </ b> C, monitoring device 2 </ b> C calculates correction time Tc during which sensor module 4 </ b> C is in the active mode based on the state of charge for each storage battery cell 5, and transmits it to sensor module 4 </ b> C. The data processing device 42C of the sensor module 4C changes the period during which the active mode is set based on the received correction time Tc.
 図13は、センサモジュール4Cがアクティブモードとなる期間の調整方法を説明するための図である。同図には、一例として、一つのセンサモジュール4Cの第2アクティブ期間Ta2が一例として示されている。 FIG. 13 is a diagram for explaining a method of adjusting a period during which the sensor module 4C is in the active mode. In the figure, as an example, the second active period Ta2 of one sensor module 4C is shown as an example.
 例えば、センサモジュール4Cのタイマ423Cの記憶部425には、予め、第2アクティブ期間Ta2の開始時刻ts2の情報と第2アクティブ期間Ta2の終了時刻te2の情報とが記憶されているものとする。 For example, it is assumed that information on the start time ts2 of the second active period Ta2 and information on the end time te2 of the second active period Ta2 are stored in advance in the storage unit 425 of the timer 423C of the sensor module 4C.
 図13の(a)に示すように、センサモジュール4Cは、標準制御として、実施の形態1に係るセンサモジュール4と同様に、記憶部425に記憶された情報に基づいて、第2アクティブ期間Ta2を決定する。 As shown in (a) of FIG. 13, the sensor module 4 </ b> C has the second active period Ta <b> 2 based on the information stored in the storage unit 425 as standard control, similarly to the sensor module 4 according to the first embodiment. To decide.
 ここで、センサモジュール4Cに対応する蓄電池セル5のSOCと他の蓄電池セル5のSOCとの間にずれ(差)が生じた場合を考える。この場合、蓄電池セル5のSOCのずれは、蓄電池セル5自体の特性のばらつきや、その蓄電池セル5に接続されているセンサモジュール4Cとその他のセンサモジュール4Cとの間の消費電力のずれ等が原因と考えられる。 Here, let us consider a case where a deviation (difference) occurs between the SOC of the storage battery cell 5 corresponding to the sensor module 4C and the SOC of the other storage battery cell 5. In this case, the SOC shift of the storage battery cell 5 is caused by variations in characteristics of the storage battery cell 5 itself, a shift in power consumption between the sensor module 4C connected to the storage battery cell 5 and the other sensor modules 4C, or the like. Possible cause.
 そこで、監視装置2Cは、センサモジュール4CのSOCと他の蓄電池セル5のSOCとのずれ量に基づいて、センサモジュール4Cの第2アクティブ期間Ta2の補正時間Tcを算出する。監視装置2Cは、算出した補正時間Tcを、補正対象のセンサモジュール4Cに送信する。センサモジュール4Cは、例えば、受信した補正時間Tcを補正時間情報4252としてタイマ423の記憶部425に記憶するとともに、補正時間Tcに基づいてアクティブモードとなる期間の終了時刻を変更する。 Therefore, the monitoring device 2C calculates the correction time Tc of the second active period Ta2 of the sensor module 4C based on the amount of deviation between the SOC of the sensor module 4C and the SOC of the other storage battery cell 5. The monitoring device 2C transmits the calculated correction time Tc to the sensor module 4C to be corrected. For example, the sensor module 4C stores the received correction time Tc as the correction time information 4252 in the storage unit 425 of the timer 423, and changes the end time of the period in which the active mode is set based on the correction time Tc.
 例えば、センサモジュール4CのSOCが他のセンサモジュール4CのSOCよりも高い場合、監視装置2Cは、センサモジュール4Cの第2アクティブ期間Ta2を長くして蓄電池セル5の電力消費を増やすように補正時間Tcを算出し、センサモジュール4Cに送信する。 For example, when the SOC of the sensor module 4C is higher than the SOC of the other sensor module 4C, the monitoring device 2C corrects the power consumption of the storage battery cell 5 by increasing the second active period Ta2 of the sensor module 4C. Tc is calculated and transmitted to the sensor module 4C.
 センサモジュール4Cは、受信した補正時間Tcに基づいて、例えば、予め設定された第2アクティブ期間Ta2の終了時刻te2に補正時間Tcを加算した時刻(te2+Tc)を、第2アクティブ期間Ta2の終了時刻とする。すなわち、タイマ423Cの判定部426は、カウンタ424のカウント値が(te2+Tc)となったときに、判定信号Vdの論理レベルを切り替える。これにより、図13の(b)に示すように、センサモジュール4Cの第2アクティブ期間Ta2が当初の期間よりも補正時間Tcだけ長くなる。 Based on the received correction time Tc, the sensor module 4C, for example, sets the time (te2 + Tc) obtained by adding the correction time Tc to the preset end time te2 of the second active period Ta2, and the end time of the second active period Ta2. And That is, the determination unit 426 of the timer 423C switches the logic level of the determination signal Vd when the count value of the counter 424 reaches (te2 + Tc). Thereby, as shown in FIG. 13B, the second active period Ta2 of the sensor module 4C is longer than the initial period by the correction time Tc.
 一方、センサモジュール4CのSOCが他のセンサモジュール4CのSOCよりも低い場合、監視装置2Cは、センサモジュール4Cの第2アクティブ期間Ta2を短くして蓄電池セル5の電力消費を減らすように補正時間Tcを算出し、センサモジュール4Cに送信する。 On the other hand, when the SOC of the sensor module 4C is lower than the SOCs of the other sensor modules 4C, the monitoring device 2C corrects the power consumption of the storage battery cell 5 by shortening the second active period Ta2 of the sensor module 4C. Tc is calculated and transmitted to the sensor module 4C.
 センサモジュール4Cは、受信した補正時間Tcに基づいて、例えば、予め設定された第2アクティブ期間Ta2の終了時刻te2から補正時間Tcを減算した時刻(te2-Tc)を、新たな第2アクティブ期間Ta2の終了時刻とする。すなわち、タイマ423Cの判定部426は、カウンタ424のカウント値が(te2-Tc)となったときに、判定信号Vdの論理レベルを切り替える。これにより、図13の(b)に示すように、センサモジュール4Cの第2アクティブ期間Ta2が当初の期間よりも補正時間Tcだけ短くなる。 Based on the received correction time Tc, the sensor module 4C, for example, sets a time (te2-Tc) obtained by subtracting the correction time Tc from the preset end time te2 of the second active period Ta2 as a new second active period. The end time of Ta2. That is, the determination unit 426 of the timer 423C switches the logic level of the determination signal Vd when the count value of the counter 424 reaches (te2-Tc). As a result, as shown in FIG. 13B, the second active period Ta2 of the sensor module 4C is shorter than the initial period by the correction time Tc.
 その後、センサモジュール4CのSOCと他のセンサモジュール4CのSOCとのずれが解消された場合には、センサモジュール4Cは、標準制御(図13の(a)参照)に戻る。例えば、監視装置2Cが、“補正時間Tc=0”のデータをセンサモジュール4Cに送信する。 Thereafter, when the deviation between the SOC of the sensor module 4C and the SOC of the other sensor module 4C is resolved, the sensor module 4C returns to the standard control (see FIG. 13A). For example, the monitoring device 2C transmits data of “correction time Tc = 0” to the sensor module 4C.
 以上、実施の形態4に係る蓄電システム100Cによれば、監視装置2Cが、蓄電池セル5の充電状態に基づいて、当該蓄電池セル5の状態を測定するセンサモジュール4のアクティブモードとなる期間の補正時間Tcを算出して当該センサモジュール4に送信し、センサモジュール4が、受信した補正時間Tcに基づいてアクティブモードとなる期間を変更する。 As described above, according to the power storage system 100C according to the fourth embodiment, the monitoring device 2C corrects the period in which the sensor module 4 that measures the state of the storage battery cell 5 is in the active mode based on the charge state of the storage battery cell 5. The time Tc is calculated and transmitted to the sensor module 4, and the sensor module 4 changes the period during which the active mode is set based on the received correction time Tc.
 これによれば、蓄電池セル5自体の個体特性の差等によって、特定の蓄電池セル5のSOCとその他の蓄電池セル5のSOCとの間にずれが生じている場合であっても、その特定の蓄電池セル5から電源供給を受けているセンサモジュール4Cのアクティブ期間を他のセンサモジュール4Cのアクティブ期間とを相違させることができる。これにより、蓄電池セル5間の消費電力量が等しくなるように調整することができるので、蓄電池セル5間のSOCのずれを更に低減することが可能となる。 According to this, even if there is a deviation between the SOC of the specific storage battery cell 5 and the SOC of the other storage battery cell 5 due to the difference in individual characteristics of the storage battery cell 5 itself, The active period of the sensor module 4C receiving power supply from the storage battery cell 5 can be made different from the active periods of the other sensor modules 4C. Thereby, since it can adjust so that the power consumption between the storage battery cells 5 may become equal, it becomes possible to further reduce the shift | offset | difference of SOC between the storage battery cells 5. FIG.
 ≪実施の形態の拡張≫
 以上、本発明者らによってなされた発明を実施の形態に基づいて具体的に説明したが、本発明はそれに限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは言うまでもない。
<< Extended embodiment >>
Although the invention made by the present inventors has been specifically described based on the embodiments, it is needless to say that the present invention is not limited thereto and can be variously modified without departing from the gist thereof. Yes.
 例えば、上記実施の形態4において、センサモジュール4Cのアクティブモードで動作する期間の調整方法の一例として、第2アクティブ期間Ta2を調整する場合を例示したが、第1アクティブ期間Ta1についても同様に、調整することができる。 For example, in the fourth embodiment, the case where the second active period Ta2 is adjusted is illustrated as an example of the method for adjusting the period in which the sensor module 4C operates in the active mode. Can be adjusted.
 また、上記実施の形態4において、監視装置2Cが蓄電池セル5の充電状態に基づいて補正時間Tcを算出する場合を例示したが、これに限られない。例えば、各センサモジュール4のデータ処理装置42が補正時間Tcを算出してもよい。この場合、監視装置2Cが、各センサモジュール4に対して、各蓄電池セル5のSOCの情報を送信する。例えば、監視装置2Cは、データ要求のパケットに各蓄電池セル5のSOCの情報を含ませてもよいし、データ要求とは別のタイミングで、各蓄電池セル5のSOCの情報を含むパケットを各センサモジュール4に送信してもよい。 Moreover, in the said Embodiment 4, although the case where the monitoring apparatus 2C calculated correction | amendment time Tc based on the charge condition of the storage battery cell 5 was illustrated, it is not restricted to this. For example, the data processing device 42 of each sensor module 4 may calculate the correction time Tc. In this case, the monitoring device 2 </ b> C transmits information on the SOC of each storage battery cell 5 to each sensor module 4. For example, the monitoring device 2C may include the SOC information of each storage battery cell 5 in the data request packet, or each packet including the SOC information of each storage battery cell 5 at a timing different from the data request. It may be transmitted to the sensor module 4.
 また、上記実施の形態では、子機のセンサモジュール4と監視装置2との間の通信を親機のセンサモジュール3が中継する場合を例示したが、これに限れない。子機のセンサモジュール4と監視装置2との間で直接、無線通信を行ってもよい。 In the above embodiment, the case where the sensor module 3 of the parent device relays communication between the sensor module 4 of the child device and the monitoring device 2 is illustrated, but the present invention is not limited to this. You may perform radio | wireless communication directly between the sensor module 4 of a subunit | mobile_unit, and the monitoring apparatus 2. FIG.
 また、上記実施の形態3,4では、各センサモジュール4と監視装置2とを同期させる機能と、各センサモジュール4のアクティブモードとなる期間を調整する機能を実施の形態1に係る蓄電システム100に適用する場合を例示したが、これに限られず、上述したその他の実施の形態2~4にも、上述した各機能をそれぞれ適用してもよい。 Moreover, in the said Embodiment 3, 4, the function which synchronizes each sensor module 4 and the monitoring apparatus 2, and the function which adjusts the period which becomes active mode of each sensor module 4 are the electrical storage system 100 which concerns on Embodiment 1. FIG. However, the present invention is not limited to this, and the functions described above may also be applied to the other second to fourth embodiments described above.
 また、本発明に係るセンサモジュール4の制御技術は、蓄電池セル5_1~5_nから成る蓄電池列(ストリング)が複数並列に接続された蓄電池システムにも同様に適用することができる。この場合、例えば、一つのストリング毎に、本発明に係るセンサモジュール4の制御技術を適用すればよい。例えば、一つのストリング内において、センサモジュール4_1~4_nを複数のグループ6_1~6_jに分け、実施の形態2のように、各グループ毎にセンサモジュール4を制御すればよい。 Further, the control technology of the sensor module 4 according to the present invention can be similarly applied to a storage battery system in which a plurality of storage battery strings (strings) including storage battery cells 5_1 to 5_n are connected in parallel. In this case, for example, the control technology of the sensor module 4 according to the present invention may be applied for each string. For example, the sensor modules 4_1 to 4_n may be divided into a plurality of groups 6_1 to 6_j in one string, and the sensor modules 4 may be controlled for each group as in the second embodiment.
 1…上位装置(EMS)、2,2B,2C…監視装置、3…センサモジュール(親機)、4,4B,4C,4_1~4_n,4_k,4B_1~4B_n,4C_1~4C_n…センサモジュール、5,5_1~5_n,5_k…蓄電池セル、6,6_1~6_j…グループ、40…センサ部、41…通信装置、42,42B,42C…データ処理装置、100…蓄電システム、100A…蓄電システム、100B…蓄電システム、100C…蓄電システム、101…蓄電サブシステム、401…電圧センサ、402…温度センサ、421…演算制御部、423,423B,423C…タイマ、424…カウンタ、425…記憶部、426…判定部、4220…動作モードレジスタ、4250…アクティブモード開始時刻情報、4251…アクティブモード終了時刻情報、4252…補正時間情報、Vs…同期信号。 DESCRIPTION OF SYMBOLS 1 ... High-order apparatus (EMS), 2, 2B, 2C ... Monitoring apparatus, 3 ... Sensor module (parent machine), 4, 4B, 4C, 4_1-4_n, 4_k, 4B_1-4B_n, 4C_1-4C_n ... Sensor module, 5 , 5_1 to 5_n, 5_k ... storage cell, 6, 6_1 to 6_j ... group, 40 ... sensor unit, 41 ... communication device, 42, 42B, 42C ... data processing device, 100 ... power storage system, 100A ... power storage system, 100B ... Power storage system, 100C ... Power storage system, 101 ... Power storage subsystem, 401 ... Voltage sensor, 402 ... Temperature sensor, 421 ... Operation control unit, 423, 423B, 423C ... Timer, 424 ... Counter, 425 ... Storage unit, 426 ... Determination , 4220 ... operation mode register, 4250 ... active mode start time information, 4251 ... Active mode end time information, 4252 ... correction time information, Vs ... synchronization signal.

Claims (21)

  1.  複数の蓄電池セルと、
     前記複数の蓄電池セル毎に対応して設けられ、対応する前記蓄電池セルからの電源供給によって動作するとともに、対応する前記蓄電池セルの状態を測定するセンサモジュールと、
     夫々の前記センサモジュールに対して、前記蓄電池セルの状態の測定の実行を指示する測定要求と測定結果の送信を指示するデータ要求とを送信する監視装置と、を備え、
     前記センサモジュールは、動作モードとして、一部の機能が制限されたスリープモードと前記一部の機能の制限が解除されたアクティブモードとを有し、指定された期間に前記アクティブモードとなり、それ以外の期間に前記スリープモードとなる
     ことを特徴とする蓄電システム。
    A plurality of storage battery cells;
    A sensor module that is provided corresponding to each of the plurality of storage battery cells, operates by supplying power from the corresponding storage battery cell, and measures the state of the corresponding storage battery cell;
    A monitoring device that transmits a measurement request for instructing execution of measurement of the state of the storage battery cell and a data request for instructing transmission of a measurement result to each of the sensor modules;
    The sensor module has, as operation modes, a sleep mode in which some functions are limited and an active mode in which the restrictions on some functions are released, and the active mode is set in a specified period. The power storage system is characterized in that the sleep mode is entered during the period.
  2.  請求項1に記載の蓄電システムにおいて、
     前記センサモジュールは、複数のグループに分類され、分類された前記グループ毎に、前記アクティブモードとなるべき共通の期間が指定される
     ことを特徴とする蓄電システム。
    The power storage system according to claim 1,
    The sensor module is classified into a plurality of groups, and a common period to be in the active mode is designated for each of the classified groups.
  3.  請求項1または2に記載の蓄電システムにおいて、
     前記センサモジュールは、前記蓄電池セルの状態の測定を指示する測定要求を前記監視装置から受信する予定時刻と前記測定要求に応じた測定に要する処理時間とを含む第1アクティブ期間に前記アクティブモードで動作するともに、前記測定要求に応じた測定の測定結果を含む測定データの送信を指示するデータ要求を前記監視装置から受信する予定時刻と前記データ要求に応じた前記測定データの送信に要する処理時間とを含む第2アクティブ期間に前記アクティブモードで動作し、前記第1アクティブ期間および前記第2アクティブ期間以外の期間に前記スリープモードで動作する
     ことを特徴とする蓄電システム。
    The power storage system according to claim 1 or 2,
    The sensor module is in the active mode in a first active period including a scheduled time for receiving a measurement request instructing measurement of the state of the storage battery cell from the monitoring device and a processing time required for measurement according to the measurement request. A scheduled time for receiving a data request for instructing transmission of measurement data including a measurement result of measurement corresponding to the measurement request and a processing time required for transmission of the measurement data corresponding to the data request The power storage system is characterized in that it operates in the active mode during a second active period including: and operates in the sleep mode during a period other than the first active period and the second active period.
  4.  請求項3に記載の蓄電システムにおいて、
     夫々の前記センサモジュールの前記第1アクティブ期間は、互いに等しくなるように設定され、夫々の前記センサモジュールの前記第2アクティブ期間は、互いに等しくなるように設定されている
     ことを特徴とする蓄電システム。
    The power storage system according to claim 3,
    The first active periods of the sensor modules are set to be equal to each other, and the second active periods of the sensor modules are set to be equal to each other. .
  5.  請求項3または4に記載の蓄電システムにおいて、
     前記監視装置は、同期信号を出力し、
     前記センサモジュールは、前記同期信号に基づいて、前記動作モードの切替のための計時を行う
     ことを特徴とする蓄電システム。
    The power storage system according to claim 3 or 4,
    The monitoring device outputs a synchronization signal;
    The power storage system, wherein the sensor module performs time measurement for switching the operation mode based on the synchronization signal.
  6.  請求項5に記載の蓄電システムにおいて、
     前記測定要求は前記同期信号を含み、
     前記監視装置は、前記測定要求をそれぞれの前記センサモジュールに対して一斉に送信し、
     前記センサモジュールは、前記動作モードとして、前記アクティブモードおよび前記スリープモードを含む運用モードと、前記一部の機能の制限が解除された初期起動モードとを有し、
     前記センサモジュールは、前記初期起動モードで起動し、前記初期起動モードにおいて前記測定の実行を指示する信号を受信した場合に、前記動作モードの切替のための計時を開始するとともに、前記動作モードを前記初期起動モードから前記運用モードに切り替える
     ことを特徴とする蓄電システム。
    The power storage system according to claim 5,
    The measurement request includes the synchronization signal;
    The monitoring device transmits the measurement request to the sensor modules all at once,
    The sensor module has, as the operation mode, an operation mode including the active mode and the sleep mode, and an initial activation mode in which the restriction on some of the functions is released,
    When the sensor module starts in the initial startup mode and receives a signal instructing execution of the measurement in the initial startup mode, the sensor module starts timing for switching the operation mode, and sets the operation mode. Switching from the initial startup mode to the operation mode.
  7.  請求項3乃至6の何れか一項に記載の蓄電システムにおいて、
     前記監視装置は、前記蓄電池セルの充電状態に基づいて補正時間を算出し、前記センサモジュールに送信し、
     前記センサモジュールは、前記補正時間に基づいて、予め設定された前記アクティブモードとなる期間を変更する
     ことを特徴とする蓄電システム。
    The power storage system according to any one of claims 3 to 6,
    The monitoring device calculates a correction time based on the state of charge of the storage battery cell, and transmits the correction time to the sensor module,
    The power storage system, wherein the sensor module changes a preset period of the active mode based on the correction time.
  8.  複数の蓄電池セルと、
     前記複数の蓄電池セル毎に対応して設けられ、対応する前記蓄電池セルの状態を測定するセンサモジュールと、
     夫々の前記センサモジュールに対して、前記蓄電池セルの状態の測定の実行を指示する測定要求と測定結果の送信を指示するデータ要求とを送信する監視装置と、を備え、
     前記監視装置は、それぞれの前記センサモジュールに対して一斉に前記測定要求を送信する
     ことを特徴とする蓄電システム。
    A plurality of storage battery cells;
    A sensor module that is provided corresponding to each of the plurality of storage battery cells and measures the state of the corresponding storage battery cell;
    A monitoring device that transmits a measurement request for instructing execution of measurement of the state of the storage battery cell and a data request for instructing transmission of a measurement result to each of the sensor modules;
    The power storage system, wherein the monitoring device transmits the measurement request to the sensor modules all at once.
  9.  蓄電池セルの状態を測定するセンサモジュールであって、
     前記センサモジュールは、動作モードとして、一部の機能が制限されたスリープモードと、前記一部の機能の制限が解除されたアクティブモードとを有し、指定された期間に前記アクティブモードとなり、それ以外の期間に前記スリープモードとなる
     ことを特徴とするセンサモジュール。
    A sensor module for measuring the state of a storage battery cell,
    The sensor module has, as operation modes, a sleep mode in which a part of functions is restricted and an active mode in which the restriction of the part of functions is released, and enters the active mode during a specified period, The sensor module is in the sleep mode during a period other than the above.
  10.  請求項9に記載のセンサモジュールにおいて、
     前記蓄電池セルの状態を検知するセンサ部と、
     外部機器と通信を行うための通信装置と、
     データ処理を行うデータ処理装置とを有し、
     前記データ処理装置は、
     計時を行うタイマと、
     前記タイマによる測定時刻に基づいて前記動作モードの切り替えを行うとともに前記通信装置および前記センサ部を制御する演算制御部と、を含み、
     前記演算制御部は、前記スリープモードにおいて、前記通信装置を停止させるとともに前記データ処理装置の機能の一部を停止し、前記スリープモード中に前記タイマの前記測定時刻が第1判定基準時刻と一致した場合、前記動作モードを前記スリープモードから前記アクティブモードに切り替えて、停止していた前記データ処理装置の機能を復帰させるとともに、前記通信装置を起動し、前記アクティブモードにおいて前記タイマの前記測定時刻が第2判定基準時刻と一致した場合に、前記アクティブモードから前記スリープモードに切り替える
     ことを特徴とするセンサモジュール。
    The sensor module according to claim 9, wherein
    A sensor unit for detecting a state of the storage battery cell;
    A communication device for communicating with an external device;
    A data processing device for performing data processing,
    The data processing device includes:
    A timer for timing,
    An operation control unit for switching the operation mode based on the measurement time by the timer and controlling the communication device and the sensor unit,
    The arithmetic control unit stops the communication device and part of the function of the data processing device in the sleep mode, and the measurement time of the timer coincides with the first determination reference time during the sleep mode. In this case, the operation mode is switched from the sleep mode to the active mode, the function of the stopped data processing device is restored, the communication device is activated, and the measurement time of the timer in the active mode Is switched from the active mode to the sleep mode when the time coincides with the second determination reference time.
  11.  請求項10に記載のセンサモジュールにおいて、
     前記タイマは、前記センサモジュールの外部から入力された同期信号に同期して計時を行う
     ことを特徴とするセンサモジュール。
    The sensor module according to claim 10,
    The sensor module measures time in synchronization with a synchronization signal input from the outside of the sensor module.
  12.  請求項11に記載のセンサモジュールにおいて、
     前記動作モードとして、前記アクティブモードおよび前記スリープモードを含む運用モードと、前記一部の機能の制限が解除された初期起動モードとを有し、
     前記演算制御部は、前記センサモジュールの起動後、前記動作モードを前記初期起動モードとし、前記初期起動モードにおいて前記蓄電池セルの状態の測定を指示する測定要求を受信した場合に、前記動作モードを前記初期起動モードから前記運用モードに切り替えるとともに、前記動作モードの切替のための計時を開始する
     ことを特徴とするセンサモジュール。
    The sensor module according to claim 11,
    As the operation mode, there are an operation mode including the active mode and the sleep mode, and an initial activation mode in which the restriction on some of the functions is released,
    The arithmetic control unit sets the operation mode to the initial activation mode after activation of the sensor module, and receives the measurement request instructing measurement of the state of the storage battery cell in the initial activation mode. The sensor module characterized by switching from the initial startup mode to the operation mode and starting timing for switching the operation mode.
  13.  請求項10乃至12の何れか一項に記載のセンサモジュールにおいて、
     前記タイマの前記第2判定基準時刻は、前記センサモジュールによる測定対象の前記蓄電池セルの充電状態に基づいて算出された補正時間に基づいて、変更可能である
     ことを特徴とするセンサモジュール。
    The sensor module according to any one of claims 10 to 12,
    The second determination reference time of the timer can be changed based on a correction time calculated based on a state of charge of the storage battery cell to be measured by the sensor module.
  14.  複数の蓄電池セルと、前記複数の蓄電池セル毎に対応して設けられ、対応する前記蓄電池セルからの電源供給によって動作するとともに、対応する前記蓄電池セルの状態を測定するセンサモジュールと、夫々の前記センサモジュールに対して、前記蓄電池セルの状態の測定の実行を指示する測定要求と測定結果の送信を指示するデータ要求とを送信する監視装置とを備える蓄電システムの制御方法であって、
     前記センサモジュールは、動作モードとして、一部の機能が制限されたスリープモードと前記一部の機能の制限が解除されたアクティブモードとを有し、 前記センサモジュールが、指定された期間に前記アクティブモードとなる第1ステップと、
     前記センサモジュールが、前記指定された期間以外の期間に前記スリープモードとなる第2ステップとを含む
     ことを特徴とする蓄電システムの制御方法。
    A plurality of storage battery cells, a sensor module that is provided corresponding to each of the plurality of storage battery cells, operates by supplying power from the corresponding storage battery cell, and measures the state of the corresponding storage battery cell, A method for controlling an energy storage system comprising a monitoring device that transmits a measurement request for instructing execution of measurement of the state of the storage battery cell and a data request for instructing transmission of a measurement result to a sensor module,
    The sensor module has, as operation modes, a sleep mode in which a part of functions is restricted and an active mode in which the restriction of the part of functions is released, and the sensor module is active during a specified period. A first step that becomes a mode;
    And a second step in which the sensor module enters the sleep mode during a period other than the designated period.
  15.  請求項14に記載の蓄電システムの制御方法において、
     前記センサモジュールは、複数のグループに分類され、分類された前記グループ毎に、前記アクティブモードとなるべき共通の期間が指定される
     ことを特徴とする蓄電システムの制御方法。
    The method of controlling a power storage system according to claim 14,
    The sensor module is classified into a plurality of groups, and a common period to be in the active mode is designated for each of the classified groups.
  16.  請求項14または15に記載の蓄電システムの制御方法において、
     前記第1ステップは、前記センサモジュールが、前記蓄電池セルの状態の測定を指示する測定要求を前記監視装置から受信する予定時刻と前記測定要求に応じた測定に要する処理時間とを含む第1アクティブ期間に前記アクティブモードで動作する第3ステップと、前記センサモジュールが、前記測定要求に応じた測定の測定結果を含む測定データの送信を指示するデータ要求を前記監視装置から受信する予定時刻と前記データ要求に応じた前記測定データの送信に要する処理時間とを含む第2アクティブ期間に前記アクティブモードで動作する第4ステップとを含み、
     前記第2ステップは、前記第1アクティブ期間および前記第2アクティブ期間以外の期間に前記スリープモードで動作する第5ステップを含む
     ことを特徴とする蓄電システムの制御方法。
    In the control method of the electrical storage system according to claim 14 or 15,
    The first step includes a first active time including a scheduled time at which the sensor module receives a measurement request instructing measurement of the state of the storage battery cell from the monitoring device and a processing time required for measurement according to the measurement request. A third step of operating in the active mode in a period, a scheduled time at which the sensor module receives from the monitoring device a data request instructing transmission of measurement data including a measurement result of the measurement according to the measurement request; and A fourth step of operating in the active mode in a second active period including a processing time required for transmitting the measurement data in response to a data request;
    The second step includes a fifth step of operating in the sleep mode during a period other than the first active period and the second active period.
  17.  請求項16に記載の蓄電システムの制御方法において、
     夫々の前記センサモジュールの前記第1アクティブ期間は、互いに等しくなるように設定され、夫々の前記センサモジュールの前記第2アクティブ期間は、互いに等しくなるように設定されている
     ことを特徴とする蓄電システムの制御方法。
    The power storage system control method according to claim 16,
    The first active periods of the sensor modules are set to be equal to each other, and the second active periods of the sensor modules are set to be equal to each other. Control method.
  18.  請求項16または17に記載の蓄電システムの制御方法において、
     前記監視装置が、同期信号を出力する第6ステップと、
     前記センサモジュールが、前記同期信号に基づいて、前記動作モードの切替のための計時を行う第7ステップとを含む
     ことを特徴とする蓄電システムの制御方法。
    In the storage system control method according to claim 16 or 17,
    A sixth step in which the monitoring device outputs a synchronization signal;
    And a seventh step in which the sensor module performs a time measurement for switching the operation mode based on the synchronization signal.
  19.  請求項18に記載の蓄電システムの制御方法において、
     前記測定要求は前記同期信号を含み、
     前記センサモジュールは、前記動作モードとして、前記アクティブモードおよび前記スリープモードを含む運用モードと、前記一部の機能の制限が解除された初期起動モードとを有し、
     前記監視装置が、前記測定要求をそれぞれの前記センサモジュールに対して一斉に送信する第8ステップと、
     前記センサモジュールが、前記初期起動モードで起動する第9ステップと、 前記センサモジュールが、前記初期起動モードにおいて前記測定の実行を指示する信号を受信した場合に、前記動作モードの切替のための計時を開始するとともに、前記動作モードを前記初期起動モードから前記運用モードに切り替える第9ステップとを更に含む
     ことを特徴とする蓄電システムの制御方法。
    The power storage system control method according to claim 18,
    The measurement request includes the synchronization signal;
    The sensor module has, as the operation mode, an operation mode including the active mode and the sleep mode, and an initial activation mode in which the restriction on some of the functions is released,
    An eighth step in which the monitoring device transmits the measurement request to the sensor modules simultaneously;
    A ninth step in which the sensor module is activated in the initial activation mode; and a timing for switching the operation mode when the sensor module receives a signal instructing execution of the measurement in the initial activation mode. And a ninth step of switching the operation mode from the initial startup mode to the operation mode.
  20.  請求項16乃至19の何れか一項に記載の蓄電システムの制御方法において、
     前記監視装置が、前記蓄電池セルの充電状態に基づいて補正時間を算出して前記センサモジュールに送信する第10ステップと、
     前記センサモジュールが、前記補正時間に基づいて、予め設定された前記アクティブモードとなる期間を変更する第11ステップとを含む
     ことを特徴とする蓄電システムの制御方法。
    In the storage system control method according to any one of claims 16 to 19,
    A tenth step in which the monitoring device calculates a correction time based on a state of charge of the storage battery cell and transmits the correction time to the sensor module;
    An eleventh step in which the sensor module changes a preset period of the active mode based on the correction time.
  21.  複数の蓄電池セルと、前記複数の蓄電池セル毎に対応して設けられ、対応する前記蓄電池セルの状態を測定するセンサモジュールと、夫々の前記センサモジュールに対して、前記蓄電池セルの状態の測定の実行を指示する測定要求と測定結果の送信を指示するデータ要求とを送信する監視装置とを備えた蓄電システムの制御方法であって、
     前記監視装置が、それぞれの前記センサモジュールに対して一斉に前記測定要求を送信するステップを含む
     ことを特徴とする蓄電システムの制御方法。
    A plurality of storage battery cells, a sensor module that is provided corresponding to each of the plurality of storage battery cells and measures the state of the corresponding storage battery cell, and for each of the sensor modules, measurement of the state of the storage battery cell A power storage system control method comprising a monitoring device that transmits a measurement request for instructing execution and a data request for instructing transmission of a measurement result,
    The monitoring method includes a step of transmitting the measurement request to the sensor modules all at once.
PCT/JP2019/012332 2018-03-26 2019-03-25 Electricity storage system, sensor module, and control method for electricity storage system WO2019188888A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980022868.2A CN112042044A (en) 2018-03-26 2019-03-25 Power storage system, sensor module, and method for controlling power storage system
JP2020510023A JP7189937B2 (en) 2018-03-26 2019-03-25 Power storage system, sensor module, and control method for power storage system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-058885 2018-03-26
JP2018058885 2018-03-26

Publications (1)

Publication Number Publication Date
WO2019188888A1 true WO2019188888A1 (en) 2019-10-03

Family

ID=68061809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012332 WO2019188888A1 (en) 2018-03-26 2019-03-25 Electricity storage system, sensor module, and control method for electricity storage system

Country Status (3)

Country Link
JP (1) JP7189937B2 (en)
CN (1) CN112042044A (en)
WO (1) WO2019188888A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022024836A1 (en) * 2020-07-28 2022-02-03 パナソニックIpマネジメント株式会社 Management device, power supply system, electrically driven moving body, and management method
WO2023210655A1 (en) * 2022-04-27 2023-11-02 ヌヴォトンテクノロジージャパン株式会社 Battery management system
JP7435957B2 (en) 2020-07-10 2024-02-21 エルジー エナジー ソリューション リミテッド Battery management device and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116314973B (en) * 2023-05-25 2023-08-08 北京新研创能科技有限公司 Fuel cell low-power consumption scheduling operation method and device based on big data

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012182886A (en) * 2011-02-28 2012-09-20 Yazaki Corp Voltage detector and method of reducing variation in dark current
JP2016090416A (en) * 2014-11-06 2016-05-23 日立化成株式会社 Storage battery condition monitoring system, storage battery condition monitoring method, and storage battery condition monitoring program
JP2016096623A (en) * 2014-11-13 2016-05-26 株式会社日立製作所 Radio battery system, and cell controller and battery controller used for the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3982366B2 (en) * 2002-08-30 2007-09-26 株式会社デンソー Wireless communication system
JP6007385B2 (en) * 2012-04-09 2016-10-12 エリーパワー株式会社 Power storage device, control method therefor, and power supply device
JP6210542B2 (en) * 2013-09-30 2017-10-11 古河電気工業株式会社 Power storage device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012182886A (en) * 2011-02-28 2012-09-20 Yazaki Corp Voltage detector and method of reducing variation in dark current
JP2016090416A (en) * 2014-11-06 2016-05-23 日立化成株式会社 Storage battery condition monitoring system, storage battery condition monitoring method, and storage battery condition monitoring program
JP2016096623A (en) * 2014-11-13 2016-05-26 株式会社日立製作所 Radio battery system, and cell controller and battery controller used for the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7435957B2 (en) 2020-07-10 2024-02-21 エルジー エナジー ソリューション リミテッド Battery management device and method
WO2022024836A1 (en) * 2020-07-28 2022-02-03 パナソニックIpマネジメント株式会社 Management device, power supply system, electrically driven moving body, and management method
WO2023210655A1 (en) * 2022-04-27 2023-11-02 ヌヴォトンテクノロジージャパン株式会社 Battery management system

Also Published As

Publication number Publication date
CN112042044A (en) 2020-12-04
JP7189937B2 (en) 2022-12-14
JPWO2019188888A1 (en) 2021-04-01

Similar Documents

Publication Publication Date Title
WO2019188888A1 (en) Electricity storage system, sensor module, and control method for electricity storage system
JP6888772B2 (en) Wireless battery management system and battery pack including it
JP4770522B2 (en) Battery pack capacity adjustment device
EP2400626B1 (en) Battery control circuit
JP2000294298A (en) Power supply unit for several battery packs
JP2020504421A (en) Battery management unit and battery pack including the same
WO2017071573A1 (en) Synchronous sampling method and sampling system for battery management system
US20210265845A1 (en) Battery management device and integrated circuit
US20210410222A1 (en) Battery monitoring apparatus
JP7040313B2 (en) Battery monitoring system
WO2020105303A1 (en) Cell-controller, battery controller, battery management system, and battery system
EP3961392A1 (en) Battery management system and control method thereof
EP2693617B1 (en) Power supply apparatus, processing apparatus, information processing system, and method for controlling power supply
JP6974272B2 (en) Power supply, power supply control, power supply control method, and power supply system
JP7456573B2 (en) Battery management systems and their communication methods
JP2011010448A (en) Control unit
EP4095977B1 (en) Slave bms for diagnosing an error of a battery module and battery pack comprising same slave bms
US11462913B2 (en) Power control system, power control device and controlled device
JP6808742B2 (en) Wireless battery system
WO2020129378A1 (en) Power supply system, diagnosis device, and uninterruptible power supply device
JP2017017945A (en) Battery pack monitoring device and battery pack monitoring system
KR102653632B1 (en) IoT complex sensor module for applying various sensors
US20240069110A1 (en) Multiple primary nodes for wireless battery management system robustness
US20220376537A1 (en) Battery management system and battery management method
CN117917578A (en) Battery monitoring system, battery monitoring device, measurement device, battery monitoring method, and non-transitory computer-readable recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19774375

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020510023

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19774375

Country of ref document: EP

Kind code of ref document: A1