WO2019188661A1 - Ultrasonic distance measurement device and ultrasonic distance measurement method - Google Patents

Ultrasonic distance measurement device and ultrasonic distance measurement method Download PDF

Info

Publication number
WO2019188661A1
WO2019188661A1 PCT/JP2019/011701 JP2019011701W WO2019188661A1 WO 2019188661 A1 WO2019188661 A1 WO 2019188661A1 JP 2019011701 W JP2019011701 W JP 2019011701W WO 2019188661 A1 WO2019188661 A1 WO 2019188661A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
template
ultrasonic
waveform
distance
Prior art date
Application number
PCT/JP2019/011701
Other languages
French (fr)
Japanese (ja)
Inventor
米澤 良
Original Assignee
株式会社ブイ・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブイ・テクノロジー filed Critical 株式会社ブイ・テクノロジー
Priority to CN201980015779.5A priority Critical patent/CN111788456B/en
Publication of WO2019188661A1 publication Critical patent/WO2019188661A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/08Systems for measuring distance only

Definitions

  • the present invention relates to an ultrasonic distance measuring device and an ultrasonic distance measuring method.
  • an ultrasonic wave is transmitted from an ultrasonic sensor to an object, an ultrasonic wave reflected by the object is received again by the ultrasonic sensor, a delay time or a phase is measured from the received signal, and the delay
  • An ultrasonic rangefinder is disclosed in which a moving average process or a weighted moving average process is performed on a measurement value of time or phase, and a distance between an ultrasonic sensor and an object is obtained based on the result.
  • the distance is accurate to about ⁇ 0.1 mm. Is said to be measurable. However, for example, when an inspection is performed by imaging the surface of a semiconductor substrate, an accuracy of about ⁇ 0.1 mm is not sufficient, and it is required to measure the distance with higher accuracy.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide an ultrasonic distance measuring device and an ultrasonic distance measuring method capable of measuring a distance with high accuracy.
  • an ultrasonic distance measuring device includes, for example, a sensor that transmits ultrasonic waves toward an object and receives ultrasonic waves reflected by the object; A signal processing unit that measures a distance between the sensor and the object based on a correlation between a received waveform of the ultrasonic wave received by the sensor and a template, the sensor having a constant cycle, and a cycle After a rectangular wave having a first cycle number of about 10 to 15 cycles, an ultrasonic wave is transmitted using a transmission signal having a frequency of 0, and the signal processing unit is the received waveform under a predetermined condition
  • a template that holds, as the template, a first waveform obtained by extracting a basic waveform from the rising edge by a second cycle number less than the first cycle number, or a second waveform obtained by multiplying the amplitude of the first waveform by a predetermined amount. Characterized in that it has a holding portion.
  • the frequency is increased based on a transmission signal having a frequency of 0.
  • a sound wave is transmitted and an ultrasonic wave reflected by the object is received.
  • the distance between the sensor and the object is measured based on the correlation with the template that is the second waveform obtained by multiplying the amplitude of the first waveform by a predetermined value.
  • a part of the received waveform under a predetermined condition is held in advance as a template, and the distance is measured with high accuracy by comparing the actual received waveform obtained by reflection from the measurement object with the template. be able to.
  • the frequency is set to 0, so that the resonance of the sensor is stopped and the ultrasonic wave is transmitted and received by the same sensor, Distances can be measured to objects that are separated by a short distance (eg, 40 mm).
  • the signal processing unit obtains a correlation value by subtracting the received waveform and the template and adding the absolute value of the difference, and when the correlation value is the smallest, the received waveform and the template are
  • the rising time of the received waveform may be determined as coincident, and the distance between the sensor and the object may be measured based on the time. Thereby, the rising timing of the received waveform can be accurately known, and the distance can be measured with high accuracy.
  • the signal processing unit may include a template adjustment unit that adjusts the amplitude of the template.
  • a template adjustment unit that adjusts the amplitude of the template.
  • the template adjustment unit may adjust the amplitude of the template so that the peak value of the template matches the peak value of the received waveform. Thereby, even if the peak value of the received waveform, that is, the amplitude changes, the correlation between the received waveform and the template can be obtained correctly.
  • the senor may perform sampling at a frequency approximately 20 times the frequency of the first waveform.
  • the distance with high accuracy for example, when the frequency of the ultrasonic wave transmitted and received by the sensor is 300 kHz and the sampling frequency is 6 MHz, the resolution is 30 ⁇ m which is half of the ultrasonic wavelength 1/20 (one way)). Can be measured.
  • a wavelength measurement object provided at a predetermined distance from the sensor is provided, and the signal processing unit transmits the ultrasonic wave from the sensor, and then transmits the transmitted ultrasonic wave to the wavelength measurement
  • the wavelength of the ultrasonic wave transmitted from the sensor is obtained based on the time until it is reflected by the object to be received and received by the sensor and the predetermined distance, and the sensor is obtained based on the obtained wavelength.
  • the distance between the object and the object The wavelength of the ultrasonic wave changes minutely when the temperature changes, but by obtaining the wavelength of the ultrasonic wave transmitted from the sensor and obtaining the distance based on the obtained wavelength, the distance can be accurately determined regardless of the temperature change. Can be measured.
  • the signal processing unit determines that the reception waveform and the template are at a point where the reception waveform and the center line coincide with each other in the vicinity of the time point when the correlation between the reception waveform and the template is highest.
  • the distance between the sensor and the object may be measured as coincident. Thereby, the distance can be measured with higher accuracy.
  • the apparatus further includes a reflection plate, the sensor transmits ultrasonic waves obliquely toward the object, and the reflection plate transmits an ultrasonic path between the sensor and the reflection plate, and the reflection plate.
  • the ultrasonic wave transmitted from the sensor and reflected by the object is reflected so that the ultrasonic path between the sensor and the sensor matches, and the signal processing unit includes the sensor, the reflector,
  • the distance between the sensor and the object may be obtained based on the distance between the sensor and the incident angle of the ultrasonic wave transmitted from the sensor to the object. Thereby, the measurement accuracy of the distance between the sensor and the object can be further increased.
  • the apparatus further includes a housing, the sensor includes a frame, the frame is provided with a metal weight, and an elastic member is provided between the frame and the housing.
  • the elastic member may sandwich the frame. Thereby, the vibration of the sensor can be easily settled, and reception can be performed immediately after transmission.
  • the ultrasonic distance measuring method has a frequency of 0 after a rectangular wave having a constant cycle and a first cycle number of about 10 to 15 cycles.
  • An ultrasonic wave is transmitted from the sensor using the transmission signal to be received, the ultrasonic wave reflected by the object is received by the sensor, the received waveform of the ultrasonic wave received by the sensor, a template held in advance,
  • the first waveform extracted by the second number of cycles less than the first number of cycles from the rising of the reflected waveform of the received waveform of the ultrasonic wave received by the sensor, or the vibration of the first waveform is characterized in that the predetermined multiple the template a second waveform. Thereby, the distance can be measured with high accuracy. Further, it is possible to measure the distance to an object separated by a short distance (for example, 40 mm) while performing transmission and reception of ultrasonic waves with the same sensor.
  • the distance can be measured with high accuracy.
  • FIG. 1 is a block diagram showing a schematic configuration of an ultrasonic distance measuring device 1 according to a first embodiment.
  • 1 is a diagram illustrating an example of a circuit configuration of an ultrasonic sensor 10.
  • FIG. It is a figure which shows typically the process of the received signal in the ultrasonic distance measuring device. It is an example of a basic waveform. This is an example of a template Ta having 9 cycles. It is an example of template Tb whose number of cycles is 4.
  • the figure which shows an example of the correlation value which is a difference between the received waveform when the distance to the object O is 125 mm and the template T1a based on the template Ta with 9 cycles and adds the absolute value of the difference. It is.
  • FIG. 8 is an enlarged view of the horizontal axis in the vicinity of the circle in FIG. 7 as a result shown in FIG.
  • the figure which shows an example of the correlation value which is a result of adding the absolute value of the difference by subtracting the received waveform when the distance to the object O is 125 mm and the template T1b based on the template Tb having a cycle number of 4 It is.
  • FIG. 10 is an enlarged view of the horizontal axis in the vicinity of the circle in FIG. 9 as a result shown in FIG. 9. It is a figure which shows the relationship between the received waveform and the template T1b based on the template Tb, and the rising part of the received waveform is enlarged and displayed.
  • FIG. 18 is an enlarged view of the vicinity of a cross point ⁇ ′ of the received waveform shown in FIG. 17.
  • the present invention measures the distance from an object using ultrasonic waves.
  • An ultrasonic wave is an elastic vibration wave (sound wave) having a high frequency that cannot be heard by the human ear, generally, a frequency exceeding 20 kHz, and higher than the audible range. Sounds that are not intended to be heard in are also included in the ultrasound.
  • FIG. 1 is a block diagram showing a schematic configuration of an ultrasonic distance measuring apparatus 1 according to the first embodiment.
  • the ultrasonic distance measuring device 1 mainly includes an ultrasonic sensor 10, an ultrasonic sensor driving unit 15, a signal processing unit 20, and an output unit 30.
  • the ultrasonic sensor 10 is electrically connected to a power source and vibrates when an electric signal is given to generate ultrasonic waves.
  • the ultrasonic sensor 10 includes a sensor (transducer) 103 (see FIG. 2), transmits an ultrasonic wave toward the object O based on a transmission signal (detailed later), and is reflected by the object O. Receive ultrasound.
  • a sensor (transducer) 103 see FIG. 2
  • Receive ultrasound In this embodiment, an ultrasonic wave having a frequency of 300 kHz is used. This frequency of ultrasonic waves is characterized by high directivity.
  • the frequency of the ultrasonic wave used by the ultrasonic distance measuring device 1 is not limited to this.
  • the ultrasonic wave transmitted from the ultrasonic sensor 10 is reflected by the object O and reaches the ultrasonic sensor 10 (see the two-dot chain line in FIG. 1). That is, the ultrasonic waves reciprocate between the ultrasonic sensor 10 and the object O (double pass).
  • the ultrasonic sensor 10 converts the ultrasonic wave received by the sensor 103 into an electric signal.
  • the ultrasonic sensor driving unit 15 mainly includes a high frequency driving circuit 16 and a high frequency generation logic unit 17.
  • the high frequency drive circuit 16 includes a D / A converter 101a (see FIG. 2).
  • the high-frequency generation logic unit 17 drives the high-frequency drive circuit 16 so as to apply a DC (frequency 0) signal after vibrating the D / A converter for about 10 to 15 cycles with a rectangular wave having a frequency of 300 kHz.
  • the ultrasonic sensor driving unit 15 includes a switch 18 and switches whether the ultrasonic sensor 10 is connected to the ultrasonic sensor driving unit 15 (drive) or connected to the signal processing unit 20 (reception). .
  • FIG. 2 is a diagram illustrating an example of a circuit configuration of the ultrasonic sensor 10 and the ultrasonic sensor driving unit 15.
  • the ultrasonic sensor 10 is a multi-channel sensor having a large number of sensors 103 (103a to 103h).
  • the ultrasonic sensor driving unit 15 mainly includes a high frequency driving circuit 101, semiconductor relays 102 and 105, and a receiving circuit 104.
  • photo MOS relays are used for the semiconductor relays 102 and 105.
  • the high frequency drive circuit 101 includes a D / A converter 101a, a transformer 101b, and an amplifier 101c, and generates a transmission signal.
  • the high frequency drive circuit 101 vibrates the D / A converter 101a with a rectangular wave having a frequency of 300 kHz for about 10 to 15 cycles, and then stops the vibration by applying a DC (frequency 0) signal. That is, the transmission signal has a constant period, and after a rectangular wave having a first cycle number of about 10 to 15 cycles (for example, in the present embodiment, the first cycle number is 15 cycles), This signal has a frequency of zero.
  • the transmission signal from the D / A converter 101a is input to the semiconductor relay 102 via the transformer 101b.
  • the semiconductor relay 102 switches so that a large number of sensors 103 are sequentially driven and received.
  • the sensor 103 has eight channels and includes eight sensors 103a to 103h, but the number of sensors 103 (number of channels) is not limited to this.
  • the semiconductor relay 102 sequentially drives and receives the sensor 103 approximately every 1 msec. For example, when a 20-channel sensor is sequentially driven and received approximately every 1 msec, distance measurement is performed in each channel of the sensor approximately every 20 msec.
  • an ultrasonic wave based on the transmission signal is transmitted from the sensor 103.
  • the transmission signal includes 15 cycles of the rectangular wave
  • the sensor 103 outputs 15 cycles of ultrasonic waves having a frequency of 300 kHz.
  • the transmission signal is a rectangular wave, but the ultrasonic wave output from the sensor 103 does not increase instantaneously and does not become a rectangular wave.
  • the waveform of the ultrasonic wave actually output from the sensor 103 has a shape like a sine wave, and has a small amplitude close to 0 at first, and the amplitude gradually increases with time.
  • a signal having a frequency of 0 is output for a certain time (for example, 10 clocks), thereby stopping the vibration of the vibrating sensor 103. Accordingly, the ultrasonic wave can be received by the sensor 103 immediately after the ultrasonic wave is transmitted from the sensor 103.
  • the amplifier 101c When a signal having a frequency of 0 is output, the amplifier 101c is disabled, a current is passed through the photoelectric element of the semiconductor relay 105 to turn on the semiconductor relay 105, and the sensor 103 is switched from the transmitting side to the receiving side (switch 18 (FIG. 1)).
  • the ultrasonic wave received by the sensor 103 is output to the receiving circuit 104, and an electric signal is generated by the receiving circuit 104.
  • the receiving circuit 104 has a band-pass filter 104a that allows only a predetermined range of frequencies (including 300 kHz in this case) to pass.
  • the signal that has passed through the bandpass filter 104a passes through the A / D converter 104b and is output to the signal processing unit 20 (see FIG. 1) as a received signal.
  • a limiter 104c is provided before and after the band pass filter 104a. This is to prevent the sensor 103 from resonating at 300 kHz when the semiconductor relay 105 is turned on, and to prevent a large signal from entering the amplifier or the A / D converter 104b.
  • the limiter 104c a Schottky barrier diode having a forward voltage as small as about 0.3V is used.
  • the signal processing unit 20 receives the reception signal output from the ultrasonic sensor 10.
  • the signal processing unit 20 mainly includes a template holding unit 21, a template adjustment unit 22, a correlation calculation unit 23, a distance calculation unit 24, and a temperature correction unit 25.
  • the template holding unit 21 holds a template.
  • the template adjustment unit 22 adjusts the amplitude of the template held by the template holding unit 21.
  • the correlation calculation unit 23 obtains a correlation between the received signal and the template held by the template holding unit 21 or the template whose amplitude is adjusted by the template adjustment unit 22.
  • FIG. 3 is a diagram schematically illustrating received signal processing in the ultrasonic distance measuring apparatus 1.
  • the ultrasonic wave received by the sensor 103 is converted into a reception signal by the reception circuit 104 and input to the correlation calculation unit 23.
  • the reception circuit 104 outputs a 6 MHz clock signal and continuously generates a reception signal. 6 MHz is 20 times the frequency of ultrasonic waves 300 kHz received by the sensor 103. That is, the reception circuit 104 acquires a reception signal 20 times during one period of the received ultrasonic wave (20 times oversampling).
  • a plurality of reception signals obtained continuously are connected to generate a reception waveform.
  • the reception waveform generated by the reception circuit 104 is input to the shift register 231 of the correlation calculation unit 23.
  • the correlation calculation part 23 acquires the received waveform by ultrasonic reception of a fixed period.
  • the shift register 231 has 80 D flip-flops 231-1, 231-2, 231-3,... 231-80.
  • 80 means 20 times oversampling (detailed later) ⁇ 4 cycles, which matches the number of templates T recorded in the template holding unit 21 (detailed later).
  • the A / D converter 104b digitizes an analog signal with a resolution of 16 bits
  • each of the D flip-flops 231-1 to 231-80 includes 16 D flip-flops.
  • One D flip-flop 231-1 to 231-80 holds an ultrasonic reception result (reception level) for one clock.
  • the reception level is a value obtained by A / D converting the reception signal for one clock.
  • the next reception level is input from the A / D converter 104b of the reception circuit 104 to the shift register 231, the reception level held in the shift register 231 is forwarded to the right (for example, held in the D flip-flop 231-1).
  • the received reception level is sent to the D flip-flop 231-2), and the new reception level input from the reception circuit 104 is held in the shift register 231.
  • the shift register 231 holds the reception level having the same length as the template T.
  • the template holding unit 21 holds the template T.
  • the template T consists of template level information for 80 clocks.
  • the template level information is a value of each clock when A / D conversion is performed for 80 rising portions of a standard received waveform (basic waveform).
  • the template level information is read from the template holding unit 21 to the correlation calculating unit 23 and held in the shift register 232.
  • the shift register 232 has 80 D flip-flops 232-1 to 232-80, and the shift register 232 holds template level information for 80 clocks.
  • each of the D flip-flops 231-1 to 231-80 includes 16 D flip-flops
  • each of the D flip-flops 232-1 to 232-80 also includes 16 D flip-flops.
  • the template T will be described.
  • the template is obtained by extracting a basic waveform, which is a received waveform under a predetermined condition, from the rising edge by several cycles (however, less than the number of transmitted ultrasonic cycles).
  • the basic waveform includes a waveform including sensor reverberation immediately after transmission (for example, a waveform when the distance to the object O is about 40 mm), and a waveform with a small value and a low S / N ratio (for example, the object O). 4), and a clean waveform as shown in FIG.
  • FIG. 4 is an example of a basic waveform.
  • the basic waveform is acquired assuming that the distance to the object O is 75 mm under the predetermined condition.
  • the horizontal axis in FIG. 4 is the number of clocks (that is, time).
  • the basic waveform is divided into a region A having a high peak value and a region B having a low peak value thereafter.
  • Region A is a period in which ultrasonic waves transmitted mainly by 15 cycles of rectangular waves are received.
  • the resonance frequency of the region A is 300 kHz (same as the frequency of the transmitted ultrasonic wave), and the period of the basic waveform in the region A is substantially the same as the period of the rectangular wave of the transmission signal.
  • the amplitude reaches a peak in about nine cycles from the rising edge.
  • the resonance frequency of the region B depends on the sensor 103 and is slightly different from 300 kHz. That is, the period of the basic waveform in region B is slightly different from the period of the rectangular wave of the transmission signal.
  • the received waveform varies depending on conditions such as the distance to the object O, the variation of the sensor 103, the cable length from the sensor 103, and the like.
  • the amplitude (width in the height direction) of the received waveform changes as a whole with respect to the basic waveform, and the characteristics of the waveform do not change due to a change in conditions due to a change in distance to the object O or the like.
  • the received waveform shifts to the rear side of the position of the basic waveform shown in FIG. 4, and the amplitude is generally smaller than that of the basic waveform shown in FIG.
  • region A and region B have a resonance frequency of 300 kHz, but region B does not have a resonance frequency of 300 kHz (varies depending on conditions), and region A has an amplitude of about 9 cycles from the rise. Reaching the peak does not change.
  • the rising portion of the basic waveform (a part of the region A) is held in advance as a template, and the actual received waveform is compared with the template, so that the rising portion of the actual received waveform, that is, the object O Find the distance to exactly.
  • FIG. 5 and 6 show examples of the template T in which the rising portion of the received waveform shown in FIG. 4 is extracted.
  • FIG. 5 is an example of a template Ta with a cycle number of 9
  • FIG. 6 is an example of a template Tb with a cycle number of 4.
  • Nine cycles is the number of cycles until the received waveform rises and reaches the peak value, and 4 cycles is about half the number of cycles until the received waveform rises and reaches the peak value.
  • the number of cycles extracted as a template from the rising edge of the received waveform acquired in advance may be smaller than the number of cycles included in the transmission signal (here, 15 cycles), and is not limited to 4 cycles or 9 cycles.
  • the template holding unit 21 holds one template T, which may be the template Ta or the template Tb, but does not hold both the templates Ta and Tb.
  • the template adjustment unit 22 multiplies the amplitude of the template T by a predetermined amount, and mainly includes a peak hold circuit 22a and a template adjustment input unit 22b used by the user to adjust the magnification of the template T.
  • the peak hold circuit 22a holds the peak value of the received waveform held in the last D flip-flop 231-80.
  • the template adjustment input unit 22b can change the magnification in 10 stages from “0” to “9”, and when the template adjustment input unit 22b is set to “5” (“5” is an example).
  • the magnification is configured to be 1.
  • the template adjustment unit 22 holds the peak hold circuit 22a when no change in magnification is input from the template adjustment input unit 22b (here, the template adjustment input unit 22b is set to “5”).
  • the peak value is output to the correlation calculation unit 23. That is, the template adjustment unit 22 adjusts the amplitude of the template T (the value of the template level information) so that the peak value when the template T is obtained matches the peak value of the received signal.
  • the template adjustment unit 22 multiplies the peak value held by the peak hold circuit 22a by the magnification input by the template adjustment input unit 22b. It outputs to the correlation calculation part 23.
  • the correlation calculation unit 23 obtains a correlation between the received waveform and the template T (or template T1).
  • the received level held in each D flip-flop 231-1 to 231-80 of the shift register 231 and the template level information held in each D flip-flop 232-1 to 232-80 of the shift register 232 are used as templates.
  • Correlation with the level information of the template T1 multiplied by the magnification input from the adjustment unit 22 is obtained.
  • the template T1 is obtained by multiplying the amplitude of the template T by a predetermined value. When the predetermined multiple is 1, the template T and the template T1 are the same.
  • the received waveform and the template T1 are differentiated, and a correlation value that is a result of adding the absolute values of the differences is obtained, and it is assumed that the received waveform and the template T1 match when the correlation value is the smallest.
  • the correlation value may be obtained using a value obtained by squaring the difference between the received waveform and the template T1.
  • FIG. 7 shows a correlation value obtained by subtracting the received waveform when the distance to the object O is 125 mm and the template T1a based on the template Ta having 9 cycles and adding the absolute value of the difference. It is a figure which shows an example.
  • the horizontal axis represents time
  • the vertical axis represents the correlation value. It can be seen that the received waveform matches the template T1a at the position where the correlation value is the smallest (see the circle in FIG. 7) or is closest to the match.
  • FIG. 8 is an enlarged view of the horizontal axis in the vicinity of the circle in FIG. 7 of the result shown in FIG.
  • the points in FIG. 8 indicate the timing at which the reception circuit 104 oversamples 20 times.
  • Three points with small correlation values are arranged, and the correlation value is the smallest at the central point ⁇ among them. As a result, it can be seen that the received waveform matches the template T1a at the timing of the point ⁇ .
  • FIG. 9 shows a correlation value that is a result of adding the absolute value of the difference between the received waveform when the distance to the object O is 125 mm and the template T1b based on the template Tb having a cycle number of 4. It is a figure which shows an example.
  • the horizontal axis represents time
  • the vertical axis represents the correlation value. It can be seen that the received waveform matches the template T1b at the position where the correlation value is the smallest (see the circle in FIG. 9) or is closest to the match.
  • FIG. 10 is an enlarged view of the horizontal axis in the vicinity of the circle in FIG. 9 of the result shown in FIG.
  • the points in FIG. 10 indicate the timing at which the reception circuit 104 oversamples 20 times. It can be seen that the correlation value is the smallest at the timing of point ⁇ , and the received waveform matches the template T1b.
  • the correlation calculation unit 23 calculates when the received signal and the template T1 are the best match.
  • the ninth cycle of the received waveform is finished at the timing of the point ⁇
  • the fourth cycle of the received waveform is finished at the timing of the point ⁇ .
  • the distance calculation unit 24 calculates the distance between the ultrasonic sensor 10 and the object O based on the result calculated by the correlation calculation unit 23.
  • FIG. 11 is a diagram showing the relationship between the received waveform and the template T1b based on the template Tb. The rising portion of the received waveform is enlarged and displayed.
  • the received waveform matches the end of template T1b (fourth cycle).
  • the received waveform and the template T1b are overlapped so that the end of the template T1b is positioned at the point ⁇ , and the point ⁇ where the outline of the template T1b (see the dotted line in FIG. 1) intersects is set as the rising edge of the received waveform.
  • the timing of rising is accurately known.
  • the distance calculation unit 24 assumes that the reception of the ultrasonic wave is started at the rising edge (point ⁇ ) of the received waveform thus obtained, and represents the rising time as the number of oversampling (here, as shown in Expression (1)).
  • the received waveform and the template T1 may not match well due to variations in measurement conditions such as the distance between the ultrasonic sensor 10 and the object O.
  • the reason why the received waveform and the template T1 do not match well is, for example, that the resonance frequency of the sensor 103 is greatly deviated from 300 kHz, that the cable length to the sensor 103 is long and the series resistance is large, and the distance to the object O. May be close to 40 mm, and vibration during excitation may interfere with the reflected wave.
  • the template T1 is tuned by inputting the magnification via the template adjustment input unit 22b shown in FIG.
  • FIG. 12 is a diagram illustrating an example of the correlation value between the received waveform and the template T1 when the magnification input from the template adjustment input unit 22b is changed.
  • FIG. 12A is input from the template adjustment input unit 22b. This is an example of a correlation value when the magnification is smaller than 1 (here, the setting of the template adjustment input unit 22b is “1”), and (B) is when the magnification input from the template adjustment input unit 22b is 1 (here Is an example of a correlation value in which the setting of the template adjustment input unit 22b is “5”), and (C) is a case where the magnification input from the template adjustment input unit 22b is greater than 1 (here, the template adjustment input unit 22b). Is an example of a correlation value of “9”).
  • the waveform of the correlation value changes by changing the magnification applied to the amplitude of the template T in this way. Accordingly, when the waveform of the correlation value is a so-called “double bottom”, the magnification input via the template adjustment input unit 22b is changed to make the waveform of the correlation value a so-called “single bottom”. Thereby, when the correlation value is the smallest, that is, the timing when the received waveform and the template T1 are in good agreement or closest to each other can be obtained.
  • the temperature correction unit 25 corrects the wavelength change of the ultrasonic wave due to the temperature change.
  • the wavelength of the ultrasonic wave changes minutely as the temperature changes.
  • the temperature correction unit 25 obtains the wavelength of the ultrasonic wave actually transmitted / received by the ultrasonic sensor 10, and the distance calculation unit 24 obtains the distance using the wavelength obtained by the temperature correction unit 25. Ask.
  • the temperature correction unit 25 may include a thermometer that measures the temperature, and obtain the wavelength of the ultrasonic wave at the temperature measured by the thermometer based on information indicating the relationship between the temperature and the wavelength.
  • the temperature correction unit 25 may calculate the wavelength of the ultrasonic wave actually transmitted from the ultrasonic sensor 10.
  • an ultrasonic wave is transmitted using one of a plurality of sensors 103 (see FIG. 2), and is a wavelength measurement target provided at a predetermined distance (referred to as distance D) from the sensor 103.
  • the ultrasonic wave reflected by the object is received using the same sensor 103.
  • the correlation calculation unit 23 and the distance calculation unit 24 measure a time t from when the ultrasonic wave is transmitted from the sensor 103, reflected by the wavelength measurement target unit and received by the sensor 103, and the temperature correction unit 25 Based on t and the distance D, the wavelength of the ultrasonic wave transmitted from the ultrasonic sensor 10 can be obtained.
  • the correlation calculation unit 23 and the distance calculation unit 24 can measure the distance more accurately by obtaining the distance to the object O based on the wavelength calculated by the temperature correction unit 25.
  • the output unit 30 outputs the distance obtained by the distance calculation unit 24 to an external device such as a display device.
  • the display device is a known general display device, and displays the output distance.
  • the configuration of the ultrasonic distance measuring device 1 shown in FIG. 1 has described the main configuration in describing the features of the present embodiment, and does not exclude, for example, the configuration of a general information processing device. . Further, the functional configuration shown in FIG. 1 is classified for easy understanding of the configuration of the ultrasonic distance measuring device 1, and the classification method and names of the constituent elements are not limited to the form shown in FIG. The configuration of the ultrasonic distance measuring device 1 may be classified into more components according to the processing content, or one component may execute processing of a plurality of components.
  • FIG. 13 is a diagram showing an example of the autofocus device 5 including the ultrasonic distance measuring device 1 according to the present invention.
  • the autofocus device 5 is a form of an ultrasonic distance measuring device.
  • the autofocus device 5 mainly includes an ultrasonic distance measuring device 1 (ultrasonic sensor 10, signal processing unit 20 (not shown in FIG. 13) and output unit 30 (not shown in FIG. 13)), a reflecting plate 51, An imaging device 52.
  • the ultrasonic sensor 10 transmits ultrasonic waves obliquely toward the object O, receives the ultrasonic waves reflected by the reflecting plate 51 and reflected by the object O.
  • the ultrasonic path between the ultrasonic sensor 10 and the reflection plate 51 coincides with the ultrasonic path between the reflection plate 51 and the ultrasonic sensor 10 (see the arrow in FIG. 13). Provided in position.
  • the signal processing unit 20 Based on the distance between the ultrasonic sensor 10 and the reflection plate 51 and the incident angle ⁇ of the ultrasonic wave transmitted from the ultrasonic sensor 10 to the object O, the signal processing unit 20 is connected to the ultrasonic sensor 10 and the object O. The distance h is obtained.
  • the output unit 30 outputs the measured distance h to the imaging device 52.
  • the imaging device 52 performs a focusing process based on the distance h. Since the focusing process is known, the description thereof is omitted.
  • the ultrasonic waves are transmitted obliquely toward the object O, and the ultrasonic waves reciprocate between the ultrasonic sensor 10 and the reflection plate 51 (double path), and therefore the ultrasonic sensor 10 and the reflection plate 51.
  • the change in the distance h when the distance L is changed to L / 2 ⁇ cos ⁇ , and the change in the distance h is significantly smaller than the change in the distance L.
  • 45 degrees
  • FIG. 14 is a diagram schematically showing the relationship between the change in the distance h and the change in the distance L.
  • (A) shows the case where ⁇ is 45 degrees
  • (B) shows the case where ⁇ is 0 degrees.
  • Surfaces O1, O2, and O3 are surfaces of the object O
  • the position of the surface O1 indicates a case where the distance between the ultrasonic sensor 10 and the object O is a distance h
  • the position of the surface O2 is an ultrasonic wave.
  • the case where the distance between the sensor 10 and the object O is a distance h + ⁇ h is shown
  • the position of the surface O3 shows the case where the distance between the ultrasonic sensor 10 and the object O is a distance h + ⁇ 2h.
  • the ultrasonic path is indicated by a two-dot chain line.
  • the distances to the surfaces O1, O2, and O3 are calculated from the distances between the ultrasonic sensor 10 and the reflection plate 53.
  • the distance h changes by ⁇ h
  • the distance from the ultrasonic sensor 10 to the reflecting plate 53 changes by 2 ⁇ ⁇ 2 ⁇ ⁇ h.
  • the ultrasonic path is 2 (reciprocal). It changes by ⁇ h. Therefore, in the case shown in FIG. 14A, the distance can be obtained more finely by ⁇ 2 times than in the case shown in FIG.
  • a part of an actual reception waveform under a predetermined condition is held in advance as a template T, and the reception waveform based on the ultrasonic wave reflected by the object O, the template T (template T1), Since the distance is obtained based on the correlation, the distance can be measured with high accuracy.
  • the template adjustment unit 22 that adjusts the amplitude of the template T is provided, even if the amplitude of the received waveform changes due to a change in measurement conditions such as the distance to the object O, the received waveform And the template T can be correctly obtained. Therefore, the distance to the object O can be accurately measured regardless of changes in the measurement conditions.
  • the frequency of the ultrasonic wave transmitted and received from the ultrasonic sensor 10 is set to 300 kHz, and the sampling frequency of the received signal is set to 6 MHz (one cycle of 300 kHz ultrasonic wave is sampled 20 times).
  • the distance can be measured with a high accuracy of 30 ⁇ m as determined by the following mathematical formula (2).
  • the ultrasonic sensor 10 transmits and receives ultrasonic waves, and performs double-pass measurement (reciprocal measurement) in which the ultrasonic waves reciprocate between the ultrasonic sensor 10 and the object O.
  • double-pass measurement reciprocate between the ultrasonic sensor 10 and the object O.
  • the influence of the wind speed in the ultrasonic path can be eliminated, and the distance to the object O can be accurately measured.
  • the sensor 103 By applying a DC (frequency 0) signal after oscillating the D / A converter for about 10 to 15 cycles with a rectangular wave with a frequency of 300 kHz, the sensor 103 is braked to stop the shaking of the sensor 103. it can. As a result, it is possible to receive the ultrasonic wave at the sensor 103 immediately after transmitting the ultrasonic wave from the sensor 103. Therefore, it is possible to measure a short distance (for example, 40 mm) while performing transmission and reception of ultrasonic waves with the same sensor 103.
  • a short distance for example, 40 mm
  • the received signal is acquired at 20 times the frequency of the received ultrasonic wave of 300 kHz. However, if the received signal is acquired (oversampling) at a frequency of about 10 times or higher than the received ultrasonic wave. Good. However, the oversampling number is preferably an integer multiple.
  • the signal processing unit 20 includes the template adjustment unit 22, but the template adjustment unit 22 is not essential.
  • the template adjustment unit 22 is unnecessary, and the template holding unit 21 may create the template T using the received waveform at the time of focusing and hold it.
  • FIG. 15 is a diagram schematically illustrating an example of the attachment structure of the ultrasonic sensor 10.
  • the ultrasonic sensor 10 has a frame 10a.
  • An elastic member 111 (for example, an O-ring) is provided between the casing 113 and the frame body 10a, and the ultrasonic sensor 10 is provided inside the casing 113 by the elastic member 111 being elastically deformed. In other words, the ultrasonic sensor 10 is held by the elastic member 111.
  • the elastic member 111 contacts the side surface 10c adjacent to the surface 10b on which the vibration surface of the sensor 103 is provided.
  • a metal weight is provided on the frame body 10a so that the vibration of the ultrasonic sensor 10 is easily settled.
  • a weight a lead sheet 112 which is a sheet-like member formed of lead is used, and the lead sheet 112 coated with an adhesive is wound around the side surface 10c.
  • an adhesive having elasticity for example, a modified silicone resin-based adhesive such as an acrylic modified silicone resin
  • vibration energy can be efficiently converted into heat, and switching between transmission and reception is accelerated. Therefore, it is possible to receive an ultrasonic wave immediately after transmitting an ultrasonic wave from the sensor 103, that is, to measure a short distance (for example, 40 mm).
  • the received waveform and the template T1 coincide with each other, or the distance to the object O is determined as being closest to each other.
  • the method for obtaining the distance is not limited to this.
  • the distance to the object O is assumed that the received waveform and the template T1 coincide with each other at the point where the received waveform coincides with the center line, that is, the so-called cross point, or the closest match.
  • This is the desired form.
  • the ultrasonic distance measuring device 2 according to the second embodiment will be described.
  • symbol is attached
  • FIG. 16 is a block diagram showing a schematic configuration of the ultrasonic distance measuring apparatus 2 according to the second embodiment.
  • the ultrasonic distance measuring device 1 mainly includes an ultrasonic sensor 10, a signal processing unit 20A, and an output unit 30.
  • the signal processing unit 20A mainly includes a template holding unit 21, a template adjustment unit 22, a correlation calculation unit 23, a distance calculation unit 24A, and a temperature correction unit 25.
  • the distance calculation unit 24A calculates a cross point based on the result calculated by the correlation calculation unit 23, and calculates the distance between the ultrasonic sensor 10 and the object O based on the cross point.
  • FIG. 17 is a diagram in which the rising portion of the received waveform is displayed in an enlarged manner in the horizontal direction.
  • the point ⁇ in FIG. 17 is the point with the smallest correlation value in FIGS.
  • Point ⁇ 1 is a measurement point at the timing next to point ⁇ .
  • the cross point ⁇ ′ is located between the point ⁇ and the point ⁇ 1, and is a cross point in the vicinity of the point ⁇ (at the time when the correlation value is the smallest).
  • FIG. 18 is an enlarged view of the vicinity of the cross point ⁇ ′ of the received waveform shown in FIG.
  • the distance in the height direction between the point ⁇ and the cross point ⁇ ′ is a
  • the distance in the height direction between the point ⁇ ′ and the point ⁇ 1 is b
  • the lateral distance between the point ⁇ and the cross point ⁇ ′ is a1.
  • the horizontal distance between the point ⁇ ′ and the point ⁇ 1 is b1
  • a: b a1: b1
  • the distance a1 is calculated using the following equation (3).
  • 30 ⁇ m is 1/20 (the number of oversampling) of half of the wavelength of 300 kHz ultrasonic waves (because of the double path), and corresponds to half of the wavelength of ultrasonic waves of 6 MHz.
  • the distance calculating unit 24 assumes that the received waveform rises at a position where the end of the received waveform and the template T1 coincide with each other at the timing of the cross point ⁇ ′ and the outline of the template T1 intersects. Then, the distance calculation unit 24 assumes that the reception of the ultrasonic wave is started at the position where the reception waveform obtained in this way rises, and calculates the distance between the ultrasonic sensor 10 and the object O as shown in Equation (4). calculate.
  • the distance since the distance is obtained based on the cross point, the distance can be measured with higher accuracy.
  • substantially is a concept that includes not only exactly the same but also errors and deformations that do not lose the identity.
  • “substantially coincidence” is not limited to the case of exact coincidence.
  • the expression is simply vertical, coincidence, etc., not only strictly vertical, coincidence, but also the case of substantially vertical, substantially coincidence, etc. is included.
  • the “neighborhood” is a concept indicating that when it is in the vicinity of A, for example, it is near A and may or may not include A.
  • Ultrasonic distance measuring device 5 Autofocus device 10: Ultrasonic sensor 10a: Frame 10b: Surface 10c: Side surface 20, 20A: Signal processing unit 21: Template holding unit 22: Template adjustment unit 22a: Peak hold Circuit 22b: Template adjustment input unit 23: Correlation calculation unit 24, 24A: Distance calculation unit 25: Temperature correction unit 30: Output unit 51: Reflecting plate 52: Imaging device 101: High frequency drive circuit 101a: D / A converter 101b: Transformer 101c: amplifier 102, 105: semiconductor relay 103: sensor 104: receiving circuit 104a: band-pass filter 104b: A / D converter 111: elastic member 112: lead sheet 113: housings 231, 232: shift registers 231-1 to 231 80,232-1 ⁇ 232-80: D flip-flop

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

The present invention is capable of highly accurate distance measurement. The present invention transmits ultrasound on the basis of a transmission signal in which the frequency becomes zero after a square wave having a fixed period and a first number of cycles from approximately 10 to 15, and receives ultrasound reflected by an object. The present invention measures the distance between a sensor and the object on the basis of the correlation between an ultrasound reception waveform received by the sensor and a template that is either a first waveform in which a second number of cycles less than the first number of cycles from the start of a base waveform that is a reception waveform under prescribed conditions are extracted or a second waveform resulting from multiplying the amplitude of the first waveform by a prescribed factor.

Description

超音波距離測定装置及び超音波距離測定方法Ultrasonic distance measuring device and ultrasonic distance measuring method
 本発明は、超音波距離測定装置及び超音波距離測定方法に関する。 The present invention relates to an ultrasonic distance measuring device and an ultrasonic distance measuring method.
 特許文献1には、超音波センサから対象物へ向け超音波を送信し、対象物によって反射された超音波を再び超音波センサで受信し、受信した信号から遅延時間または位相を計測し、遅延時間または位相の計測値に移動平均処理または加重移動平均処理を施し、その結果に基づいて超音波センサと対象物との距離を求める超音波距離計が開示されている。 In Patent Document 1, an ultrasonic wave is transmitted from an ultrasonic sensor to an object, an ultrasonic wave reflected by the object is received again by the ultrasonic sensor, a delay time or a phase is measured from the received signal, and the delay An ultrasonic rangefinder is disclosed in which a moving average process or a weighted moving average process is performed on a measurement value of time or phase, and a distance between an ultrasonic sensor and an object is obtained based on the result.
特開2005-291857号公報JP 2005-291857 A
 特許文献1に記載の発明のように、受信信号に移動平均処理または加重移動平均処理を施した結果に基づいて距離を求める場合には、一般的には、±0.1mm程度の精度で距離が測定可能であるといわれている。しかしながら、例えば、半導体基板の表面を撮像して検査を行う場合には、±0.1mm程度の精度では十分ではなく、更に高い精度で距離を測定することが求められる。 When the distance is obtained based on the result of performing the moving average process or the weighted moving average process on the received signal as in the invention described in Patent Document 1, generally, the distance is accurate to about ± 0.1 mm. Is said to be measurable. However, for example, when an inspection is performed by imaging the surface of a semiconductor substrate, an accuracy of about ± 0.1 mm is not sufficient, and it is required to measure the distance with higher accuracy.
 本発明はこのような事情に鑑みてなされたもので、高い精度で距離を測定することができる超音波距離測定装置及び超音波距離測定方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object thereof is to provide an ultrasonic distance measuring device and an ultrasonic distance measuring method capable of measuring a distance with high accuracy.
 上記課題を解決するために、本発明に係る超音波距離測定装置は、例えば、超音波を対象物へ向けて送信し、かつ、前記対象物で反射された超音波を受信するセンサと、前記センサで受信した超音波の受信波形と、テンプレートとの相関に基づいて、前記センサと前記対象物との距離を測定する信号処理部と、を備え、前記センサは、周期が一定であり、サイクル数が10~15サイクル程度の第1サイクル数である矩形波の後、周波数が0となる送信信号を用いて超音波を送信し、前記信号処理部は、所定条件下における前記受信波形である基本波形を立ち上がりから前記第1サイクル数より少ない第2サイクル数分だけ抜き出した第1波形、又は前記第1波形の振幅を所定倍した第2波形を前記テンプレートとして保持するテンプレート保持部を有することを特徴とする。 In order to solve the above-described problem, an ultrasonic distance measuring device according to the present invention includes, for example, a sensor that transmits ultrasonic waves toward an object and receives ultrasonic waves reflected by the object; A signal processing unit that measures a distance between the sensor and the object based on a correlation between a received waveform of the ultrasonic wave received by the sensor and a template, the sensor having a constant cycle, and a cycle After a rectangular wave having a first cycle number of about 10 to 15 cycles, an ultrasonic wave is transmitted using a transmission signal having a frequency of 0, and the signal processing unit is the received waveform under a predetermined condition A template that holds, as the template, a first waveform obtained by extracting a basic waveform from the rising edge by a second cycle number less than the first cycle number, or a second waveform obtained by multiplying the amplitude of the first waveform by a predetermined amount. Characterized in that it has a holding portion.
 本発明に係る超音波距離測定装置によれば、周期が一定であり、サイクル数が10~15サイクル程度の第1サイクル数である矩形波の後、周波数が0となる送信信号に基づいて超音波を送信し、対象物で反射した超音波を受信する。そして、センサで受信した超音波の受信波形と、基本波形(所定条件下における受信波形)を立ち上がりから第2サイクル数(第2サイクル数<第1サイクル数)分だけ抜き出した第1波形、又は第1波形の振幅を所定倍にした第2波形であるテンプレートとの相関に基づいて、センサと対象物との距離を測定する。このように、所定条件下における受信波形の一部を予めテンプレートとして保持し、測定対象物で反射して得られた実際の受信波形とテンプレートとを比較することで、高い精度で距離を測定することができる。また、サイクル数が10~15サイクル程度の第1サイクル数である矩形波の後、周波数が0とすることで、センサの共振を止め、超音波の送信及び受信を同一のセンサで行いつつ、短い距離(例えば、40mm)だけ離れた対象物までに距離を測定することができる。 According to the ultrasonic distance measuring device according to the present invention, after a rectangular wave having a constant cycle and a first cycle number of about 10 to 15 cycles, the frequency is increased based on a transmission signal having a frequency of 0. A sound wave is transmitted and an ultrasonic wave reflected by the object is received. Then, the first waveform obtained by extracting the reception waveform of the ultrasonic wave received by the sensor and the basic waveform (reception waveform under a predetermined condition) by the second cycle number (second cycle number <first cycle number) from the rising edge, or The distance between the sensor and the object is measured based on the correlation with the template that is the second waveform obtained by multiplying the amplitude of the first waveform by a predetermined value. In this way, a part of the received waveform under a predetermined condition is held in advance as a template, and the distance is measured with high accuracy by comparing the actual received waveform obtained by reflection from the measurement object with the template. be able to. In addition, after the rectangular wave having the first cycle number of about 10 to 15 cycles, the frequency is set to 0, so that the resonance of the sensor is stopped and the ultrasonic wave is transmitted and received by the same sensor, Distances can be measured to objects that are separated by a short distance (eg, 40 mm).
 ここで、前記信号処理部は、前記受信波形と前記テンプレートとを差分し、当該差分の絶対値を加算して相関値を求め、前記相関値が一番小さいときに前記受信波形と前記テンプレートが一致したとして前記受信波形の立ち上がりの時刻を求め、当該時刻に基づいて前記センサと前記対象物との距離を測定してもよい。これにより、受信波形の立ち上がりのタイミングを正確に知ることでき、高い精度で距離を測定することができる。 Here, the signal processing unit obtains a correlation value by subtracting the received waveform and the template and adding the absolute value of the difference, and when the correlation value is the smallest, the received waveform and the template are The rising time of the received waveform may be determined as coincident, and the distance between the sensor and the object may be measured based on the time. Thereby, the rising timing of the received waveform can be accurately known, and the distance can be measured with high accuracy.
 ここで、前記信号処理部は、前記テンプレートの振幅を調整するテンプレート調整部を有してもよい。これにより、対象物Oまでの距離等の条件により受信波形の振幅が変化したとしても、受信波形とテンプレートとの相関を正しく得ることができる。 Here, the signal processing unit may include a template adjustment unit that adjusts the amplitude of the template. Thereby, even if the amplitude of the received waveform changes due to conditions such as the distance to the object O, the correlation between the received waveform and the template can be obtained correctly.
 ここで、前記テンプレート調整部は、前記テンプレートのピーク値と、前記受信波形のピーク値とが一致するように前記テンプレートの振幅を調整してもよい。これにより、受信波形のピーク値、すなわち振幅が変化したとしても、受信波形とテンプレートとの相関を正しく得ることができる。 Here, the template adjustment unit may adjust the amplitude of the template so that the peak value of the template matches the peak value of the received waveform. Thereby, even if the peak value of the received waveform, that is, the amplitude changes, the correlation between the received waveform and the template can be obtained correctly.
 ここで、前記センサは、前記第1波形の周波数の略20倍の周波数でサンプリングを行ってもよい。これにより、高い精度(例えばセンサで送受信する超音波の周波数が300kHzであり、サンプリング周波数が6MHzであるすると、超音波の波長の1/20の半分(片道分)である30μmの分解能)で距離を測定することができる。 Here, the sensor may perform sampling at a frequency approximately 20 times the frequency of the first waveform. Thus, the distance with high accuracy (for example, when the frequency of the ultrasonic wave transmitted and received by the sensor is 300 kHz and the sampling frequency is 6 MHz, the resolution is 30 μm which is half of the ultrasonic wavelength 1/20 (one way)). Can be measured.
 ここで、前記センサから所定の距離だけ離れて設けられた波長測定用対象物を備え、前記信号処理部は、前記センサから超音波が送信されてから、当該送信された超音波が前記波長測定用対象物で反射されて前記センサで受信されるまでの時間と、前記所定の距離とに基づいて前記センサから送信された超音波の波長を求め、当該求められた波長に基づいて、前記センサと前記対象物との距離を求めてもよい。超音波の波長は温度が変化すると微小に変化するが、センサから送信された超音波の波長を求め、求められた波長に基づいて距離を求めることで、温度変化によらず高い精度で距離を測定することができる。 Here, a wavelength measurement object provided at a predetermined distance from the sensor is provided, and the signal processing unit transmits the ultrasonic wave from the sensor, and then transmits the transmitted ultrasonic wave to the wavelength measurement The wavelength of the ultrasonic wave transmitted from the sensor is obtained based on the time until it is reflected by the object to be received and received by the sensor and the predetermined distance, and the sensor is obtained based on the obtained wavelength. And the distance between the object and the object. The wavelength of the ultrasonic wave changes minutely when the temperature changes, but by obtaining the wavelength of the ultrasonic wave transmitted from the sensor and obtaining the distance based on the obtained wavelength, the distance can be accurately determined regardless of the temperature change. Can be measured.
 ここで、前記信号処理部は、前記受信波形において、前記受信波形と前記テンプレートとの相関が最も高い時点の近傍における、前記受信波形と中心線とが一致する点において前記受信波形と前記テンプレートが一致したとして前記センサと前記対象物との距離を測定してもよい。これにより、より高い精度で距離を測定することができる。 Here, in the reception waveform, the signal processing unit determines that the reception waveform and the template are at a point where the reception waveform and the center line coincide with each other in the vicinity of the time point when the correlation between the reception waveform and the template is highest. The distance between the sensor and the object may be measured as coincident. Thereby, the distance can be measured with higher accuracy.
 ここで、反射板を更に備え、前記センサは、前記対象物に向けて斜めに超音波を送信し、前記反射板は、前記センサから前記反射板との間の超音波の経路と前記反射板から前記センサとの間の超音波の経路とが一致するように、前記センサから送信されて前記対象物で反射された超音波を反射し、前記信号処理部は、前記センサと前記反射板との距離と、前記センサから前記対象物へ送信される超音波の入射角とに基づいて前記センサと前記対象物との距離を求めてもよい。これにより、センサと対象物との距離の測定精度をより高くすることができる。 Here, the apparatus further includes a reflection plate, the sensor transmits ultrasonic waves obliquely toward the object, and the reflection plate transmits an ultrasonic path between the sensor and the reflection plate, and the reflection plate. The ultrasonic wave transmitted from the sensor and reflected by the object is reflected so that the ultrasonic path between the sensor and the sensor matches, and the signal processing unit includes the sensor, the reflector, The distance between the sensor and the object may be obtained based on the distance between the sensor and the incident angle of the ultrasonic wave transmitted from the sensor to the object. Thereby, the measurement accuracy of the distance between the sensor and the object can be further increased.
 ここで、筐体を更に備え、前記センサは、枠体を有し、前記枠体には、金属製の重りが設けられ、前記枠体と前記筐体との間には、弾性部材が設けられ、前記弾性部材が前記枠体を挟持してもよい。これにより、センサの振動を収まりやすくし、送信の後すぐに受信を行うことができる。 Here, the apparatus further includes a housing, the sensor includes a frame, the frame is provided with a metal weight, and an elastic member is provided between the frame and the housing. The elastic member may sandwich the frame. Thereby, the vibration of the sensor can be easily settled, and reception can be performed immediately after transmission.
 上記課題を解決するために、本発明に係る超音波距離測定方法は、例えば、周期が一定であり、サイクル数が10~15サイクル程度の第1サイクル数である矩形波の後、周波数が0となる送信信号を用いてセンサから超音波を送信し、対象物で反射された超音波を前記センサで受信し、前記センサで受信された超音波の受信波形と、予め保持されたテンプレートと、の相関に基づいて距離を求める超音波距離測定方法であって、所定条件下において、前記送信信号を用いて前記センサから超音波を送信し、前記対象物で反射された超音波を前記センサで受信し、前記センサで受信された超音波の受信波形のうちの反射波形の立ち上がりから前記第1サイクル数より少ない第2サイクル数分だけ抜き出した第1波形、又は前記第1波形の振幅を所定倍した第2波形を前記テンプレートとすることを特徴とする。これにより、高い精度で距離を測定することができる。また、超音波の送信及び受信を同一のセンサで行いつつ、短い距離(例えば、40mm)だけ離れた対象物までに距離を測定することができる。 In order to solve the above-described problem, the ultrasonic distance measuring method according to the present invention has a frequency of 0 after a rectangular wave having a constant cycle and a first cycle number of about 10 to 15 cycles. An ultrasonic wave is transmitted from the sensor using the transmission signal to be received, the ultrasonic wave reflected by the object is received by the sensor, the received waveform of the ultrasonic wave received by the sensor, a template held in advance, An ultrasonic distance measurement method for obtaining a distance based on a correlation between the ultrasonic wave, the ultrasonic wave transmitted from the sensor using the transmission signal under a predetermined condition, and the ultrasonic wave reflected by the object by the sensor. The first waveform extracted by the second number of cycles less than the first number of cycles from the rising of the reflected waveform of the received waveform of the ultrasonic wave received by the sensor, or the vibration of the first waveform The is characterized in that the predetermined multiple the template a second waveform. Thereby, the distance can be measured with high accuracy. Further, it is possible to measure the distance to an object separated by a short distance (for example, 40 mm) while performing transmission and reception of ultrasonic waves with the same sensor.
 本発明によれば、高い精度で距離を測定することができる。 According to the present invention, the distance can be measured with high accuracy.
第1の実施の形態に係る超音波距離測定装置1の概略構成を示すブロック図である。1 is a block diagram showing a schematic configuration of an ultrasonic distance measuring device 1 according to a first embodiment. 超音波センサ10の回路構成の一例を示す図である。1 is a diagram illustrating an example of a circuit configuration of an ultrasonic sensor 10. FIG. 超音波距離測定装置1における受信信号の処理を模式的に示す図である。It is a figure which shows typically the process of the received signal in the ultrasonic distance measuring device. 基本波形の一例である。It is an example of a basic waveform. サイクル数が9であるテンプレートTaの一例である。This is an example of a template Ta having 9 cycles. サイクル数が4であるテンプレートTbの一例である。It is an example of template Tb whose number of cycles is 4. 対象物Oまでの距離が125mmのときの受信波形と、サイクル数が9であるテンプレートTaに基づいたテンプレートT1aとを差分し、差分の絶対値を加算した結果である相関値の一例を示す図である。The figure which shows an example of the correlation value which is a difference between the received waveform when the distance to the object O is 125 mm and the template T1a based on the template Ta with 9 cycles and adds the absolute value of the difference. It is. 図7に示す結果の、図7丸印近傍の横軸を拡大した図である。FIG. 8 is an enlarged view of the horizontal axis in the vicinity of the circle in FIG. 7 as a result shown in FIG. 対象物Oまでの距離が125mmのときの受信波形と、サイクル数が4であるテンプレートTbに基づいたテンプレートT1bとを差分し、差分の絶対値を加算した結果である相関値の一例を示す図である。The figure which shows an example of the correlation value which is a result of adding the absolute value of the difference by subtracting the received waveform when the distance to the object O is 125 mm and the template T1b based on the template Tb having a cycle number of 4 It is. 図9に示す結果の、図9丸印近傍の横軸を拡大した図である。FIG. 10 is an enlarged view of the horizontal axis in the vicinity of the circle in FIG. 9 as a result shown in FIG. 9. 受信波形とテンプレートTbに基づいたテンプレートT1bとの関係を示す図であり、受信波形の立ち上がり部分を拡大表示している。It is a figure which shows the relationship between the received waveform and the template T1b based on the template Tb, and the rising part of the received waveform is enlarged and displayed. テンプレート調整入力部22bから入力される倍率を変化させたときにおける、受信波形とテンプレートT1の相関値の一例を示す図であり、(A)はテンプレート調整入力部22bから入力される倍率が1より小さい場合の相関値の一例であり、(B)はテンプレート調整入力部22bから入力される倍率が1の場合の相関値の一例であり、(C)はテンプレート調整入力部22bから入力される倍率が1より大きい場合の相関値の一例である。It is a figure which shows an example of the correlation value of a received waveform and template T1 when changing the magnification input from the template adjustment input part 22b, (A) is the magnification input from the template adjustment input part 22b from 1. It is an example of a correlation value when it is small, (B) is an example of a correlation value when the magnification input from the template adjustment input unit 22b is 1, and (C) is a magnification input from the template adjustment input unit 22b. It is an example of a correlation value when is larger than 1. 本発明にかかる超音波距離測定装置1を適用したオートフォーカス装置5の一例を示す図であるIt is a figure which shows an example of the autofocus apparatus 5 to which the ultrasonic distance measuring device 1 concerning this invention is applied. 距離hの変化と距離Lの変化との関係を模式的に示す図であり、(A)はθが45度の場合を示し、(B)はθが0度の場合を示す。It is a figure which shows typically the relationship between the change of the distance h, and the change of the distance L, (A) shows the case where (theta) is 45 degree | times, (B) shows the case where (theta) is 0 degree | times. 超音波センサ10の取付構造の一例を模式的に示す図であるIt is a figure which shows typically an example of the attachment structure of the ultrasonic sensor 10. 第2の実施の形態に係る超音波距離測定装置2の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the ultrasonic distance measuring device 2 which concerns on 2nd Embodiment. 受信波形の立ち上がり部分を横方向に拡大して表示した図である。It is the figure which expanded and displayed the rising part of the received waveform in the horizontal direction. 図17に示す受信波形のクロスポイントβ’の近傍を拡大した図である。FIG. 18 is an enlarged view of the vicinity of a cross point β ′ of the received waveform shown in FIG. 17.
 以下、本発明の実施形態を、図面を参照して詳細に説明する。本発明は、超音波を用いて対象物との距離を測定するものである。超音波とは、人間の耳には聞こえない高い周波数、一般的には20kHzを超える周波数をもつ可聴域以上の弾性振動波(音波)であるが、20kHz以下の人間に聞こえる音波でも人間の耳で聞くことを目的にしない音も超音波に含まれる。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The present invention measures the distance from an object using ultrasonic waves. An ultrasonic wave is an elastic vibration wave (sound wave) having a high frequency that cannot be heard by the human ear, generally, a frequency exceeding 20 kHz, and higher than the audible range. Sounds that are not intended to be heard in are also included in the ultrasound.
<第1の実施の形態>
 図1は、第1の実施の形態に係る超音波距離測定装置1の概略構成を示すブロック図である。超音波距離測定装置1は、主として、超音波センサ10と、超音波センサ駆動部15と、信号処理部20と、出力部30と、を有する。
<First Embodiment>
FIG. 1 is a block diagram showing a schematic configuration of an ultrasonic distance measuring apparatus 1 according to the first embodiment. The ultrasonic distance measuring device 1 mainly includes an ultrasonic sensor 10, an ultrasonic sensor driving unit 15, a signal processing unit 20, and an output unit 30.
 超音波センサ10は、電源に電気的に接続されており、電気信号が与えられることにより振動して、超音波を発生する。超音波センサ10は、センサ(トランスデューサ)103(図2参照)を含み、送信信号(後に詳述)に基づいて超音波を対象物Oへ向けて送信し、かつ、対象物Oで反射された超音波を受信する。本実施の形態では、300kHzの周波数を有する超音波を用いる。この周波数の超音波は、指向性が高い点に特徴がある。ただし、超音波距離測定装置1が用いる超音波の周波数はこれに限られない。 The ultrasonic sensor 10 is electrically connected to a power source and vibrates when an electric signal is given to generate ultrasonic waves. The ultrasonic sensor 10 includes a sensor (transducer) 103 (see FIG. 2), transmits an ultrasonic wave toward the object O based on a transmission signal (detailed later), and is reflected by the object O. Receive ultrasound. In this embodiment, an ultrasonic wave having a frequency of 300 kHz is used. This frequency of ultrasonic waves is characterized by high directivity. However, the frequency of the ultrasonic wave used by the ultrasonic distance measuring device 1 is not limited to this.
 超音波センサ10から発信された超音波は、対象物Oで反射されて超音波センサ10へと到達する(図1二点鎖線参照)。つまり、超音波は、超音波センサ10と対象物Oとの間を往復する(ダブルパス)。超音波センサ10は、センサ103で受信された超音波を電気信号へと変換する。 The ultrasonic wave transmitted from the ultrasonic sensor 10 is reflected by the object O and reaches the ultrasonic sensor 10 (see the two-dot chain line in FIG. 1). That is, the ultrasonic waves reciprocate between the ultrasonic sensor 10 and the object O (double pass). The ultrasonic sensor 10 converts the ultrasonic wave received by the sensor 103 into an electric signal.
 超音波センサ駆動部15は、主として、高周波駆動回路16と、高周波生成ロジック部17と、を有する。高周波駆動回路16は、D/Aコンバータ101a(図2参照)を含む。高周波生成ロジック部17は、周波数が300kHzの矩形波でD/Aコンバータを10~15サイクル程度振動させてから、DC(周波数が0)の信号を加えるように、高周波駆動回路16を駆動する。また、超音波センサ駆動部15は、スイッチ18を有し、超音波センサ10を超音波センサ駆動部15に接続するか(駆動)、信号処理部20に接続するか(受信)の切り替えを行う。 The ultrasonic sensor driving unit 15 mainly includes a high frequency driving circuit 16 and a high frequency generation logic unit 17. The high frequency drive circuit 16 includes a D / A converter 101a (see FIG. 2). The high-frequency generation logic unit 17 drives the high-frequency drive circuit 16 so as to apply a DC (frequency 0) signal after vibrating the D / A converter for about 10 to 15 cycles with a rectangular wave having a frequency of 300 kHz. The ultrasonic sensor driving unit 15 includes a switch 18 and switches whether the ultrasonic sensor 10 is connected to the ultrasonic sensor driving unit 15 (drive) or connected to the signal processing unit 20 (reception). .
 図2は、超音波センサ10及び超音波センサ駆動部15の回路構成の一例を示す図である。超音波センサ10は、多数のセンサ103(103a~103h)を有する多チャンネルのセンサである。超音波センサ駆動部15は、主として、高周波駆動回路101と、半導体リレー102、105と、受信回路104と、を有する。ここでは、半導体リレー102、105にフォトMOSリレーを用いる。 FIG. 2 is a diagram illustrating an example of a circuit configuration of the ultrasonic sensor 10 and the ultrasonic sensor driving unit 15. The ultrasonic sensor 10 is a multi-channel sensor having a large number of sensors 103 (103a to 103h). The ultrasonic sensor driving unit 15 mainly includes a high frequency driving circuit 101, semiconductor relays 102 and 105, and a receiving circuit 104. Here, photo MOS relays are used for the semiconductor relays 102 and 105.
 高周波駆動回路101は、D/Aコンバータ101aと、トランス101bと、アンプ101cと、を含み、送信信号を生成する。高周波駆動回路101は、周波数が300kHzの矩形波でD/Aコンバータ101aを10~15サイクル程度振動させてから、DC(周波数が0)の信号を加えて振動を止める。つまり、送信信号は、周期が一定であり、サイクル数が10~15サイクル程度の第1サイクル数(例えば本実施の形態では、第1サイクル数を15サイクルとする)である矩形波の後、周波数が0となる信号である。 The high frequency drive circuit 101 includes a D / A converter 101a, a transformer 101b, and an amplifier 101c, and generates a transmission signal. The high frequency drive circuit 101 vibrates the D / A converter 101a with a rectangular wave having a frequency of 300 kHz for about 10 to 15 cycles, and then stops the vibration by applying a DC (frequency 0) signal. That is, the transmission signal has a constant period, and after a rectangular wave having a first cycle number of about 10 to 15 cycles (for example, in the present embodiment, the first cycle number is 15 cycles), This signal has a frequency of zero.
 アンプ101cのdisable端子をenable側にすると、D/Aコンバータ101aからの送信信号は、トランス101bを介して半導体リレー102に入力される。半導体リレー102は、多数のセンサ103を、順次駆動、受信するように切り替える。図2では、センサ103は8チャンネルであり、8個のセンサ103a~103hを有するが、センサ103の数(チャンネル数)はこれに限られない。 When the disable terminal of the amplifier 101c is set to enable, the transmission signal from the D / A converter 101a is input to the semiconductor relay 102 via the transformer 101b. The semiconductor relay 102 switches so that a large number of sensors 103 are sequentially driven and received. In FIG. 2, the sensor 103 has eight channels and includes eight sensors 103a to 103h, but the number of sensors 103 (number of channels) is not limited to this.
 半導体リレー102は、略1msec毎に順次センサ103を駆動、受信する。例えば、20チャンネルのセンサを略1msec毎に順次駆動、受信すると、略20msec毎にセンサの各チャンネルで距離計測が行われる。 The semiconductor relay 102 sequentially drives and receives the sensor 103 approximately every 1 msec. For example, when a 20-channel sensor is sequentially driven and received approximately every 1 msec, distance measurement is performed in each channel of the sensor approximately every 20 msec.
 センサ103が駆動されると、送信信号に基づいた超音波がセンサ103から送信される。本実施の形態では送信信号に矩形波が15サイクル含まれるため、センサ103からは、300kHzの周波数を有する超音波が15サイクル出力される。送信信号は矩形波であるが、センサ103から出力される超音波は一瞬で大きくならず、矩形波とはならない。実際にセンサ103から出力される超音波の波形は、正弦波のような形状であり、最初は0に近い小さな振幅であり、時間経過と共に徐々に振幅が大きくなる。 When the sensor 103 is driven, an ultrasonic wave based on the transmission signal is transmitted from the sensor 103. In this embodiment, since the transmission signal includes 15 cycles of the rectangular wave, the sensor 103 outputs 15 cycles of ultrasonic waves having a frequency of 300 kHz. The transmission signal is a rectangular wave, but the ultrasonic wave output from the sensor 103 does not increase instantaneously and does not become a rectangular wave. The waveform of the ultrasonic wave actually output from the sensor 103 has a shape like a sine wave, and has a small amplitude close to 0 at first, and the amplitude gradually increases with time.
 300kHzの周波数を有する矩形波を15サイクル(15クロック分)出力した後で、周波数が0の信号を一定時間(例えば10クロック分)出力することで、振動するセンサ103の揺れを停止させる。したがって、センサ103から超音波を送信した後すぐにセンサ103で超音波を受信することが可能である。 After outputting a rectangular wave having a frequency of 300 kHz for 15 cycles (for 15 clocks), a signal having a frequency of 0 is output for a certain time (for example, 10 clocks), thereby stopping the vibration of the vibrating sensor 103. Accordingly, the ultrasonic wave can be received by the sensor 103 immediately after the ultrasonic wave is transmitted from the sensor 103.
 周波数が0の信号を出力したら、アンプ101cをdisableとし、また半導体リレー105の光電素子に電流を流して半導体リレー105をONして、センサ103を発信側から受信側に切り替える(スイッチ18(図1参照)の切り替えに相当)。 When a signal having a frequency of 0 is output, the amplifier 101c is disabled, a current is passed through the photoelectric element of the semiconductor relay 105 to turn on the semiconductor relay 105, and the sensor 103 is switched from the transmitting side to the receiving side (switch 18 (FIG. 1)).
 半導体リレー105によりセンサ103が受信側に切り替えられると、センサ103で受信された超音波は受信回路104に出力され、受信回路104で電気信号が生成される。 When the sensor 103 is switched to the receiving side by the semiconductor relay 105, the ultrasonic wave received by the sensor 103 is output to the receiving circuit 104, and an electric signal is generated by the receiving circuit 104.
 受信回路104は、所定範囲の周波数(ここでは300kHzを含む)のみを通過させるバンドパスフィルタ104aを有する。バンドパスフィルタ104aを通過した信号は、A/Dコンバータ104bを通過して、受信信号として信号処理部20(図1参照)に出力される。 The receiving circuit 104 has a band-pass filter 104a that allows only a predetermined range of frequencies (including 300 kHz in this case) to pass. The signal that has passed through the bandpass filter 104a passes through the A / D converter 104b and is output to the signal processing unit 20 (see FIG. 1) as a received signal.
 センサ103の駆動中は、半導体リレー105をOFFして受信回路104に大きな送信信号が入らないようにする。また、バンドパスフィルタ104aの前後には、リミッタ104cが設けられている。これは、半導体リレー105をONするときにはセンサ103が300kHzで共振しており、これによる大きな信号がアンプやA/Dコンバータ104bに入らないようにするためである。リミッタ104cには、順方向電圧が0.3V程度と小さいショットキーバリアダイオードを用いる。 While the sensor 103 is being driven, the semiconductor relay 105 is turned off so that a large transmission signal does not enter the receiving circuit 104. Further, a limiter 104c is provided before and after the band pass filter 104a. This is to prevent the sensor 103 from resonating at 300 kHz when the semiconductor relay 105 is turned on, and to prevent a large signal from entering the amplifier or the A / D converter 104b. As the limiter 104c, a Schottky barrier diode having a forward voltage as small as about 0.3V is used.
 図1の説明に戻る。信号処理部20には、超音波センサ10から出力された受信信号が入力される。信号処理部20は、主として、テンプレート保持部21と、テンプレート調整部22と、相関算出部23と、距離算出部24と、温度補正部25と、を有する。 Returning to the explanation of FIG. The signal processing unit 20 receives the reception signal output from the ultrasonic sensor 10. The signal processing unit 20 mainly includes a template holding unit 21, a template adjustment unit 22, a correlation calculation unit 23, a distance calculation unit 24, and a temperature correction unit 25.
 テンプレート保持部21は、テンプレートを保持する。テンプレート調整部22は、テンプレート保持部21が保持するテンプレートの振幅を調整する。相関算出部23は、受信信号と、テンプレート保持部21が保持するテンプレート又はテンプレート調整部22により振幅が調整されたテンプレートと、の相関を求める。 The template holding unit 21 holds a template. The template adjustment unit 22 adjusts the amplitude of the template held by the template holding unit 21. The correlation calculation unit 23 obtains a correlation between the received signal and the template held by the template holding unit 21 or the template whose amplitude is adjusted by the template adjustment unit 22.
 図3は、超音波距離測定装置1における受信信号の処理を模式的に示す図である。センサ103で受信した超音波は、受信回路104で受信信号に変換されて相関算出部23に入力される。受信回路104では、6MHzのクロック信号を出力し、連続的に受信信号を生成する。6MHzは、センサ103で受信される超音波の周波数300kHzの20倍である。つまり、受信回路104では、受信する超音波の1周期の間に20回受信信号を取得する(20倍オーバーサンプリング)。受信回路104では、連続的に得られた複数の受信信号をつなげて受信波形が生成される。 FIG. 3 is a diagram schematically illustrating received signal processing in the ultrasonic distance measuring apparatus 1. The ultrasonic wave received by the sensor 103 is converted into a reception signal by the reception circuit 104 and input to the correlation calculation unit 23. The reception circuit 104 outputs a 6 MHz clock signal and continuously generates a reception signal. 6 MHz is 20 times the frequency of ultrasonic waves 300 kHz received by the sensor 103. That is, the reception circuit 104 acquires a reception signal 20 times during one period of the received ultrasonic wave (20 times oversampling). In the reception circuit 104, a plurality of reception signals obtained continuously are connected to generate a reception waveform.
 受信回路104で生成された受信波形は、相関算出部23のシフトレジスタ231に入力される。これにより、相関算出部23は、一定期間の超音波受信による受信波形を取得する。なお、図3では、シフトレジスタ231は80個のDフリップフロップ231-1、231-2、231-3・・・231-80を有する。80個は、20倍オーバーサンプリング(後に詳述)×4サイクル分を意味し、テンプレート保持部21(後に詳述)に記録されたテンプレートTの数と一致する。またA/Dコンバータ104bが16bitの分解能でアナログ信号をデジタル化する場合には、Dフリップフロップ231-1~231-80はそれぞれ16個のDフリップフロップを含む。 The reception waveform generated by the reception circuit 104 is input to the shift register 231 of the correlation calculation unit 23. Thereby, the correlation calculation part 23 acquires the received waveform by ultrasonic reception of a fixed period. 3, the shift register 231 has 80 D flip-flops 231-1, 231-2, 231-3,... 231-80. 80 means 20 times oversampling (detailed later) × 4 cycles, which matches the number of templates T recorded in the template holding unit 21 (detailed later). When the A / D converter 104b digitizes an analog signal with a resolution of 16 bits, each of the D flip-flops 231-1 to 231-80 includes 16 D flip-flops.
 1つのDフリップフロップ231-1~231-80には1クロック分の超音波受信結果(受信レベル)が保持されている。ここで受信レベルとは、1クロック分の受信信号をA/D変換した値である。受信回路104のA/Dコンバータ104bからシフトレジスタ231へ次の受信レベルが入力されると、シフトレジスタ231に保持されている受信レベルが右側に順送りされ(例えば、Dフリップフロップ231-1に保持されている受信レベルはDフリップフロップ231-2に送られ)、受信回路104から入力された新しい受信レベルがシフトレジスタ231に保持される。このように、シフトレジスタ231は、テンプレートTと同じ長さの受信レベルを保持する。 One D flip-flop 231-1 to 231-80 holds an ultrasonic reception result (reception level) for one clock. Here, the reception level is a value obtained by A / D converting the reception signal for one clock. When the next reception level is input from the A / D converter 104b of the reception circuit 104 to the shift register 231, the reception level held in the shift register 231 is forwarded to the right (for example, held in the D flip-flop 231-1). The received reception level is sent to the D flip-flop 231-2), and the new reception level input from the reception circuit 104 is held in the shift register 231. Thus, the shift register 231 holds the reception level having the same length as the template T.
 テンプレート保持部21にはテンプレートTが保持されている。テンプレートTは、80クロック分のテンプレートレベル情報からなる。テンプレートレベル情報とは、標準的な受信波形(基本波形)の立ち上がり部80クロック分をA/D変換したときの各クロックの値である。テンプレートレベル情報は、テンプレート保持部21から相関算出部23に読み出され、シフトレジスタ232に保持される。シフトレジスタ232は、シフトレジスタ231と同様、80個のDフリップフロップ232-1~232-80を有し、シフトレジスタ232には、80クロック分のテンプレートレベル情報が保持される。なお、Dフリップフロップ231-1~231-80がそれぞれ16個のDフリップフロップを含む場合には、Dフリップフロップ232-1~232-80もそれぞれ16個のDフリップフロップを含む。 The template holding unit 21 holds the template T. The template T consists of template level information for 80 clocks. The template level information is a value of each clock when A / D conversion is performed for 80 rising portions of a standard received waveform (basic waveform). The template level information is read from the template holding unit 21 to the correlation calculating unit 23 and held in the shift register 232. Similarly to the shift register 231, the shift register 232 has 80 D flip-flops 232-1 to 232-80, and the shift register 232 holds template level information for 80 clocks. When each of the D flip-flops 231-1 to 231-80 includes 16 D flip-flops, each of the D flip-flops 232-1 to 232-80 also includes 16 D flip-flops.
 ここで、テンプレートTについて説明する。テンプレートは、所定条件下における受信波形である基本波形を、立ち上がりから数サイクル(ただし、送信される超音波のサイクル数以下)分だけ抜き出したものである。基本波形は、送信直後のセンサ残響が入った波形(例えば、対象物Oまでの距離が40mm程度の場合の波形)や、値が小さくS/N比が低い波形(例えば、対象物Oまでの距離が120mm程度の場合の波形)でなく、図4に示すようなきれいな波形である。 Here, the template T will be described. The template is obtained by extracting a basic waveform, which is a received waveform under a predetermined condition, from the rising edge by several cycles (however, less than the number of transmitted ultrasonic cycles). The basic waveform includes a waveform including sensor reverberation immediately after transmission (for example, a waveform when the distance to the object O is about 40 mm), and a waveform with a small value and a low S / N ratio (for example, the object O). 4), and a clean waveform as shown in FIG.
 図4は、基本波形の一例である。ここでは、所定条件を対象物Oまでの距離が75mmであるとして基本波形を取得している。図4の横軸はクロック数(すなわち、時間)である。基本波形は、ピーク値が高い領域Aと、その後のピーク値が低い領域Bとに分けられる。領域Aは、主に、15サイクルの矩形波により送信された超音波を受信する期間である。領域Aの共振周波数は300kHz(送信した超音波の周波数と同じ)であり、領域Aにおける基本波形の周期は送信信号の矩形波の周期と略同じである。また、領域Aにおいて、立ち上がりから9サイクル程度で振幅がピークに達する。それに対し、領域Bの共振周波数は、センサ103に依存し、300kHzとはわずかに異なる。つまり、領域Bにおける基本波形の周期は送信信号の矩形波の周期とわずかに異なる。 FIG. 4 is an example of a basic waveform. Here, the basic waveform is acquired assuming that the distance to the object O is 75 mm under the predetermined condition. The horizontal axis in FIG. 4 is the number of clocks (that is, time). The basic waveform is divided into a region A having a high peak value and a region B having a low peak value thereafter. Region A is a period in which ultrasonic waves transmitted mainly by 15 cycles of rectangular waves are received. The resonance frequency of the region A is 300 kHz (same as the frequency of the transmitted ultrasonic wave), and the period of the basic waveform in the region A is substantially the same as the period of the rectangular wave of the transmission signal. In the region A, the amplitude reaches a peak in about nine cycles from the rising edge. On the other hand, the resonance frequency of the region B depends on the sensor 103 and is slightly different from 300 kHz. That is, the period of the basic waveform in region B is slightly different from the period of the rectangular wave of the transmission signal.
 受信波形は、対象物Oまでの距離、センサ103のばらつき、センサ103からのケーブル長などの条件によって変化する。しかしながら、受信波形は、基本波形に対して振幅のみ(高さ方向の幅)が全体的に変化し、対象物Oまでの距離変化等による条件変化により波形の特徴は変化しない。例えば、対象物Oまでの距離が75mmより遠くなると、受信波形は、図4に示す基本波形の位置よりも後ろ側にずれ、かつ図4に示す基本波形よりも振幅が全体的に小さくなる。ただし、領域A、Bを有すること、領域Aは300kHzの共振周波数を有するが領域Bは300kHzの共振周波数を有しない(条件によってばらつきが生じる)こと、領域Aは立ち上がりから9サイクル程度で振幅がピークに達すること、は変化しない。 The received waveform varies depending on conditions such as the distance to the object O, the variation of the sensor 103, the cable length from the sensor 103, and the like. However, only the amplitude (width in the height direction) of the received waveform changes as a whole with respect to the basic waveform, and the characteristics of the waveform do not change due to a change in conditions due to a change in distance to the object O or the like. For example, when the distance to the object O becomes longer than 75 mm, the received waveform shifts to the rear side of the position of the basic waveform shown in FIG. 4, and the amplitude is generally smaller than that of the basic waveform shown in FIG. However, region A and region B have a resonance frequency of 300 kHz, but region B does not have a resonance frequency of 300 kHz (varies depending on conditions), and region A has an amplitude of about 9 cycles from the rise. Reaching the peak does not change.
 したがって、本発明では、基本波形の立ち上がり部分(領域Aの一部)を予めテンプレートとして保持し、実際の受信波形とテンプレートとを比較することで、実際の受信波形の立ち上がり部分、つまり対象物Oまでの距離を正確に求めている。 Therefore, in the present invention, the rising portion of the basic waveform (a part of the region A) is held in advance as a template, and the actual received waveform is compared with the template, so that the rising portion of the actual received waveform, that is, the object O Find the distance to exactly.
 図5、6に、図4に示す受信波形の立ち上がり部分を抜き出したテンプレートTの例を示す。図5は、サイクル数が9であるテンプレートTaの一例であり、図6は、サイクル数が4であるテンプレートTbの一例である。9サイクルは、受信波形が立ち上がりきってピーク値に達するまでのサイクル数であり、4サイクルは、受信波形が立ち上がりきってピーク値に達するまでのサイクル数の約半分のサイクル数である。ただし、予め取得しておいた受信波形の立ち上がりからテンプレートとして抜き出すサイクル数は、送信信号に含まれるサイクル数(ここでは15サイクル)より少ない数であればよく、4サイクルや9サイクルに限定されない。 5 and 6 show examples of the template T in which the rising portion of the received waveform shown in FIG. 4 is extracted. FIG. 5 is an example of a template Ta with a cycle number of 9, and FIG. 6 is an example of a template Tb with a cycle number of 4. Nine cycles is the number of cycles until the received waveform rises and reaches the peak value, and 4 cycles is about half the number of cycles until the received waveform rises and reaches the peak value. However, the number of cycles extracted as a template from the rising edge of the received waveform acquired in advance may be smaller than the number of cycles included in the transmission signal (here, 15 cycles), and is not limited to 4 cycles or 9 cycles.
 なお、テンプレート保持部21が保持するテンプレートTは1つであり、テンプレートTaでもよいしテンプレートTbでもよいが、テンプレートTa、Tbの両方は保持しない。 Note that the template holding unit 21 holds one template T, which may be the template Ta or the template Tb, but does not hold both the templates Ta and Tb.
 図3の説明に戻る。テンプレート調整部22は、テンプレートTの振幅を所定倍するものであり、主として、ピークホールド回路22aと、ユーザがテンプレートTの倍率調整に用いるテンプレート調整入力部22bと、を有する。 Returning to the explanation of FIG. The template adjustment unit 22 multiplies the amplitude of the template T by a predetermined amount, and mainly includes a peak hold circuit 22a and a template adjustment input unit 22b used by the user to adjust the magnification of the template T.
 ピークホールド回路22aは、最後のDフリップフロップ231-80に保持された受信波形のピーク値を保持する。テンプレート調整入力部22bは、“0”から“9”の10段階で倍率の変更が可能であり、テンプレート調整入力部22bが“5”(“5”は例示である)に設定されたときに倍率が1倍となるように構成されている。 The peak hold circuit 22a holds the peak value of the received waveform held in the last D flip-flop 231-80. The template adjustment input unit 22b can change the magnification in 10 stages from “0” to “9”, and when the template adjustment input unit 22b is set to “5” (“5” is an example). The magnification is configured to be 1.
 テンプレート調整部22は、テンプレート調整入力部22bから倍率変更の入力がされなかった(ここでは、テンプレート調整入力部22bが“5”に設定されている)場合には、ピークホールド回路22aが保持するピーク値を相関算出部23に出力する。すなわち、テンプレート調整部22は、テンプレートTを得た時のピーク値と、受信信号のピーク値とが一致するようにテンプレートTの振幅(テンプレートレベル情報の値)を調整する。 The template adjustment unit 22 holds the peak hold circuit 22a when no change in magnification is input from the template adjustment input unit 22b (here, the template adjustment input unit 22b is set to “5”). The peak value is output to the correlation calculation unit 23. That is, the template adjustment unit 22 adjusts the amplitude of the template T (the value of the template level information) so that the peak value when the template T is obtained matches the peak value of the received signal.
 また、テンプレート調整部22は、テンプレート調整入力部22bから倍率変更の入力がされた場合には、ピークホールド回路22aが保持するピーク値に、テンプレート調整入力部22bで入力された倍率を掛け合わせて相関算出部23に出力する。 Further, when a change in magnification is input from the template adjustment input unit 22b, the template adjustment unit 22 multiplies the peak value held by the peak hold circuit 22a by the magnification input by the template adjustment input unit 22b. It outputs to the correlation calculation part 23.
 相関算出部23では、受信波形とテンプレートT(または、テンプレートT1)との相関を求める。ここでは、シフトレジスタ231の各Dフリップフロップ231-1~231-80に保持された受信レベルと、シフトレジスタ232の各Dフリップフロップ232-1~232-80に保持されたテンプレートレベル情報にテンプレート調整部22から入力された倍率を掛け合わせたテンプレートT1のレベル情報との相関をそれぞれ求める。テンプレートT1は、テンプレートTの振幅を所定倍したものであり、所定倍が1の場合にはテンプレートTとテンプレートT1とは一致する。 The correlation calculation unit 23 obtains a correlation between the received waveform and the template T (or template T1). Here, the received level held in each D flip-flop 231-1 to 231-80 of the shift register 231 and the template level information held in each D flip-flop 232-1 to 232-80 of the shift register 232 are used as templates. Correlation with the level information of the template T1 multiplied by the magnification input from the adjustment unit 22 is obtained. The template T1 is obtained by multiplying the amplitude of the template T by a predetermined value. When the predetermined multiple is 1, the template T and the template T1 are the same.
 本実施の形態では、受信波形とテンプレートT1とを差分し、当該差分の絶対値を加算した結果である相関値を求め、相関値が最も小さい時点で受信波形とテンプレートT1とが一致したとする。ただし、受信波形とテンプレートT1との差分の絶対値を加算する代わりに、受信波形とテンプレートT1との差分を二乗した値を用いて相関値を求めてもよい。 In the present embodiment, the received waveform and the template T1 are differentiated, and a correlation value that is a result of adding the absolute values of the differences is obtained, and it is assumed that the received waveform and the template T1 match when the correlation value is the smallest. . However, instead of adding the absolute value of the difference between the received waveform and the template T1, the correlation value may be obtained using a value obtained by squaring the difference between the received waveform and the template T1.
 図7は、対象物Oまでの距離が125mmのときの受信波形と、サイクル数が9であるテンプレートTaに基づいたテンプレートT1aとを差分し、差分の絶対値を加算した結果である相関値の一例を示す図である。図7の横軸は時間、縦軸は相関値である。相関値が最も小さい位置(図7丸印参照)で受信波形とテンプレートT1aとが一致し、又は最も一致に近いことが分かる。 FIG. 7 shows a correlation value obtained by subtracting the received waveform when the distance to the object O is 125 mm and the template T1a based on the template Ta having 9 cycles and adding the absolute value of the difference. It is a figure which shows an example. In FIG. 7, the horizontal axis represents time, and the vertical axis represents the correlation value. It can be seen that the received waveform matches the template T1a at the position where the correlation value is the smallest (see the circle in FIG. 7) or is closest to the match.
 図8は、図7に示す結果の、図7丸印近傍の横軸を拡大した図である。図8の点は、受信回路104で20倍オーバーサンプリングされたタイミングを示す。相関値が小さい点(図8丸印参照)が3つ並んでおり、このうちの中央の点αにおいて相関値が最も小さい。これにより、点αのタイミングで、受信波形とテンプレートT1aとが一致したことが分かる。 FIG. 8 is an enlarged view of the horizontal axis in the vicinity of the circle in FIG. 7 of the result shown in FIG. The points in FIG. 8 indicate the timing at which the reception circuit 104 oversamples 20 times. Three points with small correlation values (see circles in FIG. 8) are arranged, and the correlation value is the smallest at the central point α among them. As a result, it can be seen that the received waveform matches the template T1a at the timing of the point α.
 図9は、対象物Oまでの距離が125mmのときの受信波形と、サイクル数が4であるテンプレートTbに基づいたテンプレートT1bとを差分し、差分の絶対値を加算した結果である相関値の一例を示す図である。図9の横軸は時間、縦軸は相関値である。相関値が最も小さい位置(図9丸印参照)で受信波形とテンプレートT1bとが一致し、又は最も一致に近いことが分かる。 FIG. 9 shows a correlation value that is a result of adding the absolute value of the difference between the received waveform when the distance to the object O is 125 mm and the template T1b based on the template Tb having a cycle number of 4. It is a figure which shows an example. In FIG. 9, the horizontal axis represents time, and the vertical axis represents the correlation value. It can be seen that the received waveform matches the template T1b at the position where the correlation value is the smallest (see the circle in FIG. 9) or is closest to the match.
 図10は、図9に示す結果の、図9丸印近傍の横軸を拡大した図である。図10の点は、受信回路104で20倍オーバーサンプリングされたタイミングを示す。点βのタイミングで相関値が最も小さく、受信波形とテンプレートT1bとが一致したことが分かる。 FIG. 10 is an enlarged view of the horizontal axis in the vicinity of the circle in FIG. 9 of the result shown in FIG. The points in FIG. 10 indicate the timing at which the reception circuit 104 oversamples 20 times. It can be seen that the correlation value is the smallest at the timing of point β, and the received waveform matches the template T1b.
 このように、相関算出部23は、受信信号とテンプレートT1とが最も一致するのがいつであるかを算出する。図9に示す例では、点αのタイミングで受信波形の9サイクル目が終ったことを示し、図10に示す例では、点βのタイミングで受信波形の4サイクル目が終ったことを示す。 Thus, the correlation calculation unit 23 calculates when the received signal and the template T1 are the best match. In the example shown in FIG. 9, the ninth cycle of the received waveform is finished at the timing of the point α, and in the example shown in FIG. 10, the fourth cycle of the received waveform is finished at the timing of the point β.
 図1の説明に戻る。距離算出部24は、相関算出部23で算出された結果に基づいて、超音波センサ10と対象物Oとの距離を算出する。図11は、受信波形と、テンプレートTbに基づいたテンプレートT1bとの関係を示す図であり、受信波形の立ち上がり部分を拡大表示している。 Returning to the explanation of FIG. The distance calculation unit 24 calculates the distance between the ultrasonic sensor 10 and the object O based on the result calculated by the correlation calculation unit 23. FIG. 11 is a diagram showing the relationship between the received waveform and the template T1b based on the template Tb. The rising portion of the received waveform is enlarged and displayed.
 点βのタイミングで受信波形とテンプレートT1bの最後(4サイクル目)が一致する。点βにテンプレートT1bの最後が位置するように受信波形とテンプレートT1bとを重ね、テンプレートT1bの輪郭線(図1点線参照)が交差する点γを受信波形の立ち上がりとすることで、受信波形の立ち上がりのタイミングが正確に分かる。距離算出部24は、このようにして求めた受信波形の立ち上がり(点γ)のときに超音波の受信を開始したとして、数式(1)で示すように、立ち上がりの時間をオーバーサンプリング数(ここでは20)で除算し、送信した超音波(ここでは300kHz)の波長の半分(ダブルパスであるため)である0.57mm(=1.13mm/2)を積算することで、超音波センサ10と対象物Oとの距離を算出する。 At the timing of point β, the received waveform matches the end of template T1b (fourth cycle). The received waveform and the template T1b are overlapped so that the end of the template T1b is positioned at the point β, and the point γ where the outline of the template T1b (see the dotted line in FIG. 1) intersects is set as the rising edge of the received waveform. The timing of rising is accurately known. The distance calculation unit 24 assumes that the reception of the ultrasonic wave is started at the rising edge (point γ) of the received waveform thus obtained, and represents the rising time as the number of oversampling (here, as shown in Expression (1)). Then, dividing by 20) and integrating 0.57 mm (= 1.13 mm / 2) which is half of the wavelength of the transmitted ultrasonic wave (300 kHz in this case) (because it is a double path), the ultrasonic sensor 10 and The distance from the object O is calculated.
[数1]
 往復距離=点γのタイミング/20×0.57mm  ・・・(1)
[Equation 1]
Reciprocal distance = timing of point γ / 20 × 0.57 mm (1)
 ただし、超音波センサ10と対象物Oとの距離等の測定条件のばらつきにより、受信波形とテンプレートT1とがうまく一致しない場合がある。受信波形とテンプレートT1とがうまく一致しない理由としては、例えば、センサ103の共振周波数が300kHzから大きくずれていること、センサ103までのケーブル長が長く直列抵抗が大きいこと、対象物Oまでの距離が40mmに近く励振時の振動が反射波と干渉していることがある。このような場合には、図3に示すテンプレート調整入力部22bを介して倍率の入力を行って、テンプレートT1のチューニングを行う。 However, the received waveform and the template T1 may not match well due to variations in measurement conditions such as the distance between the ultrasonic sensor 10 and the object O. The reason why the received waveform and the template T1 do not match well is, for example, that the resonance frequency of the sensor 103 is greatly deviated from 300 kHz, that the cable length to the sensor 103 is long and the series resistance is large, and the distance to the object O. May be close to 40 mm, and vibration during excitation may interfere with the reflected wave. In such a case, the template T1 is tuned by inputting the magnification via the template adjustment input unit 22b shown in FIG.
 図12は、テンプレート調整入力部22bから入力される倍率を変化させたときにおける、受信波形とテンプレートT1の相関値の一例を示す図であり、(A)はテンプレート調整入力部22bから入力される倍率が1より小さい場合(ここでは、テンプレート調整入力部22bの設定が“1”)の相関値の一例であり、(B)はテンプレート調整入力部22bから入力される倍率が1の場合(ここでは、テンプレート調整入力部22bの設定が“5”)の相関値の一例であり、(C)はテンプレート調整入力部22bから入力される倍率が1より大きい場合(ここでは、テンプレート調整入力部22bの設定が“9”)の相関値の一例である。 FIG. 12 is a diagram illustrating an example of the correlation value between the received waveform and the template T1 when the magnification input from the template adjustment input unit 22b is changed. FIG. 12A is input from the template adjustment input unit 22b. This is an example of a correlation value when the magnification is smaller than 1 (here, the setting of the template adjustment input unit 22b is “1”), and (B) is when the magnification input from the template adjustment input unit 22b is 1 (here Is an example of a correlation value in which the setting of the template adjustment input unit 22b is “5”), and (C) is a case where the magnification input from the template adjustment input unit 22b is greater than 1 (here, the template adjustment input unit 22b). Is an example of a correlation value of “9”).
 図12(A)、(C)に示す場合は、相関値の波形において値の低い点が2つ並んで存在しており、相関値の波形がいわゆる「ダブルボトム」となっている。それに対し、図12(B)に示す場合は、相関値の波形において値の低い点が1つだけ存在しており、相関値の波形がいわゆる「シングルボトム」となっている。 In the cases shown in FIGS. 12A and 12C, two low-value points are present side by side in the correlation value waveform, and the waveform of the correlation value is a so-called “double bottom”. On the other hand, in the case shown in FIG. 12B, there is only one point having a low value in the waveform of the correlation value, and the waveform of the correlation value is a so-called “single bottom”.
 このようにテンプレートTの振幅に掛ける倍率を変化させることで、相関値の波形が変化する。したがって、相関値の波形がいわゆる「ダブルボトム」となっている場合には、テンプレート調整入力部22bを介して入力される倍率を変化させて、相関値の波形をいわゆる「シングルボトム」にする。これにより、相関値が最も小さいとき、すなわち受信波形とテンプレートT1とがよく一致し、又は最も一致に近くなるタイミングを求めることができる。 The waveform of the correlation value changes by changing the magnification applied to the amplitude of the template T in this way. Accordingly, when the waveform of the correlation value is a so-called “double bottom”, the magnification input via the template adjustment input unit 22b is changed to make the waveform of the correlation value a so-called “single bottom”. Thereby, when the correlation value is the smallest, that is, the timing when the received waveform and the template T1 are in good agreement or closest to each other can be obtained.
 図1の説明に戻る。温度補正部25は、温度変化による超音波の波長変化を補正する。超音波の波長は、温度が変化すると微小に変化する。高い精度で距離を求めるため、温度補正部25において、実際に超音波センサ10で送受信された超音波の波長を求め、距離算出部24において、温度補正部25で求めた波長を用いて距離を求める。 Returning to the explanation of FIG. The temperature correction unit 25 corrects the wavelength change of the ultrasonic wave due to the temperature change. The wavelength of the ultrasonic wave changes minutely as the temperature changes. In order to obtain the distance with high accuracy, the temperature correction unit 25 obtains the wavelength of the ultrasonic wave actually transmitted / received by the ultrasonic sensor 10, and the distance calculation unit 24 obtains the distance using the wavelength obtained by the temperature correction unit 25. Ask.
 例えば、温度補正部25は、温度を測定する温度計を有し、温度と波長との関係を示す情報に基づいて、温度計で測定した温度における超音波の波長を求めても良い。 For example, the temperature correction unit 25 may include a thermometer that measures the temperature, and obtain the wavelength of the ultrasonic wave at the temperature measured by the thermometer based on information indicating the relationship between the temperature and the wavelength.
 また例えば、温度補正部25は、実際に超音波センサ10から送信された超音波の波長を算出してもよい。この場合には、複数のセンサ103(図2参照)のうちの1つを用いて超音波を送信し、センサ103から所定の距離(距離Dとする)だけ離れて設けられた波長測定用対象物で反射した超音波を同じセンサ103を用いて受信する。相関算出部23及び距離算出部24は、センサ103から超音波が送信され、波長測定用対象部で反射されてセンサ103で受信されるまでの時間tを測定し、温度補正部25は、時間tと距離Dとに基づいて超音波センサ10から送信された超音波の波長を求めることができる。相関算出部23及び距離算出部24は、温度補正部25で算出された波長に基づいて対象物Oまでの距離を求めることで、より正確に距離の測定が可能となる。 For example, the temperature correction unit 25 may calculate the wavelength of the ultrasonic wave actually transmitted from the ultrasonic sensor 10. In this case, an ultrasonic wave is transmitted using one of a plurality of sensors 103 (see FIG. 2), and is a wavelength measurement target provided at a predetermined distance (referred to as distance D) from the sensor 103. The ultrasonic wave reflected by the object is received using the same sensor 103. The correlation calculation unit 23 and the distance calculation unit 24 measure a time t from when the ultrasonic wave is transmitted from the sensor 103, reflected by the wavelength measurement target unit and received by the sensor 103, and the temperature correction unit 25 Based on t and the distance D, the wavelength of the ultrasonic wave transmitted from the ultrasonic sensor 10 can be obtained. The correlation calculation unit 23 and the distance calculation unit 24 can measure the distance more accurately by obtaining the distance to the object O based on the wavelength calculated by the temperature correction unit 25.
 出力部30は、距離算出部24で求められた距離を、表示装置等の外部装置に出力する。表示装置は、既に公知の一般的な表示装置であり、出力された距離を表示する。 The output unit 30 outputs the distance obtained by the distance calculation unit 24 to an external device such as a display device. The display device is a known general display device, and displays the output distance.
 なお、図1に示す超音波距離測定装置1の構成は、本実施形態の特徴を説明するにあたって主要構成を説明したのであって、例えば一般的な情報処理装置が備える構成を排除するものではない。また、図1に示す機能構成は、超音波距離測定装置1の構成を理解しやすくするために分類したものであり、構成要素の分類の仕方や名称は図1に記載の形態に限定されない。超音波距離測定装置1の構成は、処理内容に応じてさらに多くの構成要素に分類してもよいし、1つの構成要素が複数の構成要素の処理を実行してもよい。 Note that the configuration of the ultrasonic distance measuring device 1 shown in FIG. 1 has described the main configuration in describing the features of the present embodiment, and does not exclude, for example, the configuration of a general information processing device. . Further, the functional configuration shown in FIG. 1 is classified for easy understanding of the configuration of the ultrasonic distance measuring device 1, and the classification method and names of the constituent elements are not limited to the form shown in FIG. The configuration of the ultrasonic distance measuring device 1 may be classified into more components according to the processing content, or one component may execute processing of a plurality of components.
 図13は、本発明にかかる超音波距離測定装置1を含むオートフォーカス装置5の一例を示す図である。オートフォーカス装置5は、超音波距離測定装置の一形態である。 FIG. 13 is a diagram showing an example of the autofocus device 5 including the ultrasonic distance measuring device 1 according to the present invention. The autofocus device 5 is a form of an ultrasonic distance measuring device.
 オートフォーカス装置5は、主として、超音波距離測定装置1(超音波センサ10、信号処理部20(図13では図示省略)及び出力部30(図13では図示省略))と、反射板51と、撮像装置52と、を備える。超音波センサ10は、対象物Oに向けて斜めに超音波を送信し、反射板51で反射し、かつ対象物Oで反射した超音波を受信する。 The autofocus device 5 mainly includes an ultrasonic distance measuring device 1 (ultrasonic sensor 10, signal processing unit 20 (not shown in FIG. 13) and output unit 30 (not shown in FIG. 13)), a reflecting plate 51, An imaging device 52. The ultrasonic sensor 10 transmits ultrasonic waves obliquely toward the object O, receives the ultrasonic waves reflected by the reflecting plate 51 and reflected by the object O.
 反射板51は、超音波センサ10から反射板51との間の超音波の経路と、反射板51から超音波センサ10との間の超音波の経路とが一致する(図13の矢印参照)位置に設けられる。 In the reflection plate 51, the ultrasonic path between the ultrasonic sensor 10 and the reflection plate 51 coincides with the ultrasonic path between the reflection plate 51 and the ultrasonic sensor 10 (see the arrow in FIG. 13). Provided in position.
 信号処理部20は、超音波センサ10と反射板51との距離と、超音波センサ10から対象物Oへ送信される超音波の入射角θとに基づいて、超音波センサ10と対象物Oとの距離hを求める。 Based on the distance between the ultrasonic sensor 10 and the reflection plate 51 and the incident angle θ of the ultrasonic wave transmitted from the ultrasonic sensor 10 to the object O, the signal processing unit 20 is connected to the ultrasonic sensor 10 and the object O. The distance h is obtained.
 出力部30は、測定された距離hを撮像装置52に出力する。撮像装置52は距離hに基づいて合焦処理を行う。合焦処理は公知であるため説明を省略する。 The output unit 30 outputs the measured distance h to the imaging device 52. The imaging device 52 performs a focusing process based on the distance h. Since the focusing process is known, the description thereof is omitted.
 オートフォーカス装置5では、対象物Oに向けて斜めに超音波を送信し、超音波が超音波センサ10と反射板51との間を往復する(ダブルパス)ため、超音波センサ10と反射板51との距離Lが変化したときの距離hの変化はL/2×cosθとなり、距離hの変化は距離Lの変化に対して大幅に小さい。例えばθが45度だとすると、距離LがΔLだけ変化したときの距離hの変化Δhは、Δh=ΔL/2×1/√2であり、ΔLはΔhの略2.8倍(ΔL=2×√2×Δh)となる。したがって、距離hの測定精度は、距離Lの測定精度より高くなる。 In the autofocus device 5, ultrasonic waves are transmitted obliquely toward the object O, and the ultrasonic waves reciprocate between the ultrasonic sensor 10 and the reflection plate 51 (double path), and therefore the ultrasonic sensor 10 and the reflection plate 51. The change in the distance h when the distance L is changed to L / 2 × cos θ, and the change in the distance h is significantly smaller than the change in the distance L. For example, if θ is 45 degrees, the change Δh in the distance h when the distance L changes by ΔL is Δh = ΔL / 2 × 1 / √2, and ΔL is approximately 2.8 times Δh (ΔL = 2 × √2 × Δh). Therefore, the measurement accuracy of the distance h is higher than the measurement accuracy of the distance L.
 図14は、距離hの変化と距離Lの変化との関係を模式的に示す図であり、(A)はθが45度の場合を示し、(B)はθが0度の場合を示す。表面O1、O2、O3は、対象物Oの表面であり、表面O1の位置は、超音波センサ10と対象物Oとの距離が距離hである場合を示し、表面O2の位置は、超音波センサ10と対象物Oとの距離が距離h+Δhである場合を示し、表面O3の位置は、超音波センサ10と対象物Oとの距離が距離h+Δ2hである場合を示す。図14では、超音波の経路を二点鎖線で示す。 FIG. 14 is a diagram schematically showing the relationship between the change in the distance h and the change in the distance L. (A) shows the case where θ is 45 degrees, and (B) shows the case where θ is 0 degrees. . Surfaces O1, O2, and O3 are surfaces of the object O, and the position of the surface O1 indicates a case where the distance between the ultrasonic sensor 10 and the object O is a distance h, and the position of the surface O2 is an ultrasonic wave. The case where the distance between the sensor 10 and the object O is a distance h + Δh is shown, and the position of the surface O3 shows the case where the distance between the ultrasonic sensor 10 and the object O is a distance h + Δ2h. In FIG. 14, the ultrasonic path is indicated by a two-dot chain line.
 図14(A)では、表面O1、O2、O3までの距離は、超音波センサ10と反射板53との距離から算出する。距離hがΔhだけ変化すると、超音波センサ10から反射板53までの距離は、2×√2×Δhだけ変化する。それに対し、図14(B)では、表面O1、O2、O3までの距離を直接測定するため、超音波センサ10からの距離hがΔhだけ変化すると、超音波の経路は、2(往復分)×Δhだけ変化する。したがって、図14(A)に示す場合は、図14(B)に示す場合より√2倍細かく距離を求めることができる。 14A, the distances to the surfaces O1, O2, and O3 are calculated from the distances between the ultrasonic sensor 10 and the reflection plate 53. When the distance h changes by Δh, the distance from the ultrasonic sensor 10 to the reflecting plate 53 changes by 2 × √2 × Δh. On the other hand, in FIG. 14B, since the distances to the surfaces O1, O2, and O3 are directly measured, if the distance h from the ultrasonic sensor 10 is changed by Δh, the ultrasonic path is 2 (reciprocal). It changes by ΔΔh. Therefore, in the case shown in FIG. 14A, the distance can be obtained more finely by √2 times than in the case shown in FIG.
 本実施の形態によれば、所定条件下での実際の受信波形の一部を予めテンプレートTとして保持し、対象物Oで反射した超音波に基づいた受信波形と、テンプレートT(テンプレートT1)との相関に基づいて距離を求めるため、高い精度で距離を測定することができる。 According to the present embodiment, a part of an actual reception waveform under a predetermined condition is held in advance as a template T, and the reception waveform based on the ultrasonic wave reflected by the object O, the template T (template T1), Since the distance is obtained based on the correlation, the distance can be measured with high accuracy.
 また、本実施の形態によれば、テンプレートTの振幅を調整するテンプレート調整部22を有するため、対象物Oまでの距離等の測定条件の変化により受信波形の振幅が変化したとしても、受信波形とテンプレートTとの相関を正しく得ることができる。したがって、測定条件の変化にかかわらず対象物Oまでの距離を精度良く測定することができる。 In addition, according to the present embodiment, since the template adjustment unit 22 that adjusts the amplitude of the template T is provided, even if the amplitude of the received waveform changes due to a change in measurement conditions such as the distance to the object O, the received waveform And the template T can be correctly obtained. Therefore, the distance to the object O can be accurately measured regardless of changes in the measurement conditions.
 また、本実施の形態によれば、超音波センサ10から送受信する超音波の周波数を300kHzとし、受信信号のサンプリング周波数を6MHzとする(300kHzの超音波の1周期を20回サンプリングする)ため、下記の数式(2)で求められるように、30μmという高い精度で距離を測定することができる。ここで0.6mmは、300kHzの超音波の波長λ=1.13mmの半分(ダブルパスであるため)である0.57mmの近似値である。 Further, according to the present embodiment, the frequency of the ultrasonic wave transmitted and received from the ultrasonic sensor 10 is set to 300 kHz, and the sampling frequency of the received signal is set to 6 MHz (one cycle of 300 kHz ultrasonic wave is sampled 20 times). The distance can be measured with a high accuracy of 30 μm as determined by the following mathematical formula (2). Here, 0.6 mm is an approximate value of 0.57 mm, which is half of the wavelength λ = 1.13 mm of the ultrasonic wave of 300 kHz (because of the double pass).
[数2]
 0.6mm/20=0.03mm(=30μm)  ・・・(2)
[Equation 2]
0.6 mm / 20 = 0.03 mm (= 30 μm) (2)
 また、本実施の形態によれば、超音波センサ10で超音波の送信および受信を行い、超音波が超音波センサ10と対象物Oとの間を往復するダブルパス計測(往復計測)を行うため、超音波の経路における風速の影響を無くし、対象物Oまでの距離を精度良く測定することができる。 Further, according to the present embodiment, the ultrasonic sensor 10 transmits and receives ultrasonic waves, and performs double-pass measurement (reciprocal measurement) in which the ultrasonic waves reciprocate between the ultrasonic sensor 10 and the object O. The influence of the wind speed in the ultrasonic path can be eliminated, and the distance to the object O can be accurately measured.
 周波数が300kHzの矩形波でD/Aコンバータを10~15サイクル程度振動させてからDC(周波数が0)の信号を加えることで、センサ103にブレーキをかけてセンサ103の揺れを停止させることができる。これにより、センサ103から超音波を送信した後、すぐにセンサ103で超音波を受信することが可能である。そのため、超音波の送信及び受信を同一のセンサ103で行いつつ、短い距離(例えば、40mm)の計測を行うことができる。 By applying a DC (frequency 0) signal after oscillating the D / A converter for about 10 to 15 cycles with a rectangular wave with a frequency of 300 kHz, the sensor 103 is braked to stop the shaking of the sensor 103. it can. As a result, it is possible to receive the ultrasonic wave at the sensor 103 immediately after transmitting the ultrasonic wave from the sensor 103. Therefore, it is possible to measure a short distance (for example, 40 mm) while performing transmission and reception of ultrasonic waves with the same sensor 103.
 なお、本実施の形態では、受信される超音波の周波数300kHzの20倍で受信信号を取得するが、受信される超音波の約10倍以上の周波数で受信信号を取得(オーバーサンプリング)すればよい。ただし、オーバーサンプリング数は整数倍であることが望ましい。 In the present embodiment, the received signal is acquired at 20 times the frequency of the received ultrasonic wave of 300 kHz. However, if the received signal is acquired (oversampling) at a frequency of about 10 times or higher than the received ultrasonic wave. Good. However, the oversampling number is preferably an integer multiple.
 また、本実施の形態では、信号処理部20がテンプレート調整部22を備えたが、テンプレート調整部22は必須ではない。例えば超音波距離測定装置1をオートフォーカス装置5に適用したときには、超音波センサ10と対象物Oとの距離の変化量が微小であり、受信波形のピーク値がほとんど変化しない。したがって、このような場合にはテンプレート調整部22は不要であり、テンプレート保持部21は、合焦時の受信波形を用いてテンプレートTを作成し、これを保持しておけばよい。 In the present embodiment, the signal processing unit 20 includes the template adjustment unit 22, but the template adjustment unit 22 is not essential. For example, when the ultrasonic distance measuring device 1 is applied to the autofocus device 5, the amount of change in the distance between the ultrasonic sensor 10 and the object O is very small, and the peak value of the received waveform hardly changes. Therefore, in such a case, the template adjustment unit 22 is unnecessary, and the template holding unit 21 may create the template T using the received waveform at the time of focusing and hold it.
 また、本実施の形態では、10~15サイクル程度の矩形波のあとでDC(周波数が0)の信号を加えることでセンサ103の揺れを停止させたが、内部にセンサ103を有する超音波センサ10の取り付けを工夫することで、超音波センサ10の振動を更に抑えることも可能である。図15は、超音波センサ10の取付構造の一例を模式的に示す図である。 Further, in this embodiment, the shaking of the sensor 103 is stopped by applying a DC (frequency 0) signal after a rectangular wave of about 10 to 15 cycles, but an ultrasonic sensor having the sensor 103 inside By devising the attachment of 10, it is possible to further suppress the vibration of the ultrasonic sensor 10. FIG. 15 is a diagram schematically illustrating an example of the attachment structure of the ultrasonic sensor 10.
 超音波センサ10は、枠体10aを有する。筐体113と枠体10aとの間に弾性部材111(例えば、Oリング)が設けられ、弾性部材111が弾性変形することで筐体113の内部に超音波センサ10が設けられる。言い換えれば、弾性部材111により超音波センサ10が挟持される。弾性部材111は、センサ103の振動面が設けられた面10bに隣接する側面10cに当接する。 The ultrasonic sensor 10 has a frame 10a. An elastic member 111 (for example, an O-ring) is provided between the casing 113 and the frame body 10a, and the ultrasonic sensor 10 is provided inside the casing 113 by the elastic member 111 being elastically deformed. In other words, the ultrasonic sensor 10 is held by the elastic member 111. The elastic member 111 contacts the side surface 10c adjacent to the surface 10b on which the vibration surface of the sensor 103 is provided.
 センサ103が超音波を送信するときには、空気を振動させるときの反動で、センサ103が前後に震え、超音波センサ10の振動が収まりにくい。超音波センサ10の振動が収まりやすいように、枠体10aに金属製の重りを設ける。ここでは、重りとして、鉛で形成されたシート状の部材である鉛シート112を用い、接着剤を塗布した鉛シート112を側面10cに巻回する。接着剤としては、弾性を有する接着剤(例えばアクリル変成シリコーン樹脂等の変成シリコーン樹脂系の接着剤)を用いる。これにより、振動エネルギーを効率よく熱に変換することができ、送受信の切り替えが早くなる。したがって、センサ103から超音波を送信した後、すぐにセンサ103で超音波を受信すること、すなわち短い距離(例えば、40mm)の計測が可能となる。 When the sensor 103 transmits an ultrasonic wave, the sensor 103 shakes back and forth due to a reaction when the air is vibrated, and the vibration of the ultrasonic sensor 10 is difficult to be settled. A metal weight is provided on the frame body 10a so that the vibration of the ultrasonic sensor 10 is easily settled. Here, as a weight, a lead sheet 112 which is a sheet-like member formed of lead is used, and the lead sheet 112 coated with an adhesive is wound around the side surface 10c. As the adhesive, an adhesive having elasticity (for example, a modified silicone resin-based adhesive such as an acrylic modified silicone resin) is used. Thereby, vibration energy can be efficiently converted into heat, and switching between transmission and reception is accelerated. Therefore, it is possible to receive an ultrasonic wave immediately after transmitting an ultrasonic wave from the sensor 103, that is, to measure a short distance (for example, 40 mm).
<第2の実施の形態>
 本発明の第1の実施の形態は、相関値が最も小さいときに受信波形とテンプレートT1とが一致し、又は最も一致に近いとして対象物Oまでの距離を求めたが、対象物Oまでの距離を求める方法はこれに限られない。
<Second Embodiment>
In the first embodiment of the present invention, when the correlation value is the smallest, the received waveform and the template T1 coincide with each other, or the distance to the object O is determined as being closest to each other. The method for obtaining the distance is not limited to this.
 本発明の第2の実施の形態は、受信波形と中心線とが一致する点、いわゆるクロスポイントで受信波形とテンプレートT1とが一致する、又は最も一致に近くなるとして対象物Oまでの距離を求める形態である。以下、第2の実施の形態に係る超音波距離測定装置2について説明する。なお、第1の実施の形態にかかる超音波距離測定装置1と同一の部分については、同一の符号を付し、説明を省略する。 In the second embodiment of the present invention, the distance to the object O is assumed that the received waveform and the template T1 coincide with each other at the point where the received waveform coincides with the center line, that is, the so-called cross point, or the closest match. This is the desired form. Hereinafter, the ultrasonic distance measuring device 2 according to the second embodiment will be described. In addition, about the part same as the ultrasonic distance measuring device 1 concerning 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.
 図16は、第2の実施の形態に係る超音波距離測定装置2の概略構成を示すブロック図である。超音波距離測定装置1は、主として、超音波センサ10と、信号処理部20Aと、出力部30と、を有する。 FIG. 16 is a block diagram showing a schematic configuration of the ultrasonic distance measuring apparatus 2 according to the second embodiment. The ultrasonic distance measuring device 1 mainly includes an ultrasonic sensor 10, a signal processing unit 20A, and an output unit 30.
 信号処理部20Aは、主として、テンプレート保持部21と、テンプレート調整部22と、相関算出部23と、距離算出部24Aと、温度補正部25と、を有する。 The signal processing unit 20A mainly includes a template holding unit 21, a template adjustment unit 22, a correlation calculation unit 23, a distance calculation unit 24A, and a temperature correction unit 25.
 距離算出部24Aは、相関算出部23で算出された結果に基づいてクロスポイントを求め、クロスポイントに基づいて超音波センサ10と対象物Oとの距離を算出する。図17は、受信波形の立ち上がり部分を横方向に拡大して表示した図である。 The distance calculation unit 24A calculates a cross point based on the result calculated by the correlation calculation unit 23, and calculates the distance between the ultrasonic sensor 10 and the object O based on the cross point. FIG. 17 is a diagram in which the rising portion of the received waveform is displayed in an enlarged manner in the horizontal direction.
 図17における点βは、図9、10において相関値が最も小さい点である。点β1は、点βの次のタイミングにおける測定点である。クロスポイントβ’は、点βと点β1との間に位置し、点β(相関値が最も小さい時点)の近傍におけるクロスポイントである。第2の実施の形態では、受信波形と中心線とが一致するクロスポイントβ’で受信波形とテンプレートT1の最後とが一致するとする。 The point β in FIG. 17 is the point with the smallest correlation value in FIGS. Point β1 is a measurement point at the timing next to point β. The cross point β ′ is located between the point β and the point β1, and is a cross point in the vicinity of the point β (at the time when the correlation value is the smallest). In the second embodiment, it is assumed that the received waveform coincides with the end of the template T1 at the cross point β ′ where the received waveform coincides with the center line.
 図18は、図17に示す受信波形のクロスポイントβ’の近傍を拡大した図である。点βとクロスポイントβ’との高さ方向の距離をaとし、点β’と点β1との高さ方向の距離をbとし、点βとクロスポイントβ’との横方向の距離をa1とし、点β’と点β1との横方向の距離をb1とすると、a:b=a1:b1となり、距離a1は以下の数式(3)を用いて算出される。ここで30μmは、300kHzの超音波の波長の半分(ダブルパスであるため)の1/20(オーバーサンプリング数)であり、6MHzの超音波の波長の半分に相当する。 FIG. 18 is an enlarged view of the vicinity of the cross point β ′ of the received waveform shown in FIG. The distance in the height direction between the point β and the cross point β ′ is a, the distance in the height direction between the point β ′ and the point β1 is b, and the lateral distance between the point β and the cross point β ′ is a1. Assuming that the horizontal distance between the point β ′ and the point β1 is b1, a: b = a1: b1, and the distance a1 is calculated using the following equation (3). Here, 30 μm is 1/20 (the number of oversampling) of half of the wavelength of 300 kHz ultrasonic waves (because of the double path), and corresponds to half of the wavelength of ultrasonic waves of 6 MHz.
[数3]
 1/6MHz=30μm×a/(a+b)  ・・・(3)
[Equation 3]
1/6 MHz = 30 μm × a / (a + b) (3)
 距離算出部24は、クロスポイントβ’のタイミングで受信波形とテンプレートT1の最後が一致し、テンプレートT1の輪郭線が交差する位置で受信波形が立ち上がるとする。そして、距離算出部24は、このようにして求めた受信波形が立ち上がる位置で超音波の受信を開始したとして、数式(4)で示すようにして超音波センサ10と対象物Oとの距離を算出する。 The distance calculating unit 24 assumes that the received waveform rises at a position where the end of the received waveform and the template T1 coincide with each other at the timing of the cross point β ′ and the outline of the template T1 intersects. Then, the distance calculation unit 24 assumes that the reception of the ultrasonic wave is started at the position where the reception waveform obtained in this way rises, and calculates the distance between the ultrasonic sensor 10 and the object O as shown in Equation (4). calculate.
[数4]
 往復距離=(点βのタイミング/20+距離a1)×1.13mm  ・・・(4)
[Equation 4]
Round trip distance = (Timing of point β / 20 + distance a1) × 1.13 mm (4)
 本実施の形態によれば、クロスポイントに基づいて距離を求めるため、より高い精度で距離を測定することができる。 According to the present embodiment, since the distance is obtained based on the cross point, the distance can be measured with higher accuracy.
 以上、この発明の実施形態を、図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。 The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and design changes and the like within a scope not departing from the gist of the present invention are included. .
 本発明において、「略」とは、厳密に同一である場合のみでなく、同一性を失わない程度の誤差や変形を含む概念である。例えば、略一致とは、厳密に一致する場合に限られない。また、例えば、単に鉛直、一致等と表現する場合において、厳密に鉛直、一致等の場合のみでなく、略鉛直、略一致等の場合を含むものとする。また、本発明において「近傍」とは、例えばAの近傍であるときに、Aの近くであって、Aを含んでもいても含んでいなくてもよいことを示す概念である。 In the present invention, “substantially” is a concept that includes not only exactly the same but also errors and deformations that do not lose the identity. For example, “substantially coincidence” is not limited to the case of exact coincidence. Further, for example, in the case where the expression is simply vertical, coincidence, etc., not only strictly vertical, coincidence, but also the case of substantially vertical, substantially coincidence, etc. is included. Further, in the present invention, the “neighborhood” is a concept indicating that when it is in the vicinity of A, for example, it is near A and may or may not include A.
1、2   :超音波距離測定装置
5     :オートフォーカス装置
10    :超音波センサ
10a   :枠体
10b   :面
10c   :側面
20、20A:信号処理部
21    :テンプレート保持部
22    :テンプレート調整部
22a   :ピークホールド回路
22b   :テンプレート調整入力部
23    :相関算出部
24、24A:距離算出部
25    :温度補正部
30    :出力部
51    :反射板
52    :撮像装置
101   :高周波駆動回路
101a  :D/Aコンバータ
101b  :トランス
101c  :アンプ
102、105:半導体リレー
103   :センサ
104   :受信回路
104a  :バンドパスフィルタ
104b  :A/Dコンバータ
111   :弾性部材
112   :鉛シート
113   :筐体
231、232:シフトレジスタ
231-1~231-80、232-1~232-80:Dフリップフロップ
1, 2: Ultrasonic distance measuring device 5: Autofocus device 10: Ultrasonic sensor 10a: Frame 10b: Surface 10c: Side surface 20, 20A: Signal processing unit 21: Template holding unit 22: Template adjustment unit 22a: Peak hold Circuit 22b: Template adjustment input unit 23: Correlation calculation unit 24, 24A: Distance calculation unit 25: Temperature correction unit 30: Output unit 51: Reflecting plate 52: Imaging device 101: High frequency drive circuit 101a: D / A converter 101b: Transformer 101c: amplifier 102, 105: semiconductor relay 103: sensor 104: receiving circuit 104a: band-pass filter 104b: A / D converter 111: elastic member 112: lead sheet 113: housings 231, 232: shift registers 231-1 to 231 80,232-1 ~ 232-80: D flip-flop

Claims (10)

  1.  超音波を対象物へ向けて送信し、かつ、前記対象物で反射された超音波を受信するセンサと、
     前記センサで受信した超音波の受信波形と、テンプレートとの相関に基づいて、前記センサと前記対象物との距離を測定する信号処理部と、
     を備え、
     前記センサは、周期が一定であり、サイクル数が10~15サイクル程度の第1サイクル数である矩形波の後、周波数が0となる送信信号を用いて超音波を送信し、
     前記信号処理部は、所定条件下における前記受信波形である基本波形を立ち上がりから前記第1サイクル数より少ない第2サイクル数分だけ抜き出した第1波形、又は前記第1波形の振幅を所定倍した第2波形を前記テンプレートとして保持するテンプレート保持部を有する
     ことを特徴とする超音波距離測定装置。
    A sensor for transmitting an ultrasonic wave toward an object and receiving an ultrasonic wave reflected by the object;
    A signal processing unit for measuring a distance between the sensor and the object based on a correlation between a received waveform of the ultrasonic wave received by the sensor and a template;
    With
    The sensor transmits an ultrasonic wave using a transmission signal having a frequency of 0 after a rectangular wave having a constant period and a first cycle number of about 10 to 15 cycles,
    The signal processing unit is a first waveform obtained by extracting the basic waveform, which is the received waveform under a predetermined condition, by a second number of cycles less than the first number of cycles from the rising edge, or a predetermined multiple of the amplitude of the first waveform. An ultrasonic distance measuring device comprising a template holding unit for holding a second waveform as the template.
  2.  前記信号処理部は、前記受信波形と前記テンプレートとを差分し、当該差分の絶対値を加算して相関値を求め、前記相関値が一番小さいときに前記受信波形と前記テンプレートが一致したとして前記受信波形の立ち上がりの時刻を求め、当該時刻に基づいて前記センサと前記対象物との距離を測定する
     ことを特徴とする請求項1に記載の超音波距離測定装置。
    The signal processing unit calculates the correlation value by subtracting the received waveform from the template and adding the absolute value of the difference, and the received waveform and the template match when the correlation value is the smallest. The ultrasonic distance measuring apparatus according to claim 1, wherein a rising time of the received waveform is obtained and a distance between the sensor and the object is measured based on the time.
  3.  前記信号処理部は、前記テンプレートの振幅を調整するテンプレート調整部を有する
     ことを特徴とする請求項1又は2に記載の超音波距離測定装置。
    The ultrasonic distance measuring device according to claim 1, wherein the signal processing unit includes a template adjustment unit that adjusts an amplitude of the template.
  4.  前記テンプレート調整部は、前記テンプレートのピーク値と、前記受信波形のピーク値とが一致するように前記テンプレートの振幅を調整する
     ことを特徴とする請求項3に記載の超音波距離測定装置。
    The ultrasonic distance measuring device according to claim 3, wherein the template adjustment unit adjusts the amplitude of the template so that a peak value of the template matches a peak value of the received waveform.
  5.  前記センサは、前記第1波形の周波数の略20倍の周波数でサンプリングを行う
     ことを特徴とする請求項1から4のいずれか一項に記載の超音波距離測定装置。
    The ultrasonic distance measuring device according to any one of claims 1 to 4, wherein the sensor performs sampling at a frequency that is approximately 20 times the frequency of the first waveform.
  6.  前記センサから所定の距離だけ離れて設けられた波長測定用対象物を備え、
     前記信号処理部は、前記センサから超音波が送信されてから、当該送信された超音波が前記波長測定用対象物で反射されて前記センサで受信されるまでの時間と、前記所定の距離とに基づいて前記センサから送信された超音波の波長を求め、当該求められた波長に基づいて、前記センサと前記対象物との距離を求める
     ことを特徴とする請求項1から5のいずれか一項に記載の超音波距離測定装置。
    A wavelength measuring object provided at a predetermined distance from the sensor;
    The signal processing unit includes a time from when the ultrasonic wave is transmitted from the sensor to when the transmitted ultrasonic wave is reflected by the wavelength measurement object and received by the sensor, and the predetermined distance. The wavelength of the ultrasonic wave transmitted from the sensor is obtained based on the above, and the distance between the sensor and the object is obtained based on the obtained wavelength. The ultrasonic distance measuring device according to item.
  7.  前記信号処理部は、前記受信波形において、前記受信波形と前記テンプレートとの相関が最も高い時点の近傍における、前記受信波形と中心線とが一致する点において前記受信波形と前記テンプレートが一致したとして前記センサと前記対象物との距離を測定する
     ことを特徴とする請求項1から6のいずれか一項に記載の超音波距離測定装置。
    In the received waveform, the signal processing unit assumes that the received waveform and the template coincide with each other at a point where the received waveform and the center line coincide with each other in the vicinity of the time when the correlation between the received waveform and the template is highest. The ultrasonic distance measuring device according to any one of claims 1 to 6, wherein a distance between the sensor and the object is measured.
  8.  反射板を更に備え、
     前記センサは、前記対象物に向けて斜めに超音波を送信し、
     前記反射板は、前記センサから前記反射板との間の超音波の経路と前記反射板から前記センサとの間の超音波の経路とが一致するように、前記センサから送信されて前記対象物で反射された超音波を反射し、
     前記信号処理部は、前記センサと前記反射板との距離と、前記センサから前記対象物へ送信される超音波の入射角とに基づいて前記センサと前記対象物との距離を求める
     ことを特徴とする請求項1から7のいずれか一項に記載の超音波距離測定装置。
    Further comprising a reflector,
    The sensor transmits ultrasonic waves obliquely toward the object,
    The reflector is transmitted from the sensor so that an ultrasonic path between the sensor and the reflector coincides with an ultrasonic path between the reflector and the sensor, and the object Reflects the ultrasonic waves reflected by
    The signal processing unit obtains a distance between the sensor and the object based on a distance between the sensor and the reflector and an incident angle of an ultrasonic wave transmitted from the sensor to the object. The ultrasonic distance measuring device according to any one of claims 1 to 7.
  9.  筐体を更に備え、
     前記センサは、枠体を有し、
     前記枠体には、金属製の重りが設けられ、
     前記枠体と前記筐体との間には、弾性部材が設けられ、前記弾性部材が前記枠体を挟持する
     ことを特徴とする請求項1から8のいずれか一項に記載の超音波距離測定装置。
    A housing,
    The sensor has a frame,
    The frame body is provided with a metal weight,
    The ultrasonic distance according to any one of claims 1 to 8, wherein an elastic member is provided between the frame and the housing, and the elastic member sandwiches the frame. measuring device.
  10.  周期が一定であり、サイクル数が10~15サイクル程度の第1サイクル数である矩形波の後、周波数が0となる送信信号を用いてセンサから超音波を送信し、
     対象物で反射された超音波を前記センサで受信し、
     前記センサで受信された超音波の受信波形と、予め保持されたテンプレートと、の相関に基づいて距離を求める超音波距離測定方法であって、
     所定条件下において、前記送信信号を用いて前記センサから超音波を送信し、前記対象物で反射された超音波を前記センサで受信し、前記センサで受信された超音波の受信波形のうちの反射波形の立ち上がりから前記第1サイクル数より少ない第2サイクル数分だけ抜き出した第1波形、又は前記第1波形の振幅を所定倍した第2波形を前記テンプレートとする
     ことを特徴とする超音波距離測定方法。
    After a rectangular wave having a constant period and a first cycle number of about 10 to 15 cycles, an ultrasonic wave is transmitted from the sensor using a transmission signal having a frequency of 0,
    The ultrasonic wave reflected by the object is received by the sensor,
    An ultrasonic distance measuring method for obtaining a distance based on a correlation between a received waveform of an ultrasonic wave received by the sensor and a template held in advance,
    Under a predetermined condition, an ultrasonic wave is transmitted from the sensor using the transmission signal, an ultrasonic wave reflected by the object is received by the sensor, and an ultrasonic wave received waveform of the ultrasonic wave is received by the sensor. The first waveform extracted from the rising edge of the reflected waveform by the number of second cycles smaller than the first cycle number, or the second waveform obtained by multiplying the amplitude of the first waveform by a predetermined number is used as the template. Distance measurement method.
PCT/JP2019/011701 2018-03-29 2019-03-20 Ultrasonic distance measurement device and ultrasonic distance measurement method WO2019188661A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980015779.5A CN111788456B (en) 2018-03-29 2019-03-20 Ultrasonic distance measuring device and ultrasonic distance measuring method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-065162 2018-03-29
JP2018065162A JP7040766B2 (en) 2018-03-29 2018-03-29 Ultrasonic distance measuring device and ultrasonic distance measuring method

Publications (1)

Publication Number Publication Date
WO2019188661A1 true WO2019188661A1 (en) 2019-10-03

Family

ID=68058303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011701 WO2019188661A1 (en) 2018-03-29 2019-03-20 Ultrasonic distance measurement device and ultrasonic distance measurement method

Country Status (4)

Country Link
JP (1) JP7040766B2 (en)
CN (1) CN111788456B (en)
TW (1) TWI783123B (en)
WO (1) WO2019188661A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230146928A (en) 2022-04-13 2023-10-20 순천향대학교 산학협력단 A distance measurement method using radio signals and artificial neural networks, device thereof, a recording medium recording the same, and a computer program recorded on the recording medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030112705A1 (en) * 1998-06-30 2003-06-19 Subacoustech Limited Distance measuring systems, altimeters and aircraft
JP2009222445A (en) * 2008-03-13 2009-10-01 Univ Of Yamanashi Ultrasonic distance sensor system, and ultrasonic distance sensor using the same
JP2014232068A (en) * 2013-05-30 2014-12-11 本田技研工業株式会社 Object detector

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2697508B2 (en) * 1992-09-03 1998-01-14 日本鋼管株式会社 Ultrasonic thickness measurement method of furnace wall
DE602005016971D1 (en) * 2004-08-31 2009-11-12 Toshiba Kk Device for diagnosing an ultrasound probe
CN101152092B (en) * 2004-08-31 2010-09-29 株式会社东芝 Ultrasound probe diagnosing apparatus, ultrasound diagnostic apparatus, and ultrasound probe diagnosing method
JP4199741B2 (en) * 2005-02-25 2008-12-17 Necディスプレイソリューションズ株式会社 Wave receiver and wave reception determination method
JP4627220B2 (en) * 2005-06-22 2011-02-09 国立大学法人東北大学 Ultrasonic diagnostic equipment
CN100470258C (en) * 2006-12-15 2009-03-18 哈尔滨工业大学 Method and device for measuring the distance by ultrasonic waves
JP5459963B2 (en) * 2007-04-27 2014-04-02 日立アロカメディカル株式会社 Ultrasonic diagnostic equipment
CN101828129B (en) * 2007-08-30 2013-01-23 日本电气株式会社 Ultrasonic wave propagation time measuring system
DE102009027842A1 (en) * 2009-07-20 2011-01-27 Robert Bosch Gmbh Ultrasonic measuring device and method for evaluating an ultrasonic signal
CN201689170U (en) * 2010-06-07 2010-12-29 天津菲特测控仪器有限公司 Echo processing device
KR20130137005A (en) * 2010-11-16 2013-12-13 퀄컴 인코포레이티드 System and method for object position estimation based on ultrasonic reflected signals
DE102012101416C5 (en) * 2012-02-22 2019-03-28 Hochschule Offenburg Method and device for determining properties of a pipeline, in particular the position of a branch of a sewage pipeline

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030112705A1 (en) * 1998-06-30 2003-06-19 Subacoustech Limited Distance measuring systems, altimeters and aircraft
JP2009222445A (en) * 2008-03-13 2009-10-01 Univ Of Yamanashi Ultrasonic distance sensor system, and ultrasonic distance sensor using the same
JP2014232068A (en) * 2013-05-30 2014-12-11 本田技研工業株式会社 Object detector

Also Published As

Publication number Publication date
TWI783123B (en) 2022-11-11
CN111788456B (en) 2022-04-19
JP7040766B2 (en) 2022-03-23
JP2019174381A (en) 2019-10-10
TW201942591A (en) 2019-11-01
CN111788456A (en) 2020-10-16

Similar Documents

Publication Publication Date Title
JP3810430B2 (en) Ultrasonic ranging device
US20150293223A1 (en) Ultrasonic probe, ultrasonic imaging apparatus, and method of controlling the ultrasonic imaging apparatus
KR101825363B1 (en) Method and system for acquiring natural frequency of diaphragm
US20050225743A1 (en) Laser range finder having reflective micro-mirror and laser measuring method
WO2019188661A1 (en) Ultrasonic distance measurement device and ultrasonic distance measurement method
EP3199946B1 (en) Deformation detecting device
EP3370047A1 (en) Spectrum measuring device, spectroscopic device, and spectroscopic system
EP1065912A2 (en) Electro-magnetic microphone
WO2019224982A1 (en) Optical distance measurement device and processing device
JP2005291941A (en) Ultrasonic sensor and wave transmitting element for the same
JP2018021810A (en) Ultrasonic displacement measuring device and ultrasonic displacement measuring method
JPH10142253A (en) Vibration detecting sensor and vibration measuring device using the sensor
KR20120096736A (en) Ultrasound beamforming method and apparaus of reducing the calculation of delay time
CN109798973A (en) The method of testing of non-contact ultrasonic energy converter intrinsic frequency
RU2539787C1 (en) Method and apparatus for recording diffraction reflection curves
JPH07325151A (en) Ultrasonic distance measuring equipment
JP2008014815A (en) Terahertz-pulse light measuring apparatus
JP4024553B2 (en) Sonic velocity measuring method and sonic velocity measuring apparatus
JPH1010230A (en) Distance measuring apparatus
JP4059622B2 (en) Acoustoelectric converter
JP6554755B2 (en) Vibration measuring apparatus and vibration measuring method
RU115492U1 (en) DEVICE FOR MEASURING SPEED OF SURFACE ACOUSTIC WAVES
JPH07120248A (en) Method and apparatus for ultrasonic measurement of film thickness
KR101586433B1 (en) Ultrasonic transducer using light and method for controlling the same
JP2018021809A (en) Ultrasonic displacement measuring device and ultrasonic displacement measuring method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19775821

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19775821

Country of ref document: EP

Kind code of ref document: A1