WO2019188302A1 - Distance measuring device - Google Patents

Distance measuring device Download PDF

Info

Publication number
WO2019188302A1
WO2019188302A1 PCT/JP2019/010335 JP2019010335W WO2019188302A1 WO 2019188302 A1 WO2019188302 A1 WO 2019188302A1 JP 2019010335 W JP2019010335 W JP 2019010335W WO 2019188302 A1 WO2019188302 A1 WO 2019188302A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
signal
phase difference
light
distance measuring
Prior art date
Application number
PCT/JP2019/010335
Other languages
French (fr)
Japanese (ja)
Inventor
奥田 義行
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Publication of WO2019188302A1 publication Critical patent/WO2019188302A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/36Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal

Definitions

  • the present invention relates to a distance measuring device, and more particularly to a distance measuring device that measures the distance to an object by comparing the phases of a transmission signal and a reception signal.
  • a distance measuring device that measures the distance to an object by irradiating the object with laser light and receiving and analyzing the laser light reflected by the object is known (for example, Patent Document 1). .
  • a distance measuring device for example, a target is irradiated with laser light whose light intensity is modulated by a sine wave, the laser light reflected by the target is received, and the light intensity is converted into an electrical signal. Then, the phase difference between the sine wave component included in the electrical signal and the sine wave component included in the light intensity of the laser beam at the time of emission is extracted, and the extracted phase difference is converted into a delay time. The distance from the object is calculated based on the speed of light.
  • this distance calculation method since the distance is calculated based on the phase difference, it is possible to measure only up to a distance corresponding to one wavelength (or 1 ⁇ 2 wavelength depending on the phase difference detection method) of the sine wave to be modulated. .
  • a sine wave In order to widen the range of measurement distance, it is conceivable to use a sine wave with a long wavelength, but when it is necessary to identify a small difference in distance, the amount of phase change corresponding to the difference in distance is small. Measurement accuracy will deteriorate. Therefore, in order to achieve both a wide measurement distance range and measurement accuracy, laser light is used by combining a sine wave having a long wavelength (ie, a low frequency) and a sine wave having a short wavelength (ie, a high frequency). The intensity is being modulated.
  • a plurality of sine waves are emitted after being multiplex-modulated with the light intensity of laser light from one light source (that is, one laser light).
  • another sine wave is modulated to the light intensity of laser light (that is, a plurality of laser lights) from a plurality of light sources and emitted simultaneously.
  • the signal components of each sine wave are extracted from the electrical signal obtained by converting the received laser beam.
  • An example of the problem is that the BPF (Band Pass ⁇ ⁇ Filter) to be extracted and the BPF to extract a high frequency signal component have to be provided, and the circuit configuration of the distance measuring device becomes complicated.
  • a configuration for aligning the delay amounts is required separately.
  • the output signal indicating the light intensity of the received laser beam may have a signal waveform in which the non-linearity with respect to the incident light amount increases as the multiplication factor is increased and the upper side is crushed.
  • the signal waveform becomes a distorted waveform whose upper side is crushed relative to the original sine wave. Since this is a second harmonic distortion, the zero cross point shifts to the front side when rising, and shifts to the rear side when falling. In this state, if the product of the sine wave before emission is taken to detect the phase difference, the phase difference appears back and forth every half cycle.
  • a plurality of laser light sources, optical systems, and light receiving systems are required, which increases the scale of the system.
  • the optical system is misaligned, it will be difficult to collect spots at the same point on the object (detected object).
  • One example of the problem is that they will be separated.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a distance measuring device capable of accurately measuring a distance to an object with a simple configuration.
  • a laser beam whose light intensity is modulated based on a first frequency signal having a first frequency and a second frequency signal having a second frequency higher than the first frequency is directed to a predetermined region.
  • a light receiving unit that receives the laser light reflected by the object in the predetermined region, converts the light intensity of the received laser light into an electrical signal, and the electrical signal
  • a first phase difference detector that detects a phase difference between the first frequency signal component and the first frequency signal; and the second frequency signal component generated from the electrical signal and the second frequency signal.
  • the laser light has a light intensity modulated by a synthesized signal in which the phase of the sine wave signal of the second frequency is displaced based on the sine wave signal of the first frequency.
  • FIG. 6 is a diagram illustrating an example of a signal waveform of a light reception signal in Embodiment 1.
  • FIG. It is a figure which shows typically the phase oscillation based on the fundamental wave of the frequency f2 of the light received signal of Example 1.
  • FIG. It is a figure which shows the example of a phase shift in case a delay time is less than 1 period of a fundamental wave. It is a figure which shows the example of a phase shift in case delay time is an integral multiple of 1 period of a fundamental wave. It is a figure which shows the example of a phase shift in case a delay time exceeds one period of a fundamental wave, and is not an integral multiple. It is a figure which shows the signal waveform of the optical intensity of the laser beam radiate
  • FIG. 1 It is a figure which shows typically the spectrum of the signal component of each frequency modulated by the light intensity of the laser beam radiate
  • FIG. 1 It is a figure which shows typically the spectrum of the signal component of each frequency modulated by the light intensity of the laser beam radiate
  • FIG. It is a figure which shows the time change of the phase of the modulation signal in Example 2.
  • FIG. It is a figure which shows the example of the signal waveform of the light received signal in Example 2.
  • FIG. 1 is a block diagram illustrating a configuration of the distance measuring apparatus 100 according to the first embodiment.
  • the distance measuring device 100 emits laser light whose light intensity is modulated based on a signal of a predetermined frequency toward a predetermined area, receives the laser light reflected by the object OJT in the predetermined area, The distance to the object OJT is measured based on the phase difference of the signal component of the predetermined frequency included in the light intensity of the laser light at the time of light reception.
  • the distance measuring device 100 includes a reference signal generating unit 10, an emitting unit 11, a light receiving unit 12, a fa to fb band pass BPF 13, an f1 phase difference detecting unit 15, an f2 phase difference detecting unit 17, and a distance calculating unit 18.
  • the reference signal generator 10 generates a reference signal used for modulation of the light intensity of the laser light at the time of emission and detection of a phase difference after light reception.
  • the reference signal generator 10 generates a first frequency signal S1 and a second frequency signal S2 having different frequencies as reference signals.
  • the first frequency signal S1 has a frequency f1 (for example, 1 MHz)
  • the second frequency signal S2 has a frequency f2 (for example, 50 MHz) higher than the frequency f1.
  • the emission unit 11 includes a laser light source 11A that emits laser light, and a laser light emission drive unit 11B that drives the laser light source 11A.
  • the emitting unit 11 emits a laser beam, the light intensity of which is modulated by a combined signal in which the phase of the sine wave signal having the frequency f2 is displaced based on the sine wave signal having the frequency f1, toward a predetermined region.
  • the emitting unit 11 is a sum of the sine wave signal having the frequency f2, the first sine wave having the frequency fb that is the difference frequency between the frequency f1 and the frequency f2, and the frequency f1 and the frequency f2.
  • Laser light whose light intensity is modulated by a combined wave signal generated by adding a second sine wave having a certain frequency fa is emitted as emitted light OL.
  • the light receiving unit 12 receives reflected light RL, which is laser light reflected by the object OJT in a predetermined area, and receives the reflected light RL of the received reflected light RL into an electric signal, and the light receiving element 12A.
  • a light reception signal detection unit 12B that detects the light reception signal RS from the converted electrical signal is included.
  • the light receiving element 12A is composed of a photodetector such as a photodiode, for example, and converts the light intensity of the received reflected light RL into an electric signal.
  • the light receiving element 12A is composed of an APD (Avalanche Photodiode).
  • the fa to fb band pass BPF 13 is a band pass filter whose pass band is a frequency range from the frequency fa to the frequency fb.
  • the fa to fb band-pass BPF 13 passes signal components having frequencies from the frequency fa to the frequency fb among signal components included in the light reception signal RS, and blocks signal components in other frequency bands.
  • the f2 phase difference detection unit 17 and the signal component of the frequency f2 of the light reception signal RS and the second frequency signal S2 ( The phase difference PD2 from the frequency f2) is detected.
  • the f1 phase difference detection unit 15 supplies the signal component of the frequency f1 of the received light signal RS and the reference signal generation unit 10 based on the phase difference PD2 for the signal component of the frequency f2 detected by the f2 phase difference detection unit 17.
  • the phase difference PD1 with the first frequency signal S1 (frequency f1) is detected.
  • the distance calculation unit 18 is based on the phase difference PD1 for the frequency f1 detected by the f1 phase difference detection unit 15 and the phase difference PD2 for the frequency f2 detected by the f2 phase difference detection unit 17.
  • the wavelength is about 6 m, and therefore the range of 3 m (that is, the round-trip distance between the distance measuring device 100 and the object OJT is 6 m based on the phase difference PD2 for the frequency f2). Can be measured within the range.
  • the distance calculation unit 18 uses the phase difference PD1 for the frequency f1 for a rough measurement of a long distance range, and uses the phase difference PD2 for the frequency f2 for a fine measurement of a short distance range.
  • the distance CD to OJT is calculated.
  • the reference signal generation unit 10 generates a first frequency signal S1 having a frequency f1, and supplies the first frequency signal S1 to the emission unit 11 and the f1 phase difference detection unit 15.
  • the reference signal generation unit 10 generates a second frequency signal S2 having the frequency f2 and supplies the second frequency signal S2 to the emission unit 11 and the f2 phase difference detection unit 17.
  • the emission unit 11 adds the sine wave signal having the frequency f2, the first sine wave having a frequency difference between the frequency f1 and the frequency f2, and the second sine wave having a frequency sum of the frequency f1 and the frequency f2.
  • a laser beam whose light intensity is modulated by the generated composite wave signal is emitted as emitted light OL.
  • the sine wave signal and the synthesized wave signal are added so that the phases of the first sine wave and the second sine wave are 90 degrees different from the phase of the sine wave signal having the frequency f2.
  • the phase of the first sine wave and the second sine wave and the phase of the sine wave signal having the frequency f2 do not need to be strictly different by 90 degrees, and may be 45 degrees or more and 135 degrees or less.
  • a sinusoidal signal having a frequency f2 is cos (2 ⁇ ⁇ f2 ⁇ t), and a first sinusoid having a frequency difference between the frequency f1 and the frequency f2 is 1/2 sin ⁇ 2 ⁇ ⁇ (f2 ⁇ f1) ⁇ t ⁇
  • the second sine wave having the sum of the frequency f1 and the frequency f2 is 1/2 sin ⁇ 2 ⁇ ⁇ (f2 + f1) ⁇ t ⁇ and the time is t
  • the light intensity Semit (t) of the emitted light OL is It is expressed by a mathematical formula (Formula 1).
  • FIG. 2A is a diagram schematically showing a phase oscillation based on a sine wave signal of frequency f2 as a vector diagram.
  • the horizontal axis indicates the real axis, and the vertical axis indicates the imaginary axis.
  • the phase of the sine wave signal having the fundamental frequency f2 (hereinafter referred to as fundamental wave f2) is the first sine wave having the frequency fb (hereinafter referred to as fb wave) and the second phase having the frequency fa. It is 90 degrees different from the phase of a sine wave (hereinafter referred to as fa wave). Therefore, if the vector of the fundamental wave f2 is the real axis direction (for example, an angle of 0 degrees), the vectors of the fb wave and the fa wave are the imaginary axis direction (for example, an angle of 90 degrees).
  • the vector of the frequency fa is the real axis: -0.5 sin (2 ⁇ ⁇ f1 ⁇ t), the imaginary axis : 0.5 cos (2 ⁇ ⁇ f1 ⁇ t).
  • the vector of the frequency fb is real axis: 0.5 sin (2 ⁇ ⁇ f1 ⁇ t) and imaginary axis: 0.5 cos (2 ⁇ ⁇ f1 ⁇ t).
  • a synthesized vector CV obtained by synthesizing these becomes a real axis: 1.0 and an imaginary axis: cos (2 ⁇ ⁇ f1 ⁇ t).
  • FIG. 2B is a waveform diagram showing a time change of the phase angle ⁇ expressed by the above mathematical formula (Formula 2).
  • the phase angle ⁇ changes so as to vibrate at the frequency f1.
  • the vector obtained by combining the fa wave vector and the fb wave vector is a linear motion that reciprocates between +1 and ⁇ 1 in the imaginary axis direction (that is, the range indicated by the one-dot chain line arrow in FIG. 2A).
  • the vector of the fundamental wave f2 is further combined with the combination of the vector of the fa wave and the vector of the fb wave, the length (amplitude) of the combined vector CV changes between 1 and ⁇ 2.
  • “+ ⁇ 2” is added as a DC offset value (hereinafter referred to as a DC offset).
  • the DC offset represents the base level of the light intensity Semit (t), and the DC offset value “ ⁇ 2” is the average light intensity of the outgoing light OL.
  • FIG. 3A is a diagram showing a signal waveform of the light intensity of the outgoing light OL.
  • Laser light having such a signal waveform of light intensity is emitted from the emitting portion 11 as emitted light OL.
  • FIG. 3B is a graph showing the spectra of the frequencies f2, fa, and fb that are modulated by the light intensity of the outgoing light OL.
  • the spectrum of the frequency f2 stands on the graph
  • the spectrums of the frequency fa and the frequency fb are located near the frequency f2 and symmetrically on both sides. Will stand.
  • the laser light (emitted light OL) emitted by the emitting unit 11 is reflected by the object OJT.
  • the light receiving unit 12 receives reflected light RL that is laser light reflected by the object OJT.
  • the light receiving element 12A of the light receiving unit 12 multiplies the amount of the reflected light RL and converts the light intensity of the reflected light RL into an electric signal. At this time, the nonlinearity of the reflected light RL multiplied by the light receiving element 12A with respect to the incident light amount increases. For this reason, the signal waveform of the light reception signal RS, which is a signal obtained by converting the light intensity of the reflected light RL into an electrical signal, has a distorted shape.
  • FIG. 3C is a diagram illustrating an example of a signal waveform of the light reception signal RS.
  • a signal waveform in which the light intensity of the reflected light RL is saturated and the upper half is crushed is shown.
  • the signal waveform of the light reception signal RS retains the shape of the waveform of the light intensity of the emitted light OL.
  • the signal waveform of the light reception signal RS shown in FIG. 3C is a signal waveform obtained by adding the signal component of the frequency f1 to the light intensity of the emitted light OL shown in FIG. 3A. Therefore, by cutting the signal component of the frequency f1 from the received light signal RS, the distorted signal waveform shown in FIG. 3C can be returned to the signal waveform similar to the signal waveform of the light intensity of the emitted light OL shown in FIG. 3A.
  • the light receiving unit 12 supplies the light reception signal RS to the fa to fb bandpass BPF 13.
  • the fa to fb band-pass BPF 13 passes signal components having frequencies from the frequency fa to the frequency fb among signal components included in the light reception signal RS, and blocks signal components in other frequency bands. Thereby, the signal component of the frequency f1 is cut, and the distortion of the signal waveform of the light reception signal RS is corrected.
  • the signal waveform of the received light signal RS with corrected distortion is the laser beam at the time of emission.
  • the signal waveform of the light intensity signal (hereinafter referred to as the outgoing signal) becomes a waveform delayed by the light flight time Td on the time axis.
  • the flight time Td of light is also referred to as a delay time Td.
  • the signal waveform of the light reception signal RS is a waveform obtained by translating the signal waveform of the emission signal in the positive direction by the delay time Td.
  • Td the delay time
  • FIG. 4 is a diagram schematically showing a phase vibration with respect to the fundamental wave f2 in the light reception signal RS as a vector diagram.
  • the case where the vector of the fundamental wave f2 is on the imaginary axis (270 degrees in the figure) is shown as an example.
  • the signal waveform of the emission signal has a shape of parallel movement on the time axis when the laser beam is emitted from the emission unit 11, reflected by the object OJT, and received by the light receiving unit 12.
  • the combined vector CV obtained by combining the fundamental wave f2, the fa wave, and the fb wave is rotated by an angle corresponding to the delay time Td while keeping the phase vibration of the outgoing signal.
  • the f2 phase difference detection unit 17 detects the phase difference PD2 between the signal component of the frequency f2 of the light reception signal RS and the second frequency signal S2 (frequency f2) based on the light reception signal RS that has passed through the fa to fb band pass BPF13. And supplied to the f1 phase difference detector 15 and the distance calculator 18. Based on the phase difference PD2 detected by the f2 phase difference detector 17, the f1 phase difference detector 15 calculates the phase difference PD1 between the signal component of the frequency f1 of the light reception signal RS and the first frequency signal S1 (frequency f1). Detected and supplied to the distance calculator 18.
  • phase difference PD2 and the phase difference PD1 by the f2 phase difference detection unit 17 and the f1 phase difference detection unit 15 will be described with reference to FIGS. 5A to 5C.
  • the signal waveform of the light reception signal RS is a shape in which the signal waveform of the emission signal is translated on the time axis, and the phase angle of the light reception signal RS is expressed by the above (Equation 4).
  • the flight time Td of light that is, the delay time Td
  • Equation 5 the flight time Td of light
  • Equation (Equation 4) and Equation (Equation 5) the portion of tan ⁇ 1 [cos ⁇ 2 ⁇ ⁇ f1 ⁇ (t ⁇ Td) ⁇ ] of the phase angle ⁇ behaves such that it vibrates with a period f1 in the time axis direction. You can see that On the other hand, it can be seen that the 2 ⁇ ⁇ f2 ⁇ Td portion of the phase angle ⁇ behaves so as to be offset in a DC manner according to Td.
  • FIG. 5A is a diagram showing a waveform of a time change of the phase angle when the delay time Td is within one cycle of the fundamental wave f2.
  • FIG. 5B is a diagram showing a waveform of a time change of the phase angle when the delay time Td is an integral multiple of one period of the fundamental wave f2.
  • FIG. 5C is a diagram showing a waveform of a time change of the phase angle when the delay time Td exceeds one period of the fundamental wave f2 and is not an integral multiple.
  • the DC offset represents a phase shift within one period of the fundamental wave f2
  • the parallel movement amount of the vibration of the frequency f1 is The change represents the entire time axis shift.
  • the f2 phase difference detection unit 17 of the present embodiment detects the phase difference PD2 with respect to the frequency f2 by detecting the DC offset as described above. Then, the f1 phase difference detection unit 15 uses the detection result of the f2 phase difference detection unit 17 to detect the parallel movement in the horizontal direction (time axis direction) of the waveform of the phase angle, so that the phase difference with respect to the frequency f1 is detected. PD1 is detected.
  • the distance calculation unit 18 uses the phase difference PD1 for the frequency f1 detected by the f1 phase difference detection unit 15 for global distance calculation, and uses the phase difference PD2 for the frequency f2 detected by the f2 phase difference detection unit 17.
  • the distance from the distance measuring device 100 to the object OJT is obtained by correcting the result of the global distance calculation using the average value as a distance calculation value in a narrow range (one wavelength range of a sine wave having the frequency f2). CD is calculated.
  • the distance measuring apparatus 100 uses the sine wave signal having the frequency f2, the first sine wave having the frequency difference between the frequency f1 and the frequency f2, and the sum of the frequency f1 and the frequency f2.
  • a laser beam whose light intensity is modulated by the combined wave signal generated by adding the second sine wave is emitted toward a predetermined region.
  • the distance measuring device 100 receives the laser beam reflected by the object OJT in the predetermined area and converts it into an electrical signal (light reception signal RS), and the signal component of the frequency f2 generated from the electrical signal and the second frequency.
  • the phase difference PD2 between the signal S2 and the phase difference PD1 between the signal component of the frequency f1 and the first frequency signal S1 are detected.
  • the distance measuring device 100 calculates the distance CD with respect to the object OJT by using the phase difference PD1 for global distance calculation and applying correction using the phase difference PD2.
  • FIG. 6A is different from the present embodiment in that the light of the laser light in the comparative example in which the laser light having the light intensity modulated by the combined wave signal obtained by adding the sine wave of the frequency f1 and the sine wave of the frequency f2 is emitted. It is a figure which shows the signal waveform of an intensity
  • laser light having a light intensity Semit (t) expressed by the following formula (Equation 6) is emitted, for example.
  • FIG. 7 is a block diagram showing a configuration of a distance measuring apparatus 100A of a comparative example.
  • the distance measuring apparatus 100A of the comparative example extracts the signal component f1RS having the frequency f1 and the signal component f2RS having the frequency f2 from the received light signal RS obtained by converting the received laser light into an electrical signal, and the respective frequencies are determined. Compare the phase difference.
  • the distance measuring apparatus 100A of the comparative example requires two systems of BPFs (f1 component extraction BPF 13A and f2 component extraction BPF 13B shown in FIG. 7). Become. Further, in order to achieve matching in calculating the distance, it is necessary to align the delay amounts of the two systems of BPF.
  • the distance measuring apparatus 100 of the present embodiment is unnecessary with one BPF (fa to fb bandpass BPF 13 shown in FIG. 1) because the frequencies f2, fa, and fb are close as shown in FIG. 3B. It is possible to cut a signal component.
  • FIG. 6C is a diagram illustrating a signal waveform of a light reception signal of a comparative example.
  • the signal waveform of the light reception signal RS does not retain the shape of the signal waveform of the light intensity of the laser beam at the time of emission. Therefore, it is difficult to return to the same shape as the signal waveform at the time of emission.
  • the signal component f1RS of the frequency f1 extracted from the received light signal RS has a distortion waveform that shifts to the front side when the zero cross point rises and shifts to the rear side when falling due to the second harmonic distortion. If an attempt is made to detect the phase difference in this state, the phase difference appears in a form shifted back and forth every half cycle. In order to avoid this, it is necessary to narrow the pass band of the BPF for extracting the signal component f1RS of the frequency f1 and remove the second harmonic. However, when trying to narrow the BPF band, there is a side effect that the delay time becomes longer in a trade-off manner, and the time required for distance calculation becomes longer.
  • the signal waveform of the light reception signal RS retains the shape of the signal waveform of the light intensity of the emitted light OL, and the signal component of the frequency f1 is cut from the light reception signal RS.
  • the distorted signal waveform can be returned to the same signal waveform as the signal waveform of the light intensity of the outgoing light OL. Therefore, according to the distance measuring apparatus 100 of the present embodiment, it is possible to correct the distortion of the signal waveform of the light reception signal RS with a simple configuration.
  • a sine wave signal cos (2 ⁇ ⁇ f2 ⁇ t) having a fundamental frequency f2 is added to a first sine wave 1 ⁇ 2 sin ⁇ 2 ⁇ ⁇ (f2 ⁇ (f2 ⁇ t2)) having a frequency difference between the frequency f1 and the frequency f2.
  • f1 ⁇ t ⁇ the light intensity is modulated by a signal obtained by adding a second sine wave 1/2 sin ⁇ 2 ⁇ ⁇ (f2 + f1) ⁇ t ⁇ having the sum of the frequency f1 and the frequency f2, Since the length is ⁇ 2, the DC offset value is ⁇ 2. Therefore, the value of the DC offset can be reduced as compared with the comparative example.
  • the value of DC offset indicates the base level of the light intensity of the laser light, and is a value indicating the average light intensity of the laser light. From the viewpoint of safety, it is desirable that the average light intensity of the laser light is low. Therefore, according to the distance measuring apparatus 100 of the present embodiment, it is possible to perform distance measurement using laser light that is safer than the distance measuring apparatus of the comparative example.
  • the S / N ratio of the signals used for phase difference detection (in the present embodiment, the first frequency signal S1 and the second frequency signal S2) is Improves distance measurement accuracy. Since the DC offset is an element not related to phase difference detection, and thus distance measurement, if the ratio of the DC offset to the amplitude of the synthesized wave signal can be kept small, the amplitude of the synthesized wave signal can be reduced without increasing the average light intensity. The distance measurement accuracy can be improved by increasing the distance.
  • the distance measuring apparatus 100 of the present embodiment since the ratio of the DC offset to the amplitude of the synthesized wave signal is small, the amplitude of the synthesized wave signal is relatively large, and the S / N ratio of the signal used for phase difference detection is large. Therefore, according to the distance measuring apparatus 100 of the present embodiment, it is possible to perform distance measurement with high accuracy.
  • the distance measuring device 100 of the present embodiment when compared with another distance measuring device (not shown) that measures a distance by simultaneously emitting a plurality of laser beams, the distance measuring device 100 of the present embodiment has a light source and an optical system for laser light, Since only one light receiving system, BPF, etc. are required, the scale of the apparatus can be reduced. Further, in the distance measuring device 100 according to the present embodiment, it is difficult to collect a spot at the same point or an optical axis misalignment caused by using a plurality of laser beams generated in another distance measuring device. There is no problem that long and short wavelength measurement positions are scattered.
  • -It is not limited to the form of [sin ⁇ 2 (pi) * fb * t ⁇ + sin ⁇ 2 (pi) * fa * t ⁇ ] + ⁇ 2 ",
  • the coefficient of each term can be set arbitrarily.
  • the coefficients of cos (2 ⁇ ⁇ f2 ⁇ t), sin ⁇ 2 ⁇ ⁇ fb ⁇ t ⁇ and sin ⁇ 2 ⁇ ⁇ fa ⁇ t ⁇ may be equal or different.
  • the DC offset may be set to a value corresponding to the coefficient of each term. That is, the emitted light OL only needs to have a light intensity Semit (t) expressed by the following equation (Equation 7), where ⁇ , ⁇ , ⁇ , and ⁇ are constants.
  • the distance measuring apparatus 100 of the present embodiment it is possible to accurately measure the distance to the object with a simple configuration.
  • the distance measuring apparatus according to the present embodiment has the same configuration as the distance measuring apparatus 100 according to the first embodiment shown in FIG. 1, and the distance measuring apparatus according to the first embodiment in the method for modulating the light intensity of the laser beam emitted from the emitting unit 11. Different from the device 100.
  • the emitting unit 11 of the present embodiment emits laser light, whose light intensity is modulated by a composite signal in which the phase of the sine wave signal having the frequency f2 is displaced based on the sine wave signal having the frequency f1, toward a predetermined region. Specifically, the emitting unit 11 provides a phase shift term to the phase of the sine wave signal having the frequency f2, and the light is generated by a synthesized signal obtained by vibrating the phase angle of the sine wave signal having the frequency f2 with the sine wave having the frequency f1.
  • the laser beam whose intensity is modulated is emitted as the outgoing light OL.
  • FIG. 8 is a diagram schematically showing a phase oscillation based on a sine wave signal (fundamental wave f2) having a frequency f2 as a vector diagram.
  • the vector of the fundamental wave f2 is thus fixed, the combined vector moves so as to swing within the range of the phase angle ⁇ ⁇ 0 (that is, the swing width 2 ⁇ ⁇ 0 ), as indicated by the dashed arrow.
  • ⁇ ⁇ 0 the phase angle
  • FIG. 9A is a diagram showing a signal waveform of the light intensity of the outgoing light OL.
  • the laser light having the light intensity of the signal waveform whose phase is shifted in the horizontal direction (time axis direction) is emitted from the emission unit 11 as the emission light OL.
  • FIG. 9B is a graph showing a spectrum of a frequency signal modulated by the light intensity of the outgoing light OL.
  • the distance measuring device of the present embodiment like the distance measuring device 100 of the first embodiment shown in FIG. 1, passes the signal components of the frequencies from the frequency fa to the frequency fb included in the light reception signal RS, and other than that. It suffices to have the fa to fb bandpass BPF 13 that blocks signal components in the frequency band.
  • the f2 phase difference detection unit 17 can detect the phase difference PD2 for the frequency f2 based on the light reception signal RS that has passed through the fa to fb band pass BPF13.
  • FIG. 9C is a waveform diagram showing a time change of the phase shift amount ⁇ .
  • FIG. 9D is a diagram illustrating an example of a signal waveform of the light reception signal RS.
  • a signal waveform in which the light intensity of the reflected light RL is saturated and the upper half is crushed is shown.
  • the signal waveform of the light reception signal RS retains the shape of the waveform of the light intensity of the outgoing light OL. That is, even if the upper half of the waveform is crushed, the phase fluctuation is maintained, so that the signal component in the range of frequencies fa to fb is extracted from the received light signal RS and the low frequency noise component is cut.
  • the distorted signal waveform shown in 9D can be returned to a signal waveform similar to the signal waveform of the light intensity of the emitted light OL shown in FIG. 9A.
  • the distance measuring apparatus emits the laser light whose light intensity is modulated by the combined signal obtained by oscillating the phase angle of the sine wave signal having the frequency f2 with the sine wave having the frequency f1 as the outgoing light OL.
  • the modulation of the light intensity in the present embodiment is the same as that of the first embodiment in that the light intensity is modulated by a composite signal in which the phase of the sine wave signal having the frequency f2 is displaced based on the sine wave signal having the frequency f1. is there.
  • the light reception signal RS can be returned to the same waveform as the signal waveform at the time of emission by passing through a single BPF fa to fb band pass BPF 13, and with a simple configuration.
  • the distortion of the signal waveform can be corrected.
  • the minimum value that cos (2 ⁇ ⁇ f2 ⁇ t + ⁇ ) can take is “ ⁇ 1”, so the DC offset value is “+1”. Become. Therefore, the DC offset value can be further reduced as compared with the first embodiment.
  • the distance measuring apparatus of the present embodiment it is possible to perform distance measurement using laser light with higher safety.
  • the ratio of the DC offset to the amplitude of the synthesized wave signal can be kept small, the accuracy of distance measurement can be further improved.
  • the coefficient of each term can be arbitrarily set without being limited to the form of “f1 ⁇ t) ⁇ + 1”.
  • the DC offset may be set to a value corresponding to the coefficient of each term. That is, the emitted light OL only needs to have a light intensity Semit (t) expressed by the following equation (Equation 9), where ⁇ , ⁇ , and ⁇ are constants.
  • the fa to fb bandpass BPF passes a signal component having a frequency from the frequency fa to the frequency fb among the signal components included in the light reception signal RS.
  • the passband of the fa to fb bandpass BPF may be set to a slightly wider bandwidth.
  • the lower limit value of the pass band of the fa to fb band pass BPF may be set to a value smaller than the frequency fa.
  • the upper limit value of the pass band of the fa to fb band pass BPF may be set to a value larger than the frequency fb.
  • Ranging device 10 Reference signal generator 11 Emitter 11A Laser light source 11B Laser light emission driver 12A Light receiving element 12B Light received signal detector 12 Light receiver 13 fa to fb band pass BPF 15 f1 phase difference detection unit 17 f2 phase difference detection unit 18 distance calculation unit

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

This distance measuring device comprises: an emission unit for emitting laser light, the optical intensity of which has been modulated on the basis of a first frequency signal having a first frequency and a second frequency signal having a second frequency higher than the first frequency; a light-receiving unit for receiving the laser light reflected by an object, and converting the optical intensity of the received laser light into an electrical signal; a first phase difference detection unit for detecting the phase difference between the first frequency signal and a signal component having the first frequency and generated from the electrical signal; a second phase difference detection unit for detecting the phase difference between the second frequency signal and a signal component having the second frequency and generated from the electrical signal; and a distance calculation unit for calculating the distance to the object on the basis of the phase difference detected by the first phase difference detection unit and the phase difference detected by the second phase difference detection unit. The laser light has an optical intensity that has been modulated with a composite signal obtained by displacing the phase of a sinusoidal signal having the second frequency on the basis of a sinusoidal signal having the first frequency.

Description

測距装置Ranging device
 本発明は、測距装置に関し、特に、送信信号及び受信信号の位相を比較して対象物までの距離を測定する測距装置に関する。 The present invention relates to a distance measuring device, and more particularly to a distance measuring device that measures the distance to an object by comparing the phases of a transmission signal and a reception signal.
 レーザ光を対象物に照射し、当該対象物によって反射されたレーザ光を受光して解析することにより、対象物までの距離を計測する測距装置が知られている(例えば、特許文献1)。かかる測距装置では、例えば正弦波によって光強度を変調したレーザ光を対象物に照射し、対象物によって反射されたレーザ光を受光して、その光強度を電気信号に変換する。そして、電気信号に含まれる正弦波の成分と射出時のレーザ光の光強度に含まれる正弦波の成分との位相差を抽出し、抽出した位相差を遅延時間に変換し、当該遅延時間及び光速度に基づいて対象物との距離を算出する。 A distance measuring device that measures the distance to an object by irradiating the object with laser light and receiving and analyzing the laser light reflected by the object is known (for example, Patent Document 1). . In such a distance measuring device, for example, a target is irradiated with laser light whose light intensity is modulated by a sine wave, the laser light reflected by the target is received, and the light intensity is converted into an electrical signal. Then, the phase difference between the sine wave component included in the electrical signal and the sine wave component included in the light intensity of the laser beam at the time of emission is extracted, and the extracted phase difference is converted into a delay time. The distance from the object is calculated based on the speed of light.
 正弦波に基づいてレーザ光の光強度を変調する場合、光強度をゼロレベル以上に保つため、正弦波にオフセット値を加えて光強度のベースレベルを設定し、そのベースレベルを中心として振動させる方法を採る手法が知られている。 When modulating the light intensity of laser light based on a sine wave, in order to keep the light intensity above zero level, an offset value is added to the sine wave to set the base level of the light intensity, and the base level is oscillated. Techniques for taking the method are known.
 また、かかる距離の算出方法では、位相差に基づいて距離を算出するため、変調する正弦波の1波長(または位相差検出方式によっては1/2波長)分の距離までしか計測することができない。測定距離の範囲を広くするためには波長の長い正弦波を用いることが考えられるが、そうすると細かい距離の差を識別する必要がある場合に、当該距離の差に対応する位相変化量が小さいため、測定精度が悪化してしまう。そこで、広い測定距離の範囲と測定精度とを両立させるため、波長の長い(すなわち、周波数が低い)正弦波と波長の短い(すなわち、周波数が高い)正弦波とを併用してレーザ光の光強度を変調することが行われている。 Further, in this distance calculation method, since the distance is calculated based on the phase difference, it is possible to measure only up to a distance corresponding to one wavelength (or ½ wavelength depending on the phase difference detection method) of the sine wave to be modulated. . In order to widen the range of measurement distance, it is conceivable to use a sine wave with a long wavelength, but when it is necessary to identify a small difference in distance, the amount of phase change corresponding to the difference in distance is small. Measurement accuracy will deteriorate. Therefore, in order to achieve both a wide measurement distance range and measurement accuracy, laser light is used by combining a sine wave having a long wavelength (ie, a low frequency) and a sine wave having a short wavelength (ie, a high frequency). The intensity is being modulated.
 波長の異なる複数の正弦波を併用するために、1つの光源からのレーザ光(すなわち、1本のレーザ光)の光強度に複数の正弦波を多重変調して出射することが行われている。また、複数の光源からのレーザ光(すなわち、複数本のレーザ光)の光強度にそれぞれ別の正弦波を変調して同時に出射することも行われている。 In order to use a plurality of sine waves with different wavelengths, a plurality of sine waves are emitted after being multiplex-modulated with the light intensity of laser light from one light source (that is, one laser light). . In addition, another sine wave is modulated to the light intensity of laser light (that is, a plurality of laser lights) from a plurality of light sources and emitted simultaneously.
特開2015-129646号公報JP2015-129646A
 上記のように、1本のレーザ光に複数の正弦波を多重変調する方法では、受光したレーザ光を変換した電気信号から各々の正弦波の信号成分を抽出するため、低い周波数の信号成分を抽出するBPF(Band Pass Filter)と高い周波数の信号成分を抽出するBPFとを設けなければならず、測距装置の回路構成が複雑化するということが課題の一例として挙げられる。また、複数設けたBPF間の遅延量を揃えなければ距離計算における整合性が取れないため、遅延量を揃えるための構成が別途必要になる。 As described above, in the method of multiplex-modulating a plurality of sine waves into one laser beam, the signal components of each sine wave are extracted from the electrical signal obtained by converting the received laser beam. An example of the problem is that the BPF (Band Pass す る Filter) to be extracted and the BPF to extract a high frequency signal component have to be provided, and the circuit configuration of the distance measuring device becomes complicated. In addition, since consistency in distance calculation cannot be achieved unless the delay amounts between a plurality of BPFs are aligned, a configuration for aligning the delay amounts is required separately.
 また、対象物によって反射されたレーザ光を受光する受光部において、APD(Avalanche Photodiode)等の受光素子を用いて、アバランシェ増倍を利用して受光感度を上昇させることが考えられる。しかし、受光したレーザ光の光強度を表す出力信号は、増倍率を上げるにしたがって入射光量に対する非線形性が増大し、上側が潰れたような信号波形となる場合がある。 Further, it is conceivable to increase the light receiving sensitivity using avalanche multiplication using a light receiving element such as an APD (Avalanche Photodiode) in the light receiving unit that receives the laser light reflected by the object. However, the output signal indicating the light intensity of the received laser beam may have a signal waveform in which the non-linearity with respect to the incident light amount increases as the multiplication factor is increased and the upper side is crushed.
 この出力信号から低い周波数の正弦波の信号成分を抽出した場合、その信号波形は元の正弦波に対して上側が潰れた歪み波形となる。これは2次高調波歪みであるため、ゼロクロスポイントが立上がり時は前側にずれ、立下り時は後ろ側にずれる。この状態で出射前の正弦波との積をとって位相差を検出しようとすると、半周期ごとに前後にずれた位相差となって表れる。 When a signal component of a low frequency sine wave is extracted from this output signal, the signal waveform becomes a distorted waveform whose upper side is crushed relative to the original sine wave. Since this is a second harmonic distortion, the zero cross point shifts to the front side when rising, and shifts to the rear side when falling. In this state, if the product of the sine wave before emission is taken to detect the phase difference, the phase difference appears back and forth every half cycle.
 これを回避するためには、低い周波数の正弦波の信号成分を抽出するBPFの通過帯域を狭くして、2次高調波を除去する対応をとることになる。しかし、BPFの帯域を狭くしようとすると、トレードオフ的に遅延時間が長くなる副作用が生じ、距離算出に要する時間が長くなるという弊害が生じることが課題の一例として挙げられる。 In order to avoid this, it is necessary to reduce the second-order harmonic by narrowing the passband of the BPF that extracts the signal component of the low-frequency sine wave. However, when narrowing the BPF band, there is a side effect that the delay time is increased in a trade-off manner, and an adverse effect that the time required for distance calculation is increased is an example of the problem.
 また、異なる波長の正弦波で光強度を変調した複数本のレーザ光を同時に出射する方法では、レーザ光源、光学系及び受光系がそれぞれ複数個必要となり、システムの規模が大きくなることが課題の一例として挙げられる。また、複数本のレーザ光を用いることでお互いの光学系の軸ズレが生じると、その影響で対象物(被検出体)の同一点にスポットを集めるのが困難になり、長短波長の計測位置が別々になってしまうということが課題の一例として挙げられる。 In addition, in the method of simultaneously emitting a plurality of laser beams whose light intensities are modulated with sine waves of different wavelengths, a plurality of laser light sources, optical systems, and light receiving systems are required, which increases the scale of the system. As an example. In addition, if multiple laser beams are used and the optical system is misaligned, it will be difficult to collect spots at the same point on the object (detected object). One example of the problem is that they will be separated.
 本発明は上記した点に鑑みてなされたものであり、簡易な構成で精度よく対象物までの距離を計測することが可能な測距装置を提供することを目的の一つとしている。 The present invention has been made in view of the above points, and an object of the present invention is to provide a distance measuring device capable of accurately measuring a distance to an object with a simple configuration.
 請求項1に記載の発明は、第1周波数を有する第1周波数信号及び前記第1周波数よりも高い第2周波数を有する第2周波数信号に基づいて光強度を変調したレーザ光を所定領域に向けて出射する出射部と、前記所定領域内の対象物によって反射された前記レーザ光を受光し、当該受光したレーザ光の光強度を電気信号に変換する受光部と、前記電気信号から生成された前記第1周波数の信号成分と前記第1周波数信号との位相差を検出する第1位相差検出部と、前記電気信号から生成された前記第2周波数の信号成分と前記第2周波数信号との位相差を検出する第2位相差検出部と、前記第1位相差検出部により検出された位相差及び前記第2位相差検出部により検出された位相差に基づいて、前記対象物までの距離を算出する距離算出部と、を有し、前記レーザ光は、前記第2周波数の正弦波信号の位相が前記第1周波数の正弦波信号に基づいて変位された合成信号により変調された光強度を有することを特徴とする。 According to the first aspect of the present invention, a laser beam whose light intensity is modulated based on a first frequency signal having a first frequency and a second frequency signal having a second frequency higher than the first frequency is directed to a predetermined region. Generated from the electrical signal, a light receiving unit that receives the laser light reflected by the object in the predetermined region, converts the light intensity of the received laser light into an electrical signal, and the electrical signal A first phase difference detector that detects a phase difference between the first frequency signal component and the first frequency signal; and the second frequency signal component generated from the electrical signal and the second frequency signal. A distance to the object based on a phase difference detected by the second phase difference detection unit detecting the phase difference, the phase difference detected by the first phase difference detection unit, and the phase difference detected by the second phase difference detection unit Distance calculation to calculate And the laser light has a light intensity modulated by a synthesized signal in which the phase of the sine wave signal of the second frequency is displaced based on the sine wave signal of the first frequency. To do.
本発明の実施例1の測距装置の構成を示すブロック図である。It is a block diagram which shows the structure of the ranging apparatus of Example 1 of this invention. 実施例1の出射光の光強度に変調される信号の周波数f2の基本波をベースとした位相振動を模式的に示す図である。It is a figure which shows typically the phase oscillation based on the fundamental wave of the frequency f2 of the signal modulated by the light intensity of the emitted light of Example 1. FIG. 位相の時間変化を示す図である。It is a figure which shows the time change of a phase. 実施例1において出射されるレーザ光の光強度の信号波形を示す図である。It is a figure which shows the signal waveform of the optical intensity of the laser beam radiate | emitted in Example 1. FIG. 実施例1において出射されるレーザ光の光強度に変調される各周波数の信号成分のスペクトラムを模式的に示す図である。It is a figure which shows typically the spectrum of the signal component of each frequency modulated by the light intensity of the laser beam radiate | emitted in Example 1. FIG. 実施例1における受光信号の信号波形の例を示す図である。6 is a diagram illustrating an example of a signal waveform of a light reception signal in Embodiment 1. FIG. 実施例1の受光信号の周波数f2の基本波をベースとした位相振動を模式的に示す図である。It is a figure which shows typically the phase oscillation based on the fundamental wave of the frequency f2 of the light received signal of Example 1. FIG. 遅延時間が基本波の1周期以内の場合の位相シフトの例を示す図である。It is a figure which shows the example of a phase shift in case a delay time is less than 1 period of a fundamental wave. 遅延時間が基本波の1周期の整数倍である場合の位相シフトの例を示す図である。It is a figure which shows the example of a phase shift in case delay time is an integral multiple of 1 period of a fundamental wave. 遅延時間が基本波の1周期を越え、且つ整数倍でもない場合の位相シフトの例を示す図である。It is a figure which shows the example of a phase shift in case a delay time exceeds one period of a fundamental wave, and is not an integral multiple. 比較例において出射されるレーザ光の光強度の信号波形を示す図である。It is a figure which shows the signal waveform of the optical intensity of the laser beam radiate | emitted in a comparative example. 比較例において出射されるレーザ光の光強度に変調される各周波数の信号成分のスペクトラムを模式的に示す図である。It is a figure which shows typically the spectrum of the signal component of each frequency modulated by the light intensity of the laser beam radiate | emitted in a comparative example. 比較例において受光するレーザ光の光強度の信号波形の例を示す図である。It is a figure which shows the example of the signal waveform of the light intensity of the laser beam received in a comparative example. 比較例の測距装置の構成を示すブロック図である。It is a block diagram which shows the structure of the distance measuring device of a comparative example. 実施例2の出射光の光強度に変調される信号の周波数f2の基本波をベースとした位相振動を模式的に示す図である。It is a figure which shows typically the phase oscillation based on the fundamental wave of the frequency f2 of the signal modulated by the light intensity of the emitted light of Example 2. FIG. 実施例2において出射されるレーザ光の光強度の信号波形を示す図である。It is a figure which shows the signal waveform of the optical intensity of the laser beam radiate | emitted in Example 2. FIG. 実施例2において出射されるレーザ光の光強度に変調される各周波数の信号成分のスペクトラムを模式的に示す図である。It is a figure which shows typically the spectrum of the signal component of each frequency modulated by the light intensity of the laser beam radiate | emitted in Example 2. FIG. 実施例2における変調信号の位相の時間変化を示す図である。It is a figure which shows the time change of the phase of the modulation signal in Example 2. FIG. 実施例2における受光信号の信号波形の例を示す図である。It is a figure which shows the example of the signal waveform of the light received signal in Example 2. FIG.
 以下に本発明の好適な実施例を詳細に説明する。なお、以下の各実施例における説明及び添付図面においては、実質的に同一または等価な部分には同一の参照符号を付している。 Hereinafter, preferred embodiments of the present invention will be described in detail. In the following description of each embodiment and the accompanying drawings, substantially the same or equivalent parts are denoted by the same reference numerals.
 図1は、実施例1の測距装置100の構成を示すブロック図である。測距装置100は、所定周波数の信号に基づいて光強度を変調したレーザ光を所定領域に向けて出射し、所定領域内の対象物OJTによって反射されたレーザ光を受光して、出射時及び受光時のレーザ光の光強度に含まれる当該所定周波数の信号成分の位相差に基づいて対象物OJTまでの距離を計測する。測距装置100は、基準信号発生部10、出射部11、受光部12、fa~fb帯域通過BPF13、f1位相差検出部15、f2位相差検出部17及び距離算出部18を有する。 FIG. 1 is a block diagram illustrating a configuration of the distance measuring apparatus 100 according to the first embodiment. The distance measuring device 100 emits laser light whose light intensity is modulated based on a signal of a predetermined frequency toward a predetermined area, receives the laser light reflected by the object OJT in the predetermined area, The distance to the object OJT is measured based on the phase difference of the signal component of the predetermined frequency included in the light intensity of the laser light at the time of light reception. The distance measuring device 100 includes a reference signal generating unit 10, an emitting unit 11, a light receiving unit 12, a fa to fb band pass BPF 13, an f1 phase difference detecting unit 15, an f2 phase difference detecting unit 17, and a distance calculating unit 18.
 基準信号発生部10は、出射時におけるレーザ光の光強度の変調及び受光後における位相差の検出に用いる基準信号を生成する。基準信号発生部10は、互いに周波数の異なる第1周波数信号S1及び第2周波数信号S2を基準信号として生成する。第1周波数信号S1は周波数f1(例えば、1MHz)を有し、第2周波数信号S2は周波数f1よりも高い周波数f2(例えば、50MHz)を有する。 The reference signal generator 10 generates a reference signal used for modulation of the light intensity of the laser light at the time of emission and detection of a phase difference after light reception. The reference signal generator 10 generates a first frequency signal S1 and a second frequency signal S2 having different frequencies as reference signals. The first frequency signal S1 has a frequency f1 (for example, 1 MHz), and the second frequency signal S2 has a frequency f2 (for example, 50 MHz) higher than the frequency f1.
 出射部11は、レーザ光を出射するレーザ光源11A、及びレーザ光源11Aを駆動するレーザ発光駆動部11Bを含む。出射部11は、周波数f2の正弦波信号の位相が周波数f1の正弦波信号に基づいて変位された合成信号により光強度を変調したレーザ光を所定領域に向けて出射する。具体的には、出射部11は、周波数f2を有する正弦波信号と、周波数f1及び周波数f2の差の周波数である周波数fbを有する第1の正弦波と周波数f1及び周波数f2の和の周波数である周波数faを有する第2の正弦波とを加算して生成した合成波信号と、により光強度を変調したレーザ光を出射光OLとして出射する。 The emission unit 11 includes a laser light source 11A that emits laser light, and a laser light emission drive unit 11B that drives the laser light source 11A. The emitting unit 11 emits a laser beam, the light intensity of which is modulated by a combined signal in which the phase of the sine wave signal having the frequency f2 is displaced based on the sine wave signal having the frequency f1, toward a predetermined region. Specifically, the emitting unit 11 is a sum of the sine wave signal having the frequency f2, the first sine wave having the frequency fb that is the difference frequency between the frequency f1 and the frequency f2, and the frequency f1 and the frequency f2. Laser light whose light intensity is modulated by a combined wave signal generated by adding a second sine wave having a certain frequency fa is emitted as emitted light OL.
 受光部12は、所定領域内の対象物OJTによって反射されたレーザ光である反射光RLを受光し、受光した反射光RLの光強度を電気信号に変換する受光素子12A、及び受光素子12Aにより変換された電気信号から受光信号RSを検出する受光信号検出部12Bを含む。受光素子12Aは、例えばフォトダイオード等の光検出器から構成され、受光した反射光RLの光強度を電気信号に変換する。例えば、受光素子12Aは、APD(Avalanche Photodiode)から構成されている。 The light receiving unit 12 receives reflected light RL, which is laser light reflected by the object OJT in a predetermined area, and receives the reflected light RL of the received reflected light RL into an electric signal, and the light receiving element 12A. A light reception signal detection unit 12B that detects the light reception signal RS from the converted electrical signal is included. The light receiving element 12A is composed of a photodetector such as a photodiode, for example, and converts the light intensity of the received reflected light RL into an electric signal. For example, the light receiving element 12A is composed of an APD (Avalanche Photodiode).
 fa~fb帯域通過BPF13は、周波数faから周波数fbまでの周波数範囲を通過帯域とするバンドパスフィルタである。fa~fb帯域通過BPF13は、受光信号RSに含まれる信号成分のうち、周波数faから周波数fbまでの周波数の信号成分を通過させ、それ以外の周波数帯域の信号成分を遮断する。 The fa to fb band pass BPF 13 is a band pass filter whose pass band is a frequency range from the frequency fa to the frequency fb. The fa to fb band-pass BPF 13 passes signal components having frequencies from the frequency fa to the frequency fb among signal components included in the light reception signal RS, and blocks signal components in other frequency bands.
 f2位相差検出部17は、fa~fb帯域通過BPF13を通過した受光信号RSに基づいて、受光信号RSの周波数f2の信号成分と、基準信号発生部10から供給された第2周波数信号S2(周波数f2)との位相差PD2を検出する。 Based on the light reception signal RS that has passed through the fa to fb band pass BPF 13, the f2 phase difference detection unit 17 and the signal component of the frequency f2 of the light reception signal RS and the second frequency signal S2 ( The phase difference PD2 from the frequency f2) is detected.
 f1位相差検出部15は、f2位相差検出部17により検出された周波数f2の信号成分についての位相差PD2に基づいて、受光信号RSの周波数f1の信号成分と、基準信号発生部10から供給された第1周波数信号S1(周波数f1)との位相差PD1を検出する。 The f1 phase difference detection unit 15 supplies the signal component of the frequency f1 of the received light signal RS and the reference signal generation unit 10 based on the phase difference PD2 for the signal component of the frequency f2 detected by the f2 phase difference detection unit 17. The phase difference PD1 with the first frequency signal S1 (frequency f1) is detected.
 距離算出部18は、f1位相差検出部15によって検出された周波数f1についての位相差PD1と、f2位相差検出部17によって検出された周波数f2についての位相差PD2と、に基づいて測距装置100から対象物OJTまでの距離CDを算出する。例えば、周波数f1=1MHzとすると、波長が約300mであるため、周波数f1についての位相差PD1に基づいて150mの範囲(すなわち、測距装置100と対象物OJTの間の往復の距離が300mとなる範囲)での測定が可能である。一方、周波数f2=50MHzとすると、波長が約6mであるため、周波数f2についての位相差PD2に基づいて3mの範囲(すなわち、測距装置100と対象物OJTの間の往復の距離が6mとなる範囲)での測定が可能である。距離算出部18は、周波数f1についての位相差PD1を長い距離範囲の大まかな測定に用い、周波数f2についての位相差PD2を短い距離範囲の細かい測定に用いることにより、測距装置100から対象物OJTまでの距離CDを算出する。 The distance calculation unit 18 is based on the phase difference PD1 for the frequency f1 detected by the f1 phase difference detection unit 15 and the phase difference PD2 for the frequency f2 detected by the f2 phase difference detection unit 17. A distance CD from 100 to the object OJT is calculated. For example, if the frequency f1 = 1 MHz, the wavelength is about 300 m, and therefore the range of 150 m based on the phase difference PD1 for the frequency f1 (that is, the reciprocating distance between the distance measuring device 100 and the object OJT is 300 m). Can be measured within the range. On the other hand, if the frequency f2 = 50 MHz, the wavelength is about 6 m, and therefore the range of 3 m (that is, the round-trip distance between the distance measuring device 100 and the object OJT is 6 m based on the phase difference PD2 for the frequency f2). Can be measured within the range. The distance calculation unit 18 uses the phase difference PD1 for the frequency f1 for a rough measurement of a long distance range, and uses the phase difference PD2 for the frequency f2 for a fine measurement of a short distance range. The distance CD to OJT is calculated.
 次に、本実施例の測距装置100の動作について図1、図2A、図2B、図3A~3D及び図4A~図4Cを参照して説明する。 Next, the operation of the distance measuring device 100 according to the present embodiment will be described with reference to FIGS. 1, 2A, 2B, 3A to 3D, and 4A to 4C.
 図1に示すように、基準信号発生部10は、周波数f1を有する第1周波数信号S1を生成し、出射部11及びf1位相差検出部15に供給する。また、基準信号発生部10は、周波数f2を有する第2周波数信号S2を生成し、出射部11及びf2位相差検出部17に供給する。 As shown in FIG. 1, the reference signal generation unit 10 generates a first frequency signal S1 having a frequency f1, and supplies the first frequency signal S1 to the emission unit 11 and the f1 phase difference detection unit 15. In addition, the reference signal generation unit 10 generates a second frequency signal S2 having the frequency f2 and supplies the second frequency signal S2 to the emission unit 11 and the f2 phase difference detection unit 17.
 出射部11は、周波数f2の正弦波信号と、周波数f1及び周波数f2の差の周波数を有する第1の正弦波及び周波数f1及び周波数f2の和の周波数を有する第2の正弦波を加算して生成した合成波信号と、により光強度を変調したレーザ光を出射光OLとして出射する。その際、第1の正弦波及び第2の正弦波の位相が、周波数f2の正弦波信号の位相と90度異なるように、正弦波信号と合成波信号とを加算する。なお、第1の正弦波及び第2の正弦波の位相と、周波数f2の正弦波信号の位相が厳密に90度異なっている必要はなく、45度以上かつ135度以下であれば良い。 The emission unit 11 adds the sine wave signal having the frequency f2, the first sine wave having a frequency difference between the frequency f1 and the frequency f2, and the second sine wave having a frequency sum of the frequency f1 and the frequency f2. A laser beam whose light intensity is modulated by the generated composite wave signal is emitted as emitted light OL. At this time, the sine wave signal and the synthesized wave signal are added so that the phases of the first sine wave and the second sine wave are 90 degrees different from the phase of the sine wave signal having the frequency f2. Note that the phase of the first sine wave and the second sine wave and the phase of the sine wave signal having the frequency f2 do not need to be strictly different by 90 degrees, and may be 45 degrees or more and 135 degrees or less.
 例えば、周波数f2の正弦波信号をcos(2π・f2・t)、周波数f1及び周波数f2の差の周波数を有する第1の正弦波を1/2sin{2π・(f2-f1)・t}、周波数f1及び周波数f2の和の周波数を有する第2の正弦波を1/2sin{2π・(f2+f1)・t}、時間をtとすると、出射光OLの光強度Semit(t)は、次の数式(数1)で表される。 For example, a sinusoidal signal having a frequency f2 is cos (2π · f2 · t), and a first sinusoid having a frequency difference between the frequency f1 and the frequency f2 is 1/2 sin {2π · (f2−f1) · t}, When the second sine wave having the sum of the frequency f1 and the frequency f2 is 1/2 sin {2π · (f2 + f1) · t} and the time is t, the light intensity Semit (t) of the emitted light OL is It is expressed by a mathematical formula (Formula 1).
Figure JPOXMLDOC01-appb-M000003
 図2Aは、周波数f2の正弦波信号をベースとした位相振動をベクトル図として模式的に示す図である。横軸は実軸、縦軸は虚軸を示している。
Figure JPOXMLDOC01-appb-M000003
FIG. 2A is a diagram schematically showing a phase oscillation based on a sine wave signal of frequency f2 as a vector diagram. The horizontal axis indicates the real axis, and the vertical axis indicates the imaginary axis.
 上記の通り、基本波である周波数f2の正弦波信号(以下、基本波f2と称する)の位相は、周波数fbの第1の正弦波(以下、fb波と称する)及び周波数faの第2の正弦波(以下、fa波と称する)の位相と90度異なる。このため、基本波f2のベクトルを実軸方向(例えば、角度0度)とすると、fb波及びfa波のベクトルは虚軸方向(例えば、角度90度)となる。 As described above, the phase of the sine wave signal having the fundamental frequency f2 (hereinafter referred to as fundamental wave f2) is the first sine wave having the frequency fb (hereinafter referred to as fb wave) and the second phase having the frequency fa. It is 90 degrees different from the phase of a sine wave (hereinafter referred to as fa wave). Therefore, if the vector of the fundamental wave f2 is the real axis direction (for example, an angle of 0 degrees), the vectors of the fb wave and the fa wave are the imaginary axis direction (for example, an angle of 90 degrees).
 基本波f2のベクトルは、実軸方向をスタート位置として、θ=2π・f2・tで反時計回りに回転する。これに対し、fa波のベクトルは、虚軸方向をスタート位置として、基本波f2のベクトルより少し早く、θ=2π・fa・tで反時計回りに回転する。fb波のベクトルは、虚軸方向をスタート位置として、基本波f2のベクトルより少し遅く、θ=2π・fb・tで時計回りに回転する。 The vector of the fundamental wave f2 rotates counterclockwise at θ = 2π · f2 · t with the real axis direction as the start position. On the other hand, the fa wave vector rotates counterclockwise at θ = 2π · fa · t slightly earlier than the vector of the fundamental wave f2, with the imaginary axis direction as the start position. The vector of the fb wave starts at the imaginary axis direction and is slightly later than the vector of the fundamental wave f2, and rotates clockwise at θ = 2π · fb · t.
 基本波f2のベクトルを角度0度に固定し、これを基準としてfa波及びfb波のベクトルの相対的な回転角を見ると、周波数f1=fa-f2であることから、fa波のベクトルはθ=2π・f1・tで正回転、fb波のベクトルはθ=-2π・f1・tで逆回転することになる。 When the vector of the fundamental wave f2 is fixed at an angle of 0 degree and the relative rotation angle of the vectors of the fa wave and the fb wave is viewed with reference to this, the frequency f1 = fa−f2, and therefore the vector of the fa wave is The rotation is forward when θ = 2π · f1 · t, and the vector of the fb wave is reversely rotated when θ = −2π · f1 · t.
 すなわち、基本波f2のベクトルを実軸:1.0、虚軸:0.0に固定したとすると、周波数faのベクトルは、実軸:-0.5sin(2π・f1・t)、虚軸:0.5cos(2π・f1・t)となる。また、周波数fbのベクトルは、実軸:0.5sin(2π・f1・t)、虚軸:0.5cos(2π・f1・t)となる。そして、これらを合成した合成ベクトルCVは、実軸:1.0、虚軸:cos(2π・f1・t)となる。 That is, assuming that the vector of the fundamental wave f2 is fixed to the real axis: 1.0 and the imaginary axis: 0.0, the vector of the frequency fa is the real axis: -0.5 sin (2π · f1 · t), the imaginary axis : 0.5 cos (2π · f1 · t). The vector of the frequency fb is real axis: 0.5 sin (2π · f1 · t) and imaginary axis: 0.5 cos (2π · f1 · t). A synthesized vector CV obtained by synthesizing these becomes a real axis: 1.0 and an imaginary axis: cos (2π · f1 · t).
 従って、合成ベクトルCVの位相角θは、tanθ=cos(2π・f1・t)の変形から、次の数式(数2)で表される。 Therefore, the phase angle θ of the composite vector CV is expressed by the following equation (Equation 2) from the deformation of tan θ = cos (2π · f1 · t).
Figure JPOXMLDOC01-appb-M000004
 図2Bは、上記の数式(数2)で表される位相角θの時間変化を示す波形図である。このように、位相角θは、周波数f1で振動するように変化する。
Figure JPOXMLDOC01-appb-M000004
FIG. 2B is a waveform diagram showing a time change of the phase angle θ expressed by the above mathematical formula (Formula 2). Thus, the phase angle θ changes so as to vibrate at the frequency f1.
 なお、fa波のベクトルとfb波のベクトルとを合成したベクトルは、虚軸方向に+1から-1の間(すなわち、図2Aに一点鎖線の矢印で示す範囲)を往復する直線運動になる。fa波のベクトルとfb波のベクトルとを合成したものにさらに基本波f2のベクトルを合成すると、合成ベクトルCVの長さ(振幅)は、1~√2の間で変化する。このため、(数1)で示したように、本実施例では、DC的なオフセット値(以下、DCオフセットと称する)として、“+√2”を加えている。これにより、光強度Semit(t)は、0以上に保たれる。また、DCオフセットは光強度Semit(t)のベースレベルを表しており、DCオフセットの値である“√2”が出射光OLの平均の光強度となる。 Note that the vector obtained by combining the fa wave vector and the fb wave vector is a linear motion that reciprocates between +1 and −1 in the imaginary axis direction (that is, the range indicated by the one-dot chain line arrow in FIG. 2A). When the vector of the fundamental wave f2 is further combined with the combination of the vector of the fa wave and the vector of the fb wave, the length (amplitude) of the combined vector CV changes between 1 and √2. For this reason, as shown in (Equation 1), in this embodiment, “+ √2” is added as a DC offset value (hereinafter referred to as a DC offset). Thereby, the light intensity Semit (t) is kept at 0 or more. The DC offset represents the base level of the light intensity Semit (t), and the DC offset value “√2” is the average light intensity of the outgoing light OL.
 図3Aは、出射光OLの光強度の信号波形を示す図である。このような信号波形の光強度を有するレーザ光が、出射光OLとして出射部11から出射される。 FIG. 3A is a diagram showing a signal waveform of the light intensity of the outgoing light OL. Laser light having such a signal waveform of light intensity is emitted from the emitting portion 11 as emitted light OL.
 図3Bは、出射光OLの光強度に変調される周波数f2、fa及びfbのスペクトラムを示すグラフである。f1=1MHz、f2=50MHzとすると、fa=51MHz、fb=49MHzとなり、グラフ上では周波数f2のスペクトラムが立つとともに、周波数f2の近傍且つ両側の左右対称な位置に周波数fa及び周波数fbのスペクトラムが立つことになる。 FIG. 3B is a graph showing the spectra of the frequencies f2, fa, and fb that are modulated by the light intensity of the outgoing light OL. When f1 = 1 MHz and f2 = 50 MHz, fa = 51 MHz and fb = 49 MHz, and the spectrum of the frequency f2 stands on the graph, and the spectrums of the frequency fa and the frequency fb are located near the frequency f2 and symmetrically on both sides. Will stand.
 再び図1を参照すると、出射部11により出射されたレーザ光(出射光OL)は、対象物OJTによって反射される。受光部12は、対象物OJTによって反射されたレーザ光である反射光RLを受光する。 Referring to FIG. 1 again, the laser light (emitted light OL) emitted by the emitting unit 11 is reflected by the object OJT. The light receiving unit 12 receives reflected light RL that is laser light reflected by the object OJT.
 受光部12の受光素子12Aは、反射光RLの光量を増倍させ、反射光RLの光強度を電気信号に変換する。その際、受光素子12Aにより増倍された反射光RLの光強度は、入射光量に対する非線形性が増大する。このため、反射光RLの光強度を電気信号に変換して得られた信号である受光信号RSの信号波形は、歪んだ形状となる。 The light receiving element 12A of the light receiving unit 12 multiplies the amount of the reflected light RL and converts the light intensity of the reflected light RL into an electric signal. At this time, the nonlinearity of the reflected light RL multiplied by the light receiving element 12A with respect to the incident light amount increases. For this reason, the signal waveform of the light reception signal RS, which is a signal obtained by converting the light intensity of the reflected light RL into an electrical signal, has a distorted shape.
 図3Cは、受光信号RSの信号波形の一例を示す図である。ここでは、歪んだ信号波形の極端な例として、反射光RLの光強度が飽和して上側半分が潰れた信号波形を示している。 FIG. 3C is a diagram illustrating an example of a signal waveform of the light reception signal RS. Here, as an extreme example of a distorted signal waveform, a signal waveform in which the light intensity of the reflected light RL is saturated and the upper half is crushed is shown.
 図3Aと図3Cとの比較から分かるように、受光信号RSの信号波形は、出射光OLの光強度の波形の形状を留めている。具体的には、図3Cに示す受光信号RSの信号波形は、図3Aに示す出射光OLの光強度に周波数f1の信号成分を足した信号波形となる。従って、受光信号RSから周波数f1の信号成分をカットすることにより、図3Cに示す歪んだ信号波形を図3Aに示す出射光OLの光強度の信号波形と同様の信号波形に戻すことができる。 As can be seen from a comparison between FIG. 3A and FIG. 3C, the signal waveform of the light reception signal RS retains the shape of the waveform of the light intensity of the emitted light OL. Specifically, the signal waveform of the light reception signal RS shown in FIG. 3C is a signal waveform obtained by adding the signal component of the frequency f1 to the light intensity of the emitted light OL shown in FIG. 3A. Therefore, by cutting the signal component of the frequency f1 from the received light signal RS, the distorted signal waveform shown in FIG. 3C can be returned to the signal waveform similar to the signal waveform of the light intensity of the emitted light OL shown in FIG. 3A.
 再び図1を参照すると、受光部12は、受光信号RSをfa~fb帯域通過BPF13に供給する。fa~fb帯域通過BPF13は、受光信号RSに含まれる信号成分のうち、周波数faから周波数fbまでの周波数の信号成分を通過させ、それ以外の周波数帯域の信号成分を遮断する。これにより、周波数f1の信号成分がカットされ、受光信号RSの信号波形の歪みが補正される。 Referring to FIG. 1 again, the light receiving unit 12 supplies the light reception signal RS to the fa to fb bandpass BPF 13. The fa to fb band-pass BPF 13 passes signal components having frequencies from the frequency fa to the frequency fb among signal components included in the light reception signal RS, and blocks signal components in other frequency bands. Thereby, the signal component of the frequency f1 is cut, and the distortion of the signal waveform of the light reception signal RS is corrected.
 レーザ光が出射部11から出射されてから受光部12により受光されるまでの間の時間を光の飛行時間Tdとすると、歪みが補正された受光信号RSの信号波形は、出射時におけるレーザ光の光強度の信号(以下、出射信号と称する)の信号波形が、時間軸上で、光の飛行時間Tdだけ遅れた波形になる。以下の説明では、光の飛行時間Tdのことを遅延時間Tdとも称する。 Assuming that the time from when the laser beam is emitted from the emitting unit 11 to when it is received by the light receiving unit 12 is the flight time Td of the light, the signal waveform of the received light signal RS with corrected distortion is the laser beam at the time of emission. The signal waveform of the light intensity signal (hereinafter referred to as the outgoing signal) becomes a waveform delayed by the light flight time Td on the time axis. In the following description, the flight time Td of light is also referred to as a delay time Td.
 反射率等による減衰を捨象して考えると、受光信号RSの信号波形は、出射信号の信号波形が遅延時間Tdだけ正方向に平行移動した波形となる。tr=t-Tdとすると、受光信号Srecv(t)は、次の数式(数3)で表される。 Considering the attenuation due to the reflectance and the like, the signal waveform of the light reception signal RS is a waveform obtained by translating the signal waveform of the emission signal in the positive direction by the delay time Td. When tr = t−Td, the light reception signal Srecv (t) is expressed by the following equation (Equation 3).
Figure JPOXMLDOC01-appb-M000005
 図4は、受光信号RSにおける、基本波f2に対する位相振動をベクトル図として模式的に示す図である。ここでは、基本波f2のベクトルが虚軸上(図では、270度)にある場合を例として示している。
Figure JPOXMLDOC01-appb-M000005
FIG. 4 is a diagram schematically showing a phase vibration with respect to the fundamental wave f2 in the light reception signal RS as a vector diagram. Here, the case where the vector of the fundamental wave f2 is on the imaginary axis (270 degrees in the figure) is shown as an example.
 上記の通り、出射信号の信号波形は、レーザ光が出射部11から出射され、対象物OJTによって反射され、受光部12によって受光されると、時間軸上で平行移動した形となる。基本波f2、fa波及びfb波を合成した合成ベクトルCVは、出射信号の位相振動をキープしながら全体が遅延時間Tdに相当する角度だけ回転する。例えば、合成ベクトルCVの振動中心の回転角θdは、θd=2π・f2・Tdとなる。 As described above, the signal waveform of the emission signal has a shape of parallel movement on the time axis when the laser beam is emitted from the emission unit 11, reflected by the object OJT, and received by the light receiving unit 12. The combined vector CV obtained by combining the fundamental wave f2, the fa wave, and the fb wave is rotated by an angle corresponding to the delay time Td while keeping the phase vibration of the outgoing signal. For example, the rotation angle θd of the vibration center of the composite vector CV is θd = 2π · f2 · Td.
 これにより、受光信号RSの位相角θは、次の数式(数4)で表される。 Thereby, the phase angle θ of the light reception signal RS is expressed by the following equation (Equation 4).
Figure JPOXMLDOC01-appb-M000006
 f2位相差検出部17は、fa~fb帯域通過BPF13を通過した受光信号RSに基づいて、受光信号RSの周波数f2の信号成分と第2周波数信号S2(周波数f2)との位相差PD2を検出し、f1位相差検出部15及び距離算出部18に供給する。f1位相差検出部15は、f2位相差検出部17により検出された位相差PD2に基づいて、受光信号RSの周波数f1の信号成分と第1周波数信号S1(周波数f1)との位相差PD1を検出し、距離算出部18に供給する。
Figure JPOXMLDOC01-appb-M000006
The f2 phase difference detection unit 17 detects the phase difference PD2 between the signal component of the frequency f2 of the light reception signal RS and the second frequency signal S2 (frequency f2) based on the light reception signal RS that has passed through the fa to fb band pass BPF13. And supplied to the f1 phase difference detector 15 and the distance calculator 18. Based on the phase difference PD2 detected by the f2 phase difference detector 17, the f1 phase difference detector 15 calculates the phase difference PD1 between the signal component of the frequency f1 of the light reception signal RS and the first frequency signal S1 (frequency f1). Detected and supplied to the distance calculator 18.
 f2位相差検出部17及びf1位相差検出部15による位相差PD2及び位相差PD1の検出処理について、図5A~5Cを参照して説明する。 The detection process of the phase difference PD2 and the phase difference PD1 by the f2 phase difference detection unit 17 and the f1 phase difference detection unit 15 will be described with reference to FIGS. 5A to 5C.
 受光信号RSの信号波形は、出射信号の信号波形が時間軸上で平行移動した形となり、受光信号RSの位相角は、上記の(数4)で表される。ここで、反射体をなす対象物OJTとの距離をLとすると、光の飛行時間Td(すなわち、遅延時間Td)は、次の数式(数5)で表される。 The signal waveform of the light reception signal RS is a shape in which the signal waveform of the emission signal is translated on the time axis, and the phase angle of the light reception signal RS is expressed by the above (Equation 4). Here, if the distance from the object OJT that forms the reflector is L, the flight time Td of light (that is, the delay time Td) is expressed by the following equation (Equation 5).
Figure JPOXMLDOC01-appb-M000007
 数式(数4)及び数式(数5)より、位相角θのtan-1[cos{2π・f1・(t-Td)}]の部分は、時間軸方向に周期f1で振動するようなふるまいをすることが分かる。一方、位相角θの2π・f2・Tdの部分は、Tdに応じてDC的にオフセットするようなふるまいをすることが分かる。
Figure JPOXMLDOC01-appb-M000007
From Equation (Equation 4) and Equation (Equation 5), the portion of tan −1 [cos {2π · f1 · (t−Td)}] of the phase angle θ behaves such that it vibrates with a period f1 in the time axis direction. You can see that On the other hand, it can be seen that the 2π · f2 · Td portion of the phase angle θ behaves so as to be offset in a DC manner according to Td.
 図5Aは、遅延時間Tdが基本波f2の1周期以内である場合の位相角の時間変化の波形を示す図である。実線は遅延時間Td=0.000(nsec)の波形、破線は遅延時間Td=0.625(nsec)の波形、一点鎖線は遅延時間Td=1.250(nsec)の波形、二点鎖線は遅延時間Td=1.875(nsec)の波形を示している。 FIG. 5A is a diagram showing a waveform of a time change of the phase angle when the delay time Td is within one cycle of the fundamental wave f2. The solid line is the waveform of delay time Td = 0.000 (nsec), the broken line is the waveform of delay time Td = 0.625 (nsec), the one-dot chain line is the waveform of delay time Td = 1.250 (nsec), and the two-dot chain line is The waveform of delay time Td = 1.875 (nsec) is shown.
 遅延時間Tdが基本波f2の1周期以内である場合、DC的なオフセットのみが顕著な変化となる。周波数f1の振動による横方向(時間軸方向)のシフトも生じているが、少量なので顕著には見えない。 When the delay time Td is within one cycle of the fundamental wave f2, only the DC offset changes significantly. Although a shift in the horizontal direction (time axis direction) is also caused by the vibration at the frequency f1, it is not noticeable because of a small amount.
 図5Bは、遅延時間Tdが基本波f2の1周期の整数倍である場合の位相角の時間変化の波形を示す図である。実線はTd=0.000(nsec)の波形を示している。破線は、遅延時間Td=60.000(nsec)、すなわち1×f2の波形を示している。一点鎖線は、遅延時間Td=120.000(nsec)、すなわち2×f2の波形を示している。二点鎖線は、遅延時間Td=180.000(nsec)、すなわち3×f2の波形を示している。 FIG. 5B is a diagram showing a waveform of a time change of the phase angle when the delay time Td is an integral multiple of one period of the fundamental wave f2. The solid line shows the waveform at Td = 0.000 (nsec). The broken line indicates the waveform of delay time Td = 60.000 (nsec), that is, 1 × f2. The alternate long and short dash line indicates a waveform of delay time Td = 120.000 (nsec), that is, 2 × f2. A two-dot chain line indicates a waveform of delay time Td = 180.000 (nsec), that is, 3 × f2.
 遅延時間Tdが基本波f2の1周期の整数倍である場合、周波数f1の振動による横方向(時間軸方向)の平行移動が生じる。一方、DC的なオフセットによる変動は生じない。 When the delay time Td is an integral multiple of one period of the fundamental wave f2, a lateral (time axis direction) parallel movement occurs due to the vibration of the frequency f1. On the other hand, fluctuation due to DC offset does not occur.
 図5Cは、遅延時間Tdが基本波f2の1周期を越え、且つ整数倍でもない場合の位相角の時間変化の波形を示す図である。実線は遅延時間Td=0.000(nsec)の波形、破線は遅延時間Td=60.625(nsec)の波形、一点鎖線は遅延時間Td=121.250(nsec)の波形、二点鎖線は遅延時間Td=181.875(nsec)の波形を示している。 FIG. 5C is a diagram showing a waveform of a time change of the phase angle when the delay time Td exceeds one period of the fundamental wave f2 and is not an integral multiple. The solid line is the waveform of delay time Td = 0.000 (nsec), the broken line is the waveform of delay time Td = 0.625 (nsec), the one-dot chain line is the waveform of delay time Td = 1121.250 (nsec), and the two-dot chain line is The waveform of delay time Td = 181.875 (nsec) is shown.
 遅延時間Tdが基本波f2の1周期を越え、且つ整数倍でもない一般的な場合、DC的なオフセットは基本波f2の1周期以内の位相ずれを表し、周波数f1の振動の平行移動量が全体の時間軸ずれを表す変化となる。 In a general case where the delay time Td exceeds one period of the fundamental wave f2 and is not an integral multiple, the DC offset represents a phase shift within one period of the fundamental wave f2, and the parallel movement amount of the vibration of the frequency f1 is The change represents the entire time axis shift.
 本実施例のf2位相差検出部17は、上記のようなDC的なオフセットを検出することにより、周波数f2についての位相差PD2を検出する。そして、f1位相差検出部15は、f2位相差検出部17による検出結果を用いて、位相角の波形の横方向(時間軸方向)の平行移動を検出することにより、周波数f1についての位相差PD1を検出する。 The f2 phase difference detection unit 17 of the present embodiment detects the phase difference PD2 with respect to the frequency f2 by detecting the DC offset as described above. Then, the f1 phase difference detection unit 15 uses the detection result of the f2 phase difference detection unit 17 to detect the parallel movement in the horizontal direction (time axis direction) of the waveform of the phase angle, so that the phase difference with respect to the frequency f1 is detected. PD1 is detected.
 距離算出部18は、f1位相差検出部15によって検出された周波数f1についての位相差PD1を大域的な距離算出に用い、f2位相差検出部17によって検出された周波数f2についての位相差PD2の平均値を狭い範囲(周波数f2の正弦波の波長の1波長の範囲)の距離算出値として、大域的な距離算出の結果に補正をかけることにより、測距装置100から対象物OJTまでの距離CDを算出する。 The distance calculation unit 18 uses the phase difference PD1 for the frequency f1 detected by the f1 phase difference detection unit 15 for global distance calculation, and uses the phase difference PD2 for the frequency f2 detected by the f2 phase difference detection unit 17. The distance from the distance measuring device 100 to the object OJT is obtained by correcting the result of the global distance calculation using the average value as a distance calculation value in a narrow range (one wavelength range of a sine wave having the frequency f2). CD is calculated.
 以上のように、本実施例の測距装置100は、周波数f2の正弦波信号と、周波数f1及び周波数f2の差の周波数を有する第1の正弦波及び周波数f1及び周波数f2の和の周波数を有する第2の正弦波を加算して生成した合成波信号と、により光強度を変調したレーザ光を所定領域に向けて出射する。測距装置100は、所定領域内の対象物OJTによって反射されたレーザ光を受光して電気信号(受光信号RS)に変換し、当該電気信号から生成された周波数f2の信号成分と第2周波数信号S2との位相差PD2及び周波数f1の信号成分と第1周波数信号S1との位相差PD1を検出する。そして、測距装置100は、位相差PD1を大域的な距離算出に用い、位相差PD2を用いて補正をかけることにより、対象物OJTとの距離CDを算出する。 As described above, the distance measuring apparatus 100 according to the present embodiment uses the sine wave signal having the frequency f2, the first sine wave having the frequency difference between the frequency f1 and the frequency f2, and the sum of the frequency f1 and the frequency f2. A laser beam whose light intensity is modulated by the combined wave signal generated by adding the second sine wave is emitted toward a predetermined region. The distance measuring device 100 receives the laser beam reflected by the object OJT in the predetermined area and converts it into an electrical signal (light reception signal RS), and the signal component of the frequency f2 generated from the electrical signal and the second frequency. The phase difference PD2 between the signal S2 and the phase difference PD1 between the signal component of the frequency f1 and the first frequency signal S1 are detected. Then, the distance measuring device 100 calculates the distance CD with respect to the object OJT by using the phase difference PD1 for global distance calculation and applying correction using the phase difference PD2.
 図6Aは、本実施例とは異なり、周波数f1の正弦波と周波数f2の正弦波とを加算した合成波信号により変調された光強度を有するレーザ光を出射する比較例における、レーザ光の光強度の信号波形を示す図である。比較例では、例えば以下の数式(数6)で表される光強度Semit(t)のレーザ光を出射する。 FIG. 6A is different from the present embodiment in that the light of the laser light in the comparative example in which the laser light having the light intensity modulated by the combined wave signal obtained by adding the sine wave of the frequency f1 and the sine wave of the frequency f2 is emitted. It is a figure which shows the signal waveform of an intensity | strength. In the comparative example, laser light having a light intensity Semit (t) expressed by the following formula (Equation 6) is emitted, for example.
Figure JPOXMLDOC01-appb-M000008
 図6Bは、比較例のレーザ光の光強度に変調される周波数f1及びf2のスペクトラムを示すグラフである。f1=1MHz、f2=50MHzとすると、周波数f1及び周波数f2のスペクトラムは、グラフ上の離れた位置に立つことになる。
Figure JPOXMLDOC01-appb-M000008
FIG. 6B is a graph showing the spectra of the frequencies f1 and f2 modulated by the light intensity of the laser light of the comparative example. Assuming that f1 = 1 MHz and f2 = 50 MHz, the spectra of the frequency f1 and the frequency f2 stand at distant positions on the graph.
 図7は、比較例の測距装置100Aの構成を示すブロック図である。比較例の測距装置100Aは、受光したレーザ光を電気信号に変換して得られた受光信号RSから周波数f1の信号成分f1RSと周波数f2の信号成分f2RSとを抽出して、それぞれの周波数についての位相差の比較を行う。 FIG. 7 is a block diagram showing a configuration of a distance measuring apparatus 100A of a comparative example. The distance measuring apparatus 100A of the comparative example extracts the signal component f1RS having the frequency f1 and the signal component f2RS having the frequency f2 from the received light signal RS obtained by converting the received laser light into an electrical signal, and the respective frequencies are determined. Compare the phase difference.
 図6Bに示すように、周波数f1と周波数f2とは離れているため、比較例の測距装置100Aでは、2系統のBPF(図7に示すf1成分抽出BPF13A及びf2成分抽出BPF13B)が必要となる。また、距離の算出において整合を取るためには2系統のBPFの遅延量を揃える必要がある。 As shown in FIG. 6B, since the frequency f1 and the frequency f2 are separated from each other, the distance measuring apparatus 100A of the comparative example requires two systems of BPFs (f1 component extraction BPF 13A and f2 component extraction BPF 13B shown in FIG. 7). Become. Further, in order to achieve matching in calculating the distance, it is necessary to align the delay amounts of the two systems of BPF.
 これに対し、本実施例の測距装置100は、図3Bに示すように周波数f2、fa及びfbが近接しているため、1つのBPF(図1に示すfa~fb帯域通過BPF13)で不要な信号成分をカットすることができる。 On the other hand, the distance measuring apparatus 100 of the present embodiment is unnecessary with one BPF (fa to fb bandpass BPF 13 shown in FIG. 1) because the frequencies f2, fa, and fb are close as shown in FIG. 3B. It is possible to cut a signal component.
 また、図6Cは、比較例の受光信号の信号波形を示す図である。比較例では、受光信号RSの信号波形が出射時のレーザ光の光強度の信号波形の形状を留めていない。従って、出射時の信号波形と同様の形状に戻すことは難しい。 FIG. 6C is a diagram illustrating a signal waveform of a light reception signal of a comparative example. In the comparative example, the signal waveform of the light reception signal RS does not retain the shape of the signal waveform of the light intensity of the laser beam at the time of emission. Therefore, it is difficult to return to the same shape as the signal waveform at the time of emission.
 また、受光信号RSから抽出した周波数f1の信号成分f1RSは、2次高調波歪みにより、ゼロクロスポイントが立上がり時は前側にずれ、立下り時は後ろ側にずれた歪み波形となる。この状態で位相差を検出しようとすると、位相差は半周期ごとに前後にずれた形で表れる。これを回避するためには、周波数f1の信号成分f1RSを抽出するBPFの通過帯域を狭くして、2次高調波を除去する必要がある。しかし、BPFの帯域を狭くしようとすると、トレードオフ的に遅延時間が長くなる副作用が生じ、距離算出に要する時間が長くなってしまう。 Also, the signal component f1RS of the frequency f1 extracted from the received light signal RS has a distortion waveform that shifts to the front side when the zero cross point rises and shifts to the rear side when falling due to the second harmonic distortion. If an attempt is made to detect the phase difference in this state, the phase difference appears in a form shifted back and forth every half cycle. In order to avoid this, it is necessary to narrow the pass band of the BPF for extracting the signal component f1RS of the frequency f1 and remove the second harmonic. However, when trying to narrow the BPF band, there is a side effect that the delay time becomes longer in a trade-off manner, and the time required for distance calculation becomes longer.
 これに対し、本実施例の測距装置100では、受光信号RSの信号波形が出射光OLの光強度の信号波形の形状を留めており、受光信号RSから周波数f1の信号成分をカットすることにより、歪んだ信号波形を出射光OLの光強度の信号波形と同様の信号波形に戻すことができる。従って、本実施例の測距装置100によれば、簡易な構成で受光信号RSの信号波形の歪みを補正することができる。 On the other hand, in the distance measuring apparatus 100 according to the present embodiment, the signal waveform of the light reception signal RS retains the shape of the signal waveform of the light intensity of the emitted light OL, and the signal component of the frequency f1 is cut from the light reception signal RS. Thus, the distorted signal waveform can be returned to the same signal waveform as the signal waveform of the light intensity of the outgoing light OL. Therefore, according to the distance measuring apparatus 100 of the present embodiment, it is possible to correct the distortion of the signal waveform of the light reception signal RS with a simple configuration.
 また、本実施例では、基本周波数f2を有する正弦波信号cos(2π・f2・t)に、周波数f1及び周波数f2の差の周波数を有する第1の正弦波1/2sin{2π・(f2-f1)・t}、周波数f1及び周波数f2の和の周波数を有する第2の正弦波1/2sin{2π・(f2+f1)・t}を加えた信号により光強度を変調しており、合成ベクトルの長さが√2となるため、DCオフセットの値は√2となる。従って、比較例と比べてDCオフセットの値を小さくすることができる。 Further, in this embodiment, a sine wave signal cos (2π · f2 · t) having a fundamental frequency f2 is added to a first sine wave ½ sin {2π · (f2− (f2−t2)) having a frequency difference between the frequency f1 and the frequency f2. f1) · t}, the light intensity is modulated by a signal obtained by adding a second sine wave 1/2 sin {2π · (f2 + f1) · t} having the sum of the frequency f1 and the frequency f2, Since the length is √2, the DC offset value is √2. Therefore, the value of the DC offset can be reduced as compared with the comparative example.
 DCオフセットの値は、レーザ光の光強度のベースレベルを示すものであり、レーザ光の平均の光強度を示す値となる。そして、安全性の観点から、レーザ光の平均の光強度は低い方が望ましい。従って、本実施例の測距装置100によれば、比較例の測距装置と比べて安全性の高いレーザ光を用いて距離の測定を行うことが可能となる。 The value of DC offset indicates the base level of the light intensity of the laser light, and is a value indicating the average light intensity of the laser light. From the viewpoint of safety, it is desirable that the average light intensity of the laser light is low. Therefore, according to the distance measuring apparatus 100 of the present embodiment, it is possible to perform distance measurement using laser light that is safer than the distance measuring apparatus of the comparative example.
 また、レーザ光の光強度の変調に用いる合成波信号の振幅が大きいと、位相差検出に用いる信号(本実施例では、第1周波数信号S1及び第2周波数信号S2)のS/N比が向上して距離計測の精度が高くなる。DCオフセットは、位相差検出、ひいては距離計測に関係しない要素であるため、合成波信号の振幅に対するDCオフセットの比率を小さく抑えることができれば、平均光強度を増大させることなく合成波信号の振幅を大きくし、距離計測の精度を向上させることができる。 Further, when the amplitude of the composite wave signal used for modulation of the light intensity of the laser light is large, the S / N ratio of the signals used for phase difference detection (in the present embodiment, the first frequency signal S1 and the second frequency signal S2) is Improves distance measurement accuracy. Since the DC offset is an element not related to phase difference detection, and thus distance measurement, if the ratio of the DC offset to the amplitude of the synthesized wave signal can be kept small, the amplitude of the synthesized wave signal can be reduced without increasing the average light intensity. The distance measurement accuracy can be improved by increasing the distance.
 本実施例の測距装置100では、合成波信号の振幅に対するDCオフセットの比率が小さいため、合成波信号の振幅が相対的に大きく、位相差検出に用いる信号のS/N比が大きい。従って、本実施例の測距装置100によれば、精度の高い距離測定を行うことが可能となる。 In the distance measuring apparatus 100 of the present embodiment, since the ratio of the DC offset to the amplitude of the synthesized wave signal is small, the amplitude of the synthesized wave signal is relatively large, and the S / N ratio of the signal used for phase difference detection is large. Therefore, according to the distance measuring apparatus 100 of the present embodiment, it is possible to perform distance measurement with high accuracy.
 また、複数本のレーザ光を同時に出射することにより距離を計測する他の測距装置(図示せず)と比較した場合、本実施例の測距装置100では、レーザ光の光源や光学系、受光系、BPF等が1系統で済むため、装置規模を抑えることができる。また、本実施例の測距装置100では、当該他の測距装置において生じる複数本のレーザ光を用いることにより生じる光学系の軸のずれや、同一点にスポットを集めることが困難であるため長短波長の計測位置がバラバラになってしまうといった問題が生じない。 Further, when compared with another distance measuring device (not shown) that measures a distance by simultaneously emitting a plurality of laser beams, the distance measuring device 100 of the present embodiment has a light source and an optical system for laser light, Since only one light receiving system, BPF, etc. are required, the scale of the apparatus can be reduced. Further, in the distance measuring device 100 according to the present embodiment, it is difficult to collect a spot at the same point or an optical axis misalignment caused by using a plurality of laser beams generated in another distance measuring device. There is no problem that long and short wavelength measurement positions are scattered.
 なお、本実施例の測距装置100が出射する出射光OLの光強度Semit(t)は、上記の数式(数1)の「Semit(t)=cos(2π・f2・t)+1/2・[sin{2π・fb・t}+sin{2π・fa・t}]+√2」の形に限定されず、各項の係数は任意に設定することが可能である。その際、cos(2π・f2・t)、sin{2π・fb・t}及びsin{2π・fa・t}の各々の係数は等しくても良く、異なっていても良い。また、DCオフセットは、各項の係数に応じた値に設定されていれば良い。すなわち、出射光OLは、α、β、γ及びδを定数として、下記の数式(数7)で表される光強度Semit(t)を有していれば良い。 Note that the light intensity Semit (t) of the outgoing light OL emitted from the distance measuring device 100 according to the present embodiment is “Semit (t) = cos (2π · f2 · t) + ½ in the above formula (Equation 1). -It is not limited to the form of [sin {2 (pi) * fb * t} + sin {2 (pi) * fa * t}] + √2 ", The coefficient of each term can be set arbitrarily. At that time, the coefficients of cos (2π · f2 · t), sin {2π · fb · t} and sin {2π · fa · t} may be equal or different. The DC offset may be set to a value corresponding to the coefficient of each term. That is, the emitted light OL only needs to have a light intensity Semit (t) expressed by the following equation (Equation 7), where α, β, γ, and δ are constants.
Figure JPOXMLDOC01-appb-M000009
 以上のように、本実施例の測距装置100によれば、簡易な構成で精度よく対象物までの距離を計測することが可能となる。
Figure JPOXMLDOC01-appb-M000009
As described above, according to the distance measuring apparatus 100 of the present embodiment, it is possible to accurately measure the distance to the object with a simple configuration.
 次に、本発明の実施例2について説明する。本実施例の測距装置は、図1に示す実施例1の測距装置100と同様の構成を有し、出射部11が出射するレーザ光の光強度の変調方法において実施例1の測距装置100と異なる。 Next, Example 2 of the present invention will be described. The distance measuring apparatus according to the present embodiment has the same configuration as the distance measuring apparatus 100 according to the first embodiment shown in FIG. 1, and the distance measuring apparatus according to the first embodiment in the method for modulating the light intensity of the laser beam emitted from the emitting unit 11. Different from the device 100.
 本実施例の出射部11は、周波数f2の正弦波信号の位相が周波数f1の正弦波信号に基づいて変位された合成信号により光強度を変調したレーザ光を所定領域に向けて出射する。具体的には、出射部11は、周波数f2を有する正弦波信号の位相に位相シフト項を設け、周波数f2を有する正弦波信号の位相角を周波数f1の正弦波で振動させた合成信号により光強度を変調したレーザ光を出射光OLとして出射する。 The emitting unit 11 of the present embodiment emits laser light, whose light intensity is modulated by a composite signal in which the phase of the sine wave signal having the frequency f2 is displaced based on the sine wave signal having the frequency f1, toward a predetermined region. Specifically, the emitting unit 11 provides a phase shift term to the phase of the sine wave signal having the frequency f2, and the light is generated by a synthesized signal obtained by vibrating the phase angle of the sine wave signal having the frequency f2 with the sine wave having the frequency f1. The laser beam whose intensity is modulated is emitted as the outgoing light OL.
 例えば、位相角を振動させる幅を2×θ0とすると、位相シフト量Δθは、Δθ=θ0・sin(2π・f1・t)となる。そして、出射光OLの光強度Semit(t)は、次の数式(数8)で表される。 For example, when the width for oscillating the phase angle is 2 × θ 0 , the phase shift amount Δθ is Δθ = θ 0 · sin (2π · f1 · t). Then, the light intensity Semit (t) of the outgoing light OL is expressed by the following equation (Equation 8).
Figure JPOXMLDOC01-appb-M000010
 図8は、周波数f2の正弦波信号(基本波f2)をベースとした位相振動をベクトル図として模式的に示す図である。基本波f2のベクトルは実軸方向をスタート位置としてθ=2π・f2・tで反時計回りに回転するが、ここでは角度0度に固定した場合を示している。このように基本波f2のベクトルを固定した場合、破線の矢印で示すように、合成ベクトルは、位相角が±θ0の範囲(すなわち、振れ幅2×θ0)で振れるように動くことになる。
Figure JPOXMLDOC01-appb-M000010
FIG. 8 is a diagram schematically showing a phase oscillation based on a sine wave signal (fundamental wave f2) having a frequency f2 as a vector diagram. The vector of the fundamental wave f2 rotates counterclockwise at θ = 2π · f2 · t with the real axis direction as the start position, but here shows a case where the angle is fixed at 0 °. When the vector of the fundamental wave f2 is thus fixed, the combined vector moves so as to swing within the range of the phase angle ± θ 0 (that is, the swing width 2 × θ 0 ), as indicated by the dashed arrow. Become.
 図9Aは、出射光OLの光強度の信号波形を示す図である。このように、横方向(時間軸方向)に位相が揺れた信号波形の光強度を有するレーザ光が、出射光OLとして出射部11から出射される。 FIG. 9A is a diagram showing a signal waveform of the light intensity of the outgoing light OL. Thus, the laser light having the light intensity of the signal waveform whose phase is shifted in the horizontal direction (time axis direction) is emitted from the emission unit 11 as the emission light OL.
 図9Bは、出射光OLの光強度に変調される周波数信号のスペクトラムを示すグラフである。本実施例における光強度の変調は、いわゆるPM(Phase Modulation)変調であり、搬送波である周波数f2を中心周波数として、変調する周波数f1の間隔で、±両側に複数の側波(サイドバンド)が発生する。従って、f1=1MHz、f2=50MHzとすると、fa=51MHz、fb=49MHz、fc=52MHz、fd=48MHz・・・のスペクトラムが立つことになる。 FIG. 9B is a graph showing a spectrum of a frequency signal modulated by the light intensity of the outgoing light OL. The modulation of the light intensity in this embodiment is so-called PM (Phase Modulation) modulation, and a plurality of sidebands (sidebands) are provided on both sides at intervals of the frequency f1 to be modulated with the frequency f2 being a carrier wave as a center frequency. appear. Therefore, if f1 = 1 MHz and f2 = 50 MHz, the spectrum of fa = 51 MHz, fb = 49 MHz, fc = 52 MHz, fd = 48 MHz...
 なお、反射波の受光及び位相差の検出の段階において、複数発生する側波のうち、周波数fc、fd・・・以降を遮断し、中心周波数f2と第1の側波fa及びfbまでしか抽出しなかったとしても、位相変動分は再現可能であるため、位相検出動作が可能である。従って、本実施例の測距装置は、図1に示す実施例1の測距装置100と同様、受光信号RSに含まれる周波数faから周波数fbまでの周波数の信号成分を通過させ、それ以外の周波数帯域の信号成分を遮断するfa~fb帯域通過BPF13を有していれば良い。f2位相差検出部17は、fa~fb帯域通過BPF13を通過した受光信号RSに基づいて、周波数f2についての位相差PD2を検出することが可能である。 In the stage of receiving the reflected wave and detecting the phase difference, the frequency fc, fd,... And subsequent ones are cut off from the plurality of generated side waves, and only the center frequency f2 and the first side waves fa and fb are extracted. Even if not, the phase detection operation is possible because the phase variation can be reproduced. Therefore, the distance measuring device of the present embodiment, like the distance measuring device 100 of the first embodiment shown in FIG. 1, passes the signal components of the frequencies from the frequency fa to the frequency fb included in the light reception signal RS, and other than that. It suffices to have the fa to fb bandpass BPF 13 that blocks signal components in the frequency band. The f2 phase difference detection unit 17 can detect the phase difference PD2 for the frequency f2 based on the light reception signal RS that has passed through the fa to fb band pass BPF13.
 図9Cは、位相シフト量Δθの時間変化を示す波形図である。ここでは、θ0=45°、f1=1MHzの場合を示している。位相シフト量Δθ=θ0・sin(2π・f1・t)であるため、周波数f1で振動するように変化する波形となる。 FIG. 9C is a waveform diagram showing a time change of the phase shift amount Δθ. Here, the case where θ 0 = 45 ° and f1 = 1 MHz is shown. Since the phase shift amount Δθ = θ 0 · sin (2π · f1 · t), the waveform changes so as to vibrate at the frequency f1.
 図9Dは、受光信号RSの信号波形の一例を示す図である。ここでは、歪んだ信号波形の極端な例として、反射光RLの光強度が飽和して上側半分が潰れた信号波形を示している。 FIG. 9D is a diagram illustrating an example of a signal waveform of the light reception signal RS. Here, as an extreme example of a distorted signal waveform, a signal waveform in which the light intensity of the reflected light RL is saturated and the upper half is crushed is shown.
 図9Aと図9Dとの比較から分かるように、受光信号RSの信号波形は、出射光OLの光強度の波形の形状を留めている。すなわち、波形の上側半分が潰れたとしても位相の揺れは維持しているため、受光信号RSから周波数fa~fbの範囲の信号成分を抽出し、低周波のノイズ成分をカットすることにより、図9Dに示す歪んだ信号波形を図9Aに示す出射光OLの光強度の信号波形と同様の信号波形に戻すことができる。 As can be seen from a comparison between FIG. 9A and FIG. 9D, the signal waveform of the light reception signal RS retains the shape of the waveform of the light intensity of the outgoing light OL. That is, even if the upper half of the waveform is crushed, the phase fluctuation is maintained, so that the signal component in the range of frequencies fa to fb is extracted from the received light signal RS and the low frequency noise component is cut. The distorted signal waveform shown in 9D can be returned to a signal waveform similar to the signal waveform of the light intensity of the emitted light OL shown in FIG. 9A.
 以上のように、本実施例の測距装置は、周波数f2を有する正弦波信号の位相角を周波数f1の正弦波で振動させた合成信号により光強度を変調したレーザ光を出射光OLとして出射する。本実施例における光強度の変調は、周波数f2の正弦波信号の位相が周波数f1の正弦波信号に基づいて変位された合成信号により光強度を変調する点において、実施例1の場合と同様である。 As described above, the distance measuring apparatus according to the present embodiment emits the laser light whose light intensity is modulated by the combined signal obtained by oscillating the phase angle of the sine wave signal having the frequency f2 with the sine wave having the frequency f1 as the outgoing light OL. To do. The modulation of the light intensity in the present embodiment is the same as that of the first embodiment in that the light intensity is modulated by a composite signal in which the phase of the sine wave signal having the frequency f2 is displaced based on the sine wave signal having the frequency f1. is there.
 本実施例の測距装置では、単一のBPFであるfa~fb帯域通過BPF13を通過させることにより、受光信号RSを出射時の信号波形と同様の波形に戻すことが出来、簡易な構成で信号波形の歪みを補正することができる。 In the distance measuring apparatus of the present embodiment, the light reception signal RS can be returned to the same waveform as the signal waveform at the time of emission by passing through a single BPF fa to fb band pass BPF 13, and with a simple configuration. The distortion of the signal waveform can be corrected.
 また、本実施例では、上記の数式(数8)に示すように、cos(2π・f2・t+Δθ)の取り得る最小値が“-1”であるため、DCオフセットの値は“+1”となる。従って、実施例1と比べてさらにDCオフセットの値を小さくすることができる。 Further, in the present embodiment, as shown in the above equation (Equation 8), the minimum value that cos (2π · f2 · t + Δθ) can take is “−1”, so the DC offset value is “+1”. Become. Therefore, the DC offset value can be further reduced as compared with the first embodiment.
 従って、本実施例の測距装置によれば、より安全性の高いレーザ光を用いて距離の測定を行うことが可能となる。また、合成波信号の振幅に対するDCオフセットの比率を小さく抑えることができるため、距離計測の精度をさらに向上させることができる。 Therefore, according to the distance measuring apparatus of the present embodiment, it is possible to perform distance measurement using laser light with higher safety. In addition, since the ratio of the DC offset to the amplitude of the synthesized wave signal can be kept small, the accuracy of distance measurement can be further improved.
 なお、本実施例の測距装置が出射する出射光OLの光強度Semit(t)は、上記の数式(数1)の「Semit(t)=cos{2π・f2・t+θ0・sin(2π・f1・t)}+1」の形に限定されず、各項の係数は任意に設定することが可能である。また、DCオフセットは、各項の係数に応じた値に設定されていれば良い。すなわち、出射光OLは、α、β及びγを定数として、下記の数式(数9)で表される光強度Semit(t)を有していれば良い。 The light intensity Semit (t) of the outgoing light OL emitted from the distance measuring apparatus according to the present embodiment is “Semit (t) = cos {2π · f2 · t + θ 0 · sin (2π) in the above formula (Equation 1). The coefficient of each term can be arbitrarily set without being limited to the form of “f1 · t)} + 1”. The DC offset may be set to a value corresponding to the coefficient of each term. That is, the emitted light OL only needs to have a light intensity Semit (t) expressed by the following equation (Equation 9), where α, β, and γ are constants.
Figure JPOXMLDOC01-appb-M000011
 なお、本発明は上記実施形態に限定されない。例えば、上記実施例1及び実施例2では、fa~fb帯域通過BPF(13,23)が、受光信号RSに含まれる信号成分のうち周波数faから周波数fbまでの周波数の信号成分を通過させ、それ以外の周波数帯域の信号成分を遮断する場合を例として説明した。しかし、fa~fb帯域通過BPFの通過帯域はこれよりも多少広い帯域幅に設定されていても良い。例えば、fa~fb帯域通過BPFの通過帯域の下限値は、周波数faよりも小さい値に設定されていても良い。また、fa~fb帯域通過BPFの通過帯域の上限値は、周波数fbよりも大きい値に設定されていても良い。
Figure JPOXMLDOC01-appb-M000011
In addition, this invention is not limited to the said embodiment. For example, in the first embodiment and the second embodiment, the fa to fb bandpass BPF (13, 23) passes a signal component having a frequency from the frequency fa to the frequency fb among the signal components included in the light reception signal RS. The case where signal components in other frequency bands are cut off has been described as an example. However, the passband of the fa to fb bandpass BPF may be set to a slightly wider bandwidth. For example, the lower limit value of the pass band of the fa to fb band pass BPF may be set to a value smaller than the frequency fa. Further, the upper limit value of the pass band of the fa to fb band pass BPF may be set to a value larger than the frequency fb.
 また、上記各実施例で説明した一連の処理は、例えばROMなどの記録媒体に格納されたプログラムに従ったコンピュータ処理により行うことができる。 The series of processes described in the above embodiments can be performed by computer processing according to a program stored in a recording medium such as a ROM.
100 測距装置
10 基準信号発生部
11 出射部
11A レーザ光源
11B レーザ発光駆動部
12A 受光素子
12B 受光信号検出部
12 受光部
13 fa~fb帯域通過BPF
15 f1位相差検出部
17 f2位相差検出部
18 距離算出部
100 Ranging device 10 Reference signal generator 11 Emitter 11A Laser light source 11B Laser light emission driver 12A Light receiving element 12B Light received signal detector 12 Light receiver 13 fa to fb band pass BPF
15 f1 phase difference detection unit 17 f2 phase difference detection unit 18 distance calculation unit

Claims (8)

  1.  第1周波数を有する第1周波数信号及び前記第1周波数よりも高い第2周波数を有する第2周波数信号に基づいて光強度を変調したレーザ光を所定領域に向けて出射する出射部と、
     前記所定領域内の対象物によって反射された前記レーザ光を受光し、当該受光したレーザ光の光強度を電気信号に変換する受光部と、
     前記電気信号から生成された前記第1周波数の信号成分と前記第1周波数信号との位相差を検出する第1位相差検出部と、
     前記電気信号から生成された前記第2周波数の信号成分と前記第2周波数信号との位相差を検出する第2位相差検出部と、
     前記第1位相差検出部により検出された位相差及び前記第2位相差検出部により検出された位相差に基づいて、前記対象物までの距離を算出する距離算出部と、
     を有し、
     前記レーザ光は、前記第2周波数の正弦波信号の位相が前記第1周波数の正弦波信号に基づいて変位された合成信号により変調された光強度を有することを特徴とする測距装置。
    An emission unit that emits laser light whose light intensity is modulated based on a first frequency signal having a first frequency and a second frequency signal having a second frequency higher than the first frequency, toward a predetermined region;
    A light receiving unit that receives the laser light reflected by the object in the predetermined region and converts the light intensity of the received laser light into an electrical signal;
    A first phase difference detector that detects a phase difference between the first frequency signal component generated from the electrical signal and the first frequency signal;
    A second phase difference detector that detects a phase difference between the signal component of the second frequency generated from the electrical signal and the second frequency signal;
    A distance calculation unit that calculates a distance to the object based on the phase difference detected by the first phase difference detection unit and the phase difference detected by the second phase difference detection unit;
    Have
    The distance measuring apparatus according to claim 1, wherein the laser beam has a light intensity modulated by a combined signal obtained by shifting the phase of the sine wave signal of the second frequency based on the sine wave signal of the first frequency.
  2.  前記レーザ光は、前記第2周波数の正弦波信号と、前記第1周波数及び前記第2周波数の差の周波数である第3周波数の第1の正弦波及び前記第1周波数及び前記第2周波数の和の周波数である第4周波数の第2の正弦波を加算して生成した合成波信号と、により変調された光強度を有し、
     前記第2周波数の正弦波信号は、前記合成波信号に対して直交関係にあることを特徴とする請求項1に記載の測距装置。
    The laser beam includes a sine wave signal of the second frequency, a first sine wave of a third frequency that is a difference between the first frequency and the second frequency, and the first frequency and the second frequency. A combined wave signal generated by adding the second sine wave of the fourth frequency, which is the sum frequency, and the light intensity modulated by
    The range finder according to claim 1, wherein the sine wave signal of the second frequency is orthogonal to the composite wave signal.
  3.  前記第3周波数から前記第4周波数までを含む所定の周波数範囲の信号成分を通過させるとともに、前記所定の周波数範囲よりも小なる周波数の信号成分及び大なる周波数の信号成分を遮断するフィルタを有し、
     前記第1位相差検出部及び前記第2位相差検出部の各々は、前記フィルタを通過した前記電気信号に基づいて位相差を検出することを特徴とする請求項2に記載の測距装置。
    A filter that allows a signal component in a predetermined frequency range including the third frequency to the fourth frequency to pass, and that blocks a signal component having a frequency lower than the predetermined frequency range and a signal component having a higher frequency than the predetermined frequency range; And
    3. The distance measuring apparatus according to claim 2, wherein each of the first phase difference detection unit and the second phase difference detection unit detects a phase difference based on the electrical signal that has passed through the filter.
  4.  前記第2位相差検出部は、前記フィルタを通過した前記電気信号に含まれる前記第2周波数の信号成分と前記第2周波数信号との位相差を、当該位相差の時間変化を示す位相差信号として検出することを特徴とする請求項3に記載の測距装置。 The second phase difference detection unit is a phase difference signal indicating a phase difference between the second frequency signal and the signal component of the second frequency included in the electrical signal that has passed through the filter, and indicating a time change of the phase difference. The distance measuring device according to claim 3, wherein:
  5.  前記第1位相差検出部は、前記第2位相差検出部により検出された前記位相差信号に基づいて、前記第1周波数についての位相差を検出することを特徴とする請求項4に記載の測距装置。 The first phase difference detection unit detects a phase difference with respect to the first frequency based on the phase difference signal detected by the second phase difference detection unit. Distance measuring device.
  6.  前記レーザ光は、前記第2周波数の正弦波信号及び前記合成波信号を加算した信号に、前記第2周波数の正弦波信号及び前記合成波信号の振幅に応じたオフセット値を加算した光強度を有することを特徴とする請求項2乃至5のいずれか1に記載の測距装置。 The laser beam has a light intensity obtained by adding an offset value corresponding to the amplitude of the sine wave signal of the second frequency and the synthesized wave signal to a signal obtained by adding the sine wave signal of the second frequency and the synthesized wave signal. The distance measuring device according to claim 2, wherein the distance measuring device is provided.
  7.  前記レーザ光は、前記第2周波数をf2とし、前記第3周波数をfbとし、前記第4周波数をfaとし、時間をtとし、α、β、γ及びδを定数として、下記の数1に表される数式で変調された光強度を有することを特徴とする請求項6に記載の測距装置。
    Figure JPOXMLDOC01-appb-M000001
    The laser beam has the second frequency as f 2 , the third frequency as f b , the fourth frequency as f a , the time as t, and α, β, γ, and δ as constants as follows : The distance measuring device according to claim 6, wherein the distance measuring device has a light intensity modulated by a mathematical expression represented by Equation (1).
    Figure JPOXMLDOC01-appb-M000001
  8.  前記レーザ光は、前記第1周波数をf1とし、前記第2周波数をf2とし、時間をtとし、α、β、γ及びθ0を定数として、下記の数1に表される数式で変調された光強度を有することを特徴とする請求項1に記載の測距装置。
    Figure JPOXMLDOC01-appb-M000002
    The laser beam is expressed by the following formula 1 where f 1 is the first frequency, f 2 is the second frequency, t is time, α, β, γ, and θ 0 are constants. The distance measuring apparatus according to claim 1, wherein the distance measuring apparatus has a modulated light intensity.
    Figure JPOXMLDOC01-appb-M000002
PCT/JP2019/010335 2018-03-27 2019-03-13 Distance measuring device WO2019188302A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018059761 2018-03-27
JP2018-059761 2018-03-27

Publications (1)

Publication Number Publication Date
WO2019188302A1 true WO2019188302A1 (en) 2019-10-03

Family

ID=68061712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010335 WO2019188302A1 (en) 2018-03-27 2019-03-13 Distance measuring device

Country Status (1)

Country Link
WO (1) WO2019188302A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5082364A (en) * 1990-08-31 1992-01-21 Russell James T Rf modulated optical beam distance measuring system and method
JPH0980153A (en) * 1995-09-08 1997-03-28 Mitsubishi Electric Corp Distance measuring apparatus
JPH11118928A (en) * 1997-10-21 1999-04-30 Sokkia Co Ltd Electrooptical distance meter
JP2011522216A (en) * 2008-02-01 2011-07-28 ファロ テクノロジーズ インコーポレーテッド Objective distance measuring method and apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5082364A (en) * 1990-08-31 1992-01-21 Russell James T Rf modulated optical beam distance measuring system and method
JPH0980153A (en) * 1995-09-08 1997-03-28 Mitsubishi Electric Corp Distance measuring apparatus
JPH11118928A (en) * 1997-10-21 1999-04-30 Sokkia Co Ltd Electrooptical distance meter
JP2011522216A (en) * 2008-02-01 2011-07-28 ファロ テクノロジーズ インコーポレーテッド Objective distance measuring method and apparatus

Similar Documents

Publication Publication Date Title
JP6687301B2 (en) Laser radar device
US9115971B2 (en) Measuring apparatus
WO2017187510A1 (en) Distance measurement device, distance measurement method, and shape measurement device
WO2019184790A1 (en) Coherent lidar method and apparatus
WO2018230474A1 (en) Optical distance measurement device and measurement method
WO2010001809A1 (en) Range finder, range finding method, and optical three-dimensional shape determining device
JP6241283B2 (en) Radar apparatus and distance-velocity measuring method
US20180202923A1 (en) Gas Detection Device and Gas Detection Method
JP2007071704A (en) Measuring device, method, program, and recording medium
WO2019181695A1 (en) Distance measuring device
EP1497673A1 (en) Method and apparatus for laser vibrometry
WO2019188302A1 (en) Distance measuring device
CN107607928B (en) Rotor wing laser Doppler and micro Doppler composite signal simulator
JP2013108840A (en) Laser radar device
WO2019181696A1 (en) Distance measuring device
WO2019239491A1 (en) Optical distance measurement device and machining device
JP7115738B2 (en) Rangefinder, distance measuring method, and optical three-dimensional shape measuring machine
JPH06186337A (en) Laser distance measuring equipment
JP6653052B2 (en) Laser ranging device and laser ranging method
US8928866B2 (en) Velocity measuring device and method
JP2023089130A (en) Signal processing device
GB1605217A (en) Laser probe for detecting movement of a target
WO2023017765A1 (en) Measuring device
JP6729737B1 (en) Optical coherent sensor
JP2018013433A (en) Signal processing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19775963

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19775963

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP