WO2019188192A1 - Optical transmitter - Google Patents

Optical transmitter Download PDF

Info

Publication number
WO2019188192A1
WO2019188192A1 PCT/JP2019/009706 JP2019009706W WO2019188192A1 WO 2019188192 A1 WO2019188192 A1 WO 2019188192A1 JP 2019009706 W JP2019009706 W JP 2019009706W WO 2019188192 A1 WO2019188192 A1 WO 2019188192A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
optical
frequency
carrier
carrier wave
Prior art date
Application number
PCT/JP2019/009706
Other languages
French (fr)
Japanese (ja)
Inventor
山崎 裕史
橋本 俊和
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Publication of WO2019188192A1 publication Critical patent/WO2019188192A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation

Definitions

  • the present invention relates to an optical transmitter used for optical fiber communication. More specifically, the present invention relates to an optical SSB transmitter that performs optical SSB modulation.
  • the C band (wavelength 1.5 ⁇ m band) which is the lowest loss band of the optical fiber, but the influence of the wavelength dispersion of the optical fiber becomes a problem in the C band.
  • so-called fading in which the intensity of a specific frequency component of a signal spectrum is significantly attenuated in a baseband signal after intensity detection due to wavelength dispersion, is a serious problem.
  • Non-Patent Document 1 In order to generate an optical SSB signal, a method of using an optical IQ modulator (sometimes referred to as an SSB modulator) as in Non-Patent Document 1 and removing one sideband by interference between an I component and a Q component It has been known.
  • Optical SSB modulation based on the same principle can be performed by driving the arms of a Mach-Zehnder modulator (MZM) with drive signals whose phases are shifted from each other as in Non-Patent Document 2.
  • MZM Mach-Zehnder modulator
  • an optical IQ modulator is used to suppress the light source frequency component simultaneously with the modulation, and instead, an optical carrier is set up at one of the band edges of the modulated signal spectrum and transmitted.
  • a method for generating an optical SSB signal by effectively shifting the optical carrier frequency is also known.
  • Non-Patent Document 5 a method of attenuating one sideband with an optical filter after generating a normal optical DSB signal is called a VSB (Vestinal Sideband) method, which is also a kind of SSB, Signal degradation due to fading can be reduced.
  • VSB Vertical Sideband
  • the method for generating an optical SSB or VSB signal in a conventional optical SSB transmitter has the following problems.
  • FIG. 1 shows a configuration (a) of an optical SSB transmitter using an IQ modulator as an optical SSB transmitter of Conventional Example 1, and spectrums (b) and (c) of signals of each part.
  • the optical SSB signal (c) whose spectrum is shown at the right end is generated by optical modulation with the two systems of electrical signals shifted from each other.
  • FIG. 2 shows an optical VSB transmitter (a) using an optical filter as an optical SSB transmitter of Conventional Example 2, and spectrums (b) to (d) of signals of each part.
  • the optical intensity is modulated in (b) to generate a DSB optical signal (c) having a spectrum in the center.
  • the DSB optical signal shown in FIG. 2 (c) has a light spectrum with sidebands symmetrical spectral shape across the optical carrier of the central frequency f 0, the light of the lower sideband (LSB) It can be said that the signal S * ( ⁇ f + f 0 ) and the optical signal S (f ⁇ f 0 ) in the upper sideband (USB) are in a complex conjugate pair relationship, and one is the other complex conjugate signal.
  • this DSB optical signal is passed through an optical filter 23 having a transmission spectrum indicated by a dotted line in FIG. 2D, the lower sideband is partially suppressed to generate a VSB optical signal (d).
  • the conventional optical VSB transmitter 20 shown in FIG. 2 is simple because only one optical modulator drive system is required, but generally the transmission characteristics of the optical filter are not sufficiently sharp with respect to the signal bandwidth.
  • the sideband suppression becomes incomplete, and part of the LSB remains, fading suppression becomes incomplete, and there is a problem that fading cannot be suppressed.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide an optical SSB transmitter that sufficiently suppresses fading due to chromatic dispersion while having a simple configuration. is there.
  • the present invention is characterized by having the following configuration.
  • an electric signal generating means for generating a driving electrical signal containing a component of the RF carrier and frequency f s following baseband modulation signal of frequency f s, A laser light source that oscillates at a frequency f 0 ;
  • a Mach-Zehnder modulator that is biased to a null point, is push-pull driven by the drive electrical signal, and modulates light output from the laser light source; Which is connected downstream of the Mach-Zehnder modulator, a transmission bandwidth f s or more, and either a transition region of the transmission band and blocking band from the frequency f 0 -f s from f 0 or frequency f 0 of f 0 + f s And an optical filter existing in the frequency range of the optical transmitter.
  • the electrical signal generating means includes A DSP that synthesizes and generates the RF carrier and the baseband modulated signal as a digital signal;
  • the electrical signal generating means includes RF carrier wave generating means for generating the RF carrier wave as an analog signal; A DSP for generating the baseband modulation signal as a digital signal; A DAC that converts the baseband modulation signal generated by the DSP into an analog signal;
  • the electrical signal generating means includes RF carrier wave generating means for generating an RF carrier wave of the frequency fs as an analog signal;
  • an optical SSB transmitter capable of sufficiently suppressing fading due to chromatic dispersion while having a simple configuration in which an MZM is driven by a single electric signal. Can do.
  • FIG. 2A is a diagram showing a configuration of a conventional optical VSB transmitter
  • FIGS. 2B to 2D are diagrams showing signal spectra of respective units.
  • FIG. 2A is a diagram illustrating a configuration of an optical SSB transmitter according to a first embodiment of the present invention
  • FIGS. 2B to 2D are diagrams illustrating signal spectra of respective units.
  • FIG. 4A is a diagram showing a configuration of an optical SSB transmitter according to a second embodiment of the present invention
  • FIG. 5B is a diagram showing a spectrum of a signal at each section.
  • FIG. 3 is a diagram schematically showing the configuration (a) of the optical SSB transmitter according to the first embodiment of the present invention and the spectrums (b) to (d) of the signals of each part.
  • the optical SSB transmitter 300 in FIG. 3A includes a drive signal generation unit 310, a laser light source 320, an MZM (Mach-Zehnder modulator) 330, and an optical filter 340.
  • MZM Machine-Zehnder modulator
  • the drive signal generation unit 310 is an electric signal generation unit that generates a drive electric signal for driving the MZM 330, and includes a DSP (digital signal processing circuit) 311 and a DAC (digital-analog converter) 312. An amplifier may be used after the DAC 312 as necessary. As shown in the spectrum of FIG. 3B, the drive signal output from the DAC 312 includes a baseband modulation signal 381 having a bandwidth B and an RF carrier 382 having a frequency f s ⁇ B.
  • the MZM 330 is a push-pull type (zero chirp type), and the DC bias is adjusted to a null point (a point at which the intensity of the light source frequency component is minimum).
  • a null point a point at which the intensity of the light source frequency component is minimum.
  • the transmission spectrum of the optical filter 340 is indicated by a dotted line in FIG. 3D, and the transmission spectrum is adjusted so as to suppress one of the shifted optical carriers.
  • the transmission spectrum of the optical filter 340 transmits the optical carrier of f 0 -f s on the LSB side and the optical signal component 384 in the range of f 0 -f s to f 0 , and f 0 + f s on the USB side. As long as the optical carrier is suppressed, it is sufficient.
  • an optical filter having a transmission bandwidth of f s or more and a transition region between the transmission band and the stop band in the range of frequencies f 0 to f 0 + f s may be used.
  • the difference in light transmittance between the transmission band and the blocking band is typically 20 dB or more.
  • optical filter 340 As shown in the spectrum of FIG. 3 (d), the results in the presence of positive only signal components viewed from f c on the frequency axis, this by f c An optical SSB signal 384 serving as an optical carrier wave is generated.
  • the optical filter 340 an optical carrier of f 0 + f s may be sufficient even be suppressed.
  • the penalty due to signal-signal beat interference (SSBI) increases as the optical carrier strength decreases with respect to the strength of other signal components.
  • the ratio with the intensity is +10 dB or more, but the specific setting of the intensity ratio depends on the required specifications of the system and the processing method on the receiving side. This is the same as the conventional optical SSB transmission.
  • the intensity of the optical carrier must be increased by an amount corresponding to the intensity of the image signal 385 compared to the conventional example.
  • the optical signal component 384 (see FIG. 3D) output in the first embodiment is obtained by shifting the negative frequency component of the baseband modulated signal 381 (see FIG. 3B) by + f 0. Equivalent to. Therefore, if the signal input to the DSP 311 is a signal whose positive frequency component of the spectrum is represented by S (f), simply converting this to DA and adding an RF carrier as it is will result in an output optical SSB signal. A signal equivalent to the conventional method cannot be obtained.
  • the driving electric signal generated by the electric signal generating means (310) is an RF carrier having a frequency f s and a complex conjugate signal S * ( ⁇ f) of the modulated electric signal S (f) only at the frequency f s of the RF carrier.
  • the shifted baseband modulated signal S * ( ⁇ f + f s ) is included.
  • the bandwidth B of the drive electrical signal is equal to or less than the frequency f s of the RF carrier.
  • the process of inverting the spectrum as described above to obtain the complex conjugate may be performed not on the transmission side but on the reception side. That is, if a signal whose spectrum positive frequency component is represented by S (f) is used as it is as the baseband modulation signal 381, the spectrum positive frequency component is represented by S * ( ⁇ f + f 0 ) as the optical signal component 384. As a result, the signal having the positive frequency component of the spectrum represented by S * ( ⁇ f + f s ) is obtained as an electrical signal on the receiving side.
  • reception-side processing can be realized, for example, by using a receiver including an analog-digital converter (ADC) and a DSP.
  • ADC analog-digital converter
  • the driving electric signal obtained by adding the RF carrier 382 to the baseband modulation signal 381 as described above is generated as a digital signal by the DSP 311 in FIG. 3A and converted into an electric waveform of an analog signal by the DAC 312 to be converted into an MZM 330. Used for driving.
  • the drive system is achieved by using the single-system drive push-pull MZM330.
  • the optical filter 340 is used, unlike the conventional VSB method, since the optical carrier wave is set at the band edge in the MZM 330, the residual component due to the “round” of the optical filter 340 does not cause fading. That is, according to the first embodiment of the present invention, the above-described problems of the conventional technology can be solved.
  • the time optical filter 340 the optical signal component of the range of the optical carrier and f 0 of f 0 + f s of the f 0 + f s is transmitted, and the optical carrier of f 0 -f s is used as such as to suppress That's fine.
  • the baseband modulation signal 381 does not need to be changed.
  • FIG. 4 is a diagram schematically showing the configuration (a) of the optical SSB transmitter according to the second embodiment of the present invention and the spectrums (b) to (e) of the signals of the respective parts.
  • the configuration of the optical SSB transmitter 400 in FIG. 4A is the same as that of the first embodiment shown in FIG. 3A except for the drive signal generator 410, and therefore only the drive signal generator 410 will be described. To do.
  • the drive signal generation unit 410 in FIG. 4A is an electric signal generation unit that generates a drive electric signal for driving the MZM 430, and includes a DSP 411, a DAC 412, an RF carrier wave generation unit 413, and an adder. 414.
  • the DSP 411 and the DAC 412 are used only for generating the baseband modulation signal 481 in FIG. 4B, and the RF carrier 482 in FIG. 4E is generated separately by the RF carrier generation unit 413.
  • the adder 414 adds the baseband modulation signal 481 (b).
  • the intensity of the optical carrier needs to be sufficiently larger than the other signal intensities, the intensity of the RF carrier 482 needs to be sufficiently greater than the intensity of the baseband modulation signal 481.
  • the DSP 411 and the DAC 412 are used only for the generation of the baseband modulation signal 481, and the RF carrier 482 is separately generated as an analog signal by the RF carrier generation unit 413, and is added by the adder 414 as an analog signal in the analog domain.
  • a clock signal source synchronized with the DAC 412 can be used.
  • an amplifier, a phase shifter, and the like may be disposed in front of the adder 414.
  • the DSP 411 (311) and the DAC 412 (312) positively correct the positive frequency component S (f ⁇ f c ) of the spectrum of the signal to be transmitted as the optical signal component 484 (384).
  • the method of generating a signal whose frequency component is represented by S * ( ⁇ f + f s ) and using it as the baseband modulation signal 481 (381) has been described.
  • the processing corresponding to this is performed on the receiving side, such as ADC and DSP. You may implement
  • the positive frequency component is X * ( ⁇ in the conventional SSB transmitter. Since a signal corresponding to a signal represented by f + f s ) is transmitted, the negative frequency component of the baseband received signal after intensity detection is shifted by + f s on the receiving side. After performing the processing to make the positive frequency component, necessary processing such as channel equalization may be performed.
  • a modulation method that can be realized without performing a spectrum operation on the receiving side and using a DAC such as NRZ as a baseband modulation method.
  • the DSP 411 and the DAC 412 can be replaced with an analog modulation signal generating unit that operates in an analog manner and generates a baseband modulation signal as an analog signal.
  • an optical SSB transmitter capable of sufficiently suppressing fading due to chromatic dispersion while having a simple configuration in which an MZM is driven by one electric signal.
  • Optical filter 10 10, 20, 300, 400 Optical SSB transmitter 11, 21, 320, 420 Laser light source 12 IQ modulator 22 Optical intensity modulator 23, 340, 440 Optical filter 310, 410 Drive signal generator 330, 430 MZM (Mach-Zehnder modulation) vessel) 311 and 411 DSP (digital signal processing circuit) 312 and 412 DAC (digital-analog converter) 381, 481 Baseband modulation signal 382, 482 RF carrier wave 384, 484 Optical signal component 385, 485 Image component 413 RF carrier wave generator 414 Adder

Abstract

The present invention provides an optical SSB transmitter which sufficiently suppresses fading caused by wavelength dispersion by a simple configuration. This optical transmitter is provided with: an electric signal generation means which generates a driving electric signal comprising an RF carrier wave with a frequency fs and a baseband modulation signal component with a frequency fs or less; a laser light source which oscillates at a frequency f0; a Mach-Zehnder modulator which is biased at a Null point and push-pull driven by the driving electric signal, and modulates light outputted from the laser light source; and an optical filter which is connected to a stage subsequent to the Mach-Zehnder modulator, has a transmission bandwidth of fs or more, and has a transition region between a transmission band and a stop band, the transition region being present within a frequency range of frequencies from f0-fs to f0 or frequencies from f0 to f0+fs.

Description

光送信器Optical transmitter
  本発明は、光ファイバ通信に用いる光送信器に関する。より詳細には、光SSB変調を行う光SSB送信器に関する。 The present invention relates to an optical transmitter used for optical fiber communication. More specifically, the present invention relates to an optical SSB transmitter that performs optical SSB modulation.
 近年、データセンタ間通信等での需要の高まりから、伝送距離が数10km~数100kmで、大容量かつ低コストな光伝送を実現する技術に関心が集まっている。特に、光送受信器の構成がシンプルな、強度変調・直接検波(IMDD)方式で上記を実現する技術が、近年盛んに検討されている。 In recent years, due to the increasing demand for communication between data centers, etc., there is an interest in technology for realizing large-capacity and low-cost optical transmission with a transmission distance of several tens to several hundreds km. In particular, in recent years, a technique for realizing the above by an intensity modulation / direct detection (IMDD) system having a simple configuration of an optical transceiver has been actively studied.
 この伝送距離の領域では、光ファイバの最低損失帯域であるCバンド(波長1.5μm帯)を使うことが望ましいが、Cバンドでは光ファイバの波長分散による影響が問題となる。特に通常のIMDDでは、波長分散により強度検波後のベースバンド信号において信号スペクトルの特定の周波数成分の強度が大幅に減衰してしまう、いわゆるフェージングが大きな問題となる。 In this transmission distance region, it is desirable to use the C band (wavelength 1.5 μm band) which is the lowest loss band of the optical fiber, but the influence of the wavelength dispersion of the optical fiber becomes a problem in the C band. In particular, in normal IMDD, so-called fading, in which the intensity of a specific frequency component of a signal spectrum is significantly attenuated in a baseband signal after intensity detection due to wavelength dispersion, is a serious problem.
 これは、通常の光強度変調信号が両側波帯(Double Sideband,DSB)変調信号であるために生じる現象である。このため、フェージング対策の一つとして、光信号スペクトルの側波帯の一方を除去する片側波帯(Single Sideband,SSB)変調を行うことが知られている。 This is a phenomenon that occurs because a normal light intensity modulation signal is a double sideband (DSB) modulation signal. For this reason, it is known to perform one sideband (Single Sideband, SSB) modulation that removes one of the sidebands of the optical signal spectrum as one countermeasure against fading.
 光SSB信号を生成するには、非特許文献1のように光IQ変調器(SSB変調器と呼ばれる場合もある)を用い、I成分とQ成分の干渉により一方の側波帯を除去する方法が知られている。同様の原理による光SSB変調は、非特許文献2のようにマッハツェンダ変調器(MZM)の各アームを、互いに位相をずらした駆動信号で駆動することでも可能である。 In order to generate an optical SSB signal, a method of using an optical IQ modulator (sometimes referred to as an SSB modulator) as in Non-Patent Document 1 and removing one sideband by interference between an I component and a Q component It has been known. Optical SSB modulation based on the same principle can be performed by driving the arms of a Mach-Zehnder modulator (MZM) with drive signals whose phases are shifted from each other as in Non-Patent Document 2.
 また、非特許文献3或いは非特許文献4のように、光IQ変調器を用い、変調と同時に光源周波数成分を抑圧し、代わりに変調信号スペクトルのバンドエッジの一方に光搬送波を立てて伝送する(すなわち、実効的に光搬送波周波数をシフトする)ことで光SSB信号を生成する方法も知られている。 Further, as in Non-Patent Document 3 or Non-Patent Document 4, an optical IQ modulator is used to suppress the light source frequency component simultaneously with the modulation, and instead, an optical carrier is set up at one of the band edges of the modulated signal spectrum and transmitted. A method for generating an optical SSB signal by effectively shifting the optical carrier frequency is also known.
 さらには、非特許文献5のように、通常の光DSB信号を生成した後に光フィルタで片方のサイドバンドを減衰させる方式はVSB(Vestigial Sideband)方式と呼ばれるが、これもSSBの一種であり、フェージングによる信号劣化を軽減することができる。 Furthermore, as in Non-Patent Document 5, a method of attenuating one sideband with an optical filter after generating a normal optical DSB signal is called a VSB (Vestinal Sideband) method, which is also a kind of SSB, Signal degradation due to fading can be reduced.
 しかしながら、従来の光SSB送信器における光SSBまたはVSB信号の生成法には次のような課題があった。 However, the method for generating an optical SSB or VSB signal in a conventional optical SSB transmitter has the following problems.
 まず、図1に従来例1の光SSB送信器として、IQ変調器を用いた光SSB送信器の構成(a)と、各部の信号のスペクトル(b)、(c)を示す。図1(a)の従来の光SSB送信器10は、IQ変調器12において、レーザ光源11からの例えばf0=193THzのレーザ光搬送波を、左側からの変調電気信号(b)を90°位相をずらした2系統の電気信号で光変調して、右端にスペクトルを示すような光SSB信号(c)を生成する。 First, FIG. 1 shows a configuration (a) of an optical SSB transmitter using an IQ modulator as an optical SSB transmitter of Conventional Example 1, and spectrums (b) and (c) of signals of each part. The conventional optical SSB transmitter 10 shown in FIG. 1A uses an IQ modulator 12 to convert a laser light carrier of, for example, f 0 = 193 THz from a laser light source 11 and a modulated electrical signal (b) from the left side by 90 °. The optical SSB signal (c) whose spectrum is shown at the right end is generated by optical modulation with the two systems of electrical signals shifted from each other.
 図1(a)の従来の光SSB送信器10では、IQ変調器12を駆動するために互いに位相を90度ずらした2系統の変調電気信号を生成する必要があるため、90度位相器やドライバアンプが2つ必要になるなど、駆動系の構成が複雑になってしまうという課題があった。この課題は、2系統駆動のマッハツェンダ変調器(MZM)を用いた従来の光SSB送信器でも同様である。 In the conventional optical SSB transmitter 10 in FIG. 1A, it is necessary to generate two systems of modulated electrical signals whose phases are shifted by 90 degrees in order to drive the IQ modulator 12, There is a problem that the configuration of the drive system becomes complicated, such as the need for two driver amplifiers. This problem also applies to a conventional optical SSB transmitter using a Mach-Zehnder modulator (MZM) driven by two systems.
 また、図2に従来例2の光SSB送信器として、光フィルタを用いた光VSB送信器(a)と、各部の信号のスペクトル(b)~(d)を示す。図2(a)の光VSB送信器20では、光強度変調器22において、レーザ光源21からの例えばf0=193THz程度のレーザ光搬送波を、左側からのスペクトルS(f)を持つ変調電気信号(b)で光強度変調して、中央にスペクトルを示すDSB光信号(c)を生成する。 FIG. 2 shows an optical VSB transmitter (a) using an optical filter as an optical SSB transmitter of Conventional Example 2, and spectrums (b) to (d) of signals of each part. In the optical VSB transmitter 20 of FIG. 2 (a), a modulated electric signal having a spectrum S (f) from the left side is applied to a laser light carrier of, for example, about f 0 = 193 THz from the laser light source 21 in the light intensity modulator 22. The optical intensity is modulated in (b) to generate a DSB optical signal (c) having a spectrum in the center.
 この図2(c)のDSB光信号は、中央の周波数f0の光搬送波を挟んで左右対称なスペクトル形状の側波帯を有する光スペクトルを持っており、下側波帯(LSB)の光信号S*(-f+f0)と上側波帯(USB)の光信号S(f-f0)は複素共役対の関係にあり、一方は他方の複素共役信号であるということができる。このDSB光信号を、図2(d)に点線で示す透過スペクトルを有する光フィルタ23に通すと、下側波帯が部分的に抑圧されてVSB光信号(d)が生成される。 DSB optical signal shown in FIG. 2 (c), has a light spectrum with sidebands symmetrical spectral shape across the optical carrier of the central frequency f 0, the light of the lower sideband (LSB) It can be said that the signal S * (− f + f 0 ) and the optical signal S (f−f 0 ) in the upper sideband (USB) are in a complex conjugate pair relationship, and one is the other complex conjugate signal. When this DSB optical signal is passed through an optical filter 23 having a transmission spectrum indicated by a dotted line in FIG. 2D, the lower sideband is partially suppressed to generate a VSB optical signal (d).
 この図2に示す従来の光VSB送信器20では、光変調器の駆動系は1系統で済むためシンプルであるものの、一般に光フィルタの透過特性が信号帯域幅に対して十分鋭くないために、側波帯の抑圧が不完全になり、LSBの一部が残留するためフェージング抑圧が不完全となり、フェージングを抑えきれないという課題があった。 The conventional optical VSB transmitter 20 shown in FIG. 2 is simple because only one optical modulator drive system is required, but generally the transmission characteristics of the optical filter are not sufficiently sharp with respect to the signal bandwidth. The sideband suppression becomes incomplete, and part of the LSB remains, fading suppression becomes incomplete, and there is a problem that fading cannot be suppressed.
 本発明は、このような問題に鑑みてなされたものであって、その目的とするところは、シンプルな構成でありながら、波長分散によるフェージングを十分に抑圧する光SSB送信器を提供することである。 The present invention has been made in view of such problems, and an object of the present invention is to provide an optical SSB transmitter that sufficiently suppresses fading due to chromatic dispersion while having a simple configuration. is there.
 本発明は、このような目的を達成するために、以下のような構成を備えることを特徴とする。 In order to achieve such an object, the present invention is characterized by having the following configuration.
(発明の構成1)
 周波数fsのRF搬送波及び周波数fs以下のベースバンド変調信号の成分を含む駆動電気信号を生成する電気信号生成手段と、
 周波数f0で発振するレーザ光源と、
 Null点にバイアスされ、前記駆動電気信号によりプッシュプル駆動され、前記レーザ光源から出力される光を変調するマッハツェンダ変調器と、
 前記マッハツェンダ変調器の後段に接続され、透過帯域幅がfs以上で、かつ透過帯と阻止帯の遷移領域が周波数f0-fsからf0または周波数f0からf0+fsのいずれかの周波数範囲内に存在する光フィルタと
を備えることを特徴とする光送信器。
(Structure 1 of the invention)
And an electric signal generating means for generating a driving electrical signal containing a component of the RF carrier and frequency f s following baseband modulation signal of frequency f s,
A laser light source that oscillates at a frequency f 0 ;
A Mach-Zehnder modulator that is biased to a null point, is push-pull driven by the drive electrical signal, and modulates light output from the laser light source;
Which is connected downstream of the Mach-Zehnder modulator, a transmission bandwidth f s or more, and either a transition region of the transmission band and blocking band from the frequency f 0 -f s from f 0 or frequency f 0 of f 0 + f s And an optical filter existing in the frequency range of the optical transmitter.
(発明の構成2)
 前記電気信号生成手段は、
 前記RF搬送波及び前記ベースバンド変調信号をデジタル信号として合成して生成するDSPと、
 前記DSPにより生成されたデジタル信号をアナログ信号に変換するDACとを含む
ことを特徴とする発明の構成1に記載の光送信器。
(Configuration 2)
The electrical signal generating means includes
A DSP that synthesizes and generates the RF carrier and the baseband modulated signal as a digital signal;
The optical transmitter according to Configuration 1, further comprising: a DAC that converts a digital signal generated by the DSP into an analog signal.
(発明の構成3)
 前記電気信号生成手段は、
 前記RF搬送波をアナログ信号として生成するRF搬送波生成手段と、
 前記ベースバンド変調信号をデジタル信号として生成するDSPと、
 前記DSPの生成したベースバンド変調信号をアナログ信号に変換するDACと、
 前記RF搬送波生成手段の出力と前記DACの出力をアナログ信号として加算する加算器を含む
ことを特徴とする発明の構成1に記載の光送信器。
(Structure 3 of the invention)
The electrical signal generating means includes
RF carrier wave generating means for generating the RF carrier wave as an analog signal;
A DSP for generating the baseband modulation signal as a digital signal;
A DAC that converts the baseband modulation signal generated by the DSP into an analog signal;
The optical transmitter according to Configuration 1, further comprising an adder that adds the output of the RF carrier generation means and the output of the DAC as an analog signal.
(発明の構成4)
 前記電気信号生成手段は、
 前記周波数fsのRF搬送波をアナログ信号として生成するRF搬送波生成手段と、
 前記ベースバンド変調信号をアナログ信号として生成するアナログ変調信号生成手段とを含む
ことを特徴とする発明の構成1に記載の光送信器。
(Configuration 4)
The electrical signal generating means includes
RF carrier wave generating means for generating an RF carrier wave of the frequency fs as an analog signal;
The optical transmitter according to Configuration 1, further comprising analog modulation signal generation means for generating the baseband modulation signal as an analog signal.
 以上説明したように、本発明によれば、MZMを1系統の電気信号で駆動するシンプルな構成でありながら、波長分散によるフェージングを十分に抑圧することが可能な光SSB送信器を実現することができる。 As described above, according to the present invention, it is possible to realize an optical SSB transmitter capable of sufficiently suppressing fading due to chromatic dispersion while having a simple configuration in which an MZM is driven by a single electric signal. Can do.
従来の光SSB送信器の構成を示す図(a)と、各部の信号のスペクトルを示す図(b)、(c)である。It is the figure (a) which shows the structure of the conventional optical SSB transmitter, and the figure which shows the spectrum of the signal of each part (b), (c). 従来の光VSB送信器の構成を示す図(a)と、各部の信号のスペクトルを示す図(b)~(d)である。FIG. 2A is a diagram showing a configuration of a conventional optical VSB transmitter, and FIGS. 2B to 2D are diagrams showing signal spectra of respective units. 本発明の第1の実施形態に係る光SSB送信器の構成示す図(a)と、各部の信号のスペクトルを示す図(b)~(d)である。FIG. 2A is a diagram illustrating a configuration of an optical SSB transmitter according to a first embodiment of the present invention, and FIGS. 2B to 2D are diagrams illustrating signal spectra of respective units. 本発明の第2の実施形態に係る光SSB送信器の構成示す図(a)と、各部の信号のスペクトルを示す図(b)~(e)である。FIG. 4A is a diagram showing a configuration of an optical SSB transmitter according to a second embodiment of the present invention, and FIG. 5B is a diagram showing a spectrum of a signal at each section.
 以下、図面を参照しながら本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 [第1の実施形態]
 図3は、本発明の第1の実施形態に係る光SSB送信器の構成(a)と各部の信号のスペクトル(b)~(d)を模式的に示した図である。図3(a)の光SSB送信器300は、駆動信号生成部310、レーザ光源320、MZM(マッハツェンダ変調器)330、および光フィルタ340から構成される。
[First embodiment]
FIG. 3 is a diagram schematically showing the configuration (a) of the optical SSB transmitter according to the first embodiment of the present invention and the spectrums (b) to (d) of the signals of each part. The optical SSB transmitter 300 in FIG. 3A includes a drive signal generation unit 310, a laser light source 320, an MZM (Mach-Zehnder modulator) 330, and an optical filter 340.
 駆動信号生成部310は、MZM330を駆動する駆動電気信号を生成する電気信号生成手段であって、DSP(デジタル信号処理回路)311、DAC(デジタル-アナログ変換器)312を含む。必要に応じてDAC312の後段に増幅器を用いてもよい。図3(b)のスペクトルに示すように、DAC312から出力される駆動信号は、帯域幅Bのベースバンド変調信号381と、周波数fs≧BのRF搬送波382とを含む。 The drive signal generation unit 310 is an electric signal generation unit that generates a drive electric signal for driving the MZM 330, and includes a DSP (digital signal processing circuit) 311 and a DAC (digital-analog converter) 312. An amplifier may be used after the DAC 312 as necessary. As shown in the spectrum of FIG. 3B, the drive signal output from the DAC 312 includes a baseband modulation signal 381 having a bandwidth B and an RF carrier 382 having a frequency f s ≧ B.
 MZM330はプッシュプル型(ゼロチャープ型)とし、DCバイアスをNull点(光源周波数成分の強度が最小となる点)に合わせる。これにより、MZM330から出力されるDSB光信号においては、図3(c)に示すように光源周波数f0の成分が抑圧され、代わりにサイドバンドのエッジf0±fsにそれぞれRF搬送波382に由来する光搬送波がシフトして立つ。 The MZM 330 is a push-pull type (zero chirp type), and the DC bias is adjusted to a null point (a point at which the intensity of the light source frequency component is minimum). As a result, in the DSB optical signal output from the MZM 330, the component of the light source frequency f 0 is suppressed as shown in FIG. 3C, and instead, the RF carrier 382 is added to the side band edge f 0 ± f s. The derived optical carrier is shifted and stands.
 光フィルタ340は、その透過スペクトルが図3(d)の点線に示されており、上記シフトされた光搬送波のうち一方を抑圧するように透過スペクトルが調整されている。以下、本例ではUSB側のf0+fsの光搬送波を抑圧するものとして説明を進める。このとき、光フィルタ340の透過スペクトルは、LSB側のf0-fsの光搬送波およびf0-fsからf0の範囲の光信号成分384は透過し、かつUSB側のf0+fsの光搬送波は抑圧するようなものであればよい。すなわち光フィルタ340としては、透過帯域幅がfs以上で、かつ透過帯と阻止帯の間の遷移領域が周波数f0からf0+fsの範囲内に存在するようなものを用いればよい。ここで透過帯と阻止帯との光透過率の差は典型的には20dB以上である。以下、光搬送波の周波数をfc=f0-fsとする。 The transmission spectrum of the optical filter 340 is indicated by a dotted line in FIG. 3D, and the transmission spectrum is adjusted so as to suppress one of the shifted optical carriers. Hereinafter, in this example the descriptions which suppresses the optical carrier of the USB side of f 0 + f s. At this time, the transmission spectrum of the optical filter 340 transmits the optical carrier of f 0 -f s on the LSB side and the optical signal component 384 in the range of f 0 -f s to f 0 , and f 0 + f s on the USB side. As long as the optical carrier is suppressed, it is sufficient. That is, as the optical filter 340, an optical filter having a transmission bandwidth of f s or more and a transition region between the transmission band and the stop band in the range of frequencies f 0 to f 0 + f s may be used. Here, the difference in light transmittance between the transmission band and the blocking band is typically 20 dB or more. Hereinafter, the frequency of the optical carrier wave is assumed to be f c = f 0 −f s .
 このような光フィルタ340の出力光は、図3(d)のスペクトルに示すように、周波数軸上でfcから見てプラス側のみに信号成分が存在することになり、これによりfcを光搬送波とする光SSB信号384が生成されたことになる。ここで、光フィルタ340は、f0+fsの光搬送波を十分に抑圧できさえすればよい。 The output light of such an optical filter 340, as shown in the spectrum of FIG. 3 (d), the results in the presence of positive only signal components viewed from f c on the frequency axis, this by f c An optical SSB signal 384 serving as an optical carrier wave is generated. Here, the optical filter 340, an optical carrier of f 0 + f s may be sufficient even be suppressed.
 光フィルタ340出力の光信号のうち、データ伝送に用いるのは周波数f0-fsからf0の範囲の光SSB信号成分384であり、周波数f0以上のイメージ成分385は本質的に不要である。このイメージ成分385は、fc=f0-Bの光搬送波から見て周波数軸上で光信号成分384と同じ側に存在するため、フェージングを引き起こすことは無く、受信側で強度検波後にアナログ或いはデジタル領域でローパスフィルタ等を用いて容易に除去することができる。さらには、このイメージ成分385は、非特許文献6に示されるようなダイバーシティ合成を用いて信号品質の改善に利用することも原理的に可能である。 Of the optical signal output from the optical filter 340, the optical SSB signal component 384 in the range of the frequency f 0 -f s to f 0 is used for data transmission, and the image component 385 having the frequency f 0 or higher is essentially unnecessary. is there. Since this image component 385 exists on the same side as the optical signal component 384 on the frequency axis when viewed from the optical carrier wave with f c = f 0 -B, it does not cause fading, and is analog or It can be easily removed using a low-pass filter or the like in the digital domain. Furthermore, the image component 385 can be used in principle for improving signal quality by using diversity combining as shown in Non-Patent Document 6.
 一般的な光SSB伝送と同様、fc=f0-Bの光搬送波の強度は他の信号成分の強度、すなわち光信号成分384及びイメージ成分385の強度の合計に対して十分大きくなるように調整する。一般に光SSB伝送では、光搬送波強度が他の信号成分の強度に対し小さくなるほど、Signal-signal beat interference(SSBI)によるペナルティが大きくなるため、典型的には光搬送波の強度と他の信号成分の強度との比は+10dB以上とするが、具体的な強度比の設定はシステムの要求仕様や受信側の処理方式に依存する。この点は従来の光SSB伝送と同様である。ただし本例の場合はイメージ信号385の強度の分だけ従来例に比べ光搬送波強度を大きくしなければならない点に注意が必要である。 As in general optical SSB transmission, the intensity of the optical carrier wave with f c = f 0 -B is sufficiently larger than the intensity of other signal components, that is, the sum of the intensity of the optical signal component 384 and the image component 385. adjust. In general, in optical SSB transmission, the penalty due to signal-signal beat interference (SSBI) increases as the optical carrier strength decreases with respect to the strength of other signal components. The ratio with the intensity is +10 dB or more, but the specific setting of the intensity ratio depends on the required specifications of the system and the processing method on the receiving side. This is the same as the conventional optical SSB transmission. However, it should be noted that in this example, the intensity of the optical carrier must be increased by an amount corresponding to the intensity of the image signal 385 compared to the conventional example.
(ベースバンド変調信号と光信号成分の関係)
 本実施形態1における、ベースバンド変調信号381と出力される光信号成分384との関係につき説明する。以下の説明では簡単のためMZM応答の周波数依存性や非線形性を無視し、スケーリングファクタは省略する。
(Relationship between baseband modulation signal and optical signal component)
The relationship between the baseband modulation signal 381 and the output optical signal component 384 in the first embodiment will be described. In the following description, for simplicity, the frequency dependence and nonlinearity of the MZM response are ignored, and the scaling factor is omitted.
 従来の光SSB伝送では通常、光送信器への入力信号のスペクトルの正周波数成分をS(f)で表す(図1(b)参照)と、出力される光SSB信号は単純にこれを+fcだけアップコンバートしたもの、すなわちスペクトルの正周波数成分がS(f-fc)+[周波数fcの光搬送波]で表されるような信号(図1(c)参照)となる。 In conventional optical SSB transmission, when the positive frequency component of the spectrum of the input signal to the optical transmitter is represented by S (f) (see FIG. 1B), the output optical SSB signal is simply expressed as + f. c only those upconverted, i.e. positive frequency component of the spectrum is S (f-f c) + signal as expressed in the optical carrier frequency f c] (see Fig. 1 (c)).
 一方で本実施形態1における出力される光信号成分384(図3(d)参照)は、ベースバンド変調信号381(図3(b)参照)の負周波数成分を+f0だけ周波数シフトしたものに相当する。したがって、DSP311に入力される信号がスペクトルの正周波数成分がS(f)で表されるような信号である場合、これをそのままDA変換してRF搬送波を加えただけでは、出力光SSB信号として従来法と同等の信号は得られない。 On the other hand, the optical signal component 384 (see FIG. 3D) output in the first embodiment is obtained by shifting the negative frequency component of the baseband modulated signal 381 (see FIG. 3B) by + f 0. Equivalent to. Therefore, if the signal input to the DSP 311 is a signal whose positive frequency component of the spectrum is represented by S (f), simply converting this to DA and adding an RF carrier as it is will result in an output optical SSB signal. A signal equivalent to the conventional method cannot be obtained.
 図3(d)の光信号成分384として、スペクトルの正周波数成分がS(f-fc)で表されるような光信号を得たい場合には、ベースバンド変調信号381としてはスペクトルの正周波数成分がS*(-f+fs)、すなわちS(f)を周波数軸上でfs/2を中心に反転させ複素共役を取った波形で表されるような信号を用いればよい。なぜなら、このときベースバンド変調信号381のスペクトルの負周波数成分はS(f+fs)となり、これを+f0だけ周波数シフトすればS(f+fs-f0)=S(f-fc)となる。すなわち、電気信号生成手段(310)が生成する駆動電気信号は、周波数fsのRF搬送波と、変調電気信号S(f)の複素共役信号S*(-f)をRF搬送波の周波数fsだけシフトしたベースバンド変調信号S*(-f+fs)を含む。ここで、駆動電気信号の帯域幅Bは、RF搬送波の周波数fs以下である。 When it is desired to obtain an optical signal whose positive frequency component is represented by S (f−f c ) as the optical signal component 384 in FIG. A signal whose frequency component is S * (− f + f s ), that is, a signal represented by a waveform obtained by inverting S (f) around f s / 2 on the frequency axis and taking a complex conjugate may be used. This is because the negative frequency component of the spectrum of the baseband modulation signal 381 at this time is S (f + f s ), and if this is frequency shifted by + f 0, S (f + f s −f 0 ) = S (f−f c ). . That is, the driving electric signal generated by the electric signal generating means (310) is an RF carrier having a frequency f s and a complex conjugate signal S * (−f) of the modulated electric signal S (f) only at the frequency f s of the RF carrier. The shifted baseband modulated signal S * (− f + f s ) is included. Here, the bandwidth B of the drive electrical signal is equal to or less than the frequency f s of the RF carrier.
 なお、上記のようなスペクトルを反転させて複素共役をとる処理は、送信側でなく受信側で行ってもよい。すなわち、ベースバンド変調信号381としてスペクトルの正周波数成分がS(f)で表されるような信号をそのまま用いれば、光信号成分384としてスペクトルの正周波数成分がS*(-f+f0)で表されるような信号が送信され、受信側で電気信号としてスペクトルの正周波数成分がS*(-f+fs)で表されるような信号が得られる。このとき受信側でこの電気信号を周波数軸上でfs/2を中心に反転させ複素共役を取る処理を行えば、元のベースバンド変調信号と同じくスペクトルの正周波数成分がS(f)で表されるような信号を得ることができる。このような受信側処理は、たとえばアナログ―デジタル変換器(ADC)およびDSPを備えた受信器を用いれば実現可能である。 Note that the process of inverting the spectrum as described above to obtain the complex conjugate may be performed not on the transmission side but on the reception side. That is, if a signal whose spectrum positive frequency component is represented by S (f) is used as it is as the baseband modulation signal 381, the spectrum positive frequency component is represented by S * (− f + f 0 ) as the optical signal component 384. As a result, the signal having the positive frequency component of the spectrum represented by S * (− f + f s ) is obtained as an electrical signal on the receiving side. At this time, if the electric signal is inverted on the frequency axis around f s / 2 and the complex conjugate is taken, the positive frequency component of the spectrum is S (f) as in the original baseband modulation signal. A signal as represented can be obtained. Such reception-side processing can be realized, for example, by using a receiver including an analog-digital converter (ADC) and a DSP.
 上記のようなベースバンド変調信号381にRF搬送波382を加えた駆動電気信号は、図3(a)のDSP311でデジタル信号として合成して生成され、DAC312によってアナログ信号の電気波形に変換されてMZM330の駆動に用いられる。 The driving electric signal obtained by adding the RF carrier 382 to the baseband modulation signal 381 as described above is generated as a digital signal by the DSP 311 in FIG. 3A and converted into an electric waveform of an analog signal by the DAC 312 to be converted into an MZM 330. Used for driving.
 以上説明した通り、本実施形態1の光送信器では、IQ変調器や2系統駆動MZMを用いた従来の光SSB信号生成と異なり、1系統駆動のプッシュプル型MZM330を用いることで、駆動系をシンプルにしている。また、光フィルタ340を用いているものの、従来のVSB方式とは異なりMZM330で光搬送波をバンドエッジに立てているため、光フィルタ340の「なまり」による残留成分がフェージングを引き起こすことはない。すなわち、実施形態1の本発明により、前掲の従来技術の課題を解決することができる。 As described above, in the optical transmitter according to the first embodiment, unlike the conventional optical SSB signal generation using the IQ modulator and the dual-system drive MZM, the drive system is achieved by using the single-system drive push-pull MZM330. To keep it simple. In addition, although the optical filter 340 is used, unlike the conventional VSB method, since the optical carrier wave is set at the band edge in the MZM 330, the residual component due to the “round” of the optical filter 340 does not cause fading. That is, according to the first embodiment of the present invention, the above-described problems of the conventional technology can be solved.
 なお、上記説明ではMZM330の出力に含まれる2本の光搬送波のうちf0+fsの光搬送波を抑圧しfc=f0-fsを光搬送波として用いるものとして説明を進めたが、逆にf0-fsの光搬送波を抑圧しfc=f0+fsを光搬送波として用いることも当然可能である。このとき光フィルタ340としては、f0+fsの光搬送波およびf0からf0+fsの範囲の光信号成分は透過し、かつf0-fsの光搬送波は抑圧するようなものを用いればよい。ベースバンド変調信号381は変更する必要は無い。 In the above description, the description has been made on the assumption that the optical carrier of f 0 + f s is suppressed among the two optical carriers included in the output of the MZM 330 and f c = f 0 −f s is used as the optical carrier. It is also possible to suppress the optical carrier of f 0 −f s and use f c = f 0 + f s as the optical carrier. As the time optical filter 340, the optical signal component of the range of the optical carrier and f 0 of f 0 + f s of the f 0 + f s is transmitted, and the optical carrier of f 0 -f s is used as such as to suppress That's fine. The baseband modulation signal 381 does not need to be changed.
[第2の実施形態]
 図4は、本発明の第2の実施形態に係る光SSB送信器の構成(a)と各部の信号のスペクトル(b)~(e)を模式的に示した図である。図4(a)の光SSB送信器400の構成は、駆動信号生成部410を除き、図3(a)に示した第1の実施形態と同様であるので、駆動信号生成部410のみを説明する。
[Second Embodiment]
FIG. 4 is a diagram schematically showing the configuration (a) of the optical SSB transmitter according to the second embodiment of the present invention and the spectrums (b) to (e) of the signals of the respective parts. The configuration of the optical SSB transmitter 400 in FIG. 4A is the same as that of the first embodiment shown in FIG. 3A except for the drive signal generator 410, and therefore only the drive signal generator 410 will be described. To do.
 本実施形態2では、図4(a)の駆動信号生成部410は、MZM430を駆動する駆動電気信号を生成する電気信号生成手段であって、DSP411、DAC412、RF搬送波生成部413、および加算器414から構成される。本実施形態2では、DSP411およびDAC412は、図4(b)のベースバンド変調信号481の生成のみに用い、図4(e)のRF搬送波482は、RF搬送波生成部413で別途生成された後、加算器414でベースバンド変調信号481(b)と加算される構成をとる。 In the second embodiment, the drive signal generation unit 410 in FIG. 4A is an electric signal generation unit that generates a drive electric signal for driving the MZM 430, and includes a DSP 411, a DAC 412, an RF carrier wave generation unit 413, and an adder. 414. In the second embodiment, the DSP 411 and the DAC 412 are used only for generating the baseband modulation signal 481 in FIG. 4B, and the RF carrier 482 in FIG. 4E is generated separately by the RF carrier generation unit 413. The adder 414 adds the baseband modulation signal 481 (b).
 前述の通り、光搬送波の強度は他の信号強度より十分大きくとる必要があるため、ベースバンド変調信号481の強度に対してRF搬送波482の強度は十分大きくとる必要がある。 As described above, since the intensity of the optical carrier needs to be sufficiently larger than the other signal intensities, the intensity of the RF carrier 482 needs to be sufficiently greater than the intensity of the baseband modulation signal 481.
 このため、DSP411とDAC412はベースバンド変調信号481の生成のみに用い、RF搬送波482は別途RF搬送波生成部413でアナログ信号として生成して、アナログ領域でアナログ信号として加算器414で加算する構成とすれば、デジタル信号のビット幅やダイナミックレンジの点でDSP411やDAC412にとっての負担(回路規模や消費電力)が軽減され、第1の実施形態に比べベースバンド変調信号481の品質(信号対雑音比等)を向上することができる。 For this reason, the DSP 411 and the DAC 412 are used only for the generation of the baseband modulation signal 481, and the RF carrier 482 is separately generated as an analog signal by the RF carrier generation unit 413, and is added by the adder 414 as an analog signal in the analog domain. This reduces the burden (circuit scale and power consumption) on the DSP 411 and DAC 412 in terms of the bit width and dynamic range of the digital signal, and the quality (signal-to-noise ratio) of the baseband modulation signal 481 compared to the first embodiment. Etc.) can be improved.
 RF搬送波生成部413としては、例えばDAC412と同期したクロック信号源等を用いることができる。また、ベースバンド変調信号481とRF搬送波482の各々の強度や位相を調整するため、加算器414の前段にそれぞれ増幅器や位相器等を配置してもよい。 As the RF carrier wave generation unit 413, for example, a clock signal source synchronized with the DAC 412 can be used. Further, in order to adjust the intensity and phase of each of the baseband modulation signal 481 and the RF carrier wave 482, an amplifier, a phase shifter, and the like may be disposed in front of the adder 414.
 なお本実施形態2および前記実施形態1では、光信号成分484(384)として送信したい信号のスペクトルの正周波数成分S(f-fc)に対し、DSP411(311)とDAC412(312)により正周波数成分がS*(-f+fs)で表されるような信号を生成してベースバンド変調信号481(381)として用いる方法を説明したが、これに相当する処理は受信側でADCとDSP等を用いることで実現してもよい。 In the second embodiment and the first embodiment, the DSP 411 (311) and the DAC 412 (312) positively correct the positive frequency component S (f−f c ) of the spectrum of the signal to be transmitted as the optical signal component 484 (384). The method of generating a signal whose frequency component is represented by S * (− f + f s ) and using it as the baseband modulation signal 481 (381) has been described. The processing corresponding to this is performed on the receiving side, such as ADC and DSP. You may implement | achieve by using.
 すなわち、本実施形態2の構成でベースバンド変調信号481として正周波数成分がX(f)で表されるような任意の信号を用いれば、従来のSSB送信器で正周波数成分がX*(-f+fs)で表されるような信号が送信された場合に相当する信号が送出されることになるので、受信側では強度検波後のベースバンド受信信号の負周波数成分を+fsだけシフトしたものを正周波数成分とするような処理を行った後、チャネル等化等の必要な処理を行えばよい。 That is, if an arbitrary signal whose positive frequency component is represented by X (f) is used as the baseband modulation signal 481 in the configuration of the second embodiment, the positive frequency component is X * (− in the conventional SSB transmitter. Since a signal corresponding to a signal represented by f + f s ) is transmitted, the negative frequency component of the baseband received signal after intensity detection is shifted by + f s on the receiving side. After performing the processing to make the positive frequency component, necessary processing such as channel equalization may be performed.
 さらに本実施形態2のようにRF搬送波生成部413を分離した構成の場合、受信側で上記のスペクトル操作を行い、かつベースバンドの変調方式としてNRZ等のDACを用いずに実現できる変調方式を用いるのであれば、DSP411及びDAC412はアナログ方式で動作しベースバンド変調信号をアナログ信号として生成するアナログ変調信号生成手段で置き換えることも可能である。 Further, in the case of the configuration in which the RF carrier wave generation unit 413 is separated as in the second embodiment, a modulation method that can be realized without performing a spectrum operation on the receiving side and using a DAC such as NRZ as a baseband modulation method. If used, the DSP 411 and the DAC 412 can be replaced with an analog modulation signal generating unit that operates in an analog manner and generates a baseband modulation signal as an analog signal.
 以上説明した本発明によれば、MZMを1系統の電気信号で駆動するシンプルな構成でありながら、波長分散によるフェージングを十分に抑圧することが可能な光SSB送信器を実現することができる。 According to the present invention described above, it is possible to realize an optical SSB transmitter capable of sufficiently suppressing fading due to chromatic dispersion while having a simple configuration in which an MZM is driven by one electric signal.
10、20、300、400 光SSB送信器
11、21、320、420 レーザ光源
12 IQ変調器
22 光強度変調器
23、340、440 光フィルタ
310、410 駆動信号生成部
330、430 MZM(マッハツェンダ変調器)
311、411 DSP(デジタル信号処理回路)
312、412 DAC(デジタル-アナログ変換器)
381、481 ベースバンド変調信号
382、482 RF搬送波
384、484 光信号成分
385、485 イメージ成分
413 RF搬送波生成部
414 加算器
10, 20, 300, 400 Optical SSB transmitter 11, 21, 320, 420 Laser light source 12 IQ modulator 22 Optical intensity modulator 23, 340, 440 Optical filter 310, 410 Drive signal generator 330, 430 MZM (Mach-Zehnder modulation) vessel)
311 and 411 DSP (digital signal processing circuit)
312 and 412 DAC (digital-analog converter)
381, 481 Baseband modulation signal 382, 482 RF carrier wave 384, 484 Optical signal component 385, 485 Image component 413 RF carrier wave generator 414 Adder

Claims (4)

  1.  周波数fsのRF搬送波及び周波数fs以下のベースバンド変調信号の成分を含む駆動電気信号を生成する電気信号生成手段と、
     周波数f0で発振するレーザ光源と、
     Null点にバイアスされ、前記駆動電気信号によりプッシュプル駆動され、前記レーザ光源から出力される光を変調するマッハツェンダ変調器と、
     前記マッハツェンダ変調器の後段に接続され、透過帯域幅がfs以上で、かつ透過帯と阻止帯の遷移領域が周波数f0-fsからf0または周波数f0からf0+fsのいずれかの周波数範囲内に存在する光フィルタと
    を備えることを特徴とする光送信器。
    And an electric signal generating means for generating a driving electrical signal containing a component of the RF carrier and frequency f s following baseband modulation signal of frequency f s,
    A laser light source that oscillates at a frequency f 0 ;
    A Mach-Zehnder modulator that is biased to a null point, is push-pull driven by the drive electrical signal, and modulates light output from the laser light source;
    Which is connected downstream of the Mach-Zehnder modulator, a transmission bandwidth f s or more, and either a transition region of the transmission band and blocking band from the frequency f 0 -f s from f 0 or frequency f 0 of f 0 + f s And an optical filter existing in the frequency range of the optical transmitter.
  2.  前記電気信号生成手段は、
     前記RF搬送波及び前記ベースバンド変調信号をデジタル信号として合成して生成するDSPと、
     前記DSPにより生成されたデジタル信号をアナログ信号に変換するDACとを含む
    ことを特徴とする請求項1に記載の光送信器。
    The electrical signal generating means includes
    A DSP that synthesizes and generates the RF carrier and the baseband modulated signal as a digital signal;
    The optical transmitter according to claim 1, further comprising a DAC that converts a digital signal generated by the DSP into an analog signal.
  3.  前記電気信号生成手段は、
     前記RF搬送波をアナログ信号として生成するRF搬送波生成手段と、
     前記ベースバンド変調信号をデジタル信号として生成するDSPと、
     前記DSPの生成したベースバンド変調信号をアナログ信号に変換するDACと、
     前記RF搬送波生成手段の出力と前記DACの出力をアナログ信号として加算する加算器を含む
    ことを特徴とする請求項1に記載の光送信器。
    The electrical signal generating means includes
    RF carrier wave generating means for generating the RF carrier wave as an analog signal;
    A DSP for generating the baseband modulation signal as a digital signal;
    A DAC that converts the baseband modulation signal generated by the DSP into an analog signal;
    The optical transmitter according to claim 1, further comprising an adder that adds the output of the RF carrier wave generation unit and the output of the DAC as an analog signal.
  4.  前記電気信号生成手段は、
     前記周波数fsのRF搬送波をアナログ信号として生成するRF搬送波生成手段と、
     前記ベースバンド変調信号をアナログ信号として生成するアナログ変調信号生成手段とを含む
    ことを特徴とする請求項1に記載の光送信器。
    The electrical signal generating means includes
    RF carrier wave generating means for generating an RF carrier wave of the frequency f s as an analog signal;
    The optical transmitter according to claim 1, further comprising: an analog modulation signal generation unit configured to generate the baseband modulation signal as an analog signal.
PCT/JP2019/009706 2018-03-29 2019-03-11 Optical transmitter WO2019188192A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018065344A JP2019174747A (en) 2018-03-29 2018-03-29 Optical transmitter
JP2018-065344 2018-03-29

Publications (1)

Publication Number Publication Date
WO2019188192A1 true WO2019188192A1 (en) 2019-10-03

Family

ID=68058855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009706 WO2019188192A1 (en) 2018-03-29 2019-03-11 Optical transmitter

Country Status (2)

Country Link
JP (1) JP2019174747A (en)
WO (1) WO2019188192A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009201099A (en) * 2008-02-21 2009-09-03 Nec Lab America Inc Method and apparatus for 100 gbit/s ofdm optical signal generation
US20100104294A1 (en) * 2008-10-28 2010-04-29 Chen Jye Hong Optical modulation device
JP2015121796A (en) * 2010-12-03 2015-07-02 レイセオン カンパニー Method and apparatus for synthesizing ultra-wide bandwidth waveforms
US20170317760A1 (en) * 2016-04-29 2017-11-02 Zte Corporation Optical mm-wave signal generation using a single iq modulator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009201099A (en) * 2008-02-21 2009-09-03 Nec Lab America Inc Method and apparatus for 100 gbit/s ofdm optical signal generation
US20100104294A1 (en) * 2008-10-28 2010-04-29 Chen Jye Hong Optical modulation device
JP2015121796A (en) * 2010-12-03 2015-07-02 レイセオン カンパニー Method and apparatus for synthesizing ultra-wide bandwidth waveforms
US20170317760A1 (en) * 2016-04-29 2017-11-02 Zte Corporation Optical mm-wave signal generation using a single iq modulator

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MENG, X. J.: "A SSB-Based frequency doubling optical transmitter using cascaded Mach-Zehnder modulators", CONFERENCE ON LASERS AND ELECTRO-OPTICS, 1 June 2003 (2003-06-01), pages 1644 - 1646, XP031952064 *
YAMAZAKI, HIROSHI ET AL.: "Discrete multitone transmission at net data rate of 250Gb/s using digital-preprocessed analog-multiplexed DAC with halved clock frequency and suppressed image", JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. 35, no. 7, 1 April 2017 (2017-04-01), pages 1300 - 1306, XP011645659, doi:10.1109/JLT.2017.2650205 *

Also Published As

Publication number Publication date
JP2019174747A (en) 2019-10-10

Similar Documents

Publication Publication Date Title
US11646793B2 (en) Transparent linear optical transmission of passband and baseband electrical signals
US9374260B2 (en) Method and apparatus for directly detected optical transmission systems based on carrierless amplitude-phase modulation
US5999300A (en) Hybrid single sideband optical modulator
EP3039800B1 (en) Optical transmitters with unbalanced optical sidebands separated by gaps
US6661976B1 (en) Method and system for single-sideband optical signal generation and transmission
US5880870A (en) Optical modulation system
Chen et al. High-capacity direct-detection systems
US20100266282A1 (en) Parallel Digital Coherent Detection Using Symmetrical Optical Interleaver and Direct Optical Down Conversion
US5949926A (en) Minimum phase dispersion compensator
Xing et al. 100 Gb/s PAM4 transmission system for datacenter interconnects using a SiP ME-MZM based DAC-less transmitter and a VSB self-coherent receiver
US7321734B2 (en) Digital synthesis of readily compensated optical signals
Ruan et al. Beyond 100G single sideband PAM-4 transmission with silicon dual-drive MZM
US20140241722A1 (en) PDM-(M) Ask Optical Systems And Methods For Metro Network Applications
Bo et al. Optical Single-Sideband Transmitters
Zhang et al. Digital chromatic dispersion pre-management for SSB modulation direct-detection optical transmission systems
US6765708B2 (en) Optical duobinary single sideband modulator
JP4940564B2 (en) Optical transmitter and phase modulation method
Takano et al. Performance analysis of optical single sideband modulation based on Mach-Zehnder interferometers and its dispersive fiber transmission
Li et al. Bidirectional long-reach PON using Kramers-Kronig-based receiver for Rayleigh Backscattering noise and SSBI interference elimination
WO2019188192A1 (en) Optical transmitter
Yin et al. Broadband lower-IF RF receiver based on microwave photonic mixer and Kramers-Kronig detection
Xin et al. Carrier-recovery-free KK detection for PDM-bipolar-PAM in 100 Gb/s simplified coherent PON
Le et al. Optical single-sideband direct detection transmissions: recent progress and commercial aspects
Mazur et al. Optical arbitrary waveform generator based on time-domain multiplane light conversion
JP3900874B2 (en) Optical transmitter and optical modulation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19774461

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19774461

Country of ref document: EP

Kind code of ref document: A1